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Abstract 
 
 

Alcohol liver disease (ALD) is a major health concern throughout the world.  Currently, in the United 

States, 17 million people suffer from alcoholism, of which 1.4 million people are receiving treatment [1, 

2].  The link between ethanol metabolism, reactive oxygen species (ROS) and liver injury in ALD has been 

well characterized over the last couple decades [3-10].  Ethanol metabolism relies on the availability of 

the cofactor NAD+ for the oxidation of ethanol into acetate, consequently causing alterations in redox 

potential.  Redox dysfunction within the mitochondria can affect multiple pathways important in 

maintaining cellular homeostasis.  Chapter 1 provides an introduction to the role of ethanol metabolism 

in oxidative stress and alcohol liver injury (ALI).  During ethanol metabolism, both the cytochrome bc1 and 

NADH dehydrogenase complexes within the mitochondria have been demonstrated to be major 

contributors to ROS formation and “leak” free radicals [11-13].  As a result, the free radicals superoxide 

(O2
-) and hydrogen peroxide (H2O2) is diffused into the cytoplasm where they can react with other 

molecules, proteins and DNA and cause tissue injury [4, 14].  Chapter 1 aims to introduce the link between 

ethanol metabolism and histone post-translational modifications (PTM) such as tyrosine nitration and 

lysine acetylation using proteomics techniques.   

Chapter 2 uses a global proteomic study to identify links between gender and ALI.  A 10-day chronic-

binge mouse model was employed in order to identify gender-specific proteins that may influence the 

development of ALD.  It has previously been established that females are more susceptible to developing 

ALD, however, the cause is still unknown.  This study identifies gender differences in the family of 

cytochrome P450 proteins using a mouse model for chronic-binge alcohol exposure.  The cytochrome 

P450 family of proteins are important in the metabolism of toxic compounds, such as acetaldehyde, a 
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byproduct of ethanol metabolism.  Interestingly, I also identified that female mice expressed naturally 

higher levels of histone acetylation prior to alcohol exposure when compared to males.  Following alcohol 

exposure, the female mice did not show much change in acetylation, whereas male acetylation levels 

were raised to similar levels of the female mice.  These acetylation changes raised the question, how does 

alcohol influence epigenetic marks on histone proteins?  Recently, new evidence has emerged that 

supports the role of epigenetics in the pathophysiology of ALD [4, 14-27]. 

Ethanol metabolism will promote shifts in redox potential and mitochondrial dysfunction, the result 

is the formation of reactive oxygen and/or nitrogen species (ROS/RNS) [4, 5, 7, 10, 14, 28].  As ethanol is 

metabolized, the accumulation of ROS/RNS species such as NO- and O2
- can induce the post-translational 

modification nitrotyrosine.  Shifts in redox potential will cause the electron transport chain to “leak” the 

free radical O2
-.  Another free radical known as nitric oxide (NO-) has been shown to be elevated during 

times of ethanol consumption [29, 30].  Traditionally, NO has a protective role within the cell at low 

concentrations, however, in surplus can lead to tissue damage.  Ethanol-induced increases in NO- and O2
- 

can instigate to peroxynitrite (ONOO-) formation; a potent oxidant and nitrating agent of tyrosine residues 

[29, 31-34].  Chapter 3 examines the indirect effect of alcohol metabolism and ROS/RNS formation on 

histone tyrosine nitration.  This project used mass-spectrometry to identify novel targets of histone 

tyrosine nitration using a mouse-model of chronic-binge alcohol exposure.  Interestingly, histone H3 was 

found to be nitrated on the hinge-region of the N-terminal tail at tyrosine 41.  Molecular dynamics of the 

nitrated and unmodified proteoforms revealed that the DNA prefers a change in conformation upon 

H3Y41 nitration.  Further studies using an antibody synthesized against the nitrated H3y41 region of the 

protein revealed potential targets within the genome important in fatty acid synthesis and metabolism.   

Chapter 4 looks at the direct influence of alcohol metabolism and its contribution to histone 

acetylation via acetate production and acetyl-CoA.  Alcohol metabolism has traditionally been thought 

influence acetylation through the sirtuin family of deacetylase proteins.  Sirtuin deacetylases are NAD+-



xv 
 

dependent and have been shown to be a regulate protein acetylation within the mitochondria, cytoplasm, 

and nucleus during times of ethanol exposure [35-37].  Shifts in redox potential attributed to ethanol 

metabolism can inhibit sirtuin deacetylase activity by out-competing the enzymes for available NAD+, 

ultimately leading to mitochondrial and nuclear hyperacetylation [17, 28, 38-42].    Currently, there is 

evidence that ethanol increases acetylation of histone 3 lysine 9, which then targets activation of the 

alcohol dehydrogenase gene (ADH) [17, 18, 43].  Moreover, Shukla et.al. (2008) support the idea that 

ethanol can alter epigenetic transcriptional activation based on which modification is selected for a site 

during times of stress when it can be occupied by more than one modification [22].  Chapter 4 

demonstrates the use of mass-spectrometry to metabolically trace 13C2-labeled ethanol in vivo. These new 

data show clear evidence of 13C2 heavy-labeled ethanol being incorporated into known sites of acetylation 

on the N-terminal tails of histone H3 and H4.  Incorporation of heavy-label was calculated using extracted 

ion chromatograms (XIC) for the double and singly acetylated and unmodified peptides belonging to H3K9-

R17 and H3K18-R23.  Total change in acetylation was also assessed for each peptide using the ratio of 

ratios of total acetylation to unmodified peptide over the fold change in ethanol- to control-fed groups. 

An interesting observation was observed in that the incorporation of heavy-label suggests site-selectivity 

of lysine residues over time. Histone 4 contains multiple sites of acetylation on the peptide H4K5-R17, 

making it hard to quantify manually.   MaxQuant evidence files in conjunction with R were used to 

calculate the 13C2 incorporation on the multiple H4 acetyl-sites over 24-hours.  Ethanol-heavy label 

incorporation at multiple acetyl-sites occurred as a mixture suggesting a role in transcriptional regulation.  

These new data establish a link between alcohol metabolism and known epigenetic marks on histone 

proteins.  These studies have now established that alcohol metabolism is indirectly linked to histone 

tyrosine nitration through increased ROS/RNS and directly through acetate production.  Understanding 

how these epigenetic marks fluctuate as ALD progresses will provide potential targets for the 

development of new drug therapies.  The epigenetic marks identified in these studies have previously 
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been established to be important activators in transcription.  These data provide novel techniques using 

proteomics-based metabolic tracing in vivo.  Future studies will assess how these marks change after 

chronic ethanol exposure and whether the changes in epigenetics are heritable.  Understanding 

hereditary of alcoholism will provide insight to those predisposed to the disease.    
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Chapter 1 
 
 

Introduction 
 

Pathology of Alcohol Liver Disease  

Alcoholic liver disease (ALD) is the broad term given to encapsulate the multiple stages of liver 

damage ensued by the overconsumption of alcohol.  Although preventable, ALD is currently the major 

contributor to liver disease in Westernized civilizations.  Recently, the World Health Organization (WHO) 

reported that alcohol abuse contributed to over 3.3 million deaths globally, and was the 5th leading risk 

for premature death and disability [1, 44-46].  Alcohol consumption can be linked to over 200 diseases 

and injury-related ailments, which in turn results in the expenditure of hundreds of billions of dollars in 

healthcare-related cost annually [1].  Alone, the United States currently spends more than $249 billion 

USD annually on the misuse of alcohol; of which ¾ of the cost originates from binge-drinking [1, 2].  The 

National Institute on Alcohol Abuse and Alcoholism (NIAAA) defines binge drinking as any pattern of 

drinking that raises the blood alcohol level to greater than 0.08 g/dL in a sitting, which translates into 

approximately 4-5 drinks in 2 hours depending on physique [2, 44, 45].  On the other hand, heavy or 

chronic alcohol consumption has been defined as drinking greater than 5 alcoholic beverages within the 

same sitting on more than 5 occasions per month (30 days) [2, 44, 45].  Alcohol dependency, whether 

chronic or binge, will eventually lead to alcoholic liver injury and if not corrected, and ultimately lead to 

steatosis, hepatitis, cirrhosis and/or cancer [2, 47-49].   

The term “alcohol liver disease” is a broad term that encompasses a range of pathological 

conditions ranging from reversible steatosis (fatty liver) to irreversible liver scarring and tumorigenesis, 

termed cirrhosis.  The first stage of ALD is called steatosis, also known as fatty liver, and is typically 
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characterized by the development of either micro- or macrovesicles of lipids within the hepatocytes 

(Figure 1.1 A & B respectively).  Although micro- and marcovesicle lipid accumulation can be observed in 

many other liver diseases by histology, it can be differentiated in ALD by the displacement of the nucleus 

to the cell membrane, which is otherwise not observed in nonalcoholic steatohepatitis (NASH) [47].  

Microvesicle accumulation observed during steatosis becomes more prominently expressed during 

periods of binge drinking with acute decomposition (Figure 1.1A) [47]. Following steatosis, a more severe 

form of injury called alcohol steatohepatitis (hepatitis) can develop, and severity can be characterized 

according to the number of histological features present within the liver tissue.  Although there is not a 

clear line of distinction between steatosis and steatohepatitis (or hepatitis) when there is evidence of 

hepatic injury in addition to the fat vesicle deposition, typically the grading system for nonalcoholic 

steatohepatitis (NASH) consisting of mild, moderate, and severe can be used [47].  Because there is no 

clear line between steatosis and hepatitis, the general term alcoholic steatohepatitis is commonly used to 

describe the development of ALD.  There are prominent features of liver injury seen in ALD that are not 

observed in NASH, which can be used to help classify the severity of alcohol steatohepatitis beyond micro- 

and macrovesicle formation.   

Mild hepatitis consists of both micro- and macrovesicle initial formation as well as increased 

hepatocyte ballooning and degeneration (Figure 1.1C). Hepatocyte ballooning, which can resemble 

Figure 1.1:  Hematoxylin-Eosin Stain of Mouse Liver 
Post 28-Day Chronic Ethanol Exposure.  The image was 
taken at 40X magnification and demonstrates mild 
alcoholic steatohepatitis.  The liver exhibits micro- (A) 
and macrovesicle formation (B), which can be seen in a 
variety of liver diseases.  Degrees of alcoholic 
steatohepatitis are characterized by a degree of factors 
including the nucleus placement to the cell membrane 
(B), the formation of Mallory-Denk bodies (C), 
neutrophilic invasion (D) and acidophil formation and 
necrosis (E).  As the disease progresses, neutrophilic 
invasion can be observed at sites of injury (F).      
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macrovesicle formation, is distinguishable by the central placement of the nuclei as well as possible 

Mallory-Denk body formation [47].  Mild hepatitis will also include one or more of the following features 

at low to moderate levels.  Swollen hepatocytes will begin to exhibit the presence of Mallory-Denk bodies 

(Figure 1.1D).  Mallory-Denk bodies are visualized as a spindle-like formation, caused by the condensation 

of denatured cytokeratin filaments within the hepatocyte cytoplasm [47].  These filaments are often 

ubiquitinated and mark the cell for apoptosis and degradation.  The liver will also begin to show signs of 

cell death and necrosis, marked by individual acidophil formation (Figure 1.1E) [47].  As the severity of 

liver damage increases, the neutrophil invasion will become elevated surrounding injured hepatocytes; 

and becomes much more prominent and concentrated in moderate to severe hepatitis than what is shown 

above (Figure 1.1F).  More moderate to severe cases of hepatitis are denoted by the drastic accumulation 

of foamy hepatocyte degenerates, which is a foam-like appearance that is formed by the lipid, bile and 

pigment accumulation in the cytoplasm [50].  Hepatocytes also accumulate glycogenated nuclei and begin 

to show signs of sclerosing hyaline cartilage development in the centrilobular dropout region[47].   

Moderate hepatitis also includes all of the aforementioned in addition to an increase in the 

number of apoptotic hepatocytes, also known as acidophils (or Councilman) bodies (Figure 1.1E) [47].  

Apoptotic hepatocytes can be recognized by their shrunken size, a dense eosinophilic cytoplasm, and 

pyknotic nucleus [47].  The last grade and most severe stage of hepatitis include all of the above in high 

densities in addition to the large deposits hyaline cartilage in the centrilobular region.  This marks the 

beginning stages of fibrosis/cirrhosis   

Fibrosis is scar tissue accumulation due to the imbalance of connective tissue formation and 

hepatocyte degradation [47].  Fibrosis results only from alcohol abuse and is not observed in the non-

alcoholic form of liver disease, making it a clear diagnostic marker.  Fibrosis is irreversible and often 

detrimental to disease outcome because of diminished liver function due to the surplus of connective 

tissue, which can restrict the blood flow into lobes causing tissue death from lack of oxygen and nutrients 
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[47].  Fibrosis typically begins near the central vein and spiderwebs down into the lobules as the disease 

progresses[47]. 

The beginning stages of cirrhosis are recognizable by fibroid tissue banding, nodule formation and 

severe bridging between the central and portal veins ensued by the decrease in blood flow [47].  Cirrhosis 

begins with the classical accumulation of micronodules and structural deformities of the liver [47].  Once 

cirrhosis progresses, the fibro-connective tissue matrix is maximized and pseudo-lobule formation occurs.  

Although micronodules are most commonly observed, during periods of prolonged alcohol abstinence, 

changes in patterns between micro- and macronodules has been observed [47].  Alcoholic patients that 

are diagnosed with cirrhosis also increase their risk of developing hepatocellular carcinoma 5-15% [47].  

Abstinence from alcohol is currently the only way to prevent cirrhosis of the liver.  

Ethanol Metabolism 

Oxidative Ethanol Metabolism 

The pathogenesis of alcoholic liver disease (ALD) depends on an array of factors, with only a 

minority of heavy drinkers actually developing fibrosis/cirrhosis of the liver [47-49, 51].   Once ethanol is 

ingested, the body begins the first-pass metabolism in the stomach.  First, pass metabolism encompasses 

gastric emptying and hepatic metabolism, and 20% of ethanol metabolism is estimated to occur in this 

phase [52-59].  Although there is much debate about the relative contribution of gastric over hepatic 

metabolism, both pathways depend on the rate of gastric emptying and the availability of their resident 

alcohol metabolite [52-60].  Gastric metabolism is said to only account for a small percentage (<20%) of 

ethanol metabolism due to the fact most of the ethanol is absorbed by the jejunum within the small 

intestine and delivered to the liver through the portal vein where hepatic metabolism is initiated [51, 57, 

58].  Hepatic metabolism is understood to be the primary mode of ethanol metabolism, largely because 

of the availability of the metabolite alcohol dehydrogenase (ADH) that is found in the liver. The liver is a 
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profound organ consisting of many metabolites, which are able to metabolize many compounds and drugs 

efficiently, such as xenobiotics and steroids, as well as regulate the oxidization of alcohol and fatty acids 

[57].  Hepatic metabolism of ethanol is an oxidative process that is catalyzed by one [or more] of the 3 

pathways within the liver.  The three separate pathways consist of the catalase pathway, alcohol 

dehydrogenase (ADH), and microsomal ethanol oxidizing system (MEOS) (Figure 1.2) [61].  The pathway 

utilized to metabolize ethanol is largely dependent on the availability of the metabolite as well as the 

quantity and duration of ethanol exposure.  Once the ethanol is absorbed and metabolized by the liver it 

enters circulation as the metabolite acetate, where it can be delivered to other organs in the body as 

energy or excreted as waste [57, 58]. 

The ADH pathway is currently the most extensively characterized pathway in hepatic metabolism, 

and it primarily takes place in the cytosol of the cell [9, 10, 51, 54-56, 59, 60, 62-66].  Two alcohol 

dehydrogenase isozymes combine in order to form a dimer with an average molecular weight of 80 kD.  

There are 5 total classes of ADH isozymes, each class results in a unique hybridization of isozymes that will 

allow for ADH optimization [58, 59].  Upon dimerization, the different combinations of subunits allow for 

activation of ADH and kinetic optimization [58, 59].  Only 4 of the 5 classes are found in the liver, they are 

class I-III and V.  Class IV or ADH7 consists of µ & σ subunits and is found in the stomach, esophagus, and 

mucosal linings [58, 59].  All Class I isozymes are all present in the liver and each possesses their own 

unique subunit; ADH1 (α),  ADH2 (β1-3) (liver and lung), and ADH3 (γ1-2) (liver and stomach).  During ethanol, 

metabolism ADH1 is thought to be the key factor in protecting a cell from acetaldehyde toxicity [57-59].  

The ADH class II of proteins consists of  ADH4 (π) and is found both in the liver and the cornea.   ADH4 

found within the liver is primarily located within mitochondria of the hepatocyte, ADH4 is the primary 

barrier to the intracellular toxic build-up of acetaldehyde [57, 58].  Class III consists of  ADH5 (χ); ADH5 is 

found in most tissues types including the brain, however, it does not take part in the oxidation of ethanol 

due to its low affinity for the substrate [57, 58].  The last class of ADH isozymes is class V and consists only 
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of the ADH6 isoform.  ADH6 is found in the liver and stomach, and currently little is known regarding its 

role in ethanol metabolism.  Ethanol metabolism of mild to moderate consumption (1-7 drinks/week) 

occurs mostly through class I ADH proteins, however, class II & IV play a significant role during times of 

greater alcohol consumption [57, 58].   

