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Abstract

Given the continuing advancement of networking applications and our increased dependence upon

software-based systems, there is a pressing need to develop improved security techniques for de-

fending modern information technology (IT) systems from malicious cyber-attacks. Indeed, any-

one can be impacted by such activities, including individuals, corporations, and governments.

Furthermore, the sustained expansion of the network user base and its associated set of applica-

tions is also introducing additional vulnerabilities which can lead to criminal breaches and loss

of critical data. As a result, the broader cybersecurity problem area has emerged as a significant

concern, with many solution strategies being proposed for both intrusion detection and prevention.

Now in general, the cybersecurity dilemma can be treated as a conflict-resolution setup entailing a

security system and minimum of two decision agents with competing goals (e.g., the attacker and

the defender). Namely, on the one hand, the defender is focused on guaranteeing that the system

operates at or above an adequate (specified) level. Conversely, the attacker is focused on trying to

interrupt or corrupt the systems operation.

In light of the above, this dissertation introduces novel methodologies to build appropriate

strategies for system administrators (defenders). In particular, detailed mathematical models of

security systems are developed to analyze overall performance and predict the likely behavior of

the key decision makers influencing the protection structure. The initial objective here is to create a

reliable intrusion detection mechanism to help identify malicious attacks at a very early stage, i.e.,

in order to minimize potentially critical consequences and damage to system privacy and stabil-

ity. Furthermore, another key objective is also to develop effective intrusion prevention (response)

mechanisms. Along these lines, a machine learning based solution framework is developed con-

sisting of two modules. Specifically, the first module prepares the system for analysis and detects

v



whether or not there is a cyber-attack. Meanwhile, the second module analyzes the type of the

breach and formulates an adequate response. Namely, a decision agent is used in the latter module

to investigate the environment and make appropriate decisions in the case of uncertainty. This

agent starts by conducting its analysis in a completely unknown milieu but continually learns to

adjust its decision making based upon the provided feedback. The overall system is designed to

operate in an automated manner without any intervention from administrators or other cyberse-

curity personnel. Human input is essentially only required to modify some key model (system)

parameters and settings. Overall, the framework developed in this dissertation provides a solid

foundation from which to develop improved threat detection and protection mechanisms for static

setups, with further extensibility for handling streaming data.
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Chapter 1

Importance of the Intrusion Detection Domain in Network Security

Nowadays, the significant development of our computer systems transformed our daily life entirely

and made our existence reliant on them. According to Cisco Visual Networking Index 2017 [77],

there are expected 3.5 computer devices per capita worldwide in 2021 and almost 106 Terabytes per

second of global Internet traffic. With the rapid progress of the Internet, our computer structures are

exposed to an increased number of threats. Although the research and technological innovations

in are progressing rapidly, an absolute cybersecurity remains a challenge.

The IDS observe the network traffic, analyze it and identify possible anomalies or unauthorized

access to the network behavior. Some of the IDS also respond to the intrusion, which is a neces-

sary measure in protecting our computer network. There are several limitations and problems of

the existing methods that we will address in this chapter and attempt to solve with the proposed

off-policy Q-learning intrusion response model. On the one hand, exploitation and misuse of re-

sources happen, because the IDS is designed to observe the network all of the time; consequently,

resources are utilized even if no attack is occurring. On the other hand, although the flowing traf-

fic is examined continuously, once an attack is detected, there is a considerable time necessary

for a response to be provided. The network traffic often travels a certain distance in the form of

packets; moreover, the intruder can alternate or even terminate it before reaching the IDS. Another

challenge is to provide a reliable way of protecting our system or to what extent we can trust the

IDS. The administrators should regularly update their protection mechanisms; otherwise, once the

intruder recognizes specific weaknesses and limitations, he will send even more attacks, therefore

challenging the detection system.

The common classification procedures are based on familiar machine learning models such as

Naive Bayes [51] or discriminant models such as Support Vector Machines [50] and [60].Those

machine learning approaches study primarily a set of network characteristics (where there is no
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order or sequence in the specifics of the network), and their objective is typically to calculate a

category score. Furthermore, the question that arises is how properly they will perform in net-

work classification, especially when we observe more noise and the information structure is not

homogenous [50]. We need to test how accurate are these methods for predicting categories for

large networks, where the information is concentrated in only a few characteristics. Besides, the

focus will be on assisting in an approachable way the potential readers of this work to discover

an efficient defense mechanism that will protect their network system. As an example of the cru-

cial role of the cybersecurity, the progressively-increasing use of wireless technology is making

networks even more vulnerable to attacks. Nevertheless, advanced and sophisticated challenges

make the classical security measures, such as a firewall, inadequate. If a hacker wants to steal data,

he will not try to penetrate the firewall, but he will search for the least secure access to take over

control of the system. The cyber-criminals are continually inventing new techniques. Therefore,

we need to find effective solutions that can dynamically and adaptively defend our systems.

In the current dissertation, we will introduce an automated machine learning algorithm for Net-

work Intrusion Detection and Prevention Systems (IDPS) that will serve as a successful tool for

defending our network. The proposed IDPS incorporates two layers: the primary layer will pro-

vide us with the opportunity to monitor the network and to detect a breach in our system, based

on machine learning dimensions reduction and classification techniques. The second layer will

generate an automated response to an eventual attack, given the classification outcome, generated

by the detection module and will employ Q-learning mechanism to prevent and in some cases to

response back to the attack. This network IDPS is entirely adapted to streaming data and can be

implemented to any firewall, where online data analysis is required.

Most of the IDS systems operate on their own in conjunction with a firewall. However, they are

restricted to their detection and monitoring functions. Therefore introducing an intrusion response

mechanism that will work together with the IDS will allow comprehensive protection, that will not

only secure our systems but also create a unique agent that will make an automated decision in

an unknown environment. In the end, we will represent the whole interaction process among the

attacker and the and the protecting agent as a Game theory approach that could serve as a balancing

and strategizing tool for predicting the behavior of the attacker and based on the solution to that

game, to find an equilibrium point for optimal results.
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The proposed schema is an advanced technique of machine learning systems for features reduc-

tion and classification in network security set up. It will be capable of outperforming some of the

current methods, used in cybersecurity and will be effective against not just one but many types

of attacks. As an addition the suggested representation of the computer network as a probability

structure is an innovative approach in which the decision agent will operate in an unknown en-

vironment, obtain feedback and based on the received reward, he will learn to select an optimal

policy, so the network to be continuously protected.
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Chapter 2

Literature Review of Machine Learning Methods in Intrusion Detection Systems1

2.1 Related Work Machine Learning in Intrusion Detection and Prevention Domains

2.1.1 Classification Related Machine Learning Methods

Cannady [44] and [56] made some of the earlier works on network classification. He indicates

that neural networks are reasonable solutions when they are trained for a specific problem domain

with representative sets of training data. The model was not able to handle streaming data, and

therefore, it is necessary for the individual protecting our system, to take off-line the data whenever

he needs to train the model and to run it to the updated set of representative data. Furthermore, the

authors employed a three-layer control feedforward mechanism intended to yield a series of input-

output mappings. The particular Intrusion Detection System (IDS) agent, consequently, learns

how to spot flood-based Denial of Service attacks based on Internet Control Message Protocol

(ICMP) together with the User Datagram Protocol (UDP). The method initially studies how to

detect the ICMP attacks and as a result, updates and retrains the model frequently. Therefore, it

is capable of learning about how to recognize new attacks based on the UDP protocol. Cannady

applied a Cerebellar Model Articulation Controller Neural Network, to propose an online-learning

method. The authors proposed a multiple layer mechanism, intended to generate a sequence of

input-output mappings. The system initially is trained how to identify ICMP breaches and to

use prior experience and training it determines how to recognize new attacks based on the UDP

protocol. However, the method is concentrated only on the flood-based Denial of Service attacks.

One method employed to detect anomalies in IDS is built upon the analysis on the sequences of

system calls.

1Portions of this chapter have been previously published in Proceedings of Dynamic Systems and Applications ,

vol. 7, 2016, pp. 303-310
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In [57] the researchers used Random Forest and Regression Trees to recognize breaches in the

system . Nguyen et al. [55] employed Principal Component Analysis (PCA) for outliers and

anomaly detection in IDS. Shilpa et al. [40] compared different methods for attribute selection

and examination of abnormality detection. It is an important task to select a proper model, which

will assist the further analysis and outline an optimal solution in dealing with the tradeoff between

accuracy and complexity. One approach used to find breaches in host-based intrusion detection

systems is established by observing sequences of system calls. A process running on the host ini-

tiates these calls, and they are grouped in sets of traces. Each trace includes a file of system calls

produced from the start to the end.

Many of the IDS research publications can be summarized as machine learning classification

problems, which are solved with supervised or semi-supervised learning models [76]. Although

some authors attempted to implement unsupervised learning, they achieved low accuracy [73].

RL has been widely employed in computer network disciplines; however, the utilization in the

intrusion detection or intrusion preventions area has not been substantially explored. Scientists

perceive considerably intriguing the domain of routing protocols, validation processes, entrance

control and service quality mechanisms. The attentiveness is because RL is reasonable for control

situations, where a response from the environment exists [75]. In all the occurrences mentioned

above, we detect feedback, which is represented as a reward.

2.1.2 Reinforcement Learning in Network Security

Xu et al. [78] implemented reinforcement learning in an association with Hidden Markov Models

(HMM) to identify breaches by learning the state transition probabilities. The authors claimed

that HMM could offer a suitable estimation of the state transitions on IDS. For the value function

to be modified, they applied temporal difference methods and obtained results, using the same

training and testing sets. Two years later, Xu and Luo [79] modeled the network behavior with a

temporal-difference approach. In this work, they achieved better detection accuracy, matched to the

previous implementation of HMM approaches. To estimate the value function and to implement

parameter reduction, they used a kernel least-squares temporal-difference algorithm (LS-TD) [80].

Xu and Luo provided a practical solution for IDS to affirm the quality of the outlined model; they

used system calls traces from the send mail application. Miller and Inoue [74] used a model called

5



Perceptual Intrusion Detection System with Reinforcement, which operates with multiple different

agents. A single agent can employ a self-organizing map to detect malicious activities, and there is

a blackboard technique for assembling the results provided by all agents. Once a signal is detected

within the system, it is distributed to all agents for collective group analysis. They send votes to

the central blackboard system, which computes weights, and it rewards the agents depending on

their performance.

2.1.3 Machine Learning Techniques for Streaming Data

Some of the early literature related to data streaming manipulation originates with the concept of

employing partial and not full memory of data storage. The sliding-window notion represents the

idea that at each time a window will contain the most up-to-date information that is associated with

the learning process. It is challenging to decide the windows size W , so the most straightforward

approach for solving this problem is to let the user select of how large to set the window and keep

it fixed while the algorithm is executed [84]. The detection of the change is achieved by using a

score, that can recognize the indication of the change between current and referred window. Other

proposals denote the concept that we should keep in the memory only aggregate statistics with a

”decay function,” that signifies the importance of those aggregates over time [85].

In other approaches, the drift detecting concept is established by monitoring the rates of three

operational thresholds [86] such as precision, accuracy, and recall. Their values are analyzed with

a moving average, concerning the standard sample errors’ confidence intervals (using the latest set

of examples) of each particular indicator. The fundamental purpose is to decide upon a window

size of data so that the predicted error on new instances is minimized. The approach uses unlabeled

dataset. Therefore the model does not require complex calculations, and it is easy to be applied.

Another approach [87] for recognizing shifts in the distribution is by observing a real-time error-

rate of the algorithm. In this method, learning is performed in a series of tests. If a new testing

instance is available, it is labeled utilizing the present model. The authors determine a warning kw

and drift levels kd that are activated once the error rate reaches predetermined levels. Those levels

serve as a suggestion for a distribution shift of the instances.

The drifting idea can be summarized in two classes [88], [89], [90] and [91]. The first class out-

lines procedures that apply the learner periodically without analyzing the occurrence of changes.

6



The second category summarizes the research where we detect a change first, and the learner adapts

to it. Representatives of the strategies as mentioned above are the time windows of fixed size and

weighted instances. The weighted instances are characterized by the notion that the value of an

instance diminishes over time [88], [89], [92], [93] and [91]. If a time window is utilized, the

learner is affected only by instances that are included in the window. A small window can produce

bias results. There exist feasibility to utilize a time window with an adaptive size, or modifying

the window according to the concept of drift [88]. FLORA2 developed by Widmer and Kubat [91]

introduces an idea for window change for classification purposes that is based on specific rules. To

recognize distribution changes, the authors proposed a window size, based on the accuracy and the

applied learner. Klinkenberg and Lanquillon [90] and [92] assessed the accuracy and the precision

as monitoring performance indicators. They estimated the standard error and also its confidence

intervals and applied a moving average. There are a couple of challenges in this methodology.

The first one is related to the limited information that we possess about the real class most of the

time. The second one is associated with the substantial amount of parameters that has to be tuned.

Klinkenberg and Joachims proposed a robust approach to recognize changes using support vec-

tor machines [90]. The central concept is to select an appropriate size of the window so that the

expected error of the new examples to be as small as possible.

A shift detection process can be two varieties: sequential change detection or batch change

detection. Given a series of observations, the assignment of the batch design is to recognize a

modification at a specific point in the series by using all possible instances. However, the short-

coming of is that its running time is considerable when detecting changes in a significant amount

of data. In contrast, the sequential change detection problem is based on the observations until

the current time. If no change is detected, the next instance proceeds. Whenever a difference is

noticed, then the detector is reset. Let us assume a series of pairs {xi; yi}, for any instance, we can

estimate ŷi, however this estimate can be either correct if yi = ŷi or a mistake if yi 6= ŷi. Therefore

each error rate for a specific pair will follow a Bernoulli distribution, and If we observe a sam-

ple of n instances, the error rate will follow a Binomial distribution. Where pi is the probability

of the model of making an incorrect prediction, and i is the instance in the sequence. Probably

Approximately Correct [94] learning supports the idea that if there are not any changes in the

distribution, then the learning model’s error rate will diminish as the number of instances grows.
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The large growth in the error indicates a change in the class of the underlying distribution. Most

of the authors assume that for an adequate large quantity of instances, the Binomial distribution,

they can approximate the Binomial distribution with Normal. If the distribution is stable while the

model is stationary and if n > 30, the pi has a 1 − α

2
confidence interval approximately equal to

pi + α ∗ si. The distribution shift model maintains two estimators as the model is being trained

the minimum values of p and s. A warning level is established, when for every distinct currently

analyzed instance i, the sum of pi + si is less than the benchmark sum of pmin + smin. The new

window includes some of the former instances which are in the current setup and a small number

of instances from the old one. If the warning confidence level is 95%, a warning level is attained

if kw : pi + si ≥ pmin + 2smin, however if a drift level is required with a confidence of 99%, then

it will be kd : pi + si ≥ pmin + 3smin. If the drift level is reached, this will be an indication for

distribution change of the instances. Once the drift level is detected, the model starts automatically

rerunning the algorithm for retraining the data.

2.2 Literature Review in Stochastic Game Theories 1

This literature section intends to outline a brief survey of stochastic game methods in cybersecurity

[81]. The rapid development of this area explains the abundance of literature and models. Due to

our specific emphasis and unintentional overlook, deserving references may not appear in this

work. The primary emphasis when describing the variety of theories will be on how to apply these

models in a cyber security set-up.

John Von Neumann (mathematician) introduced game theory in 1928 for the first time as a math-

ematical instrument, used to define and solve games [37]. It is a useful, analytical and quantitative

approach for characterizing interactive decision situations and also handles dilemmas between ri-

vals with competitive goals. Game theory has the potential to analyze various potential outcomes

at a time, and therefore to provide each player with an optimal, feasible and strategic set of actions.

A stochastic game is a system, which consists of two or more players that follow some rules with

a probabilistic transition, strategically interact with each other, make decisions based on their cur-

rent or past information, search for the best resolution for their current (or future) outcome and act

1Portion of this section was previously published in the Dynamic Systems and Applications, vol. 7, 2016
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accordingly. They can continue to play the game forever or win or lose. A defense game illustrates

the interplay between foes and intrusion detection systems (IDS) that utilizes resources for mon-

itoring the network and some cases to respond. A mathematical decision structure is needed so

we can analyze problems related to modeling the attacker’s behavior, limited resources allocation,

and selection of an optimal response, [1], [3], [8], [13], [15], [19], [23], [24] and [36]. In this

chapter, we will adopt the idea that the game is played under the assumption of rationality. In this

section, we will concentrate our effort on describing stochastic games and evaluate the different

types of games, according to a specific informational structure. Since the players make their ac-

tions and strategies based on the available past or current knowledge, it is crucial to recognize the

informational structure first, so that we can think of an appropriate solution to the game.

Information performs a critical function in the game theory. The primary importance level is

because it provides us with an outline of different possible strategies that the players might under-

take.

• Dynamic Games of Complete Information

Complete information implies that every player possesses knowledge of the strategies and re-

turns of the other players participating in the game, but they may not be aware of the particular

actions of the others in the game.

• Dynamic Games of Incomplete Information

These games exist when one or more of the players are not aware of the potential payoffs

and strategies of all other or at least one other player. We can evaluate the situation when the

attacker has a higher information level and exploits the resources of the defender.

In the stochastic games with complete and perfect information, every agent possesses an aware-

ness of the actions of all other agents that were in the past. They identify the policies and the other

agent’s payoffs. In these games, they are aware of the complete history of the game. Usually, there

is one leader, and then the rest of the players are followers.

Many authors use a two-player zero-sum game for modeling a robust protective mechanism.

For example, in the model of Nguyen et al. [28], the attacking and the protecting agents play a

zero-sum game. Again, they used nodes to model the system, but this time they made the nodes
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correlated to each other, depending on some weighted factors related to the security assets involved

in the process and the vulnerability dependency of the nodes. The same idea was developed in [26],

where the authors considered a practical example to explain and test their idea of finding an optimal

strategy.

Players move at different, sequential moments and their return functions are shared information.

Every time, they move simultaneously, and the agents are in general not informed for the past

actions of the other agents. A solution of that type of game is provided by Selten (1965) Sub-game-

perfect Nash Equilibrium (SGPNE). A Nash Equilibrium is sub-game perfect if the strategies of

the players establish a Nash Equilibrium in each sub-game. SGPNE includes not only the optimal

feedback to the unique action, played in the first stage, but also provides a full plan of action

(strategy) with a suggestion of what would be the most optimal approach to reply to any possible

action in the unknown portion of the game (sub-game).

The main problem discussed in these types of games is to define the optimal policies for the

defender to diversify the risk when he builds his strategy against the attacker and to find an optimal

defense strategy. Since we have a sequence of actions and there is a transition process involved,

some of the authors describe the system as a Markov process. Several approaches to finding a

solution of the game were described in the past. Some of the most popular methods are Q-learning

[7], NPL1 [9], which is an algorithm that helps us to find an optimal solution with Nash Equilibrium

and Shapleys method [35].

