











Shotgun lipidomics is similar in technique to shotgun proteomics, in that it analyzes
many forms of the biological molecule at one time [140]. This method would allow us to take a
shapshot of the types of lipids being expressed in our various models of PHPT1 expression and
disease state. This method is beneficial in that it would give us an idea as to which lipids are
being influenced and would provide direction to further investigate specific lipid families [141].
However, the limitations of this method coincide with its robustness. The highly complex lipid
molecules are often very abundant and usually lead to high degrees of overlap in parent ion
mass between multiple lipid types [142]. This makes it far more difficult to quantify a specific
conformation when no isolation or fractionation has occurred prior to analysis. The
implementation of shotgun lipidomics would be the first step in analysis, and it will determine
which lipid classes should be isolated for further investigation in each sample.

Following identification of lipid targets, ideally, we would be able to isolate and determine
expression changes in these targets between cohorts. Quantification would be accomplished
using parallel reaction monitoring (PRM) on the Q-Exactive hybrid Orbitrap instrument [126].
This instrument allows us to specify a parent ion mass and the product ions created from it by
fragmentation to monitor intensity levels and quantify lipid classes specifically. PRM allows us to
specify multiple parent ion targets (lipid classes) for quantification from the same sample
simultaneously [126]. Targeted lipidomics via PRM will provide reliable and reproducible
guantification of the lipids present in each sample to determine how their synthesis is influenced
in each cohort, and it will provide additional insight into the mechanism of phosphohistidine
signaling influencing lipid homeostasis.

Mechanistic Validation

The use of mass spectrometry to determine protein expression changes between
treatment groups is currently a widely excepted method among many scientific fields [76, 143-
147]. Instrumentation has advanced significantly over the past 20 years and provides highly
reliable and reproducible results, which can be further solidified by technical or biological
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had a range of ALDs varying from mild steatosis up to severe late stage hepatitis. A majority of
the samples, however, are from patients in the later stages and from individuals with
backgrounds of existing liver disease, or familial history, making them less likely to fit the
requirements for our study. This outcome is most likely due to the initial asymptomatic
progression of the disease, making early onset very difficult to detect unless an existing liver
disease is already present [11].

Nonetheless, human tissues could provide additional insight into the role of PHPT1 in
progression of human ALD. It would not be difficult to screen the expression levels of PHPT1 in
various disease states, and normal levels of PHPT1 expression in human liver tissue is already
available. The human tissue aspect of this investigation would be the final step in validating any
mechanism identified in the mouse model in human liver tissues. Therefore, although these
tissues are currently available, it would make most sense to obtain them following all previously
described experiments to make the most out of the sample provided. Human tissues could
immediately be screened for other targets of PHPT1 and phosphohistidine identified, and for
phosphohistidine modifications using the same methods described previously (Chapter 5:
targeted search for phosphohistidine phosphatase proteins). Human tissue analyses would
provide high confidence in terms of overall relevance of PHPT1 and phosphohistidine signaling
in ALD pathogenesis, and these samples would provide a novel avenue of study on the role of

phosphohistidine in mammalian cellular processes.
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confirmed the sequence of the peptide substrate before and after chemical phosphorylation. b- and y-type
fragment jons correspond to cleavage of the amide bond at specific locations on the peptide sequence as shown
in the inset sequence (*indicates fragment ion cotresponding to cleavage of amide bond linking succinyl or
pNA to the N-terminus or C-terminus, respectively) (c) Mass spectrometry-based activity assay results showing
the effect of H,O; treatment on phosphohistidine-containing peptide substrate conversion to product by
hPHPT1. The —log,,(fold change) of the phosphorylated peptide was used to demonstrate the amount of the
phosphorylated substrate converted to non-phosphorylated product by hPHPT1 relative to the amount of the
untreated phosphorylated peptide over time. While the protonated phosphopeptide was not detectable after

10 min, the sodium and potassium adducts of the phosphopeptide allowed for activity measurement at later
time points. The activity assay indicated potentially slower conversion of the sodium and potassium adducts.
Error bars represent standard deviation from three technical replicates.

The impact of oxidative modification on hPHPT1 activity was assessed in two different ways. In one approach,
we used a mass spectrometry-based activity assay in which a known phosphohistidine-containing peptide sub-
strate of hPHPT1 was utilized. In the second approach, we used a colorimetric assay using the nonspecific sub-
strate, p-nitro phenyl phosphate.

