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ABSTRACT 

 

Cephalopods are an important component of many marine ecosystems and support large 

fisheries. Their active lifestyles and complex behaviors are thought to be driven in large part by 

competition with fishes. Although cephalopods appear to compete successfully with fishes, a 

number of their important physiological traits are arguably inferior, such as an inefficient mode 

of locomotion via jet propulsion and a phylogenetically limited means of blood-borne gas 

transport. In active shallow-water cephalopods, these traits result in an interesting combination of 

very high oxygen demand and limited oxygen supply. The ability to maintain active lifestyles 

despite these metabolic constraints makes cephalopods a fascinating subject for metabolic 

physiology. This dissertation focuses on the physiological adaptations that allow coleoid 

cephalopods to maintain a balance of oxygen supply and demand in a variety of environmental 

conditions. 

A critical component of understanding oxygen supply in any animal is knowing the 

means of oxygen delivery from the environment to the mitochondria. Squids are thought to 

obtain a fairly large portion of their oxygen via simple diffusion across the skin in addition to 

uptake at the gills. Although this hypothesis has support from indirect evidence and is widely 

accepted, no empirical examinations have been conducted to assess the validity of this 

hypothesis. In Chapter 2, I examined cutaneous respiration in two squid species, Doryteuthis 

pealeii and Lolliguncula brevis, by using a divided chamber to physically separate the mantle 
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cavity and gills from the outer mantle surface. I measured the oxygen consumption rate in the 

two compartments and found that, at rest, squids only obtain enough oxygen cutaneously to meet 

demand of the skin tissue locally (12% of total). The majority of oxygen is obtained via the 

traditional branchial pathway. In light of these findings, I re-examine and discuss the indirect 

evidence that has supported the cutaneous respiration hypothesis. 

Ocean acidification is believed to limit the performance of squids due to their exceptional 

oxygen demand and pH-sensitivity of blood-oxygen binding, which may reduce oxygen supply 

in acidified waters. The critical oxygen partial pressure (Pcrit), defined as the PO2 below which 

oxygen supply cannot match basal demand, is a commonly reported index of hypoxia tolerance. 

Any CO2-induced reduction in oxygen supply should be apparent as an increase in Pcrit. In 

Chapter 3, I assessed the effects of CO2 (40 to 140 Pa) on the metabolic rate and Pcrit of two 

squid species: Dosidicus gigas and Doryteuthis pealeii. Carbon dioxide had no effect on 

metabolic rate or hypoxia tolerance in either species. Furthermore, considering oxygen transport 

parameters (e.g. Bohr coefficient, blood P50) and blood PCO2 values from the literature, I 

estimated an increase in seawater PCO2 to 100 Pa (≈1000  µatm/ppmv) would result in a 

maximum drop in hemocyanin-O2 saturation by 6% at normoxia and a Pcrit increase of ≈1 kPa 

(≈5% air saturation) in the absence of active extracellular pH compensation. Such changes are 

unlikely given the capacity for acid-base regulation in many cephalopods. Moreover, this 

estimated change is within the 95% confidence intervals of the Pcrit measurements reported here. 

Squid blood-O2 binding is more sensitive to pH than most other marine animals measured to date. 

Therefore, the lack of effect in squids suggests that ocean acidification is unlikely to have a 

limiting effect on blood-O2 supply in most marine animals. 
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The pelagic octopod, Japetella diaphana, is known to inhabit meso- and bathypelagic 

depths worldwide. Across its range, individuals encounter oxygen levels ranging from nearly air-

saturated to nearly anoxic. In Chapter 4, we assessed the physiological adaptations of individuals 

from the eastern tropical Pacific (ETP) where oxygen is extremely low. Ship-board 

measurements of metabolic rate and hypoxia tolerance were conducted and a metabolic index 

was constructed to model suitable habitat for aerobic metabolism. I found that animals from the 

ETP had a higher metabolic rate than animals from more oxygen-rich habitats. Despite their 

higher oxygen demand, they maintained better hypoxia tolerance than conspecifics from oxygen-

rich Hawaiian waters. Furthermore, I found that hypoxia tolerance in Japetella has a reverse 

temperature dependence from most marine ectotherms, a characteristic that uniquely suits the 

physical characteristics of its oxygen-poor environment. Even with their high tolerance to 

hypoxia, the OMZ core likely has insufficient oxygen supply to meet the basal oxygen demand 

of Japetella. Despite the limited aerobic habitat in this region, species abundance was 

comparable to more oxygenated ocean regions, suggesting that physiological or behavioral 

plasticity such as altered hypoxia tolerance or hypoxic avoidance in this globally-distributed 

species is sufficient to maintain species fitness in this extreme environment. 

These findings contribute towards our understanding of the impacts of climate change on 

cephalopod physiology and biogeography. The study of environmental physiology provides a 

mechanistic basis for the understanding and prediction of ecological responses to climate change.  
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CHAPTER ONE: 

INTRODUCTION 

 

 Cephalopods are marine mollusks that inhabit ocean environments worldwide. They are a 

moderately diverse group with nearly 800 species that occupy environments from the intertidal 

to seafloor hydrothermal vents by employing diverse life histories, behaviors, and ecologies 

(Hanlon and Messenger 1996). The evolutionary success of this group is often attributed to 

competition with fishes. Coleoid cephalopods (octopuses, squids, cuttlefishes, and their relatives) 

share a number of traits with fishes such as active locomotion, complex behaviors, and visually-

oriented predation (Packard 1972). Both groups occupy similar ecological and trophic niches, 

and compete with, and are predated upon by, each other. 

 Although cephalopods compete successfully with fishes, a number of their important 

physiological traits are apparent constraints (O’Dor and Webber 1986). Of primary importance is 

their means of locomotion. Unlike fishes, which use high efficiency undulatory fins, many 

cephalopods rely heavily on jet propulsion, a highly inefficient mode of locomotion, particularly 

in a viscous medium like seawater. For example, the Froude efficiency, or the ratio of power 

output to input, in the squid Doryteuthis opalescens is less than a third that of a similar sized 

trout (O’Dor and Webber 1986). Additionally, the squid Illex illecebrosus uses six times as much 

energy per unit distance swimming via jetting than a salmon of the same length undulating fins 

(Webber and O’Dor 1985). 
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 This locomotory inefficiency, combined with high non-asymptotic growth rates 

(Moltschaniwskyj 2004), result in high energy demands for many coleoid cephalopods, and thus 

high metabolic rates. Indeed, when adjusted for temperature and size, active shallow-water 

squids have higher metabolic rates than many crustaceans, fishes, and mammals (Seibel 2007). 

 Such high O2 demand requires an equally capable oxygen supply pathway from seawater 

to the mitochondria. In this respect, however, cephalopods are constrained by their molluscan 

ancestry. Unlike fishes, which transport their oxygen-binding protein hemoglobin within red 

blood cells, cephalopods possess very large (3.5-4.5 MDa) hemocyanin molecules freely-

dissolved in their blood (Markl 2013). This arrangement limits the concentration of hemocyanin 

molecules due to viscous and osmotic constraints (Shadwick et al. 1990). As a result, cephalopod 

blood contains no more than about 2 mmol O2 L-1 (Pörtner 1990; Redfield and Goodkind 1929), 

compared to 7 mmol O2 L-1 attainable in fish blood (Root 1931).  

Additionally, cephalopods do not possess an intracellular oxygen transport protein such 

as myoglobin in their tissues, nor are their muscle tissues as highly vascularized as fish muscle 

(Bone et al. 1981). To maintain high O2 supply despite these constraints, cephalopods have 

evolved a number of physiological adaptations. These include a closed high-pressure 

cardiovascular systems (10-20 kPa; Gosline and Shadwick 1982) with very high cardiac outputs 

(100-250 mL / kg / min; Bourne 1987), higher than fishes and even comparable to mammals in 

some species (Wells 1992), and a highly pH-sensitive respiratory protein that ensures nearly 

complete use of all oxygen carried in the blood (Brix et al. 1989). 

Focus statement 

The ability to maintain active lifestyles despite the above metabolic constraints makes 

coleoid cephalopods a fascinating subject for metabolic physiology. This dissertation focuses on 
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the physiological ability of coleoid cephalopods to maintain a balance of oxygen supply and 

demand in a variety of different environmental conditions. 

Chapter 2: Do squids breathe through their skin? 

One adaptation that has been proposed to alleviate the circulatory and metabolic 

constraints is that coleoid cephalopods utilize cutaneous respiration, obtaining oxygen via simple 

diffusion across the skin in addition to that delivered through the circulatory system. Previous 

research found that a small proportion of O2 was taken up across the skin in Octopus (Wells and 

Wells 1983), but no in vivo measurements have ever been made in squids. In Chapter 2 of this 

dissertation, I present results of such experiments in two representative squid species that 

demonstrate that squids do not utilize cutaneous respiration, contrary to 30 years of conjecture in 

the cephalopod physiology literature. 

Chapter 3: Is squid metabolism impaired by ocean acidification? 

The highly pH-sensitive hemocyanin O2-binding protein mentioned above is adaptive 

when tissues are producing large quantities of CO2 as it facilitates O2 loading at the relatively 

alkaline gill-seawater interface and unloading at the tissues where it is consumed (Pörtner 1990). 

When an animal is exposed to high CO2 in the ambient seawater, however, hemocyanin function 

shifts towards O2 release rather than binding at the gills, a potentially maladaptive response in 

light of recent anthropogenic ocean acidification. 

The oceans take up roughly 3 Gt C / year from the atmosphere, or about a third of 

anthropogenic CO2 emissions (Pilson 2013). Upon dissolution in seawater, much of the CO2 

undergoes hydration and dissociation to form protons and decrease the pH of the surface ocean 

(Dickson 2010). This increase in CO2 and associated decrease of pH and [CO3
2-] have various, 

and so far unpredictable, impacts on marine organisms including effects on metabolism (Lefevre 
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2016), calcification (Hofmann et al. 2010), behavior (Nilsson et al. 2012), growth rate (Kroeker 

et al. 2013), and reproduction (Ross et al. 2011). These physiological responses lead to impacts 

on ecosystems (Hall-Spencer et al. 2008) and fisheries (Le Quesne and Pinnegar 2012). 

While there are various physiological systems that are independently affected by 

hypercapnia (high CO2) (Heuer and Grosell 2014), one of the most important may be the 

hypercapnic limitation of blood O2 supply as this can directly limit the scope for locomotion, 

calcification, growth, and reproduction (Pörtner and Gutt 2016). 

Amongst the broad animal diversity in the oceans, the sensitivity of blood O2 supply to 

CO2 (pH) can vary markedly. Therefore, the examination of those taxa thought to be most 

sensitive, such as the squids discussed above, should be most informative, as it should provide a 

reasonable estimate of an upper bound on the expected effect of CO2 on blood O2 supply in 

marine animals generally. 

Active, muscular, shallow-water squids such as those examined in Chapter 3 of this 

dissertation are believed to possess blood with some of the greatest sensitivity to increases in 

environmental CO2 known to date (Pörtner and Reipschläger 1996; Seibel 2016). In Chapter 3, I 

present results of both experimental and theoretical approaches to quantify the impact of CO2 

levels anticipated by the end of the century (1000 µatm) on blood O2 supply in squids. In so 

doing, I propose that the blood O2 supply pathways of even the most sensitive marine animals 

such as squids are quite robust to hypercapnic levels expected to occur by the year 2100. 

Chapter 4: How do mesopelagic octopods breathe in the oxygen minimum zone? 

 Although cephalopod O2 supply may be resilient to relatively high CO2, low dissolved 

oxygen levels in the ocean are a common, and increasingly severe, environmental condition that 

can strongly affect all aerobic organisms, including cephalopods (Breitburg et al. 2018). Hypoxia 
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naturally occurs on diel to seasonal timescales in coastal environments and on geologic 

timescales in intermediate waters underlying productive eastern boundary currents (Rabalais et al. 

2010). In these environments, oxygen is utilized by heterotrophs faster than it can be replenished 

by air-sea gas exchange, primary production, or advection. 

 Animals living in these hypoxic environments may utilize a number of strategies to 

survive acute hypoxic events, such as migration, metabolic suppression, or increasing anaerobic 

capacity. However, for animals that live in chronically hypoxic environments, such as oxygen 

minimum zones (OMZs), survival depends on the ability of O2 supply pathways to meet demand 

even under extreme hypoxia (Childress and Seibel 1998). Oceanic OMZs have strong impacts on 

the physiology, abundance, and distribution of marine organisms as well as the biogeochemical 

cycles they sustain (Levin 2003). 

 In Chapter 4 of this dissertation, I examine the metabolic adaptations of Japetella 

diaphana, a little-studied meso- and bathypelagic octopod, to OMZs in the eastern tropical 

Pacific. I examine metabolic rate, hypoxia tolerance, and abundance of this species in an OMZ to 

assess the metabolic capabilities these animals have evolved to inhabit this extreme environment. 

I also present a physiology-based habitat suitability model to demonstrate that although Japetella 

are very tolerant to hypoxia, a large span of the OMZ core has insufficient oxygen supply to 

meet the oxygen demand of this species. 

Relevance and implications 

 The marine environment is changing at an accelerated rate due to anthropogenic climate 

change. This includes rises in seawater temperature and CO2 content as well as declines in 

oxygen content (Breitburg et al. 2015). Each of these perturbations influences the balance of 

oxygen supply and demand in marine organisms both independently and synergistically (Pörtner 
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et al. 2005). The research findings presented in this dissertation contribute towards our 

understanding of the physiological mechanisms of oxygen supply and demand and the responses 

of those mechanisms to changing environmental conditions. This mechanistic approach to 

organismal responses is likely to be a key to understanding and predicting responses of marine 

organisms to their changing environment (Lefevre et al. 2017). 
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CHAPTER TWO: 

DO SQUIDS BREATHE THROUGH THEIR SKIN? 

	

Abstract 

Squids are thought to obtain a large portion of their oxygen via simple diffusion across the skin 

in addition to uptake at the gills. Although this hypothesis has support from indirect evidence and 

is widely accepted, no empirical examinations have been conducted to assess the validity of this 

hypothesis. In this study, we examined cutaneous respiration in two squid species, Doryteuthis 

pealeii and Lolliguncula brevis, by using a divided chamber to physically separate the mantle 

cavity and gills from the outer mantle surface. We measured oxygen consumption and ammonia 

excretion rates in the two compartments and found that, at rest, squids only obtain enough 

oxygen cutaneously to meet demand of the skin tissue locally (12% of total) and excrete little 

ammonia across the skin. The majority of 𝑂! is obtained via the traditional branchial pathway. In 

light of these findings, we re-examine and discuss the indirect evidence that has supported the 

cutaneous respiration hypothesis. 

Introduction 

Cutaneous oxygen uptake, the acquisition of 𝑂! molecules from the environment into the 

skin, is likely to occur to some extent in nearly all animals by simple diffusion due to an oxygen 

gradient from the environment into skin tissue (Krogh 1941). However, the acquisition of 

oxygen not just into the skin, but across the skin and into the underlying blood or tissues is less 
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universal but still contributes notably to oxygen supply in a diversity of animals including most 

amphibians, several fishes (especially air-breathing fishes), copepods, many small terrestrial 

arthropods, echinoderms, pycnogonids, bryozoans, cnidarians, a variety of worms, and occurs in 

a number of embryonic and larval stages before respiratory structures have developed (Krogh 

1941; Feder and Burggren 1985; Lane et al. 2018). 

In addition to oxygen uptake, metabolically produced ammonia may also be excreted 

cutaneously. This has been demonstrated in several seawater and freshwater fishes including 

Pacific hagfish (Eptatretus stoutii; Clifford et al. 2016, 2017), mangrove killifish (Kryptolebias 

marmoratus; Frick and Wright 2002; Cooper et al. 2013), and sea lamprey (Petromyzon marinus; 

Blair et al. 2017), as well as the fully aquatic African clawed frog (Xenopus laevis; Cruz et al. 

2013), and freshwater leech (Nephelopsis obscura; Quijada-Rodriguez et al. 2015). However, the 

role of skin in the removal of nitrogenous waste has not been investigated in cephalopods to date. 

