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ABSTRACT

Resilience has been measured using qualitative and quantitative metrics in engineer-

ing, economics, psychology, business, ecology, among others. This dissertation proposes

a resilience metric that explicitly incorporates the intensity of the disruptive event to pro-

vide a more accurate estimation of system resilience. A comparative analysis between the

proposed metric and average performance resilience metrics for linear and nonlinear loss

and recovery functions suggests that the new metric enables a more objective assessment

of resilience for disruptions with different intensities. Moreover, the proposed metric is

independent of a control time parameter (usually denoted as T∗ or TLC in the average

performance metrics). This provides a more consistent resilience estimation for a given

system and when comparing different systems.

The metric is evaluated in the study of community resilience during a pandemic in-

fluenza outbreak and the analysis of supply chain resilience. As a result, the model quan-

tifies constant, increasing and decreasing resilience, enables a better understanding of

system response capabilities in contrast with traditional average performance resilience

metrics that always capture decreasing resilience levels when the disruptive events mag-

nitude increases. In addition, resilience drivers are identified to enhance resilience against

disruptive events.

Once resilience drivers have been found, then a multi-objective resource allocation

model is proposed to improve resilience levels. Previous resilience optimization models

have been developed mainly based on a single resilience metric. The existing bi-objective

models typically maximize resilience while the recovery cost is minimized. Although

the single metric approach improves system resilience some of their limitations are that

v



the solution is highly dependent on the selected resilience index and generally few opti-

mal points are found. To overcome the rigidity of a unique metric a bi-objective model

is proposed to maximize two key resilience dimensions, the absorptive and restorative

capacities. This approach has the potential to offer multiple non-dominated solutions

increasing decision makers alternatives where the single metric solutions are included.
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1 INTRODUCTION

Events such as natural disasters, deliberate attacks, or random failures may interrupt a

system’s operations causing costly, long lasting consequences thus highlighting the need

for resilient systems [1, 2]. Systems’ ability to withstand and recover from disruptive

events while delivering a desired outcome is a widely accepted general definition of sys-

tem resilience [3, 4, 5]. The concept of resilience has been studied on social [6, 7], physical

[4, 8], cyber [9] and interdependent systems [10, 11].

To understand and improve this important property, decision makers need an accu-

rate measurement of resilience, which has proven to be a challenging task given the broad

variety and complexity of systems and disruptive events. Several fields of science have

proposed resilience estimators without a general agreement for a unified metric or a con-

sistent approach [5]. Among the proposed quantitative resilience metrics in social and

physical systems, this property has been quantified as a composite index based on multi-

ple social indicators [1] , the average performance [12], probability to absorb and recover

from a seismic event [13], time dependent recovery rate [14], and system response ca-

pabilities product [15]. While these models contribute to the understanding of system

resilience, there is not a clear connection of the resilience capability with the disruptive

event magnitude.

Most resilience metrics found in the literature incorporate two main system’s abilities:

to absorb the shock from a disruptive event and to recover from it [3, 4]. However, these

abilities have not explicitly been related to the disruption intensity (or magnitude). This

can lead to an underestimation of resilience for disruptions with higher intensities. Aver-
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age performance or resilience triangle metrics [12, 8, 16] are prone to this effect, where as

the disruption magnitude increases, the resilience invariably decreases.

In the social science context the vast majority of studies develop qualitative tools to

explore individual or community resilience. For instance, in psychology [17] and ecology

[18] surveys are collected to assess resilience levels. There is a lack of agreement on how

to assess social resilience, the challenge remains to develop quantitative metrics that can

be implemented across systems and research areas.

Resiliency has been considered a key property in public health to enhance commu-

nity response while facing natural disasters and pandemic outbreaks [19]. Even though

this term has been discussed in public health, an operational resilience metric based on

community response variables and disruption intensity has not been proposed or imple-

mented. Thus, the goal is to develop and implement an operational metric to assess and

improve social systems resilience.

Resilience improvement tools, such as resource allocation models, guide decision mak-

ers towards the resilience dimension where investment is required to boost performance

and minimize disruptive events consequences [20]. These strategic models enable in-

vestment prioritization when multiple hardening and recovery actions are available. For

instance, in the disaster management field there has been developed a significant number

of resource allocation models to harden [21, 22] and restore [23, 24, 25] a system while fac-

ing natural disasters or man-made attacks. Therefore, the existence of strategic resource

allocation to increase resilience levels is critical to assist decision makers in the strategies

selection that will maximize resilience capabilities.

The main contributions in this research are a new intensity based resilience metric, the

application of this metric in physical and social systems, the identification of resilience

drivers, and the development of static budget allocation models to minimize the absorp-

tive and restorative capacities.
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This dissertation is organized as follows: Chapter 2 presents the literature review sec-

tion that analyzes common resilience metrics found in engineering and social sciences

disciplines, resilience drivers identification, and optimization models to boost resilience.

Chapter 3 describes the overall and specific research objectives. Chapter 4 presents an

intensity based resilience metric. The metric is analyzed for several classes of linear and

nonlinear loss and recovery functions and the resulting resilience is compared to that of

common average performance metrics. the metric is tested on social and physical sys-

tems. Chapter 5 explores the identification of resilience drivers in social systems. Then,

Chapter 6 proposes static multi-objective optimization models to improve resilience lev-

els Finally, Chapter 7 discusses the key findings and future research.
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2 LITERATURE REVIEW

The literature review chapter analyzes existing quantitative resilience approaches that

have been used in engineering and social sciences disciplines. Then, a discussion is con-

ducted about the models in social and physical systems to identify resilience drivers. The

next section, explores static optimization models that have been implemented to improve

resilience.

2.1 Resilience Metrics

The first resilience metric can be traced back to 1845, used in mechanical engineering,

to test a material’s capacity to absorb energy during compression and elongation tests

[26]. Since then, resilience of a material has been measured as a function of the defor-

mation ε and the maximum strength σ before the material permanently deforms (see Eq.

2.1).

R =
σε

2
(2.1)

In the 70’s, the term resilience was revisited in ecology and defined as “the measure

of the persistence of systems and of their ability to absorb change and disturbance and

still maintain the same relationships between populations or state variables ” [27]. Two

noteworthy metrics were proposed in this study. The first metric is the probability that a

system will leave a set of states where it delivers expected outcomes. The second metric

is the force required to make a system leave an equilibrium state.
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The event magnitude or intensity has since been recognized as an important factor

that should be considered in any resilience study [28]. This factor is usually referred to as

the external disturbance and it is a recurrent consideration in environmental sciences.

Most recent approaches have included multiple dimensions or system capabilities to

measure resilience. In civil engineering, Bruneau et al. [12] proposed four dimensions for

physical and social systems: robustness, redundancy, resourcefulness, and rapidity. In the

economics science, Rose [29] defines static and dynamic resilience. In systems engineer-

ing, Francis and Royce [15] define three resilience capacities: absorptive, adaptive, and

recovery/restorative. In evaluating the dimensions (capacities) listed above, it is possible

to group most of them in two sets. The first set includes the capacities that contribute to

the initial loss of performance, such as robustness, static resilience, or absorptive capac-

ity. The second set refers to the recovery dimension, which includes the rapidity, dynamic

resilience, or restorative capacity.

Although the resilience metrics have been developed using similar dimensions or

capacities, their interpretation and decision support applicability differ. In what fol-

lows, we review four broad classes of metrics: i) average performance metrics, ii) multi-

dimensional metrics, iii) time-dependent metrics, and iv) probability based metrics.

In the first group, known as average performance or resilience triangle metrics, a system’s

resilience is measured as the average performance between the time a disruption occurs

until the moment of system’s recovery. The main idea was introduced by Bruneau et al.