From an experimental standpoint, phosphohistidine has been recognized as an analytical challenge due to
the acid labile nature of this modification®. We were able to generate a relatively high yield of the known hPHPT!
peptide substrate, Succinyl- Ala-His-Pro-Phe-p-nitroanilide (35-40% phosphorylated), that was also stable at 4 °C
for months at a time (no significant loss as determined by mass spectrometry). Stability was achieved through
solvent composition in which the buffer was at a high pH (pH 8.5-9) and low enough in salt components so as
to not interfere with the mass spectrometric analysis. [n addition, using a short peptide limited the possibility
of alternatively phosphorylated residues and other potential side reactions from the phosphorylation reaction.
To the best of our knowledge, this study represents the first time a mass spectrometry-based direct injection
technique has been utilized to determine phosphohistidine phosphatase activity. This method is beneficial in
that it provides specific detection through molecular weight and sequence information (through MS/MS) ofa
substrate and product rather than colorimetric or fluorometric assays*?, which could be nonspecific in detection
depending on the matrix composition and complexity. Our reported method could potentially be replicated using
other peptide or protein sequences and could also be multiplexed based on the mass resolving power of the mass
spectrometer used.

Consistent with predictions from molecular simulations, we found no significant decrease in hPHPT1 activ-
ity following oxidation of hPHPT1, as demonstrated by the mass spectrometry-based activity assay. This result
is contrary to the common conception that protein oxidation is typically a loss-of-function modification®-%,
Furthermore, the colorimetric data demonstrated no significant differences in the k,,; or Vy,,; of hPHPTI1 fol-
lowing H,O, treatment; however, the K, value was slightly lower for oxidized hPHPT1. These data could suggest
a small increase in substrate binding affinity when the hPHPT] enzyme is oxidized, although the results are
potentially less significant to our assessment of hPHPT1 activity based on the small change in kinetic param-
eters observed as well as significantly lower specificity of the substrate used in this assay compared to the mass
spectrometry-based assay. Based on the results from both assays, we conclude that oxidation of hLPHPT1 with
concentrations up to 1 mM of H;O, did not negatively impact the activity of hPHPTI.

Methionine oxidation has been shown in many cellular roles as a protein modification. Commonly, under
conditions of oxidative stress, it is recognized as a ROS-induced modification that typically leads to loss of pro-
tein function. Methionine oxidation, however, is not exclusively limited to protein loss of function. For example,
it has also been shown that glutamine synthetase in E. coli has 8 of its 16 methionine residues oxidized without
a significant effect on its enzymatic activity®. The role of these multiple oxidation events is believed to be as an
antioxidant function (i.e., a ROS “sponge”™) in order to protect against the oxidation of redox-sensitive residues
of other more sensitive biological targets in ROS-abundant environments. hPHPT1 is unlikely to protect other
protein targets in this context given hPHPT1 is a lower abundance protein depending on tissue type'>* and only
has two methionine sites (one surface exposed) available for modification. It is plausible, though, that selective
oxidation of Met95 protects proximal redox-sensitive residues within hPHPT1 that could affect activity, allowing
for a functional enzyme even in the presence ofhigh concentrations of ROS.

Although proteome diversity increases significantly through the addition of various post-translational and
chemical modifications including oxidative stress-induced modifications such as methionine oxidation, the
results from our study provide some evidence that proteome diversity through modifications does not necessar-
ily correlate to functional diversity. Given our studies are limited to a single protein and modification type, it is
clear that a significant amount of work is needed to address the functional impact of oxidation as well as other
post-translational modifications on a broader scale.

Conclusion

We have successfully implemented a mass spectrometry-based approach to quantify site-specific oxidation of
human PHPT1 (hPHPT1) following treatment with a known cellular ROS, H,O,,. Furthermore, using mass spec-
trometry, we have shown that selective methionine oxidation at Met95 of hPHPT1 occurred but had no impact on
phosphatase activity with the peptide substrate used in this study. Mass spectrometry-based structure and activity
experiments were augmented by molecular dynamics simulations that showed methionine oxidation at Met95
had no significant structural impact on the catalytic site of hPHPT1. As our study is limited to small molecule
and peptide substrates, other possible outcomes of hPHPT1 (or PHPT1 in other mammalian systems) oxidation
need to be explored in a broader context including influence on protein-protein interactions as well as possible
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changes in cell localization. Future studies aim to characterize PHPT1 structure and expression in various tissue
types and conditions of oxidative stress in order to further understand regulation of PHPT1 and related func-
tional consequences in the cell.
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Supplemental Figure 1. Colorimetric phosphatase activity assay results using the p-nitrophenyl
phosphate (pNPP) substrate for PHPT1 before and after H,O, treatment. (a) Representative
colorimetric assay reading over 2 h at 5 mM initial pNPP concentration where error bars
represent standard deviation. Error bars represent standard deviation of plated and technical
replicates (n=9). (b) Nonlinear regression using the Michaelis-Menten equation was performed
for control and 500 yM H,O,-treated PHPT1 with a substrate concentration range from 0.8mM-

40mM. Ky, Vinax, and ke values are shown with error representing 95% confidence intervals.
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