Wells and Wells (1983) were the first to demonstrate cutaneous 𝑂!  uptake in 

cephalopods. They found that Octopus vulgaris acquire roughly 13% of their resting 𝑂! 

consumption cutaneously (across the skin) on the web, arms, and suckers in addition to 

branchially (across the gills). Soon thereafter, Wells et al. (1988) proposed that since squids have 

a higher surface area-to-volume ratio than octopuses, cutaneous 𝑂! uptake is likely to occur to a 

greater extent in squids. They estimated, in the complete absence of evidence, that it may 

contribute to 20% of oxygen acquisition. 

In the 30 years since, the idea that squids obtain a notable portion of their 𝑂! cutaneously 

rather than branchially has pervaded the literature, with proposed contributions of the skin 

ranging from 20 to 73% of total 𝑂! uptake (Wells et al. 1988; Pörtner 1994). The cutaneous 

respiration hypothesis has been incorporated into calculations of branchial oxygen extraction 
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efficiency (Trübenbach et al. 2013a), used to explain calculations of surprisingly high cardiac 

power output (O’Dor et al. 1990; Shadwick et al. 1990; Wells 1992) and blood hemocyanin 

properties (Pörtner 1990, 1994, 2002), and has been incorporated into discussion of skin 

morphology (Madan and Wells 1997), muscle ultrastructure (Pörtner 2002; Seibel 2016), growth 

rates (O’Dor and Hoar 2000; Moltschaniwskyj 2004; Moltschaniwskyj and Carter 2010), 

metabolic scaling (Seibel 2007; Rosa et al. 2009; Trübenbach et al. 2013b), and hypoxia 

tolerance (Seibel 2013, 2016). 

This hypothesis was based on several lines of indirect evidence in addition to the direct 

measurements made in octopus. When examining the 𝑂!  binding properties of the squid 

respiratory protein, hemocyanin, Pörtner (1990) observed that the Bohr coefficient (a metric of 

pH sensitivity) was less than −1, meaning that deoxygenated hemocyanin in tissue capillaries 

removes more 𝐶𝑂! from solution than is produced during metabolism from the 𝑂! delivered. 

This suggests that venous blood should be less acidic than arterial blood, which would increase 

hemocyanin 𝑂!-affinity, thus inhibiting the delivery of oxygen to the tissues. In fact, such a 

venous alkalosis is not observed in squids (Redfield and Goodkind 1929). Instead, they exhibit 

the typical venous acidosis, which supports 𝑂! delivery to the tissues. To explain this paradox, 

Pörtner (1990) supposed that if cutaneous oxygen acquisition were substantial, the 𝐶𝑂! produced 

from this cutaneously-derived oxygen could enter the blood and provide sufficient 𝐶𝑂! into the 

blood to support a venous acidosis. 

Madan and Wells (1996a) measured respiration rates of dissected skins from a variety of 

cephalopods including two squids, Lolliguncula brevis and Sepioteuthis lessoniana, and found 

that they were comparable to the dissected skin of octopuses. In a separate experiment, they also 

found that intact Octopus vulgaris skin from the dorsal mantle could support up to 82% of 𝑂! 
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demand. These findings are suggestive that squid skin may be able to support comparable rates, 

but in vivo measurements have still only been conducted in Octopus to date (Wells and Wells 

1983). 

In addition to the evidence described above, an assortment of circumstantial evidence 

also supports the cutaneous respiration hypothesis in squids. The general body plan of a squid is 

a hollow tube, with inner and outer mantle surfaces exposed to seawater. The resultant high 

surface area to volume ratio could support a high contribution of cutaneous respiration. Unlike in 

the body plans of most animals, the SA:V ratio of loliginid squids has been reported to scale 

isometrically over several orders of magnitude in size due to allometric lengthening of the mantle 

and fins, such that large squids have just as much cutaneous area, relative to respiring mass, as 

small squids (O’Dor and Hoar 2000).  

Additionally, the composition of circular muscle in the mantle is arranged in a 

“sandwich” where the outer layers of muscle tissue (both on the outside of the animal and the 

inner mantle cavity) are mitochondria-rich aerobic fibers and have high capillary density, while 

the central layer contains mitochondria-poor anaerobic fibers with lower capillary density (Bone 

et al. 1981; Mommsen et al. 1981). This arrangement may be conducive for cutaneous oxygen 

acquisition and the delivery of cutaneously derived 𝐶𝑂! to the blood as proposed by Pörtner 

(1990). The active, water-column dwelling lifestyle of squids and their jet propulsion 

biomechanics also provide ample ventilation across the skin, minimizing large boundary layers, 

which may limit cutaneous respiration in octopuses (Madan and Wells 1996a). Finally, squid 

skin is quite thin; it is merely 300 𝜇𝑚 in Loligo vulgaris and 150 𝜇𝑚 in Illex illecebrosus 

compared to the ≈ 1300 𝜇𝑚 skin of Octopus vulgaris (Madan and Wells 1997). Moreover, 

octopus epidermal cells secrete a thin cuticle over the whole body while squids lack these 
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secretions (Packard 1988). All else being the same, according to Fick’s law (Fick 1855; see 

Discussion), respiratory gases diffuse faster across shorter distances. 

Despite the indirect and circumstantial evidence compiled above, to date, there have been 

no direct empirical measurements quantifying the magnitude of cutaneous oxygen uptake in 

squids nor determining whether they “breathe” through their skin. In this study, we provide the 

first measurements of in vivo cutaneous oxygen consumption in two squid species, Doryteuthis 

pealeii and Lolliguncula brevis. In addition to oxygen exchange, we also examine the potential 

role of squid skin in metabolic ammonia excretion for the first time. 

Methods 

Animal capture and maintenance 

Doryteuthis pealeii (Lesueur 1821; n = 17) were caught in the Vineyard Sound by benthic 

otter trawl by the R/V Gemma in October 2017 and held in a large aerated tank at the Marine 

Biological Laboratory at 19 °C until experiments were performed. Trials were conducted within 

24 hours of capture for all but two animals that were fasted for up to three days. Only animals 

with skin in excellent condition were chosen for experiments. One individual was jigged aboard 

the R/V Gemma to determine whether capture by the trawl net had any effect on the results even 

in the absence of visible skin damage. Lolliguncula brevis (Blainville 1823; n = 4) were similarly 

caught by otter trawl in Tampa Bay, Florida, USA from April through June 2017 by the Florida 

FWCC FWRI Fisheries Independent Monitoring program and tested within 24 hours of capture. 

Mass and dorsal mantle length of both species are shown in Table 2.1. All L. brevis experiments 

were run at 20°C, while D. pealeii experiments were conducted at 11 and 19°C. Salinity was 30-

34 in all trials. 
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Divided chamber setup 

We developed a divided chamber setup to physically isolate cutaneous and branchial 

oxygen consumption in squids. This setup was conceptually similar to that used by Wells and 

Wells (1983) to measure cutaneous respiration in Octopus. Each squid was gently patted dry 

around the anterior edge of the mantle and a custom-sized rubber collar was attached to the 

anterior margin of the mantle with cyanoacrylate glue. The entire procedure typically lasted less 

than one minute. Collars were constructed with 0.4 mm thick, 70 duro nitrile (West American 

Rubber Company LLC, Orange, California, USA). The collars were truncated cones arranged so 

that they widened posteriorly and were attached to one end of a transparent acrylic tube (9x17 

cm). The other end of the acrylic tube was covered with a flexible rubber oxygen-impermeable 

membrane so that ventilatory inspirations were not impeded by pressure inside the tube. This 

tube, the “mantle respirometer”, contained water in contact with the exterior mantle and fins 

(Figure 2.1). On average, 35% and 45% of the skin was contained inside the “mantle” 

respirometer for D. pealeii and L. brevis respectively. With the collar attached, animals were 

observed to ventilate at a normal rate (Chapter 3). 

The mantle respirometer and squid were then placed into a larger respirometer, the “gill 

respirometer”, which contained water in contact with the gills, mantle cavity, head, arms, and 

tentacles. Magnetic stir beads were placed inside both respirometers to ensure uniform mixing 

(Figure 2.1). In one of the trials, food coloring was added to the mantle respirometer water to 

demonstrate that there was no water exchange between the mantle and gill respirometers. 𝑃!! 

was measured with oxygen-sensitive spots adhered to the inside of both respirometers (PreSens 

Fibox 3 (Regensburg, Germany) and Loligo Systems Witrox 𝑂! meters (Viborg, Denmark)). 

Oxygen meters were calibrated with air-saturated seawater and concentrated 𝑁𝑎𝑆𝑂! solution 
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(𝑃!! = 0). Oxygen consumption rates (𝑀!!) in both respirometers were calculated with the R 

package “respirometry” (Birk 2018). Only 𝑀!! values derived from 𝑃!!-time relationships with 

an 𝑅! > 0.8 were used. 

Calculation of cutaneous oxygen uptake 

Cutaneous surface area was measured for each squid by photographing the flattened 

mantle after the viscera and gladius were removed, fins, head, arms, and tentacles and 

quantifying surface area via ImageJ (Abràmoff et al. 2004). Total measured cutaneous oxygen 

uptake (𝑀!!) was then calculated according to Equation 2.1. The amount of cutaneous oxygen 

consumption expected for exclusively localized use within the skin tissue was then calculated 

according to Equation 2.2 by multiplying the total surface area, skin thickness of 300 𝜇𝑚 

(Madan and Wells 1997), a tissue density of 1.05 𝑔 ⋅ 𝑐𝑚!! (Packard 1972) and the animal’s 

mass-specific metabolic rate as determined by the combined oxygen consumption in both the 

mantle and gill respirometers. The measured and local cutaneous rates were then compared with 

a paired t-test. 

Measured cutaneous MO2=
total surface area

surface area inside mantle respirometer
×MO2of mantle respirometer, (2.1) 

Local cutaneous MO2=total surface area×0.03 cm×1.05 g⋅cm
-3×mass-specific MO2 , (2.2) 

Ammonia excretion rates 

To quantify ammonia excretion rates, water samples were collected from both 

respirometers at the end of the experiments and stored at -80°C until processed. The 

concentration of excreted ammonia was measured using a phenol method adapted from Ivančič 

and Degobbis (1984). Briefly, duplicate water samples (2 mL) were treated with phenol, 

nitroprusside, alkaline citrate, and dichloro-iso-cyanuric acid, and incubated for 12 h in the dark. 

Blue-colored indophenol was formed in the presence of ammonia in the sample. Ammonia 



 16 

concentration was measured with a spectrophotometer (Shimadzu UV-1700 (Kyoto, Japan) by 

observing absorbance at 635 nm. Ammonia excretion measurements were conducted for six and 

one D. pealeii at 11 and 19°C, respectively, and two L. brevis. 

Results 

Oxygen consumption 

The proportion of whole animal 𝑀!! that was acquired from cutaneous uptake ranged 

from 5 to 19% (Table 2.2; Figure 2.2). The cutaneous uptake of the one jigged specimen (8%) 

fell within the range of those collected by trawl suggesting that trawl damage was not a factor. 

The contribution of cutaneous uptake was indistinguishable between species (𝑝!" = 0.327) or 

temperature treatments (𝑝!" = 0.086). Doryteuthis pealeii ranged in size from 51 to 150 g and 

10.8 to 18.1 cm dorsal mantle length (Table 2.1). Across this size spectrum, the squids’ surface 

area to volume ratio decreased with increasing size according to SA:V = 15.6 × mass-0.28 (p = 

0.004), and with it, the contribution of cutaneous 𝑀!! to total 𝑀!! (𝑝!" = 0.003). 

To determine whether the oxygen taken up by the skin is in excess of that used locally by 

the skin, the measured cutaneous 𝑀!! was compared to the expected cutaneous 𝑀!! from local 

(the skin tissue only) oxygen demand, which in turn, was derived from cutaneous surface area 

and mass-specific 𝑀!!. Total cutaneous surface area was 424 ± 78 𝑐𝑚! and 113 ± 13 𝑐𝑚! for 

D. pealeii and L. brevis, respectively (Figure 2.3A). The mass-specific metabolic rate (𝑀!!) of 

D. pealeii was 11.3 ± 2.4 𝜇𝑚𝑜𝑙 𝑂! ⋅ 𝑔!! ⋅ ℎ𝑟!! at 11∞C and increased to 14.3 ± 4.1 𝜇𝑚𝑜𝑙 𝑂! ⋅

𝑔!! ⋅ ℎ𝑟!! at 19°C (Figure 2.3B). Lolliguncula brevis mass-specific 𝑀!! at 20°C was 12.7 ± 2.6 

𝜇𝑚𝑜𝑙 𝑂! ⋅ 𝑔!! ⋅ ℎ𝑟!!, which was similar to D. pealeii at 19°C (𝑝!" = 0.502; Figure 2.3B). The 

measured cutaneous 𝑀!! was significantly less than that expected from local tissue demand (𝑝!" 

< 0.001; Figure 2.3C). 



 17 

The area-specific cutaneous 𝑀!! (𝜇𝑚𝑜𝑙 𝑂! ⋅ 𝑐𝑚!! ⋅ ℎ𝑟!!) was similar between the two 

species at similar temperatures (𝑝!" = 0.188) and increased with increasing temperature in D. 

pealeii (𝑝!" = 0.015) with a 𝑄!" of 1.6, which was similar to the 𝑄!" for mass-specific 𝑀!! of 

1.3. In fact, the area-specific cutaneous 𝑀!!  was related to mass-specific 𝑀!!  within both 

temperature treatments for D. pealeii (11°C: 𝑝! = 0.003; 19°C: 𝑝! = 0.025) and for all the 

animals from both species (𝑝!" = 0.019). 

Ammonia excretion 

Doryteuthis pealeii skin excreted 7.5 ± 1.6% of the metabolically produced ammonia, 

with the remainder excreted via the gills and renal sac (Table 2.2). The atomic ratio of 𝑂! 

consumed to 𝑁𝐻! excreted by the whole animal (O:N) varied widely, from 17 to 59 with a 

median of 27. The animal exhibiting the highest O:N was fasted for three days before the trial. 

The O:N ratio in the mantle respirometer was significantly higher than in the gill respirometer 

(𝑝! = 0.033; Figure 2.4). 

Discussion 

Contrary to popular conjecture, we found that squids do not breathe through their skin. 

By this we mean the uptake of 𝑂! across the skin was likely consumed locally by the skin tissue 

rather than being incorporated into the blood for systemic utilization. The proportion of total 𝑂! 

uptake across the skin was less than any previous estimates. Since the measured cutaneous 

uptake was on average 23% less than the estimated amount required by the skin tissue locally, 

squid skin does not seem to be a net source of 𝑂! to the animal, but rather a sink, at least partially 

dependent on blood-borne oxygen. 

We also found that O:N was higher across the skin than across the gills, suggesting that 

the capacity of ammonia excretion across the skin is lower than the gills. This is not surprising 
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given the presence of ammonia transport proteins in the gills (Hu and Tseng 2017). The gill side 

of the respirometer was also in contact with the renal sac in the mantle cavity, which is also 

involved in ammonia excretion (Boucher-Rodoni and Mangold 1994) though to a lesser extent 

than the gills (Hu et al. 2017). 

Madan and Wells (1996a) found that isolated skin from both L. brevis and Sepioteuthis 

lessoniana had an 𝑀!! of 0.12 ± 0.04 𝜇𝑚𝑜𝑙 𝑂! ⋅ 𝑐𝑚!! ⋅ ℎ𝑟!! at 20-24°C. These experiments, 

however, were in an unstirred chamber such that a hypoxic boundary layer was allowed to form. 

When performing similar experiments on Octopus vulgaris skin, they found that adding a 

magnetic stir bar more than doubled the in vitro rate of 𝑂! consumption. When the same factor is 

applied to the squid skin they examined, isolated squid skin should have an 𝑀!! of 0.26-0.27 ± 

0.09 𝜇𝑚𝑜𝑙 𝑂! ⋅ 𝑐𝑚!! ⋅ ℎ𝑟!!. The in vivo results for L. brevis and D. pealeii at 19°C from our 

study are indistinguishable from these values (p > 0.05 for all species-wise comparisons), which 

suggests that the 𝑂!  consumed in our experiments can be fully explained by localized 

consumption without any uptake by the blood and other body tissues. 

The O:N ratios observed here were higher than is typical for squids (11-17), which have a 

well-known protein-rich diet (Ikeda 2016). One animal was fasted for three days and had a 

notably higher O:N than any other individual, suggesting a use of lipid reserves. This matches 

well the lipid utilization by Sepia officinalis after 3-5 days of starvation (Speers-Roesch et al. 

2016). 