[12] to measure infrastructure resilience under seismic events. An extended version of

this formulation is shown in Eq. 2.2, where Q(t) is the performance function at time t,

TOE is the time of the event occurrence, and TLC is the control time [8].

R =

TOE+TLC∫
TOE

Q(t)
TLC

dt (2.2)
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Using an equivalent notion, Zobel [16] developed a model to estimate resilience as-

suming a linear recovery. In this metric (Eq. 2.3), X is the initial performance loss, T is the

recovery time, and T∗ is the study period or control time.

R = 1− XT
2T∗

(2.3)

Among average performance metrics, the model proposed by Ayuub [30] accounts for

the preparation and recovery stages in a probabilistic context, which allows a flexible and

accurate modeling of complex scenarios [4]. In this formulation (Eq. 2.4), Ti is the time of

the failure occurrence, ∆Tf is the disruptive event duration, ∆Tr is the recovery time, F is

the failure profile, and R is the recovery profile.

Resilience(Re) =
Ti + F∆Tf + R∆Tr

Ti + ∆Tf + ∆Tr
(2.4)

The resilience triangle approach has been extended to include multiple disruptive

events [31, 32], stochastic behaviors [30], system interdependence [33], and nonlinear re-

coveries [8]. These extensions provide higher flexibility when fitting performance func-

tions.

A resilience triangle metric has been implemented as an objective function in an op-

timization model for resource allocation to maximize resilience levels [34]. A similar

approach was developed by Miller-Hooks et al. [35], where a two-phase optimization

model maximized the average performance resilience from Eq. 2.5, based on the satisfied

demand before (Di) and after (di) a disruptive event. Resilience based budget allocation

in preparedness and recovery stages for disrupted air transportation networks was con-

sidered by Janic [36].

R =
E(∑ di)

∑(Di)
(2.5)
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Average performance resilience metrics have been widely accepted due to the ease of

their interpretation. A common limitation in equations (2.2) and (2.3) is the use of subjec-

tive, expert based parameters, such as the time of analysis or control time. Such subjec-

tivity affects the accuracy of resilience measurement for a single system and comparisons

between two or more systems.

In the multi-dimensional class of metrics, two or more resilience dimensions are com-

bined by a linear combination or multiplication. The former case has been commonly

used in community disaster management [37, 38], where principal component analysis

is performed on a set of metrics to detect correlations. The principle metrics are then

transformed to an equivalent scale whereby their aggregation using a linear combination

becomes possible. An integration of metrics using a multiplication occurs when two or

more dimensions are multiplied to obtain a single index (e.g., [15], see Eq. 2.6). In this

case, resilience is the product of three resilience dimensions, where Sp is the speed re-

covery factor, Fr is the performance at a stable recovered state, Fd is the performance at a

disrupted state, and F0 is the initial system performance.

R(Sp, Fr, Fd, F0) = Sp
Fr

F0

Fd
F0

(2.6)

The main advantage of this class of metrics is that the resilience concept has a multi-

dimensional nature brought by dimensions of similar kind. This structure enables the

model to integrate more resilience dimensions as needed by decision makers. However,

aggregation of variables oftentimes presents challenges in the outcome interpretability

due to the resulting metric units and possible lack of physical meaning.

Time dependent metrics view system resilience as a function of time [14] (see Eq. 2.7). In

this formulation, the performance function is measured at different times to estimate the

level of improvement up to time t. The model parameters for a disruptive event ej are the

initial state performance F(t0), the performance level at the disrupted state F(td|ej), the
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performance at the recovered state F(tr|ej), and the performance level at time tr , where

tr ∈ (td, t f ).

R(tr|ej) =
F(tr|ej)− F(td|ej)

F(t0)− F(td|ej)
(2.7)

The above model has been extended and implemented to waterway networks [39] and

container terminals [5].

The class of time dependent metrics also includes variations of resilience triangle for-

mulations, such as [11]. In this model (see Eq. 2.8), PT is the targeted performance curve

and PR is the real performance curve.

R(T) =

T∫
0

PR(t)dt

T∫
0

PT(t)dt
(2.8)

Probability based metrics quantify system resilience as a probability. The first such metric

was defined as the odds that a system will remain in an equilibrium state or basin after a

disturbance [27]. The original formulation did not include the restorative capacity; it was

added later when an equivalent metric was defined as the probability that the system’s

loss will be less than the maximum loss (X∗) and the system will recover faster than the

maximum time to recover (T∗) for a given earthquake [13]. A similar model was defined

as the probability that a system will reach a set of viable states before a pre-specified time

[40].

P(A|I) = P(X0 < X∗, T1 < T∗) (2.9)

Equation (2.9) measures resilience for a given single scenario; it has been extended to in-

clude probabilities of different disruptive events, see Eq. 2.10, to calculate the total prob-

ability (i.e., resilience).

R = ∑ P(A|I) ∗ P(I) (2.10)
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The above formulation suggests to simulate disruptive scenarios with multiple replica-

tions in order to measure if the system satisfies the resilience conditions for X and T.

In the design of engineered systems, Youn et al.[41] used a probability based resilience

as a function of a system’s reliability and restoration capabilities, see Eq. 2.11 (symbol Ψ

was used to denote resilience since symbol R was reserved for reliability). In this formu-

lation, PDiag, PProg, PCorr are the diagnosis, prognosis, and correction probabilities, respec-

tively. This idea has been extended to measure resilience as a time dependent probability

[42].

Ψ = R + (1− R)PDiagPProgPCorr (2.11)

The probability based resilience metrics have been extended to use bayesian networks

to capture contributions of individual system components and variables to the overall

resilience [43, 44].

Probability metrics have been widely used in the design and analysis of physical sys-

tems. The main benefit of these models is a relative ease of interpretation.

The review of the existing system resilience metrics has shown that most of the models

include common dimensions of absorptive and restorative capacities or their equivalents.

The magnitude or intensity of a disruptive event has been identified as a relevant factor

[8] but it has not been explicitly incorporated in a resilience metric.

2.1.1 Social Systems Resilience Metrics

Resiliency in social systems has been measured trough multiple indexes or composite

metrics. Cutter [38] combines economic, social, institutional, infrastructure and commu-

nity capital factors into a single resilience metric to assess system ability to cope with

disasters. A similar approach is developed by Asadzadeh et al. [37], where 36 indicators

are evaluated and aggregated in a disaster resilience index. Magis (2010) [45] defines com-

munity resilience by eight dimensions that include community resources and strategic ac-

tion, where each dimension is defined by multiple metrics. Equivalent methodologies are
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developed [46] and implemented to assess multiple indexes and select the most impor-

tant from the resilience perspective [47]. Even though these approaches capture multiple

resilience capabilities, system response variables when a disruptive event strikes are not

included in the analysis.

Resilience in public health during a pandemic outbreak has been explored mainly

by using qualitative tools. These studies include the analysis of health education train-

ing [48] and authorities communication with the community to increase resilience [49].

There is an indirect study of the productivity loss in different industries after a pandemic

outbreak [50] where resilience is captured using an index developed to measure the in-

terdependency recovery rate for multiple industries when a disruptive event strikes [51].

In the review of quantitative metric in public health, no implementations of resilience

metrics were found besides the analysis based on the infection attack rate (IAR).

2.1.2 Supply Chain Resilience Metrics

The metrics to assess resilience in a supply chain are divided in qualitative and quan-

titative. In the first group surveys and experts’ opinions are captured to assess system

resilience level. For instance, a deterministic supply chain resilience index (SCRI) is pro-

posed based on nine resilience enablers, such as agility, collaboration, visibility, among

others [52]. Similarly, the supply chain resilience assessment and management (SCRAM)

[53] is suggested to measure system resilience by measuring twelve capabilities [54]. The

importance of these qualitative tools is their ability to establish how significant are strate-

gic drivers or enablers in the overall system resilience performance.

