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Northwest coast of the Yucatan Peninsula, Mexico. Map depicts the location
of municipalities used in the study: Chicxulub Pueblo, Dzemul, Hunucma, Ixil,
Progreso, Telchac Pueblo, Telchac Puerto, Ucu, and Merida. Modified from
Modelling dengue fever risk in the State of Yucatan, Mexico using regional-
scale satellite-derived sea surface temperature by Laureano-Rosario et al.
2017, published by Acta Tropica 172 pp. 50-57. ©2017 Elsevier CC-BY-NC-ND.

Used with permission (APPendiX E)....cccuueeeieiiieeiiiiiee et

San Juan, Puerto Rico. The inset map depicts Escambron Beach study area,
both sampling locations (green triangles), stormwater discharge drain (black
circle), and public bathrooms (bathroom symbol). Modified from
Environmental Factors Correlated with Culturable Enterococci Concentrations
in Tropical Recreational Waters: A Case Study in Escambron Beach, San Juan,
Puerto Rico by Laureano-Rosario et al. 2017, published by International
Journal of Environmental Research and Public Health 14(12), 1602. ©2017

Laureano-Rosario CC-BY-4.0. Used with permission (AppendiX E) .....ccccccvveeeennneen.



ABSTRACT

Climatic variations, together with large-scale environmental forces and human development
affect the quality of coastal recreational waters, creating potential risks to human health. These
environmental forces, including increased temperature and precipitation, often promote specific
vector-borne diseases in the Caribbean and Gulf of Mexico. Human activities affect water quality
through discharges from urban areas, including nutrient and other pollutants derived from
wastewater systems. Both water quality of recreational beaches and vector-borne diseases can
be better managed by understanding their relationship with local environmental forces.

| evaluated how changes in vector-borne diseases and poor recreational water quality were
related to specific environmental factors through the application of satellite-derived
observations, field observations, and public health records. Variability in dengue fever incidence
rates in coastal towns of the Yucatan Peninsula (Mexico) was evaluated with respect to
environmental factors in Chapter Two. Correlations between fecal indicator bacteria
concentrations (i.e., culturable enterococci) at Escambron Beach (San Juan, Puerto Rico, USA)
and regional environmental factors are discussed in Chapter Three. Predictions of dengue fever
occurrences in the Yucatan Peninsula were tested using a nonlinear approach (i.e., Artificial
Neural Networks) and are presented in Chapter Four. The Artificial Neural Network (ANN) model
was also used to predict culturable enterococci concentration exceeding safe recreational water
quality standards in Escambron Beach and results are presented in Chapter Five. Environmental

factors assessed to understand their influence on dengue fever occurrences and culturable



enterococci concentrations included precipitation, mean sea level (MSL), air temperatures (e.g.,
maximum, minimum, and average), humidity, and satellite-derived sea surface temperature
(SST), dew point, direct normal irradiance (DNI), and turbidity. These factors were combined with
demographic data (e.g., population size) and compared with dengue fever incidence rates and
culturable enterococci concentration using linear and nonlinear statistical approaches.

Dengue incidence rates in Yucatan (Mexico) generally increased in July/August and decreased
during November/December. A linear regression model showed that previous dengue incidence
rates explained 89% of dengue fever variability (p < 0.05). Dengue incidence two weeks prior
(previous incidence) influences future outbreaks by allowing the virus to continue propagating.
Yet dengue incidence was best explained by precipitation, minimum air temperature, humidity,
and SST (p < 0.05). Dengue incidence variability was best explained by SST and minimum air
temperature in our study region (r = 0.50 and 0.48, respectively). Increases in SST preceded
increased dengue incidence rate by eight weeks. Dengue incidence time series were positively
correlated to SST and minimum air temperature anomalies. This is related to the virus and
mosquito behavior. Including oceanographic variables among environmental factors in the model
improved modelling skill of dengue fever in Mexico.

Chapter Three shows that precipitation, MSL, DNI, SST, and turbidity explained some of the
enterococci variation in Escambron Beach surface waters (AIC=26.76; r=0.20). Variation in these
parameters preceded increased culturable enterococci concentrations, with lags spanning from
24 h up to 11 days. The highest influence on culturable enterococci was precipitation between
480 mm—-900 mm. Rainy events often result in overflows of sewage systems and other non-point

sources near Escambron Beach in Puerto Rico. A significant decrease in culturable enterococci



concentrations was observed during increased irradiance (r = -0.24). This may be due to bacterial
inactivation. Increased culturable enterococci concentrations were significantly associated with
higher turbidity daily anomalies (r = 0.25), in part because bacteria were protected from light
inactivation. Increased culturable enterococci concentrations were related to warmer SST
anomalies (r = 0.12); this is likely due to increased bacterial activity and reproduction. Higher
culturable enterococci concentrations were also significantly correlated to medium to high values
of dew point daily anomalies (r = 0.19). A significant decrease in culturable enterococci during
higher daily MSL anomalies (r = -0.19) is possibly due to dilution of bacteria in beach waters,
whereas during lower MSL anomalies the back-washing promotes increased bacteria
concentrations through mixing from sediments. These environmental variables improve our
understanding of the ecology of these bacteria over time. The predictive capability increases by
including more than one environmental variable.

Chapter Four explains a predictive model of dengue fever occurrences in San Juan, Puerto
Rico (1994-2012), and Yucatan (2007-2012). The model was modified to predict dengue fever
outbreak occurrences for two population segments: population at risk of infection (i.e., < 24 years
old) and vulnerable population (i.e., < 5 years old and > 65 years old). There were a total of four
predictive models, two sets for each location using the specified population segments. Model
predictions showed previous dengue cases, minimum air temperature, date, and population size
as the factors with the most influence to predict dengue fever outbreak occurrences in Mexico.
Previous dengue cases, maximum air temperature, date, and population size were the most

influential factors for San Juan, Puerto Rico. The models showed an accuracy around 50% and a

Vi



predictive capability of 70%. These environmental and demographic variables are important
primary predictors for dengue fever outbreaks in Puerto Rico and Mexico.

Chapter Five shows the application of the ANNs model to predict culturable enterococci
exceedance based on the U.S. Environmental Protection Agency (U.S. EPA) Recreational Water
Quality Criteria (RWQC) at Escambron Beach, San Juan, Puerto Rico. The model identified DNI,
turbidity, 48 h cumulative precipitation, MSL, and SST as the most influential factors to predict
enterococci concentration exceedance, based on the U.S. EPA RWQC at Escambron Beach from
2005-2014. The model showed an accuracy of 76%, with a predictive capability greater than 60%,
which is higher than linear models. Results showed the applicability of remote sensing data and
ANNSs to predict recreational water quality and help improve early warning system and public
health.

This work helps to better understand complex relationships between climatic variations and
public health issues in tropical coastal areas and provides information that can be used by public

health practitioners.
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CHAPTER ONE

INTRODUCTION

Overview and objectives

The overall objective of this dissertation was to assess the influence of environmental factors
on the variability of dengue fever incidence rates in Mexico and Puerto Rico, and culturable
enterococci concentration in Escambron Beach, San Juan, Puerto Rico. The approach included
the application of remotely sensed environmental observations, local meteorological
information, and public health data in both locations. A nonlinear model, based on Artificial
Neural Networks (ANN), was applied to predict dengue fever outbreak occurrences in Mexico
and Puerto Rico, as well as culturable enterococci concentration exceedance at Escambron
Beach. The work is presented in six chapters.

Chapter One is a general introduction to the dissertation. It describes how environmental
factors can influence vector-borne diseases and fecal indicator bacteria in beach environments.
The modelling of dengue fever incidence rates by including satellite-derived sea surface
temperature (SST) and other environmental factors (i.e., precipitation, humidity, air
temperatures) is discussed in Chapter Two. In Chapter Three, satellite-derived data (i.e.,
turbidity, SST, irradiance) and data on other environmental factors (i.e., mean sea level, dew
point, precipitation) were used to better understand variability in fecal indicator bacteria (FIB;

i.e., culturable enterococci concentration). In Chapter Four, a non-linear model based on ANN



was applied to predict dengue fever occurrences in Mexico and Puerto Rico. The analysis
examined specific population segments. Chapter Five used the ANN approach to model
culturable enterococci concentration exceedance in Escambron Beach, San Juan, Puerto Rico.
The model is based on the U.S. EPA Recreational Water Quality Criteria (RWQC). Chapter Six is a
summary of dissertation findings and implications of this work. The research contributes to
understanding how environmental factors affect temporal patterns of variability of dengue fever
and culturable enterococci concentrations in Mexico and Puerto Rico.

The specific objectives of this dissertation were:

Objective 1: Evaluate and model dengue fever incidence rates in Yucatan, Mexico using

regional-scale satellite-derived sea surface temperature.

- Objective 2: Evaluate the influence of satellite-derived environmental factors and those
measured in situ on culturable enterococci concentration at Escambron Beach, San Juan,
Puerto Rico.

- Objective 3: Apply a nonlinear model based on artificial neural networks to predict
dengue fever outbreak occurrences in Mexico and Puerto Rico based on specific
population segments.

- Objective 4: Identify the most influential environmental factors to predict exceedances

of culturable enterococci concentrations at Escambron Beach, San Juan, Puerto Rico.

Environmental forces influence on dengue fever occurrences and recreational water quality

Large-scale environmental forces influence infectious diseases. This is clearly the case in the
Caribbean and Gulf of Mexico (Chretien et al. 2015, Dobson 2009). Variability of specific

environmental factors affects dengue fever occurrence and water quality of recreational beaches



(Chowell and Sanchez 2006, Pednekar et al. 2005). Thus, it should be possible to develop better
management, disease surveillance, and mitigation strategies by understanding the variability of
environmental forces and their influence on public-health related issues. In this dissertation, |
examined these problems in more detail in the northwest coast of the State of Yucatan, Mexico,

and near San Juan, Puerto Rico, USA.

Environmental and demographic factors influence on vector-borne diseases

Human populations in the Caribbean Sea and the Gulf of Mexico have seen an increase in the
incidence of vector-borne diseases. Dengue fever cases have increased especially since the 1970s
(Dick et al. 2012, Laureano-Rosario et al. 2017, Mendez-Lazaro et al. 2014). This increase is in part
due to the adaptation of the mosquito, Aedes aegypti, to live in urban areas (Gratz 1991, Gubler
2002). Previous studies have shown the influence of specific environmental and demographic
factors on the occurrence of dengue fever cases in places like Yucatan State, Mexico and San
Juan, Puerto Rico (Colon-Gonzalez et al. 2011, Colon-Gonzalez et al. 2013, Mendez-Lazaro et al.
2014). Furthermore, local environmental factors and population behavior play a key role in the
epidemiology and phenology of dengue fever (Eastin et al. 2014). Consequently, the
understanding of the local variability of environmental factors is important to understand their
influence on dengue fever occurrences.

Dengue fever is mostly transmitted by Aedes aegypti, a mosquito found around tropical and
subtropical areas (Gubler 2002). These mosquitoes use water containers (natural and artificial)
to develop, being precipitation and temperature the main promoters of their development
(Brady et al. 2013, Campbell-Lendrum et al. 2015, Descloux et al. 2012, Johansson et al. 2009).

Warmer temperatures decrease mosquito development time, increasing mosquito egg



production, hatching, and density (Dickerson 2007). Furthermore, increased temperatures lead
to higher metabolic activity, which promotes more mosquito biting (by female mosquitoes) due
to energetic demands (Paaijmans et al. 2013). Both Mexico and Puerto Rico have reported Aedes
albopictus as another vector for dengue fever (Dantes et al. 2014, Dick et al. 2012, Mendez-Lazaro
et al. 2014, Stramer et al. 2012). Dengue has four serotypes (DENV-1, DENV-2, DENV-3, and
DENV-4; Halstead 1988), which have been reported in both Mexico and Puerto Rico. More
recently, studies have shown the emergence of sylvatic dengue 5 (DENV-5; Joob and Wiwanitkit
2016, Mustafa et al. 2015). Peaks in dengue cases usually take place after a shift from one
serotype to another, since during this time the population would only be partially immune to the
other serotypes (Gubler and Clark 1995, Rothman 2004). Relevant epidemiological studies in
Yucatan and Puerto Rico have focused on understanding where Aedes aegypti’s larvae are found
(e.g., schools, households) and how the disease is transmitted (Baak-Baak et al. 2014a, Baak-Baak
et al. 2014b, Garcia-Rejon et al. 2008, Garcia-Rejon et al. 2011). In both tropical locations, dengue
fever coincides with periods of higher precipitation, higher SST, higher mean sea level, and higher
minimum air temperature along the coast.

Climatic variations are expected to influence the ecology and geographic distribution of
vector-borne diseases. Studies have shown how vectors that transmit malaria (i.e., Anopheles
spp.) have been found in higher altitudes in Africa due to warmer temperatures (Afrane et al.
2007, Afrane et al. 2012, Harvell et al. 2002). Similarly, studies have documented both increases
and re-occurrences of vector-borne diseases in Europe due to recent warmer conditions
(Medlock and Leach 2015). Nevertheless, these are also affected by human activities such as

population movement, farming, dams, and changes in irrigations systems. Therefore, some of



these climatic effects might be masked by human activities, including human population
movement across the world, leading to further spreading and increasing incidence rates
(Campbell-Lendrum et al. 2015).

Modelling dengue fever in endemic areas is important to better mitigate and manage these
occurrences. The present work was driven by the hypothesis that variability and trends in
environmental factors (e.g., precipitation, temperatures, and humidity) are primary drivers of
dengue fever incidence, and that including satellite-derived SST improves dengue fever incidence
rate predictions. The objective was to help improve epidemiological surveillance through the
combination of oceanographic, meteorological, and long-term epidemiological data.

The influence of environmental factors on fecal indicator bacteria and recreational
water quality

Water quality is a major concern to coastal communities due to the potential for exposure to
pathogens in beaches downstream of watersheds with sources of fecal contamination (Garcia-
Montiel et al. 2014, Pruss 1998, Soderberg 2012). Wastewater discharges are point sources.
Other sources include septic tanks and open sewers that discharge directly to river streams.
Likewise, resuspension of bacteria by winds and waves, and stormwater discharges are potential
non-point sources of fecal contamination in coastal areas (Cordero et al. 2012, Quifiones 2012,
Rochelle-Newall et al. 2015).

Fecal indicator bacteria (FIB) are used by the United States Environmental Protection Agency
(U.S. EPA) to identify poor recreational water quality. Out of these FIB, culturable enterococci are
commonly used in fresh and marine waters (U.S. EPA 2012). The U.S. EPA established the 2012

Recreational Water Quality Criteria (RWQC), where these culturable enterococci cannot exceed



the geometric mean of 35 colony forming units (CFU) per 100 mL. This represents 36 ilinesses per
1,000 primary contact recreators (U.S. EPA 2012). This value was modified in 2014 to the Beach
Action Value (BAV) of 70 CFU/100 mL based on specific criteria for conducting research (U.S. EPA
2014). These guidelines were adopted by the Environmental Quality Board of Puerto Rico
(PREQB). In Puerto Rico, the PREQB assesses bathing water quality at beaches throughout the
island every two weeks, and if concentrations exceed those values set by the U.S. EPA (i.e., BAV
of 70 CFU/100 mL; PREQB 2016), they issue beach advisories. These data are openly available but
are only used for issuing public warnings.

FIB variability has been associated with environmental forces in both subtropical and tropical
regions (Aranda et al. 2016, Lamparelli et al. 2015, Viau et al. 2011, Wright et al. 2011). These
studies have shown how specific environmental factors (e.g., precipitation, turbidity,
temperatures) influence higher or lower FIB concentrations in marine and fresh waters
(Byappanahalli et al. 2010, He and He 2008, Nevers and Whitman 2005). Therefore, a series of
statistical models (e.g., linear and multiple regression models) were used to better understand
variability of culturable enterococci concentrations. This was guided by the hypothesis that
changes in culturable enterococci concentration in surface waters at Escambron Beach (Puerto
Rico) were related to variations of environmental factors (e.g., SST, turbidity, precipitation). The

main objective was to improve early warnings for FIB and health risks.

Predicting vector-borne diseases and recreational water quality with Artificial Neural Networks

Predictive models can help improve management and mitigation of health-related matters

(de Brauwere et al. 2014, Gonzalez and Noble 2014, Gubler 2010, Tabachnick 2010). In this



dissertation, a nonlinear model was used to evaluate prediction of dengue fever outbreaks in
endemic areas, as well as exceedances of FIB in tropical areas.

Modelling can help predict and understand the epidemiology of dengue fever in endemic
areas (Medeiros et al. 2011, Racloz et al. 2012). Likewise, recreational water quality modelling
helps protect humans from potential exposure to specific FIB (Colford et al. 2007, Pruss 1998).
For example, some studies have applied Monte Carlo and support vector machine to predict
dengue fever cases (Husin et al. 2008, Wu et al. 2008). Similarly, nonlinear modelling using ANNSs,
decisions trees, and Monte Carlo approaches helped model water quality (Jiang et al. 2013, Lin
et al. 2008) and have supported beach management (Mavani et al. 2014, Zhang et al. 1998, Thoe
et al. 2014).

Predicting health-related matters is a management goal. These ANN models do not assume
functional relationships between predictor factors (e.g., environmental factors) and target
variable (e.g., dengue fever, culturable enterococci concentration), thus they can identify
nonlinear, complex relationships (Zhang et al. 1998). ANN models were applied to predict dengue
fever outbreak occurrences in Mexico and Puerto Rico for specific population segments (i.e.,
population younger than 24 years and those younger than 5 years and older than 65 years). These
ANNs models were also applied to predict culturable enterococci concentration exceedance in
surface waters at Escambron Beach in Puerto Rico. The objective was to help management and

mitigation of these two health-related matters.



Study areas

Northwest coast, Yucatan State, Mexico

The study was focused on the mainland region in the northwest coastal area of the State of
Yucatan, Mexico, located adjacent to the Gulf of Mexico (19.55°N—-21.63°N, 87.53°W-90.40°W).
The study area has nine municipalities: Chicxulub Pueblo, Dzemul, Hunucma, Ixil, Progreso,
Telchac Pueblo, Telchac Puerto, Ucu, and Merida, which is the capital and largest municipality
within this region (Figure 1). The highest precipitation occurs between July and October (with an
average of 400-700 mm of precipitation over the season). The dry season occurs between March
and June (0-50 mm for the season). A third season, the “Nortes” season, is characterized by
strong (~80 km h!) winds coming from the continental mass of the U.S. and associated with cold
fronts during November—February. Air temperatures generally range from 36—40 °C during the
dry season, 30—35 °C during the rainy season, and 20-23 °C during “Nortes” (Herrera-Silveira

1994).
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Figure 1.1 Northwest coast of the Yucatan Peninsula, Mexico. Map depicts the location of
municipalities used in the study: Chicxulub Pueblo, Dzemul, Hunucma, Ixil, Progreso, Telchac
Pueblo, Telchac Puerto, Ucu, and Merida. Modified from Modelling dengue fever risk in the State
of Yucatan, Mexico using regional-scale satellite-derived sea surface temperature by Laureano-
Rosario et al. 2017, published by Acta Tropica 172 pp. 50-57. ©2017 Laureano-Rosario CC-BY-NC-
ND. Used with permission (Appendix E).

Escambron Beach, San Juan, Puerto Rico

Escambron beach is located on the north coast of Puerto Rico (18.47°N, 66.08°W, Figure 2).
It has a year-long swimming season and the average annual air temperatures range between 24—
29 °C (Murphy et al. 2011). Two sites, separated by ~100 m, were sampled by the PREQB (Figure
2). These sites may have been affected by: (1) stormwater drainage (18.46°N, 66.09°W) located

immediately adjacent to one of the sampling sites, which includes urban runoff, precipitation,



and other graywaters (e.g., showers, washing machines; Diaz 2007); (2) wastewater treatment
plant (WWTP) ocean outfall (18.47°N, 66.14°W); (3) beach public bathrooms; and (4) Rio Grande
de Loiza, a river that receives agricultural runoff, WWTP effluent (secondary treatment only), and

septic system effluent and seepage (PREQB 2011, PREQB 2007, Ortiz-Zayas et al. 2006).

Legend

@ Sampling site

® Stormwater discharge
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18.52°N

Escambron
Beach

18.48°N
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18.35°N

Atlantic Ocean

18.28°N

140 280 s Caribbean Sea
——— Kilometers

66.17°W 66.12°W 66.07°W 66.00°'W 65.93°W 65.86°W
Figure 1.2 San Juan, Puerto Rico. The inset map depicts Escambron Beach study area, both
sampling locations (green triangles), stormwater discharge drain (black circle), and public
bathrooms (bathroom symbol). Modified from Environmental Factors Correlated with Culturable
Enterococci Concentrations in Tropical Recreational Waters: A Case Study in Escambron Beach,
San Juan, Puerto Rico by Laureano-Rosario et al. 2017, published by International Journal of
Environmental Research and Public Health 14(12), 1602. ©2017 Laureano-Rosario CC-BY-4.0.
Used with permission (Appendix E).
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CHAPTER TWO
Modelling dengue fever risks in the State of Yucatan, Mexico using regional-scale satellite-

derived sea surface temperature

Note to reader

This chapter was published in the peer-reviewed journal Acta Tropica and is included in
Appendix A. The full citation is: Laureano-Rosario, A.E., Garcia-Rejon, J.E., Gomez-Carro, S.,
Farfan-Ale, J.A., Muller-Karger, F.E. (2017). Modelling dengue fever risk in the State of Yucatan,
Mexico using regional-scale satellite-derived sea surface temperature. Acta Tropica, 172:50-57.

Authorization for inclusion in this dissertation is found in Appendix E.