Limitations to cutaneous uptake 

Diffusion distance is likely the most important factor limiting cutaneous respiration in 

squids. Squid skin is thinner than Octopus skin, but unlike octopods, it does not seem to be 

vascularized (Madan and Wells 1997). Blood vessels are commonly found in the skin of 
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cutaneously respiring animals (Krogh 1941; Feder and Burggren 1985). Thus, 𝑂! from seawater 

would have to diffuse across the entire squid skin thickness (150-300 𝜇𝑚) before reaching 

capillaries. Oxygen diffusion across animal tissue is slow, however, three times slower than in 

water and one million times slower than in air (Krogh 1941). Diffusion limitation of metabolism 

is possible even on the intracellular scale, influencing mitochondrial placement within myocytes 

(Kinsey et al. 2007). 

A simple calculation of diffusion capacity reveals the situation. In another loliginid squid, 

Alloteuthis subulata, total branchial surface area and diffusion distance for a 100 g individual are 

1063 𝑐𝑚! and 6.2 𝜇𝑚, respectively (Eno 1994) yielding a diffusion capacity of 519 𝜇𝑚𝑜𝑙 𝑂! ⋅

𝑘𝑃𝑎!! ⋅ ℎ𝑟!! according to Equation 2.3. This mass-specific branchial surface area is comparable 

to many marine fishes (Gray 1954) and other cephalopods (Madan and Wells 1996b). With a 

skin thickness of 300 𝜇𝑚 (Madan and Wells 1997), the D. pealeii in our study had a cutaneous 

diffusion capacity of only 4 𝜇𝑚𝑜𝑙 𝑂! ⋅ 𝑘𝑃𝑎!! ⋅ ℎ𝑟!!. As a useful comparison, the inter-capillary 

distance in aerobic circular muscle of the squid mantle is no more than 80 𝜇𝑚 (Bone et al. 1981; 

Kier and Thompson 2003). Thus, the furthest distance that oxygen must travel from capillaries to 

mitochondria is 40 𝜇𝑚, far less than the skin thickness. 

Diffusion capacity=K× surface area
diffusion distance

, (2.3) 

At 20°C, K is ≈3.03 𝜇𝑚𝑜𝑙 𝑂! ⋅ 𝑐𝑚!! ⋅ 𝜇𝑚 ⋅ 𝑘𝑃𝑎!! ⋅ ℎ𝑟!! (Krogh 1919). 

The estimates of total cutaneous 𝑀!! in this study were derived from cutaneous uptake 

across the outer mantle and fins and extrapolated to the inner mantle, head, and appendages. 

Cutaneous diffusion capacity is inversely proportional to the distance from the skin surface to the 

blood vessels or underlying tissue. Therefore, variations in skin thickness across the body could 

lead to differences in cutaneous 𝑂!  uptake. However, Madan and Wells (1996a) found no 
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difference between in vitro cutaneous 𝑀!!  on the web and the dorsal mantle of Octopus, 

suggesting that variations in skin thickness across the body are unlikely to cause notable effects. 

In addition, Wells and Wells (1982) demonstrated through a series of manipulative experiments 

in Octopus that there is no measurable uptake of oxygen within the mantle cavity once water has 

passed the gills. 

Why is octopus skin vascularized while squid skin is not? One plausible explanation is 

that octopus skin is more metabolically active than squid skin. Octopus skin contains both 

muscular papillae that can alter the skin’s three-dimensional texture (Allen et al. 2014) and 1-2 

orders of magnitude more chromatophores than squids (Messenger 2001). Such active muscular 

structures in the skin may require greater 𝑂! supply than can be supplied by diffusion from the 

skin surface. 

Three species of loliginid squids have now been examined through a combination of in 

vitro (Madan and Wells 1996a) and in vivo (this study) measurements and all show similar area-

specific cutaneous 𝑂! uptake rates. The ommastrephid squid, Illex illecebrosus, has thinner skin 

(150 𝜇𝑚) than most loliginids but it also lacks cutaneous vascularization (Madan and Wells 

1997) and thus likely also has a low cutaneous diffusion capacity. As part of this study, we 

conducted a short preliminary experiment on an ommastrephid, Sthenoteuthis oualaniensis. Its 

cutaneous respiration was 12.7% of total 𝑀!! , similar to our results for loliginid squids. 

Although further examination is needed, it seems likely, given our current knowledge, that 

ommastrephid squids do not breathe through their skin either. 

The cutaneous diffusion capacity of deep-water squids also remains poorly studied. 

Morphological measurements of branchial diffusion capacity have been made in a number of 

taxa (Madan and Wells 1996b) and generally seem sufficient to support their lower metabolic 
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rates (Seibel 2007). Additionally, the hypoxic waters that many deep-sea squids inhabit lowers 

the diffusion gradient from the environment into the skin compared to aerated surface waters, 

making notable cutaneous uptake unlikely. 

Where did previous studies go wrong? 

If squids do not breathe through their skin, how are we to interpret previously reported 

findings that have been used to support this hypothesis? The first indirect evidence was Pörtner 

(1990)’s paradox of blood pH rising at the tissue capillaries unless some additional source of 

𝐶𝑂! or other acid is provided independently of blood-delivered 𝑂!. There are two theoretical 

issues with this prediction, however. Firstly, for the hypothesis to work, 𝐶𝑂! produced in the 

tissue mitochondria would have to diffuse into the blood rather than diffuse out into seawater. 

Seawater 𝑃!!!, however, is ≈ 7x lower than blood (Redfield and Goodkind 1929; Pörtner 1990; 

Hu et al. 2014), which should result in a higher diffusion rate out into seawater rather than into 

the blood. In fact, it is common among skin-breathing animals for much larger quantities of 𝐶𝑂! 

to be released than 𝑂! absorbed across the skin (Krogh 1919; Feder and Burggren 1985). 

Secondly, Pörtner (1990)’s hypothesis that extra 𝐶𝑂! from the skin enters the blood could 

only function for capillaries very near the skin. If 𝐶𝑂!  produced by the consumption of 

cutaneously-sourced 𝑂! were required for hemocyanin to function efficiently, how would blood-

bourne oxygen be efficiently delivered across capillaries in internal organs, such as the brain, 

that are far removed from the skin? This leaves the very high Bohr coefficients found in many 

squids and octopuses unexplained. 

Madan and Wells (1996a) found that in vitro squid skin has similar oxygen uptake rates 

as in vitro octopus skin. However, caution must be used before predicting in vivo estimates from 

their experiments. Blood convection is a highly important factor in facilitating cutaneous 
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respiration (Feder and Burggren 1985).  Intact Octopus skin tissue had an oxygen uptake rate 

over 5x higher than dissected skin tissue (Madan and Wells 1996a), likely because blood 

convection through the tissue capillaries in the intact animal could maintain a steep diffusion 

gradient in the skin tissue. Since squids lack cutaneous blood vessels, they lack this ability to 

draw oxygen deeper into the body. Also, as noted above, Octopus skin is likely more 

metabolically active than squid skin due to the higher density of chromatophores (Messenger 

2001) and muscular papillae (Allen et al. 2014). 

Finally, although squids do indeed have a higher surface area-to-volume ratio than most 

animals (O’Dor and Hoar 2000), we found that, at least for D. pealeii over the very limited size 

ranges examined here, the surface area-to-volume ratio declines with increasing size, scaling at a 

similar rate as expected for geometric solids (b = -0.33). Thus, the small contribution of 

cutaneous oxygen uptake found here should be even smaller in larger individuals. Finally, even 

though squid mantle circular musculature is arranged such that 𝑂!-dependent aerobic muscle 

fibers are on the exterior margins (Bone et al. 1981; Mommsen et al. 1981), these are ultimately 

not relevant to cutaneous respiration because the diffusion limitation is on a much smaller scale 

within the skin than across the mantle. When Mommsen et al. (1981) originally described the 

“sandwich” pattern of muscle fibers in the mantle, they proposed an entirely biomechanical 

explanation for this arrangement. They proposed that when only a small portion of circular 

muscles are being utilized, as during breathing or routine swimming contractions (Bone et al. 

1981), this arrangement allows the passive central mantle muscle to be pressurized as a 

hydrostatic working fluid. 

This study demonstrates that, contrary to a commonly held but untested hypothesis, 

squids do not acquire large quantities of oxygen through their skin for systemic use. This finding 
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has important implications for our understanding of branchial and cardiac performance in squids. 

The squid cardiovascular system is already believed to be delivering near-maximal quantities of 

oxygen (O’Dor et al. 1990; Shadwick et al. 1990; Wells 1992). Based on this research, cutaneous 

oxygen uptake does not alleviate the oxygen delivery demand on the cardiovascular system. This 

makes the physiological adaptations of active squids to provide sufficient oxygen supply to meet 

their high oxygen demand (Seibel 2007) all the more interesting. 
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Tables 

Table 2.1. Morphometrics of animals used in divided chamber experiments. Values are mean ± 
s.d. 

Species n Mass (g) Dorsal mantle 
length (cm) Gender 

Doryteuthis 
pealeii 17 94 ± 24 15 ± 2 F:3, M:14 

Lolliguncula 
brevis 4 31 ± 5 8 ± 1 F:2, M:2 

 
Table 2.2. Gas exchange rates and skin arrangements in divided chamber experiments. Values 
are mean ± s.d. 

Species Doryteuthis pealeii 
(11 °C) 

Doryteuthis pealeii 
(19 °C) 

Lolliguncula brevis 
(20 °C) 

Total cutaneous surface area 
(cm2) 435 ± 77 416 ± 82 113 ± 13 

Cutaneous MO2 (µmol O2 / cm2 / 
hr) 0.23 ± 0.04 0.32 ± 0.09 0.43 ± 0.2 

Branchial MO2 (µmol O2 / hr) 1053 ± 347 1135 ± 455 343 ± 83 
Mass-specific MO2 (µmol O2 / g / 

hr) 11.33 ± 2.41 14.28 ± 4.09 12.74 ± 2.59 

MO2 from cutaneous uptake (%) 9 ± 1 11 ± 4 12 ± 4 
Cutaneous MNH3 (nmol NH3 / 

cm2 / hr) 12.5 ± 4.52 11.07 87.36, 27.09 

Branchial and renal MNH3 (µmol 
NH3 / hr) 69 ± 20 50 38, 20 

MNH3 from cutaneous uptake (%) 7 ± 2 7 23, 14 
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Figures 

 

Figure 2.1. Divided chamber setup for cutaneous respirometry experiments. Squids were adhered 
to a rubber collar and placed inside a small cylindrical “mantle” respirometer to isolate cutaneous 
from branchial 𝑂! consumption. Both chambers were mixed with magnetic stir bars. 𝑃!! was 
measured with oxygen-sensitive spots via fiber optic cables to oxygen meters. 
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Figure 2.2. Contributions of total cutaneous 𝑂! uptake to whole-animal 𝑀!! in two species of 
squids. 
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Figure 2.3. Comparison of measured and local cutaneous oxygen uptake. A. Total cutaneous 
surface area. B. Mass-specific metabolic rate. C. Measured versus predicted cutaneous 𝑀!! in 
squids. Red circles represent Doryteuthis pealeii and blue triangles represent Lolliguncula brevis. 
Grey dashed line is the unity line. 
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Figure 2.4. Metabolic quotient of 𝑂!  consumed and 𝑁𝐻!  excreted. The gill side of the 
respirometer was in contact with the gills, viscera, and skin from the mantle cavity, head, arms, 
and tentacles. The mantle side was in contact with the outer surface of the mantle and fins. Red 
circles represent Doryteuthis pealeii and blue triangles represent Lolliguncula brevis. Grey 
dashed line is the unity line. 
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CHAPTER THREE: 

WILL OCEAN ACIDIFICATION LIMIT METABOLISM VIA BLOOD O2 SUPPLY?: 

MAXIMAL EFFECTS ON A MODEL ORGANISM WITH EXTREME BLOOD PH-

SENSITIVITY 

	

Abstract 

Ocean acidification is hypothesized to limit the performance of squids due to their exceptional 

oxygen demand and pH-sensitivity of blood-oxygen binding, which may reduce oxygen supply 

in acidified waters. The critical oxygen partial pressure (𝑃!"#$), the 𝑃!! below which oxygen 

supply cannot match basal demand, is a commonly reported index of hypoxia tolerance. Any 

𝐶𝑂!-induced reduction in oxygen supply should be apparent as an increase in 𝑃!"#$. In this study, 

we assessed the effects of 𝐶𝑂! (46-143 Pa; 455-1410 𝜇𝑎𝑡𝑚) on the metabolic rate and 𝑃!"#$ of 

two squid species: Dosidicus gigas and Doryteuthis pealeii through manipulative experiments. 

We also developed a model, with inputs for respiratory protein pH-sensitivity, blood 𝑃!!!, and 

buffering capacity, that simulates blood oxygen supply in any animal with respiratory proteins 

under varying seawater 𝐶𝑂! partial pressures. We compare model outputs to measured 𝑃!"#$ in 

squids. Using blood-𝑂!  parameters from the literature for model inputs, including a Bohr 

coefficient of -1.5, we estimated that, in the absence of non-bicarbonate blood buffering or acid-

base regulation, an increase in seawater 𝑃!!!  to 100 Pa (≈1000 𝜇𝑎𝑡𝑚) would result in a 

maximum drop in arterial hemocyanin-𝑂! saturation by 6% at normoxia and a 𝑃!"#$ increase of 
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≈1 kPa. Because squid blood is among the most sensitive to pH of any animal, and because most 

marine animals have at least some capacity for acid-base regulation, this small predicted change 

in 𝑃!"#$  represents the maximum change expected in any animal. In fact, more realistic 

assumptions of buffering capacity and acid-base regulation result in much smaller expected 

changes that are within the error of the measurement. Our live-animal experiments support this 

supposition as 𝐶𝑂! had no effect on measured metabolic rate or 𝑃!"#$ in either squid species. We 

conclude that reports in the literature of 𝐶𝑂! effects on metabolism or performance are unlikely 

to be due to limitation in blood oxygen supply. 

Introduction 

Atmospheric carbon dioxide (𝐶𝑂!) partial pressure (𝑃!!!) has increased from the pre-

industrial mean of 28 Pa (280 𝜇𝑎𝑡𝑚, ppmv; 1 Pa ≈ 10 𝜇𝑎𝑡𝑚) to over 40 Pa (≈ 400 𝜇𝑎𝑡𝑚) today 

(Caldeira and Wickett 2005) and may reach 100 Pa (1000 𝜇𝑎𝑡𝑚) by the year 2100 (IPCC 2014). 

Elevated environmental 𝑃!!! will influence marine organisms indirectly via global warming. 

However, anthropogenic 𝐶𝑂! also diffuses into the ocean where it reacts with water resulting in 

reduced pH. This phenomenon, known as ocean acidification (OA), may affect animal 

performance in numerous ways (Fabry et al. 2008; Clements and Hunt 2015). For example, it has 

been proposed that OA may impair the oxygen supply capacity of marine animals via its effect 

on pH-sensitive respiratory proteins (Widdicombe and Spicer 2008; Fabry et al. 2008; Pörtner 

2012; Miller et al. 2016; Seibel 2016). Even small losses in oxygen supply capacity could hinder 

an animal’s exercise performance or environmental hypoxia tolerance. 

Shallow-water active squids, such as those in the families Loliginidae and 

Ommastrephidae, are ideal study organisms for examining impacts of ocean acidification (OA) 
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on oxygen supply because their respiratory proteins are among the most pH-sensitive of any 

marine animal (Brix et al. 1989; Bridges 1994; Pörtner and Reipschläger 1996; Seibel 2016). 

Sensitivity to pH, quantified as the Bohr coefficient (Bohr et al. 1904), is optimal for 𝑂! 

delivery to the tissues at half the respiratory quotient (Lapennas 1983), which would be between 

-0.35 and -0.5 in cephalopods. Squid hemocyanin, however, often has a Bohr coefficient < −1 

(Bridges 1994). Bohr coefficients in many other animals are much smaller, zero, or (rarely) even 

have a reverse effect (Mangum 1997). The extreme sensitivity in cephalopods may result in large 

impairments in blood-𝑂! binding affinity from relatively small changes in blood pH. 