In the second group, the quantitative metrics are divided in two categories: i. average

performance and ii. multiple dimensions .

The average performance metrics measure system performance over a pre-fixed time

after a disruption has affected the system [12]. A linear approximation [16] is adapted and
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implemented in the design of a global supply chain affected by suppliers disruptions [55].

This approach has been widely extended [30, 56] and implemented in diverse contexts [4].

An equivalent metric based on system expected performance after a disruptive event

has been proposed on transportation networks analysis [35] and implemented to measure

supply chain resilience [57].

The multiple dimensions category includes metrics that are either a combination of

factors into a single value or a set of multiple indexes. In the former case, an initial model

of node resilience in logistic networks is estimated as a function of supply reliability, re-

sources availability, and reachable deliveries [58]. A second model, includes five dimen-

sions from a system disruption profile and unifies these response variables based on their

weights and echelon position [59]. A third general metric integrates system restorative,

absorptive and adaptive capacities to quantify resilience levels [15].

In the multiple metrics case, a three metrics framework is proposed to diagnose net-

work resilience based on the largest connected component size, average and maximum

path length [60]. Alternatively, in supply chain design eleven indicators are measured to

evaluate system resilience and overall performance [61].

2.2 Resilience Drivers

The importance of the identification of system resilience drivers is that enables the

improvement of the resilience levels. In this subsection, the review is focused on how

these drivers have been estimated in public health and supply chain analysis.

2.2.1 Community Resilience Drivers in Public Health

In public health, high resilience levels to pandemic outbreaks are connected to com-

munication, trust, willingness to take responsibility and commitment to prepare [49, 62].

Other studies analyze system capabilities that are part of community resilience, for in-

stance an ANOVA design is evaluated in a simulation model to estimate the impact of
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non pharmaceutical interventions in the IAR [63]. Similar analysis have been performed

to estimate the impact of pharmaceutical interventions [64, 65].

Resilience drivers in social systems are estimated using different statistical tools. Cut-

ter et al. (2010) [38] normalize multiple indicators by using min-max rescaling and assign

equal weights when aggregating the indexes. A case study in Theran implements a com-

posite resilience metric based on hybrid factor analysis and analytic network process [37].

These studies do not focus on the absorptive and restorative capacities.

The studies of resilience drivers identification in social systems do not include re-

sponse variables or are focused on a single resilience capacity. There is a need to esti-

mate resilience drivers that involve at least two factors: the absorptive and restorative

capacities.

2.2.2 Supply Chain Resilience Drivers

The review of supply chain resilience drivers divides the analysis on strategic drivers

based on qualitative studies and operational drivers based on system tactical and opera-

tional policies.

A summarized list of the strategic factors that build supply chain resilience include

the following drivers: Agility, flexibility, collaboration, redundancy, visibility, integra-

tion, information sharing, network topology, and risk management [66, 67, 68]. Even

though these drivers provide a general guideline to improve system resilience, due to

their strategic nature they are not easily connected with operational variables that may

impact system resilience.

On the contrary, the relationship between resilience and operational variables have

been less explored. Inventory levels benefit system performance upon demand uncer-

tainty [69].
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2.3 Resilience Optimization Models

The review studies optimization models that have been implemented to maximize

system resilience. The discussion includes single and multi-objective models.

In the single objective group, the implementation of the average performance or equiv-

alent functions are common to allocate resources targeting resilience improvement. A lin-

ear approximation of the performance function was tested while evaluating multiple al-

location functions and uncertainty in model parameters [34]. This model is implemented

in the Katrina case study where linear, exponential, quadratic and probability based mod-

els were tested. The allocation model is extended to include dynamic resource allocation

[20].

An equivalent resilience metric to the average performance measures the ratio of net-

work performance before and after a disruption [35]. A representative showcase of op-

timization models using this metric includes the study of trans-oceanic communication

cable [70], transportation networks [71, 35] and network topology analysis [72]. This met-

ric has been applied widely in network resilience analysis.

Other single objective studies include a cost function in supply chain management,

where resilience indicators related to network design are suggested to be included as part

of the objective function or model constraints [61]. Logistic network resilience is mea-

sured and improved as a function of nodes redundancy, supplier and distribution relia-

bility [58]. A multi-level framework is developed to design complex engineered systems

where resilience is placed at the top level [41].

Single objective models maximize resilience based on authors’ metric paradigms or

preferences, but there are no comparison among different resilience metrics to verify the

dependency of the optimal solution with the variety of metrics.

The multi-objective group contains mainly bi-objective models where the objectives

are resilience and cost. These models have been applied in supply networks [55, 57]
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and retrofit bridge analysis [73]. This type of model was suggested as a possibility in

waterway networks study to maximize resilience and minimize the recovery cost when

selecting a set of restoration actions [39]. The inclusion of the cost in resiliency analysis

highlights the importance of the resources spent to harden and recover the system.

Within this group others models have used more than two objectives. For instance, in

the analysis of restoration strategies in interdependent infrastructure individual resilient

metrics are considered for each system, this framework is implemented in power and gas

networks [11]. A socioeconomic and engineering methodology is proposed to improve

community seismic resilience [74]. This framework is implemented to evaluate seismic

retrofit plans via an optimization model where the objective functions are economic loss,

the number of morbidities, recovery time and the seismic retrofit plan cost [75].

Table 2.1 displays a comparison of the resilience optimization models based on the

number of objectives, model structure, and solution procedure. It is observed that Mixed

Integer Programs (MIP) were the most common models. In the case of solution pro-

cedures, genetic algorithms were extensively implemented in multi-objective problems.

While there are multi-objective models that include resilience, they dedicate a single ob-

jective to resilience, making the models dependent to an specific metric. We expect to

benefit from the multi-objective structure by adding as many objective functions as re-

silience capacities are analyzed to avoid dependence of a single metric and provide same

importance to all the dimensions.

The gaps that were identified from this review can be summarized as follows: i. Mod-

els are dependant to specific resilience metrics, which can lead to bias and limit the im-

plementation in other applications. This will be addressed by proposing models that are

built based on critical resilience dimensions. ii. Disconnection between resource alloca-

tion models and overall system resilience. Few models provide a strategic standpoint

to allocate resources based on overall resilience. Models should be intended to connect

tactical resource allocation with system resilience. These gaps are going to be solved by
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Table 2.1: Literature review resilience optimization models

Research Article Objectives Model Solution ProcedureSingle Multiple
[58] X Non-

structured
Genetic algorithm

[70] X MIP Branch and bound
[41] X MINLP Genetic algorithm
[71] X Stochastic

MIP
Benders decompo-
sition and Column
generation

[73] X MIP NSGA-II
[39] X Combinatorial Heuristic
[35, 72] X Stochastic

NLP
L-shaped method

[61] X MIP Branch and cut
[11] X Non-

structured
Genetic algorithm

[76] X X MIP Box algorithm
[55] X Two-stage

stochastic
ε-constraint

[57] X MIP NSGAII-Co-Kriging
[20] X NLP Analytical
[22] X Two-stage

robust opti-
mization

Column and con-
straint generation

[75] X NLP Analytical

proposing a new intensity based resilience metric, the identification of systems’ resilience

drivers, and multi-objective optimization model to maximize resiliency levels.
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3 RESEARCH OBJECTIVES

The overall research objective is to develop new models for resilience of physical and

social systems which incorporate disruption intensity, identify resilience control factors

and optimize resiliency. These are the specific research objectives:

• Develop resilience assessment models that incorporate disruption intensity. The

quantitative models will capture resilience relative to the disruptive event inten-

sity, which provides a fairer comparison in contrast with the average performance

metrics. These metrics are evaluated in physical and social systems.