Research overview

Data on dengue fever incidence were obtained from Yucatan’s National Health Information
System. This included data from eight municipalities: Chicxulub Pueblo, Dzemul, Hunucma, Ixil,
Progreso, Telchac Pueblo, Telchac Puerto, Ucu, and Merida. These cases were converted to
incidence rates per 100,000 individuals using population size from 2007-2012. Nearshore
satellite-derived SST was collected by the Advanced Very High Resolution Radiometer (AVHRR; 1
km spatial resolution) from 2006—-2012. Dengue fever data were combined with precipitation,
humidity, and minimum and maximum air temperature into a multiple regression model. Results

showed that dengue incidence rates increased around the month of July and started to decrease
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in November, following the precipitation patterns. Linear regression model showed that previous
dengue incidence rates explained 89% of dengue fever variation. Our model identified
precipitation, minimum air temperature, humidity, and SST as the best variables to explain
dengue incidence variability. Furthermore, results also showed increases in SST preceding
increases in dengue incidence rates by eight weeks (r = 0.50; p < 0.05). Dengue incidence rates
were positively correlated with SST and minimum air temperature anomalies. Combining
environmental and oceanographic variables improved modelling of dengue fever in Mexico; this
was shown by a smaller AlC value (AIC: -1410). This suggested that as the temperature anomalies,
humidity, and precipitation change, dengue cases will also change as these variables were

positively correlated.
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CHAPTER THREE

Environmental factors correlated with culturable enterococci concentrations in tropical

recreational waters: A case study in Escambron Beach, San Juan, Puerto Rico

Note to reader

This chapter was published in the peer-reviewed journal International Journal of
Environmental Research and Public Health and is included in Appendix B. The full citation is:
Laureano-Rosario, A.E., Symonds E.M., Rueda, D., Otis, D., Muller-Karger, F.E. (2017).
Environmental factors correlated with culturable enterococci concentrations in tropical
recreational waters: A case study in Escambron Beach, San Juan, Puerto Rico. International
Journal of Environmental Research and Public Health, 14(12):1602. Authorization for inclusion in

this dissertation is found in Appendix E.

Research overview

Culturable enterococci concentrations data were obtained from the U.S. Environmental
Agency Storage and Retrieval data warehouse for Escambron Beach (2005-2012), and extended
to 2015 using data obtained from the Puerto Rico Environmental Quality Board. Environmental
data were measured in situ (i.e., daily mean sea level (MSL), precipitation) or derived from
satellites (i.e., sea surface temperature, remote sensing reflectance (R.s 645), direct normal

irradiance (DNI), winds). These data were combined in a multiple regression model to better
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understand variability seen in culturable enterococci concentrations. Significant lags were also
identified through Pearson’s correlations, and environmental variables were divided into specific
ranges (i.e., bins) to identify exceedances in culturable enterococci concentration among bins,
based on U.S. EPA’s safe bathing water quality criteria. Data showed that precipitation, mean sea
level (MSL), DNI, SST, and turbidity explained some of the observed variation (r = 20) and these
parameters preceded changes (i.e.,, increased or decreased) in culturable enterococci
concentrations with lags spanning from 24 h up to 11 days. Increased culturable enterococci
concentrations were observed during positive anomalies of turbidity, SST, and 481-960 mm of
4-day cumulative precipitation. Culturable enterococci concentrations decreased with elevated
MSL anomalies and irradiance. Unsafe enterococci concentrations per U.S. EPA water quality
guidelines occurred when precipitation ranged from 481-960 mm, irradiance < 667 W m™,
turbidity daily anomaly > 0.005 sr?, SST daily anomaly > 0.8 °C, and MSL daily anomaly < -18.8
cm. Our model accounted for the combined effects of these environmental variables, which can
help improve our understanding of the ecology of culturable enterococci and protect public

health.
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CHAPTER FOUR
Application of Artificial Neural Networks for dengue fever outbreak predictions in the

northwest coast of Yucatan, Mexico and San Juan, Puerto Rico

Note to reader

This chapter was published in the peer-reviewed journal Tropical Medicine and Infectious
Diseases and is included in Appendix C. The full citation is: Laureano-Rosario, A.E., Duncan, A.P.,
Mendez-Lazaro, P.A., Garcia-Rejon, J.E., Gomez-Carro, S., Farfan Ale, J., Savic, D.A., Muller-Karger,
F.E. (2018). Application of Artificial Neural Networks for dengue fever predictions in the
northwest coast of Yucatan, Mexico and San Juan, Puerto Rico. Tropical Medicine and Infectious

Diseases, 3(1):5. Authorization for inclusion in this dissertation is found in Appendix E.

Research overview

Artificial Neural Networks (ANNs) were applied to predict dengue fever outbreak occurrences
in Mexico and Puerto Rico. Models were trained with six years of dengue fever data for Yucatan,
Mexico and 19 years for San Juan, Puerto Rico. Dengue fever data were obtained from the
Yucatan’s Health Department and Puerto Rico’s Health Department. Cases were converted to
incidence rates per 100,000 inhabitants, and thresholds based on the 75™ percentile were
calculated for the population considered at risks due to exposure (i.e., number of people younger

than 24 years old) and the most vulnerable population (i.e., number of people younger than 5
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years and older than 65 years). Predictor variables included were precipitation, air temperature
(i.e., minimum, maximum, average), sea surface temperature (SST), humidity, previous dengue
cases, and population size. A total of four models were run, where the predictive power was
above 70% for both study areas. These models were divided as follow: 1) Mexico ages less than
24 years old, 2) Mexico ages less than 5 years old and greater than 65 years old, 3) Puerto Rico
ages less than 24 years old, and 4) Puerto Rico ages less than 5 years old and greater than 65
years old. The most influential variables on predicting dengue fever occurrences identified by the
models in Mexico were population size, previous dengue cases, minimum air temperature, and
date. In San Juan, Puerto Rico, the most important variables identified were population size,
previous dengue cases, maximum air temperature, and date. For both study areas, demographic
factors were the top two most influential variables. By using a nonlinear approach, the models
were able to better predict dengue fever occurrences as this approach considers complex and

holistic interactions between dengue fever cases, demographics, and environmental variables.
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CHAPTER FIVE

Artificial Neural Networks better predict exceedances of recreational water quality criteria at

Escambron Beach, San Juan, Puerto Rico

Note to reader

This chapter is currently in review in the peer-reviewed Journal of Water and Health and is
included in Appendix D. The full citation is: Laureano-Rosario, A.E., Duncan, A.P., Symonds E.M.,,
Savic, D.A., Muller-Karger, F.E. (2018). Artificial Neural Networks better predict exceedances of
recreational water quality criteria at Escambron Beach, San Juan, Puerto Rico. Journal of Water

and Health (in review). Authorization for inclusion in this dissertation is found in Appendix E.

Research Overview

Culturable enterococci concentration exceedances were predicted in Escambron Beach
surface waters using a nonlinear approach based on Artificial Neural Networks. Ten years of
culturable enterococci data obtained from the U.S. Environmental Protection Agency (U. S. EPA)
and the Puerto Rico Environmental Quality Board were used to train, validate, and test the model.
In order to predict whether it was safe or unsafe to swim, a threshold of 70 colony forming units
(CFU) per 100 mL was used based on the U.S. EPA 2014 Beach Action Value for safe recreational
water quality. Predictor variables included in the model were satellite-derived sea surface

temperature (SST), direct normal irradiance (DNI), turbidity, and dew point together with in situ
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cumulative precipitation from the previous 24 h up to 120 h and mean sea level (MSL). Based on
the Receiving Operating Characteristic Curve and the F-Measure metrics, the model showed an
accuracy of 76% and a power greater than 60%, which was higher than linear models. The factors
identified as the most relevant for predicting culturable enterococci exceedances were DNI,
turbidity, cumulative 48 h precipitation, MSL, and SST. The ANN model showed the importance
of identifying how environmental conditions can influence culturable enterococci concentration,
as well as the complexity of these relationships between FIB and environmental factors. By using
a nonlinear approach, | was able to accurately predict culturable enterococci exceedances, which

can help management and mitigation strategies for recreational water quality.
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CHAPTER SIX

CONCLUSION

Summary

Environmental forces have been associated with dengue fever occurrences in endemic areas,
as well as fecal indicator bacteria variability in recreational waters (Chowell and Sanchez 2006,
Pednekar et al. 2005). These are important to model and understand to protect public health.
Nevertheless, these interactions are complex and by just modelling them with linear models we
might be missing important data (Chebud et al. 2012, He and He 2008). This research provides a
better understanding of how environmental factors are related to dengue fever and culturable
enterococci in a tropical setting, applying linear and nonlinear models with satellite-derived data
and long-term epidemiological data.

Chapter Two showed that dengue incidence rates generally increased in July (wet season)
and decreased in November (dry season) in Yucatan, Mexico. Changes in previous dengue fever
cases explained the most variability and were positively correlated with current cases.
Precipitation, minimum air temperature, humidity, and SST were selected as the best variables
to explain dengue fever incidence. These results showed that increases in SST precede increased
dengue incidence rates by eight weeks and that dengue incidence rates were positively
correlated to SST changes. It is concluded, then, that dengue fever incidence rates can be

modelled using environmental variables alone, and that by including satellite-derived regional-
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scale SST the modelling was improved. Nevertheless, it is important to note that even though
seroprevalence studies are expensive, the inclusion of human immune background can allows to
have more robust models.

Chapter Three showed that precipitation, mean sea level (MSL), direct normal irradiance
(DNI), SST, and turbidity explained some of the observed variation. These parameters preceded
changes in culturable enterococci concentrations with lags spanning from 24 h up to 11 days. The
highest influence on culturable enterococci concentration was between 480 mm — 900 mm of 4-
day cumulative precipitation. Higher culturable enterococci were observed during higher
turbidity anomalies, warmer SST anomalies, and lower MSL anomalies. A significant decrease in
culturable enterococci concentrations was observed during increased solar irradiance. Better
monitoring of recreational water quality can be achieved by understanding the influence of
environmental factors on culturable enterococci concentrations and how marine waters
influence culturable enterococci decay rates (Anderson et al. 2005). It is concluded, then, that
culturable enterococci concentration variability can be explained by looking at the combined
effects of precipitation, SST, MSL, and turbidity.

In Chapter Four, a predictive model was applied to predict dengue fever outbreak
occurrences in San Juan, PR and Yucatan, MX. These models were modified to predict dengue
fever outbreak occurrences for the population at highest risk of infection (i.e., < 24 years old) and
highest vulnerability of infection (i.e., <5 years old and > 65 years old; Mendez-Lazaro et al. 2014).
These groups were based on previous studies (Laureano-Rosario et al. 2017, Mendez-Lazaro et
al. 2014) and data provided by the Department of Health of Mexico and Puerto Rico. Based on

these predictions, the most influential variables to predict dengue fever outbreak occurrences in
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both Puerto Rico and Mexico were previous dengue incidence rates, minimum/maximum air
temperatures, date, and population size. These models showed an accuracy of ~50%, with an
overall power greater than 70%. Nonetheless, these results showed that the most influential
variables to predict dengue fever occurrences are those related to demographics, followed by
environmental factors such as temperatures (i.e., sea temperature, air temperature) for both
Puerto Rico and Mexico. Therefore, it is concluded that, while demographic factors are important
for prediction and mitigation, environmental factors should always be taken into account, and
that these relationships are location-specific.

The predictive model was also applied in Chapter Five to predict culturable enterococci
concentration exceedance at Escambron Beach surface waters. The model showed the following
as the most influential factors: 48 h cumulative precipitation, turbidity anomalies, DNI, MSL
anomalies, and SST anomalies. These predictions had an accuracy greater than 70%, higher than
the predictive capability of only using a simple linear regression model. Thus, modelling
culturable enterococci concentration exceedance at Escambron Beach was achieved by the
predictive nonlinear model, where it identified the combined effects of these environmental
factors influencing culturable enterococci concentrations.

The results of this dissertation can be integrated into future models to better understand the
burden of water-related pathogens correlated with fecal indicators and vector-borne diseases in
specific locations. The World Health Organization (WHO) estimates about 720,000 deaths per
year related to 12 vector-borne diseases, where 80% of the world’s population is at risk and those
younger than 5 years old are considered more susceptible (WHO 2018). Understanding the

relationship and seasonality of these vectors, as shown in Chapter Two and Four with dengue
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fever, can help achieve better predictions and further develop disease surveillance and
prevention strategies. In terms of water, sanitation, and hygiene (WASH), WHO reports about
840,000 deaths per year with 361,000 of those being children younger than 5 years old, and
where 58% of these deaths could be averted through better sanitation practices (WHO 2018).
While these statistics include both freshwater (i.e., drinking water) and marine waters, the results
of this dissertation can help better understand patterns of specific indicators and how those are
related to human activities and climate. Consequently, this dissertation supports and expands on
efforts to understand diseases occurrence on specific population segments and seasonal
variability of vector-borne diseases and water indicators related to poor recreational water
quality.

This study demonstrated that the combined effects of environmental factors can improve our
understanding of the ecology and epidemiology of diseases and microbial indicators over time,
which would have been missed by just looking at just one environmental variable. Combining
environmental and oceanographic variables improved modelling of dengue fever in Mexico and
recreational water quality in Puerto Rico. Thus, this research contributes to the understanding of
the influence of environmental factors on public health issues through the comparison of linear
and nonlinear modelling as well as predictive models targeting specific population segments and

geographic locations.

Future research

This dissertation shows the importance of understanding the influence of large-scale
environmental, human, and pathogen factors on specific public health issues in coastal and non-
coastal areas. Results show that these interactions are complex, and that there is a combined
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effect of environmental factors, thus looking at them separately might not provide a complete
understanding. Therefore, the combination of these factors should be taken into consideration
in future work, as well as those other factors that were not included due to data limitations
(discussed below). Nevertheless, this study contributes to the understanding of environmental
and demographic factors that should be included for early warning systems and to improve
mitigation and management strategies.

Predictive models used for Mexico and Puerto Rico looking at dengue fever occurrences and
FIB exceedances showed high predictive capabilities. Models can be further improved by
including data that was not considered in this dissertation. For example, for dengue fever
predictions, seroprevalence and human population movement should be considered to better
understand occurrences and peaks in dengue fever. Likewise, different populations segments
(i.e., age groups) were considered for this study, but these age groups could be either expanded
or divided differently for better predictions, according to information available on the limitations
to their immune system. In terms of the FIB, models can be improved by including sanitation
infrastructure, river and stormwater discharge, and wastewater treatment plant outflows. These
FIB can also be found in sediments/sand and vegetation, which should also be considered in the
future. Lastly, time series length can influence outcomes due to lack of data, overfitting, and
underfitting. Those Puerto Rico models used 19 years (dengue) and 11 years (fecal indicator
bacteria) of data, while Mexico models used years of data (dengue). Nevertheless, these models
yielded high predictive capabilities, and future studies should consider expanding time series to

better predict specific health-related occurrences.
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The application of remote sensing data should be considered in future efforts to better
understand phenology of vector-borne diseases and recreational water quality. Results of this
work provide managers and public health practitioners the data needed to better model and
understand public-health related issues in coastal areas. Also, this dissertation provides specific
limitations such as epidemiological, demographic, and environmental data not being available to

further improve management, targeted sampling, and early warning systems.
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APPENDIX A

Modelling dengue fever risks in the State of Yucatan, Mexico using regional-scale satellite-
derived sea surface temperature
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of Yucatan, Mexico using regional-scale satellite-derived sea surface temperature. Acta
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ARTICLE INFO ABSTRACT

Keywords: Accurately predicting vector-borne diseases, such as dengue fever, is essential for communities worldwide.
Salellile imagery Changes in environmental parameters such as precipitation, air temperature, and humidity are known to
Acdes aegypti influence dengue fever dynamics. Furthermore, previous studies have shown how oceanographic variables, such

Public health

s as El Nifio Southern Oscillation (ENSO)-related sea surface temperature from the Pacific Ocean, influences
Sea surface temperature

dengue fever in the Americas. However, literature is lacking on the use of regional-scale satellite-derived sea
surface temperature (SST) to assess its relationship with dengue fever in coastal areas. Data on confirmed dengue
cases, demographics, precipitation, and air temperature were collected. Incidence of weekly dengue cases was
examined. Stepwise multiple regression analyses (AIC model selection) were used to assess which environmental
variables best explained increased dengue incidence rates. ST, minimum air temperature, precipitation, and
humidity substantially explained 42% of the observed variation (1? = 0.42). Infectious diseases are character-
ized by the influence of past cases on current cases and results show that previous dengue cases alone explained
89% of the variation. Ordinary least-squares analyses showed a positive trend of 0.20 = 0.03 °C in SST from
2006 to 2015. An important element of this study is to help develop strategic recommendations for public health
officials in Mexico by providing a simple early warning capability for dengue incidence.

1. Introduction

Worldwide, dengue fever is a prominent vector-borne disease that
has led to more than 500,000 cases reported per year (Bhatt et al.,
2013; Murray et al., 2013; Shepard et al., 2011). The main vector is
Aedes aegypti, a tropical/subtropical mosquito. Dengue virus cases are
prominent in urban areas where the mosquito has adapted to develop
effectively (Cheong, 1967; Gratz, 1991; Gubler, 2002). Their develop-
ment typically occurs in both artificial and natural water containers.
Increased precipitation, air temperature, and humidity have been
shown to promote their development (Brady et al., 2013; Colon-
Gonzalez et al., 2011; Descloux et al., 2012; Johansson et al., 2009a;
Shuman, 2010). Dengue outbreaks are also influenced by virus ser-
otypes and socio-economic factors including patterns of population
distribution, behavior of different age groups, and previous dengue
cases (Teurlai et al., 2012; Thomas et al., 2003). Previous dengue cases
are defined as those cases that took place weeks before an outbreak.
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These periods vary depending on geographic location and the dynamics
of dengue transmission, and contribute to increasing risk of infection
with the virus. The occurrence of previous low or high dengue cases is
an indication of the currently circulating virus serotype and the
immune status of a population (Focks and Barrera, 2006). Previous
studies have shown that humans travelling from areas with known
outbreaks and that have been infected with dengue virus also promote
the spread of the virus (Hales et al., 2002; Teurlai et al., 2012).

Since the late 1970s Mexico, and the rest of the Caribbean and Latin
America, have reported thousands of dengue fever cases annually (Dick
et al., 2012). Mexico provides weekly epidemiological panoramas. In
particular, the Yucatan State showed a 45% increase in dengue cases
from 2014 to 2015 (629 cases in 2014 and 1129 cases in 2015) (Salud,
2016), where serotypes DENV-1, DENV-2, and DENV-4 had been
reported. Most of the studies done in the Yucatan State are focused
on the development of mosquito larvae and potential breeding sites of
Aedes species (Dantes et al., 2011; Lorono-Pino et al., 2004). Other
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studies have included environmental variables (i.e., air temperature,
precipitation, and humidity) to understand and predict dengue-fever
outbreaks in Mexico (Colon-Gonzalez et al., 2013; Hurtado-Diaz et al.,
2007). Some of these studies were done at larger geographic areas (i.e.,
State level) using monthly resolution of dengue data (Colon-Gonzalez
et al., 2011; Hurtado-Diaz et al., 2007) or up to one year of data at
smaller geographic areas (Garcia-Rejon et al., 2008; Garcia-Rejon et al.,
2011). Studies including oceanographic variables (e.g., water tempera-
ture) were done at larger geographic areas and used data from the
Pacific Ocean and the influence of El Nifio Southern Oscillation (ENSO)
on dengue fever in the Americas (Brunkard et al., 2008; Colon-Gonzalez
etal., 2011; Hurtado-Diaz et al., 2007). It is known that the influence of
these parameters on dengue fever is location-dependent (Eastin et al.,
2014), and that ENSO influences can be obscured by local variability
(Johanssen et al,, 2009b). Moreover, literature is lacking on studies
using long-term epidemiological data together with regional-scale
satellite-derived sea surface temperature (SST), and those environmen-
tal variables mentioned above, to model dengue fever in Yucatan,
Mexico.

QOceanographic variables such as SST are important to include due
to their influence on coastal weather patterns (Goddard and Mason,
2002; Thomson et al., 2005; Xie et al., 2010). It has been shown that
SST in the Gulf of Mexico region has been increasing (I.luch-Cota et al.,
2013; Muller-Karger et al., 2015). Therefore, incorporating SST,
together with meteorological parameters, could help improve predic-
tions of dengue cases in coastal areas, especially in the Caribbean-Gulf
of Mexico region.

The main objective of this study was to assess the use of regional-
scale satellite-derived SST data to model dengue fever incidence rates in
the northwest region of the Yucatan Peninsula, Mexico. It was
hypothesized that variability and trends in precipitation, air tempera-
ture, and humidity were primary drivers of dengue incidence; and that
satellite-derived SST would improve dengue risk predictions. An
important element of this study is to help develop strategic recommen-
dations for public health officials in Mexico by providing a simple early
warning capability for dengue incidence. Epidemiological surveillance
has helped track dengue fever patterns in the past and such informa-
tion, together with inter-disciplinary research and inclusion of oceano-
graphic parameters such as SST, can significantly improve dengue fever
surveillance and predictive power of future outbreaks.

2. Material and methods
2.1. Northwest coast, Yucatan Peninsula, Mexico

The study took place in the northwest coastal area of the State of
Yucatan, Mexico, located adjacent to the Gulf of Mexico
(19.55°N-21.63°N, 87.53"W-90.40°W). The study area has nine muni-
cipalities: Chicxulub Pueblo, Dzemul, Hunucma, Ixil, Progreso, Telchac
Pueblo, Telchac Puerto, Ucu, and Merida, which is the capital and
largest municipality within this region (Fig. 1).