Sallhammar et al. [34] presents the game as a two-player game in which there is not any inter-

action between the efforts of the opponents, involved in the system. The status of the network,

may or may not be subject to change. For example, in one standard set up where there is a defense

mechanism, it is possible for the system to reboot because of different reasons. We can model

the game as a stochastic Markov process. The relationship of the players in the game will affect

this transition matrix in a way that depends on the different strategies that they use. The whole

process is represented as a Markov decision process (MDP) by Filar and Vrieze [9], where the

transition probabilities are subject to change, conditional on the agents’ actions and the next state

can be obtained based on the current and previous states. The MDP turns out to be one of the most

helpful approaches, which can provide us with a tool that is convenient to be calculated. It also

takes into account changes that might occur in the system. In [5] we can find different optimizing
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mechanisms and tools for dynamic programming.

The interaction between attacker and the IDS (intrusion detection system) was presented by

Alpcan et al. [2], [3] and [4] as a Markov game. They considered three possibilities for information

availability, if: (a) the attacker and the defender have full information about the system, (b) the

attacker has no information (c) nobody has any information for his or her opponent, but only about

their own costs, actions in the past and the previous states. Main mechanisms for finding optimal

strategies of the agents were minimax-Q [20] as well as naive Q-learning, defined in [5] and [7].

Xiaolin et al. [38] stressed the importance of risk assessment in cybersecurity, the authors pro-

posed an automatic generate reinforcement Markov model that will assist the administrator in

protecting the system. They considered the potential and the current security status and assessed

the risk as a combination of vulnerabilities and threats. They also created a function to measure

the harm caused by the attacker, and it represented the level of risk involved in the process. Ac-

cording to this function, the administrator will select a strategy that will minimize the maximum

possible damage to the system. To assess their model, they considered four different sub-systems,

which are united together, so the best decision process to be made. Fault Tree Analysis (FTA)

were presented in [31] and [18]. They were based on Chain-of-Events Model, together with CO-

BIT 15 [25], and were described as the basic methods for analyzing the reasons for hazards in

our system. Tree construction demands an in-depth evaluation, emphasizing system problems and

facilitating improvements by an analyst.

In the dynamic games with incomplete information, the agents possess limited knowledge about

the return functions of their opponent. However, they are aware of the past actions of everybody

else. An example of these games is the two-player zero-sum game that also serves as a base for

the Intrusion detection mechanism. It illustrates the connection between criminal attackers and

IDS which allocates resources for detection and response [3] and [6]. IDSs observe various events

in the cybersecurity and examines them for signs of a safety problem in the protection process.

It is becoming more and more apparent that the traditional protective measures such as firewalls

or virus and malware prevention systems are not adequate to deal with sophisticated attackers.

The majority of the research on IDS is concentrated on an empirical application. A mathematical

decision framework may be vital for predicting the behavior of the attacker.

Patcha et al. [30] incorporates a signaling game to present the intrusion detection mechanism.
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The defender has incomplete information because he does not know what type his the other player

is. A Perfect Bayesian Equilibrium is such a combination of strategies and beliefs, which offers

an optimal approach, conditional on the opinions of the agents in every state. Perfect Bayesian

Equilibrium is always Nash Equilibrium, but not the other way around. Given the players’ beliefs,

the strategies must be sequential, i.e., at each information set the actions taken must be optimal

[30].

Nguyen et al. [27] described the system safety dilemma as many consecutive games that are

played by both agents. Nguyen et al. observed this type of play as a fictitious play because

the participants did not know the previous actions of their opponents. The authors observed the

influence of the so-called error probabilities in the process, and they considered the implementation

of a sensor system based on two main scenarios: (a) each player knows the error probabilities, and

(b) none of them knows it. Other authors also considered the fictitious play in their analysis. For

example, in [22], Luo et al. suggested design to outline the uncertainty of the attacked object. In

a similar way Liu et al. [21] developed a Bayesian game in a wireless network. Each node was

assigned a transition probability, and two situations were discussed: a fictitious and a gradient play,

as the players revise their expectations at the completion of each state.

Incomplete and imperfect information implies that one of the agents is not aware of the actions

and payoff functions of the other players that were in the past. One possible representation of these

types of games is the Two-player hybrid Bayesian type of a game; the players amend their beliefs

for the nature of their rival. The solution of the game is a sequence of updated strategies, based on

the beliefs of the agent. For example, in [21] the authors suggest several possible solutions with

the Bayesian approach to solving a game with incomplete and imperfect information.

The authors in [39] designed a model of interaction between the hacker and the defender. They

suggested that this model could be represented as a repeated game. Linear algorithms were em-

ployed for finding a solution to their game, and they provided a deep insight into the Bayesian

and Nash Equilibriums. The authors proposed two methods for finding the solution the Min-Max

method [29] and a linear programming [22]. Additional research for these type of games is made

in [3], [27] and [30].
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2.3 Other Related Work

Sallhammar, et al. [33] proposed an approach of integrating reliability and cybersecurity. The

authors implemented a stochastic game to predict the hackers’ behavior. The basic idea is to

evaluate the relationship between hacker and administrator as a two-player zero-sum game. The

researchers calculated the transition probabilities and created and solved a Markov model.

Hansman and Hunt [12] introduced a classification including four distinct dimensions. As a

whole, their classification system includes specific types of breaches, assisting with the security by

developing the consistency in the language which is describing the different types of attacks. They

suggested that a robust style with a detailed description of the distinct attack types can enhance

the system. The first dimension is assisting the administrator to categorize the breach, the second

dimension emphasizes the classification of the breach victim, and the third one outlines the process

of representing the separate levels of vulnerability. The final aspect describes the potential effects

that will be obtained before the final act.

Hausken [11] also used a strategic reliability approach to describe the game model. His work

recommends different techniques, depending on the type of the network. He uses Markov analysis

to repeated games and studies the strategic defense of a system, which has been targeted by mul-

tiple attackers. Hausken takes into account the essential dissimilarities of the network elements

and considers several parallels and complicated series of defensive techniques. In [10], the authors

describe the optimality process of a possible interaction between the hackers, depending on the

information structure and availability. They consider a process of building a shared information

platform among the hackers so that the hackers can be aware of the level of vulnerabilities among

the different protected systems. That implies that the weakest systems will be targeted and there

are better chances of a successful attack on the protected system. Kjaerland [16] proposed a taxon-

omy of cyber-intrusions to profile cyber-criminals and victims. His primary insight is an emphasis

on the examination of both the attacker and the defender. He also focuses on reported cyber intru-

sions by Computer Emergency Response Team. These breaches were investigated implementing a

multiple dimension scale, represented by the following categories: a Method of Operation, Target,

Source, and Impact. He concluded the chapter by distinguishing the commercially related and the

associated government breaches; he also stressed the importance of understanding intrusions.
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2.4 Concluding Remarks

This chapter summarizes the research made in the IDPS domains with regards to the different

machine learning classification and Reinforcement Learning processes. It also demonstrates a

promising future application and efficiency of the game theory in cybersecurity. Additional re-

search needs to be done in analyzing the strategies and the solutions of the players, according

to the informational structure in cybersecurity. Furthermore, there is the existence of different

challenges associated with the theoretical framework and the practical application of the possible

variety of games. It can be stated that there are some problems in quantifying the diverse factors

that define the game. So far, the applied research on game theories has been limited to the compu-

tation of the Nash Equilibrium and the use of other related classical approaches. However, new and

advanced methods need to be implemented to account for the fast developing cyber environment

and the innovative strategies, invented by the attackers nowadays. Firewalls and other intrusion

detection mechanisms may be useful for our basic protection, but new and high-tech software and

hardware applications are necessary so the administrator can create a quick and adequate response

to each possible attack.
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Chapter 3

Feature selection and Classification process for predicting the attacker’s behavior2

3.1 Introduction

The Network Attribute Selection, Classification, and Accuracy (NASCA) procedure is a four-step

procedure for intrusion detection systems. The model first begins by extracting the information

from the Transmission Control Protocol (TCP) and then ranking the relevant information that char-

acterizes the network. During the second stage, it classifies the network as being under attack or

not. Moreover, if the model detects that the system is under attack, it executes another level of

a classification approach to identify the type of attack that is occurring. The third stage provides

us with results about the accuracy of the performed analytical estimate. The attribute selection

method begins with choosing a subset of appropriate information by removing redundant, unre-

lated, and noisy data from the original dataset. The classification method starts initially with an

existing set of labeled networks; consequently, it learns the dependency between the content of the

network and its corresponding label and then predicts the label of a set of unlabeled networks as

accurately as possible using a decision tree type of analysis. The goals of this chapter will be the

following; (1) To propose a NASCA procedure for intrusion detection systems; (2) To test it on a

real data set; (3) To report the obtained results; and (4) To provide evidence of why this procedure

can outperform the existing ranking and classification techniques.

3.2 Used Methodology

3.2.1 Network Intrusion Detection - Outline of the Procedure.

The classification agent is capable of making decisions in a constantly changing environment and

therefore testing the model while evaluating the network. As an addition, an essential advantage
2Portions of this chapter have been previously published in IEEE Xplore Digital Library, 2017
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is the fact that only relevant network information will be used before the particular classification

decision is accomplished. Under those circumstances, the agent can learn how to classify the

network promptly, accurately and efficiently.

The steps of the procedure are presented in Fig. 3.2.1:

1. Network Data Collection: Collect the network data from the TCP/IP, using for any raw socket

communication instrument for reading the data;

2. Attribute Selection: Apply an Information Gain Attribute Evaluation Approach, which is a tool

for feature reduction and attribute ranking for classification purposes (Mitchell, 1997);

3. Classification: Provide a classification procedure, which will learn how to label the network

precisely and promptly. In this work, we will use a two-stage procedure:

(a) Classify the network as being under attack or not. In the first step of the classification, we

will use a Random Forest (RF) to label the network as being under attack or not; if Step

(a) labels the network as being is under attack, then use step (b).

(b) Classify the network further only if an attack is occurring. We use a partial decision

tree (PART) method to classify further possible estimate for the type of the attack that is

undergoing.

4. Accuracy: Here, we will demonstrate the accuracy of the estimate for the specific dataset used.

Once the data is trained, and a model is built, accuracy factors are reported.

3.2.2 Attribute Selection, using the Information Gain Attribute Evaluation Approach.

Attribute selection is the method of recognizing and eliminating the irrelevant and redundant in-

formation from an evaluated system. If we can eliminate some of the unrelated features, we can

moderate the complexity, by removing irrelevant dimensions and enhancing the performance of the

prospective classification procedure. The decision agent is capable of operating not only quicker

and with less information, but also to improve the classification accuracy process, [48]. There exist

a variety of different proposed attribute selection methods. For example, Hall and Holmes et al.
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Figure 1.: NASCA Procedure

analyzed number of these attributes selection techniques and outlined the ones that achieved no-

ticeable results, namely [49] Correlation-Based Feature Selection, Information Gain Correlation,

Wrapper Subset Evaluation [53], Recursive Elimination of Features [52], and Consistency-Based

Subset Evaluation [54]. The main idea of the attribute selection procedure is to rank the relevant

variables and henceforth to use only the appropriate information to perform the classification of

the network. Attribute reduction is the process of mapping the existing high-dimensional data onto

a lower-dimensional space. For example, for a given dataset points of n variables {x1, x2, , xn},

we need to compute their dimensional representation xi ∈ Rd → yi (p << d) . The criterion for

feature reduction can be different based on diverse problem settings. In this chapter, we will test

different ranking algorithms. Consequently, we will provide results, so that we can demonstrate

the outperformance of the Information Gain Ranking filter in comparison to other algorithms for

attribute selection. Information gain (IG) quantifies the volume of information in bits about the

class estimate. It measures the expected decrease in entropy of the class variable after the value

of the feature is observed (uncertainty associated with a random feature) (Mitchell, 1997). It is

an entropy-based filter that categorizes the gain of the attributes. For example, an Entropy for i

classes can be defined as:

H(X) = −sumiP (xi)log2P (xi) (3.1)
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Entropy signifies the level of insecurity in the system. In the equation (1), P (xi) is the marginal

probability density function for the random variable X , which is obtained by integrating the joint

probability density function. First, we observe the values ofX in the training dataset S and separate

them according to the values of a second feature Y . Correspondingly, we measure the entropy of

X with respect to the partitions induced by Y. In the case that the measure of the entropy is smaller

than the entropy of X before partitioning, we say that there is a relation between features X and

Y .

H(X|Y ) = −
∑
j

P (yj)
∑
i

P (xi|yj)log2P (xi) (3.2)

P (xi|yi) is the conditional probability ofX given Y . Having in mind the fact that the entropy is a

condition of impurity in training set S, we can describe a measure reflecting additional information

about X provided by Y, which represents the amount by which the entropy of X decreases. This

measure is known as information gain and it is given by:

IG(X|Y ) = H(X)−H(X|Y ) (3.3)

The larger the value of the informational gain IG, the further the attribute contributes to the data

set. Although, a disadvantage of the IG criterion is that it will favor attributes with more values

because it is biased towards choosing attributes with a more significant number of values that

produce higher IG. However, given the characteristics of our particular data set, IG is a preferred

instrument for attribute selection.

3.2.3 Classification Process

The classification method is an essential step of the proposed procedure. It is a two-stage process

with objectives - accuracy, precision and faster classification. Therefore, to accelerate the proce-

dure, further analyses will be completed, only whenever the network is classified as being under

attack. The proposed procedure combines two major classification techniques, namely Random

Forest and consequently partial decision tree (PART). In Fig. 3.2.3 we can observe the main idea

of this stage and how the classification process is analyzed. Breiman [41] introduced Random

forest, it is a cooperative learning method that produces various classifiers and summarizes the

outcomes. As an addition, it can be executed if needed with two major procedures to perform the

18



Figure 2.: Classification Process

classification or prediction analysis, namely boosting and bagging. On the one hand, in boosting,

the succeeding trees assign additional weight to instances that were incorrectly classified by earlier

trials, and at the end, a weighted score is calculated for the classification purposes. On the other

hand, in bagging, the succeeding trees are independent of the previous trees. Moreover, every tree

is grown utilizing a bootstrap sample.

The classification is accomplished based on the so-called majority score split (Liaw and Wiener

2002). The random forest grows multiple trees, and each of them produces a classification with

an assigned score for the specific class. As a result, the forest indicates the classification with

the highest score. The term originated from random decision forests that was first proposed by

Tin Kam Ho by Bell Labs in 1995. Random forest (RF) is a combination of tree predictors such

that each tree depends on the values of a random vector sampled independently and with the same

distribution of all trees in the forest. The error of a forest of tree classifiers depends on the score of

the distinct trees in the forest and the correlation among them. The Random Forest process in our

analysis starts with the creation of many trees. It introduces randomness into trees such that each

tree has a minimum correlation with the other trees. Each tree in the collection is formed by first

selecting at random, at each node, a small group of the input characteristics to split and, secondly,

by calculating the best split based on these features in the training set. The method that we will use

in the splitting process is a two-step randomization technique. Initially, the tree is grown by using

a bootstrap sample, and then we introduce another stage of randomization, using random feature

selection approach. In a summary, instead of splitting the node of the tree using all k features, we
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will randomly select at each node of each tree a subset of m-tries, where m ∈ [1, k] for splitting

the node. Brieman et al., 1984 outlines some of the splitting suggestions and development of the

tree. The method suggests a subspace randomization structure that is combined with bagging,

Buehlmann, and Yu, 2002 [42]. The idea is to re-sample, with replacement, the training data set

whenever a new individual tree is built. Biau and Devroye (2010), as well as Meinshausen (2006),

studied the consistency of random forests in the setting of conditional quantile prediction [45].

The detailed procedure of RF starts with the creation of a new random vector n for each n-

th tree that is independent of the previous random vectors θ1, θ2.... Moreover, it is generated

from the same distribution and based on a training set θn; a tree is grown. Consequently, the tree

organization of RF is based on classifiers {h(X, θn, n = 1, 2, 3} , where {θn} are i.i.d. random

vectors. Respectively, each tree is assigned a score as described above and an input vector X.

If the network is under attack, then we will employ the partial decision tree PART [46] and [47]

method for classification purposes has several advantages compared to the other methods. PART

will label the network with the type of the 37 types of attack, and therefore it will perform the

process faster rather than the RF. The reason of why we will employ PART algorithm instead of

RF again will be because it is a rule-based method, which does not need to achieve a global opti-

mization to produce accurate results, which will speed up the classification process. It knows how

to label new occurrences quickly and possesses an outstanding accuracy and precision. Moreover,

it adopts the separate-and-conquer approach, and consequently, once it constructs a rule, it elimi-

nates the covered alternatives. Hence, it keeps repeatedly creating rules for the residual instances

until it executes all possible outcomes. In essence, to create a single rule, a pruned decision tree

is built for the current set of instances. As a result, the leaf with the highest coverage is converted

into a rule, and afterward, the tree is discarded.

The idea of recurrently building decision trees only to reject the majority of them in PART is not

as unusual as it seems. A pruned tree can be employed to obtain a rule, instead of constructing it

incrementally by adding combinations one by one. PART is capable of avoiding the over-pruning

problem of the rule learner - separate-and-conquer [43]. The model performs with improved speed,

although the above advantages are still achieved. The fundamental idea is to build a partial” de-

cision tree instead of a fully explored one. A partial decision tree is a regular decision tree which

builds divisions to unknown subtrees. Once a partial tree has been built, a single rule is produced
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based on it [43]. The aim is to find the supreme general rule by choosing the leaf that covers the

highest number of instances or the leaf with the lowest error rate.

3.2.4 Accuracy

The Accuracy step is related to testing the performance of the model based on two main criteria:

accuracy and complexity. A too complex model will take a longer time to classify the network,

as an addition, there is a trade-off between complexity and accuracy. Different classification and

attribute selection models are performed, and a ranking comparison is made based on those two

criteria. The results are reported with regards to the cost analysis of the complexity, Kappa statistic

and the error rate for accuracy. The data set is tested on the basis of 80-20% split, and the results

are compared and reported, depending on the applied classification methodology.

3.3 Data Description

A network is structured by Transmission Control Protocol (TCP) packets starting and ending at

some well-defined time between which data streams to and from one source IP address to another

target IP address under a determined protocol. Each network is labeled as either normal or as

an attack with exactly one specific attack type. The data that are used in this paper are ISCX

NSL-KDD Data Set that is an improved version of the KDD CUP 99, DARPA, conducted by MIT

Lincoln Labs. Lincoln Labs simulated an environment to obtain nine weeks of raw TCP dump data

for a local-area network (LAN), pretending a typical United States Air Force network. Moreover,

they operated the LAN as if it were a true Air Force atmosphere, and simulated numerous attacks.

Even though the contribution of DARPA and KDD (University of California) dataset is remarkable

[59], their ability to reflect real-world situations has been widely questioned, McHugh (2000) and

Brown et al. (2009). Therefore, to conduct meaningful research, in the current paper, we will use

the ISCX NSL-KDD dataset, provided by The Information Security Centre of Excellence (ISCX)

within the Faculty of Computer Science, University of New Brunswick, Canada. The data in

the NSL-KDD dataset is either labeled as normal or as one of the 24 different kinds of attack.

