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Abstract

Quandles are distributive algebraic structures originally introduced independently by David

Joyce [33] and Sergei Matveev [43] in 1979, motivated by the study of knots. In this

dissertation, we discuss a number of generalizations of the notion of quandles. In the first

part of this dissertation we discuss biquandles, in the context of augmented biquandles, a

representation of biquandles in terms of actions of a set by an augmentation group. Using

this representation we are able to develop a homology and cohomology theory for these

structures.

We then introduce an n-ary generalization of the notion of quandles. We discuss a num-

ber of properties of these structures and provide a number of examples. Also discussed are

methods of obtaining n-ary quandles through iteration of binary quandles, and obtaining

binary quandles from n-ary quandles, along with a classification of low order ternary quan-

dles.

We build upon this generalization, introducing n-ary f -quandles, and similarly discuss

examples, properties, and relations between the n-ary structures and their binary counter

parts, as well as low order classification of ternary f -quandles. Finally we present coho-

mology theory for general n-ary f -quandles.
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Chapter 1

Introduction

In this chapter, we give a brief overview of quandles, as well as f -quandles, a generaliza-

tion of quandles, their history and connections to knot theory. Following a brief discussion

of the history of quandles, we will discuss their structure, and their accompanying coho-

mology theory. Our introduction will conclude with a discussion of the motivation behind

the n-ary generalizations of these structures, as well as an overview of the organization of

this dissertation. Throughout this section we will state many definitions that form the basis

of the work presented in this dissertation.

1.1 History

The term quandle first appeared in the 1979 Ph.D. thesis of David Joyce, published in

1982, [33], followed by a separate work by Sergey V. Matveev [43]. Joyce and Matveev

introduced the knot quandle, as a classifying invariant of the knot [33, 43]. The notion of

the quandle however can be traced back further.

In 1942 Mituhisa Takasaki introduced the kei an algebraic structure as an abstraction

of symmetric transformations [52], which Joyce’s work refers to as ”involutory quandles”.

The notion was later rediscovered and generalized by John Conway and Gavin Wraith

under the name ”wracks” [21]. Roger Fenn and Colin Rourke would later use the term

”rack” to refer to a generalization of the quandle [27]. Interest in quandles grew as their

relations to knot theory were investigated by Joyce [33] and Matveev [43] in the early

1980s. Since that time extensive research has been published regarding quandles, including

classification [35,46,55], use as a knot invariant [20,23,34,51], cohomology [12], and more

[19, 36]. The study of quandles and racks has also lead to a number of related structures

and generalizations. Generalizations of knots, such as virtual knots, singular knots, and

pseudoknots, have lead to related generalizations of the quandles, including biracks [15],

singquandles [18], and psyquandles [45] respectively. Additionally the algebraic interest
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in quandles and distributive structures has lead to algebraically motivated generalizations

such as f -quandles [16], a generalization in the same family as Hom-algebras.

The concept of Hom-algebras has its origins in the work of Hartwig, Larsson, and Sil-

vestrov [31] to provide a general framework for q-deformations of Lie algebras over vector

fields. Such deformations arise in theoretical physics in the context of string theory, lattice

models, quantum scattering, and other related areas. The initial motivation for their work

was the creation of a general approach for dealing with examples of q-deformations of Witt

and Virasoro algebras constructed in the early nineties which were observed to fail to satisfy

the Jacobi identity, while other q-deformations of ordinary Lie algebras preserved the iden-

tity. In their work Hartwig, Larsson, and Silvestrov introduced Hom-Lie algebras as well

as related concepts of quasi-Lie algebras and quasi-Hom-Lie algebras. In the years since

the introduction of this form of generalization, it has garnered significant interest, leading

to a growing body of work on related structures [38, 49], and work applying similar gen-

eralization to a number of other algebraic structures and ideas, including Hom-associative

algebras [42], the previously noted f -quandles [16], the Hom-Yang-Baxter equation [56],

and others [40].

While binary operations are the standard in the study of both quandles and hom-structures,

generalizations of binary operations can be found as early as the nineteenth century when

Cayley introduced cubic generalizations of matrices. Ternary operations, and more general

n-ary operations, has also appeared naturally in various fields of theoretical and mathemat-

ical physics. Ternary Lie algebras first appeared in the context of Nambu mechanics [44],

a generalization of hamiltonian mechanics, whose algebraic formulation was achieved by

Takhtajan [53]. Ternary Lie algebras also find application in String and Superstring theory

in the context of Nahm equations [7,10]. Since their introduction construction and classifi-

cation of ternary and more general n-ary Lie algebras have been studied [9,29,38], as well

as work on deformations and cohomologies [30, 50, 54]. This work has included consider-

ing n-ary generalizations of Hom-Lie algebras [6], Hom-Leibniz algebras [41], as well as

other Hom-associative and non-associative hom-algebras [3, 42].

2



1.2 Quandles and Knot Theory

While we will be considering quandles in a purely algebraic sense, due to their deep con-

nection with knot theory we will introduce them in that context. To do so we will first give

a few definitions, beginning with the definition of a knot, and of knot equivalence.

Definition 1.2.1. A knot is an embedding of the circle S1 into R3 or S3, that is, a simple

closed curve. A link is a finite, ordered collection of disjoint knots.

Two knots are equivalent if one can be continuously deformed into the other. More

precisely, knots K and K ′ are equivalent if they are ambient isotopic.

Definition 1.2.2. [24] K is ambient isotopic to K ′ if there is a continuous map H : R3 ×

[0, 1] → R3 such that H(K, 0) = K, H(K, 1) = K ′, and H(x, t) is injective for all

t ∈ [0, 1]. Such a map is called an ”ambient isotopy.”

Commonly, knots are represented using knot diagrams, a projection of the knot onto the

plane with finitely many double points, called crossings. In standard knot diagrams over

and under crossings are indicated by drawing the under strand broken at the crossing.

The utility of knot diagrams in studying knots is clear, especially considering the impact

of Kurt Reidemeister’s theorem regarding the equivalence of knot diagrams, and thus the

knots they represent.

Theorem 1.2.3. [1] Two knot diagrams, K1 and K2, are equivalent if, and only if, one can

be changed into the other by a finite sequence of planar isotopies and Reidemeister moves.

Due to this powerful theorem, it is enough to show that a quantity from a knot diagram

is invariant under the Reidemister moves to prove it is a knot invariant. One of the simpler

of such invariants is tricolorability, and its generalization Fox n-colorability, where a set of

colors, or labels, are used to label each arc in a knot diagram, such that at least two distinct

labels are used, and at any crossing all three arcs are either uniformly or uniquely labeled.

In order to consider labeling from an algebraic perspective, let X be a set of labels,

let . be a binary operation representing the action of the change in labeling at a crossing,

3



Figure 1.: Reidemeister moves

as shown in the diagram below. Thus, applying this labeling scheme to the Reidemeis-

ter diagrams, as above, the diagram equivalencies provide us relations on a free magma

over the set X . By taking these relations as axioms we can form algebraic structures that

encapsulate the labeling invariant.

Figure 2.: Quandle action at positive and negative crossings.

First we will consider the relation given by Reidemeister type III move, (a . b) . c =

(a . c) . (b . c) as shown in figure 3. This leads to the following definition.

Definition 1.2.4. A shelf is a pair (X, .), where X is a non-empty set with a binary opera-

tion . satisfying the following identity for all x, y, z ∈ X:

(x . y) . z = (x . z) . (y . z) (1.1)

4



Figure 3.: Quandle labeling of Reidemeister type III move

Figure 4.: Quandle labeling of Reidemeister type II move

Now we consider the relation given by Reidemeister type II move, as shown in figure 4.

Thus right multiplication by a fixed element must be invertible. This gives us the notion of

a rack.

Definition 1.2.5. A rack is a shelf such that for any b, c ∈ X there exists a unique a ∈ X

such that

a . b = c (1.2)

Remark 1.2.6. As right multiplication by a fixed element is invertible, it is often convenient

to denote this action .−1. That is, if a . b = c, then c .−1 b = a.

Finally, from the Reidemeister type I move we obtain the relation x . x = x as shown in

figure 5. Adding this final axiom gives us the notion of a quandle.

Definition 1.2.7. A quandle is a rack such that

a . a = a,∀a ∈ X (1.3)

5



Figure 5.: Quandle labeling of Reidemeister type I move

Remark 1.2.8. While we have presented the quandle with right distributivity, and invert-

ibility of right multiplication, formulation using left distributivity and invertibility of left

multiplication instead is equivalent.

Having defined the notion of a quandle, we will now define the notion of quandle mor-

phisms.

Definition 1.2.9. Let (X, .1) and (Y, .2) be quandles (resp. racks). Let φ : X → Y be a

map. Then φ is a morphism of quandles (resp. racks) if φ(x .1 y) = φ(x) .2 φ(y) for all

x, y ∈ X .

To illustrate these ideas we provide a few common examples of quandles and types of

quandles.

Example 1.2.10. Given a set X and an operation . defined x . y = x for all x, y ∈ X ,

(X, .) is a quandle called the trivial quandle on X .

Example 1.2.11. For a group G, define an operation as n-fold conjugation, that is a . b =

b−nabn. Then (G, .) is a quandle.

Example 1.2.12. The dihedral quandle on Zn is defined a.b ≡ 2b−a mod n, and can be

identified with the set of reflections of a regular n-gon with conjugation as the operation.

Note that the dihedral quandle is simultaneously right and left distributive.

Example 1.2.13. Given a quandle (X, .), we say (X, .) is a connected quandle if for all

x, y ∈ X , there exists some z1, z2, . . . , zn ∈ X such that (· · · ((x.±1 z1).±1 z2) · · ·.±1 zn =

y. That is, the inner automorphism group of (X, .) act transitively on X .

6



Note that definition 1.2.5 may be reformulated as follows.

Definition 1.2.14. A rack is a shelf, (Q, .), such that for all x ∈ Q, the map βx : Q → Q

defined βx(y) = y . x is invertible.

This formulation where β : Q→ Inn(Q) leads us to a reformulation of quandles, known

as augmented quandles, in a manner similar to modules with the automorphism group of

the quandle playing the roles of scalers.

Definition 1.2.15. Let (X, .) be a quandle and G be a group acting on X , and ε : X → G,

an augmentation map such that for all x ∈ X and g ∈ G

• ε(x)x = x

• ε(gx) = gε(x)g−1

The natural example of such a structure being the case where G = Inn(Q) and ε map-

ping x to βx. This formulation of quandles was introduced by Joyce [33] and for racks by

Fenn and Rourke [27], and has been useful in providing insight into quandles.

1.3 Cohomology Theory of Quandles

In this section we will review the notion of quandle cohomology, an invariant introduced

by Carter, Jelsovsky, Kamada, Langford, and Saito [14], and further generalized by Clark,

Graña, and Saito [12].

Let (X, .) be a rack. Consider the free abelian group generated by X×n, which we

denote CR
n (X), and define the family of homomorphisms ∂n : CR

n (X) → CR
n+1(X) such

that ∂n = 0 for n ≤ 1 and for n ≥ 2,

∂nφ(x1, . . . , xn+1) =

(−1)n+1

n+1∑
i=2

(−1)i
(
η[x1,...,x̂i,...,xn+1],[xi,...,xn+1]φ(x1, . . . , x̂i, . . . , xn+1)

−φ(x1 . xi, x2 . xi, . . . , xi−1 . xi, xi+1, . . . xn+1)
)

+(−1)n+1τ[x1,x3,...,xn+1],[x2,...,xn+1]φ(x2, . . . , xn+1),

7



where x̂i denotes the removal of xi from the sequence, [x1, x2, . . . , xn] = (· · · ((x1 .

x2) . x3) · · · ) . xn, and η and τ represent families of automorphisms and endomorphisms

respectively. Then CR
• (X) = {Cn

R(X), ∂n} is a chain complex, and by defining CD
n (X) as

the subset of CR
n (X) generated by the (n + 1)-tuples (x1, x2, .., xn, xn+1) such that xi =

xi+1 for some i ∈ 1, 2, . . . , n, we obtain the degenerate subcomplex. If (X, .) is a quandle,

∂n(CD
n (X)) ⊂ CD

n−1(X), and thus the degenerate subcomplex is indeed a subcomplex of

CR
• (X). From this one obtains the quandle chain complex CQ

• = {CQ
n (X), δnQ} where

CQ
n (X) = CR

n (X)/CD
n (X) and ∂nQ is the induced homomorphism. Note, R, D, and Q,

simply denote rack, degenerate, and quandle respectively.

From this we may define a cochain complex, letting A be an abelian group define Cn
R =

Hom(Cn, A) and the coboundary operator δn : Cn → Cn+1, and defining Cn
D and Cn

Q in a

similar manner.

Definition 1.3.1. Define Zn
Q(X,A) = ker(δn) ⊂ Cn

Q(X), and Bn
Q(X,A) = Im(δn) ⊂

Cn
Q(X). Then the n-th quandle cohomology group of (X, .) with coefficients inA is defined

Hn
Q(X,A) = Hn(C•n(X,A) = Zn

Q(X, a)/Bn
Q(X,A).

We will take this opportunity to review low dimensional cocycles. For an abelian group

A, a quandle 2-cocycle with coefficients in A is a functions φ : X × X → A such that

φ(x, x) = 0 and

φ(x, y) + φ(x . y, z) = φ(x, z) + φ(x . z, y . z).

These conditions can be obtained from the Reidemeister moves, by first labeling the arcs

via a quandle, and then using φ to represent the weight at the crossing as shown below.

As the weights in the equivalent diagrams must be equal we obtain the two conditions

from Reidemister moves I and III, while Reidemeister move II provides no additional con-

dition as the signs of the crossings cancel out.

Similar methods show a quandle 3-cocyle is a function θ : X ×X ×X → A

θ(w, x, y)+θ(w.y, x.y, z)+θ(w, y, z) = θ(w.x, y, z)+θ(w, x, z)+θ(w.z, x.z, y .z)

with θ(x, x, y) = 0 and θ(x, y, y) = 0.