Ethanol metabolism by ADH begins by catalyzing the oxidation of ethanol to acetaldehyde while 

at the same time reducing NAD+ to NADH (Figure 1.2, center).  This reaction is initiated by the binding of 

ADH to the coenzyme NAD+ [66].  Next, the ADH and NAD+ complex binds the alcohol substrate with of 

zinc [66].  Upon forming a complex with zinc a series of deprotonation reactions occur on ADH, NAD+, and 

ethanol [66].  Finally, a hydride transfer from the alkoxide ion to NAD+ takes place, this leads to the 

formation acetaldehyde, which is released as a byproduct [66].  Acetaldehyde is toxic when it accumulates 

and therefore is almost immediately oxidized into acetate where it can be used in cellular respiration.  As 

Figure 1.2: Overview of Ethanol Metabolism.  Ethanol is metabolized by 1 more of the three 
pathways: (Center) Alcohol dehydrogenase (ADH) in the cytosol, (Bottom) Cytochrome P450 2E1 
(CYP2E1) in microsomes, (Top) Catalase in peroxisomes. ADH results in increased NADH:NAD+ ratios, 
both CYP2E1 and ADH produce increased reactive oxygen species.  Catalase is shown to have no 
contribution to ethanol metabolism in vivo.   

Adapted from Zakhari S. (2006) Overview: How is 
Alcohol Metabolized by the Body? 



 
7 

 

a result of the ADH pathway, there is a shortage of NAD+, which in turn induces mitochondrial dysfunction.  

In turn, the mitochondrial dysfunction leads to an increase in intracellular ROS/RNS.   

The second pathway in ethanol metabolism is the microsomal ethanol oxidizing system (MEOS) 

[9, 52, 57, 63, 65, 67].  The MEOS pathway occurs within the smooth endoplasmic reticulum (SER) and has 

been the subject of extensive research in recent years [63-65, 68, 69].  When initially discovered, MEOS 

was thought to stem from either ADH or catalase contamination, however, it is now known to work with 

the Cytochrome P450 family of isozymes [64, 65, 69, 70].  The cytochrome P450’s metabolize numerous 

types of reactions in the liver including toxic compounds, drugs, alcohol and liver byproducts [71].  

Cytochrome 2E1 (CYP2E1) is the key enzyme responsible for the metabolism of ethanol in the MEOS 

pathway [57, 58].  CYP2E1 has a higher affinity for alcohol than most of the ADH enzymes but is only 

upregulated during periods of long-term exposure to large quantities of alcohol exposure [57, 58, 63, 69].  

Although CYP2E1 levels can increase 4-10-fold during times of alcohol consumption, the increase in 

expression is transient and abstaining from alcohol greater than one-week returns CYP2E1 levels back to 

basal levels [57, 58].  It has been speculated that because only protein [not mRNA] levels of CYP2E1 are 

increased during ethanol metabolism, that degradation of CYP2E1 may somehow be inhibited [65, 72].  

CYP2E1 gene activation and mRNA stabilization have been ruled out as causes for protein upregulation 

during times of ethanol consumption [71, 73-76].  It is now being proposed that CYP2E1 accumulation can 

be attributed to protein stabilization possibly caused by changes in post-translational modifications on 

the protein itself, although no scientific evidence has been proposed to date [64].   

Because the MEOS/CYP2E1 pathway is also important in the metabolism of xenobiotics and other 

drugs, alcohol metabolism may be subjected to competition for the cofactor NADPH oxidase.  The main 

function of P450 cytochromes is to modify metabolites in order to make them easier to be excreted [71].  

Other types of compounds and metabolites such as acetaminophen [77], CCL4 [78], acetone [79, 80], and 

N-nitrosodimethylamine (NDMA) [81] may need to be cleared from the liver at the same time that alcohol 
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is being metabolized [64].  Competition in metabolism may offer insight to the stalled CYP2E1 degradation 

observed during times of prolonged alcohol consumption.   

Ethanol metabolism by CYP2E1 occurs inside a microsome.  The reaction occurs when NADPH is 

reduced to NADP+, and ethanol is reduced to acetaldehyde (Figure 1.2, bottom).  Acetaldehyde is then 

released as an intermediate and oxidized further into acetate. As ethanol is metabolized, available NADPH 

becomes depleted, and as a result, ROS/RNS are produced.  The production of superoxide (O2
-) and 

hydrogen peroxide (H2O2) are prevalent and these free radicals are then free to move about the cell 

causing harm.   

The last and third oxidative pathway in alcohol metabolism is the catalase pathway (Figure 2, top).  

The catalase pathway has not been shown in vivo to significantly contribute to ethanol metabolism under 

physiological conditions and therefore will not be addressed in these studies [64].  

No matter which pathway is used to metabolize ethanol, the first step is to convert ethanol into 

acetaldehyde, which then enters the mitochondria where it is converted into the metabolite acetate.  

Acetaldehyde is the intermediate step in both pathways and is quickly converted into acetate and NADH 

to avoid toxicity.  NADH can accumulate within the mitochondria and in turn, can cause dysfunction in the 

electron transport chain as copious amounts of acetaldehyde become oxidized.  The more mitochondrial 

dysfunction, the more ROS/RNS is generated.  Acetate derived from acetaldehyde is typically transported 

through the bloodstream where it is used for energy and then converted by other organs into CO2 [82].  

Acetate may also be converted into acetyl-CoA where it can be used in lipid metabolism or as an acetyl 

donor by acetyltransferases [82].   

Ethanol Metabolism and Mitochondrial Dysfunction 

Acetaldehyde production, during ethanol metabolism, is pathway independent and as a result, 

NADH accumulates and reactive oxygen species are generated.  Ethanol is first metabolized into 
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acetaldehyde by ADH within the cytoplasm (Figure 1.3).  Acetaldehyde is toxic to the cell because of its 

ability to modify other enzymes and proteins as well as it being a carcinogenic [57, 59, 83].  Because of 

the toxicity, acetaldehyde is rapidly metabolized within the mitochondria, into acetate by acetaldehyde 

dehydrogenase (ALDH2) using the cofactor NAD+.  Decreased levels of the antioxidant glutathione (GSH) 

signify acetaldehyde adduct formation, which can lead to protein retention within the liver, hepatomegaly 

and many other many toxic manifestations [57].  GSH is a scavenger of toxic free radicals, and its depletion 

allows for acetaldehyde-induced free radical formation toxicity and lipid peroxidation [57, 64].  As a result, 

excess NADH found within the mitochondria and cytosol of the cell that is caused by the conversion of 

ethanol to acetate has been linked to hyperlactacidemia, can lead to acidosis  [64].  If not rectified acidosis 

will then lead to secondary hyperuricemia, enhanced purine degradation and even more increases in 

reactive oxygen species (ROS) [64].   Increases in NADH can also inhibit fatty acid oxidation and raise the 

concentration of α-glycerophosphate to encourage triglyceride formation in the liver (Figure 1.3).  

Moreover, increased levels of NADH may inhibit glycolysis by blocking pyruvate formation through lactic 

acid accumulation [84].  As a chain reaction, the citric acid cycle is also distressed due to the unavailability 

of NAD.  The electron transport chain is forced to use hydrogen equivalents obtained from ethanol, rather 

than from the oxidation of fatty acids, as the main energy source of the liver [64].  The disruption in the 

citric acid cycle can also promote triglyceride formation in the liver due and ultimately will promote 

hepatic lipogenesis [64, 84].   

Acetaldehyde is next converted into acetate within the mitochondria (Figure 1.3).  Ethanol 

metabolism can be assessed by quantifying the acetate levels found in the bloodstream.  Acetate is very  

important for cell metabolism, it can travel safely throughout the bloodstream to other organs and used 

in the Krebs cycle to make adenosine triphosphate (ATP).  Acetate is further metabolized into acetyl-CoA, 

where it can then enter the TCA cycle to produce energy.  Acetyl-CoA is then able to donate its acetyl 

group to other proteins and histones with the help of acetyltransferase.  In tandem, the altered redox 
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state promotes hyperacetylation throughout the cell by inhibiting deacetylase activity [85-88].  Protein 

acetylation is a reversible modification and has recently become recognized as a significant contributor to 

not only cell metabolism but also gene regulation through epigenetics [89-91].  The increased acetylation 

observed during ethanol metabolism may be due to inactivation of the sirtuin family of deacetylases or 

increased acetylation due to rising levels of acetyl-CoA (Figure 1.3).  The sirtuin proteins are NAD-

dependent deacetylase proteins that control protein expression within the cell by facilitating the removal 

of acetyl groups on proteins, their function is imperative in maintaining hepatic homeostasis [35-37].  It is 

possible that ethanol metabolism can inhibit sirtuin activity by out-competing the sirtuin enzymes for 

Figure 1.3: Overview of NADH: NAD+ Regulation during Ethanol Metabolism.  Ethanol metabolism affects 
numerous pathways within the cell.  The metabolism of ethanol relies on a large amount of NADH, which it 
uses from the available stocks required to maintain cellular homeostasis.  Ethanol causes dysfunction in 
glycolysis, as well as the Krebs cycle and electron transport chain.  Disruption in mitochondria homeostasis 
can cause dysfunction in protein regulation such as a decrease in sirtuin deacetylase.  Down regulation in 
deacetylase activity can further disrupt protein expression via hyperacetylation (i.e. CPS1 and histone 
proteins). 
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available NAD+, thus resulting in increased protein acetylation and mitochondrial dysfunction following 

long periods of alcohol consumption (Figure 1.3) [38].   

Ethanol Metabolism and Oxidative Stress  

Ethanol consumption induces substantial amounts of ROS/RNS in the liver during its metabolism, 

which primarily originates from mitochondria dysfunction induced by oxidative stress. Ethanol can 

increase redox pressure along the electron transport chain via NADH, resulting in an even larger increase 

of available ROS (Figure 1.4) [14].  Both the cytochrome bc1 and NADH dehydrogenase complexes within 

the electron transport chain have been found to be major contributors to ROS formation and “leak” free 

radicals during ethanol metabolism [11-13].  As a result, the free radicals, superoxide (O2
-) and hydrogen 

peroxide (H2O2) are diffused into the cytoplasm where they can react with other molecules, proteins and 

Figure 1.4: Ethanol Metabolism Induces Oxidative Stress in the Mitochondria. As ethanol (EtOH) is 
metabolized increased levels of acetaldehyde and NADH are produced.  Acetaldehyde enters 
the mitochondria where it is converted into acetate.  Acetate is further used in cellular 
respiration for acetyl-CoA production.  As EtOH is broken down, levels of NADH also increases 
causing mitochondria dysfunction and ROS production. Increases in ROS/RNS promote the 
formation of peroxynitrite that can then nitrate tyrosine residues throughout the cell.      
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even DNA [4, 14]. Oxidative stress can have detrimental effects on homeostasis if not tightly regulated [4, 

14, 92].  Recently it has been demonstrated that at high levels of ethanol (600 mM) exposure (in 

conjunction with the resulting increased levels of ROS), initiate high levels of BCL-2-associated X protein 

(BAX) recruitment to the mitochondria, ultimately leading to cell death [93]. Traditionally, during times of 

mitochondria dysfunction, mitochondrial fission and autophagy are activated in an ethanol concentration-

dependent manner [93].  Inhibition of the autophagy pathway during ethanol-induced ROS resulted in 

increased mitochondrial fission and cell death [93].  However, upon autophagy pathway stimulation, the 

mitochondria showed signs of autophagy having a protective role in the removal of damaged 

mitochondria [93].  Furthermore, when high levels of BAX recruitment to the mitochondria was blocked 

cells treated with ethanol responded in mitochondrial fission and autophagy and not cytotoxicity [93].  

Upon ROS/RNS formation the liver can activate an inflammatory response via tumor necrosis factor alpha 

Figure 1.5: Reactive Oxygen Species, Superoxide (O2
-) and Nitric Oxide (NO) Lead to the Formation of 

Nitrotyrosine (nY).  When excess superoxide and nitric oxide are formed, they can react to form the highly reactive 
peroxynitrite.  Peroxynitrite can add the post-translational modification of a nitro group to cysteine, tyrosine and 
threonine residues. 
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(TNFα).  Kupffer cells, the resident immune cells of the liver, are responsible for producing an 

inflammatory signaling molecule, and also a free radical, nitric oxide (NO-), [94].  Generally, NO- has a 

protective role at low concentrations, however, in surplus can lead to tissue damage.  Nitric oxide synthase 

(NOS) is the protein responsible for NO- formation.  Three isoforms of NOS exist, inducible (iNOS), 

neuronal (nNOS), and epithelial (eNOS) and when combined with L-arginine; NO- and L-citrulline are 

formed as a byproduct [30, 95].  NO- levels have been shown to be elevated during times of ethanol 

consumption, which has been suggested to play a role in the onset of liver injury [29, 30].  Previous 

research has demonstrated that both TNFα and endotoxin receptors are involved in the development of 

ALI through increased levels of NO, which can combine with O2
- to form the powerful nitrating agent 

peroxynitrite (ONOO-)[94].  Recently a study showed that when iNOS was knocked out liver damage due 

to alcohol abuse was blunted, whereas eNOS did not have any effect on liver injury [94].  The current 

working hypothesis states that endotoxins are released or “leaked” from the gut as a result of alcohol 

consumption, activating the inflammatory response, which in turn releases ROS/RNS that can induce liver 

injury [94].  The reasoning for this is due in part by ethanol-induced increases in NO- and O2
- that can lead 

to peroxynitrite (ONOO-) formation, a potent oxidant and nitrating agent of tyrosine residues (Figure 1.5) 

[29, 31-34].   

Together all of these mechanisms provide a conducive environment for framing epigenetic marks 

on histone proteins.  Altogether ethanol metabolism causes, shifts in redox potential, increased ROS/RNS,  

increased acetate, increased inflammatory response and when combined with decreased sirtuin activity 

it provides all of the components conducive to implementing changes to epigenetics [96].  It is important 

to understand how the molecular mechanisms of ethanol-induced changes can lead to the variation of 

epigenetic regulation of gene expression.   
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Alcohol and Epigenetics 

Genetics are very important in the progression of ALD and how individual genes are controlled 

during ethanol metabolism need to be tightly regulated [58].  Alcohol-induced epigenetic changes 

prompted by liver injury have become of great interest to researchers recently.  Genetics and race have 

previously been recognized to link the predisposition of alcoholism from epigenetic marks inherited at 

birth [16, 25-27].  Surprisingly, little is currently known about the mechanisms relating to alcohol-induced 

epigenetic changes.  The term epigenetics refers to phenotypic changes within the cell, without altering 

the deoxyribose nucleic acid (DNA).  Typically, these are transient marks or post-translational 

modifications (PTM) that act as activators or silencers within the genome.  When a post-translational 

modification is added to a protein it can act as a substrate, catalyst, inhibitor as well as aid in protein 

folding [97].  Alcohol consumption has been shown to induce PTM changes in protein acetylation, 

methylation, phosphorylation, DNA hypomethylation as well as induce alterations in miRNA generation 

and function [15-18, 24-26, 39, 40, 96, 98].  These modifications are thought to be influenced by the 

increase in reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated as a result of 

ethanol metabolism [96].  ROS and RNS are able to move throughout the cell and alter any proteins they 

may come into contact with, both cytoplasmic and nuclear.  When ROS and RNS enter the nucleus, they 

are able to target histone protein tails, which are known to be important modulators of transcriptional 

regulation through epigenetic marks.  Histone tails can be acetylated, methylated, phosphorylated and 

ubiquitinated just like other proteins, however, the histone tails can interplay with the DNA causing 

changes in gene regulation and transcriptional machinery recruitment.  The study of epigenetics 

investigates how the various PTM combinations added to the histone proteins or DNA effect transcription 

[99].  Histones tails are responsible for regulating many epigenetic mechanisms; altering their post-

translational modifications may result in differential gene expression and impaired recruitment of the 

necessary proteins needed for transcription [89-91].  Understanding the underlying mechanisms of how 
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alcohol metabolism influences epigenetic alterations and how those changes affect the progression of 

alcoholic liver disease has become an increasingly large interest in the Stevens lab as well as in other labs 

over the past few years.  These data presented throughout show a link between alcohol consumption and 

epigenetics, whether by an indirect mechanism of histone tyrosine nitration via increased ROS and ONOO- 

or directly to histone acetylation through acetyl-CoA.   