Their blood also has rather low non-bicarbonate buffering capacity (𝛽!") when compared 

to vertebrates (Heisler 1986; Withers 1992) and some marine worms (Toulmond and 

Tchernigovtzeff 1989), and is similar to other invertebrates such as crabs (Spicer et al. 2007; 

Pane and Barry 2007), shrimps (Taylor and Spicer 1991), scallops (Duncan et al. 1994), and 

peanut worms (Portner et al. 1984). Squid 𝛽!" is larger than some taxa such as mussels (Booth et 

al. 1984) and sea urchins (Spicer et al. 1988, 2011; Taylor et al. 2014). When 𝛽!" is low, small 

changes in blood 𝑃!!! lead to relatively large changes in pH. 

Cephalopods, unlike fishes and crustaceans, are not known to rely on organic cofactors 

such as adenosine phosphates and lactate to modify hemocyanin-𝑂! affinity (Johansen and 

Weber 1976; Mangum 1997). Furthermore, hemocyanins are not contained within red blood cells 

but are freely dissolved in the blood, which limits their concentration due to viscosity and 

osmotic constraints. Unlike fishes or invertebrates with red blood cells, which can increase 

hemoglobin concentration or hematocrit to increase oxygen supply (Johansen and Weber 1976), 

squids are constrained in their 𝑂! carrying capacity. Finally, unlike most fishes and mammals, 
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squids are thought to utilize most of the 𝑂! available in their blood with very little venous 

reserve even under resting conditions (Wells 1992; Pörtner 1994). 

Such physiological considerations have led to the concern that, in the absence of 

acclimation or adaptation, squid metabolism may be strongly affected by OA (Pecl and Jackson 

2007; Seibel 2016). In fact, Pörtner (1990) estimated that a 0.1-0.15 unit decrease in arterial pH 

would be lethal for active squids, consistent with the findings of Redfield and Goodkind (1929). 

They found that blood-oxygen transport in the loliginid squid Doryteuthis pealeii was impaired 

by acute exposures to 𝑃!!! levels up to 3200 Pa resulting in death. Rosa and Seibel (2008) 

reported reduced metabolic rate and activity at much more modest 𝐶𝑂! levels (100 Pa), which 

they attributed to the high pH-sensitivity of hemocyanin in Dosidicus gigas. Similar results have 

been found in embryonic squids (Rosa et al. 2014). However, Hu et al. (2014) found no effect of 

160 Pa 𝐶𝑂! on metabolism even after one week exposure in the loliginid squid Sepioteuthis 

lessoniana. Cuttlefish, which have lower oxygen demand but respiratory proteins with similarly 

high pH-sensitivity, also showed no effect on metabolism or growth rate at 𝑃!!! levels up to 615 

Pa (Gutowska et al. 2008). Such tolerances may be attributed to the high capacity for blood acid-

base regulation in most cephalopods (Melzner et al. 2009; Hu and Tseng 2017). The studies to 

date are not directly comparable, each having employed a different species, 𝑃!!! level, exposure 

duration and method. Thus, the variable results are perhaps not surprising. 

Although all loliginid and ommastrephid squids have rather active lifestyles, individual 

species have evolved in very different environments that may select for quite different 𝐶𝑂! or 

hypoxia tolerances. For example, Dosidicus gigas is an ommastrephid squid that inhabits the 

eastern tropical Pacific where a pronounced oxygen minimum zone (OMZ) exists. They 

encounter strong gradients in 𝑃!! (𝛥 > 10 kPa), 𝑃!!! (𝛥  ≥ 100 Pa), and temperature (𝛥 > 10 °C) 
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during their daily migration into the OMZ (Gilly et al. 2006, 2012; Franco et al. 2014). The squid 

suppress total metabolism by 50% while in the core of the OMZ during daytime hours (Seibel et 

al. 2014). In contrast, the loliginid squid, Doryteuthis pealeii, inhabits coastal and shelf waters in 

the western Atlantic and never encounters such extreme hypoxia or hypercapnia (though bays 

can reach 𝑃!!! > 50 Pa in the summer months; Turner 2015). As such, D. gigas is adapted to 

more extreme environmental conditions than D. pealeii. 

Of the 28 known marine animal phyla, 11 utilize specialized oxygen binding proteins for 

oxygen transport to metabolizing tissues (Mangum 1997). Among the taxa examined thus far, 

blood oxygen binding affinity in squids is among the most sensitive to environmental 

hypercapnia (Pörtner and Reipschläger 1996). Yet the whole-animal metabolic responses to 𝐶𝑂! 

reported in the literature are highly variable (for reviews, Lefevre 2016; Kelley and Lunden 

2017; Hannan and Rummer 2018). 

In this study, we examined the effects of 𝐶𝑂! on hypoxia tolerance in two squid species 

with similar oxygen demands but differing hypoxia tolerances, Dosidicus gigas and Doryteuthis 

pealeii, to determine what impact ocean acidification may have on 𝑂! supply in squids. We 

applied two independent approaches to this question. First, we conducted laboratory experiments 

to examine the effect of 𝐶𝑂! on hypoxia tolerance. Second, we constructed a model of blood 

acid-base balance and 𝑂! delivery with variable inputs for blood-oxygen affinity, 𝐶𝑂! sensitivity 

of respiratory proteins and buffering capacity, to predict the physiological changes in 𝑂! supply 

expected by end-of-the-century ocean acidification for squids and marine animals generally. 
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Methods 

Animal capture and maintenance 

Dosidicus gigas (D’Orbigny 1835; n = 16) were jigged at night in Guaymas Basin, Gulf 

of California, Mexico from 16 May 2015 to 01 June 2015 aboard the R/V Oceanus. Doryteuthis 

pealeii (Lesueur 1821; n = 29) were caught in southern Narragansett Bay, RI, USA by either 

hand jigs or, less commonly, benthic otter trawl, in April through November of 2014-2016. 

Morphometrics of both species are shown in Table 3.1. Dosidicus gigas were placed 

immediately in a respirometer aboard ship for acclimation while D. pealeii were transported in 

an aerated cooler to the Durbin Aquarium facility at the University of Rhode Island where they 

were held in tanks of at least 540 L with flow-through filtered seawater. Doryteuthis pealeii were 

fed grass shrimp (Palaemonetes sp.) or 1 cm wide herring steaks, Clupea harengus, ad libitum 

during the holding period before experiments were conducted. Prior to acclimation and 

experimental trials with D. pealeii, temperature was maintained at 15 °C (within 5 °C of capture 

temperature) and 𝑃!!!  varied with ambient conditions in Narragansett Bay, RI, where 𝑃!!! 

typically ranges from 10 to 70 Pa (Turner 2015). 

Hypoxia tolerance assessment 

Hypoxia tolerance was assessed by measuring oxygen consumption rates of the squids 

under progressively declining seawater 𝑃!!  using intermittent respirometry. All experiments 

were conducted in a 90 L swim tunnel respirometer (Loligo Systems, Viborg, Denmark) with a 

70x20x20 cm working section in which the animal was confined. Trials were conducted at 

surface pressure since hydrostatic pressure has little effect on metabolism in squids (Belman 

1978). Acclimation and trials were conducted at 15 °C for D. pealeii. However, for D. gigas, 

temperature was maintained at ambient sea surface temperature, which varied from 23 to 27 °C. 
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Measurements were adjusted accordingly (see below). 𝐶𝑂! treatment began immediately upon 

placing the animal in the respirometer. Median acclimation duration was 10 and 13 hours for D. 

gigas and D. pealeii, respectively. This allowed time for thermal acclimation (for D. pealeii), 

recovery from handling stress, completion of digestion from any previous meal (Wells et al. 

1983; Katsanevakis et al. 2005), and acclimation to 𝐶𝑂! conditions. Animals were free to move 

within the working section of the respirometer, which was 3-4 mantle lengths long. Thus we 

refer to the metabolic rates measured here as routine metabolic rates (RMR) rather than standard 

metabolic rates (SMR) although the animals often rested on the bottom of the chamber. 

After acclimation for each animal, the respirometer was closed and the 𝑃!! was drawn 

down by the animal. Every 4-5 kPa 𝑂! (every 1 - 7 hours depending on the rate of metabolism), 

the respirometer was flushed with seawater at matching 𝑃!! and experimental 𝑃!!! to minimize 

𝑁𝐻! and 𝐶𝑂! accumulation. The average flush provided a 70% water exchange (Steffensen 

1989). 𝑃!! was measured every ten seconds with an oxygen-sensitive spot (Fibox 3 meter and 

PSt3 spots; PreSens Precision Sensing GmbH, Regensburg, Germany). The oxygen meter was 

calibrated with air-saturated seawater and concentrated 𝑁𝑎𝑆𝑂!  solution (𝑃!! = 0 ). Water 

velocity inside the respirometer was kept low (≈ 5 𝑐𝑚 ⋅ 𝑠𝑒𝑐!!) to allow homogenous mixing. 

Flush water was UV-treated, then stored in a reservoir, brought to treatment temperature, 

and bubbled with pure nitrogen gas to draw down dissolved 𝑃!! . To produce high 𝐶𝑂! 

conditions, pure 𝐶𝑂! gas (AirGas “Bone Dry” grade, Radnor, Pennsylvania, USA) was dispersed 

through a peristaltic pump and bubbled into the intake of a submersible aquarium pump to 

enhance dissolution (Jokiel et al. 2014). The treated reservoir water was then flushed through the 

respirometer. The appropriate volume of 𝐶𝑂! gas added for each flush was calculated using the 

R package “respirometry” (Birk 2018). Water samples were collected from the respirometer 
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output at the start of each flush for carbonate chemistry analyses. For the D. pealeii trials, water 

samples were also analyzed from the incoming flush water. 

Metabolic rate (𝑀!!) was monitored in real-time and the trial was ended soon after the 

animal reached 𝑃!"#$ , the environmental 𝑃!!  below which aerobic metabolism (indicated by 

oxygen consumption rate) decreases. The average duration of the trials after acclimation was 7 

and 23 hours for D. gigas and D. pealeii, respectively, due to temperature and animal size. This 

resulted in an average total exposure duration to treatment conditions by the time the animal 

reached 𝑃!"#$ of 17 and 36 hours, respectively. At the end of each trial, the animal was removed 

and the “background” oxygen consumption rate of the microbial community in the respirometer 

was measured and deducted from calculated squid 𝑀!!. Gill length relative to dorsal mantle 

length (DML) was measured in both species. 

Ventilation 

During 17 of the D. pealeii trials, the animals were filmed for one minute every 30 

minutes to monitor ventilation rate. The camera was placed above the respirometer and a mirror 

was placed at a 45° angle to the camera, allowing simultaneous monitoring of the animal from a 

dorsal and lateral view. 

As hypoxia progressed, three effects on ventilation rate were considered: 1. ventilation 

rate is unaffected by hypoxia, 2. ventilation rate increases linearly with progressive hypoxia, and 

3. ventilation rate is unaffected at moderate 𝑃!! levels but increases at more extreme hypoxia 

(i.e. breakpoint relationship). A model was fit for each of these relationships using maximum 

likelihood estimation with normal error distributions with the mle2() function from the R 

package “bbmle” (Bolker 2017). The best fitting model was chosen by the Bayesian information 

criterion (BIC). 
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𝑴𝑶𝟐 and 𝑷𝒄𝒓𝒊𝒕 analysis 

 𝑀!! was calculated from the slope of a linear regression of 𝑃!! over time. The number 

and quality of 𝑀!! measurements obtained from this technique are dependent on the width of the 

time bins used. The time bin width scaled with 𝑃!! such that the time bins at high 𝑂! covered 

1/10th the trial duration and the time bins at low 𝑂! covered 1/100th the trial duration. This 

provided an optimal balance between precision and resolution throughout each trial. 𝑀!! 

measurements derived from regressions with an 𝑅! < 0.7 were discarded. 

To calculate 𝑃!"#$, a traditional breakpoint relationship was fit using the segmented() 

function from the “segmented” R package (Muggeo 2008), which fits a broken-stick regression 

to the relationship between 𝑀!! and 𝑃!!. Then, a 95% prediction interval was added around the 

oxyregulating line to encapsulate a space in which all observed 𝑀!! values can reasonably be 

considered within the oxyregulating space. The “sub-PI” 𝑃!"#$ is defined as the 𝑃!! at which the 

oxyconforming line intersects the lower limit of the 95% prediction interval. This sub-PI method 

resulted in a lower variability in 𝑃!"#$ measurements than the traditional breakpoint method. 

Only 𝑀!!  measurements with mean 𝑃!! > 𝑃!"#$  were considered when calculating 

routine metabolic rate (RMR). For trials where no 𝑃!"#$ could be reliably established, RMR was 

determined as the mean of the 𝑀!!values. 

To compare measurements made at different temperatures, we calculated a temperature 

coefficient, 𝑄!", according to: 

Q10=(k2/k1)10/(T2-T1) 

where 𝑘! and 𝑘! are the calculated values (e.g. 𝑀!! or 𝑃!"#$) measured at temperatures 𝑇! and 𝑇!, 

respectively. Typical 𝑄!" values for metabolic rate in ectotherms range from 2 to 3 (Hochachka 
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and Somero 2002), meaning that metabolic rate doubles or triples with a 10 °C increase in 

temperature. The 𝑄!!  was calculated using the Q10() function from the “respirometry” R 

package (Birk 2018) and bootstrap bias-corrected and accelerated confidence intervals were fit to 

form confidence bands. 

Carbonate chemistry 

Seawater carbonate chemistry was assessed by measuring pH (total scale) and total 

alkalinity (TA) from water entering and expelled from the respirometer during acclimation and 

flushes. pH was measured spectrophotometrically at 25 °C with m-cresol purple, a pH-sensitive 

dye (Clayton and Byrne 1993), using SOP 6b from Dickson et al. (2007) modified for use with a 

1 cm path length cuvette. Based on pH measurements from flush water samples, seawater pH 

inside the respirometer during the inter-flush periods of the trials was calculated using the 

predict_pH() function from the “respirometry” R package (Birk 2018). A respiratory quotient 

(RQ; ratio of 𝐶𝑂! produced to 𝑂! consumed) of 0.85 was used since cephalopods mainly utilize 

protein catabolism (Hoeger et al. 1987). For the D. pealeii trials where water samples were 

analyzed from both respirometer input and output at every flush, pH was calculated from both 

the start and end of each inter-flush measurement period. The values from these two methods of 

calculation differed by only 0.06 pH units on average, which corroborates this RQ value, and 

were averaged. 

Alkalinity was measured either by SOP 3b from Dickson et al. (2007; potentiometric 

titration) or by Liu et al. (2015; spectrophotometric titration). Alkalinity measurements were 

calibrated with certified reference materials provided by Andrew Dickson (Scripps Institution of 

Oceanography). 𝑃!!! was calculated from inter-flush pH and trial-averaged TA using carbonate 

dissociation constants from Lueker et al. (2000) via the R package “seacarb” (Gattuso et al. 
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2015). Mean 𝑃!!! values for each trial were chosen as the environmental metric for analysis. The 

𝑃!!! at 𝑃!"#$ was also estimated and gave similar results. Due to the unavoidable 𝐶𝑂! buildup 

when the respirometer was closed, seawater pH during each trial varied within the respirometer 

over a median range of 0.21 and 0.28 pH units in the D. gigas and D. pealeii trials, respectively. 

Blood 𝑶𝟐 delivery model 

A physiological model was developed to estimate the magnitude of an effect seawater 

𝑃!!!  has on blood 𝑂!  transport and 𝑃!"#$  in a marine animal. Physiological parameters 

(normocapnic blood 𝑃!!!  and pH, non-bicarbonate buffering capacity (𝛽!"), Bohr and Hill 

coefficients, hemocyanin 𝑃!" , arterial 𝑃!!  at normoxia and 𝑃!"#$ ) were collected from the 

literature for squids at 25 °C. Importantly, the model inputs for those blood traits that make 

squids more sensitive to 𝐶𝑂! than nearly any other marine animal (e.g. large Bohr coefficient) 

can be maximized, while the characteristics that make squids more resilient to 𝐶𝑂! than some 

other animals (buffering capacity and acid-base regulation) could be minimized or neglected. 

This allowed us to demonstrate the maximum possible effect that future 𝐶𝑂! levels are likely to 

have on blood-oxygen transport in any animal. 