The highest precipitation occurs during the rainy season between
July and October (with an average of 400-700 mm of precipitation over
the season). The dry season occurs between March and June (0-50 mm
for the season). A third season, the “Nortes” season, is characterized by
strong (~80kmh™") winds coming from the continental mass of the
U.S. and associated with cold fronts during November—February. Air
temperatures generally range from 36 to 40 °C during the dry season,
30-35 "C during rainy season, and 20-23 "C during “Nortes” (Gonzalez
et al., 2008; Herrera-Silveira, 1994).

2.2. Satellite-derived oceanographic data and in-situ meteorological data
Day- and night-time SST data were obtained from the U.S. National

Oceanic and Atmospheric Administration’s Advanced Very High
Resolution Radiometer sensor (AVHRR; 1 km? spatial resolution).

51

Acta Tropica 172 (2017) 50-57

These {images were mapped using cylindrical equidistant projection
and are available online at the Institute for Marine Remote Sensing
webpage (http://imars.marine.usf.edu/). Data were extracted from
January 2006 to February 2015 using the average of three 3 x 3 pixel
boxes (centered on 21.37°N, 90.10°W; 21.47°N, 89.72°W; and 21.50°N,
89.24°W) for the northwest coastal area of the Yucatan Peninsula.
Interactive Data Language (IDL; v. 7.2) was used to extract data.
Monthly and weekly time series were created using the average values
of day- and night-time SST images, and climatologies and its anomalies
were calculated from 2006 to 2015, which coincides with the time
period of the dengue fever data.

Meteorological data (i.e., air temperature, humidity, and precipita-
tion) from 2006 to 2012 were obtained from the National Water
Commission (CONAGUA) of the Yucatan State. Both minimum and
maximum air temperatures were used to calculate (arithmetic) mean
air temperature. Due to the lack of dengue fever data for some of the
municipalities for some years, we pooled the nine municipalities in our
study area. Moreover, only Merida, Progreso, Telchac Puerto, and
Chicxulub Puerto had meteorological data available for the study
period. These data sets (i.e., meteorological data) from the aforemen-
tioned municipalities were compared and parameters (e.g., precipita-
tion and air temperatures) followed the same patterns across munici-
palities. There were no significant difference across municipalities of
the relatively small geographical area studied ( ~ 2500 km®). Therefore,
we assumed that data from Merida (the largest city in the region) were
representative for the entire study area. Climatologies, anomalies, and
monthly and weekly means of meteorological data were calculated for
the purpose of this study. Environmental and oceanographic data were
collected from years prior and after dengue data timeframe in order to
caleulate trends and lags between dengue incidence rates and environ-
mental/oceanographic data.

2.3. Dengue fever and demographic data

Daily data of confirmed dengue fever cases were obtained from
Yucatan's National Health Information System (Subdireccién de Salud
Publica, Servicios de Salud de Yucatan; January 2007-December 2010)
and from the Universidad Auténoma de Yucatan (January
2011-December 2012). Due to inconsistencies in the data, dengue
cases before 2007 were not included in this study. Since we were only
interested in dengue cases regardless of the serotype, data for both
dengue fever and dengue hemorrhagic fever were pooled for a total of
312 weekly observations. Dengue cases by age class were calculated to
determine which age groups were more susceptible to dengue fever.
These age-groups were: less than 5years old, 5-9, 10-19, 20-24,
25-29, 30-34, 35-39, 40-49, and greater than 50 years old. To assess
variability and susceptibility to infections during 2007-2012, weekly
dengue incidence rates by municipality and age were calculated by
dividing number of cases by population each year and multiplying it by
100,000 (i.e., incidence per 100,000 inhabitants). These weekly dengue
incidence rates were used in the analyses and not the number of cases.
Geographic and demographic data, such as population size, were
obtained from Yucatan’s National Institute of Statistics and
Geography (2007-2012).

2.4. Non-parametric statistical analyses

Data were analyzed with non-parametric permutation-based statis-
tics, which are a distribution free method. Permutation-based Pearson’s
correlation analyses were used to identify lags between predictor
variables (i.e., precipitation, SST, humidity, minimum, maximum and
mean air temperature, and previous dengue cases), and target variable
(i.e., dengue incidence rates). The goal was to identify significant time-
lagged (positive or negative) correlations between predictor variables
and weekly dengue incidence rates. These time-lags were for all the
cases in the study area and these lags comprise the mean of two
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Fig. 1. The mainland region used for our study area located in the northwest coast of Yucatan State (inset). Numbers are mean dengue incidence rates (cases per 100,000 inhabitants)

from 2007 to 2012.

consecutive weeks (e.g., if the lag was one week, we used the mean of
week one and two for the analyses).

Several separate analyses were conducted to assess the relative
importance of each independent environmental variable: 1) a linear
regression to assess the percentage of the variation of new dengue cases
(as incidence rates) explained only by previous rates of dengue
incidence using the identified time-lag from the correlation analyses;
2) a multiple linear regression to asses which of the environmental
parameters explains some of the variation of new dengue cases (as
incidence rates). We used a stepwise selection of explanatory variables
via forward addition, based on Akaike Information Criteria (AIC). AIC
selects (optimal} environmental variables that significantly explain
variation in dengue incidence rates (Blanchet et al., 2008; Burnham
and Anderson, 2001; Godinez-Dominguez and Freire, 2003); 3) ordin-
ary least-squares analyses were used to identify trends, and their
significance, for the SST data; 4) a single linear regression model to
assess variation explained only by SST in terms of dengue incidence
rates; and finally, 5) two one-way ANOVAs were done to assess
differences in dengue incidence rates among municipalities and years.
We used MATLAB Fathom toolbox for data analyses (Jones, 2015).

3. Results

3.1. Oceanographic and meteorological patterns and dengue fever incidence
rates

Within the Yucatan Peninsula, all of the explanatory variables (i.e.,
precipitation, humidity, SST, and air temperature) showed similar
patterns where they increased towards May—June and decreased in
October—November from 2000 to 2012 (Fig. 2A-D). Dengue incidence
rates followed this pattern from 2007 to 2012 (Fig. 2E). Precipitation,
air temperatures (minimum, maximum, and mean), SST, and humidity
preceded dengue fever incidence rates with lags varying from 1 to 13
weeks (p < 0.05; Table 1). The most significant correlation was found
with previous dengue cases (r = 0.94; p < 0.05). These occurrences
(previous dengue cases) were calculated using the mean of the past two
consecutive weeks of dengue cases and converted into incidence rates.
Those results (calculated means of previous dengue cases) help explain

whether past rates of dengue incidence affect new rates of dengue
incidence over the course of a few weeks.

3.2. Non-parametric ANOVAs and AIC model analyses

Permutation-based one-way ANOVAs were done to look for sig-
nificant differences between municipalities and years (Fig. 3A). Dengue
incidence rates were significantly different among municipalities and
years (p = 0.0002, F = 271; p = 0.0002, F = 158; respectively). Mer-
ida, the largest municipality in our study area (population > 850,000
as of 2012), did not show the highest incidence rates of dengue
(Fig. 3A). The highest dengue incidence rates were reported in 2012
in the municipalities of Telchac Pueblo and Ucu (pepulation of ~3200
each) (Fig. 3A). Individuals between 10 and 24 years old predominantly
showed higher incidence of dengue fever among these municipalities,
with an increase after 50 years old (Fig. 3B).

The AIC analyses revealed that minimum air temperature, precipi-
tation, humidity, and SST were the best explanatory variables for
dengue incidence rates in the northwest coast of Yucatan (p = 0.001;
Table 2). These parameters explained 42% of the total variation. Only
environmental variables were included in this model to assess how
much of the variability could be explained by environmental factors
alone. There was an increase in dengue incidence rates about two weeks
after the initial dengue cases had occurred (Table 1), This lag was
subsequently tested through a single linear regression analysis, where it
explained 89% of the overall dengue incidence (p = 0.001; F = 2512).
By first using the Pearson's correlation analyses and then a single linear
regression and multiple linear regression analyses, we were able to
identify not only the time lag, but also the strength of the relationship
between the variables.

3.3. Sea surface temperature trend analyses and dengue fever incidence

Trend analyses were done using ordinary least-squares. Trend and
uncertainty were calculated for SST along the coast of the Yucatan
Peninsula. A significant and positive trend for SST (0.20 + 0.03°C/
10 years) was found for 2006-2015. In general, the SST preceded
dengue incidence by five weeks, This warming trend was compared
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Table 1
Pearson’s correlation coefficients for identification of week-long lags between dengue
incidence rates and explanatory variables. Values are significant at an alpha level = 0.05.

Parameter Pearson’s correlation Dengue incidence
coefficient (r) lag”

Mean air temperature -0.15 1-week
Maximum air temperature -0.22 l-week

Humidity 0.37 3-weeks
Precipitation 0.24 6-weeks

SST 0.51 5-weeks
Minimum air temperature .49 13-weeks
Previous dengue incidences (.94 2-weeks

? All lags comprise the mean of 2 conseculive weeks.

with dengue fever cases by linear regression, and it showed that 26% of
the variation in dengue was explained by SST (p = 0.001; F = 110).
Minimum air temperature and SST were selected as the two variables
that explained most of the total variation and plotted their monthly
means with dengue incidence. Both of these variables showed an
increased trend (warming) in the study area. Dengue trends showed
an increase with increased air temperature and SST (warmer), and they
decreased with cooler temperatures (Fig. 4).

4. Discussion

This study investigated the applicability of regional-scale satellite-
derived 85T and assessed how it helps to better predict dengue fever in
the northwest coast of the Yucatan Peninsula. Data showed that
regional-scale satellite-derived SST can help explain up to 42% of

dengue fever variability, where 26% is explained by SST itself and
preceded a peak in dengue fever cases by five weeks. This modelling
was achieved by using a stepwise multiple linear regression (AIC model
selection), which selected those optimal explanatory variables that
explained dengue fever variability from 2007 to 2012 in the northwest
coast of the Yucatan Peninsula, This work builds upen these studies
using ENSO-related SST from the Pacific Ocean (e.g., Colon-Gonzales
et al, 2011; Dantes et al., 2014; Garcia-Rejon et al.,, 2008) and
contributes to the gaps in the literature with the use of regional-scale
SST to model dengue fever in Yucatan, Mexico.

Dengue incidence rates showed seasonal trends in the Yucatan
Peninsula. There is generally an increase of the disease in July—August
and a decrease during November-December. Data showed that these
seasonal trends were related to increased precipitation, humidity, and
warmer temperatures, which also relate to mosquitoes’ laying eggs
period (Costa et al., 2010; Dickerson 2007). These correlations are due
to the development of the mosquito, considering time to develop, grow,
and transmit the virus. These conditions favor decreased development
time of mosquitoes and incubation time of the virus (Depradine and
Lovell 2004; Hales et al.,, 2002; Lu et al., 2009; Phung et al., 2015; Wu
et al., 2007). Results also revealed how previous dengue cases may
influence future outbreaks, which can be due to propagation of the
virus through other mosquitoes, by human movement, or by local
environmental factors conducive to mosquito breeding (Teurlai et al.,
2012). Huang et al. (2013) reported how previous confirmed dengue
cases help predict new (current/future) dengue cases. Therefore,
including dengue incidence rates over the previous two weeks of
current cases decreases model prediction error for historical dengue
events.

The time series of dengue incidence rates by municipality and age
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the population size for each municipality during those years.

Table 2
Variables that significantly improved prediction of dengue incidences for our study area
according to an Akaike information criterion (AIC) model.

AIC- based stepwise forward selection with sequential variable addition

Variable 2 r*-adjusted AIC

Minimum air temperatiire 0.35 0.35 —1386
ST 0.40 0.40 —1409
Humidity 0.42 0.42 —1416
Precipitation 0.43 0.42 -1421

groups showed how they have increased from 2007 to 2012. We
propose two possible explanations for this. One possibility is that
dengue fever incidence has been increasing in this region as a function
of air and water temperature. Another is that there is an increase in
reporting of confirmed dengue cases, which has also been the case in
areas such as the Americas from 2000 to 2010 (Guzman et al., 2013).
The data identified 2009 and 2011 as epidemic years (Dick et al., 2012;
Liao et al., 2015; Vazquez-Pichardo et al., 2011). Serotypes circulating
in the years of 2009 and 2011 might have influenced these epidemics
(Garcia-Rejon et al., 2011; Sanchez-Casas et al, 2013; Vazquez-
Pichardo et al., 2011). Only Merida showed 2009 and 2011 as epidemic
years, whereas the other eight municipalities showed a general increase
in dengue incidence rates over the period of 2007-2012 with some
peaks in years 2010 and 2012. These differences can be due to Yucatan
being a developing state, an increased reporting of cases, population
movement, and secondary infections. For instance, there is an increased
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population movement into Yucatan of individuals that have not been
exposed to dengue fever, increasing susceptible population and dengue
fever cases (Dantes et al., 2014; Eisen et al., 2014; Torres-Galicia et al.,
2014). Furthermore, Merida is considered one of the centers for virus
propagation in this region. For example, individuals become infected
while visiting the area (e.g., work, school, tourism) and promote the
spread of the virus through secondary infections (Garcia-Rejon et al.,
2011; Teurlai et al., 2012). Nevertheless, Merida was representative of
dengue fever epidemics in the region, as it contained more than 60% of
the cases for the period of 2007-2012.

In addition, the one-way ANOVAs results found a significant
difference among towns and years in terms of dengue incidence rates;
however, these were aggregated together as they were inconsistencies
with the data and the time series analyses from 2007 to 2012 could not
have been done for most of the municipalities. Ucu, smallest munici-
pality, showed the highest dengue incidence, while Merida, largest
municipality, showed the lowest. These differences could be attributed
to Merida being a developing city and having a better action plan
against dengue fever, compared to other smaller communities. Studies
have shown how other factors such as number of individuals working
outside (higher in rural areas; i.e. smaller town), movement of infected
working population, as well as transmissions taking place in schools,
zoos, churches, abandoned lots, and population size can influence
dengue fever dynamics (Baak-Baak et al., 2014a, 2014b; Eisen et al.,
2014).

The age groups with the predominantly highest incidence rates were
10-24 years old from 2007 to 2012, with an increase after 50 years old.
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monthly dengue incidence rates. Gray boxes are epidemic years 2009 and 2011. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

This could be due to young children (< 10years old) showing
symptoms for a short period of time, being asymptomatic, or cases
not being reported (Cavalcanti et al., 2011). Moreover, older adults
(> 24 years) could have partial immunity for specific virus serotypes
after being previously infected, which could explain a decreased
number of cases. Lastly, increased incidence with age (e.g., > 50 years)
can occur due to secondary infection, loss of immunity with time, or the
increased susceptibility to infections with aging (Cavalcanti et al.,
2011; Garcia-Rivera and Rigau-Perez 2003; Guzman et al., 2002; Rigau-
Perez et al., 1998; Thomas et al., 2008). Nevertheless, all age groups
were affected as has been previously shown for the Americas and these
patterns are location-dependent (Rigau-Perez 1997).

AIC analyses showed that the best model to explain dengue
incidence rates in this region includes precipitation, minimum air
temperature, humidity, and SST. Data showed that, on average, an
increase in SST (warmer) precedes an increase in dengue incidence by
five weeks (i.e., highest correlation); however, previous studies have
shown different lags for SST and dengue incidence. This indicates that
these relationships are location-dependent (Colen-Gonzalez et al.,
2011; Eastin et al., 2014; Hurtado-Diaz et al., 2007), Dengue incidence
rates were preceded by SST peaks by five weeks and precipitation by six
weeks, showing a one-weck difference between the oceanic (§ST) and
atmospheric (precipitation) variables. The observed one-week differ-
ence could be explained through the work of Kumar et al. (2013),
where warming peaks in SST preceded peaks in precipitation by 5-10
days. Identifying these lags can help to better predict dengue incidence
in these regions. Increased dengue incidence rates seemed to also track
the positive trend in SST. Ordinary least-squares analyses showed that
SST has increased 0.20 = 0.03 °C for this time period (2006-2015).
Lluch-Cota et al. (2013) and Muller-Karger et al. (2015) reported
similar increases in SST on previous years. Mosquitoes' life cycle,
extrinsic incubation period, and intrinsic incubation period play a role
in these identified lags (Chan and Johansson, 2012). The life cycle of an
Aedes aegypti mosquito (i.e., development from larvae to adult) is, on
average, about 12-21 days. The time between taking a (viremic) blood
meal and becoming infectious (i.e., extrinsic incubation period) is
around 6-15 days. The intrinsic period, which is between a human
becoming infected and showing symptoms, is around six days. These
account for six weeks and there is also likely a factor that accounts for
the time it takes to report confirmed cases (Chan and Johansson, 2012;
Thomas et al., 2003; Wilder-Smith et al., 2010). The lags identified in
this study were within those six weeks, Extrinsic incubation period and
mosquito development time are shorter with warmer temperatures,
thus increasing mosquitoes’ density and influencing peaks in cases in

shorter times (Chan and Johansson, 2012). Continuous epidemiological
surveillance is currently done as an early warning system technique to
protect public health from dengue fever. Our results show that by
including additional oceanographic parameters, such as SST, we could
improve surveillance of dengue fever by improving modelling of the
disease in coastal areas.

As SST and minimum air temperature increase (warmer) or decrease
(colder), dengue incidence also increase and decrease, respectively.
Increased warming of air temperatures has led to a subsequent warming
of the lowest seasonal air temperatures, which suggests that the winter
air temperatures could be getting warmer. This has positive feedback
leading to an increase of dengue incidence rates in Mexico. These
general trends are followed during epidemic years as well as non-
epidemic years. It has been well documented that SST is increasing
(Lluch-Cota et al,, 2013; Muller-Karger et al,, 2015), along with
minimum air temperatures. While there is no clear causality, there is
likelihood that dengue incidence rates are related to warmer tempera-
tures. However, even with warmer temperatures there are other factors
that influence dengue fever cases such as population mobility, socio-
economic factors, irregular circulation of virus seratypes, and actions
being taken to prevent the disease (Banu et al., 2011; Gubler, 2002;
Hales et al., 2002; Keating, 2001; Lorono-Pino et al., 2004; ten Bosch
et al.,, 2016). For example, transmission dynamics are affected by
population susceptibility to circulating serotypes. Individuals who were
previously infected with a specific serotype (i.e., DENV-1, DENV-2,
DENV-3, or DENV-4) will develop immunity against that particular
serotype. Nonetheless, if there is a shift from one serotype to another on
the following year, there would be an increase in dengue fever cases as
the population would only have partial immunity to the other serotypes
(Gubler and Clark, 1995; Rothman, 2004).

5. Conclusion

Our study indicates that adding satellite-derived SST helps to better
model dengue fever outbreaks for the northwest coast of the Yucatan
Peninsula. Implementing results of SST on early warning systems for
dengue fever can help reduce future outbreaks. Environmental data
from most of the municipalities were not available, which could have
influenced the results, especially when identifying epidemic years.
These epidemic years were mostly based on cases reported in Merida
due to dengue fever data limitation. Future research should look into
individual municipalities to identify whether these epidemics occur
during the same time periods. The application of remote sensing should
be considered for future efforts to improve prediction and mitigation of
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dengue fever outbreaks in coastal and non-coastal areas, as this data is
readily available. It is important to predict and understand the
influence of environmental variables, such as regional-scale SST, on
dengue fever as this virus is transmitted by the same species of
mosquitoes (Aedes spp.) of upcoming diseases such as chikungunya
and Zika.
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Abstract: Enterococci concentration variability at Escambron Beach, San Juan, Puerto Rico,
was examined in the context of environmental conditions observed during 2005-2015. Satellite-derived
sea surface temperature (SST), turbidity, direct normal irradiance, and dew point were combined
with local precipitation, winds, and mean sea level (MSL) observations in a stepwise multiple
regression analyses (Akaike Information Criteria model selection). Precipitation, MSL, irradiance,
SST, and turbidity explained 20% of the variation in observed enterococci concentrations based
upon these analyses. Changes in these parameters preceded increases in enterococei concentrations
by 24 h up to 11 days, particularly during positive anomalies of turbidity, SST, and 480-960 mm
of accumulated (4 days) precipitation, which relates to bacterial ecology. Weaker, yet still
significant, increases in enterococci concentrations were also observed during positive dew point
anomalies. Enterococci concentrations decreased with elevated irradiance and MSL anomalies.
Unsafe enterococci concentrations per US EPA recreational water quality guidelines occurred when
4-day cumulative precipitation ranged 481-960 mm; irradiance < 667 W-m~2; daily average turbidity
anomaly >0.005 sr1; SST anomaly >0.8 °C; and 3-day average MSL anomaly <—18.8 cm. This case
study shows that satellite-derived environmental data can be used to inform future water quality
studies and protect human health,

Keywords: recreational beach water quality; fecal indicator bacteria; coastal water quality; ocean
color; remote sensing

1. Introduction

Fecal pollution is a threat to coastal ecosystems in many countries around the world that carries
important public health and economic consequences. The city of San Juan, the capital of the island
of Puerto Rico in the Caribbean Sea, is located within the Rio Piedras watershed, which receives
the discharge of two centralized wastewater treatment plants (WWTPs; Puerto Nuevo Regional and
Bayamon Regional WWTPs). The Rio Piedras watershed also catches the runoff from agricultural
areas further upstream [1,2] as well as septic seepage [3-5]. While 56% of the Puerto Rican population
is connected to these sewer systems [4,5], the remaining population, especially those located at
higher elevations in San Juan, typically uses septic tanks. These septic tanks discharge approximately
165 million gallons per day directly to streams that empty into coastal waters [3-5]. Inadequate
wastewater treatment prior to ocean outfall discharge, ineffective and old stormwater systems,
and septic systems that leak into the karst geology and streams in the region are a constant and
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present danger to the public, especially because of the large numbers of people that enjoy visiting
these beaches year-round for recreational purposes.