Ethanol-Induced Histone Tyrosine Nitration 

Protein tyrosine nitration (PTN) is a type of post-translational modification specifically induced by 

oxidative/nitrative stress.  The role of PTN in epigenetics and alcohol liver disease is currently largely 

unexplored.  PTN occurs when O2
- generated from ethanol metabolism reacts with upregulated NO and 

results in the formation of peroxynitrite (ONOO-) (Figure 1.5).  Peroxynitrite is a potent oxidant and 

nitrating agent, which is able to nitrate tyrosine, cysteine and threonine residues that it comes in contact 

with.  PTN poses an interesting target in ethanol metabolism and epigenetics as there is now an emerging 

role for tyrosine phosphorylation as an epigenetic modification [100].  Specifically, tyrosine nitration may 

have a direct role in altering histone-mediated gene transcription processes, or indirectly by affecting 

histone phosphotyrosine levels that have an impact on these processes [101].  Previous work has 

demonstrated that protein tyrosine nitration can affect the phosphorylation status of tyrosine residues 

by competition (inhibition), as well as by stimulating phosphorylation events [34, 102-105].  Furthermore,  

it is interesting to note that selective nitration of histone proteins has been reported previously in another 

pathophysiological condition where Mutatect tumors showed a marked increase in tyrosine nitration on 

the low MW histone isoforms [106].  Bartesaghi et. al. (2007) describe PTN as very selective; only 1-2% 

out of all of the available tyrosine residues within the cell can be nitrated, and it largely depends on both 

the environment and the structure of the protein to be nitrated [107].  Due to the minimum amount of 

tyrosine residues available for nitration, the positively charged lysine, and arginine residues of the histone 
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N-terminal tails within the nucleosome offer promising targets for histone tyrosine nitration (HTN) during 

times of ethanol-induced oxidative stress [108].  This observation prompted us to ask whether tyrosine 

nitration on histone proteins can be an established epigenetic mark induced by ethanol, and if so, what is 

its biological relevance.  Preliminary data from our laboratory suggest that during times of increased 

oxidative stress, such as binge or chronic drinking, PTN also increases.  In vivo data presented in chapter 

3 shows an increase in pan-nitrotyrosine that was localized to the nucleus after 4-weeks chronic ethanol 

exposure. 

Definitive identification of novel nY sites in vivo has proven to be a difficult task for researchers to 

study because of the many different obstacles encountered at both the cellular and technical level.  

Currently, most of the available research on nY has been completed in vitro using synthetic peptides and 

peroxynitrite to initiate nitration [103, 104, 107, 109-112].  This method works well to give insight to 

specific tyrosine residues that can be targeted for nitration, however, there has been little to no data 

reproducibility due to the inability of peroxynitrite to mimic the physiological synthesis of nitric oxide by 

endogenous cells [31, 33, 101].  Tyrosine nitration research is also limited by the gap in knowledge 

pertaining to the mechanism underlining tyrosine nitration as well as the possibility for dinitrase activity.  

Currently, there are several reports of dinitrase activity in vitro but the underlying mechanism or the type 

of cellular environment needed for promoting dinitrase activity has yet to be elucidated [109, 113-117].  

These data presented in chapter 3 focus on how ethanol metabolism and an increase in ROS indirectly 

affects tyrosine nitration on histone proteins.  This study will identify novel sites of tyrosine nitration on 

histones and examine whether these sites are important regulators of transcription.  Moreover, the 

mechanistic detail regarding the impact of oxidative stress on other histone modifications is essentially 

unknown.  Chapter 3 investigates how ethanol-induced ROS formation influences tyrosine nitration and 

its possible role in the development of alcohol liver disease.   
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Ethanol-Induced Histone Lysine Acetylation 

Lysine acetylation is a post-translational modification that has caught the attention of many 

scientists over the last 50 years [91].  Lysine acetylation is a reversible modification that has been 

implicated in many biological processes that link metabolism and cell signaling.  More specifically, lysine 

acetylation has been shown to have roles in regulating protein interactions, as well as affecting protein 

activity and localization [89].  Lysine acetylation of histone proteins is a known activating mark of 

transcriptional regulation because of its ability to loosen the negatively charged DNA [89].  Recent studies 

show ethanol metabolism can affect the acetylation status of proteins, usually resulting in a 

hyperacetylation status of proteins.  Currently, much of the research on ethanol-induced protein 

acetylation has occurred on mitochondrial proteins [85, 88, 118, 119].  Although the mechanism 

surrounding ethanol-induced hyperacetylation is poorly understood, it is thought that the 

hyperacetylation of mitochondrial proteins is due in part to the competition of NAD+ by both ethanol and 

the deacetylase proteins, sirtuins [38].  The sirtuin proteins are NAD+-dependent deacetylase proteins that 

regulate protein expression through deacetylating target lysine residues [35-37].  Fritz et.al. (2013) now 

show that hyperacetylation of mitochondrial proteins can be induced by ethanol metabolism directly 

rather than a sirtuin deficiency [118]. 

More recently the research has shifted to understanding how ethanol-induced changes in lysine 

acetylation affect epigenetics through histone modifications.  Park et. al. (2003) discovered that 

acetylation of histone H3 lysine 9 was upregulated in hepatocytes over the course of 24 hours when 

treated with 50 and 100 mM ethanol [80].  Additionally, Kendrick et. al. (2010), showed that metabolically 

available acetyl-CoA from acetate is vital to the increased acetylation of histones that target 

proinflammatory genes and consequently the proinflammatory response in ethanol-treated macrophages 

[120].  Most recent, Shukla et.al. (2015) confirmed that ethanol and acetate exhibit different experimental 

outcomes when used to assess the metabolic effects of metabolism on hepatic gene expression [23].  The 



 
18 

 

study presented in chapter 4 identifies differences in histone acetylation following binge drinking.  Also, 

the study aims to understand how ethanol metabolism contributes to lysine acetylation on hepatic 

histone N-terminal tails and what effect it has on gene regulation. 

A recent link is now being established between, ethanol metabolism, oxidative stress and 

subsequent epigenetic modifications, such as acetylation within the liver (as well as other tissue types) 

triggered by ethanol exposure [20].  For example, ROS production in rat hepatocyte primary culture after 

ethanol exposure was shown to contribute to the known liver epigenetic marker, acetylation of histone 

H3 at Lys9 (H3K9Ac) [18, 43].  Histone acetylation, in particular, is regulated by the activities of various 

histone acetyltransferases (HATs) and histone deacetylases (HDACs) where the activities of these enzymes 

are altered in hepatocytes following ethanol exposure [17, 18, 23, 39, 43, 121].  Furthermore, ethanol-

induced changes in histone acetylation patterns have been shown to selectively alter gene expression in 

rat livers while not affecting global protein expression [43].  However, the molecular mechanisms 

underlying ethanol-induced oxidative stress and its relationship to histone acetylation in hepatocytes are 

still unclear.  Acetylation of the tail region of histones H3 and H4 are currently known to be transcriptional 

activators in numerous scenarios ranging from normal cellular homeostasis to disease progression.  

Chapter 4 investigates how ethanol affects histone acetylation with the help of acetyl-CoA and histone 

acetyltransferases.   

Currently, the details regarding the impact of alcohol-induced oxidative stress on histone 

modifications are essentially unknown.  The conclusion of these studies will identify how ethanol 

metabolism contributes to epigenetic modifications on histone tails.  The focus of the following chapters 

is to identify the role of ethanol metabolism and its ability to influence changes in PTM’s, more specifically 

the epigenetics of histone proteins.  Increases in ROS indirectly affects tyrosine nitration on histone 

proteins most likely by the formation of ONOO-.  The following studies will identify and validate novel sites 

of tyrosine nitration on histones and further examine whether these sites are important regulators of 
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transcription.  They will also investigate how ethanol-induced acetate formation influences histone 

acetylation through the formation of acetyl-CoA and use of histone acetyltransferase.  

Epigenetics and Proteomics  

Overview of Mass Spectrometry 

Over the past decade, liquid chromatography and mass spectrometry-based technology have 

greatly advanced.  Liquid chromatography (LC), has transitioned over the years through high-pressure 

liquid chromatography (HPLC) into ultra-high performance (UHPLC) technology by using smaller particles 

in conjunction with higher pressure [122].  This allows for better binding, separation, and elution of 

peptides as they flow through the column. Peptide separation techniques and sensitivity levels have 

reached new levels of speed and resolution to complement the increasing sensitivity and selectivity of 

mass spectrometers.  There are numerous methods of data collection that can be used in order to obtain 

good separation of complex samples and optimize results [123].  The methodology primarily used in the 

following studies applied reversed-phased UHPLC-MS in conjunction with a top-10 data-dependent 

acquisition (DDA) method.  UHPLC has two primary functions, reduce sample complexity and enhance the 

peptide concentration before entering the mass analyzer [124].  In reversed-phase liquid 

chromatography, samples are bound by hydrophobic forces and released during a mobile phase of 

increasing organic solvent.  Eluted peptides are ionized as they come off the column and enter the mass 

analyzer.  Mass spectrometers consist of 3 major parts, the ion source, the mass analyzer, and the detector 

(Figure 1.6) [124].  The ion source creates the ions, either by electrospray ionization (ESI) or matrix-

assisted laser desorption/ionization (MALDI).  Currently, the most commonly employed mass analyzers 

are the time-of-flight (TOF), quadrupole, ion trap, Orbitrap, and Fourier transform (FT) ion cyclotron 

resonance [125].  The detector, electron multipliers as an example, detect signals and then converts them 

into a spectrum and then the intensity of each peak is recorded as relative abundance.     
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The following experiments utilized UHPLC and Q-Exactive Plus mass spectrometer (Thermo Fisher 

Scientific).  The Q-Exactive Plus (QE) is a hybrid high-resolution mass spectrometer (MS) designed using 

ESI technology and 2 mass analyzers, the quadrupole, and the Orbitrap, which provides more enhanced 

peptide selectivity and tandem MS sensitivity.  The first mass analyzer in the QE Plus is the quadrupole, 

and it functions to isolate the most abundant precursor ions, as designated by the method, to send into 

the 2nd mass analyzer, an Orbitrap where the ions cycle the Orbitrap at different frequencies while 

oscillating across the horizontal axis where the current is recorded and converted into mass spectrum 

using the Fourier transform function of the recorded signal.  These studies predominantly used a top -10 

DDA methodology, which selects the 10 most abundant precursor ions within each mass spectrum to be 

selected for further fragmentation by tandem MS [or MS2].  Tandem MS is a coupled with MS1,  where 

peptides with matching precursor ions are selected, isolated and further fragmented using collision-

induced dissociation (CID) [123, 124].  CID works by the collision of a neutral gas against the peptide, 

resulting in either a b-ion or y-ion series.  The ion series is represented as specific fragment ions generated 

by cleavage of the amide bonds where charge retention occurs on N- or C-terminal side of the fragment 

ion.  When fragmented, each peptide will create a unique set of fragment ions, just like a fingerprint. 

Figure 1.6: General Overview of LC-MS Analysis.  Sample is resuspended in HPLC-H2O and 
loaded onto the LC where it will bind the separation column.  As organic solvent is increased, 
the peptides eluting off the column will be ionized into the gas phase.  The mass analyzer will 
next separate the precursor ions on mass to charge.  In tandem MS, the precursor ions can then 
be further fragmented by CID into daughter ions.  The detectors calculates the number of ions 
for each peptides and the computer records the data as relative abundance and/or intensities. 
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Tandem MS, is run in parallel to MS1 and the precursor ion is selected for further fragmentation 

that produces daughter ions.  The daughter ions can be used for de novo sequencing or validation of 

peptides by taking the difference in mass to charge (m/z) of sequential residues.  Adequate sequence 

coverage must be obtained in order to ensure complete sequencing by de novo methods.  For example, 

the N-terminal region of a peptide produces b-ions, which typically fragment into low m/z values giving 

them an easier likelihood of being deflected while traveling through the mass analyzer.  B-ion deflection 

may result in minimal coverage of peptides in low m/z regions making validating and sequencing in that 

region difficult.  Methods of validation are important to prevent misidentification of proteins.  Stevens et. 

al (2008) describe proper validation measures using de novo sequencing in order to ensure correct 

identification of peptides and PTM while lessening the chances of false-positives  [126].  True peaks should 

have greater than 20% relative abundance in the given spectra, have a run in consecutive ions within a 

series greater than 4 ions, and exhibit conventional fragmentation patterns [126].  The validation of 

spectra by tandem MS has been used recently in the identification of novel sites of post-translational 

modifications on histone proteins (epigenetics) and was used in chapter 3 in order to validate novel 

targets of histone nitration.  Histone PTM marks have a regulatory role in chromatin structure and 

functions [124].  The same DDA analysis described above can be used for histone PTM identification.  Every 

PTM has a unique elemental composition and m/z, thus it can be considered a new amino acid.  Two 

factors depend on efficient detection of a PTM, which are the stability and the abundance of the 

modification.  The mass shift observed for the newly modified residue can be compared to their 

unmodified counterpart, however, all mass shifts come with an increased error and/or false discovery 

rate (FDR) [127, 128].  Computer-based algorithms, such as MaxQuant (Andromeda), MASCOT, and 

SEQUEST are now becoming widely used to identify and quantify PTM. These applications make it easier 

to identify novel PTM on previously unidentified sites, however, there are still concerns about false 

positives and search errors [127, 128].   
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Labeling Techniques in Mass Spectrometry  

Numerous labeling strategies are currently being used in order to achieve better quantification of 

histone PTM identified by MS.  N-terminal histone tails typically contain an abundance of lysine and 

arginine residues, which are cleaved C-terminally by trypsin prior to MS.  Often this cleavage can lead to 

short hydrophilic peptides that cannot be retained on a column [124].  In turn, using a protein or peptide 

labeling system to identify relative changes in histone PTM allows for better coverage and quantitation 

by mass spectrometry.  Stable isotope labeling by amino acids in cell culture (SILAC) has become widely 

used in MS and is a useful tool for in vitro experimentation because of the ease in quantifying changes in 

protein expression [129].  SILAC is typically used in cell lines that can be cultured and passaged several 

times to ensure complete label incorporation into the proteins.  After six passages, complete label 

incorporation is accepted to occur.  The separate treatment groups of cells are then mixed as a 1:1 ratio 

of heavy to light labeled peptides so they can be analyzed as an equal mixture.  Recently this technique is 

now being applied in vivo using stable isotope labeled feeding chow. Chapter 4 uses a method similar in 

order to metabolically trace 13C2 heavy-labeled ethanol to histone acetylation.   

Although SILAC is optimal for proliferating cells, when cells are terminally differentiated such as 

primary hepatocytes, other chemical labeling techniques can be used instead.  Chemical labeling can be 

completed at the peptide level using tandem mass tags (TMT), or isobaric tags for relative and absolute 

quantification (iTRAQ) [130].  These tags are chemically attached to lysine residues and can be used for 

quantitation after proteolysis.  More recently, Andromeda has implemented a label-free quantitation 

(LFQ) option in the MaxQuant algorithm, which has both pros and cons to chemically derive labeling 

systems [131, 132].  Chapter 4 uses a labeling method called propionylation in order to detect and increase 

the hydrophobicity of N-terminal histone tails [133].  Lysine derivatization adds a propionyl group to 

unmodified lysine residues.  Upon derivatization, smaller histone peptide fragments will become more 

hydrophobic and therefore will stay on the column and provide better separation.  The following 
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experiments utilize both label-free quantitation and propionylation approaches in order to better 

understand how alcohol consumption alters the epigenetics of histone proteins. 

Project Aims and Rational 

Aim 1: Identify and characterize site-specific targets of tyrosine nitration on histone proteins regulated 

by ethanol exposure.  

Increasing evidence suggests that epigenetic regulation through DNA methylation and histone 

modifications plays a major role in numerous human diseases, including alcohol liver disease (ALD) [96].  

Alcohol through metabolism is a major contributor to the production and release of reactive oxygen 

species (ROS) and reactive nitrogen species (RNS) [4, 134-137].  Consequently, free radicals are then able 

to move freely throughout a cell and interact with an array of molecules and proteins causing destruction 

in their path [4, 5, 135-139].  Accumulation of free radicals such as nitric oxide (NO), peroxynitrite (ONOO-

) and superoxide (O2
-), have the ability to oxidize the proteins they come into contact with, therefore 

modifying their function and altering signaling events [5, 92, 101, 135, 136, 139-142].  During normal 

metabolism, the antioxidant glutathione (GSH), found in the liver, acts as a reductant to keep oxidative 

stress within the cell minimal and close to physiological conditions [107].  Glutathione (GSH) levels drop 

during ethanol metabolism as a result of ROS formation, allowing ROS to accumulate even more [143-

145].  When GSH levels drop, ONOO- can form when the superoxide anion (O2
-) reacts with free nitric oxide 

(NO) within the cell [29, 30, 33].  Inducible nitric oxide synthase (iNOS), a signaling protein that becomes 

upregulated during times of inflammation, is responsible for the excess production NO [94].  When iNOS 

expression is knocked out in mice or blunted by the inhibitor 1400W, tyrosine nitration is minimized and 

liver injury is blunted [94].  Mice that were void of iNOS also exhibited no clear evidence of alcohol liver 

disease formation following 4-weeks of intragastric ethanol feeding [94].  These data show a suggested 

link between ROS, NO, and pathogenesis of ALD, this aim strives to further investigate the role of ethanol-

induced tyrosine nitration on histone proteins and the role of histone nitration in the development of ALI. 
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Nitric oxide (NO) has a dual role in the body.  NO has been demonstrated to have protective 

properties when expressed at endogenous levels, and harmful effects when found at higher levels [4].  