• Identify resilience control factors. A previously validated agent based simulation

model is implemented to study the community response to pandemic influenza out-

breaks. The response variables time to recover and performance loss are measured

for different virus strengths and non pharmaceutical interventions. Then, regression

models are deployed to identify relationships among intervention policies and sys-

tem resilience capabilities. An equivalent analysis is carried out in a supply chain

to identify the system policies and the relationship with resilience.

• Develop multi objective optimization models for allocation of resilience resources.

Static models are proposed to ensure optimal resource allocation that maximize sys-

tems resilience levels. Multiobjective LP and MIP models are compared with single

objective resilience models. Then, the multiobjective models are implemented in

the social system testbed to identify the best strategies to maximize resilience while

balancing social impacts.
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4 INTENSITY BASED RESILIENCE METRIC

When measuring a system’s resilience, the system’s response to a disruptive event

needs be analyzed relative to the disruption intensity. A system which responds by a

smaller loss of performance to a disruption with a higher intensity should be viewed as

having a higher resilience. In what follows, the suggested metric includes three elements:

absorptive capacity, restorative capacity, and the disruption intensity.

4.1 R(I) Metric

Most of the existing metrics assume that the initial performance loss X and the recov-

ery time T are independent [16, 30]. In this research it is assumed that the recovery time

is dependent on the initial performance loss.

We first propose that the absorptive capacity RX be measured as the disruption inten-

sity I dissipated per unit of the performance loss X, as below:

RX =
I
X

(4.1)

Similarly, the restorative capacity RT is measured as the disruption intensity dissipated

per unit of recovery time T:

RT =
I
T

(4.2)

The system resilience is then measured as the product of the absorptive and restorative

capacities from Eq. 4.1 and 4.2:

R =
I2

XT
(4.3)
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The above general model in Eq. 4.3 estimates system resilience relative to the disruption

intensity. This allows a comparison of the resilience of different system designs to a given

disruptive event. At the same time, identification of the performance loss function X(I)

and the recovery function T(X(I)) aids decision makers in understanding of their system

resilience in order to take reactive and proactive actions to improve the system response

for different disruptive events.

In the following sections, we analyze the proposed metric for different forms of X(I)

and T(X). In the case of X(I), most existing models assume either an instantaneous

performance loss (e.g., observed after a natural disaster [16]) or a gradual (continuous

or stepwise) loss [14]. Recovery functions have attracted more attention whereby most

models consider either linear [16] or nonlinear trajectories [8, 32]. We will consider both

cases in our analysis of the proposed metric.

In the linear case we assume that X(I) and T(X(I)) are linear functions so that the

system response is linearly proportional to the disruption intensity (See Eq. 4.4 and 4.5).

The linearity assumption can hold as an approximation in situations where the absorptive

and restorative rates do not vary substantially during the analysis period. Some resilience

metrics assume linearity [16] and this scenario is included as a special case of the nonlin-

ear scenarios discussed later.

In Eq. 4.4 and Eq. 4.5 below, the parameters α and β are rates that measure a system’s

ability to absorb and recover from a disruptive event respectively. We assume that these

parameters are constant throughout the disruption and recovery processes (time varying

rates will be considered in our future work).

X = αI (4.4)

T = βX (4.5)
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In Eq. 4.4 and 4.5, the importance of α, the unit loss per disruption intensity, and β, the

recovery rate, is that they can serve as controls or drivers of a system’s resilience (see Eq.

4.6 and 4.7), whereas X and T should be viewed as response variables.

α =
X
I

(4.6)

β =
T
X

(4.7)

Based on Eq. 4.4 and 4.5, the resilience metric becomes as follows:

R =
1

α2β
(4.8)

The above result in Eq. 4.8 suggests that when a system absorbs and recovers at the

same respective rates for different disruption intensities, its resilience remains constant

and independent of the actual value of I. Therefore, an increase in the performance loss

does not necessarily imply a lower resilience, as for average performance metrics.

In the nonlinear case at least one of the functions X(I) or T(X) is nonlinear. Such cases

have been widely discussed in the resilience literature where multiple recovery profiles

are included [77, 78]. We assume that I > 1 to generalize the system behavior in the

non linear scenarios. Our analysis includes the following cases: (a) general nonlinear

functions with positive real exponents, and (b) logarithmic and exponential functions.

(a) General nonlinear functions

In the general nonlinear case, both X(I) and T(X) are nonlinear (see Eq. 4.9 and 4.10),

where parameters n and m are positive real numbers:

X = αIn (4.9)

T = βXm (4.10)
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It then follows that when the two response variables are nonlinear the general re-

silience equation is given by the following expression:

R =
I2−n(1+m)

αm+1 β
(4.11)

The above equation reduces to Eq. 4.8 when n = 1 and m = 1. Assuming a linear recovery

when m = 1, we discuss two sub-cases that lead to different system response: n > 1 and

0 < n < 1.

When n > 1, as I increases, the absorptive and restorative capacities decrease and so

does resilience. This case is characterized by higher sensitivity of resilience to disruption

intensity. Such behavior can be observed in systems that absorb shocks relatively well

up to a certain level of intensity; once the level is exceeded, the system “gives in" and its

resilience degrades at an increasingly increasing rate. This pattern can be observed, for

instance, in networks with some nodes having high connectivity or cyclicity [79] - once

such a node fails, it will cause cascading failures of its dependent subnetwork.

When 0 < n < 1, system resilience is less sensitive to variations in I. Since resilience

improves as I increases, this model can be used for systems which can adaptively sustain

disruptions of higher magnitude, up to a certain level. Such dynamics can be observed

in adaptive networks which learn or develop mechanisms to cope with shocks. One ex-

ample is the effect of herd immunity in communities affected by pandemic outbreaks of

infectious diseases.

When 0 ≤ n, m < 1, both the absorptive and restorative capacities progressively im-

prove as I increases, which results in progressively higher resilience. On the other hand,

when n, m > 1, the absorptive and restorative capacities get progressively worse, which

makes resilience decrease. In general, for any combination of n and m, depending on the

sign of the exponent 2− n(1 + m), there will be three shapes of the resilience curve, as

I increases: increasing (positive exponent), decreasing (negative exponent), and constant

(zero exponent).
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(b) Logarithmic and exponential functions

We first assume that T(X) is linear with respect to X and the loss function has a nonlinear

structure of the following form:

X = α ln(1 + I) (4.12)

The resilience metric for the logarithmic case based on Eq. 4.12 is given by the following

equation:

R =
I2

αβ ln(I)2 (4.13)

In this case (see Eq. 4.13), as I increases, resilience increases as well, which resembles the

general nonlinear case for 0 < n < 1.

When the performance loss function has an exponential form (see Eq. 4.14),

X = α eI , (4.14)

system resilience has the following form:

R =
I2

α2βe2I (4.15)

This case (see Eq. 4.15) follows the same pattern as the general nonlinear case for n > 1:

resilience decreases as I increases.

From the above cases, it can be seen that the proposed model can accommodate con-

stant, decreasing, and increasing resilience dynamics, depending on the relationships

among X, T and I. The ability to capture such interactions increases the flexibility of

the metric since in the previous models X and T were assumed independent and I was

not considered.

