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ABSTRACT 

 

One of the objectives of the U.S. Food and Drug Administration is to protect the public 

health through post-marketing drug safety surveillance, also known as Pharmacovigilance. An 

inexpensive and efficient method to inspect post-marketing drug safety is to use data mining 

algorithms on electronic health records to discover associations between drugs and adverse 

events. 

The purpose of this study is two-fold. First, we review the methods and algorithms 

proposed in the literature for identifying association drug interactions to an adverse event and 

discuss their advantages and drawbacks. Second, we attempt to adapt some novel methods that 

have been used in comparable problems such as the genome-wide association studies and the 

market-basket problems. Most of the common methods in the drug-adverse event problem have 

univariate structure and thus are vulnerable to give false positive when certain drugs are usually 

co-prescribed. Therefore, we will study applicability of multivariate methods in the literature 

such as Logistic Regression and Regression-adjusted Gamma-Poisson Shrinkage Model for the 

association studies. We also adopted Random Forest and Monte Carlo Logic Regression from the 

genome-wide association study to our problem because of their ability to detect inherent 

interactions. We have built a computer program for the Regression-adjusted Gamma Poisson 

Shrinkage model, which was proposed by DuMouchel in 2013 but has not been made available 



vi 
 

in any public software package. A comparison study between popular methods and the proposed 

new methods is presented in this study.
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CHAPTER I: INTRODUCTION AND PROBLEM STATEMENT 

 

 

In order to monitor adverse events of drugs that have been approved for marketing, the 

US Food and Drug Administration (FDA) has organized the FDA Adverse Event Reporting 

System (FAERS) since 1968 [1]. FAERS is a rich data source for the study and identification of 

adverse reactions to regulated drugs in the US. This database contains over 2 million voluntary 

reports of pharmaceutical products in the world and increases by more than 300,000 reports each 

year [2, 3]. For the past four decades, the FAERS database have played a major role in signaling 

known and unknown adverse events that are associated with single or interacted drugs. If a 

potential safety concern is discovered through FAERS, the FDA then performs other evaluations 

and might take regulatory actions to protect the public health, such as restricting the signaled 

drug, updating information labels, or removing the product from the market [1].  

Despite its critical role in Pharmacovigilance, the FAERS database has limitations and 

presents challenging problems to data scientists in designing statistical processes and algorithm 

to detect safety signals. First, safety signals, even correct and significant signals, do not always 

present cause-effect relationship between drugs and adverse events because according to the 

FDA’s requirements for data collection, the relationship between reported adverse event and 

drug are not necessarily proven to be causal-effect. Second, since patients and their service 

providers may independently report the same adverse events to the database, duplicated reports 
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are possible and is in fact a well-known problem for the FAERS database [1]. In order to tackle 

the duplicated report problem, researchers usually take into account the case versions and 

discrepancies between FAERS and the FDA’s legacy data [34]. Finally, the gigantic and rapidly 

increasing size of FAERS (more than 1 million records of prescribed drugs added every quarter 

[1]) creates challenges in computational statistics, resolving event and drug dictionary problems 

and data miscoding [18]. 

The study of drug-adverse event association problem is a fairly new problem in the 

literature. The first systematic studies that addressed this specific problem were carried out in the 

early 2000s [2 – 4, 11, 12]. However, the literature has progressed quickly because of its 

similarities with other problems such as the market basket problem [6-10] and the genome-wide 

association problem [4, 5]. In the market basket problem, researchers attempt to identify patterns 

of the type “A customer purchasing item A is likely to purchase item B”. In the genome-wide 

association problem, we find associations between genomic patterns and diseases or traits.  

The drug-adverse event problem could be mathematically stated as follows. Given a set of drugs 

𝑋1, 𝑋2, … , 𝑋𝑝 and a set of adverse events 𝑌1, 𝑌2, … , 𝑌𝑞, the objective is to find the set of drugs that 

associates with a specific adverse event 𝑌ℎ, 1 ≤ ℎ ≤ 𝑞. Mathematically speaking, we would like 

to generate all sets that contain one or more drugs and one adverse event, (𝑋𝑖, 𝑋𝑗, … 𝑋𝑘, 𝑌ℎ), 1 ≤

𝑖, 𝑗, 𝑘 ≤ 𝑝 , that have significant association measures between event 𝑌ℎ and drug(s) 𝑋𝑖, 𝑋𝑗, … , 𝑋𝑘. 

Various measures of association have been proposed by researchers in the literature such as 

Proportional Reporting Ratio [11], Reporting Odds Ratio [13], Relative Risk [20], and 

Information Component [32]. If a set has only one X, the drug is called associated with event 𝑌ℎ. 

Two or more X’s indicate drug interactions that created the adverse event. 
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The remainder of this thesis is organized in 4 chapters. Chapter 2 presents the notable 

statistical tests and algorithms and the survey of research related to the problem being addressed. 

In Chapter 3, we discuss the Random Forest algorithm and Monte Carlo Logic Regression that 

we introduced for drug association studies because they have interesting properties that might 

tackle the challenges. In Chapter 4, we perform a comparison study between the commonly used 

data mining methods and the novel methods using the Observational Medical Outcomes 

Partnership’s Gold Standard as a testing bed. The concluding remarks and the suggested future 

work are presented in Chapter 5. 
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CHAPTER 2: LITERATURE REVIEW 

 

 

The following notations are used to describe the methodologies. Suppose our data has n 

rows corresponding to n cases. Variables 𝑋1, 𝑋2, … , 𝑋𝑝 indicate use of drugs (1 means used, 0 

means not used). Variables 𝑌1, 𝑌2, … , 𝑌𝑞 indicate presence of q adverse events. Variables 

𝑍1, 𝑍2, … , 𝑍𝑟 contain demographic information, such as age and gender. The data’s dimension is 

n*(p + q + r). 

For the remainder of this thesis, we use 𝑋𝑖,𝑗 to denote the ith column and jth row entry of 

matrix X. Therefore, 𝑋𝑖,𝑙, 𝑌𝑗,𝑙, 𝑍𝑘,𝑙 denote the values of each variable at the lth case in the data 

where 𝑋𝑖,𝑙 and 𝑌𝑗,𝑙 take value of 0 or 1 for all i, j, l. For instance, 𝑋3,10 = 1 means that the patient 

in the 10th row took drug 𝑋3, 𝑌5,20 = 1 means that the patient in the 20th row observed adverse 

event 𝑌5. 

2.1 Association Rules 

Association Rules was introduced for the market basket problem by Agrawal et al. in 

1993, [6]. 

Let 𝑁𝑖 = ∑ 𝑋𝑖𝑙
𝑛
𝑙=1  be the count of rows that observe the use of drug 𝑋𝑖 (1 ≤ i ≤ p and 1 ≤ l ≤ n 

is the index for cases), 𝑁𝑖𝑗 = ∑ 𝑋𝑖𝑙𝑌𝑗𝑙
𝑛
𝑙=1  be count of rows that observe both drug 𝑋𝑖 = 1 and 

adverse event 𝑌𝑗 = 1 (1 ≤ j ≤ q). Association Rules uses confidence as a measure of 
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interestingness, which is the probability of observing adverse event 𝑌𝑗 given 𝑋𝑖 is present 

𝑃(𝑌𝑗 = 1|𝑋𝑖 = 1) =
𝑁𝑖𝑗

𝑁𝑖
. The method is conducted through 2 steps: 

• Support is the proportion of data that observe both 𝑋𝑖 = 1 and 𝑌𝑗 = 1. This proportion 

is 
𝑁𝑖𝑗

𝑛
. Select all sets of  𝑋𝑖 and 𝑌𝑗 that have support higher than an arbitrary threshold:  

𝑁𝑖𝑗

𝑛
≥ 𝑆0 

• From the sets found in the previous step, identify the sets that have confidence higher 

than an arbitrary threshold: 𝑃(𝑌𝑗 = 1|𝑋𝑖 = 1) =
𝑁𝑖𝑗

𝑁𝑖
≥ 𝐶0 

There is no definitive way to determine the thresholds 𝑆0 and 𝐶0. The choice of thresholds is 

subject to the context of the data set and how interesting the associations are [33].  

Finding association between three or more items is done in similar fashion, where support is 

the proportion of records that observe all of 𝑋𝑖, 𝑋𝑖′, and 𝑌𝑗 in the data and confidence is the 

probability of observing event 𝑌𝑗 given both 𝑋𝑖and 𝑋𝑖′ is present. More specifically, the two steps 

Association Rules are now: 

• Select all sets of  𝑋𝑖 and 𝑌𝑗 that have support, which is the percentage of observing all of 

𝑋𝑖, 𝑋𝑖′, and 𝑌𝑗 in the data 
𝑁𝑖𝑖′𝑗

𝑛
 where 𝑁𝑖𝑖′𝑗 = ∑ 𝑋𝑖𝑙𝑋𝑖′𝑙𝑌𝑗𝑙

𝑛
𝑙=1 , higher than an arbitrary 

threshold:  
𝑁𝑖𝑖′𝑗

𝑛
≥ 𝑆0 

• From the sets found in the previous step, identify the sets that have confidence higher 

than an arbitrary threshold: 𝑃(𝑌𝑗 = 1|𝑋𝑖 = 1 & 𝑋𝑖′ = 1) =
𝑁𝑖𝑖′𝑗

𝑁𝑖
≥ 𝐶0 
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In real-world practice, it is common that the number of drugs p and the number of events q 

are so large that we cannot consider all combinations of drug-adverse event because generating 

and evaluating all combinations is computationally intensive. Only considering combinations of 

one drug and one event, the total number of combinations we need to consider is 𝑝 × 𝑞, which 

can be immensely big if the dataset has thousands of drugs and events. Algorithms such as 

Apriori [7] or FP-growth [8] are designed to finish the first step efficiently by reducing the 

number of item sets that we must consider. Apriori algorithm does this by eliminating an item set 

if any of its subset does not have enough support. FP-tree compresses data into a tree structure 

where frequent item sets lay on top of the tree and can easily be found. 

Advantages of Association Rules: 

Being one of the first methods to be proposed in the association study literature, 

Association Rule is intuitive and easy to implement. This method is also computationally less 

intensive than the later ones because all computational operations include only summing and 

logical comparisons. 

Drawbacks of Association Rules: 

The simple operation does not make statistical soundness in many cases because it does 

not adjust for the popularity of individual drug or correlation. Brin & Motwani  [9] gives the 

following example to illustrate its weakness. Consider drug 𝑋1 and adverse event 𝑌2 with the 

total number of records n = 100, 𝑁1 = 25 records have 𝑋1 = 1, 𝑁2 = 90 records have 𝑌2 = 1, 𝑁12 

= 20 records have 𝑋1 = 1 𝑎𝑛𝑑 𝑌2 = 1, and 5 records have 𝑋1 = 0 and 𝑌2 = 0. 

The percentage of records having 𝑋1 = 1 𝑎𝑛𝑑 𝑌2 = 1 is: 
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𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =
20

100
= 0.2, 𝑜𝑟 20% 

The percentage of records having 𝑌2 = 1, given 𝑋1 = 1 is: 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
20

25
= 0.8, 𝑜𝑟 80% 

Suppose a researcher sets the threshold 𝑆0 = 10% for support and 𝐶0 = 70% for 

confidence, Association Rules will determine that the association between 𝑋1 and 𝑌2 as 

significant. However, considering that adverse event 𝑌2 is very popular (90%), the use of drug 𝑋1 

actually decreases the adverse event rate from 90% to 80%. Because of situations like this, 

Association Rules is well-known for detecting false associations, also known as spurious 

associations. 

Another weakness shows up when we apply this method to data sets with huge number of 

items (big p). The data may be so big that most item sets have tiny support and hence cannot pass 

the support threshold 𝑆0. For instance, in a database with a total of 20 million records, there are 

200 records with 𝑋1 = 1 𝑎𝑛𝑑 𝑌2 = 1, then 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =
200

20,000,000
= 0.00001, 𝑜𝑟 0.001%. This 

can easily fail any arbitrary support threshold 𝑆0. This is the case for our FDA data where we 

have over 17 million records of drug and over 14 million records of adverse events. 

In order to tackle the spurious association problem, other methods such as Gamma-

Poisson Shrinkage Model, Proportional Reporting Ratio, and Reporting Odds Ratio were 

proposed. 
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2.2 Collective Strength 

As an attempt to solve the spurious association problem of Association Rules that was 

discussed in section 2.1, Aggarwal and Yu proposed a new measure of association, Collective 

Strength [10]. 

Let I be an item set of drug(s) and an adverse events, 𝐼 = (𝑋𝑖, 𝑋𝑗 , … 𝑋𝑘, 𝑌ℎ), 1 ≤ 𝑖, 𝑗, 𝑘 ≤

𝑝. Aggarwal and Yu defined violation v(I) of an item set I as the sets containing some but not all 

items of I. Suppose we are evaluating drug 𝑋𝑖 and adverse event 𝑌𝑗, 𝐼 = (𝑋𝑖, 𝑌𝑗) is the event of 

using drug 𝑋𝑖 and observing adverse event 𝑌𝑗. The violation 𝑣(𝐼) is the event of observing either 

𝑋1 = 1 or 𝑌1 = 1, but not both: 𝑣(𝐼) =  (𝑋𝑖 = 1 𝑎𝑛𝑑 𝑌𝑗 = 0) 𝑜𝑟 (𝑋𝑖 = 0 𝑎𝑛𝑑 𝑌𝑗 = 1).  

We can then estimate the probability of violation event from the data: 𝑃(𝑣(𝐼)) =

∑ 𝐼
(𝑋𝑖𝑙=1 𝑎𝑛𝑑 𝑌𝑗𝑙=0) 𝑜𝑟 (𝑋𝑖𝑙=0 𝑎𝑛𝑑 𝑌𝑗𝑙=1)

𝑛
𝑙=1

𝑛
. 