Ethanol has been demonstrated to cause an increase in available NO within the cell upon activation of 

inflammatory modulators such as TNFα [29, 30].  Nitric oxide is found within every organ system in the 

body, and functions as a key signaling molecule and regulator of immune response, vasculature 

homeostasis and inflammation [4, 141, 146].  Furthermore, recent studies now show NO is able to 

contribute to the regulation of epigenetics by modifying methylation and acetylation sites on histone 

proteins [147-149].  However, the link between oxidative stress and subsequent epigenetic modifications 

in the liver (as well as other tissue types) triggered by ethanol exposure is only recently being investigated.  

For example, histone acetylation has become increasingly popular amongst the alcohol research 

community.  One study determined that ROS production in rat hepatocyte primary culture following 

ethanol exposure was shown to contribute to the known epigenetic marker, acetylation of histone H3 at 

Lys9 (H3K9Ac), which has also been shown to be induced by ethanol, [18, 43].  Histone acetylation is 

largely regulated by the activities of various histone acetyltransferases (HATs) and histone deacetylases 

(HDACs) where the activities of these enzymes are altered in hepatocytes after ethanol exposure due to 

shifts in redox potential and increased oxidative stress [17, 18, 23, 39, 43, 121].  Furthermore, ethanol-

induced changes in histone acetylation patterns have been shown to selectively alter gene expression in 

rat livers while not affecting global protein expression [43].  However, the molecular mechanisms 

underlying ethanol-induced oxidative stress and histone tyrosine nitration in hepatocytes are still unclear.  

Moreover, the mechanistic detail regarding the impact of histone nitration modifications is essentially 

unknown.   

Histone tyrosine residues pose as an interesting target of nitration seeing as there is now an 

emerging role for tyrosine phosphorylation as an epigenetic modification [100].  Specifically, tyrosine 

nitration may act as a transcriptional regulator, or possibly as a negative regulator of tyrosine 
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phosphorylation, in turn, impacting on phosphorylation signaling processes [101].  Previous work has 

demonstrated that protein tyrosine nitration can affect the phosphorylation status of tyrosine residues 

by competitive inhibition as well as stimulating phosphorylation events, however, the effect of alcohol on 

tyrosine nitration and phosphorylation are unknown [34, 102-105].  Recent reports found a marked 

increase in tyrosine nitration on the low MW histone in Mutatect tumors, suggesting a role for histone 

tyrosine nitration in oncogenesis  [106].  Moreover, histones pose as an interesting target of tyrosine 

nitration even though PTN as very selective, and only 1-5 tyrosine residues in 10,000 can be nitrated [107, 

108]. The nitration of tyrosine is largely dependent on the environment and structure of the protein and 

histone proteins fit the criteria [107, 108].  Seeley et.al. (2012) have previously demonstrated that tyrosine 

nitration was preferential when the tyrosine is bordered by basic residues or an adjacent uncharged polar 

residue when compared to hydrophobic and acidic residues [108].  Histones provide a positively charged 

environment that is lysine and arginine-rich suggesting the nucleosome would be promising for histone 

tyrosine nitration (HTN) during times of ethanol-induced oxidative stress [108].  This observation 

prompted the investigation to determine whether tyrosine nitration could occur as a post-translational 

modification on histone proteins and if so, whether histone tyrosine nitration is important in gene 

regulation.  It was hypothesized that ethanol metabolism encourages selective tyrosine nitration on 

histone tails, which is able to influence protein recruitment necessary for transcriptional regulation and 

gene expression. 

Aim 2: Identify ethanol-induced sites of acetylation on histone proteins and assess their effects on gene 

regulation during oxidative stress 

Protein acetylation has very important roles throughout the cell, such as metabolic regulation, 

cellular signaling, transcriptional programming and more recently, epigenetics [89-91, 150].  During times 

of ethanol exposure, lysine acetylation has been shown to be altered in a variety of cell types and 
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organelles [85, 86, 88, 119, 151, 152].  Hyperacetylation is the most prominent change observed in the 

cell after ethanol exposure, and most frequently detected within the mitochondria [85, 86, 88, 119].  The 

metabolism of ethanol within the liver is largely dependent on the ratio of NADH/NAD+, which is essential 

to metabolism and can be obtained from the mitochondria and cytoplasm within the cell [9, 82, 153].  The 

oxidation of NADH to NAD+ induces oxidative stress, which in turn causes dysfunction in numerous 

metabolic pathways [14, 154].  Ethanol-induced oxidative stress has been demonstrated to increase lysine 

acetylation and alter protein regulation within the mitochondria and throughout the cell [14, 155, 156].  

The increase in lysine acetylation has been attributed to the reduced availability of the cofactor NAD+-

and, in turn, inhibiting sirtuin activity caused by the overproduction of NADH from ethanol metabolism 

[118].  Although ethanol exposure can lead to decreases in the activity of sirtuin 1 and 3 proteins, previous 

research has shown no overall changes in sirtuin protein abundance [38, 118, 157].   

Post-translational modifications (PTMs), such as lysine acetylation, play important roles in protein 

regulation and signaling throughout the cell [158, 159].  Site-specific identification and characterization of 

PTMs are necessary for the understanding of their biological functions within the cell [158].  Lysine 

acetylation has been implicated to be one of the most important regulators of cellular processes and 

protein regulation [159-162].  Moreover, lysine acetylation has been shown to crosstalk with other PTMs 

under different environmental conditions in order to control many aspects of cellular signaling and 

maintain cellular homeostasis [162].  Recent studies have shifted their focus to understanding how 

histone lysine acetylation and their targets are affected following ethanol exposure [24, 151].  Changes in 

patterns of lysine acetylation of histone proteins have been attributed to a combination of the metabolism 

of ethanol [39], oxidative stress [163], and mitogen-activated protein kinase (MAPK) signaling pathways.  

Gene regulation can be altered by changes to acetylation patterns located on histone tails, including those 

influenced by ethanol.  The mechanism underlying how ethanol contributes to alterations in acetylation 

patterns on histone tails has yet to be established.   
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 One hypothesis is that during the metabolism of ethanol, free acetate levels rise, where it can 

then be incorporated into the acetyl-CoA pool.  Acetate levels have been recorded as high as 1.4 µMol/min 

per 108 cells or as high as 10mM in the perfusate of rat liver [23].  Once acetate levels rise it can be 

converted into acetyl-CoA.  Acetyl-CoA is then used by histone acetyltransferase to acetylate histone 

proteins [23, 120].  A recent rise in the interest of how ethanol affects epigenetics has researchers focusing 

on histone tails and transcriptional regulation.  Acetylation of histone 3 lysine 9 (H3AcK9) induced by 

ethanol has been shown to be both dose and time-dependent, with notable increases occurring between 

5 and 100 mM and highest acetylation occurring at 24 hours [23, 151].  Although 100 mM dose of ethanol 

seems high for human consumption, it is a concentration commonly observed in the serum of binge 

drinkers and chronic alcoholics [23].  In humans, a blood alcohol level (BAC) of approximately 0.20 g/dL 

would equal an approximate dose of 50mM ethanol and 100mM would be equivalent to a BAC of 0.400 

g/dL.  When acetate is used to mimic ethanol toxicity, doses of 1-10 mM showed a marked increase in 

H3K9Ac over the course of 4 hours and then plateauing until 24 hours when it begins to decrease [23].  

These data were also verified in rat hepatocytes that were treated with ethanol, showing a necessity for 

H3K9Ac in ethanol metabolism and a possible role in liver injury [151].  Chapter 4 aims to further 

investigate how lysine acetylation is altered on histone proteins during times of binge alcohol 

consumption.  It also aims to further the understanding of how alcohol metabolism regulates histone 

acetylation patterns over time on the N-terminal tails.  It is hypothesized in Chapter 4 that ethanol 

influences epigenetics marks of histone acetylation on the N-terminal tails directly through ethanol 

metabolism via acetyl-CoA and histone acetyltransferases. 
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Chapter 2 
 
 

Global Proteomic Analysis of Sex-Differences using a Chronic-Binge Mouse Model of Alcohol Liver 
Disease 

 
Abstract 

Sex differences in alcohol-induced liver injury (ALI) have previously been described in both 

humans and animal models of chronic ethanol exposure.  Females often present with ALI to a greater 

extent than males; however, the exact molecular mechanisms underlying this process are still unclear.  

The purpose of this study utilized the 10-day chronic-binge mouse model in order to evaluate gender-

specific hepatic proteome profiles in order to gain novel insight regarding protein markers and their 

related molecular pathways, which could account for the more severe liver injury observed in females.  

ALI was induced in age-matched male and female mice by administering the Lieber-DeCarli ethanol- or 

control-liquid diet for 10 days followed by a single bolus gavage of ethanol (5 g/kg body weight).  After 

the conclusion of the ethanol feeding, the female mice indeed displayed a more pronounced phenotype 

in terms of liver injury histology, although the serum levels of alanine aminotransferase and aspartate 

aminotransferase, indicators of liver injury, were comparable with their ethanol-fed male mice 

counterparts.  Liver samples were processed for mass spectrometry, and the respective analysis was 

completed using the MaxQuant application.  Over 3,000 proteins were identified at a false discovery rate 

of 1% for both the protein and peptide level.  Relative quantitation of protein expression showed gender 

differences in protein expression for ALI originating with the oxidative metabolism of ethanol.  Among the 

proteins identified in both genders was the ethanol metabolizing enzyme CYP2E1.  Interestingly, in 

addition to CYP2E1, the proteomic analysis identified 25 other cytochrome P450 enzymes, several of 

which were drastically different in fold-change expression upon a comparison between the male and 
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female experimental groups.  Moreover, functional analysis using Ingenuity Pathway Analysis revealed 

sex-specific pathway alterations which included those associated with lipid metabolism, acute phase 

response signaling, and cellular stress response pathways.  Results from this analysis have provided new 

information at the protein level for future mechanistic studies aimed towards the role of CYP P450 

enzymes in gender-specific development of ALI.  This study also suggests a role of oxidative metabolism 

and epigenetics as a potential target for the identification of therapeutic targets with consideration of 

possible sex-specific strategies for prevention or treatment of alcoholic liver disease.   

Introduction 

Alcoholism is a disease that affects a vast majority of the population worldwide.  Alcoholism was 

linked to 3.3 million deaths globally in 2012, of which were 7.6% male and 4.0% female [1].  Currently, in 

the United States, 17 million people suffer from alcoholism, of which 1.4 million people are currently 

receiving direct or indirect treatment for alcohol abuse [1].  Not only is alcohol abuse a social and 

economic burden, it can also be linked to the progression of numerous diseases, injuries, and other 

related health conditions [1].  Alcohol dependency and long-term abuse will eventually lead to alcohol 

liver injury (ALI), steatosis, cirrhosis, and possibly cancer, all which are stages in the progression of 

alcoholic liver disease (ALD) [47, 51, 83, 164].  Variables such as age, race, gender and socio-economic 

status have all been shown to play a role in a person’s susceptibility to alcohol-related health conditions 

and outcomes [165-167].  Although men drink twice as much as women on average and are two times 

more likely to die from liver disease,  women are more susceptible to cancer, gastrointestinal or 

cardiovascular diseases, when exposed to equal or lesser amounts of alcohol [166].  Currently, the 

suggested mechanism for the development of ALD begins with changes in transcriptional regulation via 

transcription factors that are mediated by cytokine secretion and inflammatory response [47, 51, 83, 

164, 165, 168-170].  Other factors that have been determined to aid in the pathogenesis of ALD include 

mitochondria dysfunction and decreased ATP production, altered levels of CYP2E1 and NADPH, and 
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increases in ROS/RNS with simultaneous decreases in antioxidants glutathione peroxidase (GPx) and 

superoxide dismutase (SOD) [47, 51, 83, 164, 165, 168-170].  Although the proposed mechanism is 

widely accepted within the scientific community, there are still major gaps in knowledge preventing a 

complete understanding of how ALD progresses and why some people and genders are more 

susceptible to liver damage than others.  It is important to understand why some persons, especially 

females, are more prone to ALI in order to develop appropriate gender-specific therapeutic approaches.   

Currently, multiple hypotheses are being pursued in the understanding of gender-specific liver 

injury markers and the pathogenesis of ALD.  Although all three proposed mechanisms are closely 

related there are gaps in knowledge between them, which are all currently under investigation.  The first 

main gap in knowledge consists of trying to find the link between sex hormones, oxidative stress, and 

metabolic pathways that are important in the development of ALD [171-177].  Another mechanism 

thought to contribute to ALD that is currently being explored examines gender differences in immune 

regulation [178, 179].  The inflammatory response is known to have a very active role in the 

pathogenesis of ALD and perhaps one gender has the advantage at regulating or suppressing the 

inflammatory response pathway [7, 170-172, 180, 181].  Lastly, the third gap in knowledge focuses on 

understanding how transcriptional regulation changes in response to alcohol metabolism and liver injury 

between genders [182-184].  Previous studies suggest that the answer may lie in differences between 

the male and female sex-hormone expression, moreover estrogen production may hold the answer to 

why females are subjected to a greater risk of ALI [165, 166, 180, 185-188].  These data presented here 

aim to contribute answers pertaining to the above gaps in knowledge.  This study uses 8-week male and 

female mice to assess differences between male and female mice receiving the Lieber-DeCarli 10-day 

chronic binge alcohol liquid diet [189]. 

The Leiber-DeCarli ethanol diet is currently the most widely used method to study alcoholic fatty 

liver development [165, 190].  Although there are multiple options for the delivery of alcohol for in vivo 
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mouse experimentation that can be used effectively in order to achieve a specific phenotype of ALD, the 

Leiber-DeCarli liquid diet is the favorite amongst researchers.  The Leiber-DeCarli liquid diet is the 

preferred method because of its affordability, ease of administration and reproducibility of inducing 

fatty liver in mice similar to what is observed in humans [165].  There are different mouse models using 

the Lieber-DeCarli ethanol feeding that have been well characterized to achieve different ALI 

phenotypes [189].  The following study used the chronic-binge ethanol diet in order to assess gender 

differences in the development of ALI.  The chronic-binge diet is a 10-day pair feeding study done 

administered in 8-week mice followed with a single gavage prior to euthanasia [189].  Following the 10-

day alcohol feeding, data should present to have marked increases in alanine aminotransferase (ALT) 

and steatosis [189].  In vivo experimentation is the preferred method over in vitro studies of ALD liver 

research due to the unavailability of current cell lines in possessing acceptable levels of protein 

expression in regards to the ALD and CYP2E1 pathways of alcohol metabolism.  

More times than not, sex differences play a role in alcohol-induced liver injury (ALI) where the 

greater liver injury is commonly observed in female animal models of chronic ethanol exposure, which is 

similar to the trends observed in humans [171, 176, 186, 191, 192].  Previous work investigating these 

differences have shown several contributing factors including direct effects of ethanol on sex hormone 

levels [165, 188, 193, 194] as well as the potential pathogenic role of estrogen in terms of gut 

permeability, endotoxin levels and inflammatory response in the liver [15, 24, 96, 169, 170, 176, 180, 

195].  Further evidence has been provided through gene expression profiling studies that showed sex 

differences in gene networks associated with hepatoprotection, oxidative stress and inflammation after 

ethanol exposure [169, 176, 180, 181, 192, 196]. These data warrant further evaluation as the efficacy of 

therapeutic intervention using hormone gender-based specific therapies seems plausible in the 

emerging era of personalized medicine.  The purpose of this study was to evaluate hepatic proteome 

profiles in both male and female mice after a chronic-binge ethanol diet in order to gain novel insight 
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into protein markers and related molecular pathways that could account for sex differences observed in 

ALI using a mouse model of ALD.   

In order to comprehensively characterize molecular pathways that are involved in ALI sex 

differences and furthermore, to gain novel mechanistic insight, mass spectrometry-based proteomics 

was used.  Mass spectrometry allowed for a global protein analysis of the livers of male and female mice 

and data was used for the identification of numerous sex-specific differentially expressed proteins and 

pathways.  One group of enzymes identified were the cytochrome P450 family or CYP enzyme class of 

proteins.  Data analysis revealed that several classes and proteins included in the CYP P450 family were 

differentially expressed following the chronic-binge and some striking differences in fold-change were 

identified after the comparison between male and female pair-fed groups. In addition to differential CYP 

expression, differences in pathway prediction showed gender differences in lipid metabolism and 

oxidative stress pathways.  Although the role of CYP2E1 has been studied extensively in the context of 

ALI [173, 174, 177, 182, 197-199], the results from this study are intriguing as the contribution of other 

CYP enzymes in ALI is largely unexplored.  Interestingly, female mice also possessed higher levels of 

basal histone acetylation observed on both Histone H3 and H4 that increased at the conclusion of the 

study to similar levels of the pair-fed male mice.  The increased acetylation of known epigenetic marks 

may offer insight into gender-based transcriptional regulation and ALI.  These data also aim to bridge 

the gap between gender, oxidative stress, inflammatory response and gene regulation.   

Materials and Methods 

Chemicals and Reagents 

 All chemicals were purchased from Fisher Scientific unless otherwise specified. 