8



Figure 6.: Reidemeister move I and III cocycle coloring

1.4 f -quandles

In this section we will review the hom generalization of binary quandles, referred to as

f -quandles, originally presented in [16]. We will begin with their axiomatic definition.

Definition 1.4.1. A f -shelf is a triple (X, ∗, f) in which X is a set, ∗ is a binary operation

on X , and f : X → X is a map such that, for any x, y, z ∈ X , the equality

(x ∗ y) ∗ f(z) = (x ∗ z) ∗ (y ∗ z) (1.4)

holds. A f -rack is a twisted-shelf such that, for any x, y ∈ X , there exists a unique z ∈ X

such that

z ∗ y = f(x). (1.5)

A f -quandle is a twisted-rack such that, for each x ∈ X , the equality

x ∗ x = f(x) (1.6)

holds.

Having defined the f -quandle structure, we will also introduce f -quandle morphisms.

Definition 1.4.2. Let (X, .1, f1) and (Y, .2, f2) be f -racks (resp. f -quandles). Let φ :

X → Y be a map. Then φ is a morphism of f -racks (resp. f -quandles) if φ(x .1 y) =

φ(x) .2 φ(y) for all x, y ∈ X , and φ ◦ f1 = f2 ◦ φ.

9



We note that for f -quandles, the first condition implies the second. We include a few

examples to illustrate these notions.

Example 1.4.3. Let (X, .) be a quandle. Then (X, ., idX) is an f -quandle.

Example 1.4.4. Let (A,+) be an abelian group. Then for f : A → A defined f(a) = 2a,

(A,+, f) is an f -quandle.

1.5 Biquandles

This section will review the definitions and motivations of biracks, originally presented in

[28] and biquandles, as found in [26, 37, 47].

Definition 1.5.1. [24] A birack is a set X equipped with two binary operations ∗1, ∗2, and

a bijective map π : X → X such that for all a, b, c ∈ X ,

• π(a ∗2 a) = a ∗1 a and π(a) ∗2 a = a ∗1 π(a),

• The map H(a, b) = (b ∗2 a, a ∗1 b) is invertible,

• (a ∗2 b) ∗2 (c ∗1 b) = (a ∗2 c) ∗2 (b ∗2 c),

• (a ∗1 b) ∗1 (c ∗1 b) = (a ∗1 c) ∗1 (b ∗2 c),

• (a ∗1 b) ∗2 (c ∗1 b) = (a ∗2 c) ∗1 (b ∗2 c).

A birack such that π is the identity map is called a biquandle.

Note that every quandle (X, .) is a birack with π equal to the identity map, a ∗1 b = a . b

and a ∗2 b = a.

The geometric motivation for biracks come from labeling semiarcs (the portion of an arc

between two consecutive crossings) in an oriented framed link diagram with elements of

X . Framed knots and links can be thought of as ’thickened’ knots, and as such a standard

Reidemeister type I move introduces a kink in the knot, much like it would in a ribbon.

As such the standard type I move does not apply and is replaced by the move show in

10



Figure 7.: Framed Reidemeister Type 1 move

figure 1.5. Labeling this and the remaining Reidemeister moves yields a set of necessary

and sufficient conditions for labelings before and after the move to correspond bijectively

leading to the axioms above, just as in the case for standard knot. In this case the map π is

the kink map, representing the effect of kinks on labeling.

In this context the birack map H : X ×X → X ×X represents the change in labeling

occurring at a crossing as show in figure 1.5.

Figure 8.: Birack map

11



Chapter 2

Augmented Biquandles

In this chapter we discuss a generalization of the quandle, the biquandle and birack, first

introduced by [28], reformulated in terms of actions of a set by an augmentation group, in

the same manner as augmented quandles. The bulk of this chapter originally appeared in

[15].

2.1 Definitions and Properties

Definition 2.1.1. LetX be a set andG be a subgroup of the group of bijections g : X → X .

An augmented birack structure on (X,G) consists of maps α, β, ᾱ, β̄ : X → G (i.e.,

for each x ∈ X we have bijections αx : X → X , βx : X → X , ᾱx : X → X and

β̄x : X → X) and a distinguished element π ∈ G satisfying

(i) For all x ∈ X , we have

απ(x)(x) = βxπ(x) and β̄π(x)(x) = ᾱxπ(x),

(ii) For all x, y ∈ X we have

ᾱβx(y)αy(x) = x, β̄αx(y)βy(x) = x, αβ̄x(y)ᾱy(x) = x,

and βᾱx(y)β̄y(x) = x,

and

(iii) For all x, y ∈ X , we have

ααx(y)αx = αβy(x)αy, βαx(y)αx = αβy(x)βy, and βαx(y)βx = ββy(x)βy.

Definition 2.1.2. Given an augmented birack (G,X), if X is a finite set, then G is a

subgroup of the symmetric group S|X|, and there exist some smallest N ∈ Z+ such that

πN = 1 ∈ G. This N is called the characteristic of the augmented birack (G,X).

12



Example 2.1.3. Let Λ̃ = Z[t±1, s, r±1]/(s2 − (1 − t−1r)s), let X be a Λ̃-module and let

G be the group of invertible linear transformations of X . Then (G,X) is an augmented

biquandle with

αx(y) = ry, βy(x) = tx− tsy, ᾱy(x) = r−1x, β̄x(y) = sr−1x+ t−1y,

and π(x) = (t−1r + s)x.

For example, we have

βαx(z)αx(y) = βrz(ry) = try − tsrz = r(ty − tsz) = αβz(x)βz(y).

An augmented birack of this type is known as a (t, s, r)-birack.

Example 2.1.4. We can define an augmented birack structure symbolically on the finite set

X = {1, 2, 3, . . . , n} by explicitly listing the maps αx, βx : X → X for each x ∈ X . This

is conveniently done by giving a 2n×nmatrix whose upper block has (i, j) entry αj(i) and

whose lower block has (i, j) entry βj(i), which we might denote by M(G,X) =

 αj(i)

βj(i)

.

Such a matrix defines an augmented birack with G being the symmetric group Sn provided

the maps thus defined satisfy the augmented birack axioms; note that if the axioms are

satisfied, then the maps π, ᾱx and β̄x are determined by the maps αx, βx. For example, the

matrix

M(G,X) =



2 2 2

1 1 1

3 3 3

2 3 1

3 1 2

1 2 3


encodes the (t, s, r)-birack structure on X = {1, 2, 3} = Z3 with t = 1, s = 2, r = 2.

An augmented birack defines a birack map B : X × X → X × X as defined in the

introduction by setting

B(x, y) = (β−1
x (y), αβ−1

x (y)(x)).
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Figure 9.: Birack labeling for positive crossings

Figure 10.: Birack kink map diagram

The names are chosen so that if we orient a crossing, positive or negative, with the

strands oriented upward, then the unbarred actions go left-to-right and the barred actions

go right-to-left, with α and β standing for “above” and “below”1. Thus, αx(y) is the result

of y going above x left-to-right and β̄y(x) is the result of x going below y from right-to-left.

The element π ∈ G is the kink map which encodes the change of semiarc labels when

going through a positive kink. In particular, each (G,X)-labeling of a framed oriented knot

or link diagram before a framed type I move corresponds to a unique (G,X)-labeling after

the move. If π = 1 is the identity element in G, our augmented birack is an augmented

biquandle; labelings of an oriented link by an augmented biquandle are independent of

framing.

Axiom (ii) is equivalent to the condition that the map S : X ×X → X ×X defined by

S(x, y) = (αx(y), βy(x))

is a bijection with inverse

S−1(y, x) = (β̄y(x), ᾱx(y)).

Note that the condition that the components of S are bijective is not sufficient to make
1Thanks to Scott Carter for this observation.
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Figure 11.: Birack labeling for positive crossings

S bijective; for instance, if X is any abelian group, the map S(x, y) = (αx(y), βy(x)) =

(x+y, x+y) has bijective component maps but is not bijective as a map of pairs. The maps

ᾱx, β̄x are the components of the inverse of the sideways map; we can interpret them as

labeling rules going right to left. At negatively oriented crossings, the top and bottom labels

are switched. Note that (G,X)-labelings of a framed knot or link correpond bijectively

before and after both forms of type II moves: direct type II moves where both strands are

oriented in the same direction

∼

and reverse type II moves in which the strands are oriented in opposite directions.

∼
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Axiom (iii) encodes the conditions arising from the Reidemeister III move:

∼

Thus by construction we have

Theorem 2.1.5. If L and L′ are oriented framed links related by oriented framed Reide-

meister moves and (G,X) is an augmented birack, then there is a bijection between the set

of labelings of L by (G,X), denoted L(L, (G,X)), and the set of labelings and the set of

labelings of L′ by (G,X), denoted L(L′, (G,X)).

2.2 Homology

Let (X,G) be an augmented birack. Let Cn = Z[Xn] be the free abelian group generated

by ordered n-tuples of elements of X and let Cn(X) = {f : Cn → Z | f ∈ Hom(Cn,Z)}.

For k = 1, 2, . . . , n, define maps ∂′k, ∂
′′
k : Cn(X)→ Cn−1(X) by

∂′k(x1. . . . , xn) = (x1, . . . , x̂k, . . . , xn)

and

∂′′k(x1, . . . , xn) = (βxk(x1), . . . , βxk(xk−1), x̂k, αxk(xk+1), . . . , αxk(xn))

where thê indicates that the entry is deleted, i.e.

(x1, . . . , x̂k, . . . , xn) = (x1, . . . , xk−1, xk+1, . . . , xn).

Theorem 2.2.1. The map ∂n : Cn(X)→ Cn−1(X) given by

∂n(~x) =
n∑
k=1

(−1)k(∂′k(~x)− ∂′′k(~x))
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is a boundary map; the map δn : Cn(X) → Cn+1(X) given by δn(f) = f∂n+1 is the

corresponding coboundary map. The quotient group Hn(X) = Ker ∂n/Im ∂n+1 is the nth

augmented birack homology of (X,G), and the quotient group Hn(X) = Ker δn/Im δn−1

is the nth augmented birack cohomology of (X,G).

To prove theorem 2.2.1, we will find it convenient to first prove a few key lemmas.

Lemma 2.2.2. Let j < k. Then ∂′j∂
′
k(~x) = ∂′k−1∂

′
j .

Proof. We compute

∂′j∂
′
k(~x) = ∂′j(x1, . . . , x̂k, . . . , xn)

= ∂′j(x1, . . . , x̂j . . . , x̂k, . . . , xn)

obtaining the input vector with the entries in the jth and kth positions deleted. On the other

hand, if we first delete the jth entry, each entry with subscript greater than j is now shifted

into one lower position; in particular, xk is now in the (k − 1)st position and we have

∂′k−1∂
′
j(~x) = ∂′j(x1, . . . , x̂j, . . . , xn)

= ∂′j(x1, . . . , x̂j, . . . , x̂k, . . . , xn)

as required.

Corollary 2.2.3. The map ∂′ : Cn → Cn−1 defined by
n∑
k=1

(−1)k∂′(~x) is a boundary map.

Proof. If we apply ∂′ twice, each term with first summation index less than the second

summation index is matched by an equal term with first summation index greater than the

second summation index but of opposite sign:

∂′(∂′(~x)) =
∑
j<k

(−1)j+k∂′j∂
′
k(~x) +

∑
j>k

(−1)j+k∂′j(∂
′
k(~x))

=
∑
j>k

(−1)j+k+1∂′j∂
′
k(~x) +

∑
j>k

(−1)j+k∂′j(∂
′
k(~x))

= 0.
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Lemma 2.2.4. If j < k we have ∂′j∂
′′
k(~x) = ∂′′k−1∂

′
j(~x).

Proof. On the one hand,

∂′j∂
′′
k(~x) = ∂′j(βxk(x1), . . . , βxk(xk−1), x̂k, αxk(xk+1), . . . , αxk(xn))

= (βxk(x1), . . . , βxk(xj−1), β̂xk(xj), βxk(xj+1), . . . , βxk(xk−1),

αxk(xk+1), . . . , αxk(xn))).

On the other hand, applying ∂′j first shifts xk into the (k − 1) position and we have

∂′′k+1∂
′
j(~x) = ∂′′k+1(x1, . . . , x̂j, . . . , xn)

= (βxk(x1), . . . , βxk(xj−1), x̂j, βxk(xj+1), . . . , βxk(xk−1), x̂k,

αxk(xk+1), . . . , αxk(xn)))

as required.

Lemma 2.2.5. If j < k we have ∂′′j ∂
′
k(~x) = ∂′k−1∂

′′
j (~x).

Proof. On the one hand,

∂′′j ∂
′
k(~x) = ∂′′j (x1, . . . , x̂k, . . . , xn)

= (βxj(x1), . . . , βxj(xj−1),

x̂j, αxj(xj+1), . . . , αxj(xk−1), x̂k, αxj(xk+1), . . . , αxj(xn)))

As above, applying ∂′′j shifts the positions of the entries with indices greater than j, and we
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have

∂′k−1∂
′′
j (~x) = ∂′k−1(βxj(x1), . . . , βxj(xj−1), x̂j, αxj(xj+1), . . . , αxj(xn))

= (βxj(x1), . . . , βxj(xj−1), x̂j, αxj(xj+1), . . . , αxj(xk−1), α̂xj(xk),

αxj(xk+1), . . . αxj(xn))

as required.

The final lemma depends on the augmented birack axioms.

Lemma 2.2.6. If j < k we have ∂′′j ∂
′′
k(~x) = ∂′′k−1∂

′′
j (~x).