Collective Strength is then defined as: 𝐶(𝐼) =
1−𝑃(𝑣(𝐼))

1−𝐸(𝑃(𝑣(𝐼)))
∗

𝐸(𝑃(𝑣(𝐼)))

𝑃(𝑣(𝐼))
, 0 ≤ 𝐶(𝐼) ≤ ∞, 

where 𝐸(𝑃(𝑣(𝐼))) is calculated by assuming the independence of items and using raw 

probabilities of individual items. In our notations, 𝐸(𝑃(𝑣(𝐼))) = 1 − 𝑃(𝑋𝑖 = 1)𝑃(𝑌𝑗 = 1) −

𝑃(𝑋𝑖 = 0)𝑃(𝑌𝑗 = 0), where 𝑃(𝑋𝑖 = 1), 𝑃(𝑌𝑗 = 1), 𝑃(𝑋𝑖 = 0), 𝑃(𝑌𝑗 = 0) are estimated from 

the data as follows. 

𝑃(𝑋𝑖 = 1) =
∑ 𝑋𝑖𝑙

𝑛
𝑙=1

𝑛
 

𝑃(𝑌𝑖 = 1) =
∑ 𝑌𝑗𝑙

𝑛
𝑙=1

𝑛
 

𝑃(𝑋𝑖 = 0) = 1 − 𝑃(𝑋𝑖 = 1) 
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𝑃(𝑌𝑖 = 0) = 1 − 𝑃(𝑌𝑖 = 1) 

Collective Strength 𝐶(𝐼) can take any value from 0 to infinity. A value of 0 indicates perfectly 

negative correlation between 𝑋𝑖 and 𝑌𝑗, i.e. 𝑌𝑗 = 0 when 𝑋𝑖 = 1 and vice versa. 𝐶(𝐼) = 1  

indicates no association between 𝑋𝑖 and 𝑌𝑗 . The more 𝐶(𝐼) exceeds 1, the stronger the 

association between 𝑋𝑖 and 𝑌𝑗. 

Advantages of Collective Strength: 

The authors proved that Collective Strength does not suffer from detecting false positive  

because it considers the presence/absence of individual items. In addition, it has nice 

computational properties that allow the setup of algorithms that works as efficiently as 

Association Rules for large number of items.  

Drawbacks of Collective Strength: 

The convenient computational properties come with the price of loss of interpretability as 

a measure of association, since the formula of Collective Strength does not suggest any useful 

meaning. Compared to other measures of association described later such as Relative Reporting 

Rate, Proportional Reporting Rate, or Reporting Odds Ratio, Collective Strength is a lot less 

intuitive. 

To illustrate this weakness, let’s consider an item set I = {𝑋1, 𝑌1}, where the probability 

of observing each item is 0.1: 𝑃(𝑋1 = 1) = 𝑃(𝑌1 = 1) = 0.1. Under independence assumption 

(no association), the expectation of observing both 𝑋1 and 𝑌1 is 0.12 = 0.01. Suppose we 

observe from the data that the probability of observing both items is 0.05. 
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Using the formulae above, we can obtain the Collective Strength value 𝐶(𝐼) = 1.09. This is 

somewhat close to 1, which shows the weakness of the method because we cannot interpret how 

strong an association with C(I) = 1.09 is. However, if we compare the expected and observed 

frequency of I, we can see that observed frequency is 5 times higher than expectation 

(0.05/0.01), which should indicate a strong association. This measurement of 5 times higher than 

expectation is called Relative Report Rate and is utilized in the Gamma-Poisson Shrinkage 

model below. 

All methods described later in this thesis are based on statistical development and their 

measures of association are more meaningful and statistically grounded than Collective Strength 

and thus will be better alternatives than Collective Strength in evaluating associations. 

2.3 Proportional Reporting Ratio & Reporting Odds Ratio 

Proportional Reporting Ratio (PRR) and Reporting Odds Ratio (ROR) are both 

meaningful and popular measures of association [11-13] that can test the association between 

one drug 𝑋𝑖 and one event 𝑌𝑗. To calculate both PRR and ROR, we first calculate the four 

counting values: 

𝑎 = ∑ 𝐼𝑋𝑖,𝑙=1 𝑎𝑛𝑑 𝑌𝑗,𝑙=1

𝑛

𝑙=1

 

𝑏 = ∑ 𝐼𝑋𝑖,𝑙=0 𝑎𝑛𝑑 𝑌𝑗,𝑙=1

𝑛

𝑙=1

 

𝑐 = ∑ 𝐼𝑋𝑖,𝑙=1 𝑎𝑛𝑑 𝑌𝑗,𝑙=0

𝑛

𝑙=1
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𝑑 = ∑ 𝐼𝑋𝑖,𝑙=0 𝑎𝑛𝑑 𝑌𝑗,𝑙=0

𝑛

𝑙=1

 

Simply put, a is the count of cases where both 𝑋𝑖 and 𝑌𝑗 are observed, b is the count of 

cases where 𝑋𝑖 is not observed but 𝑌𝑗 is, c is the count of cases where 𝑋𝑖 is observed but 𝑌𝑗 is not, 

and d is the count of cases where neither 𝑋𝑖 nor 𝑌𝑗 is observed. We can construct the following 

contingency table: 

 

Table 1: Contingency Table for PRR and ROR 

 Drug 𝑋𝑖 Other drugs 

Effect 𝑌𝑗 a b 

Other effects c d 

 

PRR and ROR can then be calculated as: 

𝑃𝑅𝑅 =
𝑎/(𝑎 + 𝑐)

𝑏/(𝑏 + 𝑑)
 

𝑅𝑂𝑅 =
𝑎/𝑐

𝑏/𝑑
 

PRR is the ratio between having side effect using drug A over having side effect using all 

other drugs. ROR measures the ratio between the odds ratio of side effect using drug A and the 

odds ratio of side effect using all other drugs. They both approach to 1 if there is no association 

between Drug A and Effect B and are bigger than 1 if the association is significant. Each 

measure was proven superior in certain scenarios [13]. 
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We can construct confidence intervals for PRR and ROR as follows. PRR and ROR have 

skew distributions, since they are lower bounded by zero but have no upper bound. However, the 

logarithm of PRR and ROR can take any value and are approximately Normal distributed when 

a, b, c, d are sufficiently large [43]. Therefore, the confidence interval of PRR can be calculated 

as (
𝑃𝑅𝑅

exp(𝑧𝛼𝑠)
, 𝑃𝑅𝑅 ∗ exp (𝑧𝛼𝑠)) where 𝑧𝛼 is the critical value from the Standard Normal 

Distribution and 𝑠 = √
1

𝑎
+

1

𝑐
−

1

𝑎+𝑏
−

1

𝑐+𝑑
. The confidence interval for ROR is calculated as 

𝑒log(𝑅𝑂𝑅) ±(𝑧𝛼∗𝑠) where 𝑠 = √
1

𝑎
+

1

𝑏
+

1

𝑐
+

1

𝑑
. These calculations are subject to the assumption of 

Normality. A pair of drug and adverse event is determined to have significant association if the 

lower bound of the confidence interval of PRR or ROR is larger than 1. 

Advantages of PRR and ROR:  

These two measures are simple to implement and both have meaningful interpretations. 

PRR and ROR measure how often an adverse event is reported for individuals taking a drug, 

compared to the frequency that the same adverse event is reported for patients taking other drugs.  

Drawbacks of PRR and ROR:  

There are three major issues if ROR and PRR are applied to our problem. First, since 

PRR and ROR compare the frequencies of an adverse event between taking a particular drug and 

taking other drugs, they use data of other drugs as benchmarks. If many drugs in the data are 

associated with the adverse event, comparison between the benchmarks and a drug that has true 

positive but not as frequent association will return a weak signal. Second, these methods require 

specification of drug 𝑋𝑖 and side effect 𝑌𝑗. In a large database such as FAERS, there are 
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thousands of drugs and side effects and hence testing every pair of drug and effect is 

computationally inefficient. Finally, these methods cannot test more than one drug at a time and 

hence cannot be used to detect drug-drug interactions to create adverse events. 

2.4 Dependence Rules (Chi-Squared Test) 

Silverstein et al. also attempted to find an alternative to Association Rules using Chi-

squared Test of Independence [14].  

Using the Contingency table in Table 1, we calculate the expected count of each cell 

under the null hypothesis of independence as: 

𝐸11 =
(𝑎 + 𝑏)(𝑎 + 𝑐)

𝑛
 

𝐸12 =
(𝑎 + 𝑏)(𝑏 + 𝑑)

𝑛
 

𝐸21 =
(𝑎 + 𝑐)(𝑐 + 𝑑)

𝑛
 

𝐸11 =
(𝑏 + 𝑑)(𝑐 + 𝑑)

𝑛
 

The Chi-squared test statistic is:  

𝜒2 = ∑ ∑(𝑂𝑖𝑗 − 𝐸𝑖𝑗)

2

𝑗=1

2

𝑖=1

 

where 𝑂𝑖𝑗 is the observed count of cell (i, j) (a, b, c, or d). The test statistic has 3 degrees of 

freedom. 
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Chi-squared test is robust and is solidly grounded in statistical theory, but it suffers from 

two major weaknesses. First, it is sensitive to samples of size if any expected frequency is less 

than 5. Second, regular Chi-squared test of independence can only be applied to two variables. In 

our drug-effect problem, it can be used to test for independence between one drug and one 

association, but is useless with testing for drug interaction where we have more than 2 drugs and 

an effect. 

To overcome the second problem, Silverstein et al. provides a framework for Chi-squared 

test of independence for more than 3 variables. The process is very similar to the 2-variable Chi-

squared test. Suppose we have two drugs 𝑋1, 𝑋2 and an adverse event 𝑌3 as defined in the 

introduction. We would like to test the null hypothesis that they are pairwise independent as 

follows. 

First, we construct a three-way contingency table: 

 

Table 2: Three-way contingency table for Chi-squared test 

  𝑋1 = 1 𝑋1 = 0 

𝑌3 = 1 

𝑋2 = 1 𝑂1,1,1 𝑂0,1,1 

𝑋2 = 0 𝑂1,0,1 𝑁0,0,1 

  𝑋1 = 1 𝑋1 = 0 

𝑌3 = 0 

𝑋2 = 1 𝑂1,1,0 𝑂0,1,0 

𝑋2 = 0 𝑂1,0,0 𝑂0,0,0 
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where 𝑂𝑖,𝑗,𝑘 = ∑ 𝐼𝑋1,𝑙=𝑖 𝑎𝑛𝑑 𝑋2,𝑙=𝑗 𝑎𝑛𝑑 𝑌3,𝑙=𝑘
𝑛
𝑙=1  is the observed count of each cell. The expected 

counts under the null hypothesis is: 

𝐸𝑖,𝑗,𝑘 =
∑ (𝐼𝑋1,𝑙=𝑖 )

𝑛
𝑙=1

𝑛
∗

∑ (𝐼𝑋2,𝑙=𝑗 )
𝑛
𝑙=1

𝑛
∗

∑ (𝐼𝑌3,𝑙=𝑘 )
𝑛
𝑙=1

𝑛
∗ 𝑛 

           =
∑ (𝐼𝑋1,𝑙=𝑖 )

𝑛
𝑙=1 ∗ ∑ (𝐼𝑋2,𝑙=𝑗 )

𝑛
𝑙=1 ∗ ∑ (𝐼𝑌3,𝑙=𝑘 )

𝑛
𝑙=1

𝑛2
 

Then the Chi-squared statistic is 𝜒2 = ∑(𝑂𝑖,𝑗,𝑘 − 𝐸𝑖,𝑗,𝑘)
2

/𝐸𝑖,𝑗,𝑘 with 4 degree of freedom. 

There is a flaw if we want to apply this approach to our drug-effect problem. The Chi-

Squared test also considers the dependency between 𝑋1 and 𝑋2 that we are not interested. We are 

only interested in the correlation of (𝑋1& 𝑌3), (𝑋2& 𝑌3), or (𝑋1& 𝑋2 & 𝑌3). 

One way to overcome this problem is to combine 𝑋1, 𝑋2 into a new variable with 4 

categories, namely (00,01,10,11), and then apply the 2-variable Chi-squared test. Nevertheless, 

the test will not tell us whether 𝑋1, 𝑋2, or combination of 𝑋1𝑋2 is accountable for significant side 

effect. 

The problem with small sample remains unsolved for Chi-squared test. Chi-squared test, 

PRR, and ROR are all better alternatives than Association Rules and Collective Strength in 

evaluating drug-event association because they are built upon statistical theories. However, they 

all have drawbacks when it comes to testing small samples. This problem is well known for Chi-

squared test [15, 16]. PRR and ROR’s confidence interval are constructed using standard normal 

distribution [17], which is also problematic for small samples. The two methods Gamma-Poisson 

Shrinkage Model and Information Component both attempt to overcome this issue by assuming 

parametric distributions on their measures of association and finding Bayesian posterior 
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distributions. The Bayesian methods have more complicated calculations, but they are both more 

conservative when sample size gets smaller. 

 

2.5 Gamma-Poisson Shrinkage Model (aka Empirical Bayes Geometric 

Mean) 

The Gamma-Poisson Shrinkage Model (GPS) was first developed to detect associations 

of international calls at AT&T, but the FDA adopted the method to their own database and found 

about 40,000 drug-event signals [23]. 

We use the same notations. Let 𝑁𝑖 = ∑ 𝑋𝑖𝑙
𝑛
𝑙=1  be the number of occurrence of drug 𝑋𝑖 (1 ≤ i ≤ p 

and 1 ≤ l ≤ n is the index for cases), 𝑁𝑖𝑗 = ∑ 𝑋𝑖𝑙𝑌𝑗𝑙
𝑛
𝑙=1  be the number of occurrence of both 𝑋𝑖 

and 𝑌𝑗 (1 ≤ j ≤ q).  

A measurement of association that makes logical soundness is Relative Reporting Rate: 

𝑅𝑅𝑖𝑗 =
𝑁𝑖𝑗

𝐸(𝑁𝑖𝑗)
=

𝑁𝑖𝑗

𝐸𝑖𝑗
 

where 𝐸𝑖𝑗 = 𝑃(𝑋𝑖 = 1) ∗ 𝑃(𝑌𝑗 = 1) ∗ 𝑁 = 𝑁𝑖 ∗ 𝑁𝑗/𝑁 is the expected count of observing both 𝑋𝑖 

and 𝑌𝑗 under the null hypothesis that 𝑋𝑖 and 𝑌𝑗 are independent. 