According to Fick’s law of diffusion (Equation 3.1; where 𝐾  is Krogh’s diffusion 

coefficient, a gas- and tissue-specific constant) and without any change in ventilatory dynamics, 

blood 𝑃!!!  must change symmetrically with seawater 𝑃!!!  in order to maintain the same 

diffusive flux from the body. This has been observed in cephalopods (Gutowska et al. 2010a; 

Häfker 2012; Hu et al. 2014) as well as fishes exposed to hypercapnia (Janssen and Randall 

1975; Esbaugh et al. 2012, 2016; Strobel et al. 2012a; Ern and Esbaugh 2016; for a review: 

Heuer and Grosell 2014). In the absence of any change in metabolic rate or 𝐶𝑂! production, the 

flux rate must remain constant if gradual respiratory acidosis is to be avoided. Thus, an increase 
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in seawater 𝑃!!!  elevates blood 𝑃!!!  and reduces blood pH (Table 3.2). 𝐶𝑂!  solubility and 

dissociation constants for seawater (S = 35) from Lueker et al. (2000) are used. These constants 

are similar to values calculated in crab hemolymph (Truchot 1976), which has similar ionic 

properties to squid blood. 

Diffusion rate=K× gill surface area
gill membrane thickness

× PCO2seawater-PCO2blood , (3.1) 

A decrease in blood pH increases 𝑃!"  according to Equation 3.2 (Table 3.2). This 

acidosis also decreases 𝐻𝑐 − 𝑂! binding cooperativity (Hill coefficient, 𝑛; Seibel 2013; Table 

3.2). The rise in 𝑃!" shifts the 𝑂!-binding curve to the right, decreasing arterial hemocyanin 𝑂! 

saturation according to the hemocyanin-𝑂! binding equation (Equation 3.3): 

Bohr coefficient= Δlog(P50)
ΔpH

, (3.2) 

% Hc-O2 saturation=
(PO2)

n

(P50)n+(PO2)
n×100, (3.3) 

According to Equation 3.3, as blood 𝑃!"  increases due to acidosis, the arterial 𝑃!! 

necessary to maintain the same Hc-𝑂! saturation increases as well in a nonlinear relationship. As 

long as oxygen demand is unchanged (e.g. no change in temperature or physiological activity), 

𝑃!"#$ is reached when Hc-𝑂! saturation falls below a set threshold (Redfield and Goodkind 1929; 

Speers-Roesch et al. 2012) at which point the amount of 𝑂! carried in the blood is insufficient to 

support cellular metabolism. 

The change in arterial 𝑃!! for a given change in environmental 𝑃!! can be calculated 

from the arterial 𝑃!!  under environmental air saturation (Table 3.2) and that under anoxia 

assuming a linear relationship between environmental and arterial 𝑃!! (Eddy 1974; Houlihan et 

al. 1982; Johansen et al. 1982; Speers-Roesch et al. 2012). The increase in arterial 𝑃!! required 
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to reach the Hc-𝑂! saturation threshold under hypercapnia (Fig. S3F) translates to an increase in 

𝑃!"#$. 

To assess the model’s reliability, the model was run with published 𝛽!", Bohr and Hill 

coefficient, and 𝑃!" values for D. pealeii from Pörtner (1990; Table 3.2: “Realistic squid”) and 

compared to empirical data from Redfield and Goodkind (1929). They examined the effects of 

acute (10-15 min) seawater hypercapnia (up to 3200 Pa 𝐶𝑂!) on lethal 𝑃!! in D. pealeii. Blood 

acid-base compensation was not incorporated to the model due to the acute 𝐶𝑂! exposures (10-

15 min) by Redfield and Goodkind (1929). The model was also run with one of the largest Bohr 

coefficients measured for squids (Brix et al. 1989) and no non-bicarbonate buffering capacity 

(Table 3.2: “Worst case scenario”). Finally, the model was run with buffering capacity and 

respiratory protein pH-sensitivity more typical of most marine animals (Mangum 1997; Table 

3.2: “Typical marine animal”). For all parameter inputs, the model was run with environmental 

𝑃!!! values ranging from 40 to 416 Pa to cover a broad range of 𝑃!!! conditions that marine 

animals may encounter (Melzner et al. 2013). 

Results 

Experimental seawater parameters from the trials are shown in Table 3.3. All results are 

expressed as mean ± standard deviation. 

Metabolic rate and hypoxia tolerance 

There was no effect of hypercapnia on metabolic rate for either species (D. pealeii: 𝑡!" = 

-1.08, p = 0.297; temperature-adjusted D. gigas: 𝑡!"  = 0.11, p = 0.914; Figure 3.1A). 

Furthermore, seawater 𝑃!!!  had no detectable effect on temperature-adjusted 𝑃!"#$  in either 

species (Figure 3.1B). 
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Dosidicus gigas had a routine metabolic rate (RMR) of 13.2 ± 2.6 𝜇𝑚𝑜𝑙 𝑂! 𝑔!! ℎ!! at 

22.5-26.6 °C. Its rate increased significantly with temperature (𝑡!" = 1.6, p = 0.123) with a 𝑄!" 

of 1.9 (Figure 3.2A). Doryteuthis pealeii had an RMR of 6.5 ± 2.5 𝜇𝑚𝑜𝑙 𝑂! 𝑔!! ℎ!! at 15 °C. 

Once adjusted to a common temperature (15 °C) using a 𝑄!" of 1.8 (derived from D. gigas 𝑀!! 

measurements from the literature spanning from 6.5 to 25 °C; (Gilly et al. 2006; Rosa and Seibel 

2008; Trueblood and Seibel 2013; Trübenbach et al. 2013; Seibel et al. 2014); this study; Figure 

3.2C), D. gigas metabolic rate was 1.8 𝜇𝑚𝑜𝑙 𝑂! 𝑔!! ℎ!! higher than in D. pealeii (𝑡!" = 3.31, p 

= 0.002). 

The 𝑃!"#$ for D. pealeii at 15 °C was 3.9 ± 0.8 kPa. Dosidicus gigas mean 𝑃!"#$ was 3.8 

± 1.2 kPa, but it increased with temperature from 23 °C to 27 °C with a 𝑄!" of 1.8 (Figure 3.2B). 

When adjusted to a common temperature (15 °C) using a 𝑄!" of 1.8 (derived from D. gigas 𝑃!"#$ 

values from the literature ranging from 6.5 to 27 °C; Gilly et al. 2006; Trueblood and Seibel 

2013; Figure 3.2D), mean D. gigas 𝑃!"#$ was 1.4 kPa lower than D. pealeii 𝑃!"#$ (𝑡!" = 3.84, p < 

0.001). 

Ventilatory changes 

Ventilation rate in D. pealeii had a breakpoint relationship with 𝑃!!, remaining stable at 

high 𝑃!! (0.77 Hz) but increasing by 0.04 𝐻𝑧 ⋅ 𝑘𝑃𝑎!! 𝑂! with progressive hypoxia below 9 kPa 

(Figure 3.3A). While 𝑂! strongly influenced ventilation, no effect of seawater 𝑃!!! was found on 

normoxic (𝑃!! > 9 kPa) ventilation rate (𝑡!" = -0.38, p = 0.71; Figure 3.3B).  Dosidicus gigas 

relative gill length (38% of DML) was longer than D. pealeii (29%) (𝑡!" = 5.39, p < 0.001). 

Blood 𝑶𝟐 delivery model 

Running the model with the inclusion of non-bicarbonate buffering and a Bohr 

coefficient from the literature for D. pealeii (Table 3.2: “Realistic squid”) matched the empirical 
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measurements of lethal 𝑃!! from Redfield and Goodkind (1929) very well even up to 3200 Pa 

𝐶𝑂! (Figure 3.4). Assuming no non-bicarbonate buffering capacity and a Bohr coefficient of -1.5 

(Table 3.2: “Worst case scenario”) resulted in a large overestimate of the observed rise in lethal 

𝑃!! especially at high 𝐶𝑂! levels (Figure 3.4). 

When running the “Worst case scenario” model (Table 3.2), an increase in environmental 

𝑃!!!  from 40 to 100 Pa raises 𝑃!"#$  by only 1.02 kPa and lowers arterial hemocyanin-𝑂! 

saturation in normoxia by only 6%. The 𝛥𝑃!"#$ is approximately linear with increasing 𝑃!!! 

(Figure 3.5). The effects of CO2 were even less pronounced in the “Typical marine animal” 

model (Figure 3.5). The 𝛥𝑃!"#$ for a typical marine animal due to a rise in environmental 𝑃!!! 

from 40 to 100 Pa was 0.2 kPa and arterial O2 saturation fell by only 1.7%. Even when 

environmental 𝑃!!! rose by 234 Pa, Pcrit rose by only 0.66 kPa and arterial saturation fell by 7%. 

Discussion 

Effects of 𝑪𝑶𝟐 on metabolism 

We found no effect of seawater 𝑃!!! up to 143 Pa on metabolic rate or hypoxia tolerance 

in either species (Figure 3.1). Rosa and Seibel (2008) had previously found that a 𝑃!!! of 100 Pa 

had caused a 20% decrease in D. gigas RMR relative to 30 Pa and had attributed this suppression 

to hypercapnia-induced limitation to blood-𝑂! binding. A 20% decline in RMR (black diamond 

in Figure 3.1) fell outside of the 95% confidence band of the CO2 effect on RMR observed here. 

There were a number of differences between the studies that may have produced the disparate 

effects such as animal size, acclimation duration, and measurement technique. 

Given what is now known about blood-𝑂! binding in D. gigas (Seibel 2013), impairment 

of oxygen supply could not have been the cause of the decline in metabolic rate and activity 

observed by Rosa and Seibel (2008). Based on the properties of D. gigas blood determined by 
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Seibel (2013), the squid in the study by Rosa and Seibel (2008) should have had nearly 

completely 𝑂!-saturated blood at all 𝐶𝑂! levels encountered. Furthermore, if oxygen supply 

limitation were causing the decline in inactive and routine rates of metabolism they observed, 

then the much higher maximum metabolic rates documented should not have been attainable. It 

is possible that the reduced rate they observed was due to a short-term behavioral effect as has 

been documented in the marine worm, Sipunculus nudus (Reipschläger et al. 1997). In this 

animal, hypercapnia alters neuromodulator concentration in nervous tissue, which suppresses 

metabolism independently of 𝑂!-supply constraints. 

As has been demonstrated in other adult cephalopods (Gutowska et al. 2010a; Häfker 

2012; Hu et al. 2014), it is likely that the squid species examined here in high seawater 𝑃!!! 

compensated their blood pH by actively increasing [𝐻𝐶𝑂!!]. Sepioteuthis lessoniana have been 

found to fully compensate for respiratory acidosis within 20 hours of exposure to 420 Pa 𝐶𝑂! 

(Hu et al. 2014). Similarly, when exposed to 600 Pa 𝐶𝑂!, cuttlefish blood pH is nearly fully 

compensated and hemocyanin-𝑂! saturation is not compromised (Gutowska et al. 2010a). In 

addition to raising blood pH, increasing [𝐻𝐶𝑂!!] from 3 to 10 mM lowers free [𝑀𝑔!!] by ≈1% 

due to ion pairing. Although free 𝑀𝑔!! is essential for proper hemocyanin function, such a small 

change has a negligible effect on hemocyanin 𝑃!" (Miller 1985; Miller and Mangum 1988). 

In addition, hypoxia may even have an antagonistic effect of hypercapnia on blood pH. 

Seibel et al. (2014) reported that D. gigas blood pH increased under hypoxia, presumably to 

increase 𝑂! affinity although at the expense of intracellular pH. Similar blood pH increases in 

response to hypoxia have been measured in Octopus and Sepia (Houlihan et al. 1982; Johansen 

et al. 1982). 
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Impact of ocean acidification on 𝑶𝟐 supply in squids 

To determine what effect 𝑃!!!  might reasonably be expected to have on 𝑃!!"# , we 

modeled the effect of 𝑃!!! across a range of physiological traits and conditions. The “Worst case 

scenario”, including a modeled animal with extreme pH sensitivity of oxygen binding (Bohr 

coefficient = -1.5) and no capacity for non-bicarbonate buffering or acid-base regulation, results 

in only a 1.02 kPa increase in 𝑃!"#$ due to a rise in 𝑃!!! to 100 Pa. This increase in 𝑃!"#$ is within 

the range of existing intraspecific variability measured in this study and others (Redfield and 

Goodkind 1929; Trueblood and Seibel 2013). The “Realistic squid” model formed with 

physiological parameters from Redfield and Goodkind (1929) and Pörtner (1990) matches 

independent empirical data up to 3200 Pa 𝐶𝑂! (Redfield and Goodkind 1929). This suggests that 

despite its simplicity, our model accurately captures whole-animal metabolic responses to 𝐶𝑂! in 

squids at least in the short-term. 

Many of the parameters in the model are temperature-dependent; the 𝐶𝑂! dissociation 

constants, Bohr coefficient, normocapnic 𝑃!" value, and arterial 𝑃!! at 𝑃!"#$ are all influenced by 

temperature. Of these parameters, the 𝑃!" and normocapnic 𝑃!"#$ values are highly influential 

and both decrease with decreasing temperature (Brix et al. 1989; Seibel 2013). Therefore, 𝐶𝑂! 

should have an even lesser effect on blood 𝑂! transport in these squids at colder temperatures 

than calculated here for 25 °C. 

Dosidicus gigas hemocyanin has among the lowest 𝑃!" (highest 𝑂! affinity) measured in 

cephalopods (Seibel 2013) and, thus, may retain full blood oxygen saturation under hypercapnia 

where other squids may not. Another ommastrephid squid, Illex illecebrosus, has one of the 

highest 𝑃!" values measured in squids (𝑃!" = 8.1 kPa at 15 °C; Pörtner 1990), a Bohr coefficient 

of −1.07 (Pörtner 1990), and a normocapnic 𝑃!"#$ of 4.9 kPa at 20 °C (Birk, unpublished). For 
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comparison, if 𝑃!" and 𝑃!"#$ are both adjusted to 25 °C using a 𝑄!" of 1.7 (Seibel 2016), Illex 

illecebrosus’ arterial hemocyanin 𝑂!  saturation would decrease by 14%, while 𝑃!"#$  would 

increase by 1.03 kPa under 100 Pa 𝐶𝑂! assuming no non-bicarbonate buffering and no blood pH 

compensation. According to the model, hemocyanin at this high temperature is only 61% 

saturated at the gills in air-saturated water at current 𝑃!!! levels, which is not surprising given 

how rarely I. illecebrosus is found at such high temperatures (Whitaker 1980). This does suggest, 

however, that such a high 𝑃!" (13.8 kPa) can strongly constrain available habitat in squids 

(Bridges 1994). Assuming even modest non-bicarbonate buffering capacity greatly reduces the 

possible effect of OA on blood-oxygen transport while the strong acid-base regulation found in 

active squids will likely render OA irrelevant for oxygen transport despite the extreme pH 

sensitivity of their blood. 

While it is unlikely that the oxygen supply pathway of active squids will be affected by 

ocean acidification, there remain other mechanisms of concern for hypercapnia to impact squid 

fitness. Blood acid-base disturbance from environmental hypercapnia has been shown to increase 

cuttlebone calcification in cuttlefish (Gutowska et al. 2010b). Ocean acidification has also been 

demonstrated to alter behavior in marine animals (Clements and Hunt 2015), including squids 

(Spady et al. 2014, 2018). Additionally, OA has been found to have negative impacts on 

embryonic growth rates and hatching success (Zakroff 2013; Kaplan et al. 2013). 

Implications for other marine animals 

We propose that the 𝐶𝑂! sensitivities shown here (Figure 3.5) represent the maximal 

anticipated effect of ocean acidification on oxygen supply of marine animals generally. There 

may be some isolated cases where the Bohr coefficient is extreme or the 𝑃!" and arterial 𝑃!! at 

𝑃!"#$ are very high, which could render a given species susceptible. However, moderate blood 
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buffering capacity or acid-base regulatory abilities would seem sufficient to protect blood from 

the very modest declines in pH one might otherwise expect. Squids were predicted to be among 

the most sensitive (Pörtner and Reipschläger 1996), and our analysis suggests that OA in most 

marine habitats could have, at most, a minor effect on blood pH and oxygen transport. 

We have been quite conservative in this conclusion by intentionally constructing a model 

that does not incorporate a number of physiological phenomena that would further minimize 

OA’s effect on blood 𝑂! supply. There has been no incorporation of pH compensation via 

branchial ion transport or non-bicarbonate buffering in the blood. In fact, such compensation and 

buffering have been demonstrated in squids (Pörtner 1991; Hu et al. 2014) and would alleviate 

impacts of increased 𝐶𝑂! (Melzner et al. 2009). Increased ventilation of gas-exchange structures 

(e.g. gills) would also lower arterial 𝑃!!! and raise blood pH, and has been documented in 

cephalopods and fishes (Gutowska et al. 2010a; Ern and Esbaugh 2016). There are many 

additional known mechanisms to modulate blood-𝑂! binding in other animals (e.g. lactate or 

phosphate cofactors, proton pumps in red blood cells), but all of them to our knowledge would 

enhance oxygen delivery and lessen any anticipated hypercapnic effect. 