Proof. We have

∂′′j ∂
′′
k(~x) = ∂′′j (βxk(x1), . . . , βxk(xk−1), x̂k, αxk(xk+1), . . . , αxk(xn))

= (ββxk (xj)βxk(x1), . . . , ββxk (xj)βxk(xj−1), β̂xk(xj), αβxk (xj)βxk(xj+1), . . . ,

αβxk (xj)βxk(xk−1), x̂k, αβxk (xj)αxk(xk+1), . . . , αβxk (xj)αxk(xn))

while again applying ∂′′j first shifts the positions of the entries with indices greater than j,

and we have

∂′′k−1∂
′′
j (~x) = ∂′′k−1(βxj(x1), . . . , βxj(xj−1), x̂j, αxj(xj+1), . . . , αxj(xn))

= (βαxj(xk)
βxj(x1), . . . , βαxj(xk)

βxj(xj−1), x̂j, βαxj(xk)
αxj(xj+1), . . . ,

βαxj(xk)
αxj(xk−1), α̂xj(xk), ααxk

(xj)αxj(xk+1), . . . , ααxk
(xj)αxj(xn))

and the two are equal after application of the augmented birack axioms.

Corollary 2.2.7. The map ∂′′ : Cn → Cn−1 defined by ∂′′(~x) =
n∑
k=1

(−1)k∂′′k(~x) is a

boundary map.
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Proof. As with ∂′, we observe that every term in ∂′′n−1∂
′′
n(~x) with j < k is matched by an

equal term with j > k but with opposite sign.

Remark 2.2.8. Corollary 2.2.7 shows that the conditions in augmented birack axiom (iii)

are precisely the conditions required to make ∂′′ a boundary map. This provides a non-knot

theoretic alternative motivation for the augmented birack structure.

Proof. (of theorem 2.2.1) We must check that ∂n−1∂n = 0. Our lemmas show that each

term in the sum with j < k is matched by an equal term with opposite sign with j > k. We

have

∂n−1(∂n(x1, . . . , xn)) = ∂n−1

(
n∑
k=0

(−1)k (∂′k(~x)− ∂′′k(~x))

)

=
n−1∑
j=0

(
n∑
k=0

(−1)k+j
(
∂′j∂

′
k(~x)− ∂′′j ∂′k(~x)− ∂′j∂′′k(~x) + ∂′′j ∂

′′
k(~x)

))
=

∑
j<k

(−1)k+j
(
∂′j∂

′
k(~x)− ∂′′j ∂′k(~x)− ∂′j∂′′k(~x) + ∂′′j ∂

′′
k(~x)

)
+
∑
j>k

(−1)k+j
(
∂′j∂

′
k(~x)− ∂′′j ∂′k(~x)− ∂′j∂′′k(~x) + ∂′′j ∂

′′
k(~x)

)
=

∑
j<k

(−1)k+j
(
∂′j∂

′
k(~x)− ∂′′j ∂′k(~x)− ∂′j∂′′k(~x) + ∂′′j ∂

′′
k(~x)

)
+
∑
j<k

(−1)k+j−1
(
∂′j∂

′
k(~x)− ∂′′j ∂′k(~x)− ∂′j∂′′k(~x) + ∂′′j ∂

′′
k(~x)

)
= 0.

Definition 2.2.9. Let (G,X) be an agumented birack of characteristic N . Say that an

element ~v of Cn(X) is N -degenerate if ~v is a linear combination of elements of the form

N∑
k=1

(x1, . . . , xj−1, π
k(xj), π

k−1(xj), xj+2, . . . , xn).

Denote the set of N -degenerate n-chains and n-cochains as CD
n (X) and Cn

D(X) and the

homology and cohomology groups, HD
n and Hn

D.

Theorem 2.2.10. The sets of N -degenerate chains form a subcomplex of (Cn, ∂).
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Proof. We must show that ~v ∈ CD
n (X) implies ∂(~v) ∈ CD

n−1(X). Using linearity it is

enough to prove that

∂

(
N∑
k=1

(x1, . . . , xj−1, π
k(xj), π

k−1(xj), xj+2, . . . , xn)

)

is N -degenerate. Let ~u =
N∑
k=1

(x1, . . . , xj−1, π
k(xj), π

k−1(xj), xj+2, . . . , xn), we have:

∂(~u) = ∂

[
N∑
k=1

(x1, . . . , xj−1, π
k(xj), π

k−1(xj), xj+2, . . . , xn)

]

=
N∑
k=1

∂(x1, . . . , xj−1, π
k(xj), π

k−1(xj), xj+2, . . . , xn)

=
N∑
k=1

{
j−1∑
i=1

(−1)i[(x1, . . . , x̂i, . . . , π
k(xj), π

k−1(xj), xj+2, . . . , xn)

−(βxi(x1), . . . , βxi(xi−1), x̂i, αxi(xi+1), . . . , αxi(π
k(xj)), αxi(π

k−1(xj)),

αxi(xj+2), . . . , αxi(xn))]}

+

{
N∑
k=1

{(−1)j[(x1, . . . , xj−1, π
k−1(xj), xj+2, . . . , xn)

− (βπk(xj)(x1), . . . , βπk(xj)(xj−1), απk(xj)(π
k−1(xj)), απk(xj)(xi+2), . . . ,

απk(xj)(xn))
]

+ (−1)j+1
[
(x1, . . . , xj−1, π

k(xj), xj+2, . . . , xn)

− (βπk−1(xj)(x1), . . . , βπk−1(xj)(xj−1), βπk−1(xj)(xj), απk−1(xj)(xj+2),

. . . , απk−1(xj)(xn))
]}

+
N∑
k=1

{
n∑

i=j+2

(−1)i
[
(x1, . . . , π

k(xj), π
k−1(xj), . . . , x̂i, . . . , xn)

−(βxi(x1), . . . , βxi(xj−1), βxi(π
k(xj)), βxi(π

k−1(xj)), . . . , x̂i,

− αxi(xi+1), . . . , αxi(xn))]} (1)

where as usual (x1, . . . , x̂i, . . . , xn) means (x1, . . . , xi−1, xi+1, . . . , xn). Now the rest of

the proof is based on the following two facts: (1) πN = 1 and (2) απk(x)(π
k−1(x)) =
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βπk−1(x)(π
k(x)) which is obtained by induction from axiom (i) in the definition 2.1.1 (of

augmented birack).

The following sum vanishes:

N∑
k=1

{[
(x1, . . . , xj−1, π

k−1(xj), xj+2, . . . , xn)

− (βπk(xj)(x1), . . . , βπk(xj)(xj−1), απk(xj)(π
k−1(xj)), απk(xj)(xi+2),

. . . , απk(xj)(xn))

−
[
(x1, . . . , xj−1, π

k(xj), xj+2, . . . , xn)
]

− (βπk−1(xj)(x1), . . . , βπk−1(xj)(xj−1), βπk−1(xj)(xj), απk−1(xj)(xj+2), . . . ,

απk−1(xj)(xn))
]}

because απk(x)(π
k−1(x)) = βπk−1(x)(π

k(x)) and πN = 1. The rest of the sums can be

written as combination of degenerate elements as in the proof of theorem 2 in [25].

Definition 2.2.11. The quotient groups HNR
n (X) = Hn(Cn(X)/CD

n (X)) and Hn
NR(X) =

Hn(Cn(X)/Cn
D(X) are the N -Reduced Birack Homology and N -Reduced Birack Coho-

mology groups.

2.3 Cocycles

In this section we will use augmented birack cocycles to enhance the augmented birack

counting invariant analogously to previous work.

Let L~w be an oriented framed link diagram with framing vector ~w and a labeling f ∈

L(L~w, (G,X)) by an augmented birack (G,X) of characteristic N . For a choice of φ ∈

Z2
NR, we define an integer-valued signature of the labeling called a Boltzmann weight by

adding contributions from each crossing as pictured below. Orienting the crossing so that

both strands are oriented upward, each crossing contributes φ evaluated on the pair of labels
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on the left side of the crossing with the understrand label listed first.

Then as we can easily verify, the Boltzmann weight BW (f) =
∑

crossings±φ(x, y) is un-

changed by framed oriented Reidemeister moves and N -phone cord moves, that is the

composition of N kinks. Starting with move III, note that φ ∈ Z2(x) implies that

(δ2φ)(x, y, z) = φ(∂2(x, y, z))

= φ((y, z)− (αx(y), αx(z))− (x, z) + (βy(x), αy(z)) + (x, y)−

(βz(x), βz(y)))

= φ(y, z)− φ(αx(y), αx(z))− φ(x, z) + φ(βy(x), αy(z)) + φ(x, y)−

φ(βz(x), βz(y))

= 0

and in particular we have

φ(y, z) + φ(βy(x), αy(z)) + φ(x, y) = φ(αx(y), αx(z)) + φ(x, z) + φ(βz(x), βz(y)).

Then both sides of the Reidemeister III move contribute the same amount to the Boltzmann
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weight:

Both sides of both type II moves contribute zero to the Bolztmann weight:

Similarly, both sides of the framed type I moves contribute zero; here we use the alternate
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form of the framed type I move for clarity, with y = ᾱxπ(x) = ¯βπ(x)(x):

Finally, the N -phone cord move contributes a degenerate N -chain:

Putting it all together, we have our main result:

Theorem 2.3.1. Let L be an oriented unframed link of c components and (G,X) be a finite

augmented birack of characteristic N . For each φ ∈ Z2
NR(X), the multiset ΦM

φ (L) and

polynomial Φφ(L) defined by

ΦM
φ (L) = {BW (f) | f ∈ L(L~w, (G,X)), ~w ∈ (ZN)c}
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and

Φφ(L) =
∑

~w∈(ZN )c

 ∑
f∈L(L~w,(G,X))

uBW (f)


are invariants of L known as the augmented birack 2-cocycle invariants of L.

Remark 2.3.2. We note that if φ ∈ Z2(X) then the corresponding quantities,

ΦM
φ (L~w) = {BW (f) | f ∈ L(L~w, (G,X))} and Φφ(L~w) =

∑
f∈L(L~w,(G,X))

uBW (f),

are invariants of L~w as a framed link.

Remark 2.3.3. If L is a virtual link, ΦM
φ (L) and Φφ(L) are invariants of L under virtual

isotopy via the usual convention of ignoring the virtual crossings.

As in quandle homology, we have

Theorem 2.3.4. Let (G,X) be an augmented birack. If φ ∈ Z2(X) is a coboundary, then

for any (G,X)-labeling f of a framed link L~w the Boltzmann weight BW (f) = 0.

Proof. If φ ∈ H2(X) is a coboundary, then there is a map ψ ∈ H1 such that ψ = δ2φ =

(φδ2). Then for any (x, y) we have

φ(x, y) = ψ(δ2(x, y)) = ψ(y)− ψ(αx(y))− ψ(x) + ψ(βy(x))

and the Boltzmann weight can be pictured at a crossing as below.

In particular, every semiarc labeled x contributes a +ψ(x) at its tail and a −ψ(x) at its

head, so each semiarc contributes zero to the Boltzmann weight.

Corollary 2.3.5. Cohomologous cocycles define the same Φφ(L) and ΦM
φ (L) invariants.
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Example 2.3.6. Let X = {1, 2, 3, 4} be the set of four elements and G = S4 the group of

permutations of X . The pair (G,X) has augmented birack structures including

M(G,X) =



2 3 3 2

4 1 1 4

1 4 4 1

3 2 2 3

3 2 2 3

1 4 4 1

4 1 1 4

2 3 3 2



.

This augmented birack has kink map π = (14)(23) and hence characteristic N = 2. Thus,

to find a complete tile of labelings of a link L, we’ll need to consider diagrams of L with

framing vectors ~w ∈ (Z2)2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Then for instance the Hopf link

L = L2a1 has no labelings in framings (0, 0), (1, 0) and (0, 1) and sixteen labelings in

framing (1, 1), for a counting invariant value of ΦZ
(G,X)(L2a1) = 16 + 0 + 0 + 0 = 16.

Note that C2(X) has Z–basis {χij | i, j = 1, 2, 3, 4, 5} where

χ(i,j)((i
′, j′)) =

 1 (i, j) = (i′, j′)

0 (i, j) 6= (i′, j′).
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The function φ : X ×X → Z defined by

φ = χ(2,1) + χ(2,4) + χ(3,1) + χ(3,4)

is an N -reduced 2-cocycle in H2
NR(G,X). We then compute Φφ(L) by finding the Boltz-

mann weight for each labeling.

In the labeling on the left, we have

BW (f) = φ(1, 1) + φ(1, 1) + φ(3, 2) + φ(3, 2) = 0 + 0 + 0 + 0 = 0

and in the labeling on the right we have

BW (f) = φ(1, 2) + φ(2, 1) + φ(2, 3) + φ(1, 4) = 0 + 1 + 0 + 0 = 1.

Repeating for all 14 other labelings, we get Φφ(L2a1) = 8+8u. Similarly the unlink L0a1

and (4, 2)-torus link L4a1 have counting invariant value ΦZ
(G,X)(L0a1) = ΦZ

(G,X)(L4a1) =

16 with respect to (G,X) but augmented birack cocycles invariant values Φφ(L0a1) = 16

and Φφ(L4a1) = 8 + 8u2 respectively.

28



Chapter 3

n-ary Quandles

In this chapter we introduce the notion of n-ary distributive sets, specifically n-ary quan-

dles, and discuss some notable properties.

Ternary and n-ary operations are natural generalizations of binary operations and ap-

pear in numerous areas of mathematics and physics. Ternary associative structures, a

set X with operation µ satisfying the condition µ(µ(x, y, z), u, v) = µ(x, µ(y, z, u), v) =

µ(x, y, µ(z, u, v)), have been considered, such as in papers by H. Ataguema and A. Makhlouf

[4, 5]. Such structures are called totally associative algebras, differentiating them from

partially associative Lie-type algebras. Early axiomatic treatment of non-associative struc-

tures appeared in 1949 in work by N. Jacobson [32]. He discussed Lie triple systems, a

subspace of a Lie algebra that is closed with respect to the iterated Lie bracket, [[x, y], z]

in connection with problems in Jordan theory and quantum mechanics. Further progress

in theoretical quantum mechanics and the generalization of Hamiltonian mechanics known

as Nambu mechanics after its discovery by Y. Nambu [44] along with work by S. Okubo

[48] fueled further work on n-ary algebras. Even more recently work in string theory and

M-brane theory has lead to extensive work on Bagger-Lambert algebras, an algebra with a

ternary operation [7]. More recent work in this area has led to the study of Lie n-racks by

G. Biyogmam [11].

In this chapter we present the definition of n-ary distributive structures along with rele-

vant morphisms and a number of examples. We will use the ternary case as an illustrative

introduction to these concepts. We also present a number of constructions for ternary and

general n-ary distributive structures, as well as a classification of ternary distributive struc-

tures of orders two and three.