It is impractical to measure the concentrations of all wastewater-associated pathogens. Therefore,
allochthonous gastrointestinal bacteria known as fecal indicator bacteria (FIB; e.g., fecal coliforms,
Escherichia coli, and Enterococcus spp.), are used to characterize water quality [6,7]. While enterococci
have correlated with public health risks in coastal areas with known point sources of fecal
contamination in temperate and sub-tropical regions [7-12], this correlation has only been suggested
in tropical regions [13] and has not been identified in areas exposed to non-point sources of fecal
pollution [14,15]. Since FIB persist in the environment in the absence of active fecal pollution events,
particularly in tropical climates, it is often difficult to differentiate between actual events that pose
a threat to public health and the natural resuspension and growth of FIB in coastal waters [16,17].
Despite the environments important role on enterococci concentrations in tropical surface waters,
few studies have investigated the relationship between environmental conditions and enterococci
concentrations for beaches located in tropical climates [2,6,9,10,13].

The 2012 United States Environmental Protection Agency (US EPA) Recreational Water Quality
Criteria (RWQC) recommends that culturable enterococci concentrations not exceed geometric means
of 35 colony forming units (CFU) per 100 mL for safe recreation [18]. The Puerto Rico Environmental
Quality Board (PREQB) has adopted this recommendation in their coastal recreational water quality
monitoring program. Since October 2015, the public notification has been issued based on the Beach
Action Value (BAV) of 70 CFU/100 mL, recommended by the US EPA National Beach Guidance and
Required Performance Criteria for Grants [19,20]. The PREQB assesses beach water quality throughout
the island every two weeks per the 2000 US Beaches Environmental Assessment and Coastal Health
Act [14,21] and water quality standards of Puerto Rico [22].

Previous water quality studies in Puerto Rico have mostly focused on infrastructure; however,
there have been a handful of short-term studies (i.e.,, weeks to months) on the relationship
between water quality and environmental conditions [14,23-25]. These investigations showed that
environmental parameters can influence the persistence and concentration of enterococci in recreational
waters. For example, increased precipitation contributed to elevated enterococci concentrations [14].
Enterococci thrived in warmer waters [26] and were inhibited by increased irradiance [27]. Increased
turbidity protected enterococci from ultraviolet (UV) light [28,29]. Enterococci concentrations in beach
water also increased during low tide [30]. It is not known if enterococci co-occurred or correlated
with the presence of wastewater-related pathogens or incidence of infection in these studies. Whether
there is a relationship between FIB and long-term environmental change is a question that has not yet
been explored.

The current case study seeks to identify environmental factors that influence the variability of
culturable enterococci concentrations in Escambron Beach surface waters, and specifically seeks
to assess when water quality issues exceed the US EPA recommended rate of 36 illnesses per
1000 primary contact recreators (BAV 70 CFU /100 mL; [18,20]). The approach included an analysis of
11 years of culturable enterococci concentrations with respect to the spatial and temporal variation
of environmental factors observed locally (i.e., mean sea level, precipitation, winds) and via satellite
(i.e., turbidity, sea surface temperature, dew point, direct normal irradiance). Previous studies in
tropical areas have suggested a relationship between Enterococcus spp. and public health risks in
recreational beach waters. However, the extra-intestinal sources of enterococci in the tropics as well
as the presence of non-point sources of fecal pollution can obscure this relationship. Thus, it is
important to understand how environmental factors influence culturable enterococci concentrations in
tropical settings.

This case study demonstrates how the environmental factors significantly correlated with
culturable enterococci surface water concentrations and considered the specific lags and ranges
where these factors correlated with unsafe culturable enterococci concentrations at Escambron Beach.
This study serves as an important point of reference for future water quality studies at Escambron
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beach as well as for other Caribbean beaches located in a similar context. The results of this case study
begin to fill the existing knowledge gaps specific to water quality in the tropics and set the stage for
targeted beach monitoring aimed at identifying a correlation between enterococci and health risks
in the tropics. Additionally, the results can be used to develop microbial water quality forecasting
systems, which would provide early information to local authorities, avoid unnecessary beach closures,
and effectively balance the need to protect public health with the economic consequences associated
with beach closures.

2. Materials and Methods

2.1. Escambron Beach, San Juan, Puerto Rico

The study took place at Escambron Beach (18.47° N, 66.08° W, Figure 1). This is one of the
most popular, well-visited beaches of San Juan, Puerto Rico and it has a year-long swimming season.
Escambron Beach is generally visited by residents between the months of May to September, whereas
during October to December it is mostly visited by non-residents and tourists. The beach is surrounded
by hotels, business, residences, and governmental buildings [2]. The average annual air temperatures
range between 24 and 29 °C. During the timeframe of this study, average precipitation was ~1800 mm
per year, with lowest precipitation during February—March. Escambron Beach has mixed semidiurnal
tides, and is classified as a low wave action along beach.
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Figure 1. Location of Escambron Beach with respect to the combined ocean outfall that discharges
primary-treated domestic wastewater from the Puerto Nuevo Regional and Bayamon Regional
treatment plants (black triangles). The ocean outfall discharges at a depth of approximately 40 m;
it is located 1 km north of Isla de Cabras and about 5 km from the study site. The inset map details
Escambron Beach and depicts both sampling locations (green triangles), stormwater discharge drain
(black circle), Rio Grande de Loiza (river symbol), and public bathrooms (bathroom symbol).

Two sites, separated by a distance of ~100 m, were sampled by the PREQB (Figure 1).
These sites may have been affected by: (1) stormwater drainage (18.46° N, 66.09° W) located immediately
adjacent to one of the sampling sites, which includes urban runoff, precipitation, and other graywaters
(e.g., showers, washer machines; [2]); (2) WWTP ocean outfall (18.47° N, 66.14° W); (3) beach public
bathrooms; and (4) Rio Grande de Loiza, a river that receives agricultural runoff, WWTP effluent
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(secondary treatment only), and septic system effluent and seepage (Figure 1; [31-33]). Non-point
source pollution throughout San Jan Bay also likely affects water quality at Escambron Beach.

2.2, Culturable Enterococci Data

Data from biweekly measurements of culturable enterococci surface water concentrations were
obtained for 20052012 from the US EPA Storage and Retrieval data warehouse for Escambron
Beach (https:/ /www.cpa.gov/waterdata /water-quality-data-wqx). The enterococci time series was
extended from 2012 to 2015 with data provided by PREQB. Two methods were used to quantify
enterococci concentrations: US EPA method 1600 from January 2005-March 2015 [34] and IDEXX
Enterolert (IDEXX Laboratories, Inc., Westbrook, ME, USA) from April 2015 through December
2015 [19]. The US EPA method 1600 quantifies culturable enterococei using membrane filtration and
had a detection limit of 4 CFU/100 mL [34]. The IDEXX Enterolert Quanti-Tray methods determined
the culturable enterococci concentrations (most probable number (MPN) per 100 mL); this method had
a detection limit of 10 MPN/100 mL [19]. Over the 11-year period, a total of 642 culturable enterococci
data points were generated, with the surface waters from two sites being sampled approximately once
every two weeks (PREQB RW-20A at 18.47° N, 66.08° W and PREQB RW-20B at 18.46° N, 66.09° W;
Figure 1). One site had 334 and the other site had 308 data points from 2005 to 2015. Daily geometric
means for each sampling date, considering both sampling sites, were calculated for the beach; thus,

the total combined number of unique enterococci data points was n = 376 for the 2005-2015 period.
These geometric means were used in all further analyses. All samples were collected between 9:00 a.m.

and 1:00 p.m. (AST). Puerto Rico’s climate does not show a significant season variability through the
entire year. Therefore, samples collection considered sunlight amount, timing before people go to
the beach, traveling time to the Puerto Rico Environmental Sciences Research Laboratory for sample
processing, and timing of beach advisories if bacterial levels exceed thresholds [19,20]. If a sample had
concentrations above US EPA guidelines, a subsequent sample was taken within seven days.

2.3. Satellite-Derived and In Situ Environmental Data

Daily precipitation data for San Juan, Puerto Rico were obtained from the US National Oceanic

and Atmospheric Administration National Centers for Environmental Information for 2000-2015.

Accumulated precipitation was calculated for different intervals of days prior to each surface
water sampling date. Direct Normal Trradiance (DNI) and dew point were obtained at a 30-min
temporal resclution and 4 km spatial resolutions from the National Solar Radiation Database
(1998-2014; http:/ /rredenrel.gov/solar/old_data/nsrdb/). Mean sea level (MSL) was obtained from
the University of Hawaii Sea Level Center for 2000-2015 (https:/ /uhslc.soesthawaii.edu/). Maximum
values, in a 24-h period, were identified for both MSL and DNI and included in the analyses due to their
known influence on enterococci [29,30]. Wind speed and direction were obtained from the Caribbean
Coastal Observing System (CariCOOS; http:/ /www.caricoos.org/) buoy located north of San Juan
(18.47° N, 66.09° W). East (u) and nort (v) wind components were calculated due to their mixing
potential and influence on enterococci concentrations [35]. Since the CariCOOS buoy was deployed
in 2010, satellite-derived wind data was also included from the Cross-Calibrated Multi-Platform
(CCMP; ~28 km spatial resolution) surface winds (2010-2015). Both data sets were compared and
followed the same patterns regarding wind speed, direction, and east/west components.

Sea surface temperature (SST) data were obtained from the Advanced Very High Resolution
Radiometer (AVHRR; 1 km spatial resolution) from 2000 to 2015. These images were mapped using
a cylindrical equidistant projection at the University of South Florida Institute for Marine Remote
Sensing (http://imars.usf.edu/). Interactive Data Language (IDL; v. 7.2) was used to extract SST
data from 3 x 3-pixel boxes centered on three points for the northern coast of San Juan, Puerto Rico
(18.47° N, 66.09° W; 18.48° N, 66.08° W; 18.46° N, 66.07° W). Data from those three boxes showed

similar temporal patterns; therefore, they were averaged into one SST time series for further analyses.
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Remote sensing reflectance at 645 nm (R 645) [36,37] from the Moderate Resolution Imaging
Spectroradiometer (MODIS-Terra; 250 m spatial resolution) was used as a proxy for water turbidity
(2005-2015). Remote sensing reflectance represents the ratio of upwelling “water-leaving” radiance to
downwelling irradiance measured in per steradian (sr 1) units. Reflectance in the red (645 nm) is used here
as a proxy for turbidity, an approach which has been used in several previous studies [36,38,39]. Rs was
extracted using MATLAB (v. 2014b; The MathWorks Inc., Natick, MA, USA, 2000); the average value of
two 3 x 3-pixel boxes was used for turbidity for this coastal region (centered on: 18.47° N, 66.10° W;
18.46° N, 66.08° W; these included sampling sites and adjacent areas). Turbidity measurements from
these boxes followed similar temporal patterns; thus, the data were averaged into a single time series
for further analyses. Daily and weekly time series, climatologies, and anomalies were calculated for
all the variables mentioned above for the period of 2005-2015. Both SST and turbidity, as extracted,
covered the entire study site; however, for SST we added a third sampling point to cover the overall
variability due to its lower spatial resolution (1 km) in comparison to turbidity (250 m). Additionally,
3-day averages of SST and turbidity anomaly images were also computed for the coastal region of the
municipality of San Juan (18.51-18.42° N, 66.16—65.85° W) to examine the spatial distribution of 55T
and turbidity before beach advisories on 9 March 2007 and 16 December 2011 (dates were selected
based on satellite images availability /clarity to show data).

2.4. Data Identified as Below the Limit of Delection

Sixty-two enterococei data points out of the 376 (combined sampling sites) were described
as below the limit of detection (LOD); consequently, it was necessary to accommodate these
data to be able to use the 2005-2015 data set for downstream analyses. To determine the most
appropriate substitution [40-42], the use of three different, previously-used substitutions were
evaluated: the maximum concentration after the LOD (i.e,, 3 CFU/100 mL and 9 CFU/100 mL
for method 1600 and TDEXX Enterolert, respectively), minimum concentration (i.e., 1 CFU/100 mL),
and half the detection limit (i.e., 2 CFU/100 mL and 5 CFU/100 mL). When comparing the three
methaods, all the correlations coefficients showed a difference less than 0.10 and were considered
not significantly different. Based on this, it was concluded that the results of the downstream
Akaike Information Criteria analyses were not significantly different among the three aforementioned
substitution approaches (Supplementary Materials, Tables 51-53). Therefore, a conservative approach
was selected, such that all that left-censored data were substituted by the next highest concentration;
3 CFU per 100 mL for those samples analyzed before April 2015 and 9 MPN per 100 mL for samples
analyzed after April 2015. These were substituted in the raw data (1999-2015) and then filtered to
obtain a total of 376 points from 2005 to 2015.

2.5. Non-Parametric Statistical Analyses

Data were analyzed with non-parametric, permutation-based statistics, which are a distribution-free
method. Significant time-lagged correlations between explanatory variables (i.e., SST, precipitation,
DNI, dew point, MSL, and turbidity) and the dependent variable (i.e., culturable enterococci
concentrations) were identified using Pearson’s correlation analyses. A MATLAB function was created
to identify different lags between explanatory variables and dependent variable, where those who
showed the highest and significant Person’s correlation coefficient were selected.

Lagged environmental factors, with the lag-periods showing significant correlations (Pearson’s
correlations) with culturable enterococci were divided into three to six bins using the histogram
function of MATLAB (v.2014b); bins sizes were selected based upon sample size. Bins were divided
as follow: (A) precipitation (mm) six bins: <240, 241-480, 481-720, 721-960, and >961; (B) DNI
(W-m~2) five bins: <667, 668-732, 733-798, 799-864, and >865; (C) turbidity anomaly {(sr™1) three
bins: <0.001, 0.002-0.004, and >0.005; (D) SST anomaly (°C) four bins: <-3.7, —=3.6-—1.5, —1.4-0.7,
and >0.8; (E) dew point anomaly (°C) five bins: <—-1.6, —1.5--0.7, —0.6——0.3, —0.2-1.2, and >1.3;
and (F) MSL anemaly (em) six bins: <-78.8, —78.7-—18.8, —18.7-41.2, 41.3-101.2, 101.3-161.2,
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and >161.3. Surface water sampling dates that matched those specific ranges in environmental
conditions were identified and the average geometric means (of enterococci concentrations) were
extracted for each bin. Confidence intervals for each of the bins were calculated using bootstrapping
(random sampling with replacement) with 5000 iterations. Subsequently, permutation-based one-way
ANOVAs were executed for each explanatory variable to test for significance across different
environmental parameter ranges. For those intervals that showed a significant or marginally
non-significant difference, a series of a posteriori, multiple-comparison (pair-wise) tests were run to
identity those bins that were significantly different.

A stepwise selection of explanatory variables via forward addition based on Akaike Information
Criteria (AIC) was executed. AIC analyses identified the optimal environmental factors that
substantially explained variation in culturable enterococei concentrations [43-45]. The variables
included in the AIC analysis were precipitation, SST, dew point, MSL, DNI, and turbidity.
The MATLAB Fathom toolbox was used for all data analyses [46].

3. Results

3.1. Modeling Culturable Enterococci Using Akaike Information Criterion Model and Correlation Analyses

The environmental variables used in the AIC model were selected based on their significant,
time-lagged correlations identified by the Pearson’s correlation analyses (p < 0.05; Table 1).
The stepwise AIC analyses showed that precipitation, MSL, DNT, SST, and turbidity were the optimal
explanatory variables for culturable enterococci concentrations in Escambron Beach surface waters
during 2005-2015 {(p < 0.05; #? = 0.20; Table 2); dew point was not identified as an optimal explanatory
variable by the AIC analyses.

Table 1. Pearson’s correlation coefficient to identify significant lags in enterococci concentrations in
surface waters at Escambron Beach with respect to the environmental parameters: Mean sea level (MSL),
direct normal irradiance (DNI), sea surface temperature (S5T), dew point, turbidity, and precipitation.
Values are considered significant at o < 0.05.

Variable Pearson’s Correlation Coefficient (r) Lag
Mean sea level —0.19 9th to 11th day (mean)
Direct normal irradiance 0.24 1 day
Sea surface temperature 0.12 5th to 9th day (mean)
Dew point 0.19 7 days (mean)
Turbidity 0.25 1 day
Precipitation 0.22 4 days (accumulated)

Table 2. Akaike Information Criterion (AIC) model with those environmental variables that explained
enterococci concentration variability in surface waters at Escambron Beach.

Variable I r2-Adjusted AIC
Precipitation 0.08 0.08 59.81
Mean sea level 0.13 0.12 48.76
Direct normal irradiance 0.16 0.15 39.19
Sea surface temperature 0.19 0.17 32.79
Turbidity 0.21 0.19 26.76

3.2. Environmental Variables Influence on Culturable Entferococei

All the variables were divided into three to six bins to characterize how culturable enterococci
concentrations were influenced across specific ranges of environmental variables (Figure 2A-F).
Precipitation, SST, dew point, and turbidity anomalies showed a positive correlation with enterococci
concentrations in Escambron Beach surface waters (Table 1). Enterococci concentrations were above
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the 2014 US EPA BAV and exceeded the 2012 US EPA RWQC recommendation 1 (36 estimated illnesses
per 1000 recreators, [18,20]) after 481 mm-960 mm of rainfall in four days, SST greater than 0.8 °C for
at least 5 days, or turbidity anomalies greater than 0.005 sr—! after 24 h (Figure 2). During warmer
anomalies of high dew points sustained over seven consecutive days, there were higher concentrations
of culturable enterococci. (Table 1). While these conditions did not automatically lead to levels
exceeding the 2014 US EPA BAYV, they did lead to values above the original 2012 US EPA RWQC
recommendation 1 (Figure 2E).
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Figure 2. Geometric mean of enterococci concentrations in Escambron Beach surface waters at different
ranges of (A) precipitation; (B) direct normal irradiance (DNI); {C) turbidity anomaly; (D) sea surface
temperature anomaly (SST); (E) dew point anomaly; and (F) mean sea level (MSL) anomaly at
Escambron Beach during 2005-2015. Dashed lines are the 2014 US EPA beach action value (BAV) of
70 CFU/100 mL (US EPA 2012; 2014). Vertical lines represent the 95% confidence interval. Lower-case
letters above the vertical lines identify statistically significant differences among bins (x = 0.03).

Conversely, DNI and MSL showed a strong, negative correlation with enterococci concentrations
in Escambron Beach surface waters. The highest correlations were observed after a 24-h lag for
DNI, and a nine-day lag for MSL anomalies (Table 1). Higher culturable enterococci concentrations,
exceeding the 2014 US EPA BAV and 2012 US EPA RWQC recommendation 1, were observed
during the lowest DNT (<667 W-m 2; Figure 2B) as well as during the lowest negative MSL
anomalies (<—18.8 cm; Figure 2F). Culturable enterococci concentrations decreased as DNI increased
(>~668 W-m~2; Figure 2B). Wind data (i.e., average wind speed, u-component, and v-component)
showed no significant correlation with culturable enterococci during 2005-2015 (data not shown).

3.3. Satellite-Derived SST and Turbidity Anomaly Images to Anticipate Potential Beach Advisories

The PREQB issued beach advisories on 9 March 2007 (>35 enterococci CFU/100 mL) and
16 December 2011 (48 enterococci CFU/100 mL), where the possible sources were identified as
sewer line and runoff, respectively (US EPA 2016). The mean satellite-derived turbidity over three
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consecutive days prior to these events was higher than normal in adjacent areas (Figure 3; gray boxes).

Higher than normal river discharge (i.e., >~0.2 m?-s~! based on anomalies from 1998 to 2015; data

not shown) was observed on 16 December 2011 (Figure 3B; Rio Grande de Loiza; dark blue box).
Warmer than normal waters were also observed on both dates (Figure 4) over the whole region.

SST on 16 December 2011 was even warmer (~0.5-1.0 °C) than on 9 March 2007 (Figure 4).

9 March 2007

6. 067 £6.00°W [3 63552
—

16 December 2011
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Figure 3. Anomalies of remote sensing reflectance (Ry; 645 nm, 250 m spatial resolution, from the Moderate
Resolution Imaging Spectroradiometer MODIS-Terra) showing Escambron Beach (gray box) water clarity
anomalies three days before the beach advisories of (A) 9 March 2007 and (B) 16 December 2011. Blue box
on (B) shows the high discharge of Rio Grande de Loiza on 16 December 2011.
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Figure 4. Sea Surface Temperature (S5T) anomalies (from the Advanced Very High Resolution
Radiometer-AVHRR; Tkm spatial resolution) showing Escambron Beach (gray box) three days before
the beach advisories of (A) 9 March 2007; and (B) 16 December 2011.
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4, Discussion

In US recreational waters, enterococci continue to be the recommended fecal pollution indicator
despite their natural presence in tropical waters [6,7,47,48]. Thus, it is necessary to understand
the environmental factors related to elevated FIB concentrations to begin to differentiate pollution
events from FIB ecology as well as to forecast water quality. The current case study investigated the
environmental conditions that are related to exceeding the recommended enterococci concentrations at
a Caribbean beach. While similar studies have been executed in other tropical [13,49] and subtropical
locations [50-53] using in situ environmental data, this study also incorporated satellite-derived
environmental data. In addition to identifying the time-lagged correlations of environmental
parameters and culturable enterococci concentrations, the environmental parameter ranges and
patterns were also identified when enterococci concentrations indicated unsafe recreational water
quality (>70 CFU/100 mL; 2014 US EPA BAV). While future research is needed to identify if enterococci
correlate with human health risks, this study provides an overview of how long-term data can be used
to understand the most influential environmental variables on culturable enterococci concentrations
and sets the stage for future investigations to distinguish the cause of high enterococci concentrations
(fecal pollution events vs. enterococci ecology).