Some species of fishes, crustaceans, and mollusks (including cephalopods) are known to 

produce multiple isoforms of respiratory protein subunits with different pH-sensitivities 

(Johansen and Weber 1976; Mangum 1997; Strobel et al. 2012b). This could allow an animal to 

utilize a pH-insensitive isoform to further minimize impairment of 𝑂! supply. Such a response 

seems to occur in rainbow trout exposed to very high 𝐶𝑂! (> 1300 Pa; Eddy and Morgan 1969). 

In addition, a minor fall in arterial saturation may be compensated by a slight increase in cardiac 

output, which would be particularly advantageous at high blood 𝑃!!. Increases in cardiac output 

capacity have been observed in hypercapnia-exposed fishes (Gräns et al. 2014). Water-breathers 



 50 

are also able to increase branchial surface area or decrease diffusion distance under projected 

OA-level hypercapnia (Esbaugh et al. 2016), which could lessen the increase in blood 𝑃!!!. 

Fishes, crustaceans, and cephalopods have all been shown to modulate their hypoxia sensitivity 

between populations that inhabit different 𝑂! conditions, demonstrating that plasticity can further 

ameliorate environmental stressors to 𝑂! supply (Childress 1975; Friedman et al. 2012; Chapter 

4). 

In addition to the Bohr effect, teleost hemoglobin is also sensitive to 𝐶𝑂! via the Root 

effect (Root 1931), but this occurs with changes in blood pH that are an order of magnitude 

greater than those due to ocean acidification (Pelster and Weber 1991). Additionally, some fishes 

have a hypercapnia-induced catecholamine release response that may facilitate oxygen uptake 

when animals are exposed to hypercapnia (Rummer et al. 2013a). In a recent meta-analysis, 

Hannan and Rummer (2018) demonstrated that oxygen uptake in fishes is generally insensitive 

to environmentally relevant 𝑃!!! levels. Of the relatively few studies conducted to date that have 

examined the effect of 𝐶𝑂! near OA levels on hypoxia tolerance, most have found no effect in 

fishes (Cochran and Burnett 1996; Burnett and Stickle 2001; Couturier et al. 2013; Heinrich et 

al. 2014; Dixon et al. 2017; Ern et al. 2017), crustaceans (Mickel and Childress 1978; Cochran 

and Burnett 1996; Kiko et al. 2016), and gastropods (Lefevre et al. 2015). Many taxa 

(echinoderms, bivalves, etc.) have much lower non-bicarbonate buffering capacity and ion 

regulatory capacity than squids, but the pH-sensitivities of the respiratory proteins in these taxa 

are typically much less than squids (Mangum 1997). 

Although some studies to date have found effects of 𝐶𝑂! at OA levels on metabolism in 

marine animals (for reviews, see Lefevre 2016; Kelley and Lunden 2017; Hannan and Rummer 

2018), it seems unlikely that hypercapnia-induced 𝑂!  supply limitation is the physiological 
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mechanism for these effects. Hu et al. (2014) found that after one week exposure to 420 Pa 𝐶𝑂! 

Sepioteuthis squid were significantly metabolically suppressed even though their blood remained 

fully pH-compensated. Rummer et al. (2013b) have also found that fish exposed to high 𝐶𝑂! can 

have suppressed resting 𝑀!! yet have enhanced maximal 𝑀!!, which would be impossible if 𝑂! 

supply is insufficient to even sustain basal needs. In the marine worm, Sipunculus nudus, 

hypercapnia can cause metabolic suppression through alteration in neuromodulator concentration 

independently of 𝑂!-supply constraints (Reipschläger et al. 1997). Additionally, hypercapnia-

induced metabolic suppression in corals has been associated with differential gene expression of 

metabolic pathways at the tissue level (Kaniewska et al. 2012) rather than limited oxygen 

delivery. We find it highly unlikely that any documented case of a decline in standard metabolic 

rate from OA-relevant 𝐶𝑂! exposures is attributable to limitations in blood oxygen supply. 

Ventilation 

We found that ventilation rate increases under hypoxia in the loliginid squid, D. pealeii, 

which increases the flux of 𝑂! past the gills as the 𝑂! content of the seawater declines. Similar 

responses have been observed in other cephalopods and aquatic animals generally (Hughes 1973; 

Wells and Wells 1995; Burnett and Stickle 2001). However, this finding contrasts with results 

obtained in studies of another loliginid squid, Lolliguncula brevis, in which progressive hypoxia 

had no effect on ventilation rate but, instead, animals increased 𝑂! extraction efficiency (Wells et 

al. 1988). Extraction efficiency was not measured in the present study, so it is unclear whether D. 

pealeii exhibit a similar response in addition to their increased ventilation rate. Although 

ventilation was not measured in D. gigas here, Trübenbach et al. (2013) examined ventilation 

rate and stroke volume under normoxia and severe hypoxia (1 kPa 𝑂!). At this extreme hypoxic 

condition (below 𝑃!"#$), animals suppress metabolism. Thus both ventilation rate and stroke 
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volume are lower under extreme hypoxia than normoxia. It is still unclear, however, what effect 

intermediate 𝑃!!  levels have on ventilation in this species before it begins to suppress 

metabolism. Pelagic crustaceans that also migrate daily into the OMZ have been found to 

increase ventilation with progressive hypoxia (Childress 1971; Seibel et al. 2017). 

 𝐶𝑂! had no effect on ventilation rate (Figure 3.3B). If blood acid-base balance can be 

fully compensated by branchial ion-transport under elevated 𝐶𝑂!, then no increase in ventilation 

rate is necessary to maintain 𝑂! supply. This is common in water-breathing animals, which rely 

much less on respiratory adjustments for acid-base balance than air-breathers (Pörtner et al. 

2011). However, cuttlefish and some fishes have been found to increase ventilatory dynamics 

under hypercapnia (Gutowska et al. 2010a; Ern and Esbaugh 2016). In fishes, this is driven not 

only by blood acidosis but also by 𝐶𝑂!-sensitive chemoreceptors in the gills (Gilmour 2001). It 

is not currently known whether cephalopods also have such branchial chemoreceptors. 

Species comparison 

After adjusting for temperature, both species of squids had similar metabolic rates. 

Although the two species are phylogenetically rather distant (different orders), they are both 

active squids that inhabit shallow water and thus they both have strong selection for high 

metabolic rates (Seibel 2007). 

In this study, we found that the ommastrephid D. gigas has a better tolerance to hypoxia 

than the loliginid D. pealeii when compared at the same temperature. Aquatic animals’ hypoxia 

tolerance can closely define their distribution and suitable habitat on spatial scales from meters 

(Mandic et al. 2009) to 100s of kilometers (Deutsch et al. 2015). It is therefore unsurprising that 

D. gigas has better hypoxia tolerance than D. pealeii because the former species are closely 

associated with the strong oxygen minimum zone of the eastern tropical Pacific (Nigmatullin et 
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al. 2001) whereas  the latter  are not known to frequently encounter such extreme hypoxia. While 

the bays that D. pealeii inhabit in the northern part of their range may occasionally become 

hypoxic (Melrose et al. 2007), it is likely that this species can easily find suitable habitat outside 

these small spatiotemporal regions (Bartol et al. 2002) and thus minimize the selective pressure 

to improve hypoxia tolerance. 

Dosidicus gigas are demonstrably better equipped to handle hypoxia than D. pealeii. 

Dosidicus gigas relative gill length is 30% longer than D. pealeii, which suggests greater gill 

surface area. Dosidicus gigas hemocyanin requires less than half the blood 𝑃!! to saturate its 

hemocyanin as D. pealeii (Pörtner 1990; Seibel 2013). Finally, D. gigas maintain far higher 

anaerobic capacity than D. pealeii. D. gigas store 2-4x higher concentration of phosphoarginine 

in its mantle muscle than D. pealeii (Storey and Storey 1978; Seibel et al. 2014),  which should 

be more advantageous for surviving subcritical oxygen levels. Glycogen reserves have not been 

quantified in D. pealeii mantle muscle, but glycogen concentration in D. gigas mantle is 

≈ 300 𝜇𝑚𝑜𝑙 𝑔𝑙𝑢𝑐𝑜𝑠𝑦𝑙 𝑢𝑛𝑖𝑡𝑠 𝑔!! (Seibel et al. 2014), which is much higher than in most fishes 

(Nilsson and Östlund-Nilsson 2008; Richards 2009) and even bivalves that can survive months 

in anoxia (Oeschger 1990). 

In this experiment, we found that 𝑃!!! levels up to 122 Pa, near the 𝑃!!! in the oxygen 

minimum zone (Paulmier et al. 2011; Feely et al. 2016), had no measurable effect on D. gigas 

𝑃!"#$. Therefore, we do not expect that hypercapnia encountered in the OMZ has any additive or 

synergistic effect with hypoxia on D. gigas during its daily vertical migrations into this region. 

In conclusion, although shallow-water squids have high oxygen demand and constrained 

oxygen supply, their blood-oxygen carrying capacity, hypoxia tolerance, and oxygen demand 

seem to be unaffected by near-future 𝐶𝑂! levels. Because squid blood 𝑂! delivery is expected to 
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be more sensitive to hypercapnia than in nearly any other marine animal, we suggest that OA is 

unlikely to strongly influence blood oxygen transport in most marine species. 
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Tables 

Table 3.1. Morphometrics of animals used in hypoxia tolerance experiments. Values are mean ± 
s.d. 

Species n Mass (g) Dorsal mantle 
length (cm) Gender 

Doryteuthis 
pealeii 29 112 ± 58 18 ± 5 F:15, M:11 

Dosidicus gigas 16 233 ± 64 21 ± 1 F:15, M:1 
 
Table 3.2. Physiological parameters for various runs of the blood oxygen supply capacity model. 

Run “Realistic 
squid” 

“Worst case 
scenario” 

“Typical 
marine animal” 

Normocapnic blood PCO2 (Pa) 3001,2,3 300 300 
Normocapnic blood pH 7.44,5 7.4 7.4 
Non-bicarbonate buffering capacity 
(mmol / L / pH unit) 5.82 0 1 

Bohr coefficient -1.152 -1.56 -0.5 
Hill coefficient 42 32,7,8 3 
Normocapnic P50 (kPa) 72 67 6 
Arterial PO2 (kPa) 161 16 16 
Normocapnic Pcrit (kPa) 3.8 3.8 3.8 

1Redfield and Goodkind 1929; 2Pörtner 1990; 3Hu et al. 2014; 4Howell and Gilbert 1976; 
5Pörtner et al. 1991; 6Brix et al. 1989; 7Seibel 2013; 8Lykkeboe and Johansen 1982 
 
Table 3.3. Seawater parameters experienced by squids during hypoxia tolerance tests. Values are 
mean ± s.d. 

Species Temperature 
(°C) Salinity (psu) PCO2 range 

(Pa) pHT range 
Total 

alkalinity 
(µmol / kg) 

Doryteuthis 
pealeii 14.8 ± 0.3 31.2 ± 0.5 67 – 143 7.51 – 7.82 2073 ± 31 

Dosidicus 
gigas 22.5 – 26.6 35.3 ± 0.1 46 – 122 7.62 – 7.99 2399 ± 97 
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Figures 

 

Figure 3.1. Effect of seawater 𝑃!!!  on 𝑨) routine metabolic rate (RMR) and 𝑩) critical 𝑃!! 
(𝑃!"#$) in Dosidicus gigas (red circles; 25 °C) and Doryteuthis pealeii (blue triangles; 15 °C). 
Shaded bands are 95% confidence intervals. Because D. gigas trials covered a temperature range, 
all data were temperature-adjusted to 25 °C using a 𝑄!" of 1.9 (𝑀!!) and 1.8 (𝑃!"#$). When 
adjusted to a common temperature (15 °C), D. gigas 𝑀!! was 1.8 𝜇𝑚𝑜𝑙 𝑂! 𝑔!! ℎ!! higher and 
𝑃!"#$ was 1.4 kPa lower than in D. pealeii. The dashed line and black diamond indicate a 20% 
reduction as observed by Rosa and Seibel (2008) when acutely exposing D. gigas to 𝐶𝑂!.  
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Figure 3.2. Effect of temperature on 𝑨) routine metabolic rate and 𝑩) critical 𝑃!!  (𝑃!"#$) in 
Dosidicus gigas. The black dashed line represents a temperature effect corresponding to a 𝑄!" of 
2. Shaded bands are 95% confidence intervals. Dosidicus gigas mean metabolic rate (𝑪) and 
𝑃!"#$ (𝑫) compared to literature values. All measurements are size-adjusted to 233 g (the mean 
mass in this study) using a scaling coefficient of −0.1 (Seibel 2007). The measurements in this 
study (A) were temperature-corrected to 25 °C using a 𝑄!" of 1.9 and averaged. 
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Figure 3.3. Ventilation rate in Doryteuthis pealeii as a function of 𝑨) 𝑃!! at varying 𝑃!!! levels 
and 𝑩) 𝑃!!! in normoxia (𝑃!! > 9 kPa). Colors denote the same 𝑃!!! range in both panels. A 
best-fit model analysis (see text) reveals a hypoxic threshold of 9 kPa below which ventilation 
increases (n = 17). Colors represent seawater 𝑃!!! at the time of observation. There was no effect 
of 𝐶𝑂! on ventilation rate at any oxygen level. 
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Figure 3.4. Model predictions of hypoxia tolerance (critical 𝑃!! , kPa) compared with 
independently-derived empirical data. Black points denote lethal combinations of 𝑂! and 𝐶𝑂! for 
Doryteuthis pealeii from Redfield and Goodkind (1929). Blue triangles represent 𝑃!"#$ for D. 
pealeii from this study. The black line uses realistic physiological parameters for buffering 
capacity (Pörtner 1990; see text), while the dashed red line and dotted blue line use no non-
bicarbonate buffering capacity and a Bohr coefficients of -1.5 and -1, respectively. 
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Figure 3.5. Maximal expected effect of environmental 𝑃!!! on 𝑃!"#$ and arterial hemocyanin 
saturation for a hypothetical animal at CO2 levels predicted to occur in various environments. 
Changes in environmental 𝑃!!! were calculated as an air-equilibrated water mass from 40 to 100 
Pa 𝐶𝑂! and assuming a respiratory quotient of 0.75. Column color indicates the rise in 𝑃!!! from 
current to future conditions. Columns show the maximal effect given no non-bicarbonate 
buffering capacity (𝛽!" = 0 𝑚𝑚𝑜𝑙 ⋅ 𝐿!! ⋅ 𝑝𝐻 𝑢𝑛𝑖𝑡!!) and a Bohr coefficient of -1.5. Blue lines 
depict the same Bohr coefficient and 𝛽!" = 1 𝑚𝑚𝑜𝑙 ⋅ 𝐿!! ⋅ 𝑝𝐻 𝑢𝑛𝑖𝑡!!. Red lines depict a Bohr 
coefficient of -0.5 and 𝛽!" = 0 𝑚𝑚𝑜𝑙 ⋅ 𝐿!! ⋅ 𝑝𝐻 𝑢𝑛𝑖𝑡!!. Purple lines depict the combination of 
Bohr coefficient = -0.5 and 𝛽!" = 1 𝑚𝑚𝑜𝑙 ⋅ 𝐿!! ⋅ 𝑝𝐻 𝑢𝑛𝑖𝑡!!. 
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CHAPTER FOUR: 

METABOLIC ADAPTATIONS OF THE PELAGIC OCTOPOD, JAPETELLA 

DIAPHANA, TO OXYGEN MINIMUM ZONES 

	

Abstract 

The pelagic octopod, Japetella diaphana, is known to inhabit meso- and bathypelagic depths 

worldwide. Across its range, individuals encounter oxygen levels ranging from nearly air-

saturated to nearly anoxic. In this study, we assessed the physiological adaptations of individuals 

from the Eastern Tropical Pacific (ETP) oxygen minimum zone (OMZ). Ship-board 

measurements of metabolic rate and hypoxia tolerance were conducted and a metabolic index 

was constructed to model suitable habitat for aerobic metabolism. We found that animals from 

the ETP had a higher metabolic rate than animals from more oxygen-rich habitats, yet 

maintained better hypoxia tolerance than conspecifics from oxygen-rich Hawaiian waters. 