 



 
33 

 

Chronic-Binge Mouse Model of Alcohol Liver Disease  

A mouse model of chronic plus single binge ethanol consumption (referred as a chronic-binge 

model) was used as previously described [189, 190].  The Leiber-DeCarli liquid diet was used for both 

ethanol and control-fed mice (Bio-Serv, control F1259SP, and ethanol F1258SP).  Eight-week-old male 

and female C57BL/6 mice (Jackson Laboratories) were each divided into two dietary groups with similar 

weights: Control chow (n=4 males; n=4 females) and ethanol chow (n=6 males; n=6 females). All mice 

were first acclimated, stepwise, to the liquid control diet for 5 days prior to ethanol diet containing 5% 

w/v ethanol  [189]. Ethanol and control pair-fed groups were fed isocaloric equivalents for 10 days, and 

control-fed mice received limited chow when to match ethanol-fed consumption over 10 days.  For mice 

on an ethanol-containing diet, animal cages were placed on heating pads to maintain body temperature 

and prevent ethanol-induced hypothermia. Food intake was recorded daily over the course of 10-days 

to limit over-eating of control chow. Throughout the course of the feeding period, control mice and their 

ethanol-fed counterparts were observed to consume similar volumes of their diets daily.  On day 11, 

mice in ethanol groups were gavaged a single dose of ethanol (5g/kg body weight, 20% ethanol), while 

mice in control groups were gavaged an isocaloric dose of dextrin maltose [189]. The gavage was 

performed in the early morning, and mice had access to their respective diets after the alcohol gavage.  

On the afternoon of day 11, the mice were euthanized 9-hour post-gavage and blood and tissue samples 

were collected for analysis.   

The studies were approved by the Institutional Animal Care and Use Committee of University of 

South Florida (Appendix A). 
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Histological Analysis and Liver Injury Assays. 

Histology. 

Dissected livers were allowed to fix in 10% formalin for 24 hours.  They were submitted to the 

Tissue Core Facility at the H. Lee Moffitt Cancer Center and Research Institute (an NCI-designated 

Comprehensive Cancer Center (P30-CA076292), where they were processed for histological examination 

by light microscopy.  After formalin fixation, tissues were processed in a Leica ASP 300 processer and 

embedded into paraffin blocks using a Leica EG1150C embedding station.  Once embedded, 4 μm paraffin 

sections were cut with a Leica RM2245 rotary microtome, mounted on glass slides, and stained with 

hematoxylin and eosin (Hematoxylin 2, Richard-Allan Scientific #7231 and Eosin Y Richard-Allan Scientific 

#7111) in a Leica AutoStainer XL automatic strainer.  Upon completion, the slides were mounted with a 

coverslip.   

Serum Blood Alcohol Content, ALT & AST Liver Injury Assays. 

Whole blood was separated using serum separating microtainers (BD, 365967) according to the 

manufacturer’s instructions.  Serum was then aliquoted into microplates for blood alcohol level (BAC) 

(Pointe Scientific, A7504-01-873), ALT and AST (Pointe Scientific, A7526, and A7561 respectively) analysis.  

All assays were conducted using the protocols designated by the manufacturer, read using the Powerwave 

II microplate spectrophotometer (Biotek) and quantified using Excel (Microsoft Office, 2013).  

Sample Processing 

Sample Processing for Proteomic Analysis.   

Eight-week-old C57BL6 mouse liver was homogenized in lysis buffer consisting of 4% SDS, 100 mM 

Tris-HCl, pH 7.6, 100 mM dithiothreitol.  Homogenization was followed by lysis at 95 °C for 5 minutes prior 
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to sonication at 20% amplitude for six 3 second bursts.  Samples were spun at 17,000 x g for 5 minutes at 

room temperature and pellets discarded.  Protein concentrations were determined using a 660 nm 

Protein Assay with Ionic Detergent Compatibility Reagent (Pierce).  An aliquot of, 50 µg of the sample was 

added to a spin column containing 200 µl of 8 M Urea and buffer exchanged to 8 M Urea over subsequent 

spins prior to Iodoacetamide alkylation as previously described [1-3].  Post alkylation, the samples were 

exchanged to 50 mM ammonium bicarbonate for trypsin digestion at a ratio of 50:1 with Mass Spec Grade 

Trypsin/Lys-C mix (Promega, V5073).  Digestion was carried out overnight in a humidified incubator at 37° 

C.  The following day, samples were desalted using solid phase enrichment C18 columns (Waters, 

WAT023590).  Columns were activated using 100% ACN and washed in 0.1% formic acid in H2O before 

adding the peptides.  Peptides were then washed 3 times with 0.1% formic acid in H2O and eluted using 

90% acetonitrile/10% H2O/0.1% Formic Acid.  Samples were concentrated in a vacuum concentrator 

(Thermo Fisher Scientific) and resuspended in 0.1% formic acid and HPLC-water prior to LC-MS/MS 

analysis on the Q-Exactive Plus mass spectrometer. 

Nuclear Fractionation 

Livers were thawed on ice and 50 mg of tissue was cut and placed into 2 ml PBS (Alfa Aesar, Cat. 

#A1107922, Fisher Scientific, Hampton, New Hampshire) and protease inhibitor cocktail (Roche, Cat. # 

1183617001, Sigma Aldrich, St. Louis, Missouri). Tissues were broken down into a single cell suspension 

using a Dounce homogenizer with pestle A only. The whole cell lysate suspensions were placed into 50 ml 

conical tubes (Corning, Cat. # 430291, Fisher Scientific, Hampton, New Hampshire) and spun at 1500 rpm 

for 10 minutes to form a pellet.  The homogenization buffer was discarded and the pellets were washed 

again in homogenization buffer, the spin was repeated and wash was discarded.  Nuclei were isolated 

using a nuclear extraction buffer (homogenization buffer with the addition of 0.1% NP-40 (Thermo 

Scientific, Cat. # 28324, Fisher Scientific, Hampton, New Hampshire).  Pellets were triturated 5-times using 

a wide-bore pipet tip and placed into microcentrifuge tube on ice.  Nuclei were pop-spun 10 sec in a 

http://www.waters.com/waters/partDetail.htm?partNumber=WAT023590
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benchtop microcentrifuge and supernatant containing the cytoplasmic fractions were discarded.  Nuclei 

were again washed in nuclear isolation buffer and pop-spun two times.  Nuclei were then washed twice 

with PBS to remove excess detergent.  Nuclei were resuspended and lysed by sonication (30% amp, 5s 

on/off for 1 min) while on ice and supernatant was checked for complete DNA shearing by pipetting up 

and down.  If DNA was present then sonication was repeated until complete lysis.  Nuclear lysate was 

spun at 14,000 rpm for 10 minutes and the supernatant was placed into a clean microcentrifuge tube.  

Nuclear lysate was quantified using the BCA kit (Pierce, Cat. # 23225, Thermo Scientific, Hampton, New 

Hampshire). 

LC-MS/MS and Statistical Analysis.   

Fractions were separated on a 10 cm x 75 um I.D. reversed phase column packed with 5 um C18 

material with 300 Å pore size (Thermo Fisher Scientific) using 120-minute gradients of 2-28% ACN in 0.1% 

formic acid.  The inline mass spectrometric analysis was performed on a Q-Exactive Plus (Thermo Fisher 

Scientific). MS1 scans were performed at a resolving power of 72,000, and the top 10 most abundant peaks 

were selected for subsequent MS/MS analysis.  Raw files were processed in MaxQuant 1.4.3 employing 

the Andromeda search algorithm and Perseus version 1.2.0.13 against the UniProt KB reference database 

for Mus musculus.  The second database of known contaminants provided with the MaxQuant suite was 

also employed.  Constant modification of carbamidomethylation of cysteine and variable modifications of 

oxidized methionine and acetylated protein N-termini were used. A false discovery rate of 1% was used 

for peptides and proteins. A minimum peptide length of 7 amino acids was used. Razor and unique 

peptides were used for identification and quantification.  Ethanol-treated vs. control treated protein ratios 

were built by dividing the median normalized expression levels for all peptides across all biological 

samples for a given protein in the ethanol set by the median normalized expression levels for all peptides 

across all biological samples for a given protein in the control set separately for males and females.  
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Statistical significance of quantitation values was determined using a Welch’s t-test and a significance 

value of p < 0.05. 

Western Blots   

Samples were lysed and quantified as stated above.  Each replicate was suspended in 4X Laemmli 

buffer and loaded onto SDS-PAGE gels in accordance with sample size and molecular weight.  Precast TGX 

gels and protein standard were purchased from Bio-Rad for use with their semi-dry turbo transfer system.  

Blots were transferred to either PVDF or nitrocellulose membranes depending on the protein of interest.  

Blots were blocked in a 5% (wt/vol) powdered milk in PBS solution for 1 hour at room temp.  Next, the 

blots were washed in PBS for 1 hour prior to primary antibody incubation overnight at 4°C, shaking.  

Primary antibodies are resuspended in a 5% BSA/PBS stock solution containing 0.5% sodium azide as a 

preservative.  The next day blots are washed 1 hour in PBS at room temperature prior to the addition of 

HRP-conjugated secondary antibody.  The secondary antibody is prepared in 5% milk (wt/vol) and PBS at 

a 1:5000 dilution.  Blots were incubated in secondary antibody (cell signaling) raised against the respective 

primary for 1 hour at room temperature and then washed for 2 hours in PBS prior to developing.  Blots 

were incubated for 1 minute in Western Lighting-Plus Chemiluminescent Substrate (PerkinElmer, 

NEL104001EA) and developed using the AI06 Imager (Amersham).  Primary antibodies are as follows: all 

dilutions are 1:1000 and purchased from Cell Signaling Technologies unless otherwise stated; ADH1 

(#5295), H3AcK9 (#9649), H3AcK14 (#7627), H3 (#4499), H4AcK12 (#13944), H4AcK16 (#13534), H4 

(#2935), ACL (#13390), β-Actin (#3700), GAPDH (#5174), ACL, β-Actin, GAPDH, pan-acetyl-lysine (#9814), 

and CYP2E1 (#ab28146, Abcam).   

IPA Analysis  

 Proteins found to be significant using statistical analysis in Excel were uploaded into Perseus 

statistical software (v.1.5.5.3, http://www.perseus-framework.org) for further analysis.  Data was first 

transformed into their log 2 values for normalization.  Next, the male and female replicates were grouped 

http://www.perseus-framework.org/
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together for more stringent statistical analysis.  Once the replicates were grouped, data were filtered 

based on 70% valid values in at least one group and rows not meeting the criteria were discarded.  In 

order to correct for missing values, imputed values were added based on the normal distribution using 

default settings.  Data was then exported back into Excel where it was transformed back into intensities 

to be uploaded into IPA for network prediction analysis.  Calculated fold change for each group, males, 

and females, were next uploaded into Ingenuity Pathway Analysis (IPA) (Redwood City, CA) for further 

pathway analysis.   

Scaffold Protein Analysis 

 Raw data files were analyzed using MaxQuant proteomic software (Max-Planck Institute, 

http://www.biochem.mpg.de/5111795/maxquant) and then uploaded into scaffold proteomic software 

(http://www.proteomesoftware.com).  Proteins were filtered with a 1% false discovery at both the 

protein and peptide level.   

Results 

Characterization of 10-Day Chronic-Binge and Liver Injury in Male and Female Mice   

Eight-week-old male and female mice were fed the 10-day Lieber-DeCarli liquid diet according to 

the 10-day chronic-binge parameters previously described [189].  Following the completion of the 10-day 

chronic-binge feeding model, livers were extracted and visually examined for phenotypic differences 

associated with ALI in both male and female mice. Upon extraction, livers of ethanol-fed mice had 

displayed visual signs of steatosis; livers were soft, swollen, discolored and possessed white blotches when 

compared to their control-fed counterparts.  Hematoxylin and Eosin (H&E) stain revealed more 

pronounced morphological changes in the ethanol-fed mice, indicative of features associated with mild 

to moderate hepatic steatosis in both female and males when compared to their male control-fed 

counterparts (Figure 2.1).  Visually, female mice that received the ethanol diet seemed to display a greater 

http://www.biochem.mpg.de/5111795/maxquant
http://www.proteomesoftware.com/
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accumulation of lipids when compared to their ethanol-fed male counterparts (Figure 2.1).  Next, serum 

blood alcohol levels were measured to quantify the amount of alcohol remaining in the bloodstream after 

the 9-hour recovery window post gavage (Figure 2.2).  Average BAC levels were slightly higher in male 

mice, averaging 260 mg\dL, when compared to their female pair-fed counterparts, averaging 160 mg\dL 

(Figure 2.2).  These data suggest that females exhibited faster clearance of ethanol than their male 

counterparts.  Serum blood measurement of the liver injury markers, alanine aminotransferase (ALT) and 

aspartate aminotransferase (AST) were also measured and showed elevated levels in both male and 

female mice when compared to the control mice (Figure 2.3).  Furthermore, although male mice exhibited 

higher BAC levels female mice displayed higher levels of alanine transaminase (ALT) and aspartate 

transaminase (AST) when compared to male mice (Figure 2.3).  Liver enzymes, ALT, and AST are 

traditionally used in a clinical setting to establish hepatic injury in patients.  A 2:1 ratio of AST to ALT 

denotes that ALI has occurred.  These data show that both ALT and AST increase after the 10-day ethanol  

Figure 2.1: H&E Staining of Mouse Liver following the 10-day Chronic-Binge Ethanol 
Diet.  Following the conclusion of the Leiber-DeCarli 10-day chronic-binge ethanol 
diet, female mice displayed a more pronounced indication of ALD after pair-feeding.  
These data suggest that female mice are more susceptible to pathogenesis of ALD as 
a result of lipid accumulation when compared to their male counterparts.    
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Figure 2.3: ALT and AST Liver Injury Marker Assay Following the 10-day Chronic-Binge Alcohol 
Diet.  Serum was collected from male and female mice following the conclusion of the 10-day 
chronic binge ethanol diet.  ALT and AST are commonly found to be upregulated during times of 
liver injury.  Serum levels show an increase in ALT and AST in both males and females when 
compared to the control-fed mice.  ALT values almost doubled whereas there was only a slight 
elevation in AST. 
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Figure 2.2: Average Serum BAC Levels Following the 10-Day Chronic-Binge Ethanol Diet in 8-Week Old 

Mice.  Eight-week old, male and female C57bl\6 mice were administered either the control or 
ethanol feed over the course of 10-days followed by an isocaloric bolus gavage of either 
dextrin or ethanol 9-hours before euthanasia.  Male mice portrayed higher serum BAC levels 
then their female counterparts. 
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diet when compared to the control-fed mice.  Nevertheless, the ratio of the two enzymes does not offer 

conclusive affirmation that ALI had occurred following the finish of the 10-day chronic binge ethanol study 

in mice.  However, the histology data in conjunction with the BAC levels suggest that the chronic-binge 

ethanol diet is a good model to study gender differences in alcohol-induced liver injury (ALI). 

Sex-Specific Differences in Hepatic Protein Expression Profiles After Chronic-Binge Ethanol Feeding  

To further evaluate the ALI phenotype in male and female mouse liver through identification of 

novel pathways associated with sex differences in ALI, an innovative approach was performed using label-

free quantitation and mass spectrometry-based proteomics.  After mass spectrometry, analysis and 

database searching using MaxQuant, over 3,000 proteins were identified at a false discovery rate of 1% 

at both the protein and peptide level.  Of these, 1,835 proteins, from both genders and treatment types, 

were quantified and found to be significant.  Proteins from both male and female that were found to be 

significantly up or down regulated after ethanol exposure were uploaded into Ingenuity Pathway Analysis 

(IPA) in order to assess any network differences between genders.  Further analysis of the ALI proteomic 

Figure 2.4: Ingenuity Pathway Analysis of Male and Female Mice Predicts Liver Damage in Females and 
Liver Injury in Males.  Significant proteins identified in the male and female data sets from the primary 
analysis were uploaded into IPA for protein network interactions.  IPA predicted that following the 10-day 
chronic binge diet in mice females were more susceptible to liver damage, whereas the male mice had more 
proteins upregulated commonly found in liver injury.  The darker red the protein is pictured, the more it is 
predicted to be upregulated in the network.  IPA identified proteins important in ethanol metabolism and 
metabolite transport and excretion. 
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dataset was performed and then filtered to focus on alcohol, aldehyde and CYP metabolic enzyme 

expression level in male and female livers after chronic-binge ethanol feeding.  Interestingly, IPA pathway 

analysis predicted upregulation of proteins involved in liver damage in female mice, whereas male mice 

were only predicted to endure liver injury (Figure 2.4).  Furthermore, male mice displayed upregulated 

measurements and more proteoforms in ATP-binding proteins (ABC) when compared to female mice 

(Figure2.4).  ATP-binding proteins are important in membrane transport and the uptake or exportation of 

molecules.  Surprisingly, Apolipoprotein A2 (APOA2) was only observed in female mice and predicted to 

be drastically upregulated (Figure 2.4).  These small differences in protein expression may offer potential 

targets to furthering the understanding in regards to why females exhibit greater liver injury over men 

during times of ethanol consumption. 