4.1. Environmental Factors Associated with Culturable Enterococci Variability

Of the environmental factors analyzed in this study, only precipitation, DNI, MSL, SST,
and turbidity were significantly associated with enterococci concentrations; these associations may
have been due to enterococci ecology and/or fecal pollution events. The strong correlation between
precipitation, particularly 4-day accumulated rain events, and enterococei concentrations may indeed
be explained by increased sewage and septic tank discharge [2,14,54-56], or runoff with animal
feces [9,25,57,58]. However, it is also possible that precipitation increased the presence of non-fecal
sources of enterococci via resuspension of sediments as well as runoff of bacteria in soil [35,36].
With respect to lower enterococci concentrations outside the 481 mm-960 mm precipitation range,
it is possible that drier conditions promoted decreased bacterial replication due to lower nutrient
additions and /or reduced stormwater inputs decreased the input of enterococci into beach surface
waters. With respect to the wettest conditions, it is possible that the excess rainfall diluted enterococci
concentrations in surface waters [59,60].

Similarly, the significant decrease observed in enterococci concentrations during periods of high
solar irradiance was likely due to production of reactive oxygen species (ROS) that cause bacterial
dieoff [27,30,61]; however, enterococci concentrations may have been low due to a lack of fecal
pollution inputs (e.g., stormwater, runoff). There was also an inverse correlation between enterococci
concentrations and MSL anomalies. It is possible that bacterial dilution occurs during higher MSL
anomalies, and concomitant back-washing mixing and enhanced drainage from coastal sources may
promote increased bacteria concentrations during lower MSL anomalies [30,62,63]. While winds
have been previously correlated with increased enterococci concentrations [35,64], no correlation
between wind components and culturable enterococci concentrations was identified for Escambron
Beach surface waters during 2005-2015. Tt is possible that the limited local wind data obscured the
identification of significant correlations between winds and enterococci concentrations. Additionally,
increased enterococci concentrations were observed during warmer SST anomalies, which could
be due to an increased bacterial growth and replication (e.g., metabolism) due to warmer water
temperatures [35,48]. Finally, this study did not consider how the presence of aquatic plants, such as
seagrass, or algae, such as the green alga Cladophora, could have decreased and increased enterococci
concentrations, respectively [65-68].

Given the combined effects between many of the environmental parameters analyzed, it is
difficult to tease apart their independent influence on coastal enterococei concentrations. For example,
higher turbidity anomalies are the result of increased runoff [69,70], but increased enterococci
concentrations could also be the result of protection from UV exposure [28,29,71]. Furthermore, it is
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possible that dew point was not identified as an optimal explanatory variable due to its relationship
with rainfall as well as to SST [72] as the AIC model reduces multi-collinearity (i.e., higher correlations
between predictor variables). Finally, winds are known to be associated with increased precipitation,
which also leads to increased wave action that stimulate sediment resuspension, which can increase
non-fecal enterococci concentrations [35,58,64]. While it is difficult to discern the confounding influence
of each environmental parameter, this study identified the environmental conditions that should be
considered for microbial water quality modeling at Escambron Beach.

Even though this study was not able to tease apart the combined effects of environmental variables
nor enterococci ecology from actual fecal pollution events, the results of this investigation demonstrated
that precipitation, DNI, MSL, SST, and turbidity were strongly and significantly associated with
culturable enterococci concentrations at a tropical, Caribbean beach. Similar results have been shown in
freshwaters, where enterococci concentrations were modeled in the great lakes and parameters, such as
river discharge, temperature, turbidity, and winds were significantly correlated with enterococci
variability [73,74]. Liu et al. [75] showed that human fecal pollution is also transported in river
tributaries, where discharges into the great lakes influence enterococci concentrations and create public
health concerns. Now that the environmental conditions associated with enterococci concentrations
exceeding the limits for safe recreation have been identified for Escambron Beach, future research is
needed to tease apart the influence of enterococci ecology versus fecal pollution events and should
include microbial source tracking and measurement of human pathogens.

4.2. Sanitation Infrastructure, Human Fecal Pollution, and Culturable Enterococci Variability

Since only 20% of the enterococci variation was explained by the environmental parameters
in the AIC model in this study, it is possible that the remaining 80% could have been attributed
to sanitation infrastructure {which was not included in the analyses), other environmental factors
(e.g., extra-intestinal, environmental enterococci sources; animal feces), as well as stochastic
variability [35]. About 42% of the people living in Puerto Rico use septic tanks and many of these
systems do not work properly or lack maintenance [4]. Consequently, improperly functioning systems
and the porous karst-geology facilitate the movement of domestic wastewater into surrounding surface
waters [1,4]. Over the last 50 to 60 years, there has been a shift from septic tanks to centralized WWTP

(primary treatment) to accommodate San Juan’s growing population and increasing urbanization.

Escambron Beach also has public bathrooms located next to its stormwater discharge. While toilets
are connected to the centralized sewer system, there may be leaks that can influence enterococci
concentrations at the study site [2].

The combined Puerto Nuevo Regional and Bayamon Regional WWTP ocean outfall is located
approximately 5 km northwest from Escambron Beach. Yet this discharge can impact beach water
quality under specific current regimes. The outfall discharges ~200 MGD of primary-treated domestic
wastewater at 40 m depth [76], which vertically mixes due to buoyancy forces and causes the
development of an ocean outfall surface and sub-surface boils [77]. Following initial mixing, ocean
currents can transport and dilute the outfall boil. Currents in Puerto Rico are generally westward
and influenced by the westerlies; however, the CariCOOS buoy current data shows very weak
south-southeast semi-diurnal tidal currents on Puerto Rico’s northern coast between 2 and 30 m
depth. Any episode that strengthens this eastward flow can carry outfall boils toward Escambron
Beach. Additionally, the Rio Grande de Loiza discharge is another potential source of contamination
due to westward movement of currents. Studies have shown that this river’s tributaries were impaired
due to fecal contamination [32,33,78]; thus, the Rio Grande de Loiza discharge could have impacted
the study area, particularly when flow rates were high during rain events [79].

4.3. Satellite-Derived SST and Turbidity Anomaly Images, and PREQB Beach Advisories

Beach advisories are issued by PREQB two to three days after the sampling date when culturable
enterococci concentrations exceeded the PREQB water quality criteria. Consequently, it is important to
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understand the lags, ranges, and spatial distributions of precipitation, DNI, MSL, SST, and turbidity,
that are correlated with culturable enterococci concentrations to identify conditions that lead to such
advisories [80]. Additionally, it is well-known that enterococci may not be the most appropriate water
quality indicator for tropical regions due to its presence in secondary, non-fecal related reservoirs that
confound the identification of health risks (e.g., soil, sediments) [17,49]. Thus, this understanding can
inform future studies that seek to decipher when enterococci might exceed US EPA guidelines and
represent an actual health risk versus when no health risk is present [17].

For example, high turbidity and SST anomalies occurred at Escambron beach during the days
preceding the 9 March 2007 and 16 December 2011 beach closures. Prior to the 16 December 2011
advisory, there was a significant discharge from the Rio Grande de Loiza, which was likely transported
toward the beach by westward ocean currents [1] and likely caused the high turbidity anomalies
observed. While there was no anomalous river discharge during 9 March 2007, higher than normal
turbidity was cbserved north of the study area. Additionally, the images showed warmer than
normal water temperatures (~1.0-1.5 °C) for most of the region, which also likely influenced increased
culturable enterococci concentrations. Since these satellite-derived data preceded the beach closures,
satellite-derived data can help identify conditions for poor water quality in advance and guide
sampling efforts.

4.4. Future Work

A better understanding of enterococci variability with respect to environmental conditions
and fecal pollution events is needed to identify accurately public health risks and minirnize public
exposure to such risks [10,81,82]. Ideally, these risks should be forecasted by beach-specific predictive
models to prevent the public’s exposure to waterborne pathogens [28,83]. To create such models,
future investigations at Escambron Beach should consider this study’s results, which identified
that precipitation, DNI, MSL, S5T, and turbidity significantly influence enterococci concentrations,
as well as the following: (1) the relationship between enterococci and human health risks (e.g., illness,
reference pathogens) and (2) the impact of human (e.g., WWTP ocean outfall, leaky septic systems) and
non-human (e.g., animal feces) fecal pollution sources that can influence enterococci variability and/or
health risks. Additionally, data were not analyzed in terms of wet/dry season because the dry season
at Escambron beach is only two-months long (February and March) and therefore, requires a different
data set to achieve sufficient statistical power to determine how environmental variability influences
enterococci concentrations by season.

Since the Puerto Rican economy relies mostly on tourism, proper management of Escambron
Beach through targeted monitoring and early-warning systems is necessary to restrict beach
advisories /closures to those that are truly necessary to protect public health [51,78]. This investigation
demonstrated that satellite-derived and local environmental parameters explained enterococci
variability at a tropical, Caribbean beach. The results presented will be important to future water quality
investigations in the tropics, as well as to the development of the spatial and temporal components of
predictive models that aim to improve forecasting and now-casting of beach water quality.

5. Conclusions

Identifying the environmental factors correlated with culturable enterococci concentrations can
help to better understand their potential risk to public health in a tropical setting. This study looked
into 11 years of culturable enterococci concentrations and assessed how much of its variability can be
explained by environmental factors alone, where the main findings were:
¢  Environmental factors (i.e., direct normal irradiance (DNI), mean sea level (MSL), precipitation,

turbidity, and sea surface temperature (S51)) explained 20% of the enterococci variability observed

in Escambron Beach surface waters during 2005-2015.

e Identified time-lags for the different environmental factors helped better understand variability
in culturable enterococci in Escambron Beach surface waters due to environmental factors.
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e  Increased enterococci concentrations were observed at strong positive SST and turbidity anomalies;
conversely, these concentrations decreased with increased DNI and MSL anomalies in Escambron
Beach surface waters.

e Specific ranges of precipitation (i.e., 481-960 mm) promoted increased enterococci concentrations,
potentially due to urban run-off (e.g., resuspension of solids, soil runoff, and non-human sources},
combined sewer overflow events, and/or increased leaching of septic tanks.

e The combined effects of environmental factors can help model culturable enterococci
concentrations and understand ranges where these would exceed recommended 2014 US EPA
BAV at Escambron Beach.

e  Satellite-derived data can improve beach water quality assessments, potentially reducing in-situ
sampling efforts as this data is readily available, and help identify events for carly warning
systems and improve beach advisory.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/14/12/1602/s1,
Table 51: Pearson’s correlation coefficient to identify significant lags in enterococci concentrations in Escambron
Beach surface waters with respect to the environmental parameters. Concentrations below the limit of detection
were substituted by 1 MPN/CFU per 100 mL. Values are considered significant with 95% certainty (a = 0.05).
Bold values are those with the highest and significant Pearson’s correlation coefficient, Table 52: Pearson’s
correlation coefficient fo identify significant lags of enterococci concentrations in Escambron Beach surface waters
with respect to the environmental parameters. Concentrations below the limit of detection were substituted
by 3 MPN/CFU per 100 mL for those samples analyzed before April 2015 and 9 MPN /100 mL for samples
analyzed after April 2015. Values are considered significant with 95% certainty (a = 0.05). Bold values are those
with the highest and significant Pearson’s correlation coefficient, Table 53: Pearson’s correlation coefficient to
identify significant lags of enterococci concentrations in Escambron Beach surface waters with respect to the
environmental parameters. Concentrations below the limit of detection were substituted by 2 MPN/CFU per
100 mL for those samples analyzed before April 2015 and 5 MPN/100mL for samples analyzed after April 2015.
Values are considered significant with 95% certainty (x = 0.05). Bold values are those with the highest and
significant Pearson’s correlation coefficient.
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Table S1. Pearson’s correlation coefficient to identify significant lags in enterococci concentrations in Escambron Beach surface waters with respect to the environmental

parameters. Concentrations below the limit of detection were substituted by 1 MPN/CFU per 100 mL. Values are considered significant with 95% certainty (o= 0.05). Bold

values are those with the highest and significant Pearson’s correlation coefficient.

Precipitation Sea Surface Temperature Dew Point Mean Sea Level Direct Normal Irradiance Turbidity
Tag T p-value Lag r p-value Lag T p-value  lag r p-value Lag T p-value Lag T p-value
1 0.12 0.0278 1 0.05 0.3504 1 0.15 0.0086 1 0.09 0.1064 1 -0.25 0.0004 1 0.23 0.0235
2 0.23 0.0002 2 0.07 0.2150 2 017 0.0042 2 0.07 0.2376 2 -0.22 0.0010 2 0.05 0.6267
3 0.23 0.0002 3 0.08 0.1604 3 0.17 0.0028 3 0.05 0.3720 3 -0.22 0.0006 3 -0.02 0.8455
4 0.23 0.0004 4 0.08 0.1688 4 0.19 0.0028 4 0.01 0.8484 4 -0.22 0.0002 4 -017 0.1049
5 0.22 0.0002 5 0.12 0.0436 5 0.20 0.0008 5 -0.04 0.4962 5 -0.22 0.0002 5 0.13 0.2510
6 0.19 0.0010 6 0.07 0.2382 6 0.20 0.0004 6 -0.11 0.0502 6 -0.20 0.0004 6 0.03 0.7851
7 0.18 0.0014 7 0.10 0.0790 7 0.21 0.0006 7 -0.17 0.0028 7 -0.20 0.0014 7 0.08 0.4977
8 0.17 0.0050 8 0.08 0.179% 8 0.20 0.0006 8 -0.21 0.0006 8 -0.19 0.0014 8 -0.15 0.1640
9 0.15 0.0108 9 0.06 0.2708 9 0.20 0.0010 9 -0.23 0.0004 9 -0.17 0.0040 9 0.1 0.3536
10 0.14 0.0154 10 0.01 0.8526 10 0.20 0.0010 10 -0.22 0.0002 10 -0.17 0.0042 10 0.00 0.9726
11 014 0.0140 11 0.04 0.4992 11 0.20 0.0004 11 -0.19 0.0012 11 -0.17 0.0062 11 0.16 0.1341
12 014 0.0158 12 0.00 0.9968 12 0.20 0.0006 12 -0.13 0.0214 12 -0.16 0.0060 12 -0.15 0.1564
13 0.14 0.0130 13 -0.03 0.6000 13 0.20 0.0008 13 -0.05 0.3908 13 -0.16 0.0068 13 -0.12 02779
14 012 0.0350 14 -0.03 0.6330 14 0.20 0.0018 14 0.00 0.9984 14 -0.15 0.0126 14 015 0.1561
15 0.12 0.0376 15 -0.03 0.6562 15 0.20 0.0008 15 0.04 0.4748 15 -0.14 0.0182 15 -0.05 0.6400
16 0.11 0.0450 16 0.01 0.9226 16 0.19 0.0016 16 0.04 0.5312 16 -0.14 0.0220 16 -0.01 0.9330
17 012 0.0380 17 -0.02 0.7208 17 018 0.0026 17 0.02 0.7450 17 -0.14 0.0250 17 -015 0.1591
18 0.13 0.0238 18 -0.03 0.5506 18 0.18 0.0028 18 -0.03 0.6560 18 -0.13 0.0290 18 -0.08 0.5045
19 013 0.0188 19 0.00 0.9512 19 0.18 0.0028 19 -0.07 0.2368 19 -0.14 0.0230 19 0.07 0.5134
20 0.14 0.0178 20 0.03 0.5778 20 0.18 0.0030 20 -0.10 0.0824 20 -0.14 0.0272 20 -0.03 0.8150
21 0.12 0.0310 21 0.05 0.3852 21 0.18 0.0020 21 -0.14 0.0200 21 -0.13 0.0296 21 0.00 0.9687
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Table S2. Pearson’s correlation coefficient to identify significant lags of enterococei concentrations in Escambron Beach surface waters with respect to the environmental
parameters. Concentrations below the limit of detection were substituted by 3 MPN/CFU per 100 mL for those samples analyzed before April 2015 and 9 MPN/ 100mL for

samples analyzed after April 2015, Values are considered significant with 95% certainty (a = 0.05). Bold values are those with the highest and significant Pearson’s

correlation coefficient.

Precipitation Sea Surface Temperature Dew Point Mean Sea Level Direct Normal Irradiance Turbidity
Lag r p-value Lag r p-value Lag T p-value  Lag r p-value Lag I p-value Lag r p-value
1 0.13 0.0234 1 0.07 0.2196 1 0.13 0.0234 1 0.11 0.0594 1 —0.24 0.0002 1 0.25 0.0150
2 0.23 0.0004 2 0.09 0.1252 2 0.15 0.0102 2 0.08 0.1694 2 -0.21 0.0006 2 0.04 0.7100
3 0.23 0.0002 3 0.09 0.0962 3 0.15 0.0102 3 0.06 0.2728 3 -0.20 0.0010 3 -0.03 0.7696
4 0.22 0.0006 4 0.10 0.0930 4 0.17 0.0028 4 0.02 0.7198 4 -0.21 0.0012 4 -0.19 0.0700
5 0.21 0.0004 5 0.12 0.0428 5 0.18 0.0018 5 -0.03 0.6370 5 -0.20 0.0008 5 0.1 0.2838
6 017  0.0026 6 0.08 0.1796 6 0.18 0.0022 6 -0.10 0.0812 6 -0.18 0.0030 6 -0.01 0.9500
7 0.15 0.0088 7 0.11 0.0672 7 0.19 0.0014 7 -0.15 0.0066 7 017 0.0038 7 0.09 0.4264
8 0.15 0.0072 8 0.08 0.1782 8 0.19 0.0018 8 -0.19 0.0016 8 -0.17 0.0046 8 -017 0.1161
9 0.13 0.0184 9 0.06 0.3234 g 0.18 0.0022 9 -0.19 0.0012 9 -0.15 0.0126 9 0.10 0.3817
10 012 0.0290 10 0.02 0.7010 10 0.18 0.0024 10 -0.18 0.0030 10 -0.15 0.0132 10 0.00 09630
11 0.12 0.0356 11 0.06 0.3414 11 0.19 0.0020 11 -0.13 0.0226 11 -0.15 0.0146 11 0.15 0.1362
12 012 0.0488 12 0.02 0.6708 12 0.19 0.0012 12 -0.08 0.1874 12 -0.14 0.0168 12 -0.16 0.1264
13 012 0.0444 13 -0.01 0.8966 13 0.18 0.0018 13 0.00 0.9530 13 -0.14 0.0176 13 011 0.3476
14 010 0.0832 14 -0.01 0.8910 14 0.18 0.0018 14 0.04 0.4280 14 -0.13 0.0308 14 -014 0.1859
15 010 0.0956 15 -0.01 09104 15 0.18 0.0014 15 0.08 0.1590 15 -0.12 0.0392 15 -0.05 0.6391
16 0.09 0.1126 16 0.03 0.6328 16 0.17 0.0038 16 0.07 0.2022 16 -0.12 0.0506 16 -0.01 0.9101
17 0.09 0.1040 17 0.00 0.9874 17 017 0.0046 17 0.05 0.3648 17 -0.12 0.0480 17 -017 0.1077
18 010 0.0724 18 -0.01 0.8112 18 0.16 0.0064 18 0.01 0.9166 18 -0.11 0.0540 18 -0.06 0.6013
19 010 0.0694 19 0.02 0.6892 19 0.16 0.0068 19 -0.04 0.5060 19 -0.12 0.0522 19 0.09 0.4156
20 010 0.0612 20 0.06 0.3450 20 0.16 0.0064 20 -0.06 0.2552 20 -0.12 0.0486 20 -0.06 0.5993
21 0.09 0.1056 21 0.09 0,1220 21 0.17 0.0044 21 -0.10 0.0886 21 -0.11 0.0588 21 -0.01 0.9104
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Table 53. Pearson’s correlation coefficient to identify significant lags of enterococci concentrations in Escambron Beach surface waters with respect to the environmental

parameters. Concentrations below the limit of detection were substituted by 2 MPN/CFU per 100 mL for those samples analyzed before April 2015 and 5> MPN/ 100mL for

samples analyzed after April 2015. Values are considered significant with 95% certainty (& = 0.05). Bold values are those with the highest and significant Pearson’s

correlation coefficient.