If 𝑅𝑅𝑖𝑗 ≫ 1, which means the count of (𝑋𝑖 = 1 𝑎𝑛𝑑 𝑌𝑗 = 1) is much larger than its 

expectation under the independence hypothesis, an association between 𝑋𝑖 and 𝑋𝑗 is likely. 

DuMouchel developed the Gamma-Poisson Shrinkage Model (GPS) to test for the significance 

of this measurement with the Bayesian approach [19, 20]. The test is carried out as follow: 
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Assume that 𝑁𝑖𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗 ∗ 𝐸𝑖𝑗), 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑞 where all the 𝜆𝑖𝑗′𝑠 is drawn 

from a common prior distribution, which is assumed to be a mixture of two Gamma 

distributions. The parameters of the prior distribution is estimated from the raw data of 𝜆𝑖𝑗 =
𝑁𝑖𝑗

𝐸𝑖𝑗
. 

We are interested in calculating 𝑃(𝜆𝑖𝑗 > 1), since 𝜆𝑖𝑗 > 1 means the adverse event happens 

more frequent expected and thus signals drug-adverse event association. The author chose a 

mixture of 2 Gamma distributions as prior to exploit the conjugate prior property so that the 

posterior distribution has a closed form. He first used a single Gamma Distribution as prior to 

utilize the Gamma-Poisson conjugate property, but then needed a more flexible prior distribution 

because he estimated the prior distribution from a whole data set. Therefore, a Gamma mixture 

was chosen to preserve the availability of closed-form solution and to increase the goodness-of-

fit. According to the conjugate property, the unconditional distribution of each 𝑁𝑖𝑗 is a mixture of 

2 negative binomial distributions [22]. The probability density function of the parameter 𝜆𝑖𝑗 is 

given as: 

𝜋(𝜆; 𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝑝) = 𝑝𝑔(𝜆; 𝛼1, 𝛽1) + (1 − 𝑝)𝑔(𝜆; 𝛼2, 𝛽2),   𝛼1, 𝛽1, 𝛼2, 𝛽2 > 0, 0 ≤ 𝑝 ≤ 1 

where 𝑔(𝜆; 𝛼1, 𝛽1) and 𝑔(𝜆; 𝛼2, 𝛽2) are the probability density functions of the Gamma 

Distribution with shape parameters 𝛼1, 𝛼2 and scale parameters 𝛽1, 𝛽2, and 𝑝 is the weight of the 

first distribution. The probability density function of the Gamma Distribution [21] is given by: 

𝑓(𝑥, 𝛼, 𝛽) =
𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥 

Let 𝜃 = (𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝑝)′. To estimate how much 𝜆𝑖𝑗 exceeds 1 from the data, the author 

applied the Empirical Bayesian approach with the following steps: 



18 

 

• The unconditional distribution of each 𝑁𝑖𝑗 is a mixture of 2 negative binomial 

distributions with parameter 𝜃. We can calculate Maximum Likelihood estimates of 𝜃 

based on data of 𝑁𝑖𝑗′𝑠 and 𝐸𝑖𝑗’s as follows. 

The Log-Likelihood function is: 

𝑙(𝜆; 𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝑝) = ∑ ln (𝑝
𝛽1

𝛼1

Γ(𝛼1)
𝑥𝑖

𝛼1−1
𝑒−𝛽1𝑥𝑖 + (1 − 𝑝)

𝛽2
𝛼2

Γ(𝛼2)
𝑥𝑖

𝛼2−1
𝑒−𝛽2𝑥𝑖)

𝑛

𝑖=1

 

We would like to find 𝜃 = (𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝑝)′ such that 
𝜕𝑙(𝜆;𝜃)

𝜕𝜃
= 0. Obviously, a close-

form solution is not available. Therefore, we need to use Newton-type numerical methods 

to estimate the solution of  
𝜕𝑙(𝜆;𝜃)

𝜕𝜃
= 0 [57, 58]. 

• For each 𝑁𝑖𝑗, we compute the posterior distribution of 𝜆𝑖𝑗 as  𝑃𝑜𝑖(𝑁𝑖𝑗|𝜆𝑖𝑗 ∗ 𝐸𝑖𝑗)𝜋(𝜆𝑖𝑗|𝜃)/

∫ 𝑃𝑜𝑖(𝑁𝑖𝑗|𝜆𝑖𝑗 ∗ 𝐸𝑖𝑗)𝜋(𝜆𝑖𝑗|𝜃) 𝑑𝜆, where  𝑃𝑜𝑖(𝑋|𝜆) is the Poisson probability mass 

function with mean 𝜆. 

• For each cell (i, j), obtain the 5th percentile of the posterior distribution 𝜆0.05. In other 

words, 𝜆0.05 is the lower 95% confidence bound of 𝜆. We can then make a decision rule 

that, if 𝜆0.05 > 1, the association of (i, j) item is significant. Since 𝜆 > 1 means a 

significant association, this decision rule will put the probability of false positive, which 

is 𝑃(𝜆 > 1|𝜆0.05 > 1), lower than 0.05. 

The model is named Shrinkage because 𝜆0.05 gets smaller if 𝑁𝑖𝑗 is smaller, thus makes the 

test more conservative when observed size is small. The prior distribution is not pre-specified but 

estimated from the data. Therefore, this method follows the Empirical Bayes approach. 

Advantages of GPS: 
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This method fixes all weaknesses of Association Rules, Collective Strength, and Chi-

squared test: it has good interpretability of the measurement of association, statistical soundness, 

and applicability to small samples. Since the method uses the Empirical Bayes approach by 

estimating the prior distribution from the data, it provides inferences that are conditional on the 

data and are not reliant on asymptotic approximation. Therefore, we can expect this method to 

outperform the frequentist methods such as ROR, PRR, and Chi-squared when small samples are 

considered. 

Drawbacks of GPS: 

There are three main problems with this method. First, it cannot easily take into account 

the effect of demographic variables in our data (age and gender). In order to do this, the 

DuMouchel et al. had to stratify the data based on these covariates and repeat the same process 

[7]. This is computationally intensive especially when we have many stratums. Second, this 

method is not applicable to test more than one drug at once, which means that we cannot test for 

drug-drug interactions to create adverse event. Finally, the choice of mixture of Gamma 

Distribution as the prior distribution should be used with caution since the Bayesian approach 

might produce posterior distribution that are heavily influenced by the prior distribution [24]. 

 

2.6 Bayesian Confidence Propagation Neural Network (aka Information 

Component) 

In 1996, Lansner and Holst studied the training and inference of Neural Network using 

the Bayesian training rule, which they called Bayesian Confidence Propagation Neural Network 
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(BCPNN) [35]. When Bate et al. [36] applied the method to the drug-effect problem, he used a 

simple neural network with one input layer as drugs and one output layers as adverse events: 

 

Figure 1:Neural Network by bate et al. 

 

The expectation of the weight between input 𝑥𝑖 and output 𝑞𝑖 was found to be: 

𝑤 = log2(
𝑃(𝑞𝑖, 𝑥𝑖)

𝑃(𝑞𝑖)𝑃(𝑥𝑖)
) 

which is called the Information Component (IC), and is also the log of Relative Reporting Rate 

in GPS method. As Bate et al. developed the method for the drug association problem, he moved 

away from the neural network and focused more on the estimation of IC. Therefore, even though 

the method inherits the name “Bayesian Confidence Propagation Neural Network”, it is in fact 

univariate and we do not actually interpret the results with the neural network. 

Noren et al. described the Baysian estimates of IC as follows. We would like to estimate 

the distributions of 𝑃(𝑞𝑖, 𝑥𝑖), 𝑃(𝑞𝑖), 𝑃(𝑥𝑖). Using the same set up as in PRR and ROR, we 

consider the contingency table that is calculated from the data: 

 

Table 3: Contingency Table for Information Component 
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 Drug 𝑋𝑖 Other Drugs 

Event 𝑌𝑗 𝑛11 𝑛10 

Other events 𝑛01 𝑛00 

 

where  

𝑛11 = ∑ 𝐼𝑌𝑗,𝑙=1 𝑎𝑛𝑑 𝑋𝑖,𝑙=1

𝑛

𝑙=1

 

𝑛10 = ∑ 𝐼𝑌𝑗,𝑙=1 𝑎𝑛𝑑 𝑋𝑖,𝑙=0

𝑛

𝑙=1

 

𝑛01 = ∑ 𝐼𝑌𝑗,𝑙=0 𝑎𝑛𝑑 𝑋𝑖,𝑙=1

𝑛

𝑙=1

 

𝑛00 = ∑ 𝐼𝑌𝑗,𝑙=0 𝑎𝑛𝑑 𝑋𝑖,𝑙=0

𝑛

𝑙=1

 

𝑛.. = 𝑛11 + 𝑛10 + 𝑛01 + 𝑛00 = 𝑛 

We assume that (𝑛11, 𝑛10, 𝑛01, 𝑛00) follows the Multinomial distribution with Probability 

Mass Function: 

𝑃(𝑛11, 𝑛10, 𝑛01, 𝑛00|𝑛, 𝑝11, 𝑝10, 𝑝01, 𝑝00) =
𝑛!

𝑛11! 𝑛10! 𝑛01! 𝑛00!
𝑝11

𝑛11𝑝10
𝑛10𝑝01

𝑛01𝑝00
𝑛00 

where 𝑛 = 𝑛11 +  𝑛10 + 𝑛01 + 𝑛00 and (𝑝11, 𝑝10, 𝑝01, 𝑝00) are parameters. These parameters are 

assumed to follow the Dirichlet distribution Dir(𝛼11, 𝛼10, 𝛼01, 𝛼00) as the prior distribution. The 

probability density function of the prior distribution is: 
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𝑓(𝑝11, 𝑝10, 𝑝01, 𝑝00|𝛼11, 𝛼10, 𝛼01, 𝛼00) =
1

Β(𝛼11, 𝛼10, 𝛼01, 𝛼00)
𝑝11

𝛼11𝑝10
𝛼10𝑝01

𝛼01𝑝00
𝛼00 

where Β(𝛼11, 𝛼10, 𝛼01, 𝛼00) is the the multivariate Beta function. The prior parameters are 

calculated according to the assumption of independence between the drug and the adverse event: 

𝛼11 = 𝑞1.𝑞.1𝛼.. 

𝛼10 = 𝑞1.𝑞.0𝛼.. 

𝛼01 = 𝑞10𝑞.1𝛼.. 

𝛼00 = 𝑞0.𝑞.0𝛼.. 

where  

𝛼.. =
0.5

𝑞1.𝑞.1
 

𝑞1. =
𝑛1. + 0.5

𝑛.. + 1
 

𝑞0. =
𝑛0. + 0.5

𝑛.. + 1
 

𝑞.1 =
𝑛.1 + 0.5

𝑛.. + 1
 

𝑞.0 =
𝑛.0 + 0.5

𝑛.. + 1
 

 

The conjugate prior property makes the posterior distribution Dirichlet with parameters 

(𝛾11, 𝛾10, 𝛾01, 𝛾00) where 𝛾𝑖𝑗 = 𝛼𝑖𝑗 + 𝑛𝑖𝑗 , 𝑖, 𝑗 ∈ {0,1} . 
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Knowing the posterior distribution for (𝑝11, 𝑝10, 𝑝01, 𝑝00), we can calculate the 

expectation of IC as: 

𝐸(𝐼𝐶) = log2(
𝐸(𝑝11)

𝐸(𝑝1.)𝐸(𝑝.1)
) 

Obviously, the closed form of distribution of IC is unknown, we need to estimate the lower 95% 

confidence bound by Monte Carlo Simulation or Normal Approximation. 

If the lower 95% bound is larger than 0, a signal is determined. 

The Bayesian approaches, GPS and IC, were proven to have better performance than 

PRR, ROR, and Chi-squared with higher area under the Receiver Operating Characteristic 

(ROC) curve [28]. With modern computer’s strength, performing complex Bayesian calculation 

is not too intensive and therefore, GPS and IC should be a superior choice over PRR, ROR, or 

Chi-squared. 

 

2.7 Logistic Regression 

PRR, ROR, GPS, and BCPNN are called Disproportionality methods. They all have two 

drawbacks. First, they cannot easily consider demographic variables such as age and gender. 

Second, they are vulnerable to raise false positive for co-prescribed drugs. For example, drug A 

and drug B are often prescribed together but only drug A causes a side effect. Disproportionality 

methods, even the Bayesian ones, will likely find drug B associated with the side effect because 

the two drugs are not considered simultaneously. Logistic Regression (LR) was first applied to 

this type of problem by DuMouchel (2004) [25]. An advantage of Logistic Regression over all 
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the previous methods is that it considers all variables at once and hence is less vulnerable to the 

co-prescribed drugs situation. 

The logic is straight forward: we consider each adverse event 𝑌𝑗  (1 ≤ 𝑗 ≤ 𝑞) as a binary 

response variable and all drugs 𝑋1, 𝑋2, … , 𝑋𝑝 as explanatory variables. The logistic regression has 

the form: 

𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑌𝑗 = 1)) = log (
𝑃(𝑌𝑗 = 1)

1 − 𝑃(𝑌𝑗 = 1)
) = ∑𝛽𝑖𝑋𝑖 

We can also add demographic information 𝑍𝑖  as covariates:  

𝑙𝑜𝑔𝑖𝑡(𝑝(𝑌ℎ)) = log (
𝑃(𝑌𝑗 = 1)

1 − 𝑃(𝑌𝑗 = 1)
) = ∑𝛽𝑖𝑋𝑖 + ∑𝛼𝑖𝑍𝑖 

We are interested in the significance of 𝛽𝑖’s in this regression using the usual t-test. 

Interestingly, a recent study that compared the methods using FDA data shows that Logistic 

Regression family performs better than GPS and generally has higher specificity at a given level 

of sensitivity [27] 

To investigate drug-drug interaction, we just need to add the interaction terms to the 

model: 

𝑙𝑜𝑔𝑖𝑡(𝑝(𝐴)) = ∑𝛽𝑖𝐷𝑖 + ∑𝛼𝑖𝑋𝑖 + ∑𝛾𝑖𝐷𝑖𝐷𝑗 

However, this will increase the number of parameters quickly. 1,000 drugs will yield 500,000 

interaction terms, which can easily exceed the amount of data to fit. An alternative is to include 

only the drug combinations that are observed in the data more than an arbitrary threshold. For 
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example, we may only include in the model the pairs of drugs that are co-prescribed more than 5 

times in the data. 