Additionally, these 24 attacks are clustered into four groups: Denial of Service (DoS), Probing

(Probe), Remote to Local (R2L), and User to Root (U2R). The attack types according to the dataset
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Table 1: Types of Labels of the Network

are summarized in Table 1.

There are 42 variables, one of them represents the condition of the network, labeled as being

under a specific type of attack or normal. The dataset is balanced in a sense that the number of

attacks and the number of normal instances is balanced. They are summarized in three categories.

(1) Essential features: this group contains all the characteristics that are collected from a TCP/IP.

(2) Traffic features: this class outlines the features which are measured with regards to a period

of time, and they are divided into two clusters: same host and same service features. (3) Content

features: to recognize the suspicious behavior, we may evaluate features like the number of failed

login attempts.

3.4 Results

The primary objective of the initial step is to eliminate the redundant variables and the features

which do not contribute to the classification process. The dataset contains 127,734 observations,

and the test is done based on the 80-20% split. A variety of attribute selection methods are tested

before selecting an approach. This model is chosen concerning some eliminated variables and the

time to perform the elimination. The nominated method for attribute selection is the Information

Gain Ranking Filter; wherein total eleven variables are excluded from the further analysis since

they do not contribute to the classification process, Table 2. Additionally, in the next step of

the procedure, we will analyze how the model increases its performance, based on the attribute

selection step. The top three variables are likewise essential to appropriate evaluation, especially
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Table 2: Attribute Selection Results

whenever the administrator is concerned with the vulnerability of the network. However, the ob-

jective of this article is to present how to effectively classify the network based on the information

structure that we can obtain from the TCP packets. Therefore, we intend to reduce the dimen-

sions of the data set, consequently abandon the features that do not contribute to the classification

process. The Information Gain Ranking filter is an appropriate method for attribute selection,

established with the assistance of our data set. It completes a prompt and accurate analysis and

eliminates a significant number of variables, which are not influencing the ranking process and the

performance of the classification step. The classification process is the next phase of our proposed

procedure as described above. After we eliminate the variables that do not contribute to the model,

the objective here is to classify the network as being under attack or not. Several discrimination

models are tested and compared, and the best concerning cost structure and accuracy is selected.

Based on the Random Forrest (RF) classification method, subsequently, the suggested first stage is

accomplished. The splitting criteria used at this stage is mainly based on a reduction of the Mean

Squared Error as the method is described above in part IV. Moreover, our investigation suggests

that RF outperforms the other classification approaches. The results for the top six models on the

first step are presented in Table 3 and the corresponding Receiver operating Characteristics Curves

(ROC) are illustrated in Fig. 3.4. The ROC curves assist us to recognize the tradeoff between sensi-

tivity and specificity. The slope of the tangent line at the threshold points represents the likelihood

ratio for that value of the test, whereas the area under the curve is a measure of accuracy. Out of

the 127,734 networks, there are 23 attacks that the model was not able to recognize and classified
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Table 3: Accuracy Classification Process Step 1

them as normal and eight regular connections that the model classifies as an attack, but they are

normal, in total 31 out of 127,734 instances were wrongly classified. We can observe that Random

Forrest outperforms the other methods and the area under the ROC curve is almost 1, which sig-

nifies an excellent classification. The other two approaches, PART, and J-48 also give exceptional

results, and we can employ them in the analysis. Support Vector Machines, with an area under the

ROC curve of .9746 and Logistic regression, decreases the capacity of the classification process,

although they exceed 95% accuracy. Only the Nave Bayes is around 90%, which categorizes it as

the least desired approach from the top six, but also a reasonable one.

J-48 and PART provide worthy results and take a reasonable amount of time Fig. 3.4, However,

the results suggest that it is better to select RF at this stage as a classification method because

the accuracy is higher, the time to perform the classification is shorter, and there is less chance

of overfitting in its algorithm. Real world data inevitably contain noise - in either the feature

values, the class labels, or both. The models are compared with regards to time and complexity.

The results in seconds are presented on Fig. 3.4 and Fig. 3.4 respectively. Although RF takes

third place in the assessment of the time, it is still the preferred classifying technique that handles

the trade-off between accuracy and complexity. The complexity is a measure that is related to

the informational structure of the data set and how long does it take for the model in seconds to

24



Figure 3.: ROC curve for classification ”normal”

Figure 4.: Time in Seconds to Build a Model
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Figure 5.: Complexity per Instance

evaluate the information. The complexity is measured in bits per second and implies computational

effort. We will apply the PART algorithm in the second stage of the classification process only if

the network is under attack. PART model on this step achieves superior results in comparison to

RF concerning the accuracy, and the model was able to perform better the classification process.

Unlike PART, which can accomplish the classification process with an incomplete tree, RF needs

additional resources for creating and evaluating an entire tree. PART employs pruning in the

evaluation process. Therefore, PART benefits the reduction of the complexity and decreases the

error. Compared to the J-48, the risk of overfitting the data in the evaluation process is minor. The

results for the second stage of the classification process are presented in Table 4. All of the methods

slightly decrease their accuracy concerning the correctly classified type of attacks. However, once

the normal networks are not taken into consideration, the SVM approach increases the number of

the correctly classified instances. Regardless of the similar accuracy of the top six methods, we

can observe that the Mean Absolute Error and especially the Relative Absolute Error are lesser

for the PART model. Additionally, the accuracy of the PART model is higher and the time for the

classification process of PART is reasonable.
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Table 4: Accuracy Classification Process Step 2

3.5 Concluding Remarks and Contribution

NASCA is a four-step Intrusion Detection procedure [82], which is created using machine learning

techniques. Moreover, it is a superior method compared to the existing data mining models in

network security. The time for performing the analysis is relatively short, and the accuracy is

significant. The suggested classification process is capable of serving as a convenient and efficient

protection tool for detecting an intrusion in our network. This chapter provides a comparison

between existing supervised machine learning techniques that could be applied for feature selection

and classification purposes in cybersecurity set up and the best ones concerning accuracy and error

rate are selected. We propose step by step a feature selection and two-stage classification procedure

- NASCA that will help the administrators to reduce the vulnerabilities in a specific system.
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Chapter 4

Off-Policy Q-learning Technique for Intrusion Response 3

In this chapter, we will propose an intrusion prevention mechanism that is based on machine learn-

ing, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create

a decision agent, who will control the process of interacting with the undetermined environment.

An objective is to obtain an optimal policy, which will represent the intrusion response to the at-

tack and therefore to prevent it. It solves the Reinforcement learning problem, using a Q-learning

approach. Our agent will produce an optimal immediate response, in the process of evaluating

the network traffic. This Q-learning approach will establish the balance between exploration and

exploitation and provide a unique, self-learning and strategic artificial intelligence response mech-

anism for Intrusion Detection and Intrusion Prevention Systems.

4.1 Network environment represented as Reinforcement Learning process

4.1.1 Reinforcement Learning

Let us assume that there is one decision maker in the IDS and he regularly interacts with his envi-

ronment [83]. Based on the actions that he undertakes, he can modify his states and subsequently

his performance is evaluated by feedback (reward). The aim is to select a set of actions which will

optimize his long-term reward.

To understand how RL operates, we need to introduce the principle of Markov property and to

familiarize ourselves with the concept of a Markov Decision Process (MDP).Let us define S as a

countable set of states or the state space S : {S1, . . . St}, where St = st is a random variable with

a range of St ∈ (0, ..t], this set will be Markov if and only if:

P (St+1 = st+1|St = st) = P (St+1 = st+1|St = st..., S0 = s0)

3Portions of this chapter have been previously presented in 20th International Conference on Cyber Security of

Cyber Physical Systems, and published in Special Journal Issue on Cyber Security of Cyber Physical Systems, 2018
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Thus, the present state includes all past knowledge, and if the current state is observed, it will be

considered as a sufficient statistic to decide for the future. The MDP is characterized by the tuple

〈S,A,R, T, γ〉:

– S is a countable set of states S : {S0, S1, . . . St} in terms of the network set of states as

S : {sN , sA}. Where sA is the state of being under attack and sN is the state when the network

is normal. The amount of states is represented by the possible attacks that we are experiencing,

or whether the network is normal or under attack;

– A is a set of actions, called the action space A : {A1, A2, . . . An}, where An = an and An ∈

(0, n] or in our case we have A : {ap, adn}, where ap is the action when the agent protects the

network and adn is the action when the agent ” do nothing” or doesn’t protect the network.

– R defines the immediate reward that the agent can receive at each state, it is described as the

reward for taking action An at state St , therefore f : S × A→ R

Ra
s = E[Rt+1|St = st, An = an]

– T is a state transition probability matrix. It specifies the probability of change from state i to

state j, on taking action An = a, where i ∈ (0, t] and j ∈ (0, t+ 1]

T aij = P [St+1 = sj |St = si, An = an]

Tij
a =


T a11 · · · T a1t

... . . . ...

T at1 · · · T att

, where the number of transition matrices will depend on the

number of actions. Each transition matrix will represent the transition from state sN to sA for

taking action ap or adn. Therefore for our set up, there will be two transition matrices T adnSNSA

and T apSNSA
.

– γ ∈ [0, 1] is a discount factor [75], which assists us in determining the present value of a

future expected immediate rewards. It is used for emphasizing the significance of the present

in comparison to the future rewards. The larger the value of the discount factor, the farther the

future rewards are considered over time.
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Let us define the total return Gt that the decision agent (in our case the entity, protecting the

computer network) will obtain as a function of the sum of all direct rewards at time t, discounted

back to the present moment.

Gt = Ra
t+1 + γRa

t+2 + γ2Ra
t+3 . . . =

∞∑
k=0

γkRa
t+k+1 (4.1)

Mathematically it’s convenient to use discounted reward decision process because it avoids the

infinite returns in cyclic Markov processes and gives the opportunity for the decision agent to

think about the long-term future.

The state-value function v(s) of MDP will be determined as the cumulative measure of the

predicted total return in (1) since the beginning of state s.

va(s) = E[Ga
t |St = st] (4.2)

The value function may be divided into two components: direct reward and discounted reward of

the following states γva(st+1).

va(st) = E[Ga
t |St = st]

= E[Ra
t+1 + γRa

t+2 + γ2Ra
t+3 + . . . |St = st]

= E[Ra
t+1 + (γRa

t+2 + γ2Ra
t+3 + . . .)|St = st]

= E[Ra
t+1 + γ(Ra

t+2 + γRa
t+3 + γ2Ra

t+4 . . .)|St = st]

= E[Ra
t+1 + γ(

∞∑
k=0

γkRa
t+k+2)|St = st]

= E[Ra
t+1 + γ(Ga

t+1)|St = st] =

= E[Ra
t+1|St = st] + γE(Ga

t+1|St+1 = st)|St = st] =

= E[Ra
t+1|St = st] + γ[va(st+1)|St = st] =

= E[Ra
t+1 + γ[va(st+1)]|St = st]

(4.3)

This way we can obtain the Bellman equation:

va(s) = E[Ra
t+1 + γ[va(st+1)]|St = s]

This equation can be represented as:

va(si) = Ra
si

+ γ
∑
sj∈S

T aijv(sj) (4.4)
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If we need to write the equation in matrix form, we will obtain:

v = R + γTv (4.5)

Here v will be a vector with a dimension equal to the number of states.
va(1)

...

va(t)

 =


Ra

1

...

Ra
t

+ γ


T a11 · · · T a1t

... . . . ...

T at1 · · · T att



va(1)

...

va(t)



4.1.2 Policy and Policy Selection

Almost all reinforcement learning problems can be formalized as MDP. The agent maps the set of

the states onto the probability space of taking each possible action. We can define this mapping

process as a policy for the agent, which is a probability distribution formed out of possible actions,

given the current states [75].

π(a|s) = P (At = a|St = s) (4.6)

The policy describes the behavior of the agent, and it is like his model. MDP policy depends on

the present state only, so it does not include information about the previous states, or it is time

independent. Suppose we have an MDP 〈S,A, T,R, γ〉 and π(a|s), the possible sequence of states

is a Markov process 〈Sπ〉, as well as the sequences of the states and the rewards S1, R2, S2 . . .

is a Markov Reward Process 〈S, T π, Rπ, γ〉. In the MDP besides the state-value, there exists an

action-value function:

qπ(s, a) = Eπ[Ga
t |St = s, At = a]

A policy is greedy with regards to a value function, as well as it is optimal according to that value

function. The maximum of the function over all policies is attained where the optimal solution of

the state-value function v∗(s) exists.

v(s) = max
π

v(s)

It specifies the best possible performance in the MDP. The solution of the MDP is the optimal

value function. The maximum of the action-value function over all policies is attained where the

optimal solution of the action-value function q∗(s, a) exists.
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q(s, a) = max
π

qπ(s, a)

An optimal policy is the best policies over all policies and it is defined as follows: π ≥ π
′if

vπ(s) ≥ vπ′ (s) for ∀s, and also:

π∗(a|s) =


1 , if arg max

a∈A
q∗(s, a)

0 , otherwise

(4.7)

For every MDP there will exist an optimal deterministic policy and also if we find q∗(s, a), there

will be a corresponding optimal policy.

We can define an optimal Bellman Equation for the value function:

v∗B(si) = max
a
Ra
si

+ γ
∑
sj∈S

T aijv
∗(sj) (4.8)

We can also define an optimal Bellman Equation for the action-value function:

q∗B(si, a) = Ra
si

+ γ
∑
sj∈S

T aij max
aj

q(sj, aj) (4.9)

We employ the Bellman Equation under the assumptions that its solution exists and it is unique.

We assume appropriate conditions of Sutton and Barto [75] of existence and uniqueness.

In general, the following methods are usually used: Value iteration, Policy iteration, Q-learning,

and Sarsa. In this work, we will use Q-learning technique with a finite set of states.The action-

value function estimates the benefit of taking action a in state s. It is the best-expected sum of

future rewards.

Reinforcement learning may be applied to identify an optimal action-selection policy [75] for a

finite MDP. Furthermore, it learns an action-value function, which ultimately provides the antici-

pated value of following an optimal policy and taking specific action in a given state. A history of

an agent is a sequence of <state, action, reward>. An optimal policy is achieved by favoring ac-

tions that at any state provide maximum value. This learning method is also capable of evaluating

the expected value, calculated by all possible actions, without any environment model.
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4.1.3 Exploration vs. Exploitation

On the one hand, the agent unavoidably should explore further opportunities and therefore deviate

from the usual behavior. This divergence is called exploration or taking non-policy action. On

the other hand, he should follow the procedures for estimating the value functions. Whenever he

decides to obey, or follow the policy, we call the process exploitation or taking policy action. There

is a trade-off between both terms, and it is challenging and necessary to find a suitable balance, so

the agent to be allowed to decide appropriately.

The ε-greedy action selection provides a simple heuristic approach in justifying between ex-

ploitation and exploration. The concept is that the agent can take an arbitrary action a from a

uniform distribution with probability ε, 0 ≤ ε ≤ 1, and subsequently to select with probability

1 − ε the current best (greedy) action (Fig.2). It is a standard practice to decrease the value of

epsilon over time as soon as the decision agent becomes confident and needs less exploration. Low

rate implies a strong bias towards exploitation over exploration. The idea is to ensure continuous

Figure 6.: ε-greedy action selection

exploration. All actions m are considered with non-zero probability.

π∗(a|s) =


ε
m

+ 1− ε , ifα∗ = arg max
a∈A

q(s, a)

ε
m

, otherwise

THEOREM 4.1 For any ε−greedy policy, the policy πj with regard to qπ is improvement, vπj(s) ≥

vπ(s).
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qπ(s, πj(s)) =
∑
a∈A

πj(a, s)qπ(s, a)

=
ε

m

∑
a∈A

qπ(s, a) + (1− ε) max
a∈A

qπ(s, a)

≥ ε

m

∑
a∈A

qπ(s, a) + (1− ε)
∑
a∈A

π(a|s)− ε

m
1− ε

qπ(s, a)

=
∑
a∈A

πj(a|s)qπ(s, a) = vπ(s)

Therefore vπj(s) ≥ vπ(s).

4.1.4 Q-learning Algorithm

The Q-learning has many advantages, comparing to the other methods for solving the MDP. First

and most important is the idea for a model-free environment and the concept for an off-policy

learning procedure. Moreover, the decision agent contemplates his succeeding move, based on the

anticipated benefit of selecting each action at any particular state. Subsequently, he updates towards

a bootstrap estimate of the actual return. At every stage, the following state is observed, and the

maximum possible rewards, available for all actions in that state are determined. Consequently,

using this information, the decision agent updates the action-value function with the related action

in the current state. There is a so-called learning rate, denoted by α, (0 < α ≤ 1), which is

associated with that change will assist us to formulate an updating rule.

Let us consider initial action-values q(s, a) and every following action is selected based on a

behavior policy ab ∼ µ(·|si), there is also an successor action aj ∼ π(·|si). Then the updated

q(s, a) will be given by:

q(sj, ai)← q(si, ai) + α[Raj
sj

+ γq(sj, aj)− q(si, ai)]

If we allow the behavior and the target policy to evolve, then we say that the target policy π is

greedy and π(sj) = argmaxajq(sj, aj). Also the behavioral policy µ is ε-greedy with respect to

q(s, a). Therefore the Q-learning control equation is:

q(sj, a)← q(si, ai) + α[Ra
sj

+ γmax
aj

q(sj, aj)− q(si, ai)] (4.10)
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The Q-learning control equation eventually will converge to the optimal action-value function

q(s, a) → q∗(s, a). The proof for this convergence is provided by Watkins and Dayan [72] and

additionally by Tsitsiklis [69]. An interesting problem is also the convergence properties. Melo et

al. [63] proved convergence, assuming some constraints on the sample distribution. Maei et al. [64]

introduced a greedy gradient Q-learning approach that removes the previous conditions and proved

convergence regardless of the sampling distribution.

The described algorithm can be summarized in the subsequent lines:

Algorithm 1 Q-learning approach

– Initialize q(s, a), for each s ∈ S, a ∈ A(s), randomly and q(terminal − state) = 0

Repeat for each episode:

– Initialize si ∈ S

Repeat for each episode:

∗ Chose a from s, using ε-greedy policy derived from Q.