Precipitation Sea Surface Tempetature Dew Point Mean Sea Level Direct Normal Irradiance Turbidity
Lag r p-value Lag r p-value Lag r p-value  Lag r p-value Lag r p-value Lag I p-value
1 0.13 0.0184 1 0.07 0.2504 1 0.15 0.0130 1 0.10 0.0714 1 -0.25 0.0002 1 0.25 0.0153
2 0.23 0.0002 2 0.09 0.1452 2 0.16 0.0070 2 0.07 0.1988 2 -0.21 0.0008 2 0.05 0.6674
3 0.23 0.0002 3 0.09 0.1226 3 0.16 0.0072 3 0.06 0.3266 3 -0.21 0.0006 3 -0.02 0.8347
4 0.23 0.0006 4 0.09 0.1046 4 0.18 0.0032 4 0.01 0.8076 4 -0.21 0.0010 4 -0.19 0.0827
5 0.21 0.0004 5 0.12 0.0408 5 0.20 0.0010 5 -0.04 0.5224 5 -0.21 0.0006 5 0.12 0.2557
6 0.18 0.0026 6 0.08 0.1896 6 020 0.0008 6 -0.11 0.0554 6 -0.19 0.0020 6 0.00 0.9898
7 0.16 0.0032 7 0.11 0.0618 7 0.20 0.0012 7 -0.16 0.0038 7 -0.18 0.0034 7 0.09 0.4446
8 0.16 0.0086 8 0.08 0.1836 8 0.20 0.0012 8 -0.20 0.0008 8 -0.17 0.0034 8 -0.16 0.1262
9 0.14 0.0138 9 0.06 0.2966 9 0.19 0.0014 9 -0.21 0.0002 9 -0.16 0.0100 9 0.10 0.3723
10 0.13 0.0218 10 0.02 0.73% 10 0.19 0.0014 10 -0.20 0.0008 10 -0.16 0.0092 10 0.01 0.9401
11 0.13 0.0228 11 0.05 0.3700 11 020 0.0004 11 -0.15 0.0082 11 -0.15 0.0076 11 0.16 0.1371
12 Q.13 0.0236 12 0.02 0.7604 12 0.20 0.0006 12 -0.09 0.1024 12 -0.15 0.0120 12 -0.15 0.1319
13 0.13 0.0254 13 -0.01 0.8258 13 0.19 0.0010 13 -0.01 0.7968 13 -0.15 0.0124 13 -0.11 0.3280
14 0.11 0.0548 14 -0.01 0.8540 14 0.19 0.0016 14 0.03 0.6050 14 -0.14 0.0194 14 -0.15 0.1696
15 0.11 0.0618 15 -0.01 0.9078 15 0.19 0.0014 15 0.07 0.2406 15 -0.13 0.0294 15 -0.05 0.6535
16 0.10 0.0784 16 0.03 0.6704 16 0.18 0.0020 16 0.06 0.2742 16 -0.12 0.0370 16 0.00 0.9754
17 0.10 0.0670 17 0.00 0.9690 17 0.18 0.0028 17 0.04 0.4590 17 -0.12 0.0346 17 -0.17 0.1131
18 011 0.0428 18 -0.02 0.7438 18 0.17 0.0048 18 0.00 0.9580 18 -0.12 0.03% 18 -0.07 0.5217
19 0.12 0.0370 19 0.01 0.8076 19 0.17 0.0028 19 -0.05 0.4234 19 -0.12 0.0392 19 0.08 0.4360
20 0.12 0.0376 20 0.05 0.4334 20 0.17 0.0056 20 -0.07 0.1826 20 -0.12 0.0392 20 -0.04 0.7054
21 0.11 0.0612 21 0.08 0.1786 21 0.18 0.0038 21 -0.11 0.0548 21 -0.12 0.0478 21 -0.01 0.9278

(http://creativecommons.org/licenses/by/4.0/).

© 2017 by the authors, Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license
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APPENDIX C

Application of Artificial Neural Networks for dengue fever outbreak predictions in the
northwest coast of Yucatan, Mexico and San Juan, Puerto Rico
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Abstract: Modelling dengue fever in endemic areas is important to mitigate and improve vector-borne
disease control to reduce outbreaks. This study applied artificial neural networks (ANNSs) to
predict dengue fever outbreak occurrences in San Juan, Puerto Rico (USA), and in several coastal
municipalities of the state of Yucatan, Mexico, based on specific thresholds. The models were
trained with 19 years of dengue fever data for Puerto Rico and six years for Mexico. Environmental
and demographic data included in the predictive models were sea surface temperature (SST),
Pprecipitation, air temperature (i.e., minimum, maximum, and average), humidity, previous dengue
cases, and population size. Two models were applied for each study area. One predicted dengue
incidence rates based on population at risk (i.e., numbers of people younger than 24 years), and the
other on the size of the vulnerable population (i.e., number of people younger than five years and
older than 65 years). The predictive power was above 70% for all four model runs. The ANNs were
able to successfully model dengue fever outbreak occurrences in both study areas. The variables
with the most influence on predicting dengue fever outbreak occurrences for San Juan, Puerto Rico,
included population size, previous dengue cases, maximum air temperature, and date. In Yucatan,
Mexico, the most important variables were population size, previous dengue cases, minimum air
temperature, and date. These models have predictive skills and should help dengue fever mitigation
and management to aid specific population segments in the Caribbean region and around the Gulf
of Mexico.

Keywords: nonlinear models; Aedes aegypti; Aedes albopictus; remote sensing; early warning systems

1. Introduction

Dengue fever is considered a global burden, with more than 500,000 cases reported annually [1-4].
This vector-borne disease is mostly transmitted by the Aedes aegypti mosquitoes, but can also be
transmitted by Aedes albopictus [1,3]. Aedes aegypti are found in tropical/sub-tropical areas, where they

Trop. Med. Infect. Dis. 2018, 3, 5; doi:10.3390/tropicalmed 3010005 www.mdpi.com/journal /tropicalmed
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have adapted to urbanized environments. This complicates management and mitigation of the
organism and the disease [2,5-7]. Countries in the Gulf of Mexico and Caribbean have adopted
various methods to control spreadin_g of the disease, including mosquito control, menitoring and
early warning systems, and educating the population [8-10]. The state of Yucatan (Mexico) and the
island of Puerto Rico (USA) first reported dengue fever cases in the late 1970s. In successive seasons,
a cyclic occurrence and all four serotypes (i.e.,, DENV-1, DENV-2, DENV-3, and DENV-4) have been
reported [9,11-13]. Each location reports around 10,000 cases annually [13-16].

In Yucatan, dengue cases are monitored by the National Epidemiological Surveillance System.
The system issues weekly epidemiological reports that track incidence [14]. The Dengue Surveillance
System from the USA Centers for Diseases Control and Prevention (CDC) and Puerto Rico’s
Department of Health publish similar weekly reports [15]. The phenology of dengue fever cases
for both locations is similar, with cases typically increasing in August and September, and decreasing
around December and January. This follows the rainy season at both locations [2,15]. In Yucatan,
the magnitude of dengue fever epidemics varies, in part due to different serotypes expressing
themselves in different years and population susceptibility and movement to and from affected
areas [17-20]. Puerto Rico shows similar patterns [15]. Understanding factors that may lead to an
epidemic and some predictive capability are important to design and implement strategies that mitigate
incidence [4,21-26].

Disease occurrence models can be based on linear and nonlinear approaches that simulate
complex relations between short- and long-term (climate) environmental variables and dengue fever
incidence [1,27,28]. Linear models are often unable to simulate complex interactions between these
factors, and powers tend to be smaller [2]. Nonlinear approaches have generally shown greater power
than linear models [29]. For example, Husin et al. [30] predicted dengue fever in Malaysia using a
nonlinear model, to help the government fight the disease. A similar study in Singapore used genetic
algorithms and support vector machines to predict the number of dengue fever cases [31]. Studies in
Thailand, Singapore, and Malaysia have also used artificial neural network (ANN) models to predict
dengue fever cases, achieving accuracies greater than 80% [32-34]. A similar study in Sri Lanka with
ANNSs showed a lower accuracy (i.e., 60%) [35]. ANNSs are attractive because they generally achieve a
higher skill than other types of models [36].

Artificial neural networks use combinations of predictor variables (e.g., environmental factors) to
simulate relationships with target variables (e.g., dengue fever outbreak occurrences). These models
can be adapted to assimilate data, and this helps improve the functional relationships between climatic
factors and dengue fever outbreak occurrences. In our present study, we applied ANNs trained with
genetic algorithms to predict dengue fever outbreak occurrences in the state of Yucatan, Mexico, and in
San Juan, Puerto Rico. We identified environmental factors that are important in driving dengue fever
outbreak occurrences at these different locations. The candidate variables were air surface temperature,
sea surface temperature (S5T), humidity, precipitation, previous dengue cases, and human population
size. Previous dengue cases are defined as those cases that occurred weeks before an outbreak [37].
The model was used to detect occasions when the number of cases would go above a threshold and
lead to potential outbreaks. These models were also used to predict dengue fever outbreak occurrences
based on population at risk (i.e., younger than 24 years) and vulnerable population (i.e., younger than
five years and older than 65 years) [1,38—40]. Our results help us to understand dengue fever dynamics
and improve epidemiological surveillance and early warning for specific population segments in the
Caribbean and Gulf of Mexico.
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2. Materials and Methods

2.1. Study Area

The study areas were the municipality of San Juan in Puerto Rico, USA (17.92° N-18.52° N,
65.62° W—67.28° W), and the northwest coast of the state of Yucatan, Mexico (19.55° N-21.63° N,
87.53° W-90.40° W; Figure 1). San Juan has an average precipitation of ~1800 mm per year, with annual
average air surface temperatures of 24-29 °C [41]. Municipalities included for Yucatan State were
Chicxulub Pueblo, Dzemul, Hunucma, Ixil, Progreso, Telchac Pueblo, Telchac Puerto, Ucu, and Merida.
‘Yucatan shows higher precipitation between July and October (400-700 mm). The dry season occurs
between March and June (0-50 mm). Air temperatures generally range from 36 to 40 °C during the
dry season and 30-35 °C during the rainy season [42,43].

A) Map depicting study area: San Juan, Puerto Rico.
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Figure 1. Map of locations of study areas. Maps depicting locations of the study areas in:
(A) the municipality of San Juan, Puerto Rico; and (B) northwest coast of the Yucatan Peninsula, Mexico.

2.2. Data Sources

2.2.1. Dengue Fever Cases and Demographic Data

Confirmed daily dengue fever data for the northwest coast of the Yucatan Peninsula (n = 12,448
daily cases) were obtained from the Universidad Autonoma de Yucatan (2007-2012). Data of confirmed
dengue fever cases for San Juan (n = 5678 daily cases) were provided by the Dengue Branch of the

62



Trop. Med. Tnfect. Dis, 2018, 3,5 40f16

USA CDC located in Puerto Rico and the Puerto Rico Department of Health, through the University
of Puerto Rico, Medical Science Campus. The data included the number of cases per day from 1994
to 2012. The daily incidence data were used to calculate weekly dengue cases for both locations.
These were converted to incidence rates (i.e., number of cases per 100,000 inhabitants) using data from
Puerto Rico’s Census for San Juan, and using the National Institute of Statistics and Geography for
Mexico. Total weekly observations for Puerto Rico were 986, and 310 for Mexico. These cases were
further divided into population younger than 24 years, and population younger than five years and
older than 65 years old. Total daily cases for Puerto Rico younger than 24 were n = 3466; Puerto Rico
younger than five and older than 65 years were 1 = 736; Mexico younger than 24 were n = 7908;
and Mexico younger than five and older than 65 years were n = 735.

2.2.2. Environmental Data for San Juan and Yucatan State

Precipitation and minimum and maximum air surface temperatures were obtained from the USA
National Oceanic and Atmospheric Administration’s (NOAA) National Centers for Environmental
Information (1994-2012) for San Juan. Data for Yucatan from 2007 to 2012 were obtained from
the National Water Commission of the state of Yucatan. Weekly means were calculated for these
datasets. SST data for both Puerto Rico and Mexico were obtained from the NOAA Advanced Very
High Resolution Radiometer (AVHRR; 1 km spatial resolution) satellite-based sensor. SST data were
extracted from 1994 to 2012 (Puerto Rico) and 2007 to 2012 (Mexico) using the average of three 3- by
3-pixel boxes located immediately offshore (i.e., coastal area) of the areas of study. These covered a
total of 9 km” along the coast. We used Interactive Data Language (IDL; v. 7.2) to extract data.

2.2.3. Data Input and Organization

Weekly dengue incidence rates were log-transformed and used as inputs for the predictive model.
Environmental variables used to predict dengue fever in Mexico were: humidity, cumulative one-week
precipitation, SST, population size, previous dengue incidence, minimum air temperature, and date.
For Puerto Rico, the data included: cumulative four-week precipitation, SST, population size, previous
dengue incidence, minimum and maximum air temperature, and date. Significant four-week and
one-week cumulative lags for precipitation were identified for Mexico and Puerto Rico, respectively,
using Pearson’s correlation analyses [2,43]. Selected predictors were based on previous work done in
the study areas that identified these factors as significantly correlated with dengue fever cases [2,15,44].

The models were configured to predict dengue fever outbreak occurrences of population at risk
and of the most vulnerable population segments. Mendez-Lazaro et al. [15] identified population at risk
in Puerto Rico as people younger than 24 years, and more specifically the most vulnerable to be people
younger than five and older than 65 years. These age groups were also used for Mexico, based on
dengue fever cases data and previous studies [19,45-47]. The weekly data were thus partitioned as:
Puerto Rico: population at risk n = 986 weekly cases; vulnerable population: n = 986 weekly cases.
Population at risk in Mexico: n = 310 weekly cases; vulnerable population: n = 310 weekly cases.
These numbers were similar for both population segments per location as data showed dengue fever
cases for all age-groups.

2.3. Artificial Neural Network Model Setutp

2.3.1. Training and Validation

This study implemented the ANN used for the Radar Pluvial flooding Identification for Drainage
System (RAPIDS), which was developed to predict flooding in sewer systems by the University
of Exeter and was modified to predict dengue fever outbreak occurrences [48,49]. The approach

normalizes data (e.g., natural log transformation) to make the weight values more sensitive to changes.

The ANNs models used a nondominated sorting genetic algorithm II (NSGA-II) for optimization and
training purposes [50,51]; results were validated using the leave-one-out-cross-validation (LOOCV)
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approach [51,52]. Our objective was to reduce false positives (FP) and false negatives (FN}. A weighting
factor (“a") was used within the model to provide a higher relative importance of false positive ratios
(EPR) over false negative ratios (FNR) [53]. This value minimized the number of incorrectly predicted
passes (i.e., values below thresholds). Different a-factor values were tested as part of the testing process,
and a = 3 was used for Puerto Rico and Mexico. By using this value, we weighted health risks as three
times more important.

The model runs were evaluated for accuracy and predictive power. An accuracy band was
calculated based on the percentage of true positives (TP) and true negatives (TN) compared to
false positives and false negatives (FP and FN) relative to actual observations. These values change
throughout the stages of the models and final values were an overall average based on a confusion
matrix (or error matrix). The power of the model to predict these outcomes was based on an F-measure
(FM; Equation (1)), which provided the importance of FP over FN using the weighting factor (a)
discussed above; these values ranged from 0 to 1. The area under the receiving operating characteristic
(ROQ) curve, or AuC, was also used to test model power, and this was based on TPR and TNR [51].
The ROC curve helped establish the optimal trade-off between FPR and FNR (i.e., FPR =1 — TPR) [51].

(1+a)TN

FM =
(14a)TN + aFP + FN)

(45

In addition to accuracy and model power, the strength of the relationships and relevant influence
(i.e., excitatory or inhibitory) between predictors (i.e., environmental factors) and target variable
(i.e., dengue fever outbreak occurrences) was assessed. The model weighted in environmental
factors and identified those that had the most influence to predict dengue fever outbreak occurrences.
The neural pathway strength feature selection (NPSES) method was used to identify the most relevant
inputs, by creating an ensemble of ANNs and comparing the similarities of the weight results
(i.e., pathway strength) for the model inputs [51]. Those inputs with the most similarity of pathway
strengths (i.e., the strength of relationship) across the whole ensemble of ANNs were selected as the
most relevant [51]. First, weights and biases were calculated to understand the relationship between
inputs (combined environmental factors) and outputs (dengue fever outbreak occurrences) through
NPSFS [51,54,55]. The ANN models processed data values unidirectional from inputs towards outputs,
creating these sets of weights and biases [51]. The weights were calculated for the hidden layers
(W1) and for the output layer (Wy; Figure 2). The neural pathway strengths (W) of each input were
calculated after the completion of the training using NSGA-1I, employing the NPSFS methodology
(i.e., matrix math of the ANNSs hidden layer weights matrix (W;) and ANN output layer weights vector
(W2)) to identify the most influential factors [47]. Each of the members of the ensemble is trained on
a similar but different subset of the full training data set. As a result, the weights obtained in each
ANN will have different values. The net effect of each input was analyzed by NPSFS, by multiplying
Wy to Ws, as shown above. Therefore, for a single output ANN, the result is a vector that specifies
the combined pathway strength of each input on the output (neglecting non-linearity of activation
functions). These weights were then combined through the combined neural pathway strength analysis
(CNPSA) by looking at the spread of the pathway strengths for each input, where we identified if
the majority of these treated the given input in the same sense, excitatory or inhibitory [54,55]. I so,
we say that the input is relevant to predict potential dengue fever outbreak occurrences.

These weights were optimized using the crossover and mutation rates, incorporated by NSGA-II,
during the training period [48]. The NSGA-II crossover and mutation rate factors helped differentiate
each new weight generation from the parent weight generation for predictive purposes [51]. Different
crossover and mutation rates were tested iteratively. The optimal values to predict dengue fever outbreak
occurrences were a 0.1 crossover rate and (.2 mutation rate for both locations. The minimization of cost
(ie., cost function) was based on false positive rates and false negative rates. These were derived by the
ROC using the minimum Euclidean distance to the ideal true positive ratio equal to one [56]. These were
used for optimization by NSGA-II to assess the quality of solutions [51,56].
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Figure 2. Artificial neural networks (ANNs) schematic, Example of an ANN schematic showing the
input layer, hidden layer, and output layer. ANNs calculate weights from variables (Zy,) in the input to
hidden layer (W). The hidden layer then combines these weights and calculates a new set of weights
(W3). The neural pathway strengths (W) are then calculated, with the equation above the schematic
(W1 x Wy = Wj), to obtain the strength of influence to predict outcomes, following Duncan et al. [51]
and Duncan [56].

Training, validation, and testing of dengue fever outbreak occurrences was achieved by dividing
the data from Puerto Rico and Mexico into different epochs (i.e., years). Model sample sizes were
identified as follows: Puerto Rico less than 24 years (Npro4), Puerto Rico younger than five and older
than 65 years (Npgs.¢5), Mexico younger than 24 (Nyxo4), and Mexico younger than five and older than
65 years (Nyxs-¢5). For Puerto Rico, the first ten epochs of data were divided into eight for training and
two for validation. The validations were done every fifth epoch. The following seven epochs had six
for training and one for validating. Validation was done every third epoch. The last two epochs of data
were used for testing. Therefore, we had 14 epochs for training (Npgros = 1950 daily cases; Npgs.q5 = 437
daily cases), three epochs for validating (Npprag = 609 daily cases; Npgs.¢s = 140 daily cases), and two
epochs for testing (Nprzg = 907 daily cases; Nprs.as = 159 daily cases), for a total of 19 epochs.

Due to the shorter time series, some of the years/epochs for the Yucatan dataset were divided
into two (i.e., 26 weeks/epochs each), totaling 12 epochs. The first ten epochs were divided into eight
training epochs and two validating epochs; this was done by training three consecutive epochs and
using the fourth as validation. The last two of those ten epochs were used as training, and epochs 11
and 12 were testing epochs. There was a total of six epochs for training (Nyx24 = 2169 daily cases;
Naps.es = 187 daily cases), two epochs for validating (Nypxos = 1643 daily cases; Nyxs.5 = 89 daily
cases), and two epochs for testing (Nymea = 4096 daily cases; Naxs 5 = 459 daily cases). These divisions
ensured that data for training and validation were different from those used for the final testing
of predictions.

2.3.2. Thresholds to Identify and Predict Potential Dengue Fever Qutbreaks

Specific thresholds were identified for Mexico and Puerto Rico to predict potential outbreaks
based on dengue fever outbreak occurrences. The number of cases was divided into three periods
for a full year (52 epidemiological weeks): pre-epidemic (weeks 10-20); epidemic (weeks 21-40);
and post-epidemic (weeks 41-49) for Puerto Rico, based on the work of Mendez-Lazaro et al. [15].
This same distribution was used for Mexico, based on weekly dengue cases data from 2007 to 2012
(Figure 3) [2]. The periods were identified based on the distribution of cases, where the pre- and
post-epidemic periods showed a slow increase and decrease in number of cases, respectively, and the
epidemic period was when the majority of the cases were observed. The average number of cases
during those periods was then calculated.

To provide an epidemic threshold for the model, the 75th percentile of all weekly cases per year was
calculated for each period and age-distributions. The 75th percentile for the threshold has been used and
identified by previous studies as the cutoff for threshold selection regarding infectious diseases [57-59].
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Dengue fever epidemics were identified as three or more suspected cases (per 1000 individuals) for two
consecutive weeks [15]. These threshold numbers represent the number of cases per week. The following
thresholds were obtained and used in the models. For Puerto Rico, population younger than 24 years:
2 (pre-epidemic), 6 {(epidemic), and 5 (post-epidemic); and population younger than five and older than
65 years: 1 (pre-epidemic), 2 (epidemic), 1 (post-epidemic). For Mexico: population younger than 24 years:
2 (pre-epidemic), 33 (epidemic), and 13 (post-epidemic); and for population younger than five and older
than 65 years: 1 (pre-epidemic), 6 (epidemic), and 4 (post-epidemic). The models compared the observed
and predicted values to each of these thresholds to identify them as a ‘no outbreak period’ (i.e., value below
threshold) or a ‘potential outbreak period” (i.e., value above thresholds). These models were run as
categorical models; therefore, the results were interpreted based on the influence, and magnitude, of inputs
to predict a potential outbreak based on the specific thresholds mentioned above. Therefore, the results are
shown as inputs having an (inhibitory or excitatory) influence on outputs in terms of outputs crossing the
set thresholds.

A) Dengue incidence rates - Puerto Rico
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Figure 3. Dengue fever incidence rates distributions for San Juan, Puerto Rico and the northwest region
of Yucatan, Mexico. Dengue incidence rates per 100,000 inhabitants from 2007 to 2012 for (A) San Juan,
Puerto Rico; and (B) northwest coast of Yucatan, Mexico. Data only includes these years to show
patterns and epidemic years, which for both locations were 2007 and 2011. The three shaded gray
boxes represent the pre-epidemic (weeks 10-20), epidemic (weeks 21-40), and post-epidemic (weeks
41-49) periods.