Another drawback of logistic regression is that it requires a large amount of data to obtain 

a stable model. A recent study shows that a 20:1 ratio between numbers of observations and 

parameters are needed [26]. Nevertheless, this is not our issue since we are currently dealing 

with rather large FAERS database. 

 

2.8 Regression - Adjusted Gamma-Poisson Shrinkage Model 

DuMouchel’s GPS method was found to perform worse than Logistic Regression 

[27].However, the use of t-test in Logistic Regression is vulnerable to small samples, which was 

one of the reasons why GPS was introduced [19]. In 2012, DuMouchel combined GPS and LR 

into a hybrid method that has strengths of both [28]. The main idea is to replace the t-test of 

coefficient significance in LR by GPS instead of the t-test. First we select a subset of p drugs to 

fit the Logistic Regression model. Suppose the subset of predicting drugs is 𝑆 ⊂ {1, 2, … , 𝑝}. The 

Logistic Regression model is: 

𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑌𝑗 = 1)) = ∑ 𝛽𝑖𝑋𝑖

𝑖⊂𝑆

 

In the publication, DuMouchel selects the predicting drugs based on their event rates. We 

can rewrite this equation to include all drugs 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑝, but set 𝛽𝑖 = 0 if 𝑖 ⊄ 𝑆: 

𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑌𝑗 = 1)) = ∑ 𝛽𝑖𝑋𝑖

𝑝

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 𝛽𝑖 = 0 𝑖𝑓 𝑖 ⊄ 𝑆 
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Unlike the regular Logistic Regression, we do not use the t-test for significance of 𝛽𝑖’s as 

the final decision. Instead, DuMouchel proposed to calculate the expected count of observing 

both 𝑋𝑘, 1 ≤ 𝑘 ≤ 𝑝, and 𝑌𝑗 under the null hypothesis that drug 𝑋𝑘 has no effect on event 𝑌𝑗 to be 

used for the rest of the GPS process. The null hypothesis is equivalent to 𝛽𝑘 = 0. Therefore, the 

expected probability of event 𝑌𝑗 = 1 is calculated as: 

𝐸(𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑌𝑗 = 1))) = ∑ 𝛽𝑖𝑋𝑖

𝑝

𝑖=1

− 𝛽𝑘𝑋𝑘 

therefore, 

𝐸 (𝑃(𝑌𝑗 = 1)) = 1/(1 + ∑ 𝛽𝑖𝑋𝑖

𝑝

𝑖=1

− 𝛽𝑘𝑋𝑘) 

We apply this formula to each row of the data (each patient in the data) to calculate each 

of their expected count of observing event 𝑌𝑗 . Then, the expected count of event 𝑌𝑗 under the null 

hypothesis 𝛽𝑘 = 0 is the sum of 𝐸 (𝑃(𝑌𝑗 = 1)) across all data records (again, rows are indexed 

with 1 ≤ 𝑙 ≤ 𝑛): 

𝐸𝑘𝑗 = ∑(
1

1 + ∑ 𝛽𝑖𝑋𝑖𝑙
𝑝
𝑖=1 − 𝛽𝑘𝑋𝑘𝑙

)

𝑛

𝑙=1

 

This process is repeated for each of the drugs 𝑋𝑘, 1 ≤ 𝑘 ≤ 𝑝. As a result, we get an array 

of expected counts 𝐸𝑘𝑗 of observing both drug 𝑋𝑘, 1 ≤ 𝑘 ≤ 𝑝, and adverse event 𝑌𝑗 , 1 ≤ 𝑗 ≤ 𝑞. 

In the original GPS method, this is calculated based on raw data: 𝐸𝑘𝑗 = 𝑃(𝑋𝑘 = 1) ∗

𝑃(𝑌𝑗 = 1)/𝑁 = 𝑁𝑘 ∗ 𝑁𝑗/𝑁. 
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GPS method is then continued as in section 2.6 with this new expected count 𝐸𝑘𝑗 =

∑ (
1

1+∑ 𝛽𝑖𝑋𝑖𝑙
𝑝
𝑖=1

−𝛽𝑘𝑋𝑘𝑙
)𝑛

𝑙=1  

Regression-adjusted GPS was proven in the same study to have better performance than 

both LR and GPS [28]. This is intuitive because it combines the sample size-sensitive Bayesian 

method and the multivariate method of calculating expected count. 

Since RGPS is not available in any public software package, we attempted to write the 

program according to DuMouchel’s description. We made a slight adjustment to the algorithm 

however. We do not select the predicting variables based on their event rates but using a forward 

step-wise algorithm with Akaike information criterion [55]. 
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CHAPTER 3: THE NOVEL METHODS 

 

 

All the methods discussed in Chapter 2 suffer from a common problem. They do not 

automatically evaluate interactions between drugs unless we clearly state the specific interactions 

in the model (only for Chi-squared Test and Logistic Regression). Specifying interactions might 

be arduous or even impossible when the number of drugs p and the number of adverse events q 

get large. Therefore, we attempt to apply two algorithms, Random Forests and Monte Carlo 

Logic Regression, to this drug association problem. These two algorithms can detect interactions 

between input variables along with the main effects without specifying the interactions. They 

were both successfully applied in genome-wide association studies to detect both the main 

effects and interactions [37 - 42]. 

For both methods, we consider a specific adverse event 𝑌𝑗 , 1 ≤ 𝑗 ≤ 𝑞 (output variable) 

and all drugs in the data 𝑋1, 𝑋2, … , 𝑋𝑝 (input variables). Both methods attempt to predict the 

value of 𝑌𝑗 using the given values of 𝑋1, 𝑋2, … , 𝑋𝑝 and evaluate the significance of each of the 

input variables and their interactions in the process. 
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3.1 Tree-Based Methods 

Random Forests is a non-parametric method for regression and classification and requires 

no assumption about the data [44, 45]. To describe Random Forests, we first need to introduce 

Decision Trees, which is a simpler method for regression and classification. 

 3.1.1 Decision Tree 

Decision Tree consists of many levels of decision nodes, each splits the one of the input 

variables into two categories. Therefore, a Decision Tree partitions the input variables’ domain, 

and the bottom branches of a Decision Tree show the predicted values for each partition. Figure 

2 shows an example of a Decision Tree using notations from our problem. The ending boxes to 

the far right of the tree, labeled either 0 or 1, indicates the best prediction value of 𝑌𝑗 for that 

partition. For example, the top branch of the tree means that when 𝑋1 = 1 𝑎𝑛𝑑 𝑋2 = 1 then the 

best prediction for 𝑌𝑗 is 1. 



30 

 

 

Figure 2: An example of Decision Tree 

 

We now discuss the process of building an optimized Decision Tree. The goal is to divide 

the predictor space, which is the set of all possible values of 𝑋1, 𝑋2, … , 𝑋𝑝, into J distinct and 

non-overlapping regions 𝑅1, 𝑅2, … , 𝑅𝐽 with 𝑛1, 𝑛2, … , 𝑛𝐽 observations respectively. For each 

region 𝑅𝑚, 1 ≤ 𝑚 ≤ 𝐽, the predicted value is the most common class in that region. The 

classification error rate in region 𝑅𝑚 is the proportion of observations not equal to predictions: 

1 − 𝑝̂𝑚 = 1 −
1

𝑛𝑚
max ( ∑ 𝐼(𝑌𝑗 = 0)

𝑋1,𝑋2,…,𝑋𝑝∈ 𝑅𝑚

, ∑ 𝐼(𝑌𝑗 = 1)

𝑋1,𝑋2,…,𝑋𝑝∈ 𝑅𝑚

) 

Then the classification error rate for the whole tree is: 1 − 𝑝̂ =
1

𝑛
∑ 𝑛𝑚(1 − 𝑝̂𝑚)𝐽

𝑚=1  

Gini Index is another measure of region purity. Since our classification problem only has 

two classes 0 and 1, the Gini Index formula [45] is reduced to: 
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𝐺 = 2𝑝̂𝑚(1 − 𝑝̂𝑚) 

The goal is to construct a decision tree with the highest measure of purity. Breiman [46] 

described the process of finding the  best decision tree using a greedy algorithm as follows. 

• Starting with all the data, for each input variable 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑝, we split the input space 

into two half-planes: 𝑅1(𝑖) = {𝑋|𝑋𝑗 = 0} 𝑎𝑛𝑑 𝑅2(𝑖) = {𝑋|𝑋𝑗 = 1}. Then we calculate 

the misclassification rate 1 − 𝑝̂(𝑖) =
1

𝑛
∑ 𝑛𝑚(1 − 𝑝̂𝑚)2

𝑚=1 . 

• Select the input variable 𝑋𝑖 that has the lowest misclassification rate 1 − 𝑝̂(𝑖). 

• Having found the best splitting variable, we partition the data into two sub-regions 𝑅1 

and 𝑅2. 

• Repeat this process on each sub-region until the misclassification rate stops decreasing. 

How many times should we split the data, or how large should we grow the tree? A common 

strategy is to grow a very large tree, called tree 𝑇0, until the sample sizes 𝑛𝑗 , 1 ≤ 𝑗 ≤ 𝐽 reach a 

pre-determined number (usually 5). Then this large tree is simplified by cost-complexity pruning 

as follows. 

We define a subtree 𝑇 of 𝑇0 to be any tree that can be obtained by removing a number of 

𝑇0’s non-terminal nodes. Let |𝑇| denote the number of terminal nodes in 𝑇. The false 

classification rate in region 𝑅𝑚 of tree 𝑇 is: 

1 − 𝑝̂𝑚(𝑇) =
1

𝑛𝑚
max ( ∑ 𝐼(𝑌𝑗 = 0)

𝑋1,𝑋2,…,𝑋𝑝∈ 𝑅𝑚

, ∑ 𝐼(𝑌𝑗 = 1)

𝑋1,𝑋2,…,𝑋𝑝∈ 𝑅𝑚

) 

The cost-complexity criterion is define by 
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𝐶𝛼(𝑇) = ∑ 𝑛𝑚(1 − 𝑝̂𝑚(𝑇))

|𝑇|

𝑚=1

+ 𝛼|𝑇| 

where 𝛼 is the penalizing parameter for the tree size, which can be determined by cross-

validation [45]. For each value of 𝛼, there is only a finite number of sub-trees 𝑇 and we find the 

sub-tree that produces the lowest 𝐶𝛼(𝑇). 

 3.1.2 Random Forests 

Decision Tree suffers from high variance, which means that a slight change in the data 

can yield a significantly different tree and prediction. Random Forests is a popular way to reduce 

variance and increase prediction power [46]. Random Forests makes two improvements on 

Decision Tree: 

First, we bootstrap the data by taking repeated B samples from the training data set, 

generally by repeatedly sampling 2/3 of the data. We then train Decision Tree on each of the B 

bootstrapped samples and average all the predictions. Suppose we have B Decision Trees 𝑇𝑏 , 1 ≤

𝑏 ≤ 𝐵 corresponding to B bootstrapped samples, the prediction for an input vector 𝑥 is: 

𝑇(𝑥) =
1

𝐵
∑ 𝑇𝑏(𝑥)

𝐵

𝑏=1

 

Second, when building decision trees, each time a split is performed, a random sample of 

m out of p predictors is chosen as split candidates instead of all the p predictors. The rationale is 

that, suppose that there are some very strong predictors in the data set, then most trees will use 

these strong predictors in the top splits. Therefore, many of the trees will have similar structure 

and hence will be highly correlated. By sampling the predictors, we reduce the correlation 
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between trees and hence making the average of trees more reliable [46]. A popular choice of m is 

√𝑝. 

 3.1.3 Variable Importance 

The ultimate purpose of our study is to determine how important each input variable 𝑋𝑖 is in 

predicting 𝑌𝑗. At each split in each tree, the reduction in false classification rate of the whole tree 

1 − 𝑝̂ or the Gini Index 𝐺 = 2𝑝̂𝑚(1 − 𝑝̂𝑚) is attributed to the splitting variable, and is 

accumulated over all trees in the forest for each variable. For each tree 𝑇𝑏: 

• If 𝑋𝑖 is not used in the tree, its variable importance for tree b is 𝑉𝐼𝑏(𝑋𝑖) = 0 

• If 𝑋𝑖 is used in the tree, the variable importance for tree b is the reduction in false 

classification rate or Gini Index before and after the split. Suppose the false classification 

rate before the split is 1 − 𝑝̂(𝑏𝑒𝑓𝑜𝑟𝑒) and the false classification rate after the split is 1 −

𝑝̂(𝑎𝑓𝑡𝑒𝑟), then the variable importance for tree b is 𝑉𝐼𝑏(𝑋𝑖) = 𝑝̂(𝑎𝑓𝑡𝑒𝑟) − 𝑝̂(𝑏𝑒𝑓𝑜𝑟𝑒). 

Suppose the Gini Index before the split is 𝐺(𝑏𝑒𝑓𝑜𝑟𝑒) and the Gini Index after the split is 

𝐺(𝑎𝑓𝑡𝑒𝑟), then the variable importance for tree b is 𝑉𝐼𝑏(𝑋𝑖) = 𝐺(𝑏𝑒𝑓𝑜𝑟𝑒) − 𝐺(𝑎𝑓𝑡𝑒𝑟) 

The total variable importance of 𝑝̂(𝑎𝑓𝑡𝑒𝑟) is then 𝑉𝐼(𝑋𝑖) = ∑ 𝑉𝐼𝑏(𝑋𝑖)
𝐵
𝑏=1 . Since 𝑉𝐼(𝑋𝑖) is 

dependent on the number of tree B, there is no accurate cut-off point to determine whether 

𝑉𝐼(𝑋𝑖) is significant or not. Instead, we rank all the 𝑉𝐼(𝑋𝑖) from largest to smallest and only 

consider several largest 𝑉𝐼(𝑋𝑖) to be significant. Significant 𝑉𝐼(𝑋𝑖) also means that there is 

significant association between drug 𝑋𝑖 and adverse event 𝑌𝑗. 