∗ Take action ai

· observe Rai
si

· observe the new state sj

∗ q(si, ai)← q(si, ai) + α[R
aj
sj + γmaxaj qπ(sj, aj)− q(si, ai)]

∗ move to next state si ← sj

– until s is terminal

– end for

It is interesting to mention that there is a connection between the learning rate that we select α

and the convergence rate. Even and Mansour [62] proved that for a polynomial learning rate of

the type 1/tω at time t, the convergence rate is polynomial in 1/(1− γ), where γ is the discount

factor. However, for a linear learning rate of the type 1/t at time t, the convergence rate has an

exponential dependence on 1/(1− γ).
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4.2 Results

4.2.1 Problem Setup

To start the analysis, we first need to consider how we will set up the problem, so we can define it

as a reinforcement learning problem and then attempt solving it, using Q-learning approach. The

environment of the agent is completely unknown and non-stationary; therefore it is useful to use

a model-free procedure. The Q-learning approach will allow us to calculate the Q-values, without

estimating the transition probability, just by setting a reward matrix, based on the actions and states

set up of MDP. The main purpose of our work is to find an optimal policy for the administrator

at any given step of his decision-making problem. As we have mentioned above, the MDP is

characterized by the following components 〈S,A,R, T, γ〉. We already provided information about

the possible states and actions. The immediate reward that the agent will receive at each state is

defined by R : S×A→ R, or this is what he will obtain for taking action a in state s. In our case,

we will outline the reward based on the initial behavior policy:

sN sA

R :

0 2

1 −1

T ap

adn

If the network is under attack sA, then the agent has two options of actions to select from: either

to ”protect” ap or to ”do nothing” adn. On the one hand, if the current state is for example ”attack”

and the agent decides to ”protect”, then the reward that he will be rewarded with is 2, however,

if he selects to ”do nothing”, then he will be penalized with a value of −1. On the other hand, if

the state is ”normal” and the agent decides to ”protect,” he will receive 0 reward and if he selects

to ”do nothing,” he will get 1. This matrix is selected in a way that the agent to be interested

in protecting the network only if there is an attack occurring. There are transition probability

functions associated with the change from one state to another. For the Q-learning technique, we

do not need to possess knowledge on them; however, we can provide an estimate, using the data

set, so that we can test our results in subsection D. An approach that we will apply in this paper

is a bootstrap estimation. Bootstrap samples will be obtained from the dataset with a conditional

estimated distribution, and then a maximum likelihood estimation is performed. Then we will
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take the average of the estimates across all samples, row normalized. We use 500 samples for the

purpose of the estimation. MLE for MDP is described in details in [68]. We can also calculate the

95% confidence intervals and to report an error rate, based on the dataset. The formula used in the

calculations is the following:

T adnSNSA

MLE =
nSNSA∑k
u=1 nSNu

with SESNSA
=

T
adn
SNSA√
nSNSA

Another second method is using Laplace smoothing approach, which is very similar to the MLE,

but uses an arbitrary positive stabilizing parameter ε:

T adnSNSA
= nSNSA

+ε∑k
u=1 (nSNu

+ε)

Both methods give similar results for the transition probability matrices:

T
ap
SNSA

:

1 0

1 0

 sN
sA

;T adnSNSA
:

.53 .47

0 1

 sN
sA

SESNSA
:

.0026 .0028

0 0

 sN
sA

The discount factor γ ∈ [0, 1] will depend on whether we would like to create our agent narrow-

minded, who is more concerned about the present, or we would like to create him more strategic

oriented, who will first consider the future and then he will make decisions about the present. In

our analysis, we will set γ = .9, but we will provide a sensitivity analysis for three different levels

of the γ = .1, γ = .5 and γ = .9, Fig.4. We can represent the decision path that the agent will

follow in Fig.3.

Before starting the analysis, we need to check whether the MDP will hold for this specific

problem and we will do that in R. The goal is to find an optimal policy if we start with the initial

behavior policy π : S → A, or that is π(a|s): if there is an attack sA, the agent will select to

protect the network ap. We do not possess any information about the environment. The only thing

that we need is to set the reward matrix in a way that the agent is more likely to choose to protect

the network if there is an attack occurring, but not necessarily, only if by deciding to defend the

network, the Q-value function is maximized.
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Figure 7.: Example for a Decision Path of the Agent

4.2.2 Calculation of the Q-value and Optimal Policy Selection, using Q-learning

As we have mentioned before, the action-value function represents the anticipated benefit of per-

forming a specific action in a particular state and adopting an optimal policy after that. Q is a

matrix that can be denoted with [S,A], in our case, it is calculated with 100,000 number of itera-

tions. We will use the provided algorithm with a decaying learning rate of α = 1/
√
n+ 2, where

n is the number of transitions.

sN sA

Qa
s
∗ :

15.35415 17.08029

16.34766 13.71229

 sN
sA

The Value function is an S length vector, with the same number of iterations, we obtain:

V ∗s :

17.08029

16.34766

 sN
sA

The policy is also an S length vector. Each element of it is a value that corresponds to an action

which maximizes the value function. The agent follows a specific policy π when selecting actions

in a given state as we defined in (3). Once the action-value function is determined, the optimal

policy can be recreated by choosing the action with the most substantial value in each state. We
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obtained the following result:

(πas )
∗ :

2

1


That implies that the policy, in this case, will be the following: if there is a state 2 or if there is

an ”attack,” the agent should choose action 1, which we assigned earlier as ”to protect.” The agent

observes the current state, selects an action randomly, notes the resulting reward, then the new state

occurs.

The sensitivity analysis of the different levels of γ, as well as the levels of iterations of the

model, can be observed in Fig.4.

Figure 8.: Discrepancy Means

4.2.3 Evaluation of the Model

We can use the estimated transition probabilities, to determine how effective is our Q-learning

agent performing. For that purpose, we need to find a solution to Equation ?? and to solve the

MDP with the knowledge that we possess for the environment. In that situation, we will be able to

evaluate our model, by comparing the value V (s) that we calculated with the Q-learning approach

and the value that we will obtain by solving the MDP, knowing the transition probabilities in ??.
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The aim is to create a Root Mean Square Error (RMSE), so we can test the effectiveness of the

Q-learning approach. There are several methods to solve equation (5), that is Linear Programming

(LP), Policy Iteration (PI) and Value Iteration (VI). All these solutions require knowledge of the

environment, represented by the estimated transition probabilities. As shown in Table 1, we can

observe the RMSE errors, using the results for V (s) from Q-learning.The RMSE is calculated as:

RMSE =
1

N

√∑
s

[V (s)− V ∗(s)]2

where:

Vs :

17.08029

16.34766

 sN
sA

Table 5: RMSE for Q-learning

Method V ∗(s)forsN V ∗(s)forsA RMSE

LP 17.02741 16.32467 0.02883

PI 17.02741 16.32467 0.02883

VI 16.89542 16.19268 0.12062

All models calculate the optimal policy as:

(πas )
∗ :

2

1


Which is that if there is an ”attack” occurring, the decision agent should protect the network.

4.3 Concluding Remarks and Contribution

Q-learning, as a model-free control approach, is remarkably promising, especially when employed

in challenging decision processes, where the traditional optimization techniques and supervised

learning methods are not applicable. An essential advantage is the fact that the decision agent does

not need any information about the environment and it can perform the analysis without any model

or knowledge of the distribution. Q-learning has an auspicious future in the intrusion detection- and
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prevention domains, it is a useful tool that needs to be further developed and explored. Despite the

research work that has been published on the convergence properties, there are still few challenges

that need to be analyzed. The beneficial utilization of Q-learning is helpful not only because of

the useful results obtained with the model but also because of its potential combination with other

models, that could improve with the assistance of Q-learning. For example in the last chapter, we

provide a Game theory approach that is linked successfully to Q-learning. It provides a complete

automated response mechanism that could be implemented in the Intrusion Detection and Intrusion

Prevention systems.
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Chapter 5

Streaming data adaptation of NASCA

In this section, we will suggest a streaming data learning approach of applying the NASCA pro-

cedure. In general, the majority of the research is dedicated to the analysis of a machine learning

methods, which consider that random samples from a stationary distribution are derived. In fact,

that is not always the case and nearly all of the time the distribution changes. Here, we will adopt

the idea that the distribution is possible to vary and will provide an adaptation of the classification

process. We will introduce a change detecting model so that we can modify the procedures in the

previous chapters and adapt it to streaming data. We will aim to build a drift detection method,

which will serve as an alarm for a distribution change and will re-sample from the stream of the

data. Data streams are obtained at a high rate, and they flow continuously without any interrup-

tion. Therefore, we can not save all of them in the memory; moreover, we can not lose substantial

time analyzing the data. Every time we download a limited training set which is presented as a

sequence. The plan is to manage the value of the accuracy rate of the model. If the distribution

of the underlying data is unchanged, then the classification accuracy rate will remain unchanged

or will increase, however, if the distribution shifts, the accuracy rate will decrease. We will define

a warning level, which serves as a signal that in case that the data set follows the same pattern of

change, shortly the distribution will shift. Additionally, we will provide a drift level, which alarms

that the distribution has already shifted and the entire classification procedure has to be repeated in

the new set of data with the latest distribution. Most of the analysis in this chapter will be dedicated

on the drift detection as a tool for detecting distribution shift and outlining the window’s size. We

will start the analysis based on the NASCA procedure, so we will first describe the Network Data

Collection, followed by the Attribute Selection, Classification, and Accuracy. Finally, we will dis-

cuss the proposed Drift detection approach so that we can establish an updated NASCA procedure

for streaming data: NASCA Drift.
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5.1 Network Data Collection

In data streaming, it is frequently used in the so-called interleaved test-then-train evaluation. The

central concept is that it first starts testing each instance, and then it trains the model. The eval-

uation work is to assess the classifier, based on several criteria. We can apply three approaches

to determine the chosen classification technique. The primary method estimates the accuracy of

the classifier since the beginning of the evaluation. The second method is called a window based

procedure, and it measures the accuracy on the current sliding window of recent instances, and the

third method is the fading factors approach, which weight observations accuracy, using a decay

factor α. The advantage of using this type of evaluation is the fact that we do not need to employ

any testing set in the classification process. Every individual case is utilized to test the model be-

fore it is trained; therefore, the accuracy is incrementally updated. When performed this method,

we should keep in mind that the model is always applied to instances that have not been examined.

It also guarantees steady progress of accuracy over time, as each case will become less critical to

the total average [95]. There is an accuracy and an error rate that can be calculated, where the

error rate represents the aggregated sum of a loss function between predicted and observed val-

ues: Sn =
∑n

t=1 Loss(ŷt, yt). The benefit of the test-then-train assessment structure is that it can

be applied in the circumstances with limited feedback. Furthermore, it is not necessary for us to

possess knowledge about the actual measure of yi, for every object in the data stream. Instead,

we can compute the loss function for those instances only, where yi is observed, where i is the

i − th observation. The test-then-train evaluation examines the progress of the learning process

by producing a learning function. The estimated total error has the risk of being influenced by the

beginning portion of the error sequence. The classifier is evaluated by first testing and after that

training, engaging every instance. The principal concept is to calculate an error, using a forgetting

mechanism or fading factor, which can implement a decaying weight for the windows from the

past [87]. Let us define ni as the number of examples used to compute a loss function Li and a loss

function is computed for each example.

The fading factor is the following:

Ei =
Si
Bi
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where S1 = L1 and:

Si = Li+ α× Si−1

Bi = ni + α×Bi−1

S1 will be a constant defining the forgetting portion of the sum that in general is close to 1. AlsoBi

is a fading increment and B1 = 1. The fading increment [87] has an essential characteristic that:

lim
i→+∞

Bi =
1

1− α

5.2 Attribute selection

The feature selection with Information Gain Criterion is an interesting process in an online anal-

ysis. As we have mentioned before, there may be a change in the distribution from time to time,

and sometimes it happens suddenly depending on the data stream. As an addition, a significant

characteristic is the fact that we are not allowed to store many observations at a time, and there

may be cases when we never see the same example again. The authors in [103] propose an Infor-

mation Gain adaptation for streaming data. They presented a straightforward algorithm that can

be adapted to discrete and continuous domains. Also, they calculated a probable error affiliated

with their method and potential theoretical limits, where the user is provided with the opportunity

to select between error and performance. However, the information that the procedure demands is

a reasonable estimate or an upper boundary of the size of the whole stream. The researchers also

simulated sudden fluctuations in the underlying distribution so that they can examine their method.

They also compared their results with other authors interested in this field.

The authors observe the maximum memory utilized in the feature selection process. Let us

assume that there are f features denoted by X = X1, X2, ..., Xf and l labels defined by the set

Y = Y1, Y2, ..., Yl. Then we can denote a set of pairs S = [(x1, y1), (x2, y2), ..., (xt, yt), ...] to be a

stream of pairs, in which xt is a feature vector and yt is a label. Then we will define Sn as a set of

n instances seen till time t = n. Let us define SLn as a subset of instances in Sn and the rest of the

examples are represented by the complement of SLn or SRn . As an addition let us define Sn,y as the

instances in Sn with a label y. Then we can calculate the information entropy as:y ∈ Y
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Inf(Sn) = −
∑
y∈Y

|Sn,y|
|Sn|

log
|Sn,y|
|Sn|

(5.1)

Then the information gain as before is the difference in the information structures for each specific

feature, but this time adapted to streaming setup of the data:

IG(Sn, Xi) = I(Sn)− [
|SLn |
|Sn|

I(SLn ) +
|SRn |
|Sn|

I(SRn )] (5.2)

5.3 Classification and Accuracy for Streaming Data

Using test-then-train evaluation, we can update the NASCA procedure to establish a process that

will be applied in a streaming data setup. It will be challenging to use the Random forest as a

classification technique, which is the third step of the NASCA algorithm; therefore we will have

to make some adjustments and consider employing Adaptive Random Forest (ARF) [97]. The

method uses bagging, to avoid overfitting as well as it chooses at random a set of features at every

node split. The complete process involves the selection of a variety of passes of the data to train

the model. Having that in mind we need to make some adaptations that will allow the process of

classification to occur.

Several factors influence the ARF. First, we need to apply an online criterion for bagging. This

method requires the creation of bootstrap samples with replacement, where each one of them

includes every instance R times and the P (R = r) follows a binomial distribution, that can be

approximated by Poisson under specific circumstances. Based on that, Oza et al. [98] introduced

a procedure called online bagging, which employs the idea for random sampling with replacement

by giving weights to the instances, following a Poisson(λ = 1) distribution. The authors in [97]

applied Poisson(λ = 6) so they can raise the probability of allotting larger weights to some

instances, while training is in process. Second, we need to create a process that narrows the feature

subspace per leaf split. To do so, we have to reconsider the primary procedure of tree growing

and to limit the set of variables, reviewed for the split process. Hoeffding Tree [99] is a very

appropriate approach that we can employ to consider the feature selection process. The Hoeffding

Tree is an incremental decision tree learner with a reliable theoretical execution. It uses Hoeffding

bound [100] which states that there is a probability of 1−ν that the true mean of a random variable
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with a range R will not deviate from the estimated mean in n independent instances by more than:

ε =

√√√√(ln
1

ν
)R2

2n
(5.3)

Let us say that we have a training set D with elements (xi, yi) and we denote a classifier h :

X → Y , we can specify the sample error of h to be: Ein(h) = 1
n

∑n
i=1 1h(xi)6=yi The inequality is :

P (|Ein − Eout| ≥ ε) ≤ 2e−2nε2 An appealing quality of the concept of the Hoeffding Trees is that

it possesses a solid theoretical performance [99]. An ARF uses the idea of Hoeffding trees with the

difference that it does not involve initial pruning of the tree. Once a node is generated, a subset of

m random features are elected. The splits are based on those features only. In general, the depth of

the tree also plays an important role. The variance reduces from averaging various trees and even

if there is a risk of overfitting each tree, this risk of the random forest to overfit is minimized by

averaging across trees. The advantage of ARF, in short, is that it can incorporate warning and drift

levels and can handle different data streams. Once a warning level is identified, the ARF initiates a

set of background trees, and if there is a drift level detected, the algorithm replaces the current trees

with the set of background trees and starts over the training process. The ARF can incorporate a

variety of drift and warning detection models.

Besides the warning and the drift mechanism, we can also select different voting systems, for

instance, the votes in the ARF are weighted based on the accuracy of the tree classifiers, using

test-then-train approach. If we assume that a tree l has seen nl examples since its latest set up

and accurately labeled cl examples, in a way that cl ≤ nl, then its weight will be
cl
nl

. An ultimate

benefit of utilizing a weighting technique is the idea that it does not need a determined in advance

window.

5.4 Drift Detection

5.4.1 Theoretical Framework of Bayesian Inference for Drift Detection

The normal approximation for Binomial distribution, used by most of the researchers, is not nec-

essarily accurate. Theoretically, based on the Central Limit Theorem, we can apply this approx-

imation, but there is no theoretical proof of how large should be the sample size to implement it.

In this chapter we will present another method, using (quasi) Bayesian Inference for establishing
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a drift detection level. The benefit of using this approach over the frequentist analysis is that we

can obtain a posterior distribution that includes information about the parameter. The classical

methods give a point estimate and employ the asymptotic assumption for normality. We are not

required to estimate uncertainty with the Bayesian structure because we establish a complete pos-

terior distribution. As an addition, the Bayesian idea can provide us with Credible Intervals, which

are easier to be understood in our streaming data context, than the classical statistics. Let us con-

sider an independent and identically distributed instances. The estimated density, determined by

the classical approaches will be the value θ̂ = θ̂(x1, . . . , xn) which is an estimate of the parameter

θ, θ ∈ Θ (parameter space) into the conditional density fXn+1|Θ(xn+1 | θ). The classical predictive

density fXn+1|Θ(xn+1 | θ̂) does not take into consideration the uncertainty of the estimate θ̂: we

can obtain two equal point estimates with different confidence intervals that may provide the same

predictive density. However, the Bayesian predictive distribution considers the uncertainty of the

parameter, provided the information in the sample of observations.

fXn+1|X1,...,Xm(xn+1 | x1, . . . , xn) =
∫
fXn+1|Θ(xn+1 | θ) π(θ | x1, . . . , xn) dθ

The Bayesian Inference approach will further help us to capture the information for the pa-

rameters of the prior distribution in the current model. Suppose we have the following problem

observations {X1, X2, ..., Xn}, that are independent and identically distributed. Xi represents two

outcomes, our model correctly classified the instance, or it made a mistake. If we decide to ap-

ply the prequential evaluation, then the overall number of successes for each set of instances will

be defined by X , and the probability of successfully identified the correct instance is θ, where

X ∼ Bin(n, θ).

p(x|θ) =

(
n

x

)
θx(1− θ)n−x (5.4)

The underlying assumption for using Binomial distribution is that the number of observations n

does not change and the instances are independent of each other. The probability of the algorithm

to successfully classify the network is constant for every outcome, included in these n observations.

More realistic modeling with varying parameters will be a topic of future work. We will assign

a prior distribution of the parameter θ so that we can include previous beliefs for the information

structure of the instances in the past. Also, we will assume a Jeffrey’s uninformative prior p(θ) and
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the likelihood function of p(x|θ) to obtain the posterior distribution. We could also find a conjugate

prior distribution for the analysis; however, we prefer the selection process of the prior to be with

the smallest amount of assumptions about the model and to have minimal effect on the posterior

distribution.