Furthermore, hypoxia tolerance in J. diaphana has a reverse temperature dependence from most 

marine ectotherms, a characteristic that uniquely suits the physical characteristics of the lower 

oxycline, where oxygen decreases and temperature increases in shallower water towards the 

OMZ core. Even with their high tolerance to hypoxia, the OMZ core likely has insufficient 

oxygen supply to meet the basal oxygen demand of J. diaphana. Despite the limited aerobic 

habitat in this region, species abundance was comparable to more oxygenated ocean regions, 

suggesting that physiological or behavioral plasticity such as altered hypoxia tolerance or 
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hypoxic avoidance in this globally-distributed species is sufficient to maintain species fitness in 

this extreme environment. 

Introduction 

The octopod Japetella diaphana (Octopoda: Bolitaeninae; Hoyle 1885) inhabits tropical 

and subtropical meso- and bathypelagic waters worldwide (Norman and Finn 2013). Bolitaenins 

are among the most abundant pelagic octopods (Judkins et al. 2017). Throughout its range, J. 

diaphana encounter a wide range of oxygen conditions ranging from the well-oxygenated north 

Atlantic to the near-anoxic Eastern Tropical Pacific (ETP), including all of the major oceanic 

oxygen minimum zones (Norman and Finn 2013). They are gelatinous and can rapidly change 

between transparency and pigmentation to hide from predators (Zylinski and Johnsen 2011). 

Their gelatinous musculature allows them to have lower metabolic costs, and better tolerance to 

hypoxia than most shallow-water benthic octopods from which they likely evolved (Seibel and 

Childress 2000). Despite these adaptations, their distributions may still be impacted by hypoxia 

in strong oxygen minimum zones (OMZs) such as in the Eastern Tropical Pacific. 

In addition to their wide horizontal distribution, J. diaphana undergo an ontogenetic 

vertical descent. Off the coast of California, young individuals (< 30 mm mantle length (ML)) 

primarily stay at 600-800 m depths, while older larger individuals (> 30 mm ML) are evenly 

distributed from 600 m down to at least 1200 m (Roper and Young 1975). Similarly, in the north 

Atlantic, individuals < 20 mm ML were always found between 100 and 1000 m, while 

individuals > 20 mm ML were only found deeper than 1000 m (Clarke and Lu 1975). 

Furthermore, starting at 300 m, there was a strong relationship between ML and depth. Off 

Hawaii, animals larger than 20 mm ML were always found deeper than 725 m while smaller 

individuals were abundant between 170 and 800 m (Young 1978). 
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Sexual maturation and mating seems to occur near the lower end of their depth range. 

Gravid and brooding females have only been found deeper than 700 m (Young 1978), and are 

often deeper than 1000 m. These females possess a large yellow circumoral photophore, one of 

the few known bioluminescent structures in any octopod, presumably to attract males (Robison 

and Young 1981; Herring et al. 1987). Unlike benthic octopods, female pelagic octopods brood 

their eggs and possibly paralarvae as well (Young 1972). There is some suggestion that brooding 

females return to shallower depths (≈800 m) after mating occurs near the deepest part of their 

range (Young 1978; Voight 1995). 

In the ETP, the core of the OMZ occurs near the top of J. diaphana’s range where 

juveniles begin their ontogenetic vertical migration. In the OMZ core, 𝑃!! can fall as low as 0.14 

kPa (1.8 𝜇𝑚𝑜𝑙 ⋅ 𝑘𝑔!!, 10 °C; Wishner et al. 2013), lower than any cephalopod is currently 

known to be able to maintain basal metabolism (Seibel et al. 1997). Accordingly, J. diaphana 

population density in the Gulf of Panama is anomalously low around the OMZ (Thore 1949). 

Animals require oxygen to fuel metabolic production of ATP for maintenance, prey 

capture and consumption, locomotion, and growth (Wells and Clarke 1996). Populations are 

sustained when there is sufficient oxygen to support an “aerobic scope” for such activities. 

Deutsch et al. (2015) developed a “metabolic index” to quantify the suitability of a habitat for 

aerobic metabolism. They found that populations of a variety of marine organisms typically 

require ambient 𝑂! levels 2-5 times larger than that required by an individual at rest. 

The J. diaphana population that inhabits the ETP should be sufficiently adapted to 

tolerate, or sufficiently mobile to move through the OMZ core. Construction of a metabolic 

index for J. diaphana in the ETP OMZ should increase our understanding of how this poorly 

understood species is adapted for this extreme environment. In this study, we investigate the 
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effects of environmental 𝑃!!  on hypoxia tolerance and oxygen consumption rate in the 

ontogenetically descending mesopelagic octopod, J. diaphana, in order to construct a metabolic 

index of its habitat and determine what adaptations allow it to survive in this region. 

Methods 

Animal collection 

Japetella diaphana were collected for physiological measurements with a 3 𝑚! Tucker 

trawl with a 30 L insulated cod-end to protect animals from temperature shock (Childress et al. 

1978). Trawls were conducted between 22 January and 11 February 2017 ≈600 km off the 

Pacific coast of Mexico near 21.5 °N and 117.5 °W aboard the R/V Sikuliaq (Figure 4.1A). Upon 

capture, animals were transferred to fresh chilled seawater for 9 to 55 hours (mean = 27 hrs) 

prior to measurement to acclimate them to measurement temperature and to reduce the 

contribution of digestion to metabolic rate measurements. 

Environmental parameter profiles of temperature, salinity, and 𝑂! were obtained by CTD 

casts where animals were collected. 𝑂! profiles were measured with a Seabird SBE 43 dissolved 

𝑂! sensor. One additional animal was also collected from a 1 𝑚! Multiple Opening/Closing Net 

and Environmental Sensing System (MOCNESS) but was not used in physiological experiments. 

In total, 2.37×10!  and 1.13×10!  𝑚!  of water were filtered by the Tucker trawl and 

MOCNESS, respectively. 

Respirometry 

Animals were placed in darkened sealed chambers filled with 0.2 𝜇𝑚 filtered seawater 

that had been treated with antibiotics to minimize bacterial respiration. Trials were conducted at 

surface pressure since hydrostatic pressure has little effect on metabolism in mesopelagic 

cephalopods (Belman 1978). Ambient 𝑃!! was measured optically with either a Loligo Systems 
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Witrox 4 meter or a PyroScience FireStingO2 meter. Upon placement in the chamber, animals 

were allowed to breathe down the ambient oxygen until their 𝑂! consumption rate could no 

longer be sustained. The trials lasted 12 hours on average and ranged from 5 to 25 hours. To 

assess the temperature-dependence of metabolism, 8 and 4 individuals were tested at 5 and 10 

°C, respectively. Temperature was maintained with Lauda E100 and ThermoFisher NESLAB 

RTE-7 water baths. Oxygen meters were calibrated with air-saturated seawater and concentrated 

𝑁𝑎𝑆𝑂! solution (𝑃!! = 0). Chamber water was mixed with magnetic stirrers (Cole-Parmer 

Immersible Stirrer EW-04636-50). 

After experiments were completed, animals were preserved in 10% formalin before being 

weighed and measured. Dorsal mantle length (DML) was measured as the linear distance from 

the midpoint between the eyes to the posterior end of the mantle. 

𝑷𝒄𝒓𝒊𝒕 analysis 

The 𝑃!!  level below which an animal was unable to sustain its routine oxygen 

consumption rate was defined as the critical partial pressure of oxygen, or the 𝑃!"#$. The 𝑃!"#$ for 

each animal was calculated using two methods: first, we used the traditional “breakpoint” 

method, which fits a linear breakpoint function to the relationship between 𝑀!! and 𝑃!!. This 

calculation was performed with the “segmented” package in R (Muggeo 2008). The “breakpoint” 

𝑃!"#$ was defined as the 𝑃!! at the intersection between the relatively flat oxyregulating line and 

the steeply sloping oxyconforming line (Figure 4.2, blue line). 

The 𝑃!"#$ determined using the traditional breakpoint method is biased, typically toward 

higher values, due to variability in 𝑀!!  values above and below the breakpoint caused by 

spontaneous changes in behavior and ventilation. In an attempt to calculate a more accurate 𝑃!"#$, 

the “sub-PI” method of 𝑃!"#$  calculation was developed. Using this method, a traditional 
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breakpoint relationship was fit, as before, but a 95% prediction interval was added around the 

oxyregulating line to encapsulate a space in which all observed 𝑀!! values can reasonably be 

considered within the oxyregulating space (Figure 4.2, dashed lines). The “sub-PI” 𝑃!"#$  is 

defined as the 𝑃!!  at which the oxyconforming line intersects the lower limit of the 95% 

prediction interval (Figure 4.2, red line). 

The sub-PI method results in a systematically lower 𝑃!"#$ estimation than the traditional 

breakpoint method. In this dataset, the sub-PI method returned a 36% lower 𝑃!"#$, on average. 

The temperature-dependences of 𝑃!"#$ metrics were fit using an exponential model from the 

“Q10” function of the R package “respirometry” (Birk 2018). 

Metabolic rate and hypoxia tolerance data were also compared with Seibel et al. (1997) 

who used similar methods of collection and experimentation with J. diaphana collected off the 

coasts of California and Hawaii (Figure 4.1; note: the J. heathi species reported by Seibel et al. 

(1997) has been merged into the J. diaphana taxon). Metabolic rates were normalized for each 

trial and the mean normalized 𝑀!! at multiple 𝑃!! levels was computed for each population. Due 

to the large size range of specimens captured, differences in 𝑀!! between populations were 

assessed by an ANCOVA with size as a covariate. 

Metabolic index 

The metabolic index, or the ratio of oxygen supply to demand, is a temperature-

dependent metric to quantify suitable habitat for aerobic metabolism (Equation 4.1; Deutsch et 

al. 2015). 𝐸!  and 𝐴!  are physiological parameters defined as the slope and intercept, 

respectively, of the linear relationship between the natural logarithm of 𝑃!"#$ and 1/𝑘!T, where 

𝑘! is the Boltzmann constant and T is temperature in Kelvin. It can also be parameterized as the 

ratio of ambient 𝑃!! to temperature-dependent critical 𝑃!! (𝑃!"#!!). 
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MI=A0
PO2

exp(-E0/kBT)
=

PO2
PcritT

, (4.1) 

An MI < 1 represents a region where demand exceeds supply (ambient 𝑃!! is below 

𝑃!"#$) and should not be able to support steady-state basal aerobic metabolism. An MI > 2-5 is 

typically required to sustain populations of marine animals (Deutsch et al. 2015). Multiple MI 

depth profiles were constructed using the environmental data from CTD casts and the measured 

relationship between 𝑃!"#$ and temperature. Distinct MI profiles were constructed based on 1) 

breakpoint 𝑃!"#$, 2) sub-PI 𝑃!"#$, 3) the 95% confidence interval of the sub-PI 𝑃!"#$, and 4) the 

lowest measured sub-PI 𝑃!"#$ from each temperature. 

Results 

Abundance 

In total, 15 animals were collected in the ETP between 170 and 1011 m depths, with a 

total abundance of 5.32 individuals per 10! 𝑚!. Thirteen were juveniles (11-37 mm DML). A 

mature male (52 mm DML) and female (72 mm DML) were both caught in the same trawl 

between 779-1011 meters. No trawls were conducted deeper than 1282 meters. 

Metabolism and metabolic index 

Mass-specific 𝑀!! of individuals captured in the ETP was over twice as high as those 

found off California and Hawaii, even when tested at the same temperature (5 °C) over similar 

trial durations (p = 0.003; Figure 4.3A). Mass-specific 𝑀!! decreased with increasing size, with 

a scaling coefficient (b) of -0.33 at 5 °C (n = 7). Despite their higher oxygen demand, animals 

from the ETP had similar hypoxia tolerance to those from California and were more tolerant than 

animals from Hawaii (Figure 4.3B). 

Among animals in the ETP, mass-specific 𝑀!! increased significantly with increasing 

temperature, from 0.41 ± 0.115 𝜇𝑚𝑜𝑙 𝑂! ⋅ 𝑔!! ⋅ ℎ𝑟!! at 5 °C to 0.68 ± 0.205 𝜇𝑚𝑜𝑙 𝑂! ⋅ 𝑔!! ⋅
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ℎ𝑟!!  at 10 °C (p = 0.019; 𝑄!"  = 2.75; Figure 4.4A). Mean breakpoint 𝑃!"#$  decreased 

significantly over the same temperature range from 1.8 ± 0.73 kPa at 5 °C to 0.88 ± 0.34 kPa at 

10 °C (p = 0.043; 𝑄!" = 0.24; Figure 4.4B). The lowest sub-PI 𝑃!"#$ recorded at each temperature 

was lower than that obtained using the breakpoint method: 0.63 and 0.31 kPa at 5 and 10 °C, 

respectively. 

We found that the OMZ in the ETP had a minimum 𝑃!! of 0.143 kPa (5.6 °C) and that a 

wide depth range (at least 543 m) had an MI < 1, even with the most liberal metabolic index, 

constructed from the lowest sub-PI 𝑃!"#$ observations from each temperature treatment (Table 

4.1; Figure 4.5B). The depths at which many animals were captured had an MI < 1 (Figure 

4.5B). 

Discussion 

Aerobic habitat and distribution 

By all methods of calculating the metabolic index, MI < 1 for a large depth range of the 

OMZ, suggesting that oxygen supply in this region is insufficient to meet the basal oxygen 

demand of J. diaphana. In other marine animals, an MI of 2-5 has been found to be the lower 

limit for populations to be sustained (Deutsch et al. 2015); this is higher than the MI levels where 

many of the octopods were found in this study. Japetella diaphana does not seem to undergo diel 

vertical migration (Young 1978), making it unlikely that the animals we captured were 

temporarily metabolically suppressed in the OMZ core as part of their life history strategy, a 

behavior exhibited by more muscular cephalopods in the eastern Pacific OMZ (Hunt and Seibel 

2000; Seibel et al. 2014). 

Although none of the animals we examined were able to sustain aerobic metabolism 

below the most extreme hypoxia encountered in the OMZ core, 0.14 kPa (2 𝜇𝑚𝑜𝑙 ⋅ 𝑘𝑔!!), the 
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𝑃!! within the OMZ core was within the 95% prediction interval of the 𝑃!"#$ values we measured 

(Figure 4.5A), suggesting that some individuals may be able to maintain aerobic metabolism at 

this low oxygen level. It is important to consider that net-caught and confined mesopelagic 

specimens may be stressed or injured in ways that, while not visible or detectable, may 

nonetheless impair tolerance to hypoxia compared to an individual in situ. Thus, it is likely that 

the mean 𝑃!"#$ values reported here are overestimates, thus underestimating the “true” metabolic 

index of this region for J. diaphana. 

It seems likely that the ambient oxygen levels in the core of the OMZ would, at the very 

least, constrain aerobic performance in these animals relative to the more oxygenated waters 

above and below. It is not surprising, therefore, that many of the animals were captured in the 

upper and lower oxyclines but few were captured where the hypoxia was most extreme; though, 

admittedly, the sampling effort was limited. Thore (1949) similarly reports that in the Gulf of 

Panama, where a strong OMZ also exists, J. diaphana density has a minimum between 200 and 

1000 m, unlike more oxygenated stations. It is not uncommon to find aggregations of 

zooplankton and micronekton in oxyclines around the OMZ (Wishner et al. 2013). For predatory 

J. diaphana, this may be a feeding ground rich in euphausiids, fishes, calanoid copepods, 

decapod crustaceans, and other mollusks upon which they feed (Passarella and Hopkins 1991). 

As such, the foraging opportunities may outweigh the limited oxygen available. 

In the ETP, the ontogenetic vertical migration of J. diaphana passes through the core of 

the OMZ. Based on the ontogenetic vertical distributions described previously, oxygen supply is 

insufficient to meet basal demand in much of the juvenile habitat but only in the upper range of 

adult habitat. It would not be surprising for juveniles to descend rapidly through the OMZ core to 

avoid the limited aerobic scope, thus producing a “punctuated” ontogenetic vertical migration. 
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Off the California coast, the OMZ is not as strong (Helly and Levin 2004), and many J. diaphana 

are found near the lowest 𝑂! depths (Roper and Young 1975). Relative gill size declines with 

increasing body size in J. diaphana (Thore 1949). This trend is not an adaptation to oxygen 

profiles as it occurs across individuals from many ocean basins due to lower mass-specific 

oxygen demand in larger individuals (Figure 4.3A), but it should nevertheless be beneficial for 

young juveniles in the ETP that encounter the strongest hypoxia, as they will have relatively 

larger gills than larger animals from more oxygenated depths. 