An important reason why we proposed Random Forests is its inherent ability to detect 

interacting variables without specifying them in a model [39, 47, 49]. The regular variable 
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importance, however, does not provide us with a convenient way to measure the interactions 

from a Random Forests. This could be done using the idea of Maximal Subtrees [50]. For a 

decision Tree 𝑇, Ishwaran et al. defined a 𝑋𝑣-subtree 𝑇𝑣 as a part of 𝑇 that has the top node split 

by variable 𝑋𝑣. 𝑇𝑣 is called a maximal 𝑋𝑣-subtree if 𝑇𝑣 is not a subtree of a larger 𝑋𝑣-subtree. Let 

𝐷𝑣 denote the distance from the root of 𝑇 to the root of a maximal 𝑋𝑣-subtree, which is the 

number of nodes between the root of 𝑇𝑣 and the root of 𝑇 plus one. We further define second-

order maximal (𝑋𝑖, 𝑋𝑗)-subtree as the maximal 𝑋𝑗-subtree within a maximal 𝑋𝑗-subtree. The 

minimal depth of a second-order maximal (𝑋𝑖, 𝑋𝑗)-subtree is the distance from the root of 

(𝑋𝑖, 𝑋𝑗)-subtree to the root of 𝑋𝑖-subtree. The minimal depth of a second-order maximal (𝑋𝑖, 𝑋𝑗)-

subtree is a measurement of interaction between 𝑋𝑖 and 𝑋𝑗. For a Random Forests, we average 

the minimal depths of (𝑋𝑖, 𝑋𝑗)-subtree and (𝑋𝑗, 𝑋𝑖)-subtree across all decision trees to compute 

the joint importance of 𝑋𝑖 and 𝑋𝑗. All the joint importance for a Random Forests can then be 

ranked to determine the most significant interactions. 

3.2 Monte Carlo Logic Regression 

Logic Regression was developed for genomic association studies to relate single 

nucleotide polymorphisms (SNPs) to disease outcomes [40, 41]. It was designed for situations 

where most predictors are binary (taking value 0 or 1) and the goal is to find Boolean 

combinations of these predictors that are associated with an outcome variable. Our drug 

association study is one such situation where most predictors (drugs) are binary and we are 

interested in finding interactions between drugs to create an adverse event. Therefore, it would 

be interesting to see how this method fit in to our problem. 
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 3.2.1 Logic Regression 

We first simplify our notations for convenience. We denote the use of drug 𝑋𝑖 as 𝑋𝑖 

instead of 𝑋𝑖 = 1, and not using drug 𝑋𝑖 as 𝑋𝑖
𝑐 instead of 𝑋𝑖 = 0. Similarly, we denote an 

observation of event 𝑌𝑗 as 𝑌𝑗 instead of 𝑌𝑗 = 1 and no observation of 𝑌𝑗 as 𝑌𝑗
𝑐. Let 𝑋1 ∧  𝑋2 denote 

the event of observing both 𝑋1 and 𝑋2, and 𝑋1 ∨ 𝑋2 denote the event of observing either 𝑋1 or 

𝑋2. For example, the notation 𝑋1
𝑐 ∧ (𝑋2 ∨ 𝑋3) means not observing 𝑋1 and observing (𝑋2 or 𝑋3). 

Such a combination is called a Logic Tree and can be presented in a tree as in figure 3. 

 

 

Figure 3: An example of Logic Tree 

 

In figure 3, the numbers are the subscriptions of variables. For instance, number 1 in the 

figure represents 𝑋1. The black color indicates compliment of that variable. Therefore, the black 

number one in the figure represents 𝑋1
𝑐. For any row in a data set, the tree takes value of 1 if its 

expression is true in that row and 0 otherwise. 

The Logic Regression model has the form 

𝑔[𝐸(𝑌|𝑋)] = 𝛽0 + ∑ 𝛽𝑖𝐿𝑖

𝐾

𝑖=1
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where 𝑔 is a link function, 𝛽0, 𝛽1, … , 𝛽𝐾 are parameters, and 𝐿𝑖 are the Logic Trees on the input 

variables 𝑋1, … , 𝑋𝑝. For any link function, we define a score function that reflects the quality of 

the model. For instance, an identity link function (linear regression) may have the sum of squares 

the score function, a logit link function (Logistic Regression) may have Deviance as the score 

function. The number of parameters in this model is always 𝐾 + 1 and does not depend on how 

many input variables are in the model. The challenge is how to form the Logic Trees and how 

many trees we should use. 

We first discuss how to form the Logic Trees. We start with K number of trees, each tree is 

𝐿 = 0. We iteratively grow the trees. At each iteration, a tree is selected at random and modified 

using one of the six moves: 

• Alternate a leaf: we pick a leaf and replace it with another leaf 

• Alternate operators: replace ∧ by ∨ and vice versa 

• Grow Branch: for any knot that is not a leaf, we add a new branch by moving the current 

subtree below to the right and add another branch to the left, connecting by either ∧ or ∨ 

• Prune Branch: for any knot that is not a leaf, we remove one side and shift up the other. 

• Split Leaf: Add one leaf to the position of an existing leaf, connecting the two by either ∧ 

or ∨ 

• Delete Leaf: Remove one leaf in a pair of leaves. 

These six moves are demonstrated in figure 4, which was taken from [41]. 
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Figure 4: Demonstration of the six moves to modify Logic Tree 

 

Then with the new tree in the model, we estimate the parameters 𝛽0, 𝛽1, … , 𝛽𝐾 and 

calculate the score function. If the new tree improves the score function of the model, it is 

accepted and replaces the old tree. Otherwise, it is accepted with a probability that depends on 

the difference between the old and the new scores. The higher iteration, the lower this probability 

of acceptance will be. 

Next, we discuss how to choose the best number of tree 𝐾. We can do this by cross-

validation. The data is repeatedly split into a training set and a test set. Logic Regression models 
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with different 𝐾 are fitted on the training data. The 𝐾 that has the best score is selected, and a 

model of that size is computed on the complete data. 

 3.2.2 Monte Carlo Logic Regression 

Since the process of Logic Regression is random, we might obtain a different model at 

each run. Our result therefore will be highly variated. As we are not interested in the coefficients 

𝛽0, 𝛽1, … , 𝛽𝐾 but in the Logic Trees 𝐿1 in the model, running the regression model multiple times 

and summarizing the information in trees 𝐿1 will serve our purpose better than a single Logic 

Regression model. Therefore, the goal of Monte Carlo Logic Regression is to identify all models 

and combinations of input variables that are associated with the outcome. 

Kooperberg and Ruczinski used the Markov chain Monte Carlo (MCMC) to explore a 

large number of good-fitting models [40]. They implemented the reversible jump MCMC 

algorithm of Green [48]. They first select a geometric prior on the model size, which is the total 

number of leaves on all of the Logic Trees. For instance, the model 𝛽0 + 𝛽1(𝑋1 ∨ (𝑋8 ∧ 𝑋9)) +

𝛽2𝑋10 has size 4. For each model size, they calculated the total number possible logic regression 

models and assume uniform prior distribution on all logic regression of a particular size. 

Iteratively, a model is then selected at random and the likelihood ratio, the prior ratio, and the 

posterior ratio are computed [48]. More details of the algorithm can be found in [41]. 

After the MCMC simulation, we obtain a large number of Logic Regression models. The 

importance of input variables and interactions can be calculated and ranked as follows. 

• We calculate the fraction 𝑝𝑖 of models that contain the input variable 𝑋𝑖. An input 

variable that appear in multiple places in different Logic Trees in the same model is only 

counted as one appearance. This fraction 𝑝𝑖 is an indicator of how important variable 
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𝑋𝑖 is for predicting the outcome rather than its own association with the outcome. To 

obtain the direct association between 𝑋𝑖 and the outcome, we subtract second-order and 

higher fractions (described below) from 𝑝𝑖. 

• We calculate the fraction 𝑝𝑖𝑗 of models that contain both 𝑋𝑖 and 𝑋𝑗 in the same logic tree. 

This indicates whether an interaction between 𝑋𝑖 and 𝑋𝑗 may be associated with the 

outcome. Similarly, we can count how often triplets, quadruplets of input variables occur 

together in models. 

• The fractions are ranked to determine the most significant variables and interactions in 

predicting the outcome. 

Monte Carlo Logic Regression is a very powerful tool to detect interactions between binary input 

variables. As described by Witte and Fijal, this method was the only out of ten approaches that identified 

all correct associations between genetic sequences and a disease, including the interactions between 

genetic sequences [56].  
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  CHAPTER 4: COMPARISON STUDY 

 

 

 

4.1 The Gold Standard for Testing 

The Observational Medical Outcomes Partnership (OMOP)’s aim is to evaluate methods 

for analyzing data in electronic medical records. It has developed a reference set of drug–event 

pairs that are classified as positive or negative controls, called Gold Standard, which consists of 

drug–event pairs that the OMOP proposes would return positive or negative results from a 

perfect test, designed to serve as a test bed for quantitative techniques [29]. Though imperfect, 

the Gold Standard has been described as the best available benchmark. An early test set 

constructed by OMOP consisted of 53 drug–event pairs, nine positive controls (drug-event 

association exists) and 44 as negative controls [30]. Positive control was determined based on 

listing of the event in the product label along with prior observational database research 

suggesting an association, followed by expert panel consensus. Negative control assignment was 

determined based on absence of the association in the product label and published literature, 

followed by endorsement by an expert panel. Subsequently, a larger test set consisting of 398 test 

cases (165 positive controls and 233 negative controls) was published using related but distinct 

criteria [31]. 

The full OMOP’s list of drug and adverse event and counts of their occurrences in the 

FAERS database are presented in Appendix A. Out of the 398 pairs of drug-event, only four 



41 

 

distinct adverse events exist, namely Acute Kidney Injury (AKI), Acute Liver Injury (ALI), 

Acute Myocardial Infarction (AMI), and Gastrointestinal Bleed (GIB). 

 

4.2 The FAERS Database 

The FAERS quarterly datafiles since the second quarter of 2014 [51] were combined into 

a local database at the University of South Florida. The database has 7 tables, all named the same 

as the 7 tables in the FAERS quarterly data files. In this study, we primarily used table Drug, 

which contains more than 17 million records of drugs taken, and table Reaction, which contains 

more than 14 million records of adverse event observed. 

Using Structured Query Language (SQL), we first transformed the data into a format that 

can be analyzed in R. We joined table Drug and table Reaction on the field primaryid, which is 

the code that identifies individuals taking drugs (if the same person takes drugs at two different 

times, the two primaryid’s are different). Then for each primaryid, we concatenate all the taken 

drugs’ active ingredients (AI) into one field named prod_ai. Since the OMOP Gold Standard has 

only four types of adverse event, we created four column named AMI, AKI, GIB, and ALI to 

denote existence (1) or absence (0) of each event in each case. The top ten rows of the resulted 

table are shown in table 3. 

 

Table 4: Merging and Transforming Drug Table and Reaction Table 

primar
yid 

prod_ai A
M
I 

A
K 
I 

G
I 
B 

A
L 
I 

10132
9582 

ASPIRIN,LISINOPRIL,METFORMIN HYDROCHLORIDE\ROSIGLITAZONE 
MALEATE,ROSIGLITAZONE MALEATE 

0 0 0 0 

10700
6552 

ACETAMINOPHEN\CODEINE 
PHOSPHATE,ALPRAZOLAM,BISOPROLOL,CLINDAMYCIN\CLINDAMYCIN 

0 0 0 0 
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PHOSPHATE,DESLORATADINE,ERTAPENEM 
SODIUM,FUROSEMIDE,GABAPENTIN,HYDROCHLOROTHIAZIDE,OFLOXACIN,PANTOPR
AZOLE SODIUM,SERTRALINE 
HYDROCHLORIDE,TELMISARTAN,VANCOMYCIN,VORICONAZOLE 

10907
0881 

ACETAMINOPHEN\HYDROCODONE BITARTRATE,ALBUTEROL,ALBUTEROL 
SULFATE\IPRATROPIUM 
BROMIDE,CARVEDILOL,DIGOXIN,FUROSEMIDE,GEMFIBROZIL,IBUPROFEN,INSULIN 
DETEMIR,LISINOPRIL,METFORMIN HYDROCHLORIDE 

0 0 0 0 

10514
0671 

OLMESARTAN MEDOXOMIL,PREGABALIN 0 0 0 0 

10608
2232 

ASPIRIN,BISOPROLOL,CALCIUM 
CARBONATE,CHOLECALCIFEROL,CYCLOSPORINE,DILTIAZEM,EVEROLIMUS,EZETIMIBE
,INSULIN NOS,PANTOPRAZOLE SODIUM,PRAVASTATIN\PRAVASTATIN 
SODIUM,TELMISARTAN,ZOLEDRONIC ACID 

0 0 0 0 

10651
8922 

ALISKIREN HEMIFUMARATE,AMLODIPINE BESYLATE,CARVEDILOL,DICLOFENAC 
SODIUM,FLUTICASONE\FLUTICASONE 
PROPIONATE,HYDROCHLOROTHIAZIDE,HYDROCODONE,INFLUENZA VIRUS 
VACCINE,LEVOTHYROXINE 
SODIUM,MELOXICAM,OXYCODONE,PREDNISONE,TRAMADOL 
HYDROCHLORIDE,VALSARTAN 

0 1 0 0 

11303
5051 

CETIRIZINE HYDROCHLORIDE,DILTIAZEM HYDROCHLORIDE,LISINOPRIL 0 0 0 0 

11518
4541 

LORATADINE 0 0 0 0 

11431
1161 

ESTRADIOL,THYROID, PORCINE\THYROID, UNSPECIFIED 0 0 0 0 

11478
1811 

ACETAMINOPHEN\HYDROCODONE BITARTRATE,ALBUTEROL 
SULFATE,BUDESONIDE\FORMOTEROL FUMARATE DIHYDRATE,CALCIUM 
CARBONATE,CETIRIZINE 
HYDROCHLORIDE,CHOLECALCIFEROL,CROMOLYN,CYANOCOBALAMIN,FLUNISOLIDE,
GABAPENTIN,HYDROCHLOROTHIAZIDE,HYDROCORTISONE 
BUTYRATE,MELOXICAM,METHYLPHENIDATE,OMEPRAZOLE,PANTOPRAZOLE 
SODIUM,PLANTAGO SEED,SODIUM OXYBATE,TERAZOSIN\TERAZOSIN 
HYDROCHLORIDE,TESTOSTERONE CYPIONATE,WARFARIN SODIUM 

0 0 0 0 

 

There are 183 distinct drugs in the OMOP Gold Standard. Therefore, we create 183 

indicator variables corresponding to each drug, taking value 1 if the drug exists in prod_ai and 0 

otherwise. For example, the variable HYDROCHLOROTHIAZIDE has value 1 on the second 

row of Table 3 because prod_ai in this row contains the string “HYDROCHLOROTHIAZIDE”. 