The bulk of this chapter originally appeared in [22].
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3.1 Definitions and Properties of n-ary Quandles

Definition 3.1.1. A ternary quandle is a pair (Q, T ) where Q is a set and T : Q×3 → Q is

a ternary operation satisfying the following conditions:

1. For all x, y, z, u, v ∈ Q

T (T (x, y, z), u, v) = T (T (x, u, v), T (y, u, v), T (z, u, v)). (right distributivity)

(3.1)

2. For all y, z ∈ Q, the map Ry,z : Q→ Q given by

Ry,z(x) = T (x, y, z)

is invertible.

3. For all x ∈ Q,

T (x, x, x) = x. (3.2)

If T satisfies only condition (1), then (Q, T ) is said to be a ternary shelf. If both conditions

(1) and (2) are satisfied then (Q, T ) is said to be a ternary rack.

This ternary generalization is easily extended to the n-ary case as follows:

Definition 3.1.2. An n-ary quandle is a pair (Q, T ) where Q is a set and T : Q×n → Q is

an n-ary operation satisfying the following conditions:

1.

T (T (x1, . . . , xn), u1, . . . , un−1) =

T (T (x1, u1, . . . , un−1), T (x2, u1, . . . , un−1), . . . , T (xn, u1, . . . , un−1)),

∀xi, ui ∈ Q (n-ary distributivity).

2. For all a1, . . . , an−1 ∈ Q, the map Ra1,...,an−1 : Q→ Q given by

Ra1,...,an−1(x) = T (x, a1, . . . , an−1)

is invertible.
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3. For all x ∈ Q,

T (x, · · · , x) = x.

If T satisfies only condition (1), then (Q, T ) is said to be an n-ary shelf. If both condi-

tions (1) and (2) are satisfied then (Q, T ) is said to be an n-ary rack.

This leads us to natural definitions for n-ary rack and n-ary quandle morphisms.

Definition 3.1.3. Let (Q1, T1) and (Q2, T2) be two n-ary racks (resp. quandles). A map

φ : Q1 → Q2 is said to be a n-ary rack (resp. quandle) morphism if φ(T1(x1, . . . , xn)) =

T2(φ(x1), . . . , φ(xn)) for all x ∈ Q1.

Q×n1 Q1

Q×n2 Q2

T1

φ×n φ

T2

To illustrate these definitions we present a number of examples of n-ary quandles.

Example 3.1.4. For any set Q let T be an n-ary operation over Q defined:

T (x1, x2, . . . , xn) = x1.

Then (Q, T ) is a n-ary quandle, called the trivial n-ary quandle over Q.

Example 3.1.5. Define the n-ary operation T over Zm by

T (x1, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn

where
∑n

i=1 ai = 1 mod m.

Then (Zm, T ) is a n-ary quandle. We call this an affine n-ary quandle.

Example 3.1.6. For any quandle (Q, .), the operation T (x1, x2, . . . , xn) = (· · · (x1 . x2) .

x3) · · · . xn) defines an n-ary quandle structure on Q.

For the sake of readability we will make use of a more succinct notation, where x1x2 =

x1 . x2 and for longer strings, we iterate the operation from left to right, i.e. x1x2x3 =

(x1 . x2) . x3 and x1x2 . . . xn = (· · · (x1 . x2) . x3) · · · ) . xn.
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Thus the distributivity condition for standard quandles (1.1) can be written as xyz =

(xz)(yz). Now we note applying (1.1) to x1x2 . . . xi−1xixi+1 shows

x1x2 . . . xi−1xixi+1 = (x1x2 . . . xi−1xi+1)(xixi+1)

T (T (x1, x2, . . . , xn), xn+1, . . . , x2n−1) = x1x2x3 . . . xnxn+1 . . . x2n−1

= ((x1 . . . xn−1xn+1)(xnxn+1))xn+2xn+3 . . . x2n−1.

Iterating this process of distributing xi for n+ 2 ≤ i ≤ 2n− 1 gives us:

= (x1 . . . xn−1xn+1 . . . x2n−1)(xnxn+1 . . . x2n−1).

Repeating the same process of distributing xn+1 . . . x2n−1 to the first i − 1 terms and the

i-th term in succession for i = n− 1 to i = 2 gives us:

= (x1xn+1 . . . x2n−1)(x2xn+1 . . . x2n−1) . . . (xnxn+1 . . . x2n−1)

= T (x1, xn+1, . . . , x2n−1)T (x2, xn+1, . . . , x2n−1) . . . T (x1, xn+1, . . . , x2n−1)

= T (T (x1, xn+1, . . . , x2n−1), T (x2, xn+1, . . . , x2n−1), . . . , T (x1, xn+1, . . . , x2n−1)).

Since Rxi is a bijection, Rx2x3...xn = Rxn ◦ Rxn−1 ◦ · · · ◦ Rx2 is as well. The idempotency

of the resulting operator is clear.

We call (Q, T ) the n-ary quandle induced by (Q, .).

Note that the above example also shows that iterating a rack or shelf would similarly

result in an n-ary rack or n-ary shelf respectively.

Remark 3.1.7. We note at this time that just as we may derive an n-ary quandle from a

binary quandle, we may also derive a binary quandle from an n-ary quandle by defining

a . b = T (a, b, b, . . . , b). We further note that this will not in general return the original

binary quandle from the induced n-ary quandle.

Example 3.1.8. Consider an affine n-ary quandle (Zm, T ). Then (Zm, .), where . is de-

fined

s . t = T (s, t, t, . . . , t) = a1s+ (a2 + · · ·+ an)t.
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As a1 + (a2 + · · ·+ an) = 1 mod m, by substituting a2 + a3 + · · ·+ an = 1− a1 we see

(Zm, .) is a standard affine quandle.

Example 3.1.9. Let G be a group, and let n = 2k + 1 for some k ∈ Z. Then (G, T )

where T is an n-ary operation defined T (x1, x2, . . . , xn) = x1x
−1
2 x3 . . . x

−1
n−1xn is an n-ary

quandle.

It is obvious that this structure fulfills the second and third axioms. Starting with the

right hand side of the first axiom, we see:

T (T (x1, y2, . . . , yn), T (x2, y2, . . . , yn), . . . , T (xn, y2, . . . , yn))

= x1y
−1
2 . . . yn(x2y

−1
2 . . . yn)−1 . . . xny

−1
2 . . . yn

= x1y
−1
2 . . . yny

−1
n yn−1 . . . y2x

−1
2 . . . xny

−1
2 . . . yn

= x1x
−1
2 . . . xny

−1
2 . . . yn = T (T (x1, x2, . . . , xn), y2, . . . yn).

Thus the first axiom holds.

3.2 Construction and Classification of Ternary Quandles

Having provided a number of methods for constructing n-ary quandles in the previous

section, we give in this section the classification of ternary quandles up to isomorphisms.

We provide all ternary quandles of order 2 and 3. Moreover, we describe an additional

method of constructing ternary quandles coming from groups.

3.2.1 Ternary quandles of order two

We have the following lemma which states that there are two non-isomorphic ternary quan-

dle structures on a set of two elements.

Lemma 3.2.1. In size two, all ternary quandles are affine, and are divided into two iso-

morphism classes, represented by the trivial ternary quandle, and the one with T (x, y, z) =

x+ y + z (mod 2).
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Proof. LetQ = {1, 2} and T be a ternary quandle operation onQ. Then we have T (1, 1, 1) =

1 and T (2, 1, 1) = 2. Similarly, we have T (2, 2, 2) = 2 and T (1, 2, 2) = 1. Now we need

to choose a value for T (1, 1, 2). We distinguish two cases:

Case 1: Assume T (1, 1, 2) = 1, this implies T (2, 1, 2) = 2 (by second axiom). We claim

that in this case T (1, 2, 1) can not equal 2, otherwise T (2, 2, 1) = 1 (again axiom (II)).

Now use axiom (I) of right-self-distributivity to get

T (T (2, 1, 2), 2, 1) = T (T (2, 2, 1), T (1, 2, 1), T (2, 2, 1))

implying that T (2, 2, 1) = T (1, 2, 1) but this contradicts the bijectivity of axiom (II). Then

T (1, 2, 1) = 1 and T (2, 2, 1) = 2. This ends the proof for case 1.

Case 2: Assume T (1, 1, 2) = 2, this implies T (2, 1, 2) = 1 (by second axiom). As in case

1, we prove similarly that T (1, 2, 1) can not equal 1, thus T (1, 2, 1) = 2 and T (2, 2, 1) = 1.

Now, the only non-trivial bijection of the set {1, 2} is the transposition sending 1 to 2. It’s

easy to see that this transposition is not a homomorphism between the two ternary quandles

given in case 1 and case 2.

3.2.2 Ternary quandles of order three

To help classify the ternary quandles two observations are useful. First we note that every

ternary quandle is related to some (binary) quandle.

Remark 3.2.2. If (Q, τ) is a ternary quandle, then (Q, ∗), where x ∗ y = τ(x, y, y) is a

(binary) quandle.

We shall refer to this related quandle as the associated quandle. We now consider how

the relation between associated quandles extends to the ternary quandles.

Lemma 3.2.3. Let (Q, τ) be a ternary quandle, and (Q, ∗), be the associated quandle

defined by x ∗ y = τ(x, y, y). If (R, ∗′) is a quandle such that (Q, ∗) ∼= (R, ∗′), then there

exists a ternary quandle (R, τ ′) ∼= (Q, T ) such that x ∗′ y = τ ′(x, y, y).

Proof. This is easily shown by setting τ ′(x, y, z) = φ(τ(φ−1(x), φ−1(y), φ−1(z))) where

φ : Q→ R is an isomorphism from (Q, ∗) to (R, ∗′).
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Remark 3.2.4. While we are limiting our discussion to ternary quandle in this section, we

note at this time that just as remark 3.2.2 is a special case of remark 3.1.7, lemma 3.2.3 is

easily extended to the general case of n-ary quandles.

With these facts we now see that we may limit the task of generating isomorphically

distinct ternary quandles by generating them based on isomorphically distinct quandles.

We developed a simple program using the conditions defining a ternary quandle to compute

all ternary quandles of order 3. The output of which we used to obtain the following result.

Lemma 3.2.5. There are 31 isomophically distinct ternary quandles of order 3. Six of

these are affine: the trivial ternary quandle τ0, as well as two more with trivial associated

quandle, τ14 defined τ(x, y, z) = x+y+2z (mod 3), and τ15 defined τ(x, y, z) = x+2y+

z (mod 3), as wells as three with the connected associated quandle, τ1 defined τ(x, y, z) =

2x + 2z (mod 3), τ2 defined τ(x, y, z) = 2x + y + z (mod 3), and τ5 defined τ =

2x+ 2y (mod 3).

Additionally we found that 14 were connected (that is, the group generated by the maps

Ra,b acts transitively on the set), including the non-trivial affine structures, as well as the

remaining structures with the connected quandle as their associated quandle and 6 with the

trivial associated quandle τ6, τ7, τ10, τ12, andτ13 through τ16.

Since for each fixed a, b, the map x 7→ τ(x, a, b) is a permutation, then in the follow-

ing table we describe all ternary quandles of order three in terms of the columns of the

Cayley table. Each column is a permutation of the elements and is described in standard

notation that is by explicitly writing it in terms of products of disjoint cycles. Thus for

a given z we give the permutations resulting from fixing y = 1, 2, 3. For example, the

ternary set τ12(x, y, z) with the Cayley Table 1 will be represented with the permutations

(1), (12), (13); (12), (1), (23); (13), (23), (1). This will appear on Table 3 as shown in Table

2.

Additionally we organize the table based on the associated quandle, given in similar

permutation notation.
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Table 1: Cayley representation of ternary quandle τ12

z=1 z=2 z=3

1 2 3 2 1 1 3 1 1

2 1 2 1 2 3 2 3 2

3 3 1 3 3 2 1 2 3

Table 2: Permutation representation of ternary quandle τ12

τ z=1 z=2 z=3

τ12 (1),(12),(13) (12),(1),(23) (13),(23),(1)

Table 3: Isomorphism classes of ternary quandles of order 3
Ternary Distributive Sets With Associated Quandle (1),(1),(1)

τ z=1 z=2 z=3 τ z=1 z=2 z=3

τ0 (1),(1),(1) (1),(1),(1) (1),(1),(1) τ1 (1),(1),(1) (1),(1),(1) (12),(12),(1)

τ2 (1),(1),(1) (1),(1),(23) (1),(23),(1) τ3 (1),(1),(1) (23),(1),(1) (23),(1),(1)

τ4 (1),(1),(1) (23),(1),(23) (23),(23),(1) τ5 (1),(1),(12) (1),(1),(12) (12),(12),(1)

τ6 (1),(1),(123) (123),(1),(1) (1),(123),(1) τ7 (1),(1),(132) (132),(1),(1) (1),(132),(1)

τ8 (1),(1),(13) (13),(1),(13) (13),(1),(1) τ9 (1),(23),(23) (23),(1),(23) (23),(23),(1)

τ10 (1),(23),(23) (13),(1),(13) (12),(12),(1) τ11 (1),(12),(12) (12),(1),(12) (1),(1),(1)

τ12 (1),(12),(13) (12),(1),(23) (13),(23),(1) τ13 (1),(123),(123) (123),(1),(123) (123),(123),(1)

τ14 (1),(123),(132) (132),(1),(123) (123),(132),(1) τ15 (1),(132),(123) (123),(1),(132) (132),(123),(1)

τ16 (1),(13),(12) (23),(1),(12) (23),(13),(1)

Ternary Distributive Sets With Associated Quandle (1),(1),(12)

τ z=1 z=2 z=3 τ z=1 z=2 z=3

τ0 (1),(1),(1) (1),(1),(1) (1),(1),(12) τ1 (1),(1),(1) (1),(1),(1) (12),(12),(12)

τ2 (1),(1),(12) (1),(1),(12) (1),(1),(12) τ3 (1),(1),(12) (1),(1),(12) (12),(12),(12)

τ4 (1),(12),(1) (12),(1),(1) (1),(1),(12) τ5 (1),(12),(1) (12),(1),(1) (12),(12),(12)

τ6 (1),(12),(12) (12),(1),(12) (1),(1),(12) τ7 (1),(12),(12) (12),(1),(12) (12),(12),(12)

Ternary Distributive Sets With Associated Quandle (23),(13),(12)

τ z=1 z=2 z=3 τ z=1 z=2 z=3

τ0 (23),(1),(1) (1),(13),(1) (1),(1),(12) τ1 (23),(23),(23) (13),(13),(13) (12),(12),(12)

τ2 (23),(12),(13) (12),(13),(23) (13),(23),(12) τ3 (23),(123),(132)(132),(13),(123)(123),(132),(12)

τ4 (23),(132),(123)(123),(13),(132)(132),(123),(12) τ5 (23),(13),(12) (23),(13),(12) (23),(13),(12)
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3.2.3 Ternary distributive structures from groups

We will briefly discuss ternary distributive structures coming from groups. We have the

following sufficient conditions.