3. Results

3.1. Model Accuracy

The accuracies of the predictions for both locations were similar, with predictions for the ‘no
outbreak periods” having a higher accuracy compared to predictions for the ‘potential outbreak
periods’. Model accuracy bands for San Juan, Puerto Rico were 47% for the population at risk model
(i.e., younger than 24 years), and 58% for the vulnerable population model (i.e., younger than five
and older than 65 years). More specifically, the 47% accuracy band for the population at risk model
represented a prediction of 19% of the ‘potential outbreak periods” and 28% of the ‘no outbreak
periods’. The model representing the most vulnerable population, with an accuracy band of 58%,
represented a prediction of 17% of the ‘potential outbreak periods’ and 41% of the ‘no outbreaks
periods’. These models showed a higher accuracy band for periods of ‘no outbreaks” compared to
‘potential outbreak periods’.
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A similar pattern was observed for models in Mexico. The population at risk model in Mexico
showed an accuracy of 51%, which represented an accurate prediction of 12% of “potential outbreaks
period” and 39% of predicted ‘no outbreaks periods’. The most vulnerable population model showed a
66% accuracy band, representing 5% of predicted “potential outbreak periods’ and 61% of ‘no outbreak
periods’. In both instances, the four models showed a higher accuracy for the ‘no outbreak period’
compared to “potential outbreak period’, and the accuracies were higher for the most vulnerable
population models compared to the population at risk models.

3.2. Evaluation of ANNs Model Predictive Power Based on F-Measure and ROC Curve

The overall power for the four model runs was above 70%. This was based on ROC curves
and FM. ROC curves were calculated for all four model runs (Figure 4A-D) using the weights (Wp)
calculated by the ANN ensembles. The population at risk medel for San Juan showed an FM of 0.97
and an AuC of 0.91. The most vulnerable population model showed an FM of (.71 and an AuC of 0.81.
Overall, these models showed a predictive power greater than 90% and 70% for San Juan. Conversely,
the population at risk model showed a higher predictive power compared to the most vulnerable
population model.
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Figure 4. Performance of model to predict dengue fever outbreak occurrences. Graphs show the
receiver operating characteristic (ROC) curve results of the four artificial neural network models for
San Juan and Mexico. Dashed lines are the calculated true positive ratios (TPR) and false positive
ratios (FPR) for all four models. The areas under the curves (AuC) were calculated based on TPR/FPR
ratios and F-measures (FM) describe the importance of false positives over false negatives. These AuC
and FM values show models’ power [55]. AuC and FM were calculated for: (A) population younger
than 24 years, Mexico; (B) population younger than five years and older than 65 years, Mexico;
(C) population younger than 24 years, Puerto Rico; and (D) population younger than five years and
older than 65 years, Puerto Rico.
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Model runs for Yucatan showed similar results as those for San Juan, with the overall power
above 70 percent. The population at risk model showed an FM of 0.80 and an AuC of 0.88. The most
vulnerable population model showed an FM of 0.73 and AuC of 0.90. However, the overall power for
the population at risk model was higher and numbers were closer compared to the power obtained
by the most vulnerable population model; thus, these results are consistent with those observed
in Puerto Rico. A series of baseline multiple linear regression (MLR) models were also evaluated.
The results showed that ANN models had a higher statistical power compared to MLR models using
the same data approach (Supplementary Materials, Tables S1-54).

3.3. Environmental Factors Relevant for Dengue Fever Outbreak Occurrences Predictions

The models result showed that both environmental factors and demographic variables had an
important influence on dengue fever predictions, based on weights calculated through the NPSFS
method. These weights (W) represented the strength of the relationship between inputs and outputs,
and those variables identified as the most influential had values different than zero. Therefore,
those parameters with weights equal to zero were those having no influence on predicting dengue
fever outbreak occurrences for Mexico and Puerto Rico. Furthermore, these environmental factors
were identified as having an excitatory (represented by positive weights) or inhibitory (represented
by negative weights) influence. For example, Figure 5 shows previous dengue cases as having an
inhibitory influence on predicting dengue fever outbreak occurrences. This means that, overall,
previous dengue cases inhibit dengue fever outbreak occurrences to cross the set thresholds (i.e., pass).
Similarly, population size shows an excitatory influence, meaning that this variable stimulates dengue
fever outbreak occurrences to cross the outbreak threshold (i.e., fail).

Weights with the most overall influence identified by ANNSs in Mexico for the population at risk
model were previous dengue cases, minimum air temperature, population size, cumulative one-week
lag precipitation, and SST (Figure 5A). However, for the most vulnerable population model, previous
dengue cases and population size were the most influential, and other factors only slightly influenced
dengue fever outbreak occurrences (Figure 5B). The model runs for Puerto Rico showed that the most
influential parameters overall for dengue fever were previous dengue cases, population size, date,
and maximum air temperature for the population at risk model (Figure 5C). The model for the most
vulnerable population showed population size, previous dengue cases, and maximum temperature as
the most influential factors (Figure 5D). The models for Puerto Rico showed a wider spread of weights
compared to those for Mexico. Overall, all four model runs had previous dengue fever and population
size as the two variables with the most influence on predicting dengue fever in both study areas.
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C) Dengue Puerto Rico: Younger than 24 years D) Dengue Puerto Rico: Younger than 5 years and older
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Figure 5. Distribution of environmental factors weights in the ANN5 to predict dengue fever outbreak
occurrences in Mexico and Puerto Rico. The box and whiskers plots show the influence of each
environmental factor on dengue fever outbreak occurrences predictions based on weights distributions
(Wp) calculated by the ANNs" models. Boxes show the distribution of weights, lines inside the
boxes are the mean values of weights. Zero lines represent no relevance for predicting dengue fever
outbreak occurrences. These weights are shown in order of importance for: (A) population younger
than 24 years, Mexico; (B) population younger than five years and older than 65 years, Mexico;
(C) population younger than 24 years, Puerto Rico; and (D) population younger than five years and
older than 65 years, Puerto Rico.

4. Discussion

4.1. Most Relevant Environmental and Social Factors Influencing Dengue Fever Outbreak Occurrences

Dengue fever cases are influenced by a series of environmental and demographic parameters [60-62].
Precipitation, air temperatures, and social factors (i.e., previous dengue cases and population size)
were the most influential to predict dengue fever outbreak occurrences in both the Yucatan and
San Juan. These factors influence dengue fever elsewhere [2,15,63]. Precipitation and temperatures
(i.e., maximum and minimum temperatures) are related to the timing of the mosquitoes” development
and virus replication. Dengue fever outbreak occurrences follow precipitation patterns as these provide
breeding sites. Warmer temperatures also reduce the developing time of mosquitoes and help increase
their densities [3,64,65].

The most influential inputs for predicting dengue fever were those related to demographic
changes. Overall, the most relevant factors in predicting dengue fever outbreak occurrences in Yucatan
and San Juan were population size, previous dengue incidence, and air temperatures. Changes in
population is a key factor influencing virus spreading and further peaks in cases [17,19]. These factors
have been demonstrated as drivers in other regions [2,15,44,63]. The relationship between population
changes and an increase in dengue fever cases can be due to more people being susceptible to dengue
fever (e.g., had never been exposed to the virus; [13,66]).

The second demographic parameter identified as most influential was ‘previous dengue cases’.
While this can be affected by changes in population size, this factor could be lower because of increased
immunity with time [67,68]. Nevertheless, decreased immunity due to other factors like hygiene and
age, as well as shifts in serotypes, can lead to peaks in dengue fever outbreak occurrences due to
secondary infections [69,70].

Air temperatures showed a significant influence on predicting dengue fever outbreak occurrences
in both study areas. An increase in minimum air temperature can promote mosquito development [2,3],
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but as it becomes warmer than normal, their development slows down or is inhibited [68]. Increased
air temperature is highly correlated with increased mosquito bites due to the animal’s energy demands,
leading to higher probabilities of humans becoming infected [71]. Only the model for population at
risk for Yucatan showed SST as slightly influential on predicting dengue fever outbreak occurrences,
so this factor was not very important relative to those mentioned above for these coastal regions. Lastly,
date was also identified as a significant factor by the models. This is related to the cyclic pattern that
dengue fever cases show across the Americas. Clearly, there is a correlation and lack of independence
between date and seasonality of precipitation patterns [72-75].

4.2. ANNs Model Performance on Predicting Dengue Fever in Mexico and Puerto Rico

The overall power of 70% was obtained through the combination of these variables. This builds
upon previous work, where ANN modeling power ranged from 60 to 80% [32-35]. These power
results were also higher compared to multiple linear regression models. By modeling two population
segments, those considered vulnerable and those considered at risk, these models were able to
identify specific variables that were most influential to understand dengue dynamics depending on
susceptibility. The main differences seen in power and accuracy among these models could be due to
those younger than 24 years old being at risk due to social mobility (e.g., work, school, home), and those
considered most vulnerable could be due to biclogical conditions such as leakage of plasma (e.g., those
less than five years old having a lower threshold for fluid escape from intravascular to extravascular
space; [76]) and chronic degenerative diseases (i.e., greater than 65 years old; [77]). Therefore, models
identifying demographics as the most influential could be due to: (1) primary infections based on
exposure (i.e., population susceptibility; [78]); (2) secondary infections [79]; (3) geographic locations
(e.g., houses without protection, such as windows and doors screens; [2,80]; and (4) public services
(e.g., trash pick-up, drainage cleaning; [79,80]). Similarly, simultaneous circulation of more than one
serotype can increase peaks in cases [19,77,79].

The power calculated by the ANN models, through AuC and FM, accounted for the ratios of true
positives and true negatives compared to false positives and false negatives, as shown in Equation (1),
and was improved by the weighting factor. On the other hand, the accuracy band only looked at the
predicted values individually compared to the original values, where percentages might be affected by
the number of pass/fail in the original observations. Therefore, we see a difference between accuracy
and power due to the methodology, where the models’ powers were based on the rate and capability
of them to predict potential dengue fever outbreaks. Dividing the data into three periods to predict
dengue fever outbreak occurrences (i.e., pre-epidemic, epidemic, and post-epidemic) could have
also influenced the outcomes of the models. The magnitudes of cases during these periods changed
annually. These differences across years are influenced by those factors discussed above (e.g., social
factors and epidemiology). Thresholds used for this study were identified using data available for
Puerto Rico and Mexico during those specific timeframes. Including longer, or shorter, datasets
can influence these thresholds depending on dengue fever dynamics, as these tend to be location
specific [81,82].

4.3. Study Limitations and Future Work

There were many factors that were not considered in defining the predictive capacity of the
ANN models. This includes population susceptibility to dengue fever (e.g., serotypes, population
movement). Te be able to accurately identify risk and vulnerability to dengue fever outbreak
occurrences, the serotype(s) circulating must be known [13,22,83-85]. When there is a shift in serotypes,
those who had not been previously exposed to the new one become more vulnerable, leading to an
increased incidence of dengue fever [66,67]. This is also observed in the different peaks per years,
where environmental variables are not the only factors influencing these strengths, thus affecting the
accuracy of these models.
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Changes in population segments considered at risk and vulnerable may also lead to differences.
People that had never been exposed to dengue fever can be part of one of these two population
segments, and this was not considered due to data limitations. The thresholds used for the three
periods that the data were divided into could have affected the prediction capability of the models
and future studies might need to consider different thresholds according to vulnerable population,
populations at risks, and geographic locations, as well as circulating serotypes. Lastly, Puerto Rico
had 19 years of data, whereas Mexico had six years; however, both study areas provided equivalent
results. Future studies should consider expanding these time series to better understand temporal and
spatial differences across dengue fever endemic areas, as well as applying ANNS in this area to predict
coming seasons.

5. Conclusions

Modelling dengue fever using environmental and demographic factors with a nonlinear neural
network approach can help predict dengue fever incidence rates in Mexico and Puerto Rico with a
power greater than 70 percent. Four model runs, two for population at risk and two most vulnerable
population in Yucatan, Mexico and San Juan, Puerto Rico, identified precipitation, population size,
air temperature, previous dengue cases, and date as the most influential factors that predict dengue
fever outbreak occurrences. Demographic factors, including population size and previous dengue
cases, were of most importance. Understanding behavior of the population and education programs
can help improve the effectiveness of early warning systems in this region and mitigate the disease.
Further studies are needed to incorporate vector and dengue fever virus dynamics into models, as these
can help improve the skill of simulations and understand similar diseases that depend on climate and
environmental changes.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2414-6366/3/1/5/s1,
Table 51. Mexico multiple linear regression model for population younger than 24 years old. Bold values are
significant with 95% certainty (o = 0.05). Parametric and non-parametric p-values are included. Power of these
models (%) are shown above the table, Table 52. Mexico multiple linear regression model for population younger
than five and older than 65 years old. Bold values are significant with 95% certainty (x = 0.05). Parametric and
non-parametric p-values are included. Power of these models (r?) are shown above the table, Table $3. Puerto Rico
multiple linear regression model for population younger than 24 years old. Bold values are significant with 95%
certainty (& = 0.05). Parametric and non-parametric p-values are included. Power of these models (r?) are shown
above the table, Table 54. Puerto Rico multiple linear regression model for population younger than five and
older than 65 years old. Bold values are significant with 95% certainty (« = 0.05). Parametric and non-parametric
p-values are included. Power of these models (+?) are shown above of the table.
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Application of Artificial Neural Networks for Dengue
Fever Outbreak Predictions in the Northwest Coast of
Yucatan, Mexico and San Juan, Puerto Rico

Abdiel E. Laureano-Rosario, Andrew P. Duncan, Pablo A. Mendez-Lazaro,
Julian E. Garcia-Rejon, Salvader Gomez-Carro, Jose Farfan-Ale, Dragan A. Savic and
Frank E, Muller-Karger

Table S1. Mexico multiple linear regression model for population younger than 24 years old. Bold values
are significant with 95% certainty (« = 0.05). Parametric and non-parametric p-values are included. Power
of these models (+2) are shown above the table.

Mexico younger than 24 years (#2 = 0.85)

Parametric Non- parametric

Variable b t-stat p-value p-value
Date -327.54  -1.39 0.166 0.102
Humidity 1.02 3.01 0.003 0.002
SST 111 151 0.132 0.114
Precipitation 1-week lag 0.07 3.55 0.000 0.002
Population -30.08 -1.75 0.081 0.018
Minimum air temperature 116 3.67 0.000 0.002
Previous dengue cases 546 2497 0.000 0.002

Table 52. Mexico multiple linear regression model for population younger than 5 and clder than 65 years
old. Bold values are significant with 95% certainty (x = 0.05). Parametric and non-parametric p-values are
included. Power of these models (#2) are shown above the table.

Mexico younger than 5 and older than 65 years (r? = 0.84)

Parametric Non-parametric
Variable b t-stat p-value p-value
Date -79.89  -0.43 0.668 0.654
Humidity 0.44 1.64 0.103 0.220
SST 0.19 0.33 0.743 0.612
Precipitation 1-week lag 0.04 2.97 0.003 0.040
Population -11.35 -0.84 0.404 0.364
Minimum air temperature 0.58 233 0.021 0.038
Previous dengue cases 10.37  26.36 0.000 0.002
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Table S3. Puerto Rico multiple linear regression model for population younger than 24 years old. Bold
values are significant with 95% certainty (a = 0.05). Parametric and non-parametric p-values are included.
Power of these models (2) are shown above the table.

Puerto Rico younger than 24 vears (v = 0.74)

Non-
Parametric p- parametric
Variable b t-stat value p-value

Date -3.62 295 0.003 0.002
SST 0.07 192 0.055 0.046
Precipitation 0.00 -1.13 0.258 0.282
Population -0.19 634 0.000 0.002
Minimum air temperature 0.03 084 0.400 0.370
Maximum air temperature -0.03  -0.80 0.425 0.394
Previous dengue cases 0.05 4194 0.000 0.002

Table $4. Puerto Rico multiple linear regression model for population younger than 5 and older than 65
years old. Bold values are significant with 95% certainty (x = 0.05). Parametric and non-parametric p-
values are included. Power of these models (r2) are shown above the table.

Puerto Rico younger than 5 and older than 65 years (¥ = 0,33)

Non-
Parametric p- parametric

Variable b t-stat value p-value
Date -42.24 221 0.027 0.030
SST 0.05 0.09 0.928 0.976
Precipitation 0.01 0.42 0.678 0.654
Population -1.60  -3.37 0.001 0.002
Minimum air temperature 1.70 2.88 0.004 0.012
Maximum air temperature -0.19  -0.31 0.756 0.810

Previous dengue cases 038 16.04 0.000 0.002
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Artificial Neural Networks better predict exceedances of recreational water quality criteria at
Escambron Beach, San Juan, Puerto Rico
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Abstract

Predicting recreational water quality is key to protecting public health from exposure to
waslewaler-associaled pathogens. It is not [easible to monitor recreational waters for all
pathogens; therefore, monitoring programs use fecal indicator bacteria (FI1B), such as
enterococcli, to identify wastewater pollution. Artificial Neural Networks (ANNs) were used to
predict when culturable enterococci concentrations exceeded the U.S. Environmental Protection
Agency (U.S. EPA) Recreational Water Quality Criteria (RWQC) at Escambron Beach, San
Juan, Puerto Rico. Ten years of culturable enterococci data were analyzed together with satellite-
derived sea surface temperature (SST), direct normal irradiance (DNI), turbidity, and dew point,
along with local observations of precipitation and mean sea level (MSL). The factors identified
as the most relevant for enterococci exceedance predictions based on the U.S. EPA RWQC were
DNI, turbidity, cumulative 48 h precipitation, MSL, and SST; they predicted culturable
enterococci exceedances with an accuracy of 75% and power greater than 60% based on the
Receiving Operating Characteristic curve and F-Measure metrics. Results show the applicability

of remote sensing data and ANNSs to predict recreational water quality at Escambron Beach.
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Future work should incorporate local sanitary survey data in order to better predict risky

recreational water conditions and protect human health.

Keywords

Bathing water quality; enterococci; machine learning; remote sensing; water quality prediction

Introduction

Recreational water quality monitoring programs exist worldwide to protect humans from
potential exposure to pathogens and are based upon fecal indicator bacteria (FIB; Colford er al.
2007). The FIB monitored varies across latitudes and water types, where Escherichia coli, fecal
coliforms, and Enferococcus spp. are most common (Colford et al. 2007; U.S. EPA 2012), and
can be correlated with illness in areas with known fecal contamination sources at temperate
latitudes (e.g., ~ 33.4°N-37.8°N; Colford et al. 2012; Boehm & Sassoubre 2014). In the U.S., the
Environmental Protection Agency (U.S. EPA) monitors Enterococcus spp. in recreational marine
waters. Based on the 2012 Recreational Water Quality Criteria (RWQC), enterococei cannot
exceed the geometric mean of 35 colony forming units (CFU) per 100 mL, which represents 36
illnesses per 1000 primary contact recreators (U.S. EPA 2012). This value was then modified to
70 CFU/100 mL based on the Beach Action Value (BAV), recommended by the U.S. EPA
National Beach Guidance and Required Performance Criteria for Grants (U.S. EPA 2014). These
guidelines were adopted by the Puerto Rico Environmental Quality Board (PREQB), where they
monitor recreational water qualily around the island of Puerto Rico biweekly in accordance with
the 2000 U.S. Beaches Environmental Assessment and Coastal Health Act (U.8. EPA 2000;

Cordero e/ al. 2012) and other water quality standards of Puerto Rico (PREQB 2010).
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Escambron Beach is located in San Juan, Puerto Rico and is one of the most visited beaches
in the region. Escambron Beach is within the Rio Piedras watershed (Diaz 2007; Lugo et al.
2011) and has a stormwater drainage outfall (18.46°N, 66.09°W), which discharges rainwater,
agricultural runoff, and other greywaters (Diaz 2007). This FIB point source and the Bayamon
Regional and Puerto Nuevo Regional wastewater treatment plant (WW'TP; primary wastewater
treatment) ocean outfall, located 5 km offshore, are the most prominent point sources of fecal
pollution at the beach (Ortiz-Zayas ef af. 2006). The nearby Rio Grande de Loiza river mouth
also discharges human and non-human fecal pollution to the coastline (Quifiones 2012; Garcia-
Montiel ef al. 2014). In addition to the impact of known fecal pollution sources, culturable
enterococci concentrations are influenced by environmental factors (Sanchez-Nazario et al.
2014; Laureano-Rosario et al. 2017). Such factors include: precipitation through increased runoft
(Cordero ef al. 2012); solar radiance bacterial inactivation (Maraccini ef al. 2012; 2016);
turbidity being a source of FIB or protecting them [rom ultraviolet (UV) light (He & He 2008;
Shibata et al. 2010); and the resuspension of FIB in sediment reservoirs through increased winds
and waves (Byappanahalli ef al. 2012; Feng et al. 2013).

Predicting when FIB exceed water quality criteria has been a management goal and
researchers have approached this using a variety of mathematical methods (e.g., linear and
nonlinear statistical modelling). Some studies have applied linear models to understand FIB
relationships with environmental factors; however, these complex interactions may not be
adequately characterized by linear models, which typically describe less than 50% of the
variability (Gonzalez & Noble 2014; Laureano-Rosario et al. 2017). Furthermore, previous
modelling efforts lacked infrastructure and human activities data (i.e., land use); consequently,

they did not accurately predict FIB concentrations (Rochelle-Newall ez al. 2015). FIB vary
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depending on location, sources, and environmental factors; thus, a nonlinear approach is more
appropriate due to FIB complexity and relationship with multiple parameters. Thus, nonlinear
modelling is essential to understanding the complex relationships between environmental
variations and FIB.

Studies using nonlincar methods, mostly based on machine learning, focused on relationships
between FIB and environmental factors to predict recreational water quality (He & He 2008).
These studies used different methods, such as artificial neural networks (ANNS), decision trees,
and Monte Carlo approaches to predict recreational water quality in both marine and freshwaters
(Jiang er al. 2013). These models take into account non-continuous relationships by creating a
nonlinear combination of predictors to assess their relationship with FIB. For example, He & He
(2008) applied ANNs and predicted FIB in recreational waters based on specific environmental
factors (e.g., turbidity, pH, temperature). Similarly, Chebud et al. (2012) applied ANNs and
lorecasted waler qualily parameters (e.g., chlorophyll-a, turbidity, total phosphorus) in Florida,
US. Our study helps fill research gaps in the Caribbean for recreational water quality predictions
using ANNG in the context of environmental variability.