We know by definition of Jeffrey’s interval that:

pJ(θ) =
√
I(θ) (5.5)

Where I(θ) is the Fisher information Criterion:

I(θ) = −E(
∂2l

∂θ2
|θ) (5.6)

Therefore we need to define the likelihood function as L(θ) ∝ θx(1− θ)n−x.

l(θ) = logL(θ) ∝ x log(θ) + (n− x) log(1− θ) (5.7)

Now let us obtain the first and the second partial derivative of the likelihood function with respect

to θ:

∂l

∂θ
∝ x

θ
− n− x

1− θ
∂2l

∂θ2
∝ − x

θ2
− n− x

(1− θ)2

Therefore the Information Criterion in our case for Binomial Distribution is:

I(θ) ∝ −E(
∂2l

∂θ2
|θ)

∝ nθ

θ2
+

n− nθ
(1− θ)2

∝ n

θ(1− θ)

∝ θ−1(1− θ)−1

Easy we can substitute from 5.5:

pJ(θ) =
√
I(θ) = θ−1/2(1− θ)−1/2 (5.8)

This is a prior Beta distribution Beta(α, β) with parameters Beta(1/2; 1/2).
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Now that we know the prior distribution , we can easily obtain the posterior, using the Bayes

theorem P (θ|x) ∝ l(θ|x)P (θ) and 5.7 and 5.8:

P (θ|x) ∝ {θx(1− θ)n−x}{θ−1/2(1− θ)−1/2}

∝ {θxθ−1/2}{(1− θ)n−x(1− θ)−1/2}

∝ θx−1/2(1− θ)n−x−1/2

A random variable on (0,1) interval follows a Beta distribution if the density is:

Beta(α, β) : p(x|α, β) =
xα−1(1− x)β−1

B(α, β)
(5.9)

where B is the beta function

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt

In order to obtain the same form as in Beta distribution,so we can find the parameters of α and β

we need to represent our posterior density as:

P (θ|x) ∝ θ(x+1/2)−1(1− θ)(n−x+1/2)−1 (5.10)

Therefore α = (x+ 1/2) and β = (n− x+ 1/2) and

θ|x ∼ Beta((x+ 1/2), (n− x+ 1/2))

That is:

Beta(x+1/2, n−x+1/2) : p(x|(x+1/2), (n−x+1/2)) =
x(x+1/2)−1(1− x)(n−x+1/2)−1

B(x+ 1/2, n− x+ 1/2)
(5.11)

and

B((x+ 1/2), (n− x+ 1/2)) =

∫ 1

0

tx+1/2−1(1− t)n−x+1/2−1dt

The Beta function is equal to a ratio of Gamma functions:

B((x+ 1/2), (n− x+ 1/2)) =
Γ(x+ 1/2)Γ(n− x+ 1/2)

Γ((x+ 1/2 + n− x+ 1/2))
=

Γ(x+ 1/2)Γ(n− x+ 1/2)

Γ(n+ 1)

We can also make inference for the variance and the mean of the posterior distribution. It makes a
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summary of our belief after we analyze our data. We need to find measure of location and spread,

so we can identify how and how wide is the probability. The posterior mean will serve as a location

measure, and it is just the expected value of the posterior distribution: We know that the mean of a

Beta distribution is :

µ =

1∫
0

xp(θ|x)dθ (5.12)

That means that

µ = E[X] =

∫ 1

0
xα(1− x)β−1 dx

B(α, β)

=
B(α + 1, β)

B(α, β)

=
Γ(α + 1)Γ(β)

Γ(α + β + 1)

Γ(α + β)

Γ(α)Γ(β)

=
α

α + β

Therefore we can compute the Bayes posterior point estimate as:

θ̂ =
x+ 1/2

n+ 1
(5.13)

Another important statistic will be the posterior spread or the variance of the posterior distribution.

We can make inferences about the distribution based on it. The variance is:

σ2 =

1∫
0

(θ − µ)2p(θ|x)dθ (5.14)

We also know that the standard deviation ca be obtained by:

σ2 + µ2 = E[X2] =
B(α + 2, β)

B(α, β)

=
α(α + 1)

(α + β)(α + β + 1)

S, using the identity: Γ(t+ 1) = tΓ(t), the standard deviation is:

σ2 =
αβ

(α + β)2(α + β + 1)

=
(x+ 1/2)(n− x+ 1/2)

(x+ 1/2 + n− x+ 1/2)2((x+ 1/2 + n− x+ 1/2) + 1)

=
(x+ 1/2)(n− x+ 1/2)

(n+ 1)2((n+ 2)

=
(2x+ 1)(2n− 2x+ 1)

4(n+ 1)2((n+ 2)
.
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The posterior 1 − α Bayes credible interval can be found if we can find values of a and b that

satisfy the following interval: ∫ b

a

p(θ|x)dθ = 1− α (5.15)

Here 1− α is the confidence level. We can also find the upper or the lower bound as:∫ a

−∞
p(θ|x)dθ =

∫ ∞
b

p(θ|x)dθ = α/2 (5.16)

5.4.2 Warning and Drift Levels

Now we will propose a method for selecting a window size for streaming data analysis. In the

beginning, we need to define a window W as a sequence of instances; it will be represented by the

current data set that is analyzed and classified. For the evaluation, we need to define an algorithm

that will help to set a beginning and end of one window. Our target is to analyze the posterior

distribution of the accuracy rate.

The posterior distribution of the accuracy will be approximated, using sequential Markov Chain

Monte Carlo methods (SMCMC) [102]. SMCMC will allow us to adapt the sampling process for

streaming data and online to generate samples. That type of sampling generates a (large) random

sample from p(θ|y). Using that type of sampling we can generate random numbers from the

distribution. SMCMC will allow us to create a sample from joint posterior distribution: p(µcurrent,

µaccumulated, σcurrent, σaccumulated), it will also provide us with solutions for a multidimensional

integration. The values in are generated in chains and many combinations are made until the

sampling includes a representation of the parameters the data that we have and our selected prior

distribution. We can easily estimate the parameters applying this approach and also all credible

intervals that we are interested in. The SMCMC creates a random sample every time. Therefore

the repeated analyses will be somewhat diverse at each repetition. The small sampling differences

will rarely hinder the conclusion of the analysis, and in case of concern, a larger chain will solve

the problem.

After we have generated and sampled from the posterior distribution, we can make any infer-

ences that we would like to for those samples. Let us say, that we analyze a specific amount of

instances, for example, hundred at a time. The analysis starts from instance l1 to l100, where l

denotes the label of whether the network is under attack or not or the type of the attack. There is an
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accuracy rate associated with the first hundred instances that have been examined. We can denote

this accuracy rate as a1, where a1 will represent the sum of all accurately labeled instances out of

the first hundred Fig. 5.4.2. The following step is to analyze another hundred instances, the next

associated accuracy rate with the second hundred instances will be a2 and so on until we reach for

example ai, where iwill represent the accuracy of the i−th set of hundred instances. The number of

observations that we analyze at a time does not matter for the analysis; they could be ten, hundred,

thousand, etc.

Figure 9.: Concept Window

The idea is to examine the differences or the magnitude of the means and the standard deviations

of the posterior distributions of both sets of accuracy rates: the accumulated accuracy rate for

the previous instances and the current accuracy rate. If there are any differences, then we need

to start a new window. Therefore, we can analyze the effect size and use the Cohen’s difference

approach [96] as a threshold for change detection. However we will need to take into consideration

the size of the sample; therefore we will apply a weighted with the sample size effect size, using a

formula provided by Hedges [101].

δ =
µ̂current − µ̂accumulated

spooled
(5.17)

where s is a pooled standard deviation:

spooled =

√
ˆσcurrent

2(n1 − 1) + ˆσaccumulated
2(n2 − 1)

n1 + n2 − 2
(5.18)

We can define the effect size as ”Small”, ”Medium” and ”Large” as Cohen did in his work: small :

δ ≤ .20, medium: δ ∈ (0.2; .5], large: δ > .50. We can assign a warning and drifting level, using
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those thresholds. For example, if the Cohen’s difference is greater than .8 we can assign a warning

level, however, if it is greater than 1.2 then there should be drift level: Sawilowsky, 2009. Another

important idea that needs to be mentioned in the current work is that the Cohen’s thresholds are

based on the assumptions that the data follow a Normal distribution, which in our case does not

have to be true. Our theoretical distribution is a Beta family distribution. It is true though that

if we apply the CLT, with a large enough sample, we can still approximate beta with a normal

distribution. Therefore additional work needs to be done, to find an appropriate threshold for Beta

distribution and not normal if it happens that we have a small sample. The Cohen’s effect size is

still an appropriate measure for change in the distribution. If the first and the second moments of

the Moment Generating Functions of two distributions are different enough, then there is sufficient

information to claim that we can raise an alarm that will force the model to be retrained and a new

window to start. The question that will remain is at what value of δ we can set the warning and the

drift level. For a large enough sample though, we can use:

kw : δ ≥ .8

kd : δ ≥ 1.2

5.5 Results from applying NASCA Drift

5.5.1 Outline of the procedure

Now that we have outlined the used classification approach - Adaptive Random Forest and the

established drift detection model for streaming data, we will present the results from the classifica-

tion process for the NASCA procedure adapted for streaming data. Although the data are collected

and classified at the same time and accuracy is measured right away in the interleaved test then

train approach, we can apply NASCA for every single interval that we select to test and then train

in the classification process.

– Network data selection

We can still start at the beginning with the network data selection, but this time instead of

downloading a whole lengthy data set to analyze, we will take into consideration just ten,
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hundred, thousand, etc. instances, a small interval, that needs to be investigated, using the

interleaved test-then-train evaluation.

– Attribute selection The attribute selection as a step can be applied to the interval that we have

selected in the part Network selection. It will be the same idea and the same Information Gain

approach for attribute selection, however, the upper mentioned adjustments for the streaming

set up need to be done as it is described in [103].

– Classification The classification step will apply Adaptive Random Forest only. It is enough for

the algorithm to identify that there is an attack occurring without to analyze the type of attack.

We will analyze the type of the attack in another module that will come at a later stage as it is

described in Chapter 6.

– Accuracy This step is performed for every single interval, described in the Network Data

Selection Process.

– Drift The Drift step is to identify whether there is a distribution change in the procedure, so

a new window of data to be selected and the NASCA procedure to start over. It analyzes

separately another process that is related to the accuracy only. There is also a warning level kw,

as we have already suggested. This level manages the alert indicator; when a warning level is

activated, the model automatically begins to train a parallel tree together with the current tree.

The whole updated NASCA Drift procedure on Fig. 5.5.1 is very similar to the previous NASCA

procedure with the addition of the drift component and the idea that the analysis is done for a small

batch of observations, accuracy is observed, and the model has to be repeated. The NASCA Drift

procedure will represent the so-called Detecting Module of the intrusion detection process.

The model modification includes additional step and this is the Drift step. The difference is also

in the idea that the NASCA procedure is applied infinity times, depending on the data stream. Once

a small set of data is collected, we start a window, using the adaptation of Information Gain, we

classify and test the accuracy, then we check whether there is a modification in the characteristics

of the model until the current moment. If there is not, then we start over and continue the window

with the next small set and so on, until a change is detected. Once that happens, we can start a

new window, delete the previous data set from memory and begin the NASCA Drift procedure
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Figure 10.: NASCA Drift for streaming data

again. On Fig. 5.5.1 we can observe how the accuracy rate changes over time, with Adaptive

Random Forest, using MOA (Massive Online Analysis) [104], which is a free JAVA based tool for

manipulation of streaming data.

5.5.2 Drift Detection

In the following section, we will provide results for the calculation of the Cohen’s distance of

the posterior distribution. Let us assume that currently we are located, as it is represented in

Fig. 5.4.2 right after the end of the athn set. So the current set athn is represented by 100 instances.

It is important to mention that each accuracy rate is a random variable, so there is an associated

distribution with it or athn ∼ Bin(100, p), where n is known. To detect a change from the current

set to the previous, we need to compare them. On Fig. 5.4.2 we can observe that we will take the

accumulated accuracy for the former n−1 sets. In our case will be represented by the accumulated

sequence An−1 = {ai}n−1
i=1 , where An−1 ∼ Bin((n − 1) ∗ 100, p). Now that we have outlined the

two sets that we will compare, we can use Bayesian inference, to identify the changes. We can
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Figure 11.: Accuracy Rate with Adaptive Random Forest

find the posterior point estimate, and the spread of An−1 and compare with the point estimate and

the standard deviation of athn . Therefore, we can detect whether there is a difference between both

means and both deviations that are calculated from the current and the past sets.

To make sure that our analysis is correct, first, we need to consider the idea that NASCA needs

to be retrained, because of possible changes in the distribution, characteristics of the attackers,

network traffic limitations, etc. All features that are helping us to classify the network, of course,

change over time. If a significant change occurs, we need to retrain the NASCA algorithm, to

end the current window of data and to start a new one. If we do not do so, the used classification

technique will be no longer capable of classifying the network correctly. As an addition to data

stream set up, it is impossible to analyze all of the data at once. There is a memory insufficiency;

therefore, we need to use the window concept so that we can set limitations on the analyzed data.

To identify those changes, as we have mentioned before, we will employ the accuracy rate as an

orientation of whether the model needs to be retrained or not. Therefore, to do the classification,

parallel to the NASCA procedure, we will create another process, that will help us to identify a

warning and drift level for each window. In this work, we will associate drift level as an ending

the current window, deleting the data of that window and staring a new one, with a new set of

data and further training of NASCA. Once the examination starts, two accuracy rates are recorded

Fig. 5.4.2. The first one is the accuracy rate for the current set of hundred observations, the second

one is the accumulated accuracy rate so far, excluding the current hundred examples. In case

that there are no changes detected, the NASCA model can continue working in the same manner

without the need of being retrained and the window will keep expanding. However, if a change is

56



detected, then the current window has to be ended, the model to be retrained and a new window to

start so that we can take into account the new changes. We will use the theoretical distribution of

the accuracy rate as a Binomial for both accuracy sets, find the posterior, using Jeffrey’s prior: in

our case Beta distribution. We will estimate the mean and the variance of the posterior distribution

of both accuracy rates. In the case of not detected changes in both means and standard deviations,

there is no need to retrain the NASCA again, and we can remain in the current window. However, if

there are significant changes, we have to retrain the NASCA approach. We will provide a measure

of the difference between both means and standard deviations. In summary we will observe four

parameters: the two means of the current and the accumulated posterior accuracy distributions:

µcurrent and µaccumulated and the two standard deviations: σcurrent and σaccumulated. We will employ

Bayesian inference for the estimation problem. The selection of the prior distribution has a minimal

impact on the estimation process, and the observed data will play a significant part in the Bayesian

inference process. All of the calculations and coding are performed in R.

We will measure the Cohen’s effect size and will provide results for the difference in the means

Fig. 5.5.2, the difference in the standard deviations Fig. 5.5.2, and the effect size Fig. 5.5.2. First,

we will start the assessment from the beginning of the accuracy rate, and we will observe the

changes in its distribution as it is shown in Fig. 5.4.2. Since we use test-then-train evaluation for

streaming data, the first several observations will always give deviations in the accuracy, until the

model is trained after that though, the accuracy has to remain steady and high. The model has to be

able to classify the observation with a small error rate. Therefore, the differences in the means of

both distributions (Fig. 5.5.2) is at a high level for the first 10 thousand observation. These can be

interpreted as there are some differences in the means of the distribution of the accuracy rate from

the first 9 thousand observations and the distribution built by the next set of 1000 observations.

Then the difference for the first 19 thousand and next thousand gradually decreases, or there is not

as much difference between both distributions and so on until the fluctuation almost terminates. By

observing this graph it is not easy to make an inference about the changes, the difference although

decreasing, it remains at a high level from a distance between 20 thousand and 30 thousand. In

all cases, the mean is a positive number suggesting that the ˆµcurrent is always greater than the past

one and this is mainly because the past ˆµaccumulated is the accuracy for not as a trained model as

the current one. The differences in the standard deviations in Fig. 5.5.2 has the same pattern. In
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Figure 12.: Difference in means

the beginning, the graph suggests a great difference in the deviations of the accuracy rate from

the current to the past evaluated set. The difference is negative, because ˆσcurrent is smaller than

ˆσaccumulated. That implies that the model is improving with the time. We can observe that the

difference decreases gradually but somewhere between 20 and 30 thousand it goes back up. That

suggests that something is happening between those observations around 30 thousand observation.

We will calculate next the Cohen’s distance, so we can observe to what extent the effect size will

change due to that increase of the difference in the deviations.

Figure 13.: Difference in standard deviations

The change in the effect size according to Equation 5.17 can be observed in Fig. 5.5.2. It is

obvious now that between 20 and 30 thousand observations, there is a jump in the effect size. It is

normal the level of it to be quite high for the first observations, while the model is in the process of

training. It is also visible how the effect size starts decreasing at the beginning, which is because the

model reduces the error, once the training is done. However change in the distribution is observed
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and there are differences in the first and the second moment of the Moment generating function

of the Beta distributions, which can not be denied. Therefore after 30 thousand observation, the

current window needs to be stopped and a new one to start. The model will be able to adjust later

to the late characteristics, because we use test-then-train evaluation, so the model learns on the go.

Figure 14.: Effect size

As we can observe on Fig. 5.5.2, using the proposed (quasi) Bayes Drift model, the warning level

kw starts around 15,000th example and the drift level shortly after that around 20,000th example.

These results are not fixed, and since we have simulated Beta distribution with sequential MCMC

algorithm, the estimated mean and variances also have their variation, as well as the resulted effect

size. In Appendix A there is a table 6 of the confidence intervals of the different estimators.

5.5.3 Comparison with other drift detection models

We will try to compare with the different drift levels suggested by other models, so we can identify

how well we detected a distribution change comparing to other results. It is important to mention

the idea that there is a possibility that the model can make a mistake about the distribution change,

the consequence will be a not accurate prediction concerning classification, and therefore there

might be some significant consequences regarding intrusion detection purposes. The drift detection

with other methods will be completed with MOA(Massive Online Analysis) [104], which is a free

JAVA based tool for manipulation of streaming data. The results a represented in Table 6. Our

model and the ADWIN model identify a drift detection at the same level at instance 20,000. The

other models are not very reliable for this data set, because they either do not recognize any changes
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Table 6: Comparison with other Drift Detection Models

or they categorize as a change every single example. The other models identify a shift in the prior

probabilities. They use multivariate statistical tests and Exponentially Moving Average [106].

5.6 Concluding Remarks and Contribution

The classification of streaming data is a necessary and commonly used procedure in network secu-

rity. Most of the study is concentrated in considering a training and testing data sets, and an advan-

tage is given to the process of downloading the data in the memory of the computer. Although this

method can indeed produce accurate and precise results, the problem is that in a situation of a data

stream this approach is inappropriate. The attacker will not wait for the administrator to analyze,

he would attack right way, and although these techniques are helpful for investigating the attacker’s

behavior, they cannot serve as a protection tool. Therefore we need to find quick and prompt mod-

els, that are adaptive, according to the data stream. In this chapter, we propose an additional drift

detection tool, using a (quasi) Bayesian approach that can serve as an alternative to the popular

drift detection models in streaming data analysis. This method avoids the assumption of normality

that is used in the current data drift detection models and can provide a better interpretation of the

data stream.

60



Chapter 6

NASCA Drift and Q-learning Block

6.1 Outline of the Proposed IDS block

In this chapter, we will present the entire proposed procedure which could serve as an Intrusion

Detection System. The schema in Fig. 6.1 consists of two main modules. The first section is a

”Detection Module” which will perform two fundamental functions: monitoring the traffic and

detection of the attack if there is any. Here the traffic flows continuously, and it is monitored and

analyzed, using NASCA Drift procedure.