Lemma 3.2.6. Let x, y, z be three fixed elements in a groupG. Letw(x, y, z) = ae11 a
e2
2 . . . aenn

such that ai ∈ {x, y, z} and ei = ±1. If w is defined such that (I)
∑n

i=1 ei = 1, (II) there

exists a unique i such that ai = x, and (III) w(x,y,z) satisfies equation (3.1) of Definition

3.1.1, then w defines a ternary quandle over the group G.

The condition
∑n

i=1 ei = 1 ensures that w(x, x, x) = x and the condition of a unique x

ensures Ry,z is invertible.

Example 3.2.7. Using the sufficient conditions, we found three families of group words

defining ternary quandles over G. Words of the form x(a−1b)n, (ab−1)nx andwxw−1, where

a, b ∈ {y, z}, and w is any word over {y, z}.

Proof. The first and second conditions are immediately clear, we need only show

w(w(x, y, z), u, v) = w(w(x, u, v), w(y, u, v), w(z, u, v)).

First consider words of the form w(x, y, z) = x(a−1b)n where a, b ∈ {y, z}. Then we

have w(w(x, y, z), u, v) = x(a−1b)n(c−1d)n where c, d represent the corresponding u, v.

The right hand side become:

w(w(x, u, v), w(y, u, v), w(z, u, v)) = w(x(c−1d)n, y(c−1d)n, z(c−1d)n)

= x(c−1d)n((c−1d)−na−1b(c−1d)n)n

= x(c−1d)n(c−1d)−na−1b(c−1d)n((c−1d)−na−1b(c−1d)n)n−1

= xa−1b(c−1d)n((c−1d)−na−1b(c−1d)n)n−1

= x(a−1b)2(c−1d)n((c−1d)−na−1b(c−1d)n)n−2

= x(a−1b)n(c−1d)n.

The proof for words of the form (a−1b)nx is a mirror of the above.
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Now we consider words of the form w(x, y, z) = w̄(y, z)xw̄−1(y, z). Considering the

left hand side, we see w(w(x, y, z), u, v) = w̄(u, v)w̄(y, z)xw̄−1(y, z)w̄−1(u, v). The right

hand side reduces as follows:

w(w(x, u, v), w(y, u, v), w(z, u, v))

= w(w̄(u, v)xw̄−1(u, v), w̄(u, v)yw̄−1(u, v), w̄(u, v)zw̄−1(u, v))

= w̄(w̄(u, v)yw̄−1(u, v), w̄(u, v)zw̄−1(u, v))w̄(u, v)xw̄−1(u, v)

w̄−1(w̄(u, v)yw̄−1(u, v), w̄(u, v)zw̄−1(u, v)).

Now note that for w̄(w̄(u, v)yw̄−1(u, v), w̄(u, v)zw̄−1(u, v)) each ’character’ in the word

is prefixed by w̄(u, v) and suffixed by w̄−1(u, v), thus these terms will cancel inside the

word and we have

w̄(w̄(u, v)yw̄−1(u, v), w̄(u, v)zw̄−1(u, v)) = w̄(u, v)w̄(y, z)w̄−1(u, v).

Similarly w̄−1(w̄(u, v)yw̄−1(u, v), w̄(u, v)zw̄−1(u, v)) = w̄(y, z)w̄−1(u, v). Thus,

w(w(x, u, v), w(y, u, v), w(z, u, v))

= w̄(u, v)w̄(y, z)w̄−1(u, v)w̄(u, v)xw̄−1(u, v)w̄(y, z)w̄−1(u, v)

= w̄(u, v)w̄(y, z)xw̄−1(y, z)w̄−1(u, v).

And all three groups are shown to fulfill the third condition.
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Chapter 4

n-ary f -quandles

In this chapter we introduce the notion of n-ary f -distributive sets, specifically n-ary f -

quandles, a generalization of the n-ary distributive sets, and discuss a number of their

properties and relations to both n-ary quandles and binary f -quandles.

This type of generalization, which introduces a map that deforms the standard operation,

was first introduced in the context of quantum deformations of algebras over vector fields.

Generally known as Hom-algebras, a study of Lie type algebras was done by Hartwig,

Larsson and Silvestrov in [31], and n-ary Hom-type algebras were addressed by Ataguema,

Makhlouf, and Silvestrov in [6]. The unifying feature of these generalizations is the intro-

duction of a homomophism which ’twists’ the usual identities. Initial work applying this

type of generalization to the binary quandle structure was introduced in [16].

The bulk of the material in the following three chapters originally appeared in [17].

4.1 Definitions and Properties of n-ary f -quandles

In this section we present a further generalization of the quandle, applying our n-ary gen-

eralization of the quandle to the f -quandles discussed in the introduction and originally

presented in [16]. Again we will begin by presenting the ternary case, before discussing

the general n-ary case.

Definition 4.1.1. A ternary f -distributive set is a triple (Q, T, f) where Q is a set, f is a

map, and T : Q×3 → Q is a ternary operation satisfying the following conditions:

1. For all x, y, z, u, v ∈ Q

T (T (x, y, z), f(u), f(v)) = T (T (x, u, v), T (y, u, v), T (z, u, v)). (right distributivity)

(4.1)
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2. For all y, z, w ∈ Q, there exists a unique x such that

T (x, y, z) = f(w)

is invertible.

3. For all x ∈ Q,

T (x, x, x) = f(x). (4.2)

If T satisfies only condition (1), then (Q, T, f) is said to be a ternary f -shelf. If both

conditions (1) and (2) are satisfied then (Q, T, f) is said to be a ternary f -rack. If all three

conditions (1), (2) and (3) are satisfied then (Q, T, f) is said to be a ternary f -quandle.

Extending this definition to the general n-ary case leads us to the following definition.

Definition 4.1.2. An n-ary f -distributive set is a triple (Q, T, f) where Q is a set, f is a

map, and T : Q×n → Q is an n-ary operation satisfying the following conditions:

1.

T (T (x1, . . . , xn), f(u1), . . . , f(un−1)) =

T (T (x1, u1, . . . , un−1), T (x2, u1, . . . , un−1), . . . , T (xn, u1, . . . , un−1)),

∀xi, ui ∈ Q (distributivity).

2. For all a1, . . . , an−1 ∈ Q, the map Ra1,...,an−1 : Q→ Q given by

Ra1,...,an−1(x) = T (x, a1, . . . , an−1)

is invertible.

3. For all x ∈ Q,

T (x, . . . , x) = f(x).

If T satisfies only condition (1), then (Q, T, f) is said to be an n-ary f -shelf. If both

conditions (1) and (2) are satisfied then (Q, T, f) is said to be an n-ary f -rack. If all three

conditions (1), (2) and (3) are satisfied then (Q, T, f) is said to be an n-ary f -quandle.
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It is useful to note the following.

Proposition 4.1.3. If (X,T, f) is an n-ary f -quandle of finite order, then right multiplica-

tion Rx2,x3,...,xn(y) = T (y, x2, x3, . . . , xn) is a bijection.

Proof. Assume T (y, x2, x3, . . . , xn) = T (z, x2, x3, . . . , xn). Then, f(T (y, x2, x3, . . . , xn)) =

f(T (z, x2, x3, . . . , xn)) = f(T (z, x2, x3, . . . , xn) and by the second condition of definition,

f(y) = f(z). Then

T (T (y, z, z, . . . , z), f(x2), f(x3), . . . , (xn))

= T (T (y, x2, . . . , xn), T (z, x2, . . . , xn), . . . , T (z, x2, . . . , xn))

= T (T (z, x2, . . . , xn), T (z, x2, . . . , xn), . . . , T (z, x2, . . . , xn))

= f(T (z, x2, . . . , xn))

= T (f(z), f(x2), . . . , f(xn))

Again, by the second condition of 4.1, we have T (y, z, z, . . . , z) = f(z) = T (z, z, . . . , z).

Thus y = z.

The notion of morphism of n-ary f -quandles is given in the following definition, requir-

ing a preservation of the n-ary operation, T , as well as the action of the morphism f .

Definition 4.1.4. Let (Q1, T1, f1) and (Q2, T2, f2) be two n-ary f -racks (resp. f -quandles,

f -shelves). A map φ : Q1 → Q2 is an n-ary f -rack (resp. f -quandle, f -shelve) morphism

if it satisfies the conditions:

φ(T1(x1, x2, . . . , xn)) = T2(φ(x1), φ(x2), . . . , φ(xn))

and

φ ◦ f1 = f2 ◦ φ

Q×n1 Q1

Q×n2 Q2

T1

φ×n φ

T2
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Note that in the case of n-ary quandles, condition 3 forces the morphism f to be depen-

dent upon the operation T . This leads us to the following remarks.

Remark 4.1.5. In the case of n-ary f -quandles, the first condition implies the second

condition as condition 3 gives

φ ◦ f1(x) = φ ◦ T1(x, x, . . . , x).

Remark 4.1.6. Let (Q, T, f) be an n-ary f -quandle, then f is an n-ary f -quandle homo-

morphism.

T (f(x1), f(x2), . . . , f(xn)) = T (T (x1, x1, . . . , x1), f(x2), . . . , f(xn))

= T (T (x1, x2, . . . , xn, T (x1, x2, . . . , xn), . . . , T (x1, x2, . . . , xn))

= f(T (x1, x2, . . . , xn)).

Now we give an example of an n-ary f -quandle.

Example 4.1.7. Define the n-ary operation T over Zm by

T (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Then (Zm, T ) is a n-ary f -quandle. We call this an affine n-ary f -quandle.

Example 4.1.8. We may obtain a ternary f -quandle (X,T, F ) from a binary f -quandle

(X, ∗, f) by defining T (a, b, c) = (a ∗ b) ∗ f(c) and F (x) = f 2(x). Starting with the

left-hand side of condition 4.3 we see,

T (T (x, y, z), F (u), F (v))

= (((x ∗ y) ∗ f(z)) ∗ f 2(u)) ∗ f 3(v)

= (((x ∗ y) ∗ f(u)) ∗ (f(z) ∗ f(u))) ∗ f 3(v)

= (((x ∗ y) ∗ f(u)) ∗ f 2(v)) ∗ ((f(z) ∗ f(u)) ∗ f 2(v))

= (((x ∗ u) ∗ (y ∗ u)) ∗ f 2(v)) ∗ f((z ∗ u) ∗ f(v))

= (((x ∗ u) ∗ f(v)) ∗ ((y ∗ u) ∗ f(v))) ∗ f(T (z, u, v))

= (T (x, u, v) ∗ T (y, u, v)) ∗ f(T (z, u, v))

= T (T (x, u, v), T (y, u, v), T (z, u, v)).
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Thus distributivity holds. As Rb,c = rf(c) ◦ rb, where ra is right muliplication by a in the

binary f -quandle, the bijectivity of right multiplication of binary f -quandles extends to

T . Finally T (x, x, x) = (x ∗ x) ∗ f(x) = f(x) ∗ f(x) = f 2(x) = F (x), thus all three

conditions hold.

Example 4.1.9. In the following example we extend the iteration to give a procedure for

obtaining a n-ary f -quandle from a binary one. Let (X, ∗, f) be a binary f -quandle and

define T (x1, x2, x3, . . . , xn) = ((· · · (x1∗x2)∗f(x3))∗· · · )∗fn−2(xn) and F (x) = fn−1(x).

First we see that,

T (x, x, . . . , x)

= (· · · ((x ∗ x) ∗ f(x)) ∗ f 2(x)) ∗ · · · ) ∗ fn−2(x)

= (· · · (f(x) ∗ f(x)) ∗ f 2(x)) ∗ · · · ) ∗ fn−2(x)

= (· · · (f 2(x) ∗ f 2(x)) ∗ f 3(x)) ∗ · · · ) ∗ fn−2(x)

= · · · = fn−2(x) ∗ fn−2 = fn−1(x) = F (x).