Bolitaenins are one of the most abundant pelagic cephalopod groups in the Gulf of 

Mexico (Judkins et al. 2017). We found that J. diaphana abundance in the ETP was comparable 

or even exceeded abundance estimates from the North Atlantic off the coast of Africa (Clarke 

and Lu 1975) and from the Gulf of Mexico (H. Judkins, pers. comm). This is surprising given the 

apparent paucity of aerobic habitat for juveniles, but this may be counteracted by the high 

productivity and prey biomass in this region (Fernández-Álamo and Färber-Lorda 2006). Thore 

(1949) reported J. diaphana density in the Gulf of Panama to be comparable or larger than most 

other stations of the circumglobal Dana expeditions, and found that J. diaphana density often 

correlated with primary productivity. Admittedly, our sampling effort was small and 

comparisons between studies are complicated by differences in sampling gear, but it seems 

unlikely that the extreme hypoxia in this region has strong negative effects on the local 

abundance of J. diaphana. 

Metabolic adaptations to hypoxia 

Individual J. diaphana from the ETP had a higher 𝑀!! than individuals from California 

and Hawaii. The physiological mechanism or adaptive significance of such differences is 

unclear. Despite their higher oxygen demand, individuals from the ETP maintained a lower 𝑃!"#$ 
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(improved hypoxia tolerance) compared to individuals from Hawaii (Seibel et al. 1997). 

Similarly, in some mesopelagic crustacean species, 𝑃!"#$  is higher in individuals from the 

relatively well-oxygenated Hawaiian waters than from conspecifics in the OMZ off California 

(Cowles et al. 1991; Childress and Seibel 1998). It has been demonstrated that crustacean and 

fish species also alter their hypoxia tolerance to match ambient conditions on much smaller 

spatial scales such as within the Monterey Canyon or Southern California basins (Childress 

1975; Friedman et al. 2012). In pelagic animals generally, 𝑃!"#$ correlates with the minimum 

encountered ambient 𝑃!! (Seibel 2011). 

The physiological mechanisms underlying differences in 𝑃!"#$ between populations of J. 

diaphana are currently unknown, but are likely to involve differences in blood 𝑂! binding 

affinity and gill surface area. The vampire squid, Vampyroteuthis infernalis, a mesopelagic 

octopodiform that inhabits the OMZ off California, has very high blood 𝑂! binding affinity and 

relatively large gills for its low metabolic rate (Seibel et al. 1999). In addition, specimens of the 

squid Bathyteuthis abyssicola caught in the ETP have larger gills than conspecifics from the 

Atlantic or Southern Oceans (Roper 1969). The congeneric B. bacidifera is endemic to hypoxic 

equatorial waters in the eastern Pacific and Indian Oceans, and has even larger gills than B. 

abyssicola (Roper 1969). Midwater crustaceans in the relatively hypoxic waters off California 

have higher hemocyanin-𝑂!  binding affinity than species off Hawaii where 𝑃!!  is higher 

(Childress 1995). Similar physiological responses have been observed in a diversity of animals 

from a variety of hypoxic environments (Snyder 1985; Mandic et al. 2009; Friedman et al. 2012). 

Although oxygen demand increased under higher temperature, as is typical of ectotherms, the 

𝑃!"#$ decreased by 0.92 kPa (i.e. hypoxia tolerance improved) from 5 to 10 °C. In ectotherms, 

hypoxia tolerance typically decreases (i.e. 𝑃!"#$ rises) with rising temperature (Rogers et al. 
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2016) due to a combination of higher oxygen demand and possibly reduced oxygen binding 

affinity of the respiratory proteins. However, this is not always the case. Freshwater darter fishes 

have been observed to have lower 𝑃!"#$ despite higher 𝑀!! with rising temperature (Ultsch et al. 

1978). The physiological mechanism behind such effects may include a larger increase in 

ventilation or cardiac output with temperature than is typical or an inverse temperature-

dependence of blood-𝑂! binding affinity. Whatever the mechanism, the functional benefit of this 

inverse temperature-dependence is clear for a meso- and bathypelagic animal living in a strong 

OMZ. Within the depth range where J. diaphana are typically found (400-1200 m), warmer 

waters have lower 𝑃!!  and thus require a lower 𝑃!"#$  to maintain aerobic metabolism. 

Accordingly, a similar inverse temperature-dependence of 𝑃!"#$ has recently been documented in 

lower oxycline krill and shrimp species (Wishner et al., in review). 

The J. diaphana examined here from the OMZ are more tolerant of hypoxia than more 

active cephalopods examined to date in the eastern Pacific. The muscular active squids Dosidicus 

gigas and Gonatus onyx undergo diel migration to mesopelagic depths, but have mean 𝑃!"#$ of 

1.9 and 4 kPa, respectively (Seibel et al. 1997; Hunt and Seibel 2000; Trueblood and Seibel 

2013). Unlike J. diaphana, these squids suppress metabolism during the daytime and return to 

oxygenated surface waters at night, which allows them to pay back any oxygen debt incurred at 

oxygen levels below their 𝑃!"#$ (Hunt and Seibel 2000; Seibel et al. 2014). 

Japetella diaphana exhibit similar hypoxia tolerance to the mesopelagic squid 

Histioteuthis heteropsis in the California Current (0.9-1.5 kPa; Belman 1978; Seibel et al. 1997) 

and Octopus californicus residing in the Santa Barbara Basin just above the anoxic sill (Seibel 

and Childress 2000). Hawaiian J. diaphana have similar hypoxia tolerance with the Hawaiian 

bathypelagic squid Bathyteuthis abyssicola (2.4 kPa; Seibel et al. 1997). Japetella diaphanas 
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𝑃!"#$ is also not statistically distinguishable from that of Vampyroteuthis infernalis, which lives 

permanently in the core of the OMZ off California. The latter is reportedly one of the most 

hypoxia tolerant cephalopods measured to date (0.96 kPa; Seibel et al. 1997). 
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Tables 

Table 4.1. Hypoxia tolerance and metabolic index of Japetella diaphana in the Eastern Tropical 
Pacific. Values are shown as mean ± standard deviation. 

Method Temperature 
(°C) Pcrit (kPa) Minimum MI Depth range 

of MI < 1 (m) 
Breadth of 
MI < 1 (m) 

Breakpoint 5 1.8 ± 0.73 0.09 346 – 1455 1109 10 0.88 ± 0.34 

sub-PI 5 1.17 ± 0.37 0.13 373 – 1207 834 10 0.68 ± 0.35 
95% CI of 

sub-PI 
5  0.18 422 – 1021 599 10 

Minimum 
sub-PI 

5 0.63 
0.25 427 – 970 543 10 0.31 

 

 

 

Figures 
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Figure 4.1. Sampling sites of Japetella diaphana and depth profiles. 𝑨) Location of animal 
collection sites. 𝑩) 𝑃!! depth profiles at each collection site from the World Ocean Atlas 2013. 
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Figure 4.2. A representative respirometry experiment showing the routine metabolic rate 
(𝜇𝑚𝑜𝑙 𝑂! ⋅ 𝑔!! ⋅ ℎ𝑟!!) of Japetella diaphana as a function of oxygen partial pressure (kPa). The 
𝑃!"#$ calculation methods are indicated by vertical colored lines. The blue line indicates the 𝑃!"#$ 
calculated using the breakpoint method. The red line indicates the 𝑃!"#$ calculated using the sub-
PI method. The shaded region represents the 95% confidence interval and the dashed lines 
represent the 95% prediction interval for the regulated oxygen consumption rate. 
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Figure 4.3. Differences in 𝑨) oxygen consumption rates and 𝑩) hypoxia tolerance between 
Japetella diaphana from California (red), the Eastern Tropical Pacific (green), and Hawaii 
(blue). Letters indicate statistically significant differences between populations. All 
measurements were conducted at 5 °C. Bold lines are trial averages. 
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Figure 4.4. Effect of temperature on 𝑨) oxygen consumption rate and 𝑩) 𝑃!"#$  (breakpoint 
method) at 5 and 10 °C in Japetella diaphana from the Eastern Tropical Pacific. 
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Figure 4.5. Metabolic index of Japetella diaphana in the Eastern Tropical Pacific. 𝑨) Model of 
sub-PI 𝑃!"#$  vs. temperature. The dashed and dotted curves are the 95% confidence and 
prediction intervals, respectively. The red line is the best fit relationship using only the lowest 
values from each temperature. The blue curve is the lowest 𝑃!! encountered at each temperature. 
𝑩) Metabolic index of J. diaphana in the ETP. The solid purple line represents the MI from the 
mean sub-PI 𝑃!"#$  (solid curve in A). The shaded purple region represents the MI 95% 
confidence interval (dashed curve in A). The dotted purple line represents the MI from the 
minimum sub-PI 𝑃!"#$ (red curve in A). The number of animals captured is shown on the left. 
The shaded area represents the sampled depths. 
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CHAPTER FIVE: 

RELEVANCE AND IMPLICATIONS 

 

The objective of this dissertation is to advance our understanding of the physiological 

adaptations that allow coleoid cephalopods to maintain a balance of oxygen supply and demand 

amongst various environmental challenges. In this dissertation, I have provided novel evidence 

that confronts an established assumption about O2 supply in the cephalopod physiology literature, 

provided experimental and theoretical evidence to further our understanding of tolerance to CO2 

in squid and, by extension, marine animals generally, and produced new data that show how the 

metabolic physiology of a little-known species may be affected by oxygen minimum zones. 

Chapter 2 of this dissertation demonstrates that, contrary to a commonly-held but 

untested hypothesis, squids do not acquire large quantities of oxygen through their skin for 

systemic use. This finding has important implications for our understanding of branchial and 

cardiac performance in squids. The squid cardiovascular system is already believed to be 

delivering near-maximal quantities of oxygen (O’Dor et al. 1990; Shadwick et al. 1990; Wells 

1992). Based on this research, cutaneous oxygen uptake does not alleviate the oxygen delivery 

demand on the cardiovascular system. This finding makes the physiological adaptations to 

balance oxygen supply and demand in cephalopods all the more interesting. 

 The advancements in our understanding of metabolic physiology presented in this 

dissertation come at an important time. A number of anthropogenic stresses, such as emissions of 
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greenhouse gases and nutrient-enrichment of watersheds, are altering marine environments and 

influencing both the oxygen supply and demand pathways of marine animals. Chapter 3 of this 

dissertation addressed the effects of ocean acidification on metabolic physiology, while warming 

and ocean deoxygenation remain key stressors of concern (Breitburg et al. 2015). 

Warming 

 Ocean warming has direct and indirect effects on oxygen balance in ectothermic marine 

animals. Rises in ambient temperature directly raise organismal oxygen demand (Hochachka and 

Somero 2002). Additionally, warming increases rates of oxygen diffusion in seawater, providing 

increased oxygen supply at the seawater-gill interface (Verberk et al. 2011). However, decreased 

O2-binding affinity of respiratory proteins at high temperature in most animals decreases the 

delivery of oxygen to tissues (Mangum 1997). The net impact of increased temperature in most 

ectothermic animals is a rise in O2 demand relative to supply, resulting in impaired hypoxia 

tolerance (but see Chapter 4 for an exception). 

 According to a popular but controversial hypothesis proposed by Pörtner (2001), 

limitation in oxygen supply is an important factor in the thermal limits of ectothermic marine 

animals. If true, then falling oxygen levels in a given environment will also limit the sustainable 

thermal range of animals in that environment having potential impacts on biogeography and 

phenology. Equatorward biogeographic limits of a number of marine species can be well 

explained by the combined effects of oxygen and temperature on metabolism (Deutsch et al. 

2015). Thus, concomitant ocean warming and deoxygenation in the surface ocean have 

interconnected and possibly synergistic effects on oxygen balance in marine animals (Gobler and 

Baumann 2016). 
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Deoxygenation 

Ocean deoxygenation is a global phenomenon caused by multiple drivers (Breitburg et al. 

2018). In coastal environments, agricultural runoff causes nutrient-enrichment in rivers, leading 

to increased input of nitrogen and phosphorus into marine systems. These nutrients can result in 

blooms, and the subsequent microbial-induced decay produced by heterotrophic bacteria can lead 

to regions of oxygen poor bottom-water (Rabalais et al. 2014). These coastal “dead zones” often 

kill sessile taxa and encourage mobile taxa to migrate to more oxygenated waters (Diaz and 

Rosenberg 2008). 

Oxygen minimum zones (OMZs) worldwide have also been growing in intensity and 

volume both horizontally and vertically. On average, OMZ cores are becoming more hypoxic by 

~0.2 µmol O2 / kg / year (Stramma et al. 2008). This is believed to be due to a combination of 

drivers such as lowered oxygen solubility in warmer surface waters (Weiss 1970), decreased 

mixing of O2-rich surface water with the ocean interior due to increased stratification (Gruber 

2011), a temperature-induced increase in microbial respiration (Devol 1978), and increased deep 

water residence time due to slowed meridional overturning circulation (Stocker and Schmittner 

1997). 

For cephalopods and other marine animals that inhabit ocean regions with OMZs, 

oxycline shoaling can result in vertical habitat compression, limiting the depth and duration at 

which an individual can inhabit a given depth. Compression has been well documented in 

zooplankton (Wishner et al. 2013), a number of pelagic fishes (Carlisle et al. 2017; Stramma et al. 

2011), and jumbo squid (Seibel 2015). The consequences of such compression may include 

increased predation risk, altered trophic interactions in shallow well-lit surface waters, and 
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alterations in biogeochemical cycles such as increased nutrient recycling in surface waters and 

weakening of the biological pump. 

Implications of this research on climate change physiology 

The behavioral and population-level responses of cephalopods and other marine 

ectotherms to climate change stressors are driven in part by responses at the physiological level 

(Helmuth 2009). Therefore, gains in understanding of animal physiology can help us better 

understand the responses of marine ecosystems and fisheries to changing climate (Cooke et al. 

2012). The findings of this dissertation directly contribute to an improved understanding of the 

cephalopod response to climate change. 

The discovery (Chapter 2) that squids do not obtain a large proportion of oxygen across 

the skin (contrary to what had been believed for the past 30 years) changes the predicted effect of 

temperature on oxygen supply. Under rising temperature, squids cannot depend upon increased 

oxygen supply provided by faster diffusion across the skin. Rather, nearly all oxygen is supplied 

through the cardiorespiratory system, a multi-step pathway with multiple temperature-dependent 

processes. 

In Chapter 3, I argue that squid oxygen supply is insensitive to CO2 increases anticipated 

in the surface ocean by the year 2100. Furthermore, since oxygen levels in squid blood are 

thought to be more sensitive to high CO2 than the blood of nearly any other marine animal, this 

study produces upper bounds for the effects of ocean acidification on oxygen supply for marine 

animals in general. 

Finally, in Chapter 4, I find that the eastern tropical Pacific OMZ has insufficient oxygen 

supply to meet the demands of Japetella octopods, which suggests that OMZ growth in future 

decades may impact the ontogenetic migration of this species in hypoxic ocean regions. 
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Physiology-based habitat suitability models such as the metabolic index (Deutsch et al. 2015) 

used in Chapter 4 are one means of connecting physiological knowledge to ecosystem-level 

changes. Such models can be valuable tools for understanding and predicting ecosystem 

responses to changing oceans (Teal et al. 2018). 

Cephalopods play significant roles in many aspects of biological oceanography. They 

hold important niches in many marine ecosystems (Coll et al. 2013), play key roles in 

biogeochemical cycles (Arkhipkin 2013), and support substantial fisheries worldwide (Arkhipkin 

et al. 2015). Interestingly, cephalopods from various environments, life histories, and ocean 

regions seem to have been increasing in abundance over the past 60 years (Doubleday et al. 

2016). Whether this is due to climate change, depletion of fish stocks, or some other driver is 

currently unknown. Despite the importance and increasing abundance of cephalopods and their 

intriguing physiological, behavioral, and evolutionary characteristics, much remains to be 

learned about these fascinating marine organisms. 
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