Since ANNs do not assume functional relationships between environmental factors and FIB
and are self-driven data-adaptive methods, they can identify nonlinear, functional relationships
between FIB and environmental factors. Forecasting recreational water quality can greatly
improve the management of recreational waters as managers are able to overcome the time-lag
associated with routine beach water quality monitoring (Enns ef /. 2012; Thoe et al. 2014).

Even though ANNs have been widely applied to predict bathing water quality throughout the
world, our study expands on this by using long-term ocean color satellite-derived data together

with in situ bacterial sampling in Puerto Rico. This study implemented an ANNs approach, based
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upon ten years of culturable enterococci concentration data together with in sity and satellite-
derived environmental data, to predict recreational water quality at Escambron Beach, San Juan,
Puerto Rico. More specifically, the model was developed using satellite-derived direct normal
irradiance (DNI), turbidity, sea surface temperature (SST), and dew point with local observations
ol mean sea level (MSL), and cumulative precipitation from 24 h up to 120 h. The objectives of
this study were: 1) to identify the most relevant environmental factors to predict culturable
enterococei RWQC exceedances at Escambron Beach from 2005-2014; 2) to show the
applicability of nonlinear modelling for early warning system based on ANNs; and 3) show the
benefit of incorporating remotely sensed data.

The results of this study can help understand the complex relationship between
environmental factors and FIB in the Caribbean, with the aim of predicting exceedances and

helping with management and mitigation of recreational water quality standards.

Materials and methods
Escambron Beach, San Juan, Puerto Rico

This study took place at Escambron Beach (Figure 1), one of the most popular beaches of
San Juan, Puerto Rico (18.47°N, 66.08°W). This beach has a year-long swimming season. The
municipality of San Juan (17.92°N-18.52°N, 65.62°W-67.28°W) has a tropical climate. In San
Juan, the annual average precipitation is ~1800 mm and average air surface temperatures range
between 24-29 °C. The study area is potentially influenced by the following sources of fecal
pollution: stormwater outfall (Diaz 2007), the Rio Grande de Loiza river (Ortiz-Zayas et al.
2006; PREQB 2007), San Juan Bay Estuary (Perez-Villalona et a/. 2015), and the Bayamon and

Puerto Nuevo Regional WWTP ocean outlall (Ortiz-Zayas et af. 2006; PREQB 2007; 2011).
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Figure 1. Escambron Beach is located in San Juan, Puerto Rico. The inset map shows a

stormwater outfall (pentagon), which is located on the beach, bathrooms (bathroom symbol), and
sampling sites (triangles). The Rio Grande de Loiza river mouth (river symbol) discharges 22 km
cast of the beach. The combined ocean outfall, discharging primary-treated domestic wastewater

(outfall symbol), is 5 km from the study site and discharges at 40 m depth.

Culturable enterococci data
Culturable enterococci data for Escambron Beach were downloaded from the U.S. EPA
Storage and Retrieval data warehouse (2005-2012). Data were for two sites separated by a

distance of ~100 m. This dataset was extended from 2012 to 2014 with data provided by
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PREQB; thus, a total of ten years of data were used (7 = 273 observations for both sites
combined). The culturable enterococci data were generated by the PREQB using U.S. EPA
method 1600 and had a detection limit of 4 CFU/100 mL. All enterococci concentrations
described as below the limit of detection were substituted by the next highest concentration (e.g.,
3 CFU/100 mL; Laurcano-Rosario ef al. 2017). Biweekly (i.e., every other week) geometric
means, commonly used due to bacterial variability, were then calculated combining the
concentrations from both sampling sites. These geomelric means were used in all further

analyses.

Satellite-derived and in sifu environmental data

Daily precipitation data were obtained from the U.S. National Oceanic and Atmospheric
Administration (NOAA) National Center for Environmental Information from 2005-2014. DNI
and dew point were obtained from the U.S. National Solar Radiation Database (2005-2014; 30-
min temporal resolution and 4 km spatial resolution). MSL was obtained from the University of
Hawaii Sea Level Center from 2005-2014. Day- and night-time SST were obtained from the
U.S. NOAA Advanced Very High Resolution Radiometer (1 km spatial resolution) from 2005—
2014. Data were extracted using the average of three 3- x 3-pixel boxes, for the north coast of
San Juan, Puerto Rico. Interactive Data Language (IDL; v. 7.2) was used to extract data. Remote
sensing reflectance at 645 nm (R 645; Chen et al. 2007) was used as a proxy for turbidity from
the NASA Moderate Resolution Imaging Spectroradiometer (MODIS-Terra; 250 m spatial
resolution). Data were extracted using MATLAB (v. 2014b; The MathWorks Inc., Natick, MA,
2000); the average of two 3- x 3-pixel boxes was used for turbidity for this coastal region. The

environmental variables included in the model to predict culturable enterococci exceedances
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were: MSL, cumulative precipitation for 24 h, 48 h, 72 h, 96 h, and 120 h, SST, DNI, dew point,

and turbidity. These variables were normalized for predictive purposes.

Artificial Neural Network model setup
Training, validation, and testing

The Radar Pluvial flooding Identification for Drainage System (RAPIDS) approach was
implemented, which is based on ANNs (Duncan ef al. 2011, 2013), to train, validate, and test the
Escambron Beach recreational water quality model. This model was also used to predict bathing
waler quality in previous studies in the United Kingdom (Duncan 2014). The ANNs model used
the non-dominated sorting genetic algorithm II (NSGA-II; Deb er al. 2002) for optimizing and
training. Data were subsequently validated using the Leave-One-Out-Cross-Validation
(LOOCYV) approach. The model included a weighting factor («), which minimized the number of
incorrectly predicted passes (i.e., values below thresholds; false positive ratios [FPR]) (Stidson er
al. 2012). During the testing stage, a series of weighting factors (a) were tested, where the best
and the one used for culturable enterococci exceedance predictions at Escambron Beach was a =
3, weighting health risks three times more important. Accuracy was determined by the accuracy
band, which was calculated using the percentages of true positive rates (TPR) and true negative
rates (TNR)} compared to FPR and FNR. We used the F-measure (FM; Eq. 1) as one of the power
metrics, providing the importance of false positives (FP) over false negatives (FN) through the
weighting factor (¢). By emphasizing the importance of FP, we reduce model misclassilications
that could lead to potential health risks (i.e., saying that is safe to swim when bacterial
concentrations are indeed higher). The second power meltric used was the area under the
Receiving Operating Characteristic (ROC) curve or AuC; this curve was based on the ratios of

true positives (TP) and true negatives (TN) (Hanley & McNeil 1982; Duncan ef al. 2013;
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Duncan 2014). The AuC helped establish the ideal trade-off between FPR and FNR (i.e., FPR =

1 - TPR).

FM = (1+a)TN
(1+a)TN+aFP+FN

(Equation 1)

Culturable enterococci concentration was used as the target variable. Environmental
variables (inputs) were weighted in to identify those that were the most relevant for predicting
culturable enterococci exceedances. A total of ten years (7.e., epochs) were included in the
model. Data from 2012 and 2013 were pooled due to missing dates. The Neural Pathway
Strength Feature Selection (NPSFS) method helped identify the most relevant inputs, through an
ensemble of ANNs and comparing the similarities of the weight results (i.e., pathway strength)
for the model inputs (i.e., environmental factors). Inputs with the most similarity of pathway
strengths for the whole ensemble of ANNs were selected as the most relevant (Duncan ef al.
2013; Duncan 2014). The strength of the relationship as well as their relevancy (i.e., excitatory

or inhibitory) to predict enterococei exceedances were identified.

ANNS calculate weights and biases to understand strengths and relationships between inputs
and outputs (Basheer & Hajmeer 2000; Duncan et a/. 2013). ANN weights were calculated for
the hidden layers (W) and for the output layer (W2; Figure 2). The final weights (Wo) were
calculated through matrix math of the ANNs hidden layer weights matrix and ANNs output layer
weights vector (i.e., Wi - W2 = Wo; Duncan ef a/. 2013; Duncan 2014). These final weights
values were used to identily the most relevant parameters through NPSFS (o predict culturable
enterococci concentration exceedances. Members of the ensemble were trained on a similar but
different subset of the full training data set. Therefore, weights obtained in each ANN had

different values. For a single output ANN, the result was a vector that specified the combined
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pathway strength of each input on the output. Combined Neural Pathway Strength Analysis
(CNPSA) was used to identify if the relationships were excitatory or inhibitory (Basheer &

Hajmeer 2000). In that case, the input is considered relevant to predict enterococci exceedances.

Turbidity V
Direct normal irradiance
Mean sea level
[nput Dew point
Precipitation 24-120 h
Sea surface temperature

n

Hidden
layer
Output W,
PREQB RwWQC
exceedance
prediction

Figure 2. The Artificial Neural Networks model schematic for predicting Puerto Rico
Environmental Quality Board Recreational Water Quality Criteria (PREQB RWQC)

exceedances at Escambron Beach, San Juan, Puerto Rico.

Crossover and mutation rates, incorporated by NSGA-IT during the training period, were used
to optimize weights. These crossover and mutation rate factors differentiated new weights

generations from the parent generation (Duncan 2014). Different crossover and mutation rate
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input values were tested; however, the crossover rate used was 0.2 and the mutation rate was 0.1,
These input rates were used as they provided the best optimization results during the predictions
of exceedances. Model’s cost function used false positive rates and false negative rates. We used
the minimum Euclidean distance to an ideal true positive ratio equal to one; these distances were
derived [rom the ROC and used for optimization by NSGA-IT to assess the quality of solutions
(Duncan ef al. 2013; Duncan 2014). Data were divided into ten epochs to ensure that the data
used for training and validation were dilTerent than the data used [or lesling predictions as
follows: epochs 1-3, 5, and 7 for training (n = 152); epochs 4, 6 and 8 for validation (» = 66); and

epochs 9-10 for testing (n = 55).

Threshold selection for culturable enterococci exceedance predictions

To predict when enterococci exceeded the PREQB RWQC for safe recreation, the threshold
selected for this study was the geometric mean concentration of 70 CFU/100 mL (PREQB 2016).
This concentration is the BAV recommended by the U.S. EPA to ensure no more than 36
illnesses per 1000 recreators and was adopted by the PREQB in 2015 (U.S. EPA 2014; PREQB
2016). The model compared the observed and predicted enterococci concentrations to this BAV
threshold and identified them as “safe for swimming” (i.e., below threshold) and “potentially
unsafe for swimming” (i.e., above BAV threshold). Results showed the influence, and
magnitude, of inputs to predict enterococci exceedances based on the specific thresholds
mentioned above. These are shown as inputs having an inhibitory or excitatory influence on
outputs regarding outputs crossing the set thresholds. Based on the 70 CFU/100 mL, we had a

total of 238 passes and 35 fails in the original data.

90



SR ST

-~ o L

220

221

222

223

224

225

226

227

228

229

230

231

Results

ANN model evaluation for accuracy and predictive power

The model predicted culturable enterococei exceedances with an accuracy band of 76% for
Escambron Beach during 2005-2014. This accuracy represented how many correct versus
incorrect predictions were obtained compared to observed values. More specifically, the 76%
accuracy band was composed of 4% accurately predicted fails and 72% accurately predicted
passes. Overall, the model accurately predicted culturable enterococci exceedances based on the
PREQB RWQC for safe recreation, with a significant power greater than 60%, where the FM

was 0.61 and the AuC was 0.74 (Figure 3).
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Figure 3. Receiving Operating Characteristic curve for Puerto Rico Environmental Quality
Board Recreational Water Quality Criteria (PREQ RWQC) exceedance predictions at Escambron
Beach, San Juan, Puerto Rico depicts the performance of the model. The dashed line depicts the
calculated true positive ratios (TPR) and false positive ratios (FPR). The area under the curve
(AuC) was calculated based on TPR/FPR ratios. The F-measure (FM) describes the power of

model and importance of false positives over false negatives (Stidson 2012).

Relevant environmental factors for culturable enterococci concentration predictions

The most relevant parameters to predict culturable enterococei concentrations at Escambron
Beach from 2005-2014 were DNI, turbidity, 48 h cumulative precipitation, MSL, and SST
(Figure 4). Only MSL and DNI showed an excitatory relationship; whereas, turbidity, 48 h

cumulative precipitation, and SST showed an inhibitory relationship, The most relevant variables
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were DNI and turbidity, where DNI showed a smaller spread of weights compared to turbidity,
These environmental factors were identified as showing either an excitatory (positive weights) or
inhibitory (negative weights) influence. For example, DNI had an excitatory influence on
predicting enterococci exceedances (Figure 4), which represented an overall stimulus of DNI on
culturable enterococci concentrations to cross the BAV threshold (i.e., fail); this is likely due to
lower values of DNI across the entire time series. On the other hand, turbidity showed an
inhibitory influence, meaning that it inhibits culturable enterococci concentrations to cross the
BAV threshold (i.e., pass). Lastly, six variables (i.e., cumulative 24 h precipitation, cumulative
96 h precipitation, date, cumulative 120 h precipilation, and dew point), which crossed the zero
line of the box and whisker plots, were not considered relevant to predict culturable enterococci

exceedances at Escambron Beach surface waters.
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Figure 4. Distribution of environmental variable weights in the ANNs model to predict
Recreational Water Quality Criteria exceedances at Escambron Beach. The box and whisker
plots show the distribution of weights from the ANNs model for each environmental factor:
Direct normal irradiance, turbidity, cumulative 48 h precipitation, mean sca level, sea surface
temperature, cumulative 24 h precipitation, cumulative 96 h precipitation, cumulative 72 h
precipitation, cumulative 120 h precipitation, and dew point. Boxes are distributions of weights,
lines inside boxes are mean values of the weights. The zero line represents no relevance for
predicting outputs. Relevance for predictions was based on weight values calculated for
predictions (Wo), multiplying those weights from the hidden layer (W) by weights from output
layer (W3). These Wy, weights represent the strength of the influence of input on output.
Environmental factors are in order of importance for predictions, such that the most relevant

variables are listed on the left.
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Discussion

This study investigated the use of a nonlinear model to predict exceedance of the PREQB
RWQC for safe recreation at Escambron Beach, San Juan, Puerto Rico. The most relevant
variables in this model were DNI, turbidity, cumulative 48 h precipitation, MSL, and SST. These
results showed that accurately predicting culturable enterococci exceedances, based on the 2014
BAYV value, at Escambron Beach can be achieved using the aforementioned environmental
variables. Notwithstanding, this model could make improved predictions by including a larger

data set and geo-referenced sanitation infrastructure data.

ANN model success for predicting exceedance of the PREQB RWQC

The ANN modelling described in this study showed the importance of identifying how
environmental conditions can influence culturable enterococci concentration, as well as the
complexity of these relationships between FIB and environmental factors. The use of ANNs to
model culturable enterococci concentrations at Escambron Beach provided an accuracy band of
76% for exceedances, with greater than 60% model power, which is higher than previous models
using linear approaches (e.g., Laureano-Rosario ef ¢l 2017), and similar to those using ANNs
for FIB predictions (e.g., He & He 2008; Chebud er «l. 2012). Modelling enterococci
exceedance at Escambron Beach was achieved by using the U.S. EPA and PREQB BAV (70
CFU/100 mL) as the model threshold concentration. By using this threshold, the model identified
35 occasions in which enterococci concentrations exceeded the BAV (i.e., model fails) in the
original data and these events were then used for predictive purposes. AuC and FM provided
model’s power and accounted for the ratios of true positives and true negatives. The accuracy
band accounted for predicted values individually compared to the original values. These

percentages might be affected by the number of passes (# = 238) and fails (# = 35) in the original
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observations. Therefore, the differences between accuracy and power are due to the methods

used when predicling enterococci exceedances.

Model improvement

Despite the high model power observed, future studies could improve upon the model created
in this study by considering FIB watershed sources and longshore currents sources. For example,
it is likely that failing sanitation infrastructure (e.g., leaky sewer pipes and septic systems)
influenced FIB at Escambron Beach (Naidoo and Olaniran 2014). Additionally, nearby river,
WWTP, as well as stormwater discharges could be a potential source of FIB throughout the year
at various levels and future studies should take them into account. Lastly, climatic conditions

vary annually, and this natural variability can affect enterococci predictions over time.

The presence of enterococci in beach sands and vegetation (e.g., seagrass, green alga;
Whitman et a/. 2003; Sanchez-Nazario et al. 2014; Halliday ef af. 2015) should also be
considered to understand how these non-fecal sources influence enterococci water concentrations
(Feng ei al. 2012, 2013). Thus, predictive models can likely be improved by the inclusion of
these data. Furthermore, there is also the need to identify other factors that might be of
importance (e.g., through microbial source tracking, different fecal indicators, infrastructure
data), to better predict these exceedances, identify when those are related to human fecal
contamination versus non-human fecal contamination versus non-fecal contamination, and

protect public health.

Most relevant environmental factors influencing Escambron Beach water quality
Culturable enterococci concentration variability in coastal areas is influenced by fecal

pollution sources, secondary, extraintestinal reservoirs, as well as by environmental factors (Viau
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et al. 2011), The current study accounted for specific environmental factors, such as DNI,
turbidity, precipitation, MSL, SST, and dew point. These environmental factors have been shown
to influence culturable enterococci concentrations, and other FIB, in temperate and tropical
environments as well as marine and freshwaters (Enns ef al. 2012; Lamparelli ef al. 2015;

Aranda et al. 2016).

As regards to environmental variables, precipitation most often explains the majority FIB
variability observed (He & He 2008; Feng ef al. 2013; Laureano-Rosario ef a/. 2017); however,
this study identified DNI as the most relevant environmental variable (Maraceini ef al., 2012;
2016). The three most influential variables predicting PREQB RWQC exceedance were DNI,
turbidity, and 48 h cumulative precipitation. DNI was the most important environmental variable
to consider for PREQB RWQC exceedance predictions, likely due to bacterial inactivation
(Maraccini ef al. 2012, 2016). Since Escambron Beach is located in a tropical setting, it is no
surprise that sunlight is one of the most influential environmental factors (Rochelle-Newall et a/.
2015). Exposure to UV light results in bacterial inactivation, and consequently, a decrease in
bacterial concentrations (Byappanahalli ef a/. 2012; Walters er ¢/. 2014). The next most
influential predictive environmental variable was turbidity, which has been documented to
protect bacteria from UV light exposure. Turbidity is also associated with increased FIB when
precipitation facilitates runoff into coastal waters (Halliday et al. 2015; Aragones et al. 2016).
Thus, the combined turbidity and DNI effects on enterococci concentrations could be the reason
why these were identified as the most relevant parameters to predict culturable enterococci

concentration exceedances.

The third most relevant parameter that predicted culturable enterococci exceedance at

Escambron Beach was 48 h cumulative precipitation. He & He (2008) also identified 24—48 h of
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cumulative precipitation as significantly correlated with FIB at Torrey Pines State Beach and San
Elijo State Beach, San Diego County, California, US. Rainfall is known to increase FIB
concentrations due to runoff (Colford ef @l. 2012), inadequately treated wastewater effluents
(e.g., septic seepage; Naidoo & Olaniran 2014), and combined sewer-stormwater systems (He &
He 2008). Since a nonlinear modelling approach was used in this study, the previously identified
holistic influence of the aforementioned environmental conditions was able to be incorporated

into the model and improved predictions were generated (Noble e al. 2004).

The least two relevant environmental variables associated with PREQB RWQC exceedance
predictions at Escambron Beach were MSL and SST. Previously at other beaches in Florida and
California U.S., increased MSL was associated with lower culturable enterococci concentrations
due to dilution and decreased MSL. was associated with higher concentrations due to
backwashing of waves and increased discharge into the coastal areas (Maraccini et al. 2012;
Feng et al. 2016). However, Escambron Beach is a low-wave action beach, with a minimal tidal
range; thus, MSL is not expected to strongly influence enterococci concentrations. In terms of
SST anomalies, warmer waters have been documented to increase bacterial replication
(Byappanahalli e/ al. 2012) and consequently, SST warm-anomalies have been shown to be
related to increased culturable enterococci concentrations in tropical settings (Pachepsky et al.
2014; Laureano-Rosario et al. 2017). Even though SST was not the most influential
environmental variable identified by the model, it still provided information to predict PREQB

RWQC exceedances.
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Conclusion

This work shows that nonlinear models help to predict water quality with relatively good
accuracy (76%). Data availability is an important aspect, especially the information regarding
coastal water quality and both anthropogenic and environmental factors, due to their influence on
FIB variability and phenology. Thus, collection of data and water quality monitoring programs
are important to better understand FIB variability. Through modelling culturable enterococci

concentration exceedances, this study found:

¢ The most relevant parameters to predict culturable enterococci surface water
concentrations at Escambron Beach from 2005-2014 were DNI, turbidity, cumulative 48
h precipitation, MSL, and SST.

e ANNSs were able to predict enterococei concentration exceedances at Escambron Beach
with an accuracy of 76% and a power greater than 60%, which is higher than most
statistical linear models.

e Among the environmental variables evaluated, DNI, turbidity, and 48 h cumulative
precipitation showed the highest influence on predicting culturable enterococci
concentrations at Escambron Beach, which represent their holistic influence on
enterococci concentrations FI1B.

¢ Only DNI and MSL showed a positive influence, whereas turbidity, 48 h cumulative
precipitation, and SST showed an inhibitory (negative) influence on predicting culturable
enterococci concentrations at Escambron Beach.

¢ Model predictive power may be improved by including sanitary survey data (e.g., septic
system density), as well as other data describing enterococci sources, such as algal and

seagrass coverage, and stormwater and river discharges.
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