In order to compare the proposed intensity based metric R(I) with the average per-

formance (AP) metric from Eq. 2.3, Table 4.1 was developed for the linear and nonlinear

cases considered above. From the table 4.1, for each case, the resilience for the average
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Table 4.1: Metrics comparison

Case R(AP) R(I)
Linear
X = αI
T = βX 1− α2βI2

2T∗
1

α2β
General
X = αIn

T = βXm 1− αm+1βIn(m+1)

2T∗
I2−n(1+m)

αm+1 β
Logarithmic

X = α ln(1 + I)
T = βX 1− α2βln(1 + I)

2T∗
I2

αβ ln(I)2

Exponential
X = α eI

T = βX 1− α2βeI

2T∗
I2

α2βe2I

performance metric is a decreasing function of I. This follows since the average perfor-

mance is proportional to the performance loss, which invariably decreases as I increases,

regardless whether the restorative and/or absorptive capacities remain constant or in-

crease. This highlights the main difference between the two metrics such that the pro-

posed model captures more complex interactions among X, T, and I.

4.2 Numerical Examples

Numerical examples have been designed to illustrate the comparison of the proposed

intensity based metric to the average performance metric for linear and nonlinear cases.

The results in this section seek to validate and explain in more detail the theoretical met-

rics comparison. Parameters α = 0.1 and β = 10 are assumed constant in all cases. We

used the linear recovery time function shown in Eq. 4.17 in all scenarios. In addition, in

the nonlinear cases I is greater than one. Even though the values of the metric R(I) are

not bounded, they have been scaled between zero and one to ease the comparison with

the average performance.
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In the linear case the loss and recovery functions (see Eq. 4.16 and 4.17) have a linear

structure based on the following form:

X = 0.1I (4.16)

T = 10X (4.17)

For the different scenarios the response variable functions are used to quantify R(I) and

R(AP), the linear case is contrasted in the following figure.

Figure 4.1: Resilience for linear absorptive and restorative capacities

From Fig. 4.1, the R(I) model shows a constant resilience at different levels of disrup-

tion intensity. This is because the absorptive and restorative capacities remain the same

for increasing I. On the other hand, the average performance metric shows a quadrat-

ically decreasing resilience in response to increasing loss and recovery time for higher

intensities. This is notwithstanding the fact that the system’s response is commensurate

with the increased values of intensity.

In the nonlinear cases we consider two groups of examples based on the response

variables function shape. The first scenario is called high resilience sensitivity to I because

the system resiliency decreases as the event magnitude increases. The second scenario is
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defined as low resilience sensitivity to I, because the system resiliency increases as the

event magnitude goes up. In the first group we discuss two examples: when X is based

on Eq. 4.18 (n > 1) and when X has an exponential form (as in Eq. 4.19).

X = 0.1I2 (4.18)

X = 0.1eI (4.19)

Figures 4.2 and 4.3 respectively illustrate the two examples. In both cases, the two metrics

show a decreasing resilience in response to increasing disruptive event intensity. How-

ever, while R(AP) shows an increasing decline, the rate for R(I) decreases, which cap-

tures the fact that the restorative capacity is able to remain constant while the performance

loss X grows at an increasing rate.

Figure 4.2: Resilience for nonlinear case (n > 1)

Despite some differences in the resilience drop rate explained above, both metrics de-

scribe a decreasing resilience pattern as I increases under the high sensitivity to I scenario.

This is the only case where the metrics capture a equivalent behavior.

In the group for low resilience sensitivity to the event magnitude, we show two ex-

amples that mimic this scenario: the general nonlinear model for 0 < n < 1 and the
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Figure 4.3: Resilience for an exponential absorptive capacity

logarithmic model with the following respective loss functions (Eq. 4.20 and 4.21). The

first case, when we set the parameter n = 0.3 the absorptive capacity is given by the

following nonlinear equation:

X = 0.1I0.3 (4.20)

Then, the resulting figure 4.4 displays an increasing resilience system, which despite the

loss and recovery time increments, the system ability to dissipate the event magnitude is

improving.

A similar scenario is when the absorptive capacity follows a logarithmic shape pro-

vided by the next equation:

X = 0.1 ln(1 + I) (4.21)

As expected, the R(I) measurements from figures 4.4 and 4.5 show an increasing re-

silience as the marginal system response improves as I increases even though the total

loss and recovery time get bigger. The average performance metric is unable to capture

the improving response, thus showing a decreasing resilience trend. In this scenario and

the linear case there are dissimilarities in the R(I) and R(AP) analysis, while the new
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Figure 4.4: Resilience for nonlinear case (0 < n < 1)

Figure 4.5: Resilience for a logarithmic absorptive capacity

metric models varying X, T and I relationships, the traditional metric can not capture

these interactions.

The numerical analysis shows that the intensity based metric better captures different

dynamics of the system response to varying disruption intensities whereas the average

performance metric invariably shows a decreasing resilience.

26



4.3 Community Resilience Measurement After a Pandemic Outbreak

The pandemic outbreak testbed is based on the model [63] where an influenza virus

is spread on a 1.5 million inhabitants community with the demographics of the USA . An

agent based simulation model depicts the daily interactions in the community as people

go to work, school or stay at home. As people begin the social mixing with infected

individuals, then the higher is the probability to get transmitted the virus. An instance

will stop once the community has recovered.

In the model, thirteen Mon Pharmaceutical Interventions (NPI) actions are deployed

to evaluate their impact on community resilience. These strategies include quarantine

days, isolation periods, isolation compliance, and number of infected people to close a

school or workplace. The strategies are static, therefore the parameters are fixed from the

beginning of every instance and will remain invariable until the next run.

The resilience analysis of a community impacted by a influenza pandemics is carried

out in two sections. First, the new metric is compared with the average performance

model to identify metrics differences on a baseline scenario without interventions and a

recommended set of NPIs. Then, the significant NPI actions are established based on their

impact in the maximum percentage of infected population and the community recovery

time. Furthermore, this result is compared to the significant NPIs estimated based on the

IAR metric.

The metric elements are the virus strength I, the response variables maximum loss of

healthy population X and the recovery time T measured until the system has reached a

99% of healthy population. The metric comparison between R(I) and R(AP) is carried

out for two scenarios: I) a baseline scenario with no interventions, II) NPI based on [63] .

Figures 4.6 and 4.7 show the relationship between the virus strength and the response

variables. Both X and T are reduced when NPIs are implemented during the pandemic
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outbreak. Consistently the NPI strategies improve the absorptive and restorative capabil-

ities regardless the virus strength.

Figure 4.6: Maximum loss versus virus strength

Figure 4.7: Recovery time versus virus strength

Once the response variables X and T have been assessed, community resilience is

captured and compared by using the average performance and the new resilience metrics.

Figures 4.8 and 4.9 display community resilience levels for varying virus strength.
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Figure 4.8: Average performance resilience metric

The average performance resilience metric invariably decreases as the virus strength

increases. This behavior will repeat regardless the type of system, given that performance

loss and recovery time are expected to increase as the disruption intensity grows. Thus,

R(AP) always suggests that systems ability to withstand and recover worsens when the

disruption intensity goes up.

Figure 4.9: Intensity based resilience metric strategies comparison

29



In the case of the R(I), resilience level improves as the virus strength increases. In

the case study, community resilience is increasing despite that the performance loss and

recovery time are worsening. This behavior is caused due to system ability to dissipate

I per unit of the absorptive and restorative capacities. System resiliency is improving

for the baseline and NPI scenarios as I increases, however the resilience gap between

the scenarios gets higher as virus strength increases suggesting a increasingly increasing

resilience.

Parameters changes in the NPIs affect system structure and resilience capacities which

leads to varying resilience patterns. There are configurations where R(I) decreases or

increases as the virus intensity gets stronger. Figure 4.10 depicts different strategies where

the ability of the metric R(I) to capture multiple resilience behaviors is highlighted as

opposed to the ever decreasing pattern of the R(AP).