Figure 15.: Intrusion Detection Block

If we are just interested in identifying whether there is an attack occurring or not, it will be

enough to employ the first model, which was outlined in Chapter 5.
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It is intriguing to examine the second layer and the connection that it makes with the NASCA

Drift procedure. The whole IDS is a designed as a combination of detection and response modules,

where the NASCA drift is the detection module, and it serves the purpose of separating the ”good”

from the ”bad” traffic. As we have discussed before most of the IDS models are limited to the

monitoring process, and it is challenging to create a response, once an attack is detected. The

data flow enters first the detection module and precisely the Network Data Collection step of the

NASCA Drift procedure. There is a regular information exchange between the classification and

the accuracy steps, because of the nature of the interleaved test then train analysis of the traffic. The

traffic is divided into ”bad” and ”good” on the Classification step of the NASCA drift. Therefore

all ”attack” instances are sent separately from the ”normal” labeled ones to the second layer for

additional analysis. Once the ”bad” traffic is separated, it is taken offline and transmitted to the

”Bad Traffic Response” sub-layer. The ”good” traffic continues the online setup and is forwarded

to the ”Good Traffic Response” sub-layer. So, both sub-layers of the response module are different

in a way that the attacks are analyzed offline, they are collected in the so-called batches. However,

the ”normal” instances continue the online stream and are sent to another classification process,

that is adapted to streaming data. Both of the sub-layers that are part of the response layer are

equipped with a second filter for the incoming traffic, and both modules respond to the system.

The ”bad” traffic is gathered and collected in batches first, and additional analysis is performed.

The number of batches that will be processed at a time depends on the specific bandwidth that the

current system possesses and how many megabits of information per second can the system devote

for the transfer for a specific dataset. The reason for using a data streaming adapted model for the

regular instances, and we collect testing set for the instances that have been labeled as ”attacks”

is mainly related to the idea that it is essential to find a trade-off between the need of in-depth

analysis and traffic flow without interruptions.

6.2 Functions of the Classification in the Response Module

The first connection between the Detection and the Response modules starts at the classification

step of the NASCA Drift procedure. This step implements Adaptive Random Forest for recogniz-

ing whether the network is under attack or not as we already suggested in the previous chapter.
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Once a breach is detected, then the system isolates the ”infected” instances from the regular ones

and transmits them to two separate submodules. The ”Bad” Traffic Response sub-module handles

the attacked traffic, and the ”Good” Traffic Response sub-module handles the regular one. Both

submodules that are part of the Response layer have additional classification filters that serve as an

extra security measure for the network protection.

6.2.1 Classification in the Bad Traffic Response Sub-Module

The traffic here is taken offline for deep analysis and extracting more information for the type of

the attack. The traffic is not deleted as in most of the IDS, but it is further monitored and managed.

Once receives the information, the Bad Traffic Response sub-layer collects a testing set depending

on the bandwidth and the megabits per second that the administrator will devote for that purpose.

Here the ”bad” traffic is collected from the NASCA Drift procedure, which represents the first layer

of our schema and downloaded for the type of attack classification purposes. There is a training set

located in the memory of this module. We will employ as labels for the type of the attack the main

four classes, as we defined in Table 1 in Chapter 3: DoS (Denial of Service), R2L (Root to Lan),

U2R (User to Root) and Probe. Again as in the NASCA procedure in Chapter 3, we will use PART

for classifying the type of the attack. In this sub-module, unlike the detection module, we will use

training and a testing sets for the classification of the class of the attack. The training set will still

include the label ”normal,” although we are just interested in the type of the attack. The idea will be

to provide another ”chance” for traffic that has been classified as an ”attack” by the NASCA Drift

procedure, to go further to the Q-learning for a response even if it happens that it is a ”normal”

connection. Furthermore, we will reduce the possibility of the attacker to send ”normal” traffic

that appears as an ”attack” with the intent to overload the protection mechanism. If we can provide

two filtrations in the detection and the response modules, we increase our security and make more

precise decisions. For an accurate response, the whole group of affected data is classified again,

using the PART model described earlier. Unlike the NASCA Drift procedure which uses the test

then train online collection of the data, this sub-module will manage a batch collection, where all

data are analyzed at once. The training set has to be also updated with the newly discovered attacks;

this is an essential procedure. The results from the PART analysis are presented in Fig. 6.2.1.

Based on the ROC curves, we can identify that classes of attack like Probe, DoS and R2L are
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Figure 16.: Receiver Operating Curves for the Type of Attack
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Table 7: Accuracy By Class for PART Classification

Table 8: Confusion Matrix for PART Classification

manageable and the model did not find any difficulty in recognizing them. The U2R, however,

is challenging for the PART algorithm and this is because we have minimal instances that can be

classified as U2R, so the model is not trained well when the result is produced. We introduced

few ”normal” examples in the testing set, so we can analyze how well is the algorithm doing with

recognizing the regular traffic. The current response module has to investigate only the attacks;

however, we would like to include the standard instances preventively in the training set, so the

module to be able to fix some of the mistakes of NASCA drift if there are any.

In Table 7 we can observe the accuracy by class, including measures like precision, PRC Area

and ROC area as complementary information. The ROC and PRC areas are lower for U2R and

highest for DoS, which is another proof that the model can recognize best the DoS attacks, and it

is logical because first DoS is more common than the other attacks so that the model can identify

them quickly with good precision. Also, the DoS is caused by apparent characteristics like more

volume of traffic sent from one network host for example. The reported error rate is 0.0116 for

Mean Absolute Error and 0.0959 for Root Mean Squared Error for a complete PART model. We

present a confusion matrix in Table 8.
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Figure 17.: Good Traffic Response Classification Characteristics

6.2.2 Classification in the Good Traffic Response Sub-Module

In the Good traffic classification sub-module, as we have mentioned in the beginning, we will

make sure that there is always a constant flow of data and we will implement an on-line data

stream classification technique for the data stream of the regular traffic. The primary purpose of

having addition filter here is to serve as an extra protection measure that will recognize whether

there is an attack or not in the current traffic. If there is malicious traffic identified at this level,

the Good traffic response sub-module will send the malicious traffic to the Bad traffic response

submodule to the classification step for additional analysis. The entire IDS block is designed

in a way that it will provide a smooth flow for the regular cases, while if there is a doubt of

an attack instance, more analysis is needed to make sure that the traffic is under attack, so the

system to produce an appropriate response. For this classification section, we will apply Hoeffding

trees [99], streaming data classification procedure. We described the classification process in the

previous chapter because the adaptive forest uses the same learner in the structure of the analysis.

The mean accuracy of the model is 99.37. The splitting criterion is Information gain, and some of

the characteristics like the number of leaves and nodes are presented in the next Figure 6.2.2.
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6.3 Functions of the Q-learning Process in the Response Module

The following segment of the response module which outlines the Q-learning section will assist

the process of replying if the network is under attack. The beginning of the module will not only

classify the type of the attack but also provide another option for returning to the network a wrongly

classified as attack instances. After PART is applied, the classification will be able to contribute

information about the type of the intrusion. So each intervention will be classified as one of the

following labels 〈normal,DoS, Probe, R2L,U2R〉.

Those labels as mentioned above will serve as a starting point of the Q-learning algorithm and

will represent the states for the new MDP that will be required. Now we will represent the second

module as an MDP. As we defined in Chapter 4, the MDP is described by the tuple 〈S,A,R, T, γ〉.

where S is the set of states, A is the set of actions, R is the reward function, T is the transition

probability, and γ is the discount factor. If we determine all of the elements of the set needed

for the foundation of the MDP, next, we can promptly create the Bellman equation, provided in

chapter 4 (see Equation 4.9) and apply the Algorithm 2.

– S is the countable set of states S : {sN , sDoS, sProbe, sR2L, sU2R}, where sN is the event when

the network is healthy. Another state is sDoS , where the network is under Denial of Service at-

tack, usually happens by over-flooded with data memory. sProbe represents a Probing attack or

data is collected about the network activity, so the vulnerabilities of the system to be identified.

The sR2L is Remote to local Attack, or the attacker does not possess any legitimate account,

and he tries to find vulnerable points to gain access, so he can steal information or send viruses.

sU2R is User to Root Attack where the attacker targets the vulnerabilities of the network from

a legitimate account. In these states setup, we use the class and not every single type of attack.

These states of the network could also be substituted with the type of the attack that we are

experiencing.

– A is the set of actions or the action space: A : {ablock, aallow, areport, asendback}. The so defined

set of actions is just an example, they could be alternated, and it depends completely on the

administrator what those actions could be and how many of them he could use. There is no

restriction on the number of actions; however the computation time should be considered as a

factor. In this particular set up ablock is the action when the agent blocks the infected traffic and
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deletes it after that. This action is beneficial in the case of DoS attack. The action aallow is the

action when the agent ”allows” the traffic back in the network. This action can be employed

if the PART classification model classified the network as ”normal,” and that way can provide

another chance to return regular traffic to the system. The action areport can interact with the

user and ask directly whether he accepts the traffic. Action asendback is an advanced type of

action, because it provides the decision agent besides with the protection function, the ability

to act back to a potential intruder. This set up of the action space is assembled in a way so that

the decision agent to be able to perform two main objectives. The goal of the agent is to protect

the system. Most of the IDS systems are designed in a way to discover whether the network is

under attack or not or to identify the type of the attack; this is the main object as an option of

protection. The literature of the response models is limited to activities, related again to serve

the main protection function. In this work, we will introduce a new option of protection for the

response module, the possibility of responding back to the intruder.

– R represents the reward which the agent will receive for making a correct or wrong decision.

He will take the reward for taking action An at state St, f : S × A → R. In our case, we will

have twenty rewards instances, because there are five states and four actions elements.

– T is a state transition probability matrix. It specifies the probability of transition from state i

to state j, on taking action An = a, where i ∈ (0, t] and j ∈ (0, t + 1]. There will be twenty

associated transition probabilities for each state that we will start with because there are four

actions and five possible states for each action. Since we can start with all possible five states,

there will be for each state to start with 20 transition probabilities or hundred in total, which

can be represented with four matrices with dimensions five by five.

– γ ∈ [0, 1]: a discount factor.

The proposed possible decision tree of the agent is outlined on Fig. 6.3. The transition function
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for the action ”block” for example will be:

Tij
block :



T blocknormal,normal T blocknormal,DoS T blocknormal,Probe T blocknormal,R2L T blocknormal,U2R

T blockDoS,normal T blockDoS,DoS T blockDoS,Probe T blockDoS,R2L T blockDoS,U2R

T blockProbe,normal T blockProbe,DoS T blockProbe,Probe T blockProbe,R2L T blockProbe,U2R

T blockR2L,normal T blockR2L,DoS T blockR2L,Probe T blockR2L,R2L T blockR2L,U2R

T blockU2R,normal T blockU2R,DoS T blockU2R,Probe T blockU2R,R2L T blockU2R,U2R


Analogically we can build the other matrices for the rest of the three actions ”allow,” ”report,”

”send back.” The number of the transitions will remain the same, and the only thing that will change

is the name of the action from ”block” to ”allow.” For the Q-learning process, we do not need to

know these matrices, because we will find the Q-values directly using Algorithm 2 in Chapter 4.

An example of reward matrix could be the following:

abl aal arep asend

R :



−1 1 0 −2

3 −3 0 2

2 −3 0 1

2 −3 0 1

3 −2 0 −3



sN

sDoS

sprobe

sR2L

sU2R

It is important how we will set the matrix of R; the values will define the direction that we

would like the agent to move. He can be more aggressive or more protective, depending on the

values that we will set for each combination of action and state. For example, let us assume that

we are currently in the state of R2L or under Remote to Lan attack. Row four of the reward matrix

represents the assigned rewarding values for this state. The agent has four options based on the

actions: to block and delete the traffic (to drop it), to allow it in the system, to report it to the

user and to ask for a course of action, to send it back to the host or the IP address. The R2L

attack is when the intruder transmits packets to our computer, with a purpose to achieve access

and utilize our vulnerability, he does not hold any account as a user in our system. Suppose that

we would like to make the agent more protective. In case of the scenario mentioned above, the
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Figure 18.: Example for a Decision Tree for the Agent
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worst case is if the agent decides to allow the malicious traffic in our system, therefore he will get

a compensation of -3 if he does that. If he reports to the user, it will provide the user with the

awareness that someone is attempting to breach in the system. The user will be responsible for

determining whether she will admit the traffic or not, the reward here is zero. We will give a value

of 1 for sending it back to the host. If we choose to reverse the direction of the traffic, the attacker

will be informed that this system is not just protected, but also could reverse the direction of the

traffic if needed. Furthermore, it will be prevented from invading our system, and consequently,

the agent will collect a reward of one for this action. A different will be the situation if we witness

U2R or user to root attack. This class of intervention originates from an infected account that is a

current user of the system; the access could have been achieved for example with an R2L attack.

The intruder intends to reach the source of the whole operation and to exploit our vulnerabilities.

In this example, it will not be practical to send back the traffic to the host, because we will forward

it back to our system, which will make the situation worse. Consequently, the reward for that

behavior will be -3. A sound beneficial action is to block the traffic, where the agent will achieve a

reward of 3, -2 for allowing the traffic and again, and zero for reporting it to the user for an action.

Running the algorithm again provides the following results for the Action-Value function (4.9)

with γ = .9 the dimensions of it depend on the number of actionsA : {ablock, aallow, areport, asendback}

and number of states S : {sN , sDoS, sProbe, sR2L, sU2R}, so it is actions× states:

Q∗ :



17.31564 0.4199652 1.1007156 0.6979677

22.38493 0.3342630 1.9504433 1.6028717

20.14793 0.5375468 0.4697312 0.9841997

18.88875 0.2175585 0.7137482 1.1171577

30.00000 24.9999978 26.9999976 23.9999961


The corresponding solution for the Value function (4.8) is a vector ,that depends on the number of

states with the following values:

V ∗ :
[
17.31564 22.38493 20.14793 18.88875 30.00000

]
The policy that was elected as an optimal (Equations 4.6 and 4.6) is a vector that has identical size

as the total number of states. In a particular state, it determines one out of four actions, which
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maximizes the Q and therefore V values. It is necessary to emphasize the fact that the discount

factor γ = .9 makes the agent far-sided and he seeks the optimal policy and makes decisions in

terms of distant future.

πγ=.9(a|s) :
[
1 1 1 1 1

]
Therefore the agent will select action ablock in all states. That implies that if we make our agent

far sighted , he will not take risks and will always blocks the malicious network. Now we will

analyze a different situation where γ = .5, the agent is not that far-sided, and he is reasonable in

his expectations about the future. The policy changes according to the agents expectations, so if he

finds himself in the second state which is sDoS , he will prefer to exercise action areport, or in other

words if we experience DoS attack, the agent will report the problem to the user and inquire for

directions, whether to permit the traffic in the system or not. The agent will select to ”block” the

traffic in all other circumstances.

πγ=.5(a|s) :
[
1 3 1 1 1

]
The last case scenario that we will explore will be if we decide to create a narrow-minded agent,

who will react almost based on the current situation without thinking about the future, or γ = .1.

The resulting selected policy vector is as follows:

πγ=.1(a|s) :
[
2 1 1 1 1

]
If the agent is short-sided, he will select action aallow if the agent is in state sN , or he will select

to allow the traffic in the system if it happens to be ”normal.” In all other cases, he will decide to

block the traffic. The decisions of the agent are the results that follow, based on the reward matrix

that we defined in the beginning. Other rewards structure will produce different policies. As we

have mentioned before, we can program the agent to attack back if he has been attacked if we give

higher rewards for this action. The whole idea of using Q-learning is that we can set the agent and

ask him to perform the tasks that we want him to do in a best possible way, based on the conditions

of the environment.
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6.4 Concluding Remarks and Contribution

The so proposed IDPS block guarantees the uninterrupted traffic flow in the system and still pro-

tects it without any delays. Nowadays most of the network security research is devoted to find-

ing a sophisticated classification model that will analyze the faulty instances with high accuracy.

However, once the model is created, it is not precisely described the logistics and how it will be

implemented. In this chapter, we propose a clear logistic block for Intrusion Detection and Pre-

vention Systems, that not only will be able to classify the attacks, but also will be able to operate

in an entirely unknown environment, provide a response and prevent the attack. The IDS and the

IPS combination, the specific schema layout and the proposed idea of combining NASCA Drift as

a first layer and the response module as a second is an innovative work that could be implemented

in every protection system.
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Chapter 7

Game Theories in Network Security 4

7.1 A Mathematical Definition of a Stochastic Game

Let us define two goods A and B and M as a market basket set for consumption that in general,

the agent feels satisfied with. If we name a function M → R, that maps each market basket to

a real value, then we state that the agent favors X over Y or (X >> Y ), if u(X) > u(Y ). The

Von-Neumann [37] utility theory suggests that for a particular agent to be considered as a rational

agent, he has to satisfy some evident characteristics:

– Completeness: For every market basket < A,B > we have: A = B; A << B; or A >> B;

– Transitivity: If A >> C and C >> B, then A >> B;

– Continuity: If A >> B >> C, there exist a probability p, that pA+ (1− p)C = B;

– Independence: If A >> B, for every C and probability p : pA+ (1− p)C >> B + (1− p)C.

The function of u enables us to quantify the agents’ preferences in a way that helps us to combine

utilities and also to estimate expected utility. We still have in general that u(X)+u(Y ) 6= u(X+Y ).

It is important to mention the moment of the choice making process. In general, all agents select

actions simultaneously, all decisions are revealed at the same time, and then the utility is recorded.

Each agent chooses a strategy that defines his actions.

A stochastic game can be played by one or more players; it has a probabilistic transition function

that represents the probability for an agent to go from one state to another. Each one of them

selects a set of strategies and corresponding actions and obtains a return that depends on the current

4Portions of this chapter have been previously published in Proceedings of Dynamic Systems and Applications ,

vol. 7, 2016, pp. 303-310
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knowledge about the environment. The game can evolve to a new stage, where the player builds a

strategy and acts accordingly, depending on the available information about the other players. The

process can be repetitive and may be finite or infinite. A stochastic game will be characterized by

〈P, S,A, T,R, γ〉. Each one of the players selects a set of strategies and corresponding actions and

obtains a return that is dependent on the actual knowledge about the environment. The game can

evolve to a new stage, where the player builds a strategy and acts accordingly, depending on the

available information about the other players. The process can be repetitive and may be finite or

infinite.

A n-player stochastic game can be defined as a set, consisting of the following elements:

– P : {p1, p2, ...pn}, if we have two agents in network security set up ,we will have P : pa, pd,

where pa will refer to attacker and pd is the defender;

– S = {s0, s1 . . . st . . . sN} is a nonempty state set.

– The set of actions of player n at state st is a subset of An, or Ans ⊆ An and
⋃N
t=0 A

n
st = An.

In each state the player makes an action. In a primary cyber security set-up the set of actions

consists of two sub-sets (attack, do not attack) for the attacker and (defend, take no action) for

the administrator.