As in the ternary case, Rx2,x3,...,xn = rfn−2(xn) ◦ . . . ◦ rb again the bijectivity of right

multiplication extends from the binary to the n-ary case.
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Finally, we can see that distributivity holds as follows:

T (T (x1, x2, . . . , xn), F (u2), F (u3), . . . , F (un))

=(· · · (x1 ∗ x2) ∗ f(x3)) ∗ · · · ) ∗ fn−2(xn)) ∗ fn−1(u2)) ∗ fn(u3)) ∗ · · · ) ∗ f 2n−3(un)

=(· · · ([..(x1 ∗ x2) ∗ f(x3)) ∗ · · · ) ∗ fn−3(xn−1)) ∗ fn−2(u2)] ∗ [fn−2(xn) ∗ fn−2(u2)])

∗ fn(u3)) ∗ · · · ) ∗ f 2n−3(un)

=[(· · · (x1 ∗ x2) ∗ f(x3)) ∗ · · · ) ∗ fn−3(xn−1)) ∗ fn−2(u2)) ∗ fn−1(u3)) ∗ · · · ) ∗ f 2n−4(un)]

∗ [(· · · (fn−2(xn) ∗ fn− 2(u2)) ∗ fn−1(u3)) ∗ · · · ) ∗ f 2n−4(un)]

=[(· · · (x1 ∗ x2) ∗ f(x3)) ∗ · · · ) ∗ fn−3(xn−1)) ∗ fn−2(u2)) ∗ fn−1(u3)) ∗ · · · ) ∗ f 2n−4(un)]

∗ fn−2(T (xn, u2, . . . , un))

=([(· · · (x1 ∗ x2) ∗ f(x3)) ∗ · · · ) ∗ fn−4(xn−2)) ∗ fn−3(u2)) ∗ fn−2(u3)) ∗ · · · ) ∗ f 2n−5(un)]

∗ [(· · · (fn−3(xn−1) ∗ fn−3(u2)) ∗ fn−2(u3)) ∗ · · · ) ∗ f 2n−5(un)]) ∗ fn−2(T (xn, u2, . . . , un))

=([(· · · (x1 ∗ x2) ∗ f(x3)) ∗ · · · ) ∗ fn−4(xn−2)) ∗ fn−3(u2)) ∗ fn−2(u3)) ∗ · · · ) ∗ f 2n−5(un)]

∗ fn−3(T (xn−1, u2, . . . , un))) ∗ fn−2(T (xn, u2, . . . , un))

=(· · · (T (x1, u2, . . . , un) ∗ T (x2, u2, . . . , un)) ∗ f(T (x3, u2, . . . , un))) ∗ · · · )

∗ fn−2(T (xn, u2, . . . , un))

=T (T (x1, u2, . . . , un), T (x2, u2, . . . , un)), . . . , T (xn, u2, . . . , un)).

4.2 Construction and Classification of n-ary f -quandles

Proposition 4.2.1. Let (X,T, f) be a finite f -quandle and φ be an n-ary f -quandle mor-

phism. Then (X,Tφ, fφ) is an f -quandle with Tφ(x1, x2, . . . , xn) = φ(T (x1, x2, . . . , xn))

and fφ(x) = φ(f(x)) if and only if φ is an automorphism.
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Proof. Assume φ is an automorphism, and let x1, x2, . . . , xn, u2, u3, . . . , un ∈ X .

Tφ(Tφ(x1, . . . , xn), fφ(u2), fφ(u3), . . . , fφ(un))

= φ(T (φ(T (x1, . . . , xn)), φ(f(u2)), . . . , φ(f(un))))

= φ2(T (T (x1, . . . , xn), f(u2), . . . , f(un)))

= φ2(T (T (x1, u2, . . . , un), T (x2, u2, . . . , un), . . . , T (xn, u2, . . . , un))

= φ(T (Tφ(x1, u2, . . . , un), . . . , Tφ(xn, u2, . . . , un)))

= Tφ(Tφ(x1, u2, . . . , un), . . . , Tφ(xn, u2, . . . , un)).

The remaining conditions are easier to see. As Ra1,...,an−1 is a bijection for all a1, . . . , an so

is Rφ(a1),...,φ(an−1)(x) = T (φ(x), φ(a1), . . . , φ(an−1)) = φ(T (x, a1, . . . , an−1)), while the

final condition is immediately guaranteed since φ is an automorphism.

Remark 4.2.2. Note that an n-ary quandle (rsp. rack, shelf), (Q, T ) may be viewed as an

n-ary f -quandle (resp. rack, shelf) (Q, T, idQ), with the identity map as the morphism.

Corollary 4.2.3. In the case where f is the identity map, Proposition 4.2.1 shows that any

usual quandle along with any automorphism gives rise to an f -quandle.

Example 4.2.4. Let (Zm, T ) be an n-ary quandle such that T (x1, x2, . . . , xn) = a1x1 +

a2x2 + · · · + anxn where
∑
an = 1. Let f(x) = x + b. As T (f(x1), f(x2), . . . , f(xn)) =∑

ai(xi+b) =
∑
aixi+

∑
aib =

∑
aixi+b = f(T (x1, x2, . . . xn)), f is an automorphism

of (Zm, T )

Then (Zm, T, f) is an n-ary f -quandle.

We note at this time that the classification of binary f -quandles given in [16].

Below we present a complete classification of connected ternary f -quandles of orders 2

and 3, giving a representative of each isomorphism class.

For order 2, we found 6 distinct isomorphism classes, each of which can be defined over

Z2 by one of the following maps: τ(x, y, z) = x, τ(x, y, z) = x + 1, τ(x, y, z) = x + y,

τ(x, y, z) = x+ z, τ(x, y, z) = x+ y + z, or τ(x, y, z) = x+ y + z + 1.
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Table 4: Isomorphism classes of ternary f -quandles of order 3
z=1 z=2 z=3 z=1 z=2 z=3

(1),(1),(1) (1),(2 3),(1) (1),(1),(2 3) (1),(1),(1) (1),(2 3),(2 3) (1),(2 3),(2 3)

(1),(1),(1) (2 3),(2 3),(1) (2 3),(1),(2 3) (1),(1),(1) (2 3),(2 3),(2 3) (2 3),(2 3),(2 3)

(1),(1),(1) (1 2 3),(1 2 3),(1 2 3) (1 3 2),(1 3 2),(1 3 2) (1),(1),(1) (1 3 2),(1 3 2),(1 3 2) (1 2 3),(1 2 3),(1 2 3)

(1),(1),(1 2 3) (1),(1 3 2),(1 3 2) (1 2 3),(1 3 2),(1 2 3) (1),(1),(1 3 2) (1 2 3),(1 3 2),(1 3 2) (1 2 3),(1),(1 2 3)

(1),(2 3),(2 3) (1),(2 3),(1) (1),(1),(2 3) (1),(2 3),(2 3) (1),(2 3),(2 3) (1),(2 3),(2 3)

(1),(2 3),(2 3) (2 3),(2 3),(1) (2 3),(1),(2 3) (1),(2 3),(2 3) (2 3),(2 3),(2 3) (2 3),(2 3),(2 3)

(1),(2 3),(2 3) (2 3),(1 2 3),(2 3) (2 3),(2 3),(1 3 2) (1),(1 2),(1 3) (1 3),(1 2 3),(1 2) (1 2),(1 3),(1 3 2)

(1),(1 2 3),(1 2 3) (1),(1 3 2),(1) (1 3 2),(1 3 2),(1 2 3) (1),(1 2 3),(1 3 2) (1),(1 2 3),(1 3 2) (1),(1 2 3),(1 3 2)

(1),(1 2 3),(1 3 2) (1 2 3),(1 3 2),(1) (1 3 2),(1),(1 2 3) (1),(1 3 2),(1 2 3) (1),(1 3 2),(1 2 3) (1),(1 3 2),(1 2 3)

(1),(1 3 2),(1 2 3) (1 3 2),(1 2 3),(1) (1 2 3),(1),(1 3 2) (1),(1 3),(1 2) (1 2),(1 2 3),(1 3) (1 3),(1 2),(1 3 2)

(2 3),(1),(1) (1),(2 3),(1) (1),(1),(2 3) (2 3),(1),(1) (1),(2 3),(2 3) (1),(2 3),(2 3)

(2 3),(1),(1) (2 3),(2 3),(1) (2 3),(1),(2 3) (2 3),(1),(1) (2 3),(2 3),(2 3) (2 3),(2 3),(2 3)

(2 3),(1),(1) (1 2 3),(2 3),(1 2 3) (1 3 2),(1 3 2),(2 3) (2 3),(2 3),(2 3) (1),(2 3),(1) (1),(1),(2 3)

(2 3),(2 3),(2 3) (1),(2 3),(2 3) (1),(2 3),(2 3) (2 3),(2 3),(2 3) (2 3),(2 3),(1) (2 3),(1),(2 3)

(2 3),(2 3),(2 3) (2 3),(2 3),(2 3) (2 3),(2 3),(2 3) (2 3),(2 3),(2 3) (1 2),(1 2),(1 2) (1 3),(1 3),(1 3)

(2 3),(1 2),(1 3) (2 3),(1 2),(1 3) (2 3),(1 2),(1 3) (2 3),(1 2),(1 3) (1 3),(2 3),(1 2) (1 2),(1 3),(2 3)

(2 3),(1 2 3),(1 3 2) (1),(2 3),(1 3 2) (1),(1 2 3),(2 3) (2 3),(1 3 2),(1 2 3) (1 3 2),(2 3),(1) (1 2 3),(1),(2 3)

(2 3),(1 3),(1 2) (1 2),(2 3),(1 3) (1 3),(1 2),(2 3) (2 3),(1 3),(1 2) (1 3),(1 2),(2 3) (1 2),(2 3),(1 3)

(1 2),(1),(1 3 2) (1 3 2),(2 3),(1) (1),(1 3 2),(1 3) (1 2),(2 3),(1 3) (1 2),(2 3),(1 3) (1 2),(2 3),(1 3)

(1 2),(1 2),(1 2) (2 3),(2 3),(2 3) (1 3),(1 3),(1 3) (1 2),(1 2 3),(1 2 3) (1 2 3),(2 3),(1 2 3) (1 2 3),(1 2 3),(1 3)

(1 2),(1 3 2),(1) (1),(2 3),(1 3 2) (1 3 2),(1),(1 3) (1 2),(1 3),(2 3) (1 3),(2 3),(1 2) (2 3),(1 2),(1 3)

(1 2 3),(1),(1) (1),(1 2 3),(1) (1),(1),(1 2 3) (1 2 3),(1),(1 2 3) (1 2 3),(1 2 3),(1) (1),(1 2 3),(1 2 3)

(1 2 3),(1),(1 3 2) (1 3 2),(1 2 3),(1) (1),(1 3 2),(1 2 3) (1 2 3),(2 3),(1 3) (1 2),(1 2 3),(1 3) (1 2),(2 3),(1 2 3)

(1 2 3),(1 2),(1 2) (2 3),(1 2 3),(2 3) (1 3),(1 3),(1 2 3) (1 2 3),(1 2 3),(1) (1),(1 2 3),(1 2 3) (1 2 3),(1),(1 2 3)

(1 2 3),(1 2 3),(1 2 3) (1 2 3),(1 2 3),(1 2 3) (1 2 3),(1 2 3),(1 2 3) (1 2 3),(1 2 3),(1 3 2) (1 3 2),(1 2 3),(1 2 3) (1 2 3),(1 3 2),(1 2 3)

(1 2 3),(1 3 2),(1) (1),(1 2 3),(1 3 2) (1 3 2),(1),(1 2 3) (1 2 3),(1 3 2),(1 2 3) (1 2 3),(1 2 3),(1 3 2) (1 3 2),(1 2 3),(1 2 3)

(1 2 3),(1 3 2),(1 3 2) (1 3 2),(1 2 3),(1 3 2) (1 3 2),(1 3 2),(1 2 3) (1 2 3),(1 3),(2 3) (1 3),(1 2 3),(1 2) (2 3),(1 2),(1 2 3)

As mentioned in remark 4.2.2, the class of n-ary quandles can be considered a subclass

of n-ary f -quandles. Thus we present in the following table only those isomorphism classes

which contain no elements found in table 3.
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Chapter 5

Extensions of n-ary quandles and n-ary f -quandles

In this chapter we investigate the notion of extension for ternary f -quandles. We define

generalized cohomology theory for ternary f -quandle 3-cocycles and give examples. We

give an explicit formula relating group 3-cocycles to Ternary f -quandle 3-cocycles, when

the ternary f -quandle is constructed from a group. As in any standard algebraic structures

we show that the second cohomology group classifies extensions [2, 13].

5.1 Extensions with dynamical cocycles and Extensions with constant cocycles

In this section we construct extensions following the ideas presented in [2].

Proposition 5.1.1. Let (X,T, F ) be a Ternary f -quandle andA be a non-empty set. Let α :

X×X×X → Fun(A×A×A,A) be a function and f, g : A→ A are maps. Then,X×A is

a Ternary f -quandle by the operation T ((x, a), (y, b), (z, c)) = (T (x, y, z), αx,y,z(a, b, c)),

where T (x, y, z) denotes the Ternary f -quandle product inX , if and only if α and g satisfies

the following conditions:

1. αx,x,x(a, a, a) = g(a) for all x ∈ X and a ∈ A;

2. αx,y,z(−, b, c) : A→ A is a bijection for all x, y, z ∈ X and for all b, c ∈ A;

3. αT (x,y,z),f(u),f(v)(αx,y,z(a, b, c), g(d), g(e)) =

αT (x,u,v),T (y,u,v),T (z,u,v)(αx,u,v(a, d, e), αy,u,v(b, d, e), αz,u,v(c, d, e)) for all x, y, z, u, v ∈

X and a, b, c, d, e ∈ A.

Such function α is called a dynamical Ternary f -quandle cocycle or dynamical Ternary

f -rack cocycle (when it satisfies above conditions).

The Ternary f -quandle constructed above is denoted by X ×α A, and it is called extension

of X by a dynamical cocycle α. The construction is general, as Andruskiewitch and Graña
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showed in [2].

Assume (X,T, F ) is a Ternary f -quandle and α be a dynamical f -cocycle with assomap

g. For x ∈ X , define Tx(a, b, c) := αx,x,x(a, b, c). Then it is easy to see that (A, Tx, F ) is a

Ternary f -quandle for all x ∈ X .

Remark 5.1.2. When x = y = z on (3) above, we get

αf(x),f(u),f(v)(αx,x,x(a, b, c), g(d), g(e)) =

αT (x,u,v),T (x,u,v),T (x,u,v)(αx,u,v(a, d, e), αx,u,v(b, d, e), αx,u,v(c, d, e))

for all a, b, c, d, e ∈ A.