In order to take a closer look at gender differences in liver injury, IPA was used to assess what 

proteins were predicted to be affected by ethanol metabolism (Figure 2.5).  Both genders expressed 

similar upstream regulator predictions, however, a few genes and proteins stood out.  For instance, the 

Figure 2.5: Predicted Upstream Activation Initiated by Ethanol Suggests that Cytochrome P450 Proteins amongst 

Others Play a Role in Liver Injury.  Upstream predicted activation was found to be similar between male and 
female mice, however a few genes stood out.  Lfi47 was predicted to be inhibited in male mice.  Male 
mice also were predicted to have more activation of genes important in the oxidative stress pathways 
such as GST and NQO1.  Female mice had similar predicted expression to males with the exception of 
ETNPPL, a protein important in the breakdown and clearance on ethanol.   
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gene lfi47 predicted to be downregulated in male mice, is an interferon-inducible/regulatory gene, 

important in innate immunity and inflammation (Figure 2.5, right).  The inflammatory response is an 

important pathway in the development of ALD and activated during times of heavy alcohol consumption 

and can be observed in both genders by the predicted increase in superoxide dismutase (SOD).  Another 

interesting gene predicted to be upregulated in male mice after ethanol exposure is NAD(P)H Quinone 

Dehydrogenase 1 (NQO1) (Figure 2.5, right).  NQO1 is a gene targeted by nuclear factor (erythroid-derived 

2)-like 2 (NRF2) during oxidative stress.  Glutathione S-transferase alpha-5 (GSTA5) is a gene important in 

Figure 2.6: Fold-Change in Cytochrome P450 Family of Proteins Post 10-day Chronic-Binge Ethanol Diet.  Cytochrome P450 
proteins were quantified by taking the average intensities for control and ethanol-fed male and female mice.  Next 
the ratio was taken for ethanol-to control-fed intensity and plotted.  A fold-change of -1 represents only observed 
in control-fed mice and a +1 fold-change was only observed in ethanol-fed mice.  If no fold-change is present for 
the cytochrome P450 isoform then no expression was observed for that gender and/or protein. 
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the metabolism of alcohol and lipid peroxidation, it is 

often depleted during times of heavy drinking.  These 

data predict upregulation in both genders, however, male 

mice are predicted to have increased upregulation of the 

GSTA5 gene over their female counterparts after the 10-

day chronic binge diet (Figure 2.5).  Furthermore, female 

mice were observed to have upregulation on the gene 

Ethanolamine-Phosphate Phospho-Lyase (ETNPPL), this 

gene is responsible for catalyzing the breakdown of 

acetaldehyde and converting phosphoethanolamine into 

ammonia (Figure 2.5, left).  Another striking observation 

was the number of cytochrome P450 proteins that were 

predicted to be activated by following ethanol 

consumption in both genders (Figure 2.6).  These data 

presented offer interesting targets of transcriptional 

regulation in regards to the relationship between CYP 

P450 proteins, metabolism, oxidative stress and gender-

specific liver injury.  Further evaluation of the entire ALI 

proteome dataset (includes proteins which are not 

differentially expressed), identified 26 different CYP enzymes all having a wide range of relative protein 

expression as shown in Table 2.1 & Figure 2.6. 

Cytochrome P450 proteins are found in almost every tissue within the body.  Cytochrome P450 

proteins function in many metabolic processes throughout the body such as hormone and cholesterol 

synthesis, as well as the metabolism of drugs and toxic compounds found in the liver. Further investigation 

Table 2.1: Gender-Specific Fold-Change in Male 
and Female Mice 
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into the gene regulation of these proteins may offer insight into the understanding of gender differences 

in the development of ALD.  As expected, CYP2E1 was found to be upregulated in both genders following 

the 10-day chronic binge.  Interestingly, CYP2E1 was observed to have almost a fold-change difference in 

males when compared to females (Table 2.1 & Figure 2.5). In addition to the increased CYP2E1 expression 

in males, several other members of the Cyp P450 family were greatly increased over their female 

counterparts. CYP2A5 and CYP4A14 were drastically increased in the male mice exhibiting approximately 

a 19.5 and 8 fold increase respectively (Table 2.1 & Figure 2.5).  Other cytochrome proteins with over a 

fold change difference between males and females included CYP2C29, CYP2C37, CYP2C50, CYP2C54, 

CYP3A13, and CYP4F15. Male mice also only exhibited expression of CYP2B10 and CYP2B9 after ethanol 

exposure and not in the control mice.  The Cyp P450 enzymes are known to be involved in lipid metabolism 

(CYP4 family), and drug metabolism (CYP2 & CYP3 families).  On the other hand, female mice lost CYP3A16 

and CYP3A44 expression after ethanol exposure and were completely absent from male mice (Table 2.1 

& Figure 2.5). Additionally, CYP2A4, CYP2C70, CYP2F2, and CYP4V2 were only expressed in female mice, 

whereas CYP1A2 and CYP4F15 were only expressed in male mice (Table 2.1 & Figure 2.5).   CYP2J5 and 

CYP4A12 were the only proteins to be identified that were upregulated in female mice when compared 

to the male mice (Table 2.1 & Figure 2.5). It has been previously been reported that CYP2J5 expression in 

the kidney is important for sex hormone regulation [194].  CYP2J5 upregulation in females was interesting 

because of its known role in oxidative stress, cardiac processes, lipid accumulation and estrogen 

regulation [200-202].  

Alcohol, Oxidative Stress, and Mitochondria Dysfunction Leads to Alterations in Post-Translational 

Modifications on Histone Proteins 

The upregulation of CYP P450, along with SOD and GST proteins observed in both genders (Figure 

2.5) prompted further investigation into alcohol, oxidative stress, and post-translational modifications.  

Both SOD and GST proteins are key players in alcohol-induced oxidative/nitrosative stress and 
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inflammation.  In addition to the gender differences in cytochrome proteins, it has been previously 

established that CYP2E1 sensitizes the liver to inflammation through elevated oxidative and nitrosative 

stress [182, 199].  Furthermore, alcohol-induced oxidative stress leads to mitochondrial dysfunction [95, 

203, 204].  As a result,  mitochondrial dysfunction has been demonstrated to induce changes in post-

translational modifications, such as acetylation, following prolonged alcohol exposure [38, 85, 87, 118, 

163, 204, 205].  In order to assess potential gender differences following ethanol exposure acetylation 

differences in males and females were observed using Scaffold for both whole cell lysate and nuclear 

fractions.  Results show 30 acetylated proteins that were identified in both genders from the whole cell 

lysate and 13 mutually expressed proteins were observed in the nuclear fractions (Figure 2.7).  Female 

mice exhibited 10 uniquely expressed proteins from their male counterparts, whereas males presented 

14 unique proteins after 10-days of ethanol exposure (Figure 2.7).  Examination of the nuclear fractions 

showed 8 differentially expressed proteins in females and only 3 in males (Figure 2.7).  Table 2.2 list the 

differentially expressed proteins respective of gender and lysate complexity.  Female mice expressed 

acetylation of proteins involved in metabolism and cellular stress, such as acetyl-CoA, ATP synthase, 

Figure 2.7: Venn-Diagram Depicting Differences in Gender-Specific Acetylated 
Proteins following the 10-day Chronic-Binge.  Male and female mouse liver was 
lysed as either whole cell or nuclear fraction.  Samples were analyzed using 
UHPLC-MS and data was processed using MaxQuant proteomic software.  
Analyzed data was uploaded into Scaffold and acetylation sites were assessed 
between male and female ethanol-fed mice. 
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isocitrate dehydrogenase, 

NDRG2, and Heat shock cognate 

71 (Table 2.2).  On the other hand, 

male mice expressed changes in 

the acetylation of the oxidative 

stress regulator protein GST 

(Table 2.2).  Other acetylated 

important in transcription, such 

as heterogeneous nuclear 

ribonucleoproteins were also 

found to have differentially 

expressed subunits in the nuclear 

fractions of both genders.  

Interestingly, both acetyl-CoA 

transferase and Histone 4 (H4) 

were identified to be uniquely 

expressed in female mice (Table 

2.2).  The identification of histone 

H4 and Acetyl-CoA prompted 

further investigation into the effects of the chronic binge ethanol diet and histone acetylation. 

Following the 10-day chronic-binge ethanol diet, Western blot analysis was used to evaluate 

gender-specific differences in proteins that are important for ethanol metabolism, as well as histones H3 

and H4 acetylation.  Results show, no comparable differences in alcohol dehydrogenase 1 (ADH1) in the 

control and ethanol-fed male and female mice (Figure 2.8A). On the other hand, CYP2E1 became 

Table 2.2: Differentially Expressed Acetylated Proteins Identified by Sex 
and Cellular Compartment following 10-Day Chronic-Binge, Corresponding 
to Figure 2.7 
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upregulated in the ethanol-fed mice in both genders following the 10-day chronic binge (Figure 2.8E).  

Both genders also displayed a decrease in ATP-citrate lyase (ACL), a protein that helps to produce acetyl-

CoA, after ethanol exposure (Figure 2.8G).  Next, acetylation on H3K9Ac, H4K12Ac and H4K16Ac was 

assessed and interestingly, male mice appear to have less acetylation at basal levels than their female 

counterparts before alcohol consumption (Figure 2.8B, 2.8C & 2.8F).  Following alcohol exposure, the 

acetylation levels in the male mice rose to comparable levels of acetylation in female mice.  Acetylation 

of H3K14Ac (data not shown) was not observed by Western blots in either control or ethanol-fed male 

Figure 2.8: (A-H): Western Blots Obtaining from Whole Cell Liver Lysate following the 10-
Day Chronic-Binge Ethanol Diet.  Control-fed females (lanes 1-4) and males (lanes 5-8) are 
compared to their ethanol-fed counterparts (female: lanes 9-14 & males: lanes 15-20).  Data 
is representative of 2 separate blots (dotted line) so that H3 lysine 9 and 14 & H4 lysine 12 
and 16 acetylation sites would not interfere with each other’s signal. 
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and female mice. These data suggest that the decrease in ACL and increase of histone acetylation in males 

may offer insight into a possible mechanism regarding the gender-specific alcohol-induced liver injury. 

Discussion 

Understanding how gender affects the development of alcohol liver disease is pivotal in finding 

novel mechanisms in the prevention and reversal of liver injury.  Current gaps in knowledge may hold 

the key to further understanding which underlining mechanisms are responsible for the onset of ALI as 

well as the heightened liver injury observed in females.  These data presented here aim to further close 

these gaps and broaden the understanding of novel mechanisms in the onset of ALD.  Following the 10-

day chronic binge ethanol diet, female mice were observed to have increased lipid accumulation over 

their male counterparts (Figure 2.1).  This was interesting since the female mice also presented with 

higher ALT & AST levels (Figure 2.3) and lower serum BAC levels (Figure 2.2) when compared to male 

mice.  ALT and AST are liver enzymes responsible for hepatocyte integrity, they break down amino acids 

and allow them to be used in the citric acid cycle [206].   The ratio of the two are typically used to 

predict liver injury, the higher the ratio translates into the more severe the liver injury [206-208].  

Elevated levels of ALT and AST have also been linked to increased oxidative stress during times of 

alcohol consumption [209, 210]. Oxidative and Nitrosative stress has been linked either directly or 

indirectly to many pathways conducive to ALI, such as inflammation, transcriptional dysregulation, 

mitochondrial dysfunction and cellular respiration [3, 5, 7, 41].  These data presented gender-specific 

targets in ALI at both the protein and gene level that can be linked to increased oxidative/nitrosative 

stress.   

Following the conclusion of the 10-day alcohol binge, CYP2E1 was found to be upregulated in 

both male and female mice (Figures 2.4, 2.5 and 2.6).  CYP2E1 is known for its alcohol metabolizing 

capabilities and tend to be upregulated over ALD during longer times of alcohol exposure [71].  

Interestingly, researchers are unclear to how CYP2E1 becomes upregulated because no increase in 
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mRNA transcript has been observed [71].  It is hypothesized that CYP2E1 accumulation stems from a 

PTM that blocks degradation, allowing the protein to accumulate and be available for alcohol oxidation 

during periods of chronic drinking.  As CYP2E1 metabolizes alcohol it generates reactive oxygen species, 

which can accumulate and cause mitochondrial dysfunction and protein modifications, in turn altering 

transcriptional regulation.  Identification of gender-specific novel transcriptional regulators will lead to 

potential targets and mechanisms responsible for gender differences in the development of ALI.  

Subsequent analysis of gender differences induced directly from ethanol metabolism revealed 

striking differences between male and female upstream activation (Figure 2.5).  Male mice exhibited gene 

activation in regards to inflammatory response and oxidative stress.  Female mice, on the other hand, 

seemed to upregulated proteins such as ETNPPL and cytochrome P450, which are responsible for ethanol 

clearance and glucose metabolism instead of injury protection (Figure 2.5).  Perhaps these upstream 

regulator predictions explain that females tend to exhibit liver damage, faster than males.  In addition to 

CYP2E1, both genders portrayed numerous CYP proteins to be upregulated after ethanol exposure (Figure 

2.6).  Both genders showed similar expression for many of the identified cytochromes, however, a few 

were deemed to be gender selective.  Both genders also displayed a marked fold-change in CYP2A5 

following the 10-day chronic-binge.  Females averaged a 4.5-fold change in CYP2A5 and male mice were 

almost five times more, averaging 19.5-fold increase.  In chronic alcohol studies using CYP2A5 knock-out 

mice, liver injury was exuberated in the CYP2A5 null mice when compared to the wild-type pair-fed mice 

[211].  Males also possessed a large increase in CYP4A14, averaging 7.8-fold, whereas females only 

possessed a 1.5-fold change.  CYP4A14 is an important regulator of fatty acid metabolism via activation 

by peroxisome proliferator-activated receptor alpha (PPARα) [212-214]. CYP4A14 has been proposed as 

a therapeutic target in the attenuation of liver injury after overexpression of CYP4A14 promotes liver 

injury [212, 213].  These data suggest a possible interplay between CYP2A5 and CYP4A14 in liver injury, 

where the ratio of CYP2A5 expression will protect the hepatocyte from CYP4A14 damage.  Many of the 
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cytochrome isoforms identified have been identified to participate in oxidative stress and lipid 

metabolism. Cytochrome P450 proteins utilize redox reactions in order to catalyze the breakdown and 

export of toxins and drugs within the liver, as a result, the byproducts cause a build-up of free radical 

formation and oxidative stress within the cell.   

Increased oxidative stress within a cell after alcohol exposure has been linked to mitochondrial 

dysfunction, hyperacetylation, inflammation and the formation of free radicals such as superoxide (O2
-), 

peroxide (H2O2) and nitric oxide (NO-) [5, 7, 8, 38, 85, 87, 88].  As oxidative stress accumulates, free radicals 

are able to move throughout the cell and causing damage by lipid peroxidation, protein modifications, 

and DNA damage [4, 5, 7, 215, 216].  Following the 10-day ethanol diet, these data identified multiple 

isoforms of the antioxidant GST and the inflammatory regulator SOD to be upregulated (Figure 2.5).   

These data suggest an increase in the formation of free radicals such as O2
-, H2O2, and NO.  NO, and O2

- 

can combine further and form peroxynitrite (ONOO-) [31-34, 139, 217-220].  Peroxynitrite is highly 

reactive and has the capability of disrupting signaling pathways by adding a nitro-PTM to tyrosine 

residues.  Furthermore, alcohol-induced oxidative stress has been shown to induce changes in protein 

acetylation (Figure 2.7 & Figure 2.8), methylation, phosphorylation, DNA hypomethylation as well as 

induce alterations in miRNA generation and function [15, 18, 24, 39, 40, 98].    

Surprisingly, little is currently known about direct and indirect mechanisms relating to alcohol-

induced oxidative stress and epigenetic changes.  Epigenetic modifications are one or more PTM added 

to the N-terminal region of the histone tails.  These modifications can act as activators and repressors 

controlling differential gene expression and recruitment of transcriptional proteins [89-91].  Alcohol-

induced changes in epigenetic modifications can be the result of ROS/RNS generated by ethanol 

metabolism or another pathway responding to liver injury.  For instance, ONOO- is formed as a result of 

alcohol metabolism and can travel throughout the cell. Peroxynitrite can alter a wide range of proteins 

that it may encounter by adding a NO.  One such target of ONOO- is tyrosine, which forms nitrotyrosine.  
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Although having a short half-life, when ONOO- enter the nucleus, it may able to directly target histone 

protein tails, forming nitrotyrosine,  where it could act as a negative regulator of tyrosine phosphorylation 

[103].  Additionally, there are numerous reports of alcohol-induced acetylation on histone H3 lysine 9 

(H3K9Ac).  Nevertheless, it is still unclear whether the acetylation is caused directly by ethanol metabolism 

or indirectly as a response to alcohol consumption [17, 18, 43].     
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Chapter 3 
 
 

Chronic Ethanol Exposure Induces Hepatic Histone Protein Nitration in Male Mice 
 

Abstract 

Protein tyrosine nitration (PTN) is a post-translational modification that occurs as a result of 

oxidative and nitrative stress within the cell.  These data show for the first time that changes in site-specific 

histone tyrosine nitration occurs in the liver of wild-type male C57bl/6 mice after being fed the Leiber-

DeCarli chronic ethanol diet for 28 days.  The results from this study suggest that in addition to the other 

currently accepted post-translational modifications of histone proteins (ie. acetylation, methylation, 

ubiquitination, and phosphorylation); tyrosine nitration may also be an important regulator in gene 

transcription and have an active role in alcohol-induced liver injury.  Histology was completed using mouse 

livers, sectioned from both control and ethanol-fed groups.  Histology demonstrated morphological 

changes indicative of steatosis development in both the control and ethanol-fed groups following 28-days.  