Figure 4.10: R(I) policies comparison

In general, an increasing resilience suggests a system that is getting stronger as the

virus strength goes up. However, an interesting insight from Figure 4.10 is that an increas-

ing resilience does not necessarily mean a better system than the one with a decreasing

resilience pattern. Given the wide variety of policy configuration and resiliency profiles

the next chapter identifies the interventions that maximize R(I).
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4.4 Supply Chain Resilience Measurement

Traditionally, supply chain resilience has been measured using qualitative tools based

on surveys and experts opinions [53, 52]. In the few cases where resilience has been

quantified using quantitative tools [59] implemented simulation models. Adopting the

simulation approach, the supply chain resilience evaluation is carried out in a discrete

model of a linear system with one node per echelon. The two echelon system serves a

daily demand N(100, 10) by using an (s, Q) inventory policy where Q units are reordered

once the inventory position has decreased below the reorder point (s).

Figure 4.11: Supply chain configuration

The supply chain failure mode that was implemented in the model is the supplier

disruption due to its relevance in the industry. This disruptive event will impede the

physical flow through the supply chain from the supplier to the final customer. The event

magnitude (I) is the supplier failure length which is assigned from a uni f (2, 30) days

interval.The performance metric is the fraction of satisfied demand delivered on time.

The simulation model was run for 365 days for multiple disruption intensity levels and

the response variables were recorded for each replication. The performance loss metric

X refers to the maximum percentage unsatisfied demand, and the recovery time T was

measured from the time that the disruption affected the service level (less than 95 %) until

the system performance was restored to the initial state.

The response variable X from figure 4.12 is less than 100 % for small disruptions but as

I increases the system goes from a partial to a complete unsatisfied demand, wich means
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Figure 4.12: Supply chain performance loss

that the loss is 100 %. The absorptive capacity as a rate of X and I increases once the

maximum loss is 100 %.

Figure 4.13: Supply chain recovery time

In figure 4.13 the recovery time is directly proportional to the supplier disruption time.

The highest values of the recovery time relative to I are for small disruptions.

The resilience comparison from figure 4.14 shows that in the case of R(AP) the re-

silience decreases which is the behavior that is always described by this metric. On the

other hand, the new metric R(I) describes an increasing resilience. This behavior can be
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Figure 4.14: Supply chain resilience metrics comparison

explained by the pattern of both response variables X and T. The absorptive capacity

improves because the performance loss remains equal to 1 for medium and high inten-

sity disruptions. In addition, the recovery time is higher than the supplier disruption for

small intensity events, but for medium and large disruptions T and I are approximately

the same, leading to an increasing resilience.

In this chapter R(I) displayed a higher flexibility to capture accurately diverse re-

silience patterns, such as constant, increasing and decreasing resilience. The application

in social and physical systems confirm the importance of measuring resilience as a func-

tion of I to avoid the invariable decreasing pattern captured by the average performance

metric.
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5 RESILIENCE DRIVERS ESTIMATION

The previous chapters explored a new metric to measure supply chain and community

resilience. In this chapter the analysis is extended to the identification of resilience drivers

in the physical and social systems under study.

5.1 Community Resilience Driver Estimation

Resilience drivers in the studied social system are identified using the response vari-

ables X and T. All the analyses in this section are intended to increase system resilience

by improving both capacities. The policies cost was not included in this research.

A total of 128 scenarios are evaluated based on Cohen’s power analysis with α = 0.05

and β = 0.1. The parameter values for every NPI are taken from the ranges used in

[63]. Table 5.1 displays the parameters generator functions for each scenario. Once the

parameters are generated for a single run, the values are not changed.

A first analysis is performed using a linear regression with the IAR as the response

variable with an R2 of 0.87. The NPIs that are significant in the analysis are the cases

to close a class, classes to close a school and class quarantine period. In this approach

it is not determined how these NPIs will affect the absorptive and restorative capacities

separately.

An independent evaluation is carried out using linear regression models to both de-

pendent variables. The maximum percentage of infected population and the recovery

time from the pandemic outbreak yield an R2 of 0.89 and 0.87, respectively. The common

significant factors for both variables are virus strength, cases to close a class, and number
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Table 5.1: NPIs generator parameters

NPI Parameters
Delay days quarantine Unif(3,7)
Isolation period Unif(7,10)
Isolation compliance workers Unif(0.53,0.75)
Isolation compliance non-workers Unif(0.57,0.84)
Household quarantine period Unif(7,10)
Household compliance workers Unif(0.53,0.75)
Household compliance non-workers Unif(0.57,0.84)
Cases to close a class Unif(1,3)
Classes to close a school Unif(1,3)
School clousure duration Unif(21,42)
Cases to close mixing groups work-
places

Unif(3,5)

% mixing groups to close workplaces Unif(0.3,0.5)
Mixing group quarantine period Unif(7,14)

of classes to close a school. The NPI cases to close mixing groups workplaces has inci-

dence on T. Under this approach the effects of the NPIs on the response variables are

known. From table 5.2 it is observed that there is a positive relationship among the rel-

Table 5.2: Linear regression coefficients based on response variables X and T

Factor Coefficients
X T

I 0.00031 0.04625
Cases to close a class 0.05543 2.06824
Classes to close a school 0.03497 1.08036
Cases to close mixing
groups workplaces

NA 1.67599

evant NPIs and the response variables, thus the best performance will be reached when

the minimum values are implemented for the significant NPIs. This approach suggests a

highly sensitive triggers policy where schools and workplaces will shut down once few

infected cases have been detected.

The resilience analysis using two response variables is contrasted with the results ob-

tained by using the IAR as the desired metric to be minimized. Based on the same number

of observations, the significant NPIs found are not the same. In the case of the response
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variables X and T, besides the school related NPIs, the cases to close mixing groups at

work is a significant intervention. The benefit of the resilience analysis over the tradi-

tional IAR is that policy makers and authorities are getting more specific information

about how the interventions are impacting the absorptive and restorative capacities.

The importance of school related NPIs in both analysis is confirmed by a disaggre-

gated study of the infected population per age group 0-19,20-64, and 65-99 years old.

Figure 5.1 evidences that the maximum relative percentage of infected population is at

ages 0-19. An statistical analysis is performed using an ANOVA and pairwise mean com-

parison that confirms that results are consistent for both response variables X and T. The

Figure 5.1: Age groups comparison dependent variable X

resilience analysis points out the importance of NPIs targeting the age group between 0-

19 years. Both dependent variables will benefit from highly sensitive course and schools

closure trigger points, which increase system resilience levels.

The case study in this section confirmed the importance of an intensity based resilience

metric in social systems given that it was able to capture more complex system response

relationships as opposed to the average performance metric. Furthermore, the regression

analysis of both dependent variables enables decision makers to mobilize resources to

improve specific resilience capacities.
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5.2 Supply Chain Resilience Driver Estimation

Supply chain resilience drivers have been discussed in a strategic fashion without the

proper modeling of operational policies and their impact on system resiliency. Drivers

such as redundancy, network design, and collaboration are recurrently mentioned as re-

silience drivers. In this section the redundancy and network structure strategies are op-

erationalized by analyzing the supplier location, order size, and safety stock.

Table 5.3: Supply chain strategies and policies

Parameters Value
Supplier Disruption Unif(2,30)
Order Size Unif(2,15)
Lead Time Unif(1,7)
Safety Stock Unif(0.5,0.999)

Table 5.3 displays the values for the network parameters. The order size is measured

as the number of average demand days. The lead time is the replenishment time, and the

safety is the service level based on demand uncertainty during a restock cycle.

A regression analysis is carried out to identify the supply chain resilience drivers

based on the maximum performance loss and the recovery time response variables with

R2 values of 0.62 and 0.94 respectively.