This data table is then transferred to R to be perform 8 of the methods mentioned in 

chapter 2 and 3, namely Proportional Reporting Ratio (PRR), Reporting Odds Ratio (ROR), 
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Gamma-Poisson Shrinkage Model (GPS), Bayesian Confidence Propagation Neural Network 

(BCPNN), Logistic Regression (Logistic Reg), Regression-adjusted GPS (RGPS), Random 

Forests (R Forests), and Monte Carlo Logic Regression (MC Logic Reg) 

 

4.3 Computational details  

After processing the data using SQL, the data table with 187 binary columns are 

transferred to R to perform the 8 methods. PRR, ROR, GPS, and BCPNN are all available in the 

R package “PhViD” [52]. Logistic Regression exists within the base function glm in R. Random 

Forests is available in the package “RandomForests” [53]. For each adverse event, we grew 100 

decision trees. Monte Carlo Logic Regression is available in the package “LogicReg” [54]. For 

each adverse event, we choose the logit link function (logistic regression) and 25,000 iterations 

of MCMC. Detailed description of RGPS was published in 2012 [28] but does not exist in any 

public software package and hence we needed to compile the program. As discussed in section 

2.8, we select the predicting variables using a forward step-wise algorithm instead of using 

drugs’ event rates. The R code for RGPS is presented in Appendix B. 

We then compared the outputs of all methods by plotting the Receiver Operating 

Characteristic (ROC) curves, calculating the Area under the ROC curves, and recording 

computing time.  

 

4.4 Results of Performance Testing  

The Receiver Operating Characteristic curves of all methods are presented in figure 1: 
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Figure 5: ROC curve of 7 different methods 

 

Areas under the curves are presented in table 3, ordered from largest to smallest. 

 

Table 5: Areas Under Curve 

Method Area Under Curve 

RGPS 0.7091224 

BCPNN 0.693893 

GPS 0.6803396 

ROR 0.6653113 

Logistic Reg 0.6604082 

PRR 0.6513593 
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MC Logic Reg 0.6050785 

Random Forests 0.5208084 

  

The total computing time to scan the database for each method is given in table 5, 

ordered from shortest to longest: 

 

Table 6: Computing Time 

Method Computing Time 

Logistic Reg 8.04 minutes 

PRR 12.73 minutes 

ROR 12.73 minutes 

GPS 12.73 minutes 

BCPNN 12.81 minutes 

MC Logic Reg 14.21 minutes 

Random Forests 8.17 hours 

RGPS 19.83 hours 

 

 

Regarding performance, RGPS has the best correct classification rate, followed closely 

by BCPNN and GPS. This is consistent with the results from DuMouchel and Harpaz [28]. The 

two novel methods Random Forests and Monte Carlo Logic Regression perform the worst. 

Random Forests is only slightly better than random guess (50% chance).  

One possible explanation for this situation is the sparseness of the data. AMI occurs in 

0.66 % of the records, AKI occurs in 1.88% of the records, GIB occurs in 0.016% of the records, 

and ALI occurs in 0.4% of the records. Since Random Forests creates bootstrapped samples from 
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the data, a lot of the bootstrapped samples will contain no observation of the adverse event. 

Similarly, the drugs are also sparse. When bootstrapped samples with no observation are used to 

construct Decision Trees, no association can be measured. 

Monte Carlo Logic Regression does not perform as bad as Random Forests because it 

does not use bootstrapped samples. However, there is an issue in applying Monte Carlo Logic 

Regression to our problem. The compliment logics on input variables does not make sense in the 

context of drugs and adverse events. For example, association between 𝑋1
𝑐 and 𝑌1 means that not 

taking drug 𝑋1 will result in adverse event 𝑌1. This interpretation is not meaningful in the context 

of our problem. Since Monte Carlo Logic Regression was designed for genetic and genomic 

association study, the compliment logics was implemented to explain relationships such as not 

having genetic sequence 𝑋1 will result in disease 𝑌1. Therefore, we expect the removal of the 

compliment logics to boost the performance of Monte Carlo Logic Regression in our problem. 

Regarding computing time, Random Forests and RGPS take significantly longer time 

than the other methods. The long time taken in RGPS can be attributed to our modification on 

the algorithm using the step-wise selection method.  
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CHAPTER 5: CONCLUSION AND DISCUSSION OF FUTURE WORK 

 

 

 

The purpose of this thesis was to introduce the drug – adverse event association study 

problem, review the literature, and perform a comparison study. The findings of this study lead 

to the following discussions and conclusions. 

Several methods have been proposed in the literature for the drug – adverse event 

association study. Proportional Reporting Ration (PRR) and Reporting Odds Ratio (ROR), which 

follow the frequentist approach, are the most commonly used methods. However, our 

comparison study pointed out that the best-performing approaches are the Bayesian approaches, 

namely Gamma-Poisson Shrinkage model (GPS) and Bayesian Confidence Propagation Neural 

Network (BCPNN). These two Bayesian approaches have advantages over other the frequentist 

methods for their statistical soundness and robustness against small samples. Despite the 

strengths of GPS and BCPNN, we would like to contribute to the drug – adverse event 

association study by addressing two issues. First, we are interested in multivariate method that 

can resolve confounding factors such as commonly co-prescribed drugs. In the literature, only 

Logistic Regression and Regression-Adjusted Gamma Poisson Shrinkage model (RGPS) 

addressed this issue. In addition, the description of RGPS was published in 2012 but is currently 

not available in any public software package. Second, we would like to find a method that can 



48 

 

test for all interactions without having to specify the interactions in a model, because the number 

of interaction terms can be too large to specify. None of the current approaches can do this. 

The drug – adverse event association study shares many similarities with the market-

basket problem and the genetic and genomic association study. Therefore, the drug – adverse 

event association study may benefit from the vast variety of approaches from these two 

problems. In the literature of the market-basket problem and the genetic and genomic association 

study, we have identified two approaches that have the properties in being multivariate and 

automatically considering interactions. Random Forests was introduced by Breiman in 2001 and 

is applicable and popular in a wide range of problems. It is non-parametric, non-linear, and 

inherently measures interactions between input variables. Monte Carlo Logic Regression was 

introduced by Kooperberg and Ruczinski in 2004 to deal with a large number of binary input 

variables in genetic and genomic association problem. The approach also helps us evaluate 

second-order and higher interactions without having to specify the interaction terms in the 

model. Therefore, Monte Carlo Logic Regression fit into our problem perfectly. 

Nevertheless, our comparison study shows that the drug-adverse event problem has 

special issues that require modifications of the two novel methods. The sparseness in data makes 

Random Forests fail to perform properly because many of the bootstrapped samples it creates 

may contain no information. Long computing time is also an issue to this method. Monte Carlo 

Logic Regression has a decent performance but suffers from the compliment logics not being 

applicable in the context of the problem. Performance of the other methods are found to be 

consistent with DuMouchel and Harpaz’s study [28]. 
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We can suggest two items for future works. First, we suggest modifications on the Monte 

Carlo Logic Regression method to remove the compliment logics. Since the compliment logics 

was created in the basis of Logic Tree, which is the foundation for Monte Carlo Logic 

Regression, removing the compliment logics will require modification of all the codes in the R 

package “LogicReg”. This is going to be an arduous work since the program was built on several 

years of work. Second, we are interested in looking at the drug – adverse event association study 

as a time-series problem and evaluating the trends in association signals over time. In the study 

discussed in this thesis, we combined all submissions of FAERS into one large database and 

hence ignored the dynamics of signals over time. We believe that the association between drugs 

and adverse events might not be stationary over time because some drugs are prescribed more 

often during some time periods. Therefore, it will be interesting to observe the dynamics of 

associations over time. The measures of association signals such as Proportional Reporting 

Ratio, Reporting Odds Ratio, and Relative Risk can be calculated for each of FAERS 

submissions and the resulted time series can be tested for trend and seasonality. There has been 

no study in the literature that looked at the problem from this point of view.  
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Appendix A: OMOP Gold Standard List 

 

 

Drug Adverse Event Classify Count in Data 

acyclovir Acute Kidney Injury Positive 74 

hydrochlorothiazide Acute Kidney Injury Positive 129 

ibuprofen Acute Kidney Injury Positive 212 

lisinopril Acute Kidney Injury Positive 102 

meloxicam Acute Kidney Injury Positive 54 

naproxen Acute Kidney Injury Positive 54 

olmesartan medoxomil Acute Kidney Injury Positive 38 

allopurinol Acute Kidney Injury Positive 147 

candesartan Acute Kidney Injury Positive 27 

capreomycin Acute Kidney Injury Positive 9 

captopril Acute Kidney Injury Positive 3 

chlorothiazide Acute Kidney Injury Positive 129 

cyclosporine Acute Kidney Injury Positive 62 

diflunisal Acute Kidney Injury Positive 0 

enalaprilat Acute Kidney Injury Positive 0 

etodolac Acute Kidney Injury Positive 3 

fenoprofen Acute Kidney Injury Positive 0 

ketoprofen Acute Kidney Injury Positive 16 

ketorolac Acute Kidney Injury Positive 3 

mefenamate Acute Kidney Injury Positive 0 

moexipril Acute Kidney Injury Positive 0 

oxaprozin Acute Kidney Injury Positive 7 

piroxicam Acute Kidney Injury Positive 5 

Telmisartan Acute Kidney Injury Positive 40 

Benzonatate Acute Kidney Injury Negative 4 

ketoconazole Acute Kidney Injury Negative 21 

loratadine Acute Kidney Injury Negative 42 

metaxalone Acute Kidney Injury Negative 2 
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temazepam Acute Kidney Injury Negative 31 

acarbose Acute Kidney Injury Negative 11 

adenosine Acute Kidney Injury Negative 0 

almotriptan Acute Kidney Injury Negative 0 

amylases Acute Kidney Injury Negative 0 

benzocaine Acute Kidney Injury Negative 0 

bromfenac Acute Kidney Injury Negative 0 

chlorambucil Acute Kidney Injury Negative 2 

chlorazepate Acute Kidney Injury Negative 0 

clozapine Acute Kidney Injury Negative 37 

cosyntropin Acute Kidney Injury Negative 0 

dacarbazine Acute Kidney Injury Negative 2 

darbepoetin alfa Acute Kidney Injury Negative 6 

darifenacin Acute Kidney Injury Negative 1 

darunavir Acute Kidney Injury Negative 29 

dicyclomine Acute Kidney Injury Negative 4 

disulfiram Acute Kidney Injury Negative 12 

eletriptan Acute Kidney Injury Negative 1 

endopeptidases Acute Kidney Injury Negative 0 

entecavir Acute Kidney Injury Negative 14 

ergotamine Acute Kidney Injury Negative 0 

ferrous gluconate Acute Kidney Injury Negative 3 

flavoxate Acute Kidney Injury Negative 2 

flutamide Acute Kidney Injury Negative 2 

frovatriptan Acute Kidney Injury Negative 5 

gatifloxacin Acute Kidney Injury Negative 0 

griseofulvin Acute Kidney Injury Negative 0 

hyoscyamine Acute Kidney Injury Negative 0 

imipramine Acute Kidney Injury Negative 2 

infliximab Acute Kidney Injury Negative 80 

ketotifen Acute Kidney Injury Negative 0 

lactulose Acute Kidney Injury Negative 41 

lipase Acute Kidney Injury Negative 2 

mebendazole Acute Kidney Injury Negative 1 

methenamine Acute Kidney Injury Negative 0 

methocarbamol Acute Kidney Injury Negative 3 

miconazole Acute Kidney Injury Negative 1 

nelfinavir Acute Kidney Injury Negative 6 

neostigmine Acute Kidney Injury Negative 0 
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nortriptyline Acute Kidney Injury Negative 11 

orlistat Acute Kidney Injury Negative 11 

paromomycin Acute Kidney Injury Negative 0 

penicillin V Acute Kidney Injury Negative 8 

phentermine Acute Kidney Injury Negative 4 

phentolamine Acute Kidney Injury Negative 0 

prilocaine Acute Kidney Injury Negative 4 

primidone Acute Kidney Injury Negative 2 

prochlorperazine Acute Kidney Injury Negative 7 

ramelteon Acute Kidney Injury Negative 6 

rizatriptan Acute Kidney Injury Negative 0 

scopolamine Acute Kidney Injury Negative 11 

simethicone Acute Kidney Injury Negative 1 

sodium phosphate, monobasic Acute Kidney Injury Negative 2 

tetrahydrocannabinol Acute Kidney Injury Negative 0 

thiabendazole Acute Kidney Injury Negative 3 

thiothixene Acute Kidney Injury Negative 0 

tinidazole Acute Kidney Injury Negative 0 

urea Acute Kidney Injury Negative 4 

vitamin A Acute Kidney Injury Negative 4 

zafirlukast Acute Kidney Injury Negative 0 

allopurinol Acute Liver Injury Positive 147 

carbamazepine Acute Liver Injury Positive 22 

celecoxib Acute Liver Injury Positive 35 

ciprofloxacin Acute Liver Injury Positive 32 

cyclosporine Acute Liver Injury Positive 62 

diltiazem Acute Liver Injury Positive 15 

erythromycin Acute Liver Injury Positive 5 

etodolac Acute Liver Injury Positive 3 

fluconazole Acute Liver Injury Positive 30 

ibuprofen Acute Liver Injury Positive 212 

indomethacin Acute Liver Injury Positive 16 

ketorolac Acute Liver Injury Positive 3 

lamotriGastrointestinalne Acute Liver Injury Positive 16 

levofloxacin Acute Liver Injury Positive 50 

lisinopril Acute Liver Injury Positive 102 

methotrexate Acute Liver Injury Positive 78 

naproxen Acute Liver Injury Positive 54 

niacin Acute Liver Injury Positive 8 
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nifedipine Acute Liver Injury Positive 35 