The control and ethanol-fed mice were both administered with an equivalent high-fat caloric daily intake, 

however, more severe lipid accumulation occurred in the ethanol-fed mice when compared with the pair-

fed control mice.  In addition, immunohistochemical analysis was performed to assess potential changes 

in global protein tyrosine nitration (PTN) levels between the control and ethanol-fed mice.  

Immunohistochemistry revealed significant and selective nitration, localized to nuclei structures within 

the liver of the ethanol-fed mice.  Additionally, densitometry of the nitrotyrosine stained livers revealed 

nitrotyrosine immunoreactivity was significantly increased (p<0.0001) in the chronic ethanol-fed 

treatment group.  In order to confirm the immunohistochemistry results, site-specific nitration 

identification and validation were performed using mass spectrometry-based proteomic analysis.   Nuclei, 
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obtained from control and ethanol-fed mouse livers, were enriched using subcellular fractionation using 

ultra-centrifugation.  Several sites of nitration were identified within the nuclear fraction, with most 

nitration sites occurring on the histone isoforms, as well as heterogeneous nuclear ribonucleoproteins.  

Positively identified nitrotyrosine sites on histones were validated using a direct infusion of a respective 

synthetic nitro-peptide equivalent to the histone nitrotyrosine sites identified in vivo.  These are the first 

data to definitively show ethanol-induced protein nitration through site-specific identification using mass 

spectrometry.  One nitration site identified on histone 3 tyrosine 41 (H3nY41) was interesting because of 

its location in the hinge region of the histone H3 tail, which is located near the DNA interface.  Next, an 

investigation of the structural and functional consequences was conducted using molecular dynamic 

simulations of the nucleosome structure, in order to visualize the predicted DNA-H3 interface for both the 

nitrated and unmodified proteoforms of H3. The results from the simulations suggest that the nitration 

of H3Y41 causes the DNA to open, which may advocate a potential role of histone tyrosine nitration in 

chromatin remodeling and a possible role in gene regulation that are instigated in the liver after chronic 

ethanol exposure.  In order to investigate these DNA conformational changes further, ChIP-sequencing 

was performed on livers obtained from ethanol-fed mice following the 28-day ethanol study.  Further 

investigation of the H3nY41 modification using ChIP-sequencing revealed 18 novel potential targets for 

H3nY41 within the genome spanning 11 chromosomes.  Among some of the identified targets were 

proteins involved with the transport of metabolites, type-2 diabetes, and cancer, making them 

respectable targets for further validation by qPCR.  Surprisingly, 13 identified peaks were located in 

unannotated parts of the genome and, once these regions become known, they may provide insight into 

novel proteins and pathways important in the development of ALD.  The results of this study are the first 

to identify that chronic ethanol exposure induces histone tyrosine nitration within the nucleus of the 

hepatocyte.  Tyrosine nitration is able to modify histone tails, including H3Y41, which may influence 

chromatin structural changes, as well as alter transcriptional targets within genome following chronic 
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ethanol consumption.  Further analysis of histone tyrosine nitration may provide new pathways to target 

for treatment approaches in the development of alcohol liver disease. 

Introduction 

Increasing evidence suggests that epigenetic regulation through DNA methylation and histone 

modifications play a major role in numerous human diseases, including alcoholic liver disease (ALD) [96].  

Alcohol is known to be a major contributor to the production of reactive oxygen species (ROS) and reactive 

nitrogen species (RNS) during ethanol metabolism [4, 134-137].  Consequently, free radicals are then able 

to move freely throughout a cell and interact with an array of molecules and proteins causing destruction 

in their path [4, 5, 135-139].  Accumulation of free radicals such as nitric oxide (NO), and superoxide (O2
-

), are free to react with each other to form the highly reactive molecule peroxynitrite (ONOO-).  ONOO- is 

more reactive then NO and O2
-, but all ROS have the ability to oxidize the proteins they come into contact 

with, therefore modifying their function and altering signaling events [5, 92, 101, 135, 136, 139-142].   

During normal metabolism, glutathione (GSH) within the cell acts as a reductant to keep oxidative 

stress within the cell minimal under stressful conditions [107].  Glutathione (GSH) levels drop within the 

liver during ethanol metabolism, allowing ROS to accumulate [143-145].  When GSH levels drop, ONOO- 

can form when the superoxide anion (O2
-) combines with free nitric oxide within the cell [29, 30, 33].  

Inducible nitric oxide synthase (iNOS) is the protein responsible for the synthesis of NO and found to be 

upregulated during times of inflammation [94].  When iNOS activity is decreased in mice by the inhibitor 

1400W, tyrosine nitration and liver injury are blunted following chronic ethanol exposure [94].  These data 

show a direct link between ROS, NO, and pathogenesis of ALD, however, this study aims to further 

investigate the role of ethanol-induced tyrosine nitration on histone proteins and gene regulation.  

Whereas ONOO- formation is the result of the combination of NO and O2
-, NO is naturally 

synthesized within in the body.  Nitric oxide is often thought of as an injury marker that has a dual role 

within the cell and functions as a key signaling molecule and regulator of inflammation, as well as immune 
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and cardiovascular systems [4, 141, 146].  NO has been demonstrated to have protective properties when 

expressed at endogenous levels, and deleterious effects at higher levels [4].  Ethanol has previously been 

shown to increase free NO within the cell during times of prolonged drinking [29, 30].  Nitric oxide is found 

within every organ system in the body, and although its function as a key signaling molecule and regulator 

of immune response, vasculature homeostasis, and inflammation has been well established, its role in 

ethanol-induced oxidative stress and epigenetic modulation in the development of ALD is still unclear [4, 

141, 146].   

Currently, an interesting link is now being established between oxidative stress and subsequent 

epigenetic modifications in the liver (as well as other tissue types) triggered by ethanol exposure [20].  

Notably, NO signaling has previously been demonstrated to modulate histone hyperacetylation during 

cranial development as well as aid in the development of oral cancer [147, 148].  Furthermore, recent 

studies now show NO is able to contribute to the regulation of epigenetics by modifying methylation and 

acetylation sites on histone proteins [147-149].  For example, ROS production in rat hepatocyte primary 

culture after ethanol exposure was shown to contribute to the known epigenetic marker, acetylation of 

histone H3 at Lys9 (H3K9ac), which is also induced by ethanol consumption [18, 43].  Histone acetylation, 

in particular, is regulated by the activities of various histone acetyltransferases (HATs) and histone 

deacetylases (HDACs) where the activities of these enzymes are altered in hepatocytes after ethanol 

exposure [17, 18, 23, 39, 43, 121].  Furthermore, ethanol-induced changes in histone acetylation patterns 

have been shown to selectively alter gene expression in rat livers while not affecting global protein 

expression [43].  However, the molecular mechanisms underlying ethanol-induced oxidative stress linked 

to histone tyrosine nitration in hepatocytes are still unclear.  Moreover, the mechanistic detail regarding 

the impact of histone nitration modifications is essentially unknown. 

Histone tyrosine nitration poses an interesting epigenetic mark as there is now an emerging role 

for tyrosine phosphorylation as an epigenetic modification [100].  Specifically, tyrosine nitration may have 
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a direct role in altering histone-mediated gene transcription processes, or indirectly by affecting histone 

phosphotyrosine levels that have an impact on metabolic processes [101].  Previous studies have 

demonstrated that protein tyrosine nitration can compete with phosphate-groups for the binding to 

tyrosine residues as well as trigger phosphorylation events [34, 102-105].  It is interesting to note that 

selective nitration of histone proteins has been reported previously in another pathophysiological 

condition where Mutatect tumors showed a marked increase in tyrosine nitration on the different histone 

isoforms [106].  Tyrosine nitration is a very selective modification, only a few tyrosine residues in 10,000 

can be nitrated, and it largely depends on the surrounding environment and protein structure [107, 108].  

Seeley et.al. (2012) have previously demonstrated that tyrosine nitration was preferential in a basic 

uncharged polar environment when compared to hydrophobic and acidic residues [108].  Due to the 

minimum amount of tyrosine residues available for nitration, the positive charge on lysine, and arginine 

residues within the nucleosome would be a promising target for histone tyrosine nitration (HTN) during 

times of ethanol-induced oxidative stress [108].  This prompted the hypothesis of whether tyrosine 

nitration could occur as a post-translational modification of histone proteins, and what is its function.  To 

answer this question a well-established mouse model for ALD was used to induce oxidative stress in the 

liver of 8-week old mice [189, 190] in order to identify novel targets of histone tyrosine nitration.  These 

data now provide clear evidence that chronic ethanol exposure will induce histone tyrosine nitration in 

mouse liver cells after 28-days of chronic ethanol exposure and the modification promotes conformational 

changes to the DNA.  

Materials and Methods 

Chemicals and Reagents   

All chemicals and reagents were purchased from Fisher Scientific unless otherwise noted. 
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Experimental Design and Statistical Rational 

The role of ethanol-induced oxidative stress and liver damage has previously been established 

[135-138, 164, 221, 222].  The 28-day chronic ethanol diet in mice was chosen the for the induction of 

ROS because of its known similarities to the progression of ALD in humans [189].  It was determined that 

this model would be effective for studying the effects of ethanol-induced ROS/RNS on histone protein 

post-translational modifications based off of the amount of liver injury incurred.  The experiment began 

with n= 6 control mice and n=6 ethanol-treated mice with the expectation of 50% survival in the treatment 

group.  Since all mice were fed the same caloric restriction by pair feeding and were litter mates, it could 

be assumed there would be a normal distribution for the data set analysis; therefore a student t-test 

would be an acceptable statistical test (p≤.05) for the following experiments. 

Animals and 28-Day Leiber-DeCarli Ethanol Feeding 

A mouse model of chronic-ethanol consumption was used as previously described [189, 190].  The 

28-day Leiber-DeCarli liquid chronic ethanol diet was employed for both ethanol and control fed mice.  

Eight-week-old male C57BL/6J mice were each divided into two dietary groups; control (n=6 males) and 

ethanol (n=6 males).  Both the control and ethanol liquid diets provided equal caloric distributions 

between groups.  Liquid diets (Bio-Serv) were freshly prepared from powder daily, and all mice were first 

acclimated, stepwise, to a liquid control diet for 5 days. Ethanol groups were then fed a liquid diet 

containing 5% w/v ethanol for 28-days, while control mice received an equal volume of high-fat diet to 

mimic the calories obtained from alcohol.  Control mice were pair-fed to their ethanol-fed counterparts 

for 28-days and diets were measured daily.  Control diets were limited as needed as not to exceed the 

consumption volume of their pair-fed ethanol mouse.  Mice receiving the ethanol diet were housed on 

top of heating pads to maintain body temperature and prevent ethanol-induced hypothermia. On the 

morning of the 29th day, the mice were euthanized and blood and liver samples were collected. The studies 

were approved by the Institutional Animal Care and Use Committee of the University of South Florida. 
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Liver Histology, IHC and Densitometry Analysis of Nitrotyrosine Staining. 

Histology and immunohistochemistry (IHC) were completed by the H. Lee Moffitt Cancer Center 

Tissue Core Facility. Dissected livers were allowed to fix in 10% formalin for 24 hours.  They were 

submitted to the Tissue Core Facility at the H. Lee Moffitt Cancer Center and Research Institute (an NCI-

designated Comprehensive Cancer Center (P30-CA076292), where they were processed for histological 

examination by light microscopy.  After formalin fixation, tissues were processed in a Leica ASP 300 

processer and embedded into paraffin blocks using a Leica EG1150C embedding station.  Once embedded, 

4 μm paraffin sections were cut with a Leica RM2245 rotary microtome, mounted on glass slides, and 

stained with hematoxylin and eosin (H&E) (Hematoxylin 2, Richard-Allan Scientific #7231 and Eosin Y 

Richard-Allan Scientific #7111) in a Leica AutoStainer XL automatic strainer.  Upon completion, the slides 

were mounted with a coverslip.  The expression of nitrotyrosine in mouse liver was assessed by 

immunohistochemical staining (IHC) using a Ventana Discovery XT automated system (Ventana Medical 

Systems, Tucson, AZ) as per manufacturer's protocol with proprietary reagents. The slides were briefly 

deparaffinized on the automated system with EZ Prep solution (Ventana). Cell conditioning followed by 

incubation at 100°C for 24 min was conducted for antigen retrieval. The rabbit primary antibody that 

reacts to nitrotyrosine, (#A-21285, Life Technologies, Grand Island, NY) were used at a 1:200 

concentration in Dako antibody diluent (Carpenteria, CA) and incubated for 60 min. The slides were then 

incubated with the Ventana OmniMap Anti-Rabbit Secondary Antibody for 16 min for nY slides. The 

Ventana ChromoMap kit was used as a chromogen for detection followed by hematoxylin as the 

counterstain. Finally, the slides were dehydrated in 75%, 80%, 95% and 100% ethanol for 1 min each, 

cleared with xylene and cover slide were mounted on the slides.  To quantify the amount of nitrotyrosine 

staining in the IHC stained mouse livers, 25 regions of interest were selected from each image (one image 

from each of the 6 control mouse livers, n=150; two images from different regions of each of the 3 

ethanol-fed mouse livers, n=150) and the mean, minimum, and maximum pixel intensity was measured 
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using ImageJ.  The resulting mean pixel intensities were converted into reciprocal mean pixel intensities 

[223] and a two-tailed Student’s t-test was used to compare the reciprocal mean pixel intensities from 

the control and ethanol-fed groups assuming a normal distribution. 

Sample Processing, Mass Spectrometry, and Data Analysis.   

Nuclear Fractionation.   

Individual liver samples were sectioned (~750mg) to be separated into whole cell and nuclear fractions. 

Livers used for whole cell lysate were homogenized in lysis buffer consisting of 4% SDS, 100 mM Tris-HCl, 

pH 7.6, and 100 mM dithiothreitol.  Homogenization was followed by lysis at 95 °C for 5 minutes prior to 

sonication at 20% amplitude for six 3 second bursts.  Samples were spun at 17,000xg for 5 minutes at 

room temperature and pellets discarded.  Livers sectioned for nuclear enrichment were homogenized in 

3 ml homogenization buffer (10 mM Hepes, pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.74 mM Spermidine, 1 

mM DTT, 0.3 M sucrose, protease and phosphatase inhibitor cocktail (Pierce) at 9000rpm for 1.5 min. 

Homogenate was resuspended in 6 ml cushion buffer (10 mM Hepes, pH 7.9, 0.1 mM EDTA, 0.74 mM 

Spermidine, 1 mM DTT, 2.2 M sucrose, 2 µg/ml aprotinin, 2 µg/ml leupeptin) and then overlaid on 2 ml 

cushion buffer. Nuclei were pelleted by 1 hr centrifugation at 25000g for 1 hr at 4°C as previously 

described [224, 225].  The pellet was collected and lysed in lysis buffer consisting of 4% SDS, 100 mM Tris-

HCl, pH 7.6, 100 mM dithiothreitol, followed by lysis at 95 °C for 5 minutes prior to sonication at 20% 

amplitude for six 3 second bursts.  Samples were spun at 17,000xg for 5 minutes at room temperature 

and pellets discarded.  

 Protein concentrations from both groups were determined using a 660 nm Protein Assay (Pierce) 

supplemented with Ionic Detergent Compatibility Reagent (Pierce).  Next, 30 µl of the sample was added 

to a Microcon-30kD spin column (Millipore) containing 200 µl of 8 M urea and buffer exchanged to 8 M 

urea over subsequent spins prior to iodoacetamide alkylation.  Samples were allowed to alkylate for 20 

min in the dark.  Post alkylation, the samples were exchanged to 50 mM ammonium bicarbonate for 
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digestion at a ratio of 50:1 with Trypsin/Lys-C mix Mass Spec Grade (Promega).  Digestion was carried out 

overnight in a humidified incubator at 37 ° C.  The next day samples were desalted by being loaded onto 

a hypersep reversed phase C18 column (Thermo), washed with 0.1% formic acid in H2O and then eluted 

using 90% acetonitrile/10% H2O/0.1% formic acid.  Samples were dried using a vacuum concentrator 

(Thermo) and resuspended in 0.1% formic acid and water prior to LC-MS/MS analysis.   

LC-MS/MS 

Individual samples were placed into the Easy nanoLC-1000 for separation on a NanoViper 50 cm 

x 75 µm I.D. reversed phase column packed with 3 µm C18 material with 100 Å pore size (Thermo) using 

a 120 min gradient of 2-28% ACN in 0.1% formic acid.  The inline mass spectrometric analysis was 

performed on a Q Exactive Plus mass spectrometer (Thermo).  A precursor MS scan of 350-1550 m/z was 

performed at a resolution of 70,000 and the top 10 most abundant peaks were selected for subsequent 

MS/MS analysis.   