Table 5.4: Supply chain regression coefficients based on response variables X and T

Factor Coefficients
X T

Supplier Disruption 0.00930 0.97398
Order Size -0.0098 -0.7889
Lead Time NA 0.43836
Safety Stock -0.1707 NA

From table 5.4 the supply chain absorptive capacity or static resilience improves when

either the order size or the safety stock increase. The restorative capacity improves when

either the order size increases or the lead time decreases. These results are valid for the

given configuration and supplier disruption failure mode. In general, the studied model
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will improve resiliency levels for suppliers disruptions by decreasing lead times, and

increasing order size and safety stock.

The analysis in the supply chain highlights the importance of quantifying the relation-

ship of system structure and policies with resilience related response variables. While

these results can not be generalized from a single example it sets a standard on capturing

these relationships.
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6 RESILIENCE OPTIMIZATION MODELS

This chapter proposes static resource allocation models to maximize resilience capaci-

ties. While traditional models maximize resilience by using a single metric, the suggested

approach gives the same importance to resilience dimensions. A multi-objective model

is used to improve systems resiliency in numerical examples and the social system previ-

ously defined in this report.

6.1 Multi-Objective Resilience Optimization

Two bi-objective budget allocation models are presented to optimize system absorp-

tive and restorative capacities. The first dimension, refers to the ability to withstand a

disruption and it is measured as the maximum performance loss [16]. Resource alloca-

tion towards this capability requires hardening strategies, such as redundancy [80] and

fortification [81].The second dimension is the ability to restore system performance after

a disruptive event. This property is measured as the recovery time [8]. The actions to

improve this property will increase system speed to return to the initial or desired state.

The proposed models to optimize these two key dimensions are a bi-objective linear

program and a bi-objective mixed integer program (MIP). In both cases a comparative

analysis is carried out with the single objective counterpart based on [20] formulation.

6.1.1 Bi-objective Linear Program

In these formulations a linear resource allocation is assumed for both response vari-

ables and the final outcome is the recommended investment in the absorptive and restora-
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tive capacities. The notation for the single objective and multi-objective formulations

have the following decision variables:

zx investment to harden the system

zt investment to increase recovery capability

The model parameters are listed as follow:

X′ maximum performance loss without investment

T′ recovery time without investment

α performance improvement per unit of investment

β Recovery time improvement per unit of investment

The single objective formulation is a Non Linear Program (NLP) that maximizes re-

silience based on a linear approximation of the widely used average performance metric,

originally proposed by [12] and further implemented by many authors [78, 30].

max 1− (X′ − αzx)(T′ − βzt)

2 ∗ Tmax
(6.1)

s.t. γx + τt ≤ B (6.2)

αx ≤ X
′

(6.3)

βt ≤ T
′

(6.4)

In this model, when linear or exponential allocations functions are assumed then the

optimal solutions are to invest the available budget in a single resilience dimension, either

to decrease X′ or T′ [20]. The main drawback of these solutions is that from a practical

perspective the investment of the whole budget in a single capacity will affect the im-

provement of other resilience capacity. A more balanced approach should be considered

before making a final decision.

In the case of the bi-objective formulation, since decision variables are continuous and

all of the equations are linear, then this model has lower complexity than the nonlinear

single objective counterpart, where the multiplication of the objectives X and T develops
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a nonlinear structure that arises higher complexity. The next formulation capture liner

continuous allocation for both resilience capacities:

min X′ − αzx (6.5)

min T′ − βzt (6.6)

s.t zx + zt ≤ B (6.7)

αzx ≤ X′ (6.8)

βzt ≤ T′ (6.9)

The objective functions (6.5) and (6.6) minimize the initial loss and recovery time. The

budget constrain (6.7) limits the allocation capacity, and constrains (6.8) and (6.9) are the

maximum reductions of X′ and T′. The main benefits of this formulation are the lower

structure complexity and that it can provide multiple non-dominated solutions given the

Pareto front that is derived in multi-objective problems.

The solutions found in the single objective resilience model for the linear and expo-

nential allocation are included in the corner points of the bi-objective Pareto front given

that these are non-dominated solutions. The fact that the milti-objective model solutions

include the single objective model solution gives an edge to our approach because more

well balanced options are available to decision makers.

6.1.2 Bi-objective MIP Formulation

The Mixed Integer Program (MIP) models enable resource allocation of specific hard-

ening and recovery strategies, in contrast with the previous models where individual

strategies were not available. The assumption of a set of strategies that can improve one

or two dimension simultaneously fits real life settings where decision makers will choose

from the available options a subset of alternatives instead of using a continuous alloca-

tion function. The linear continuos functions capture the system improvement per unit
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of money invested. Even though these models may fit better real settings, the main limi-

tation is their complexity when contrasted with the linear models. The notation of these

formulations have the following decision variables:

zi: Binary variable indicating whether or not action i is selected

The models parameters are as follow:

X′ Maximum performance loss without investment

T′ Recovery time without investment

αi Strategy i performance improvement

βi Strategy i Recovery time improvement

The single objective model is a mixed integer nonlinear program (MINLP). The com-

plexity of these models has been less studied due to the lack of general structure [82]. This

model has the same constraints than the single objective NLP.

max 1− (X′ −∑n
i=1 αizi)(T −∑n

i=1 βizi)

2 ∗ Tmax
(6.10)

s.t
n

∑
i=1

cizi ≤ B (6.11)

n

∑
i=1

αizi ≤ X′ (6.12)

m

∑
i=1

βizi ≤ T′ (6.13)

Although the bi-objective MIP is NP-hard its structure has been revised and more

algorithms are available to obtain near optimal solutions in contrast with the MINLP.
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min X′ −
n

∑
i=1

αizi (6.14)

min T′ −
n

∑
i=1

βizi (6.15)

s.t
n

∑
i=1

cizi ≤ B (6.16)

n

∑
i=1

αizi ≤ X′ (6.17)

n

∑
i=1

βizi ≤ T′ (6.18)

The objective functions minimize the maximum loss and the recovery time by selecting

the optimal subset of hardening and recovery strategies. For a single strategy i at least

one of the coefficients αi or βi should be greater than zero, otherwise the alternative will

be discarded. The model allows the possibilities that one strategy may improve both

resilience capabilities, and that by increasing on capacity the other may be reduced.

Among the benefits of the proposed multi-objective models the most significant are

the multiple non-dominated solutions and flexibility to include multiple hardening and

recovery actions while keeping less complex model structures.

6.1.3 Strategies Selection

Once the models have been solved, in the case of the single objective most of the times

a unique alternative will be found, while in the multi-objective model a Pareto front with

a variety of non-dominated alternatives will be available. Therefore, two approaches are

suggested to select the most suitable resource allocation based on the decision makers

preferences.
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The first method, which is based on the idea of maximizing resilience, is to compute

a subset of resilience metrics {R1, R2..., Rm}, and then based on a voting system or a

combined metric choose the best allocation strategy.

The second method is to implement the common tools to point selection in the multi-

objective analysis field. This includes either minimize the measurement of the normalized

euclidean distance from the ideal point to the Pareto front, or maximize the distance be-

tween the non-dominated solutions and the Nadir point.

6.1.4 Illustrative Example: Bi-objective LP

A numerical example is developed to illustrate the bi-objective resilience optimization

analysis for the LP model. The parameter generation rules are summarized in table 6.1.

Table 6.1: MO LP example parameters

Parameter MO- LP
X′ uni f (0.2, 1)
T′ uni f (10, 100)
α uni f (0.001, 0.5)
β uni f (0.005, 1)
B min(X′

α , T′
β )

ci NA

The evaluation of the Bi-objective LP model is performed over 1000 instances. It is

assumed that the available budget can not fully restored X′ and T′. Then the bi-objective

LP model is easily solved by identifying all the allocation strategies where B is completely

spent in zx and zT.