nitrofurantoin Acute Liver Injury Positive 19 

nortriptyline Acute Liver Injury Positive 11 

ofloxacin Acute Liver Injury Positive 82 

oxaprozin Acute Liver Injury Positive 7 

pioglitazone Acute Liver Injury Positive 7 

piroxicam Acute Liver Injury Positive 5 

quinapril Acute Liver Injury Positive 1 

ramipril Acute Liver Injury Positive 31 

sulindac Acute Liver Injury Positive 1 

tamoxifen Acute Liver Injury Positive 1 

terbinafine Acute Liver Injury Positive 10 

trandolapril Acute Liver Injury Positive 0 

valproate Acute Liver Injury Positive 14 

acetazolamide Acute Liver Injury Positive 1 

abacavir Acute Liver Injury Positive 19 

alatrofloxacin Acute Liver Injury Positive 0 

bortezomib Acute Liver Injury Positive 2 

bosentan Acute Liver Injury Positive 10 

busulfan Acute Liver Injury Positive 1 

captopril Acute Liver Injury Positive 3 

caspofunGastrointestinaln Acute Liver Injury Positive 24 

clozapine Acute Liver Injury Positive 37 

dacarbazine Acute Liver Injury Positive 2 

darunavir Acute Liver Injury Positive 29 

didanosine Acute Liver Injury Positive 11 

disulfiram Acute Liver Injury Positive 12 

efavirenz Acute Liver Injury Positive 4 

enalaprilat Acute Liver Injury Positive 0 

felbamate Acute Liver Injury Positive 0 

flutamide Acute Liver Injury Positive 2 

gemcitabine Acute Liver Injury Positive 0 

gemifloxacin Acute Liver Injury Positive 0 

imatinib Acute Liver Injury Positive 13 

infliximab Acute Liver Injury Positive 80 

interferon beta-1a Acute Liver Injury Positive 7 

isoniazid Acute Liver Injury Positive 28 

itraconazole Acute Liver Injury Positive 3 

lamivudine Acute Liver Injury Positive 38 
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methimazole Acute Liver Injury Positive 15 

methyldopa Acute Liver Injury Positive 3 

moexipril Acute Liver Injury Positive 0 

nefazodone Acute Liver Injury Positive 0 

nevirapine Acute Liver Injury Positive 37 

norfloxacin Acute Liver Injury Positive 1 

orlistat Acute Liver Injury Positive 11 

penicillamine Acute Liver Injury Positive 0 

posaconazole Acute Liver Injury Positive 12 

propylthiouracil Acute Liver Injury Positive 6 

rifampin Acute Liver Injury Positive 13 

stavudine Acute Liver Injury Positive 2 

sulfisoxazole Acute Liver Injury Positive 0 

tenofovir Acute Liver Injury Positive 38 

thiabendazole Acute Liver Injury Positive 3 

thioguanine Acute Liver Injury Positive 0 

tipranavir Acute Liver Injury Positive 12 

tolcapone Acute Liver Injury Positive 0 

tolmetin Acute Liver Injury Positive 0 

trovafloxacin Acute Liver Injury Positive 0 

voriconazole Acute Liver Injury Positive 14 

zafirlukast Acute Liver Injury Positive 0 

zalcitabine Acute Liver Injury Positive 0 

zidovudine Acute Liver Injury Positive 42 

adenosine Acute Liver Injury Negative 0 

benzocaine Acute Liver Injury Negative 0 

benzonatate Acute Liver Injury Negative 4 

dicyclomine Acute Liver Injury Negative 4 

fluticasone Acute Liver Injury Negative 35 

gatifloxacin Acute Liver Injury Negative 0 

griseofulvin Acute Liver Injury Negative 0 

hyoscyamine Acute Liver Injury Negative 0 

lactulose Acute Liver Injury Negative 41 

miconazole Acute Liver Injury Negative 1 

oxybutynin Acute Liver Injury Negative 3 

penicillin V Acute Liver Injury Negative 8 

salmeterol Acute Liver Injury Negative 10 

scopolamine Acute Liver Injury Negative 11 

sitagliptin Acute Liver Injury Negative 22 



63 

 

Sucralfate Acute Liver Injury Negative 7 

almotriptan Acute Liver Injury Negative 0 

amylases Acute Liver Injury Negative 0 

cosyntropin Acute Liver Injury Negative 0 

droperidol Acute Liver Injury Negative 0 

endopeptidases Acute Liver Injury Negative 0 

ergotamine Acute Liver Injury Negative 0 

ferrous gluconate Acute Liver Injury Negative 3 

flavoxate Acute Liver Injury Negative 2 

ketotifen Acute Liver Injury Negative 0 

lipase Acute Liver Injury Negative 2 

lithium citrate Acute Liver Injury Negative 0 

Methenamine Acute Liver Injury Negative 0 

Neostigmine Acute Liver Injury Negative 0 

Paromomycin Acute Liver Injury Negative 0 

Phentermine Acute Liver Injury Negative 4 

Phentolamine Acute Liver Injury Negative 0 

Primidone Acute Liver Injury Negative 2 

Propantheline Acute Liver Injury Negative 0 

Sodium Phosphate, Monobasic Acute Liver Injury Negative 2 

Tetrahydrocannabinol Acute Liver Injury Negative 0 

Tinidazole Acute Liver Injury Negative 0 

amlodipine Acute Myocardial Infarction Positive 222 

darbepoetin alfa Acute Myocardial Infarction Positive 31 

dipyridamole Acute Myocardial Infarction Positive 8 

epoetin Alfa Acute Myocardial Infarction Positive 33 

estradiol Acute Myocardial Infarction Positive 18 

estrogens, conjugated Acute Myocardial Infarction Positive 5 

etodolac Acute Myocardial Infarction Positive 3 

indomethacin Acute Myocardial Infarction Positive 3 

ketorolac Acute Myocardial Infarction Positive 3 

nabumetone Acute Myocardial Infarction Positive 3 

nifedipine Acute Myocardial Infarction Positive 81 

nortriptyline Acute Myocardial Infarction Positive 7 

oxaprozin Acute Myocardial Infarction Positive 0 

piroxicam Acute Myocardial Infarction Positive 8 

sulindac Acute Myocardial Infarction Positive 3 

sumatriptan Acute Myocardial Infarction Positive 18 

almotriptan Acute Myocardial Infarction Positive 0 
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amoxapine Acute Myocardial Infarction Positive 0 

bromocriptine Acute Myocardial Infarction Positive 4 

desipramine Acute Myocardial Infarction Positive 0 

diflunisal Acute Myocardial Infarction Positive 0 

eletriptan Acute Myocardial Infarction Positive 2 

enalaprilat Acute Myocardial Infarction Positive 0 

estropipate Acute Myocardial Infarction Positive 0 

factor VIIa Acute Myocardial Infarction Positive 0 

fenoprofen Acute Myocardial Infarction Positive 0 

flurbiprofen Acute Myocardial Infarction Positive 1 

frovatriptan Acute Myocardial Infarction Positive 1 

imipramine Acute Myocardial Infarction Positive 1 

ketoprofen Acute Myocardial Infarction Positive 11 

moexipril Acute Myocardial Infarction Positive 0 

naratriptan Acute Myocardial Infarction Positive 0 

rizatriptan Acute Myocardial Infarction Positive 1 

salsalate Acute Myocardial Infarction Positive 0 

tolmetin Acute Myocardial Infarction Positive 0 

zolmitriptan Acute Myocardial Infarction Positive 3 

benzonatate Acute Myocardial Infarction Negative 8 

clindamycin Acute Myocardial Infarction Negative 5 

dicyclomine Acute Myocardial Infarction Negative 2 

fluticasone Acute Myocardial Infarction Negative 28 

gatifloxacin Acute Myocardial Infarction Negative 4 

hyoscyamine Acute Myocardial Infarction Negative 1 

ketoconazole Acute Myocardial Infarction Negative 2 

lactulose Acute Myocardial Infarction Negative 12 

loratadine Acute Myocardial Infarction Negative 43 

metaxalone Acute Myocardial Infarction Negative 3 

methocarbamol Acute Myocardial Infarction Negative 6 

penicillin V Acute Myocardial Infarction Negative 2 

prochlorperazine Acute Myocardial Infarction Negative 19 

oxybutynin Acute Myocardial Infarction Negative 8 

ramelteon Acute Myocardial Infarction Negative 5 

salmeterol Acute Myocardial Infarction Negative 17 

scopolamine Acute Myocardial Infarction Negative 1 

sitagliptin Acute Myocardial Infarction Negative 40 

sucralfate Acute Myocardial Infarction Negative 12 

temazepam Acute Myocardial Infarction Negative 13 
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terbinafine Acute Myocardial Infarction Negative 8 

urea Acute Myocardial Infarction Negative 7 

acarbose Acute Myocardial Infarction Negative 3 

acetazolamide Acute Myocardial Infarction Negative 1 

amylases Acute Myocardial Infarction Negative 0 

bromfenac Acute Myocardial Infarction Negative 0 

chlorambucil Acute Myocardial Infarction Negative 6 

chlorazepate Acute Myocardial Infarction Negative 0 

chlorothiazide Acute Myocardial Infarction Negative 196 

cosyntropin Acute Myocardial Infarction Negative 0 

darifenacin Acute Myocardial Infarction Negative 2 

didanosine Acute Myocardial Infarction Negative 0 

droperidol Acute Myocardial Infarction Negative 0 

endopeptidases Acute Myocardial Infarction Negative 0 

entecavir Acute Myocardial Infarction Negative 2 

ferrous gluconate Acute Myocardial Infarction Negative 11 

flavoxate Acute Myocardial Infarction Negative 0 

flutamide Acute Myocardial Infarction Negative 0 

ketotifen Acute Myocardial Infarction Negative 0 

lipase Acute Myocardial Infarction Negative 1 

lithium citrate Acute Myocardial Infarction Negative 0 

mebendazole Acute Myocardial Infarction Negative 0 

methenamine Acute Myocardial Infarction Negative 0 

methimazole Acute Myocardial Infarction Negative 4 

miconazole Acute Myocardial Infarction Negative 2 

nelfinavir Acute Myocardial Infarction Negative 0 

nevirapine Acute Myocardial Infarction Negative 7 

paromomycin Acute Myocardial Infarction Negative 0 

pemoline Acute Myocardial Infarction Negative 0 

penicillamine Acute Myocardial Infarction Negative 1 

posaconazole Acute Myocardial Infarction Negative 4 

prilocaine Acute Myocardial Infarction Negative 4 

primidone Acute Myocardial Infarction Negative 3 

propantheline Acute Myocardial Infarction Negative 0 

simethicone Acute Myocardial Infarction Negative 1 

sodiumphosphate, monobasic Acute Myocardial Infarction Negative 0 

stavudine Acute Myocardial Infarction Negative 1 

sulfasalazine Acute Myocardial Infarction Negative 15 

sulfisoxazole Acute Myocardial Infarction Negative 0 
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tetrahydrocannabinol Acute Myocardial Infarction Negative 0 

thiabendazole Acute Myocardial Infarction Negative 0 

thiothixene Acute Myocardial Infarction Negative 1 

tinidazole Acute Myocardial Infarction Negative 0 

tipranavir Acute Myocardial Infarction Negative 1 

vitamin A Acute Myocardial Infarction Negative 2 

zafirlukast Acute Myocardial Infarction Negative 0 

citalopram Gastrointestinal Bleed Positive 4 

clindamycin Gastrointestinal Bleed Positive 0 

clopidogrel Gastrointestinal Bleed Positive 1 

escitalopram Gastrointestinal Bleed Positive 0 

etodolac Gastrointestinal Bleed Positive 0 

fluoxetine Gastrointestinal Bleed Positive 1 

ibuprofen Gastrointestinal Bleed Positive 1 

indomethacin Gastrointestinal Bleed Positive 0 

ketorolac Gastrointestinal Bleed Positive 0 

meloxicam Gastrointestinal Bleed Positive 0 

nabumetone Gastrointestinal Bleed Positive 0 

naproxen Gastrointestinal Bleed Positive 5 

piroxicam Gastrointestinal Bleed Positive 0 

potassium Chloride Gastrointestinal Bleed Positive 4 

sertraline Gastrointestinal Bleed Positive 0 

oxaprozin Gastrointestinal Bleed Positive 0 

diflunisal Gastrointestinal Bleed Positive 0 

fenoprofen Gastrointestinal Bleed Positive 0 

flurbiprofen Gastrointestinal Bleed Positive 0 

ketoprofen Gastrointestinal Bleed Positive 0 

mefenamate Gastrointestinal Bleed Positive 0 

sulindac Gastrointestinal Bleed Positive 0 

tolmetin Gastrointestinal Bleed Positive 0 

valdecoxib Gastrointestinal Bleed Positive 0 

adenosine Gastrointestinal Bleed Negative 1 

benzonatate Gastrointestinal Bleed Negative 1 

dicyclomine Gastrointestinal Bleed Negative 0 

epoetin alfa Gastrointestinal Bleed Negative 0 

fluticasone Gastrointestinal Bleed Negative 3 

hyoscyamine Gastrointestinal Bleed Negative 0 

ketoconazole Gastrointestinal Bleed Negative 0 

lactulose Gastrointestinal Bleed Negative 1 
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loratadine Gastrointestinal Bleed Negative 0 