Aa = {αa1, αa2...αat ...αaN} is the set of actions of the attacker pa at state sN ;

Ad =
{
αd1, α

d
2...α

d
t ...α

d
N

}
is the set of actions of defender pd at state sN ;

– T : S × Aa × Ad × S → [0, 1] is a state transition probability;

– Rn : S × Aa × Ad × S → R is the reward (payoff) function of the nth player; After all of

the actions are played, each of the agents will receive a reward. For the attacker that may be

the count of penetrations in the system, the degree of trouble that he caused (the severity of

the damage) and the dollar value of the resources (bandwidth, time) that he spent or saved, etc.

For the defender, we can quantify the payoff as saved time, used resources and the level of

importance of the information that she protected, etc.

– 0 < γ ≤ 1 is again a discount factor for finding a present value of the future payoffs, described

in [22].
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– Strategies: A strategy is the players’ plan of action. They consider the information from the

past and also the currently-available information and make a plan to maximize their return.

This will direct to the Equilibrium point. Let Ωk = {p ∈ Rk|
∑n

i=1 pi = 1, pi ≥ 0} be a

probability set of vectors with a size k, wn : S → ΩNn is player n’s stationary strategy, wn(s)

is the vector [wn (s, a1) . . . wn (s, aN)]T , where wn (s, α) represents the probability of agent n

selecting action α at state s. A strategy wn is considered, that does not depend on time. On the

one hand, a mixed randomized stationary strategy is when wn (s, ai) ≥ 0, for every s ∈ S and

every α ∈ An. On the other hand, pure strategy is when wn (s, ai) = 1 for some ai ∈ An.

– Solution:Solution to a game is a specific state called an Equilibrium, where the attackers and

the defenders, following their strategies, act accordingly to reach an optimal solution. If the

Equilibrium is achieved, we will be able to build an effective response mechanism in cyber

security that can run for finite or an infinite period. John Nash (1928-2015) was an economist

and a mathematician with fundamental contributions to the game theory because of the Equi-

librium that he proposed as a solution. According to the Nash Equilibrium, named by him, the

objective of each game is to attain a solution that provides the players with maximum possible

returns, minimum costs for the specific game set-up and finally nobody is willing to deviate

from this state, because it will lead to smaller returns.

A state transition has a payoff that is equivalent to the calculated value of the reward during that

state; however during the following state is equal to γ times this amount. The game begins at an

initial state s0 ∈ S, or at a discrete time t, where st ∈ S. The attacker for example decides to

select an action αat from Aa and the defender selects an action adt from Ad. The reward of player

one, then is Ra
t = Ra(st, a

a
t , a

d
t ) and the corresponding one for the defender is Rd

t = Rd(st, a
a
t , a

d
t )

. After that the game goes to a new state st or st+1, where we can define the resulting conditional

probability P(st+1|st, a1
t , a

2
t ) which can be also represented by T (st,a

a
t , a

d
t ).

7.2 Solution to a Game

7.2.1 Nash Equilibrium

There is a diversity of techniques that have been suggested for modeling a stochastic game. Nev-

ertheless, solving the optimality equations and improving strategy methodology have been the
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Figure 19.: Strategic Learning Model with Agents in Reinforcement Learning

most significant methods, used to define the solution to the game. Hoffman developed strategy

methodology for general stochastic games [14]. In this design, the original policy of the agent

develops with every iteration by changing conditions at which decisions are not locally optimal.

Furthermore, the local optimality equation method is solved with a system of constraints for the

anticipated payoffs. The optimal payoffs, serve as a base for creating a competitive strategy. If a

single agent is observed, there are linear optimality equations, and consequently, this game has a

solution obtained with linear programming methods. However, for multiple players, the conditions

are not linear, so approximation procedures are needed to find an equilibrium point.

The Nash Equilibrium suggests that despite knowing the actions of their opponents, the agents

do not have any urge to adjust their strategy; therefore they are better off in that state. Con-

sequently, each deviation from the Nash Equilibrium will lead to a higher level of losses. The

goal of each agent is to maximize his anticipated payoff. If st is a state and Rn
t is a reward, ob-

tained by agent n at time t. Then, the expected return will be represented by the vector vnw1,w2 =

[vnw1,w2 (s1) . . . vnw,w2 (sN)]T , where:

vnwa,wd (s) = Ewa,wd{Rn
t +γRn

t+1 +γ2Rn
t+2 + . . . γNRn

t+N |st = s} = Ewa,wd{
N∑
k=0

γKRn
t+k |st = s}

(7.1)

EWa,W d {.} is the expected value when player n chooses an action, using probability wn (st+k) at

st+k and obtains the corresponding reward:

Rn
t+k = wa (st+k)R

n(st+k)w
d(st+k), fork = 0. (7.2)

Rn (s) = [Rn
(
s, aa, ad

)
]
aa∈Aa,ad∈Ad , is the reward that agent n receives in state s. On the one
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hand, if N =∞ as well as γ < 1, then vn(s) is the expected total discounted reward that player n

will receive when he starts at state s. On th other hand, if 0 < N <∞ and γ = 1, then vn is a the

value that player n will obtain, represented by a vector and if the process is fixed, then the Nash

Equilibrium can be determined as:

va(wa∗ , w
d
∗) ≥ va(wa, wd∗)∀wa ∈ ΩNa

(7.3)

vd(wa∗ , w
d
∗) ≥ vd(wa∗ , w

d)∀wd ∈ ΩNd

(7.4)

Both agents employ their fixed strategies wa and wd at every step simultaneously. Once equi-

librium is achieved, they do not have any reason to change their optimal strategies wa∗ and wd∗ . A

divergence implies that one or both will earn less expected payoffs. A set of Nash strategies pro-

duces best responses for all players. For instance, if there are two agents and the first one adopts

strategy wa∗ , that can also be defined as the exercised optimal strategy for the attacker, then the

second ones or the defender’s optimal response strategy is wd∗ . The gain that the attacker expects

to get is va(wa, wd), it is achieved by exercising wa; similarly, vd(wa, wd) is the payoff that the

defender expects to receive when he decides to adopt strategy wd. The best response strategies are

wa∗ and wd∗ , and if the agents employ them, a Nash Equilibrium is achieved [32]. Different concepts

and equilibriums can serve as a solution to a game, like min-max strategy, in Nash sense, Bayesian

Equilibrium and numerous modifications of Nash Equilibrium [39]. In this chapter, another type

of solution is outlined, so the interplay between the administrator and the hacker to be emphasized.

7.2.2 Bayesian Equilibrium

Let us define Θ as a set with elements θ, and this set represents the type of the attacker. The

defender as a player, for example, knows his type and his actions, that are represented by αd1, where

αd1 ∈ Ad is the action set. Analogically let us suppose that other player, the attacker will choose

αa1 ∈ Aa and that he will experience some prior beliefs about the characteristic of the defender. In

other words, let us assume the administrator believes that the probability of the attacker being a

specific type is p(θ), where θ ∈ Θ. The return of player n will be similar as before; however, now

he will also need to consider the type of the player as a part of the reward function:

Rn (s) =
[
Rn
(
s, αa, αd, θ

)]
αa∈Aa,αd∈Ad,θ∈Θ

, n = 2, {a, d}
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The defender will have the following strategy: wd (s|θ) over the actions αd, which is conditional

on the type of opponent. Analogically for the attacker the strategy will be represented by the

following distribution function wa (s|αa) over actions αa conditional on αd.

The payoff of θ with strategy wd (s|θ) , assuming that the attacker has played wa (s|a1) is the

following:

[Rd
(
s, αd, αa, θ

)
]
αd∈Ad,αa∈Aa,θ∈Θ

=
∑
αd

∑
αa

wd
(
s, αd|θ

)
wa
(
s, αa|αd

)
Bd
(
s, αd, αa, θ

)
If the defender selects strategy wd (s|θ) then the other one’s reward function to strategy wa (s|aa)

will be the following:

[Ra
(
s, αa, αd, θ

)
]
ad∈Ad,aa∈Aa,θ∈Θ

=
∑
θ

p(θ)
∑
αd

∑
αa

wd
(
s, αd|θ

)
wa
(
s, αa|αd

)
Rd
(
s, αd, αa, θ

)
The attacker amends his beliefs about θ in order to obtain the following posterior distribution

µ (s | αa) over Θ, where µ is a belief or a function that assigns a probability measure from the

past to the possible and unobserved information structure. In this type of game, instead of Nash

Equilibrium, we will be interested to obtain Bayesian Equilibrium [21]. Therefore let wd∗ (s|θ) be

the strategy used, then having information about this strategy by observing αd,the attacker may use

a Bayes rule to update p (.) and µ (s | aa).

A Bayes Equilibrium is obtained when the players have future beliefs about µ (s|aa) and adopt

strategy w∗ so that:

Playerdefender : ∀θ, wd∗ (s|θ) ∈ argmax
αd

Rd
(
s, αd, αa, θ

)
Playerattacker : ∀αd, wa∗

(
s|αd

)
∈ argmax

αa

∑
θ

µ(θ|αd)Ra
(
s, αa, αd, α

)

µ
(
θ
∣∣ θd) =

p (θ)wd
∗ (
s, αd|θ

)∑
θ′∈Θ p(θ

′)wd∗ (s, θd|θ′)

Where
∑

θ′∈Θ p(θ
′
)wd

∗ (
s, θd|θ′) is strictly positive and µ

(
s | αd

)
is a probability distribution

on Θ.
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Table 9: Games solutions according to the information structure

7.3 Q-learning in Game Theories

Let us have a set of policies π1, ..., πn, where n is the number of players, and let us define

Qi(sj, π1, ..., πn) as a weighted sum of all Qi(sj, a1, ..., an) then we will define the action-value

function as:

Qi(s, a1, ..., an) = Ri(s, a1, ..., an) + γ
∑
sj∈S

T (si, a1, ..., an, sj)Qi(sj, π1, ..., πn) (7.5)

We can use the Q-value function as a benefit or reward that each agent will obtain during their

game, then based on this benefit we can find a Nash equilibrium and define the Q-learning algo-

rithm the same way as before but with different Q-learning updating function:

Qi(s, a1, ..., an) = (1− λt)Qi(s, a1, ..., an) + λt(Ri + γ ∗ Equilibriumi(s,Q1, ..., Qn) (7.6)

Equilibriumi(s,Q1, ..., Qn) will be the type of equilibrium that we will employ, depending on

the current information structure, mentioned in Table 9 that we observe in the network security set

up. The learning factor in this Game Q-learning set up will be denoted by λ. The equilibrium is

calculated with the Q-functions at a state s. All of the convergences rules provided by Watkins and

Dayan [72] are valid here too as long as there is a unique solution to the game and the equilibrium

is a unique point. For example, Nash equilibrium does not have unique values [20], which will

make Equation 7.6 to change it’s valued whenever iteration is performed because Nash results

with a different value, so Equation 7.6 is not able to converge. Although Watkins and Dayan

proved convergence of Q-learning under some regulations, the Nash Equilibrium, which is used

to calculate the Q values in Markov Games is not unique. Therefore, in order to continue the

calculations we need to either set up some constraints for uniqueness, so we can apply the Q-

learning method, or to create a rule of how the agent will select an equilibrium in non cooperative

80



games and thereafter that thereafter how the algorithm can handle many Nash equilibriums and still

the Q-learning to be able to converge under the conditions provided in [72]. It will be beneficial

to mention that a Nash equilibrium is unique if it exists in strictly dominant strategies. Another

possibility is if we can prove that the best-reply has only one fixed point. If the game is such that

the best-reply links (which maps each vector of actions into another vector of best replies to those

actions) are ordinary functions and not set-valued, then we have to identify the set of fixed-points

of that function and show that it is a singleton.

In [107] Moulin suggested under what conditions the Nash equilibrium in noncooperative games

could exist and be unique. The mentioned assumptions in the paper are that the game is played all

of the time and that each of the players uses his best strategy tomorrow to his opponent strategy

today, the assumption is called Cournot-tatonnement(CT) and the game Cournot-stable (C-stable).

Let us denote a game G = (wi, Ri), i ∈ N where N is a finite set of agents and wi is the strategy

set with Ri utility function [107].

DEFINITION 7.3.1 The game G is C-stable if there exist an unique outcome x∗ such that:

(i) for all x(0) ∈ X , lim
t→+∞

xt = x∗ , where (xt) is a CT starting at x0;

(ii) for all R ∈ <(x∗) there exists R′ ∈ <(x∗) such that for all x0 ∈ Re′, the CT starting at x0

remains within R : xt ∈ R for all t. Then x∗ is unique Nash equilibrium solution for G and is also

Cournot-stable.

The author provided many situations under which we can obtain a unique solution to the game.

The Q-learning Algorithm 2 for the games set up.

The value of V equilibrium(sj) is the equilibrium value, depending on the type of the equilibrium

that we decide to employ. For MinMax Equilibrium [20], we will have:

V (s) = max
πj∈PD(A)

min
aaj∈Aa

∑
aj∈Ad

π(s, aj)q(s,
〈
αaj , α

d
j

〉
) (7.7)

where

π(s)→ arg max
πj∈PD(A)

min
aaj∈Aa

∑
aj∈Ad

π(s, aj)q(s,
〈
αaj , α

d
j

〉
) (7.8)

The convergence of the Q-learning algorithm is proved by Watkins [72], and the same rules are

valid here as long as there is a unique equilibrium as we mentioned before. The Game Q-learning

convergence for Friend and Foe is proved by Littman [20]. In our case, the algorithm assumes
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Algorithm 2 Game Q-learning approach

– Initialize q(s,
〈
αd, αa

〉
), for every s ∈ S, αa ∈ Aa, αd ∈ Ad, randomly and q(terminal −

state) = 0 Renew for every episode:

– initiate si ∈ S

Renew for every episode:

∗ Select a from s, using ε-greedy policy derived from Q.

∗ Exert action adi

· receive Rai
si

· review the new state sj

· review action of the opponent αa

∗ q(si,
〈
αai , α

d
i

〉
)← q(si,

〈
αai , α

d
i

〉
) + λ[R + γV equilibrium(sj)− q(si,

〈
αai , α

d
i

〉
)]

– until s is terminal

– end for
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that the opponent will be only a Foe as that is the most often case in network security. Typically,

this method will work in cases with a guiding tool where we can observe just one equilibrium

point, depending on the consideration for different types of games. A guiding tool could be used

to coordinate the agent, depending on the type of the game as it is provided in Table 9. The

research of the convergence of Q-learning Nash provides some ideas on the challenge of designing

a reliable algorithm which can operate accurately in all varieties of games. Therefore we can

create a composite algorithm that first analyzes the type of the game being played, depending on

the information structure and based on that to employ the Game Q-learning algorithm. The field

of Game theories, especially its applicability to network security, is still extensive with several

interesting problems to be clarified.

7.4 Concluding Remarks and Contribution

Game theories approach in Network security set up is an additional idea that can be implemented

for Intrusion Detection and Prevention Domains. If we do not observe a zero-sum game, then addi-

tional analysis of the attackers’ behavior needs to be done. The current work is more concentrated

on how to protect the system with the informational structure that we possess as administrators.

Therefore it would be beneficial if we can analyze different attackers behaviors for the purpose of

the Game theories set up, so we can apply the Q-learning approach. As we have mentioned in the

Literature Review Game Theory section, there is an abundant amount of research done on predict-

ing the risk of being attacked and the loss function of the attacker. This work may be collaborated

with the of game theories idea in the IDS domain to perform additional decision framework for

the Q-learning approach. The application of the Reinforcement learning in IDS domain is some-

thing barely investigated and analyzed in the prior research, although it can give us a strategical

and advanced tool for protecting our systems. The whole algorithmic structure that we provided

and the idea of classifying the games according to their informational structure, so an appropriate

equilibrium to be selected in the Q-learning set up is something that will significantly improve the

procedures, employed by each administrator concerned with the protection of the system.
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Chapter 8

Summary and Future Research

Over the years the network security reached essential to our society levels, that nobody can doubt.

Each one of us is affected, and we are responsible as a society to continually develop and explore

new methods and techniques to defend our systems and set up rules and laws in cyberspace. The

value of collaboration among IDS and IPS is increased if both technologies work simultaneously

to provide a stable protection position. The goal of this dissertation is to outline a supervised and

unsupervised learning techniques for IDS, and Reinforcement learning for IPS, where there is a

direct link between both systems, so the reader can overview a technology that will improve our

protection structure.

In Chapter 3, we provide a NASCA procedure, that is not adapted to streaming data, but it

gives valuable knowledge about the classification methodologies that could be employed and infer

a possible traffic division in the classification step of the analysis. The monitoring and detecting

functions of the IDS can be performed with the NASCA procedure. The prevention and response

functions of IPS, however, could be achieved with the Q-learning algorithm. Chapters 3 and Chap-

ter 4 outline the main two approaches that we will employ, so we can create a full protection

schema, which could be implemented in the security system. In Chapter 5 we suggest a way of

adaptation of the NASCA procedure to streaming data or the NASCA Drift procedure, we also

propose a new drift detection method, based on the Bayesian inference, which can be applied in

any data stream set up. Chapter 6 provides an outline of the proposed two layers schema, with

a full logistic description of the traffic flow. It introduces the idea for separation of ”good” from

”bad” traffic and also explains the links between the Intrusion Detection and Intrusion Prevention

domains. In Chapter 7, we demonstrate in algorithmic form how we can apply the Q-learning ap-

proach, simultaneously with the Game theory idea, where the attacker and the defender are playing

a game that has a solution, and this solution is an equilibrium point. Some of the future work that
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can be accomplished to improve the proposed two-layers union between IDS and IPS could be

related to the online Q-learning adaption. It is an incremental learning method so that it can be

adapted to real-time learning. There is also a need for an additional investigation on the conver-

gence properties for the Q-learning algorithm in the Game theories set up as well as analysis of

the attacker’s behavior. It would be interesting to combine the currently proposed algorithm with

the idea for vulnerabilities exploration and exploitation that could serve as a prediction tool for

the attacker’s response function in the Game Theories environment. It would also be beneficial

to relate the current two-layer proposed schema to the idea for a Next Generation Firewall, which

will accommodate hardware set up for the proposed software protection schema. Therefore, the

system will be able to identify and prevent advanced breaches by executing policies in application

and protocol levels.

85



References

[1] A. Agah, S. Das, K. Basu, and M. Asadi, ”Intrusion detection in sensor networks: A non-

cooperative game approach”, 3rd IEEE International Symposium on Network Computing and

Applications, pp. 343-346, 2004.

[2] T. Alpcan and L. Pavel, ”Nash Equilibrium design and optimization”, International Confer-

ence on Game Theory for Networks, GameNets, 2009.

[3] T.Alpcan and T.Basar, ”An intrusion detection game with limited observations”, 12th Int.

Symp. on Dynamic Games and Applications, Sophia Antipolis, France, (2006).

[4] T. Alpcan, and T. Basar, ”Network security a decision and game-theoretic approach”,

Cambridge University press, 2011.

[5] D.Bertsekas, ”Dynamic programming and optimal control”, 2nd ed. Belmont, MA: Athena

Scientific, 2001.