The Pareto front in Figure 6.1 depicts a general representation of the non-dominated

points in the line where the corner points are (X′ − α ∗ B, T′) and (X′, T′ − β ∗ B). Once

the non-dominated solutions are identified for each instance the next step is to select the

best possible point.

The first method deploys three resilience metrics R1 [16], R2 [15] and the intensity

based resilience metric R3. The following parameters are elements of these metrics. T∗ is
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Figure 6.1: Pareto front multi-objective LP

the control or maximum time , Sp is the speed recovery factor, F0 is the initial performance

level, Fd is the performance when the system is disrupted, Fr is the performance level

when the system is stable after recovery, and I is the disruptive event magnitude.

R1 = 1− XT
2T∗

(6.19)

R2 = Sp
Fr

F0

Fd
F0

(6.20)

R3 =
I2

XT
(6.21)

In 99% of the evaluated instances there is an agreement among the three metrics in

the selection of the best non-dominated point. The chosen points where located in the

Pareto front corners, this happened in 100% of the instances for R1 and R2, and 99.6% of

the times in R3.

Method 2 is based on the estimation of the normalized euclidean distance. In con-

trast with method 1, 100% of the selected points are not corner points in the Pareto front.

Therefore, it is confirmed that the single resilience metrics will favor corner points, while

the euclidean distance approach finds a balance between the resilience capabilities.
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6.2 Pandemic Outbreak Resilience Optimization

In the community resilience analysis the response variables X and T were fitted in

chapter 5, as result the significant variables are related to schools and workplaces.

I: Virus strength

X1: Cases to quarantine mixing groups at schools

X2: Mixing groups to close schools

X3: Cases to quarantine mixing groups at workplaces

min X − 0.1345 + 0.0000297I + 0.0513X1 + 0.0339X2 (6.22)

min T 2.1968 + 0.0459I + 2.2709X1 + 1.3118X2 + 1.734X3 (6.23)

When the objectives (6.22) and (6.23) are analyzed the unique non dominated point

is when the three strategies are implemented with the minimum possible values which

are X1 = 1, X2 = 1 and X3 = 3. This point minimizes X and T, hence it maximizes

resilience. This policy will improve the resiliency levels because it will shut down schools

with infected individuals faster, reducing the number of interactions between infected

and healthy students.

Even though the non-pharmaceutical interventions benefit the response variables, this

policy has a social impact in the students and workers missing classes and work. Two new

objectives are added to account for this impact, the total number of student days without

school and the worker days without work.

min Students 100297065 + 56078I − 18865869X1 − 12646872X2 + 2212280X3

(6.24)

min Workers Days 498708.6 + 2144.1I + 129626.2X1 + 20678X2 − 179114X3 (6.25)

46



The selected NPIs have significance in the objectives (6.24) and (6.25) with R2 values

0.8548 and 0.642 respectively. Then the four objectives are included in the analysis to

improve resilience and mitigate the social impact on students and workers. The evalua-

tion is performed in the different objectives subsets in order to identify better balanced

policies. The minimum distance from the best combination of X, T and the students days

Figure 6.2: NPIs impact on students days, X and T

without classes to the best performance of the individual objectives is the black solid point

in figure 6.2 which corresponds to the policy X1 = 1, X2 = 3 and X3 = 3. This strategy

provide the best balance of the three objectives.

The minimum distance from the best combination of X, T and the total workers days

Figure 6.3: NPIs impact on workers days, X and T
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off to the possible strategies is the black solid point in figure 6.2 which corresponds to the

policy X1 = 1, X2 = 1 and X3 = 4. Table 6.2 displays the best strategies to improve indi-

Table 6.2: NPI strategies and objectives result

X1 X2 X3 Result
1 1 3 Optimize R, X and T
3 3 3 Minimize total days of students without class
1 1 5 Minimize total days of workers without work
1 3 3 Best balance of X, T and Students days
1 1 4 Best balance of X, T and Workers days
1 3 4 Best balance of the four objectives

vidual objectives and bundles where two, three and four objectives are balanced. Similar

metrics or a cost based combination can be added to account for additional social factors

or to represent decision makers interests.

The benefits of multi-objective model are the linearity and flexibility to incorporate

multiple dimensions of system resilience. This approach provides a generalization in

the resilience analysis where multiple resilience metrics can be implemented to select a

strategy to improve resiliency.
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7 CONCLUSION

Accurate resilience estimation enables decision makers to improve system absorptive

and restorative capabilities. Previous works have suggested the importance of the dis-

ruption intensity in a multi-dimensional resilience analysis. Our model is the first formal

approach that explicitly incorporates the intensity dimension in a resilience metric.

The proposed model can properly capture linear and nonlinear relationships among

performance loss, recovery time, and disruption intensity. The new metric was compared

to the average performance metric analytically, through numerical illustrative examples,

and case studies. The results suggest that the intensity based model provides a better

estimation of resilience, mainly in the cases when a system’s response is commensurate

or improving with increased disruption intensities.

In addition, the new metric is independent of the “control time" or maximum time (T∗)

parameter(s) present in the average performance models. The elimination of these sub-

jective parameters improves the application and comparison within and across resilience

driven system designs.

The identification of the structure, policies, and operational variables improve systems

ability to absorb and recover from a disruptive event is a key element to improve system

resiliency. Two tests beds were evaluated, a social and a physical system.

In the social system, a community resilience assessment enriches the traditional In-

fection Attack Rate analysis by combining the absorptive and restorative capacities, and

enabling the addition of other factors considering the multi dimensional nature of the

resilience concept.
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The Resilience drivers identification in a community affected by a pandemic outbreak

showed the importance of evaluating the resilience capabilities X and T, because decision

makers are given more information about how each significant intervention will improve

community response. This approach leads to a targeted resilience improvement as op-

posed to the IAR metric that aggregates the interventions towards a single index. As a

result, resilience level is higher when the NPIs were chosen to improve the absorptive

and restorative capacities.

In the physical test, the supply chain analysis identified the order size, lead time and

safety stock service level as key variables to manage resilience levels. This study con-

tributes the measurement of the relationship between operational variables and supply

chain resilience.

The drivers estimation is used to define the best path to allocate resources towards

resilience improvement. A multi-objective model is suggested for LP and MIP struc-

tures to optimize systems ability to absorb and restore after a failure. The contribution

of this approach is the flexibility to include addition resilience capabilities without sacri-

ficing the linear complexity. Following this analysis, community resilience strategies to

face pandemic influenza outbreaks were identified while balancing absorptive capacity,

restorative capacity, and social impact.

7.1 Future Research

Future extensions of this research are divided in three categories: metrics, applica-

tions, and resource allocation. In the first category, it is expected to seek the development

of time dependent metrics to perform (near) real-time resilience analysis and online de-

cision support based on resilience improvement. While the proposed metric included

two resilience dimensions, it should be open to include more key capabilities such as the

adaptive capacity. Another limitation of the current model is the assumption of determin-
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istic parameters, particularly, the disruption intensity. We will work to develop stochastic,

time dependent resilience metrics to provide more accurate resiliency estimation.

In the second category, research will focus on three aspects to enhance community

and supply chain resilience: i) New applications in social systems with the intention to

test R(I) in areas other than public health. ii) Explore quantitative metrics and drivers

to include the adaptive capacity in the resilience analysis. Even though this capacity is

included consistently in social systems it is not frequently measured. iii) Evaluate addi-

tional supply chain resilience drivers such as collaboration, network structure and flexi-

bility.

In the third category, we expect to develop dynamic resource allocation to improve

system resilience based on the independent resilience capacities. Furthermore, uncer-

tainty in parameters will be tackled using robust optimization.
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