metaxalone Gastrointestinal Bleed Negative 0 

methocarbamol Gastrointestinal Bleed Negative 0 

nitrofurantoin Gastrointestinal Bleed Negative 0 

oxybutynin Gastrointestinal Bleed Negative 0 

penicillin V Gastrointestinal Bleed Negative 1 

pioglitazone Gastrointestinal Bleed Negative 3 

prochlorperazine Gastrointestinal Bleed Negative 0 

rosiglitazone Gastrointestinal Bleed Negative 0 

salmeterol Gastrointestinal Bleed Negative 2 

scopolamine Gastrointestinal Bleed Negative 0 

sitagliptin Gastrointestinal Bleed Negative 0 

sucralfate Gastrointestinal Bleed Negative 1 

temazepam Gastrointestinal Bleed Negative 0 

terbinafine Gastrointestinal Bleed Negative 0 

urea Gastrointestinal Bleed Negative 0 

abacavir Gastrointestinal Bleed Negative 0 

acarbose Gastrointestinal Bleed Negative 0 

amylases Gastrointestinal Bleed Negative 0 

benzocaine Gastrointestinal Bleed Negative 0 

bromfenac Gastrointestinal Bleed Negative 0 

chlorambucil Gastrointestinal Bleed Negative 0 

chlorazepate Gastrointestinal Bleed Negative 0 

cosyntropin Gastrointestinal Bleed Negative 0 

dacarbazine Gastrointestinal Bleed Negative 0 

darifenacin Gastrointestinal Bleed Negative 0 

disulfiram Gastrointestinal Bleed Negative 0 

droperidol Gastrointestinal Bleed Negative 0 

endopeptidases Gastrointestinal Bleed Negative 0 

entecavir Gastrointestinal Bleed Negative 0 

ergotamine Gastrointestinal Bleed Negative 0 

ferrous gluconate Gastrointestinal Bleed Negative 0 

griseofulvin Gastrointestinal Bleed Negative 0 

itraconazole Gastrointestinal Bleed Negative 0 

ketotifen Gastrointestinal Bleed Negative 0 

lamivudine Gastrointestinal Bleed Negative 0 

lipase Gastrointestinal Bleed Negative 0 

lithium citrate Gastrointestinal Bleed Negative 0 

mebendazole Gastrointestinal Bleed Negative 0 
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miconazole Gastrointestinal Bleed Negative 0 

moexipril Gastrointestinal Bleed Negative 0 

neostigmine Gastrointestinal Bleed Negative 0 

nevirapine Gastrointestinal Bleed Negative 0 

orlistat Gastrointestinal Bleed Negative 3 

paromomycin Gastrointestinal Bleed Negative 0 

pemoline Gastrointestinal Bleed Negative 0 

phentermine Gastrointestinal Bleed Negative 0 

phentolamine Gastrointestinal Bleed Negative 0 

prilocaine Gastrointestinal Bleed Negative 0 

propantheline Gastrointestinal Bleed Negative 0 

simethicone Gastrointestinal Bleed Negative 0 

stavudine Gastrointestinal Bleed Negative 0 

tetrahydrocannabinol Gastrointestinal Bleed Negative 0 

thiabendazole Gastrointestinal Bleed Negative 0 

thiothixene Gastrointestinal Bleed Negative 0 

tinidazole Gastrointestinal Bleed Negative 0 

vitamin A Gastrointestinal Bleed Negative 0 

zidovudine Gastrointestinal Bleed Negative 0 
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Appendix B: RGPS Code 

 

 

This code is maintained and updated at https://github.com/minh2182000/RGPS. 

library(PhViD) 

RGPS =  

function (formula, data, 

          RR0 = 1, MIN.n11 = 1, DECISION = 1, DECISION.THRES = 0.05,  

          RANKSTAT = 1, TRONC = FALSE, TRONC.THRES = 1, PRIOR.INIT = c(alpha1 

= 0.2, beta1 = 0.06, alpha2 = 1.4, beta2 = 1.8, w = 0.1), PRIOR.PARAM = NULL) 

{ 

  # - stepwise logistic reg 

  formula = formula(lm(formula, data = data[1,])) 

  logmodel = step(glm(as.formula(paste(all.vars(formula)[1], " ~ 1")), 

                      family = binomial, data), 

                  scope = formula, direction = "forward", trace = 0) 

  chosen_vars = all.vars(formula(logmodel)[-1]) 

  beta = rep(NA, length(all.vars(formula)[-1])); names(beta) = 

all.vars(formula)[-1] 

  beta[chosen_vars] = coef(logmodel)[chosen_vars] 

  beta[is.na(beta)] = 0 

   

  # - calculate expectations ----- 

  E = rep(NA, length(all.vars(formula)[-1])); names(E) = all.vars(formula)[-

1] 

  X = as.matrix(data[all.vars(formula)[-1]]) 

  for (j in 1:length(E)){ 

    var_name = names(E)[j] 

    Xj = data[var_name] 

    betaj = as.matrix(beta, ncol = 1); betaj[j] = 0 

    mu = coef(logmodel)[1] + X%*%betaj 

    E[j] = sum(Xj / (1 + exp(-mu))) 

  } 

   

  # --------- recreate DATABASE ------- 

  count_table = data.frame(drug = all.vars(formula)[-1], AE = 

all.vars(formula)[1], count = NA) 

  for (i in 1:nrow(count_table)){ 

    count_table$count[i] = sum(data[as.character(count_table$drug[i])] * 

data[as.character(count_table$AE[i])]) 

  } 

  DATABASE = as.PhViD(count_table) 

  #---------------GPS--------------------- 

   

https://github.com/minh2182000/RGPS
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  DATA <- DATABASE$data 

  E = E[DATABASE$L$AE] 

  N <- DATABASE$N 

  L <- DATABASE$L 

  n11 <- DATA[, 1] 

  n1. <- DATA[, 2] 

  n.1 <- DATA[, 3] 

 

  P_OUT <- TRUE 

  if (is.null(PRIOR.PARAM)) { 

    P_OUT <- FALSE 

    if (TRONC == FALSE) { 

      data_cont <- xtabs(DATA[, 1] ~ L[, 1] + L[, 2]) 

      n1._mat <- apply(data_cont, 1, sum) 

      n.1_mat <- apply(data_cont, 2, sum) 

      n1._c <- rep(n1._mat, times = length(n.1_mat)) 

      n.1_c <- rep(n.1_mat, each = length(n1._mat)) 

      E_c <- E 

      n11_c <- as.vector(data_cont) 

      p_out <- suppressWarnings(nlminb(start = PRIOR.INIT, .lik2NB, n11 = 

n11_c, E = E_c, 

                                       control = list(iter.max = 500), lower 

= c(0,0,0,0,0), upper = c(Inf,Inf,Inf,Inf,1))) 

    } 

    if (TRONC == TRUE) { 

      tronc <- TRONC.THRES - 1 

      p_out <- suppressWarnings(nlm(.likTronc2NB, p = PRIOR.INIT,  

                                    n11 = n11[n11 >= TRONC.THRES], E = E[n11 

>=  

                                                                           

TRONC.THRES], tronc, iterlim = 500)) 

    } 

    PRIOR.PARAM <- p_out$par 

    code.convergence <- p_out$convergence 

  } 

  if (MIN.n11 > 1) { 

    E <- E[n11 >= MIN.n11] 

    n1. <- n1.[n11 >= MIN.n11] 

    n.1 <- n.1[n11 >= MIN.n11] 

    LL <- data.frame(drugs = L[, 1], events = L[, 2], n11) 

    LL1 <- LL[, 1][n11 >= MIN.n11] 

    LL2 <- LL[, 2][n11 >= MIN.n11] 

    rm(list = "L") 

    L <- data.frame(LL1, LL2) 

    n11 <- n11[n11 >= MIN.n11] 

  } 

  Nb.Cell <- length(n11) 

  post.H0 <- vector(length = Nb.Cell) 

  Q <- PRIOR.PARAM[5] * dnbinom(n11, size = PRIOR.PARAM[1],  

                                prob = PRIOR.PARAM[2]/(PRIOR.PARAM[2] + 

E))/(PRIOR.PARAM[5] *  

                                                                               

dnbinom(n11, size = PRIOR.PARAM[1], prob = PRIOR.PARAM[2]/(PRIOR.PARAM[2] +  

                                                                                                                                            

E)) + (1 - PRIOR.PARAM[5]) * dnbinom(n11, size = PRIOR.PARAM[3],  
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prob = PRIOR.PARAM[4]/(PRIOR.PARAM[4] + E))) 

  post.H0 <- Q * pgamma(RR0, PRIOR.PARAM[1] + n11, PRIOR.PARAM[2] +  

                          E) + (1 - Q) * pgamma(RR0, PRIOR.PARAM[3] + n11, 

PRIOR.PARAM[4] +  

                                                  E) 

  postE <- log(2)^(-1) * (Q * (digamma(PRIOR.PARAM[1] + n11) -  

                                 log(PRIOR.PARAM[2] + E)) + (1 - Q) * 

(digamma(PRIOR.PARAM[3] +  

                                                                                 

n11) - log(PRIOR.PARAM[4] + E))) 

  LB <- .QuantileDuMouchel(0.05, Q, PRIOR.PARAM[1] + n11,  

                           PRIOR.PARAM[2] + E, PRIOR.PARAM[3] + n11, 

PRIOR.PARAM[4] +  

                             E) 

  if (RANKSTAT == 1)  

    RankStat <- post.H0 

  if (RANKSTAT == 2)  

    RankStat <- LB 

  if (RANKSTAT == 3)  

    RankStat <- postE 

  if (RANKSTAT == 1) { 

    FDR <- (cumsum(post.H0[order(RankStat)])/(1:length(post.H0))) 

    FNR <- rev(cumsum((1 - post.H0)[order(1 - RankStat)]))/(Nb.Cell -  

                                                              

1:length(post.H0)) 

    Se <- cumsum((1 - post.H0)[order(RankStat)])/(sum(1 -  

                                                        post.H0)) 

    Sp <- rev(cumsum(post.H0[order(1 - RankStat)]))/(Nb.Cell -  

                                                       sum(1 - post.H0)) 

  } 

  if (RANKSTAT == 2 | RANKSTAT == 3) { 

    FDR <- (cumsum(post.H0[order(RankStat, decreasing = 

TRUE)])/(1:length(post.H0))) 

    FNR <- rev(cumsum((1 - post.H0)[order(1 - RankStat,  

                                          decreasing = TRUE)]))/(Nb.Cell - 

1:length(post.H0)) 

    Se <- cumsum((1 - post.H0)[order(RankStat, decreasing = TRUE)])/(sum(1 -  

                                                                           

post.H0)) 

    Sp <- rev(cumsum(post.H0[order(1 - RankStat, decreasing = 

TRUE)]))/(Nb.Cell -  

                                                                          

sum(1 - post.H0)) 

  } 

  if (DECISION == 1)  

    Nb.signaux <- sum(FDR <= DECISION.THRES) 

  if (DECISION == 2)  

    Nb.signaux <- min(DECISION.THRES, Nb.Cell) 

  if (DECISION == 3) { 

    if (RANKSTAT == 1)  

      Nb.signaux <- sum(RankStat <= DECISION.THRES, na.rm = TRUE) 

    if (RANKSTAT == 2 | RANKSTAT == 3)  

      Nb.signaux <- sum(RankStat >= DECISION.THRES, na.rm = TRUE) 

  } 

  RES <- vector(mode = "list") 
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  RES$INPUT.PARAM <- data.frame(RR0, MIN.n11, DECISION, DECISION.THRES,  

                                RANKSTAT, TRONC, TRONC.THRES) 

  RES$PARAM <- vector(mode = "list") 

  if (P_OUT == TRUE)  

    RES$PARAM$PRIOR.PARAM <- data.frame(PRIOR.PARAM) 

  if (P_OUT == FALSE) { 

    RES$PARAM$PRIOR.INIT <- data.frame(PRIOR.INIT) 

    RES$PARAM$PRIOR.PARAM <- PRIOR.PARAM 

    RES$PARAM$CONVERGENCE <- code.convergence 

  } 

  if (RANKSTAT == 1) { 

    RES$ALLSIGNALS <- data.frame(L[, 1][order(RankStat)],  

                                 L[, 2][order(RankStat)], 

n11[order(RankStat)], E[order(RankStat)],  

                                 RankStat[order(RankStat)], 

(n11/E)[order(RankStat)],  

                                 n1.[order(RankStat)], n.1[order(RankStat)], 

FDR,  

                                 FNR, Se, Sp) 

    colnames(RES$ALLSIGNALS) <- c("drug", "event", "count",  

                                  "expected count", "postH0", "n11/E", "drug 

margin",  

                                  "event margin", "FDR", "FNR", "Se", "Sp") 

  } 

  if (RANKSTAT == 2 | RANKSTAT == 3) { 

    RES$ALLSIGNALS <- data.frame(L[, 1][order(RankStat,  

                                              decreasing = TRUE)], L[, 

2][order(RankStat, decreasing = TRUE)],  

                                 n11[order(RankStat, decreasing = TRUE)], 

E[order(RankStat,  

                                                                                  

decreasing = TRUE)], RankStat[order(RankStat,  

                                                                                                                      

decreasing = TRUE)], (n11/E)[order(RankStat,  

                                                                                                                                                         

decreasing = TRUE)], n1.[order(RankStat, decreasing = TRUE)],  

                                 n.1[order(RankStat, decreasing = TRUE)], 

FDR, FNR,  

                                 Se, Sp, post.H0[order(RankStat, decreasing = 

TRUE)]) 

    if (RANKSTAT == 2)  

      colnames(RES$ALLSIGNALS) <- c("drug", "event", "count",  

                                    "expected count", "Q_0.05(lambda)", 

"n11/E",  

                                    "drug margin", "event margin", "FDR", 

"FNR",  

                                    "Se", "Sp", "postH0") 

    if (RANKSTAT == 3)  

      colnames(RES$ALLSIGNALS) <- c("drug", "event", "count",  

                                    "expected count", "post E(Lambda)", 

"n11/E",  

                                    "drug margin", "event margin", "FDR", 

"FNR",  

                                    "Se", "Sp", "postH0") 

  } 

  RES$SIGNALS <- RES$ALLSIGNALS[1:Nb.signaux, ] 
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  RES$NB.SIGNALS <- Nb.signaux 

  RES 

} 
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