[6] M. Bloem, T. Alpcan, and T. Basar, ”Intrusion response as a resource allocation problem”,

IEEE Conference on Descision and Control, 2006.

[7] P. Bommannavar, T. Alpan and N. Bambos, ”Security Risk Management via Dynamic Games

with Learning”, IEEE International Conference on Communications, pp. 1-6, 2011.

[8] A. Burke, ”Towards a game theoretic model of information warfare”, Masters thesis, Air

Force Institute of Technology, Air University, 1999.

[9] J. Filar and K. Vrieze, ”Competitive Markov decision processes”, Springer, Berlin Heidel-

berg, New York, 1996.

86



[10] A. Ghose, and K. Hausken, ”A Strategic Analysis of Information Sharing Among Cyber

Attackers”, Social Science Research Network, 2007.

[11] L. Hausken, H.R. Rao, S.J. Upadhyaya ”Security Investment, Resource Allocation and Infor-

mation Sharing for Strategic Defenders and Attackers of Information Assets and Networks”,

Annals of Emerging Research in Information Assurance, Security and Privacy Services, A

Handbook in Information Systems, Elsevier, Forthcoming, 2008.

[12] S. Hansman and R. Hunt, ”A taxonomy of network and computer attacks”, Computer and

Security, 2005.

[13] D. Han, D. Niyato, W. Saad, T. Baar, and A. Hjorungnes, ”Game Theory in Wireless and

Communication Networks: Theory, Models, and Applications”,Cambridge University

Press, 2011.

[14] A.J. Hoffman,R.M. Karp, ”Nonterminating Stochastic Games”,Management Sciences (Series

A),12, pp.359-370, 1996.

[15] E.O. Ibidunmoye ,B.K. Alese , O.S. Ogundele, ”A Game-theoretic Scenario for Modeling the

Attacker-Defender Interaction”, Computer Engineering Information Technology, 2013.

[16] M. Kjaerland, ”A taxonomy and comparison of computer security incidents from the com-

mercial and government sectors”, Computers and Security, 25, pp.522-538, 2005.

[17] D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, and M. Tambe, ”Stackelberg vs. Nash in se-

curity games: An extended investigation of interchangeability, equivalence, and uniqueness”,

Journal of Artificial Intelligence Research, 41, pp.297-327, 2011.

[18] G. Leveson, ”Fault Tree Analysis in Safeware”, Addison-Wesley, pp.317-326, 1995.

[19] Y. Lin, Y. Wang, Y. Wang, and H. Zhu, ”Stochastic Game Nets and Applications in Network

Security”, Journal of Computers, pp.461-467, 2009.

[20] M. L. Littman. Markov games as a framework for multiagent reinforcement learning, Proc.

of the 11th International Conference on Machine Learning, pp.157-163, 1994.

87



[21] Y. Liu, C. Comaniciu, and H. Man, ”A Bayesian game approach for intrusion detection in

wireless ad hoc networks”, Proc. 2006 workshop on Game theory for communications and

networks, 2006.

[22] Y. Luo, F. Szidarovszky, Y. Al-Nashif, and S. Hariri, ”Game Theory Based Network Secu-

rity”, Journal of Information Security, 1, pp.41-44, 2010.

[23] K.W. Lye and J. Wing, ”Game strategies in network security”, Foundations of Computer

Security Workshop in FLoC 02, Copenhagen, Denmark, 2002.

[24] D. McMorrow, ”Science of Cyber-Security”, MITRE Corporation report, 2010.

[25] R. Meadows, ACA ”COBIT 5 for Information Security”, COBIT 5 for Information Security,

IL, 23, pp.55-59, 2012.

[26] A. Miura-Ko, B. Yolken, N. Bambos, and J. Mitchell, ”Security investment games of inter-

dependent organizations”,Proceedings of the 46th Allerton Conference, 2008.

[27] C. Nguyen, T. Alpcan, and T. Basar. ”Security games with incomplete information”, Proc. of

IEEE Intl. Conf. on Communications (ICC), 2009.

[28] C. Nguyen, T. Alpcan, and T.Basar, ”Stochastic Games for Security in Networks with Inter-

dependent Nodes”, IEEE, pp.697-703, 2009.

[29] G. Owen, ”Game Theory”, Academic Press, 3rd edition, 2001.

[30] A. Patcha and J. Park, ”A game theoretic approach to modeling intrusion detection in mobile

ad hoc networks”, Proc. 2004 IEEE workshop on Information , Assurance and Security,

pp.280 - 284, 2004.

[31] Y. Patil, P. Zavarsky, D. Lindskog and R. Ruhl, ”Fault Tree Analysis of Accidental Insider

Security Events”, International Conference on Cyber Security, Washington D.C., 2012.

[32] K. M. Ramachandran, and C. P. Tsokos, ”Stochastic differential games: Theory and Ap-

plications”, Atlantis Studies in Probability and Statistics, Volume 2, Atlantis/Springer Press,

2012.

88



[33] K. Sallhammar, B. E. Helvik and S. J. Knapskog, ”Towards a Stochastic Model for Inte-

grated Security and Dependability Evaluation”, 1st International Conference on Availability,

Reliability and Security, Washington, 2006.

[34] K. Sallhammar, S. Knapskog, and B. Helvik, ”Using stochastic game theory to compute the

expected behavior of attackers”, Proc. 2005, International Symposiu on Applications and the

Internet Workshops, pp.102-105, 2005.

[35] L. Shapley, ”Stochastic games”, Proc. National Academy of Science USA, Vol 39, Issue 10,

pp.1095-1100, 2007.

[36] S. Shiva, R. Sankardas, H. Bedi, D. Dasgupta, Q. Wu, ”A Stochastic Game Model with Im-

perfect Information in Cyber Security”, Computational Intelligence in Cyber Security CICS,

pp.129-136, 2011.

[37] J.von Neuman ”Zur Theorie der Gesellschaftsspiele”, Math. Ann.,100, pp.295-332, 1928.

[38] C. Xiaolin, T. Xiaobin, Z. Yong, and X. Hongsheng, ”A markov game theory-based risk

assessment model for network information systems”, International conference on computer

science and software engineering, pp.1057-1061, 2008.

[39] X. You and Z. Shiyong, ”A kind of network security behavior model based on game theory”,

Proc. Fourth International Conference on Parallel and Distributed Computing, Applications

and Technologies, pp.950-954, 2003.

[40] Bahl, Shilpa, and Sudhir Kumar Sharma, ”Improving Classification Accuracy of Intrusion

Detection System Using Feature Subset Selection”, 2015 Fifth International Conference on

Advanced Computing; Communication Technologies, 2015.

[41] L. Breiman, ”Machine Learning”, Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.

[42] P.Buehlmann, and B. Yu. Analyzing Bagging, The Annals of Statistics, vol. 30, no. 4, pp.

927-961, 2002.

89



[43] C. Lakshmi Devasena. Effectiveness Evaluation of Rule Based Classifiers for the Classifica-

tion of Iris Data Set. Bonfring International Journal of Man Machine Interface, vol. 1, no. 1,

pp. 5-9, 2012

[44] J. Cannady, Distributed Detection of Attacks in Mobile Ad Hoc Networks Using Learning

Vector Quantization, 2009 Third International Conference on Network and System Security,

2009.

[45] G. Foreman, Choose Your Words Carefully: An Empirical Study of Feature Selection Metrics

for Text Classification., Principles of Data Mining and Knowledge Discovery Lecture Notes

in Computer Science, pp. 150-162, 2002.

[46] E. Frank, and I. H. Witten. Generating Accurate Rule Sets Without Global Optimization

Proceeding ICML ’98 Proceedings of the Fifteenth International Conference on Machine

Learning, pp. 144-151, 1998.

[47] E. Frank, et al. Machine Learning,Machine Learning, vol. 32, no. 1, pp. 63-76, 1998.

[48] I.Guyon, and A. Elisseeff. An Introduction to Feature Extraction, Feature Extraction Studies

in Fuzziness and Soft Computing, pp. 1-25, 1998.

[49] M. Hall, and G. Holmes. Benchmarking Attribute Selection Techniques for Discrete Class

Data Mining, IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 6, pp.

1437-1447, 2003.

[50] J. Thorsten. Text Classification, Learning to Classify Text Using Support Vector Machines,

pp. 7-33, 2002.

[51] J.H. George, and P.Langley, Estimating Continuous Distributions in Bayesian Classifiers,

Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338-345, 1995.

[52] K. Kenji, and L. A. Rendell, A Practical Approach to Feature Selection, Machine Learning

Proceedings 1992, pp. 249-256, 1992.

[53] K. Ron, and G. H. John. Wrappers for Feature Subset Selection, Artificial Intelligence, vol.

97, no. 1-2, pp. 273-324, 1997.

90



[54] H. Liu, and R. Setiono, Feature Selection via Discretization, IEEE Transactions on Knowl-

edge and Data Engineering, vol. 9, no. 4, pp. 642-645, 1997.

[55] D.T. Nguyen. et al. A Reconfigurable Architecture for Network Intrusion Detection Us-

ing Principal Component Analysis,Proceedings of the Internation Symposium on Field Pro-

grammable Gate Arrays - FPGA’06, 2006.

[56] J. Nziga, and J. Cannady. Minimal Dataset for Network Intrusion Detection Systems via

MID-PCA: A Hybrid Approach, 2012 6th IEEE INTERNATIONAL CONFERENCE INTEL-

LIGENT SYSTEMS, 2012.

[57] Y. Rong, and Zheng. Classification and Regression Trees, Random Forest Algorithm, Ma-

chine Learning Approaches to Bioinformatics Science, Engineering, and Biology Informatics,

pp. 120-132, 2010.

[58] S.K. Sahu, A Study of K-Means and C-Means Clustering Algorithms for Intrusion Detec-

tion Product Development,International Journal of Innovation, Management and Technology

IJIMT, 2014.

[59] Tavallaee, et al. A Detailed Analysis of the KDD CUP 99 Data Set. 2009 IEEE Symposium

on Computational Intelligence for Security and Defense Applications, 2009.

[60] V. N. Vapnik, Constructing Learning Algorithms,” The Nature of Statistical Learning Theory,

pp.119-166, 1995.

[61] L. Wohlrab, and J. Frnkranz. A Review and Comparison of Strategies for Handling Missing

Values in Separate-and-Conquer Rule Learning, Journal of Intelligent Information Systems,

vol. 36, no. 1, pp. 73-98, 2010.

[62] E. Even-Dar and Y. Mansour, Learning Rates for Q-Learning, Lecture Notes in Computer

Science Computational Learning Theory, pp. 589-604, 2001.

[63] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, An analysis of reinforcement learning with func-

tion approximation, Proceedings of the 25th international conference on Machine learning -

ICML ’08, 2008.

91



[64] H. Maei, C. Szepesvari, S. Bhatnagar, D. Silver, D. Precup, and R. Sutton, Convergent

temporal-difference learning with arbitrary smooth function approximation, NIPS-22, pp.

1204-1212.

[65] ISCX NSL - KDD Data Set, University of New Brunswick est.1785. [Online]. Available:

http://www.unb.ca/cic/datasets/index.html.

[66] J. Cannady, Applying CMAC-based online learning to intrusion detection, Proceedings of the

IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural

Computing: New Challenges and Perspectives for the New Millennium, vol. 5, pp. 405-410,

2000.

[67] J. Cannady, Next Generation Intrusion Detection: Autonomous Reinforcement Learning of

Network Attacks, In Proceedings of the 23rd National Information Systems Secuity Confer-

ence, pp. 1-12, 2000.

[68] J. Fu and U. Topcu, Probably Approximately Correct MDP Learning and Control With Tem-

poral Logic Constraints, Robotics: Science and Systems X, 2014.

[69] J. N. Tsitsiklis, Asynchronous stochastic approximation and Q-learning, Machine Learning,

vol. 16, no. 3, pp. 185-202, 1994.

[70] KDD Cup 1999 Data. Available: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[71] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, A detailed analysis of the KDD CUP

99 data set, 2009 IEEE Symposium on Computational Intelligence for Security and Defense

Applications, 2009.

[72] P. Dayan and C. Watkins, Q-learning, Machine Learning, vol. 8, no. 3-4, pp. 279-292, 1992.

[73] P. Laskov, K. Rieck, P. Dussel, and C. Schafer, Learning Intrusion Detection: Supervised or

Unsupervised?, Proceedings of the 13th ICIAP Conference, pp. 50-57, 2005.

[74] P. Miller and A. Inoue, Collaborative intrusion detection system, 22nd International Confer-

ence of the North American Fuzzy Information Processing Society, NAFIPS, pp. 519-524,

2003.

92



[75] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. s.l.: MIT Press,

1998.

[76] V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection, ACM Computing Surveys, vol.

41, no. 3, pp. 1-58, 2009.

[77] VNI Global Fixed and Mobile Internet Traffic Forecasts, Cisco, 13-Feb-2018. [Online].

Available: http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-

index-vni/index.html.

[78] X. Xu and T. Xie, A Reinforcement Learning Approach for Host-Based Intrusion Detection

Using Sequences of System Calls, Lecture Notes in Computer Science Advances in Intelligent

Computing, pp. 995-1003, 2005.

[79] X. Xu and Y. Luo, A Kernel-Based Reinforcement Learning Approach to Dynamic Behavior

Modeling of Intrusion Detection, Lecture Notes in Computer Science, Proceedings of ISNN,

pp. 455-464, 2007.

[80] X. Xu, T. Xie, D. Hu, and X. Lu, Kernel least-squares temporal difference learning, Interna-

tional Journal of Information Technology, vol. 11, no. 9, pp. 54-63, 2005.

[81] K. Ramachandran, and Z. Stefanova. Dynamic Game Theories in Cyber Security. Proceed-

ings of Dynamic Systems and Applications , vol. 7, pp. 303-310, 2016.

[82] Z. Stefanova, and K. Ramachandran. Network Attribute Selection, Classification and Accu-

racy (NASCA) Procedure for Intrusion Detection Systems. 2017 IEEE International Sympo-

sium on Technologies for Homeland Security (HST), 2017.

[83] Z. Stefanova , K. Ramachandran, ”Off-Policy Q-learning Technique for Intrusion Response

in Network Security,” World Academy of Science, Engineering and Technology, International

Science Index 136, International Journal of Computer, Electrical, Automation, Control and

Information Engineering, pp. 262 - 268, 2018.

[84] G. Dong, J. Han, L.V.S. Lakshmanan, J. Pei, H. Wang, P.S. Yu, ”Online mining of changes

from data streams: research problems and preliminary results,” Proc. of the 2003 ACM SIG-

MOD Workshop on Management and Processing of Data Streams, 2003.

93



[85] E. Cohen, M. Strauss, ”Maintaining time-decaying stream aggregates,” Journal of Algo-

rithms, vol.59, Issue 1, pp. 19-36, 2006.

[86] R. Klinkenberg, T. Joachims, ”Detecting concept drift with support vector machines,” Proc.

of the 17th Int. Conf. on Machine Learning, pp.487-494, 2000.

[87] J. Gama, P. Medas, G. Castillo, P. Rodrigues, ”Learning with drift detection,” Lecture Notes

in Computer Science, pp.31-71, 2004.

[88] R. Klinkenberg and I. Renz.”Adaptive information filtering: Learning in the presence of con-

cept drifts in learning for text Categorization”, AAAIPress, pp. 33-40, 1998.

[89] R. Klinkenberg and T. Joachims, ”Detecting concept drift with support vector machines,”

Proceedings of ICML-00, 17th International Conference on Machine Learning, pages 487-

494, 2000.

[90] R. Klinkenberg, ”Learning drifting concepts: Example selection vs. example weighting,”

Intelligent Data Analysis, 2004.

[91] G. Widmer and M. Kubat, ”Learning in the presence of concept drift and hidden contexts,”

Machine Learning, 23, pp.69-101, 1996.

[92] C. Lanquillon, ”Enhancing Text Classification to Improve Information Filtering,” PhD thesis,

University of Madgdeburg, Germany, 2001.

[93] M. Maloof and R. Michalski, ”Selecting examples for partial memory learning,”, Machine

Learning, 41, pp. 27-52, 2000.

[94] T. Mitchell, ”Machine Learning,” McGraw Hill, 1997.

[95] Gama, Joao, et al. Issues in Evaluation of Stream Learning Algorithms, Proceedings of the

15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining -

KDD ’09, 2009.

[96] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 1988.

94



[97] Gomes, M. Heitor, et al. Adaptive Random Forests for Evolving Data Stream Classification,

Machine Learning, vol. 106, no. 9-10, pp. 1469-1495, 2017.

[98] N.C. Oza, Online Bagging and Boosting, 2005 IEEE International Conference on Systems,

Man and Cybernetics, 2005.

[99] P. Domingos and G. Hulten, Mining High-Speed Data Streams, Proceedings of the Sixth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’00,

2000.

[100] Hoeffding, Wassily. Probability Inequalities for Sums of Bounded Random Variables. Jour-

nal of the American Statistical Association, vol. 58, no. 301, pp. 13-30, 1963.

[101] L. V. Hedges, Distribution Theory for Glass’s Estimator of Effect Size and Related Estima-

tors. Journal of Educational Statistics, vol. 6, no.2, p.107, 1981.

[102] Y. Yang and D. Dunson. Sequential Markov Chain Monte Carlo. ArXiv e-Prints, 2013.

[103] A. Pawling et al. Computing Information Gain in Data Streams, IEEE ICDM Workshop on

Temporal Data Mining, 2005.

[104] A. Bifet, et al. MOA: Massive Online Analysis, Journal of Machine Learning Research, vol.

11, pp. 1601-1604, 2010.

[105] A. Bifet, and R. Gavalda, Learning from Time-Changing Data with Adaptive Windowing,

Proceedings of the 2007 SIAM International Conference on Data Mining,pp. 443-448, 2007.

[106] G. J. Ross, et al. Exponentially Weighted Moving Average Charts for Detecting Concept

Drift.Pattern Recognition Letters, vol. 33, no. 2, pp. 191-198, 2012.

[107] H. Moulin, Dominance Solvability and Cournot Stability, Mathematical Social Sciences,

vol. 7, no. 1, pp. 83-102, 1984.

95



Appendix A

Copyright Notices

c©2016 Dynamic Systems and Applications. Reprinted, with permission, from Kandethody Ra-

machandran and Zheni Stefanova, Dynamic Game Theories in Cyber Security, 2016.

c©2017 IEEE. Reprinted, with permission, from Zheni Stefanova, Network attribute selection,

classification and accuracy (NASCA) procedure for intrusion detection systems, June, 2017.

c©2018 World Academy of Science, Engineering and Technology . Reprinted, with permission,

from Zheni Stefanova, Off-Policy Q-learning Technique for Intrusion Response in Network Secu-

rity, ICCSCPS 2018 :20th Int. Conf. on Cyber Security of Cyber Physical Systems, 2018.

96


	Machine Learning Methods for Network Intrusion Detection and Intrusion Prevention Systems
	Scholar Commons Citation

	tmp.1545323057.pdf.tmZCC