Now, we discuss Extensions with constant cocycles. Let (X,T, F ) be a ternary f -rack and

λ : X ×X ×X → SA where SA is group of permutations of A.

If λT (x,y,z),F (u),F (v)λx,y,z = λT (x,u,v),T (y,u,v),T (z,u,v)λx,u,v we say λ is a constant ternary f -

rack cocycle.

If (X,T, F ) is a ternary f -quandle and further satisfies λx,x,x = id for all x ∈ X , then we

say λ is a constant ternary f -quandle cocycle.

5.2 Modules over Ternary f -rack

Here we introduce the notion of modules over ternary f -racks in order to define a general-

ized cohomology theory.

Definition 5.2.1. Let (X,T, f) be a Ternary f -rack andA be an abelian group. A structure

of X-module on A consists of an endomorphism g, a family of automorphisms (ηijk)i,j,k∈X ,

and two families of endomorphisms (τijk)i,j,k∈X and (µijk)i,j,k∈X of A satisfying the fol-
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lowing conditions:

ηT (x,y,z),f(u),f(v)ηx,y,z = ηT (x,u,v),T (y,u,v),T (z,u,v)ηx,u,v (5.1)

ηT (x,y,z),f(u),f(v)τx,y,z = τT (x,u,v),T (y,u,v),T (z,u,v)ηy,u,v (5.2)

ηT (x,y,z),f(u),f(v)µx,y,z = µT (x,u,v),T (y,u,v),T (z,u,v)ηz,u,v (5.3)

τT (x,y,z),f(u),f(v)g = ηT (x,u,v),T (y,u,v),T (z,u,v)τx,u,v + τT (x,u,v),T (y,u,v),T (z,u,v)τy,u,v

+µT (x,u,v),T (y,u,v),T (z,u,v)τz,u,v (5.4)

µT (x,y,z),f(u),f(v)g = ηT (x,u,v),T (y,u,v),T (z,u,v)µx,u,v + τT (x,u,v),T (y,u,v),T (z,u,v)µy,u,v

+µT (x,u,v),T (y,u,v),T (z,u,v)µz,u,v (5.5)

In the n-ary case, we generalized the above definition as follows.

Definition 5.2.2. Let (X,T, f) be a n-ary f -rack,A be an abelian group. A structure ofX-

module onA consists of an endomorphism g, a family of automorphisms (ηi1i2...in)i1,i2,...,in∈X ,

and a family of endomorphisms (τ ii1i2...in)i1,i2,...,in∈X of A, satisfying the following condi-

tions:

ηT (x1,x2,...,xn),f(y2),f(y3),...,f(yn)ηx1,x2,...,xn =

ηT (x1,y2,...,yn),T (x2,y2,...,yn),...,T (xn,y2,...,yn)ηx1,y2,...,yn (5.6)

ηT (x1,x2,...,xn),f(y2),f(y3),...,f(yn)τ
i
x1,x2,...,xn

=

τ iT (x1,y2,...,yn),T (x2,y2,...,yn),...,T (xn,y2,...,yn)ηxi,y2,...,yn (5.7)

τ iT (x1,x2,...,xn),f(y2),f(y3),...,f(yn)g =

ηT (x1,y2,...,yn),T (x2,y2,...,yn),...,T (xn,y2,...,yn)τ
i
x1,y2,...,yn

+
n−1∑
j=1

τ jT (x1,y2,...,yn),T (x2,y2,...,yn),...,T (xn,y2,...,yn)τ
i
xj ,y2,...,yn

(5.8)

Remark 5.2.3. If X is a Ternary f -quandle, a Ternary f -quandle structure of X-module

on A is a structure of an X-module further satisfies

τf(x),f(u),f(v)g = (ηT (x,u,v),T (x,u,v),T (x,u,v) + τT (x,u,v),T (x,u,v),T (x,u,v) +

µT (x,u,v),T (x,u,v),T (x,u,v))τx,u,v (5.9)
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and

µf(x),f(u),f(v)g = (ηT (x,u,v),T (x,u,v),T (x,u,v) + τT (x,u,v),T (x,u,v),T (x,u,v)

+µT (x,u,v),T (x,u,v),T (x,u,v))µx,u,v (5.10)

Furthermore, if f, g = id maps, then it satisfies

ηT (x,u,v),T (x,u,v),T (x,u,v) + τT (x,u,v),T (x,u,v),T (x,u,v) + µT (x,u,v),T (x,u,v),T (x,u,v) = id and

ηT (x,u,v),T (x,u,v),T (x,u,v) + τT (x,u,v),T (x,u,v),T (x,u,v) + µT (x,u,v),T (x,u,v),T (x,u,v) = id.

Remark 5.2.4. When x = y = z in (5.1), we get

ηf(x),f(u),f(v)ηx,x,x = ηT (x,u,v),T (x,u,v),T (x,u,v)ηx,u,v

Example 5.2.5. Let A be a non-empty set, (X,T, F ) be a Ternary f -quandle, and κ be a

generalized 3-cocycle. For a, b, c ∈ A, let

αx,y,z(a, b, c) = ηx,y,z(a) + τx,y,z(b) + µx,y,z(c) + κx,y,z.

Then, it can be verified directly that α is a dynamical cocycle and the following relations

hold:

ηT (x,y,z),f(u),f(v)ηx,y,z = ηT (x,u,v),T (y,u,v),T (z,u,v)ηx,u,v (5.11)

ηT (x,y,z),f(u),f(v)τx,y,z = τT (x,u,v),T (y,u,v),T (z,u,v)ηy,u,v (5.12)

ηT (x,y,z),f(u),f(v)µx,y,z = µT (x,u,v),T (y,u,v),T (z,u,v)ηz,u,v (5.13)

τT (x,y,z),f(u),f(v)g = ηT (x,u,v),T (y,u,v),T (z,u,v)τx,u,v + τT (x,u,v),T (y,u,v),T (z,u,v)τy,u,v

+µT (x,u,v),T (y,u,v),T (z,u,v)τz,u,v (5.14)

µT (x,y,z),f(u),f(v)g = ηT (x,u,v),T (y,u,v),T (z,u,v)µx,u,v + τT (x,u,v),T (y,u,v),T (z,u,v)µy,u,v

+µT (x,u,v),T (y,u,v),T (z,u,v)µz,u,v (5.15)

ηT (x,y,z),f(u),f(v)κx,y,z + κT (x,y,z),f(u),f(v) = ηT (x,u,v),T (y,u,v),T (z,u,v)κx,u,v

+τT (x,u,v),T (y,u,v),T (z,u,v)κy,u,v + µT (x,u,v),T (y,u,v),T (z,u,v)κz,u,v

+κT (x,u,v),T (y,u,v),T (z,u,v) (5.16)
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Definition 5.2.6. When κ further satisfies κx,x,x = 0 in (5.16) for any x ∈ X , we call it a

generalized Ternary f -quandle 3-cocycle.

Example 5.2.7. Let (X,T, F ) be a Ternary f -quandle and A be an abelian group. Set

ηx,y,z = τx,y,z, µx,y,z = 0, κx,y,z = φ(x, y, z).

Then φ is a 3-cocycle. That is,

φ(x, y, z) + φ(T (x, y, z), f(u), f(v)) = φ(x, u, v) + φ(y, u, v)+

φ(T (x, u, v), T (y, u, v), T (z, u, v))

Example 5.2.8. Let Γ = Z[P,Q,R] denote the ring of Laurent polynomials. Then any Γ-

module M is a Z(X)-module for any Ternary f -quandle (X,T, F ) by defining ηx,y,z(a) =

Pa, τx,y,z(b) = Qb and µx,y,z(c) = Rc for any x, y, z ∈ X and a, b, c ∈ Z.
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Chapter 6

Cohomology of n-ary quandles and n-ary f -quandles

In this chapter, we will begin by reviewing cohomology theory of standard n-ary quandles

before presenting a cohomology theory for higher-ary f -quandles.

6.1 Cohomology of n-ary f -quandles

In this section we generalize the cohomology theory of the previous section to the context

of n-ary f -quandles.

Let (X, ∗, f) be a ternary f-rack where f : X → X is a ternary f -rack morphism. We will

define the most generalized cohomology theories of f -racks as follows (the reader is ad-

vised to review examples 6.2.1, 6.2.2, 6.2.3 which may help illuminate the dense technical

notation that follows).

For a sequence of elements (x1, x2, x3, x4, . . . , x2p+1) ∈ X2p+1 define

[x1, x2, x3, x4, . . . , x2p+1] =

T (. . . T (x1, x2, x3), f(x4), f(x5)), f 2(x6), f 2(x7))) . . . )fp−1(x2p), f
p−1(x2p+1)).

More generally, if we are considering an n-ary f -rack, we define the bracket as follows:

[x1, x2, x3, x4, . . . , x(n−1)p+1] = T (. . . T (x1, . . . , xn), f(xn+1), . . . , f(x2n−1)) . . .

. . . , fp−1(xp(n−2)+1), . . . , f p−1(x(n−1)p+1))

Notice that for i = (p− 1)j + 1 < n we have the following equality.
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[x1, x2, x3, x4, . . . , xn] =

T ([x1, . . . , xi−1, xi+p, . . . , xn], f i−2[xi, xi+p, . . . , xn], f i−2[xi+1, xi+p, . . . , xm], . . .

. . . , f i−2[xi+p−1, xi+p, . . . , xn]

This relation is obtained by applying the first axiom of f -quandles (p − i) times, first

grouping the first (i − 1) terms together, then iterating this process, again grouping and

iterating each.

We provide cohomology theory for the f -rack by defining a co-chain complex.

Theorem 6.1.1. Consider the free left Z(X)-module Cp(X) = Z(X)Xp with basis Xp.

For an abelian group A, denote Cp(X,A) := HomZ(X)(Cp(X), A). The operators ∂ =

∂p : Cp(X)→ Cp−1(X) defined:

∂pφ(x1, . . . , x(n−1)p+1)

= (−1)p+1

p+1∑
i=2

(−1)i{η[A(i)],F i−2([B2(i)]),F i−2([B3(i)]),...,F i−2([Bn(i)])φ(A(i))

− φ(T (C1(i)), T (C2(i)), . . . , T (C(n−1)i−1(i)), F (x(n−1)i), F (x(n−1)i+1), . . . , F (x(n−1)p+1))

+ (−1)p+1

n−1∑
j=1

τ i[B1(0)],[B2(0)],...,[Bn−1(0)]φ(Bj(0)),

where A(i) = x1, x2, . . . , x̂(n−1)i, x̂(n−1)i+1, . . . , x̂(n−1)(i+1), xn(i+1)−i, . . . , x(n−1)p+1,

Bk(i) = x(n−1)i+k, x(n−1)i+n+1, x(n−1)i+2, . . . , x(n−1)p+1,

Ck(i) = xk, x(n−1)i, x(n−1)i+1, . . . , x(n−1)i+n−2,

defines a boundary map for the chain complex, and the map δ = δp : Cp+1(X)→ Cp(X)

defined δp(f) = f∂p+1 defines a coboundary map for the cochain complex.

Proof. To prove that ∂p+1∂p = 0, and thus ∂ is a coboundary map we will break the

composition into pieces, using the linearity of η and τ i.
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First we will show that the composition of the ith term of the first summand of ∂p with the

jth term of the first summand of ∂p+1 cancels with the (j + 1)th term of the first summand

of ∂p with the ith term of the first summand of ∂p+1 for i ≤ j. As the sign of these terms

are opposite, we need only to show that the compositions are equal up to their sign. For the

sake of readability we will introduce the following, based on A and B above:

A(i, j) = x1, . . . , x̂(n−1)i, x̂(n−1)i+1, . . . , x̂ni, xni+1, . . . , x(n−1)j−1,

x̂(n−1)j, x̂(n−1)j+1, . . . , x̂nj, . . . , x(n−1)p+1,

B(i, j) = x(n−1)i+k, xni+1, xni+2, . . . , x̂(n−1)j, x̂(n−1)j+1, . . . , x̂nj, . . . , x(n−1)p+1.

Now we can see that the composition of the ith term of the first summand of ∂p with the

jth term of the first summand of ∂p+1 can be rewritten as follows:

η[A(i)],F i−2[B0(i)],F i−2[B1(i)],...,F i−2[Bn−2(i)]η[A(i,j+1)],F j−1[B0(j+1)],F j−1[B1(j+1)],...,F j−1[Bn−2(j+1)]

= ηT ([A(i,j)],F j−1[B0(j+1)],...,F j−1[Bn−2(j+1)]),T (F i−2[B0(i,j)],F j−1[B0(j+1)],...,F j−1[Bn−2(j+1)])

T (F i−2[B1(i,j)],F j−1[B0(j+1)],...,F j−1[Bn−2(j+1)]),...,T (F i−2[Bn−2(i,j)],F j−1[B0(j+1)],...,F j−1[Bn−2(j+1)])

η[A(i,j+1)],F j−1[B0(j+1)],F j−1[B1(j+1)],...,F j−1[Bn−2(j+1)]

= ηT ([A(i,j)],F i−2[B0(i,j)],...,F i−2[Bn−2(i,j)]),F j−1[B0(j+1)],...,F j−1[Bn−2(j+1)]

η[A(i,j)],F i−2[B0(i,j)],...,F i−2[Bn−2(i,j)]

= η[A(j+1)],F j−1[B0(j+1)],F j−1[B1(j+1)],...,F j−1[Bn−2(j+1)]η[A(i,j)],F i−2[B0(i,j)],...,F i−2[Bn−2(i,j)]

Which is precisely the (j + 1)th term of the first summand of ∂p with the ith term of the

first summand of ∂p+1.

Similar manipulations show that the composition of τ i from ∂p with the ith term of the

first sum of ∂p+1 cancels with the composition of the (i + 1)th term of the first sum of ∂p

with τ i from ∂p+1. For the sake of brevity we will omit showing these manipulations, but

the table below presents all relations which are canceled by similar manipulations.
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In the table ηi represents the ith summand of the first sum, ◦i represents the ith summand

of the second sum, with order of composition determining its origin in δp or δp+1.

ηiηj = ηj+1ηi

ηi◦j = ◦j+1ηi

ηiτ
i = τ iηi+1

τ i◦i = ◦i+1τ
i

◦i◦j = ◦j+1◦i
All these relations leave m+ 1 remaining terms, which cancel via the third axiom in Defi-

nition.

6.2 Examples

Example 6.2.1. By specializing n = 2 in the theorem 6.1.1, the coboundary operator

simplifies to:

∂φ(x1, . . . , x2p+1)

=

p∑
i=1

(−1)iη{A,B,C}φ(x1, . . . , x̂2i, x̂2i+1, . . . , x2p+1)

−
p∑
i=1

(−1)iφ(T (x1, x2i, x2i+1), . . . , T (x2i−1, x2i, x2i+1), F (x2i+2), . . . , F (x2p+1))

+(−1)2p+1τ[x1,x4,...,x2n+1],[x2,x4,...,x2p+1],[x3,...,x2p+1]φ(x2, x4, . . . , x2p+1)

+(−1)2p+1µ[x1,x4,...,x2n+1],[x2,x4,...,x2p+1],[x3,...,x2p+1]φ(x3, x4, . . . , x2p+1).

where A = [x1, . . . , x̂2i, x̂2i+1, . . . , x2p+1], B = F {i−1}[x2i, x2i+2, x2i+3, . . . , x2p+1],

C = F {i−1}[x2i+1, x2i+2, . . . , x2p+1].

Further specializing example 6.2.1, we have the following result.

Example 6.2.2. In this example, we compute the first and second cohomology groups

of the ternary Alexander f -quandle X = Z3 with coefficients in the abelian group Z3.

In the ternary f -quandle under consideration, we have P = 2, Q = R = 1, that is
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T (x1, x2, x3) = Px1 + Qx2 + Rx3 and f(x) = (P + Q + R)x as in example 4.1.7. Now

Setting η to be multiplication by P , τ to be multiplication by Q, and µ to be multiplication

by R we have the 1-cocycle condition for φ : X → A as

Pφ(x) +Qφ(y) +Rφ(z)− φ(T (x, y, z)) = 0

and the 2-cocycle condition as

Pψ(x1, x2, x3) + ψ(T (x1, x2, x3), f(x4), f(x5))

= Pψ(x1, x4, x5) +Qψ(x2, x4, x5) +Rψ(x3, x4, x5)

+ ψ(T (x1, x4, x5), T (x2, x4, x5), T (x3, x4, x5)).

A direct computation gives H1(X = Z3, A = Z3) is 2-dimensional, with basis {2χ0 +

χ1, 2χ0+χ2}. As such the dim(Im(δ1)) = 1, and additional calculation gives dim(ker(δ2)) =

3, thus H2 is also 2-dimensional.

Lastly we consider a binary case, obtaining, as expected, a familiar result.

Example 6.2.3. Let η be the multiplication by T and τ be the multiplication by S in Exam-

ple 4.1.7. The 1-cocycle condition is written for a function φ : X → A as

Tφ(x) + Sφ(y)− φ(x ∗ y) = 0.

Note that this means that φ : X → A is a quandle homomorphism.

For ψ : X ×X → A, the 2-cocycle condition can be written as

Tψ(x1, x2) + ψ(x1 ∗ x2, f(x3))

= Tψ(x1, x3) + Sψ(x2, x3) + ψ(x1 ∗ x3, x2 ∗ x3).

In [16], the groups H1 and H2 with coefficients in the abelian group Z3 of the f -quandle

X = Z3, T = 1, S = 2 and f(x) = 0 were computed. More precisely, H1(Z3,Z3) is

1-dimensional with a basis χ1 + 2χ2 and H2 is 1-dimension with a basis

φ = χ(0,1) + 2χ(0,2) + 2χ(1,0) + χ(1,2) + 2χ(2,1).
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Appendix A

Ternary f -quandle code

Here we present the C++ code that we used to generate ternary f -quandles.

#include <iostream>

#include <fstream>

#include <string>

#include <sstream>

#include <algorithm>

using namespace std;

int main ()

{

int size, Hom[9]={0}, sizeFact=1, j, k, Valid, IndxSize;

int permu[10]={1,2,3,4,5,6,7,8,9}, Indx[256]={0}, placE;

//Name and location of file to output to

string outFileName="C:\\Cpp\\TQuandWMaps\\QuandXXTables.txt";

//Initialize to first posible structure under lexicographic order,

int Quand[4][4][4]={{{1,2,3,4},{1,2,3,4},{1,2,3,4},{1,2,3,4}}

,{{1,2,3,4},{1,2,3,4},{1,2,3,4},{1,2,3,4}},{{1,2,3,4},{1,2,3,4},

{1,2,3,4},{1,2,3,4}},{{1,2,3,4},{1,2,3,4},{1,2,3,4},{1,2,3,4}}};

//Order of structure to generate chosen when the program is run

cout << "Size:";

cin >> size;

//initialize the output to file, setting the second X in name to size

ofstream outFile;
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outFileName[25]=’0’+size;

outFile.open(outFileName);

//sizeFact is set to size!

for (int a=1; a<=size; a++)

sizeFact *= a;

IndxSize = size*size;

//Runs through validation check, valid table dump,

// and incrementing structure procedure

while (Indx[IndxSize]<1)

{

//Used for debugging

/*

for (int c=0; c<size; c++)

{

for (int d=0; d<size; d++)

cout << Quand[c][d];

cout << endl;

}

*/

//Define f(a)=T(a,a,a)

for (int k=0; k<size; k++)

Hom[k]=Quand[k][k][k];
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//Check condition T(T(l,m,n),p,q) = T(T(l,p,q),T(m,p,q),T(n,p,q))

//for all l,m,n,p,q

Valid=1;

for (int l=0; l<size; l++)

{

for (int m=0; m<size; m++)

{

for (int n=0; n<size; n++)

{

for (int q=0; q<size; q++)

{

for (int p=0; p<size; p++)

{

if (Quand[Quand[l][m][q]-1][Hom[n]-1][Hom[p]-1]

!= Quand[Quand[l][n][p]-1][Quand[m][n][p]-1][Quand[q][n][p]-1])

{

//if the condition fails for any sets ’Valid’ to 0 and escapes loops

Valid=0;

n=size;

m=size;

l=size;

p=size;

q=size;

}

}

}

}
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}

}

//Dump Valid tables to file

if (Valid)

{

for (int c=0; c<size; c++)

{

for (int d=0; d<size; d++)

{

for (int e=0; e<size; e++)

outFile << Quand[e][c][d];

outFile << endl;

}

outFile << endl;

}

outFile << endl;

//Used for debugging

/*

cout << "Valid" << Quand[4][0] << Quand[4][1] << Quand[4][2]

<< Quand[4][3] << Quand[4][4] << endl;

*/

}

//Sets Quand to next table in lexicalgraphic order, by changing
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//the permutation in Quand[size-1][size-1] first

k=0;

j=1;

do

{

if (k==size)

{

k=0;

j++;

}

k++;

//Uses next_permutation to increment to next structure in

//lexicographic order

} while( !(next_permutation(Quand[size-j][size-k]

,Quand[size-j][size-k]+size)));;

//increments the counter for the while loop

Indx[0]++;

placE=0;

while (Indx[placE] == sizeFact)

{

Indx[placE]=0;
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placE++;

Indx[placE]++;

}

}

outFile.close();

system("pause");

return 0;

}
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Here we present the C++ code used to reduce the set of generated ternary structures to

an isomorphically distinct set.

#include <iostream>

#include <fstream>

#include <string>

#include <sstream>

#include <algorithm>

using namespace std;

int main ()

{

int CurrStruct[9][9][9], GeningHom[9], InverseHom[9];

int StructSize, PositFileName, FileNameLength;

int CheckMatch;

string StructLine, GenedIsoLine;

string InFileName, OutFileName;

string IsoFile="C:\\Cpp\\Iso\\IsoFile.txt";

//initialize file input streams

ifstream InputFile; //file to reduce

ifstream GenedIso; //reduced file

//initialize file output streams

ofstream ReducedFile;

ofstream GeningIso;
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//Get InFileName and Structure size

InFileName = "C:\\Cpp\\TQuandWMaps\\QuandX3Tables.txt";

StructSize = 3;

//Generate ReducedFileName

PositFileName = InFileName.find_last_of("\\");

FileNameLength = InFileName.size();

OutFileName = InFileName.substr(0, PositFileName+1) + "Reduced\\"

+ InFileName.substr(PositFileName+1, FileNameLength);

//Debug

cout << OutFileName << endl;

//Open Input and Output Files

InputFile.open(InFileName);

ReducedFile.open(OutFileName);

//Clear Previous Temp File

remove("C:\\Cpp\\Iso\\IsoFile.txt");

//OuterMostLoop

while ( getline(InputFile,StructLine) )

{
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//Read in next structure

for (int a=0; a<StructSize; a++)

{

for (int b=0; b<StructSize; b++)

{

for (int c=0; c<StructSize; c++)

{

CurrStruct[a][b][c]=StructLine.at(c)-49;

cout << CurrStruct[a][b][c];

}

getline (InputFile,StructLine);

cout << endl;

}

getline (InputFile,StructLine);

cout << endl;

}

//Compare to list of generated structures

GenedIso.open(IsoFile);

CheckMatch = 1;

if (GenedIso.is_open())

{

while ( getline(GenedIso, GenedIsoLine) && CheckMatch != 0 )

{

CheckMatch=0;

//Read in iso gen structures and compare with current structure

for (int aa=0; aa<StructSize; aa++)
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{

for (int bb=0; bb<StructSize; bb++)

{

for (int cc=0; cc<StructSize; cc++)

{

cout << GenedIsoLine.at(bb)-48; //debug output

if (CurrStruct[aa][bb][cc] != GenedIsoLine.at(cc)-48)

CheckMatch++;

}

getline (GenedIso, GenedIsoLine);

}

cout << endl; //debug output

getline (GenedIso, GenedIsoLine);

}

//if CheckMatch=0 CurStruct is isomorphic to a

//previous structure and loop exits

}

}

GenedIso.close();

GenedIso.clear();
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//If not on list (loop exits with checkmatch not 0)

if (CheckMatch != 0)

{

//Append to reducedFile

for (int dd=0; dd<StructSize; dd++)

{

for (int ee=0; ee<StructSize; ee++)

{

for (int ff=0; ff<StructSize; ff++)

{

ReducedFile << CurrStruct[dd][ee][ff]+1;

}

ReducedFile << endl;

}

ReducedFile << endl;

}

ReducedFile << endl;

//Generate isomorphic structures and Append to geningIso

for (int ee=0; ee<StructSize; ee++)

GeningHom[ee]=ee;

GeningIso.open(IsoFile ,ios::out | ios::app);

do{

for (int z=0; z<StructSize; z++)

{
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for (int y=0; y<StructSize; y++)

{

if (GeningHom[y]==z)

InverseHom[z]=y;

}

}

for (int ff=0; ff<StructSize; ff++)

{

for (int gg=0; gg<StructSize; gg++)

{

for (int hh=0; hh<StructSize; hh++)

{

GeningIso <<

InverseHom[CurrStruct[GeningHom[ff]][GeningHom[gg]][GeningHom[hh]]];

}

GeningIso << endl;

}

GeningIso << endl;

}

GeningIso << endl;

}while(next_permutation(GeningHom,GeningHom+StructSize));

GeningIso.close();

GeningIso.clear();

}

}//OuterMostLoop End
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system("pause");

remove("C:\\Cpp\\Iso\\IsoFile.txt");

return 0;

}
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Appendix B

Copyright and Permissions
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6/18/2018 University of South Florida Mail - Re: Feedback on Journal IJM

https://mail.google.com/mail/u/1/?ui=2&ik=7479500923&jsver=nz7oc4zvxrc.en.&cbl=gmail_fe_180612.09_p5&view=pt&q=copyright&qs=true&search=… 1/1

Matthew Green <mjgreen@mail.usf.edu>

Re: Feedback on Journal IJM 
1 message

Zhang Ji <jzhang@wspc.com> Wed, Jun 6, 2018 at 9:13 AM
To: "mjgreen@mail.usf.edu" <mjgreen@mail.usf.edu>

Dear author
 
Yes, you can use the material as long as you clearly stated that the result was published in IJM
and also give the references.
 
Best regards
 
Zhang Ji
IJM Journal Office
 
 
 
 
 
 
-----Original Message----- 
From: World Scientific Publishing Company <customercare@wspc.com>  
Sent: Wednesday, 6 June, 2018 4:26 AM 
To: Editor SG <editor@wspc.com.sg> 
Subject: Feedback on Journal IJM 
 
 
Form Fields: 
<br/> 
<br/> 
    a_name: Matthew Green<br/> 
    b_sender_email: mjgreen@mail.usf.edu<br/> 
    c_subject: Copyright Permission<br/> 
    checkbot: 11<br/> 
    d_message: I am currently putting together my dissertation and am seeking copyright permission to use
material included in a paper I coauthored that was published in Int. J. Math. titled Augmented biracks and
their homology.<br/> 
    emailSubject: Feedback on Journal IJM<br/> 
    emailTo: editor@wspc.com.sg<br/> 
    submit: Submit<br/> 
<br/> 
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June 12, 2018

Dear Mr. Green,

This is to verify that including all or parts of the paper

Elhamdadi, Mohamed; Green, Matthew; Makhlouf, Abdenacer,
Ternary distributive structures and quandles.
Kyungpook Math. J. 56 (2016), no. 1, pp. 1–27.

in your thesis is within the allowences of the publishing agreement, as long as
the thesis is not re-licensed or sold for profit, and is properly cited according to
standard conventions.

Sincerely,

Mark Siggers
Managing Editor of the Kyungpook Mathematical Journal

Kyungpook National University

Daegu, 702-701 Korea

email: mhsiggers@knu.ac.kr
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