Mass spectra were first analyzed using Mascot Distiller (version 2.2.06).  Parameters included a 

parent and fragment tolerance of 10 and 5 ppm respectively.  The reference database was obtained from 

SwissProt, (UniProtKB, ftp://ftp.uniprot.org/pub/databases/uniprot/previous_releases/, January 2012) 

for Mus musculus containing 16428 protein entries.  Mass spectra were then processed using the 

MaxQuant software package (version 1.5.0.30 (http://maxquant.org)) employing the Andromeda search 

algorithm against the SwissProt reference database (UniprotKB, July 2013) for Mus musculus containing 

16615 protein entries and then repeated using reference database UP000000589 (UniprotKB, August 

2015) containing 16717 protein entries.  The second database of known contaminants provided with the 

MaxQuant suite was also employed.  A minimum peptide length of 7 amino acids was used in conjunction 

with a maximum of 2 missed cleavages and a mass tolerance of 20 ppm.  A 1% false discovery rate was 

used for both peptides and proteins, and nY identifications were accepted based on a localization score 

of >0.80 and mass error of <1 ppm.  Carbamidomethylation of cysteine was applied as a constant 
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modification and oxidized methionine and nitrotyrosine were set as variable modifications.  Upon 

completion, analyzed datasets were placed into Scaffold software (version 4.4.5) for retention of protein 

and peptide coverage and statistics. 

Extracted Chromatogram Analysis 

XIC analysis was completed using the precursor MS obtained from the raw data files 

corresponding to each animal.  The area under the curve was calculated by identifying the change in 

retention time corresponding to the beginning of the peptide elution until no more eluted peptide was 

observed.  The change in relative abundance between the nitrated and unmodified forms of the peptide 

was calculated and reported as a percent fold change in expression.   

Western Blots 

Samples were processed as stated above and loaded into SDS-PAGE gels in accordance with 

sample size and molecular weight.  Precast TGX gels and protein standard were purchased from Bio-Rad 

(Hercules, CA) for use with their semi-dry turbo transfer machine.  Blots were transferred to methanol 

activated PVDF membranes for Western blot analysis.  Western blots were blocked in a 5% (wt/vol) 

powdered milk in PBS solution for 1 hour at room temp.  Next, the blots were washed in PBS for 1 hour 

prior to primary antibody incubation overnight at 4°C, shaking.  Primary antibodies are resuspended in a 

5% BSA/PBS solution containing 0.05% sodium azide as a preservative.  The next day blots were washed 

1 hour in PBST at room temperature prior to the addition of the respective species HRP-conjugated 

secondary antibody (Cell Signaling, Denver, MA).  The secondary antibody is prepared in 5% milk (wt/vol) 

and PBST at a 1:5000 dilution.  Blots were incubated in secondary antibody for 1 hour at room 

temperature and then washed for 2 hours in PBST prior to developing (nitrotyrosine blots are washed for 

24 hours in PBST prior to developing).  Blots were incubated for 1 minute in Western Lighting-Plus 

Chemiluminescent Substrate (PerkinElmer, NEL104001EA) and developed using the AI06 Imager 

(Amersham).  Primary antibodies are as follows: all dilutions are 1:1000; ADH1 (#5295), H3 (#4499), H4 
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(#2935), ACL (#13390), β-Actin (#3700), GAPDH (#5174), nitrotyrosine (#9691), pan-NOS (#2977), Cell 

Signaling Technologies; CYP2E1 (#ab28146, Abcam); nitrotyrosine (#6B2-3G2, Bio-Rad).  

Dot Blots 

PVDF membrane was activated in 100% methanol for 10 minutes.  After activation the membrane 

was washed for 5 minutes, shaking, in DI water and then placed into PBS for acclimation.  A piece of 

Whatman filter paper is soaked in PBS and placed on top of a dry piece of filter paper that is sitting on a 

stack of paper towel.  The membrane is placed on top of the stack and allowed to dry until damp.  

Previously synthesized nitro-peptides against H1nY70, H1nY27, H2BnY50, H3nY41, H4nY51, H4nY72, 

H3Y41 (Covance), H3nY41 (Covance) were dotted in 1µg, 500ng, 250ng, 50ng, 1ng, and 500pg.  The 

peptide was allowed to bind at room temp for 1.5 hours.  The membranes were then placed into PBS 

before beginning the previously stated Western blot protocol for testing of the H3nY41 (Covance) 

antibody.     

Nitro-peptide synthesis, Mass Spectrometric Analysis, and Validation of Histone Nitrotyrosine 

Identification     

In order to validate our findings, nitrotyrosine peptides were synthesized corresponding to the 6 

nitrotyrosine sites identified on the histone proteins (H1, H2B, H3, and H4).  Peptides were synthesized by 

Fmoc solid phase chemistry using the activator 5-chloro-1-[bis(dimethylamino)methylene]-1H-

benzotriazolium 3-oxide (HCTU).  The synthesis was completed using the 25 µmole synthesis scale by the 

Protein Technologies Symphony Peptide Synthesizer at the University of South Florida Peptide Synthesis 

and Mass Spectrometry Facility.  Each coupling step required 5 equivalents of Fmoc-amino acid and 7.5 

equivalents of HCTU to be dissolved in 0.4M N-methylmophorine in dimethylformamide (DMF).  Fmoc 

deprotection was done using 20% piperidine, 2% 1, 8-diazobiclo[5, 4, 0]undec-7-ene (DBU).  After 

synthesis, the resin was washed with N-methylpyrrolidone (NMP) followed by dichloromethane (DCM) 
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and cleaved using a cocktail mixture (94% TFA, 2.5% water, 2.5% ethanedithiol, 1% triisopropyl silane) 

prior to precipitation in cold ether.   

 The nitropeptides were resuspended in a 50:50 methanol and 0.1% FA in H2O at a concentration 

of 1µg/ml.  The peptides were directly infused into the Q-Exactive Plus Mass Spectrometer using the same 

normalized collision energy (NCE) and mass range as their respective experimental identified nitrotyrosine 

modified histone proteins from each individual sample. The synthetic peptide data was then used to 

validate the presence of the nitrotyrosine observed on the experimental histone residues.  Spectra from 

both the experimental samples and the synthetic peptides were annotated using protein prospector MS-

Product (version 5.14.1, http://prospector.ucsf.edu).  Positive nitrotyrosine sites were validated according 

to specifications previously described [126]. 

Molecular Dynamic Simulations 

The initial conformation for the wild-type nucleosome system was constructed from the X-ray 

structure of a nucleoprotein complex formed by recombinant variants of Xenopus laevis histones and 

modified human α-satellite DNA (PDB ID 1kx5) [226]. The crystal structure contains a 147 base pair DNA 

stretch wrapped around the octameric histone core resolved at 1.9 Å. [227].  Experiments were carried 

out over several all-atom MD simulations of the nucleosome complex with various modifications, one of 

which had truncated histone tails (H3 was truncated at K36, H4 at K16, H2A at A12, and H2B at K21).  In 

the latter system, RMSD of the core histone region remained within 1.5 Å of the crystallographic positions, 

and the RMSD of the DNA was slightly larger (5 Å) when compared to the nucleosome without truncated 

histone tails (4 Å), indicating that the nucleosome with the clipped tails maintains an average 

conformation close to that of the crystal structure.  As such, in order to expedite the acquisition of longer 

time scales, the histone tails were truncated at the same locations (Figure 3.8).  The nucleosome complex 

was co-crystallized with 14 manganese (Mn) ions. Manganese is a divalent ion and a transition metal that 

enforces an octahedral geometry on the ligands coordinating with it in the inner shell.  There are currently 

http://prospector.ucsf.edu/
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no force fields that can accomplish this, therefore, Mn was switched out for magnesium (Mg), which has 

the same charge and a similar radii.  Coordinates for missing atoms were obtained through the pdb2gmx 

GROMACS utility. The nucleosome, along with the crystallographically resolved water molecules, were 

placed in a 14 nm3 unit cell and was then solvated with the SPC/E model water [228].  After energy 

minimization, non-crystallographic water molecules were randomly replaced by potassium (K+) and 

chloride (Cl-) ions in order to achieve a 100 mM ion concentration. K+ and Cl- ions were added in a 

proportion such that the unit cell has a zero net charge. After the introduction of ions, the unit cell was 

energy minimized once more.  To construct the H3nY41 system, the confirmation at t=500 ns from the 

wild-type ensemble was modified by substituting the CE2 hydrogen of H3Y41 with a nitrate group, whose 

bond parameters were obtained from Myung and Han [229].  Energy minimization was again performed 

on the H3nY41 system prior to starting the MD simulation.  

All simulations were carried out with the Gromacs 4.5.3 package [230] with an integration step of 

2 fs.  Protein, ions, and DNA parameters are described by the AMBER99SB-ILDN force field [231].  The 

simulations are carried out under isobaric conditions using the Parrinello-Rahman extended ensemble 

approach [232], with a reference pressure of 1.01325 bar. The coupling time constant for the barostat is 

1.0 ps and the compressibility factor is set to 4.5 e-5. The simulations are carried out at a temperature of 

310 K and are coupled every 0.1 ps to a velocity-rescale thermostat [233], which uses a stochastic term 

for the generation of a proper canonical ensemble.  Periodic boundary conditions are set in all directions 

and neighbor lists are constructed through a grid search that is updated every 10 fs. van der Waals 

interactions are computed explicitly for interatomic distances of up to 10 Å. Electrostatic interactions are 

computed using the particle mesh Ewald scheme with a Fourier grid spacing of 0.1 nm, a fourth-order 

interpolation, and a direct space cutoff of 10 Å [234].  Convergence is monitored by tracking the time 

evolution of histone and DNA RMSDs as well as H3Y41 and H3nY41-DNA distances (Figures 3.9-3.11). 
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H3nY41 Antibody Synthesis, Chromatin Immunoprecipitation, and qPCR 

A ChIP-grade antibody was raised in 2 rabbits, at Covance antibody facilities (Denver, PA).  The 

rabbits were immunized using synthetic peptides generated to recognize either H3Y41 (Ac-

PHRYRPGTVALC-amide) or H3nY41 (Ac-PHR(NO2Y)RPGTVALC-amide) over 77 days.  Serum was tested 3-

times, over 77 days using Dot-Blots probed with the previously made nitro-peptides [synthesized for the 

verification of MS data] and Western blots of whole cell lysate obtained from the 28-day mouse chronic-

ethanol study.  Rabbit FL111 was designated for affinity purification to be used for ChIP-sequencing.   

ChIP-Seq service was performed by Zymo Research Corporation (Irvine, CA). Briefly, mouse liver 

tissue was crosslinked with 1% (v/v) formaldehyde for 10 min and quenched with final 125 mM glycine 

for 5 min at room temperature. Chromatin was prepared using the Zymo-SpinTM ChIP kit (Zymo Research 

Corp., Irvine, CA). Sonication was performed at high power setting for 40 cycles (30 s on, 30 s off) using a 

Bioruptor PlusTM (Diagenode Inc., Denville, NJ), yielding fragment size range of 200-700 bp. The ChIP 

assay was performed in triplicate (N=3) using 20 μg of chromatin and 10 μg of anti-H3nY41 polyclonal 

antibody. Anti-IgG (Diagneode C15410206; Lot RIG001L) at a concentration of 10 μg was included as a 

negative control. A non-precipitated DNA sample was included as an input control. ChIP DNA was purified 

using the ChIP DNA Clean and ConcentratorTM (Zymo Research, Irvine, CA). ChIP-Seq libraries were 

prepared and sequenced on a HiSeq sequencer (Illumina, San Diego, CA). ChIP-Seq reads were aligned to 

the mouse genome version mm10 Bowtie with at most 2 mismatches. Reads that appeared more than 

twice at the same position on the same strand were discarded to remove PCR duplication. BIGWIG files 

were generated from the coverage for visualization purposes. MACS2 was used to identify peaks at q-

value cutoff 0.05 and a broad cutoff of 0.1.Following ChIP-sequencing, validation of Ano2 and Dpp9 were 

tested for validation using ChIP-qPCR.  ChIP-qPCR analysis was performed by Zymo Research Corporation. 

Briefly, unique primer sets were designed for Dpp9 and Ano2 introns using H3nY41 sequencing data. 

H3nY41 ChIP and IgG negative control DNA enriched from 3 independent ChIP assays were pooled and 1 
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µl DNA/reaction was amplified using ZymoTaq™ qPCR Premix (Zymo Research Corp., Irvine, CA). ChIP DNA 

enrichment was determined as % of input (i.e. the relative amount of immunoprecipitated DNA compared 

to 100% input DNA after qPCR analysis). 

Results 

28-Day Chronic Ethanol Diet in 8-Week Male Mice Promotes Liver Injury & Nitrotyrosine Formation  

 Eight week old male C57bl/6 mice were administered either the control or ethanol Leiber-DeCarli 

liquid diet for the course of 28 days.  Mice were sacrificed on day 29 and the blood and livers were 

harvested for further analysis.  Upon extraction, livers of ethanol-fed mice had displayed visual signs of 

hepatitis; livers were soft, swollen, discolored and possessed white blotches when compared to their 

control mice counterparts.  Livers were then next sectioned and fixed in 10% formalin, for 24 hours, prior 

to being embedded in paraffin for IHC analysis.  Hematoxylin and Eosin (H&E) stain were first performed 

on each liver to ensure alcohol-induced fatty liver has occurred in the ethanol-fed mice.  H&E staining of 

the ethanol-fed mice revealed signs of lipid accumulation commonly seen in the development of steatosis 

when compared to the control-fed mice (Figure 3.1A).  Upon confirmation that the mice had alcohol-

induced fatty-liver, global nitrotyrosine expression in the liver was assessed by IHC.  An IHC grade antibody 

against pan-nitrotyrosine (Invitrogen, A-21285) was used to stain each liver sample.  Interestingly, 

nitrotyrosine staining revealed increased levels of nitrotyrosine that was localized to the vascular and 

nuclear regions of the livers in the ethanol-fed mice (Figure 3.1B).  Next densitometry was performed on 

the resulting IHC data, to assess if the increase in nY after ethanol exposure was significant when 

compared the pair-fed control mice.  One hundred and fifty individual regions were randomly selected 

from the IHC livers of both the control and ethanol-fed mice, the resulting mean pixel intensities.   The 

resulting mean pixel intensities were then converted into reciprocal means and compared using a 2-tailed 

student t-test.  Statistical analysis of nY abundance between control and ethanol-fed mice yielded a 
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significant increase of nY (p=1.65E-38) in both the individual reciprocal means, as well as their averages 

(Figure 3.1C).  

 

Figure 3.1: Histological Analysis of Mouse Liver following the 28-Day Leiber-DeCarli Chronic Ethanol 
Diet. A) H&E staining shows increased lipid accumulation in the liver observed in ethanol-fed (A. Right) 
mice when compared to control-fed (A. Left) mice, indicative by the “hole”-like appearance.  B)  IHC pan-
nitrotyrosine staining of the control-fed (B. Left) and ethanol-fed (C. Right) mouse livers displays increased 
nitrotyrosine localized to the nuclear regions in the ethanol-fed mice.  C) Densitometry and Statistical 
analysis was completed on 150 random regions from the IHC images obtained from both the control and 
ethanol-fed livers.  C) (Left) Densitometry analysis was performed to quantify the fold change observed 
in the PTN between the control and ethanol fed mice depicted in part B above.  C) (Right) Statistical 
analysis of densitometry data revealed significant increases in PTN (** p<0.0001) after ethanol exposure.     

** 
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Functional Analysis of Nuclear Enrichment and Protein Tyrosine Nitration 

Next, the number of nuclear proteins that were identified by mass spectrometry were quantified 

in order to assess the purity of the nuclear enrichment.  To do this, the raw files were first analyzed using 

MaxQuant (Max Plank) and then added to Scaffold (Proteome Software Inc., Portland OR) for quantitation 

analysis [109, 235].  The gene-ontology (GO) function in Scaffold was used in order to determine which 

cellular compartment the protein identified is traditionally located in.  Scaffold-GO identified that 

approximately 50% of the total identified proteins were found within the cellular nuclear compartment 

(Figure 3.2A).  In order to ensure that a similar amount of protein was being utilized for XIC comparison 

analysis, the non-normalized total ion current (TIC) was used to establish a loading control.  The TIC was 

extracted from the nuclear proteins, Lamin B, Histone H3 (H3), and histone deacetylase 1 (HDAC1) from 

both the control and ethanol-fed mice and it was concluded that no significant changes in TIC occurred 

between experimental groups (Figure 3.2B).  These data suggest that any further data analysis of protein 

up or down-regulation could be completed with the confidence of equal loading of lysate onto the mass 

spectrometer.  The MaxQuant dataset was used to extract intensities and conducted a student’s t-test to 

calculate significant fold-change in expression between control and ethanol-fed mice.  Once proteins were 

found to have a significantly different (p<0.05) fold change, they were uploaded into Ingenuity Pathway 

Analysis (IPA) for further pathway analysis to detect differences in protein networks due to ethanol 

exposure.  Results show that ethanol upregulated numerous enzymes, such as GSTA5, CBR1, and HTATIP2 

that are important in pathways responsible for the reduction of free radicals and alleviating oxidative 

stress (Figure 3.2C).  The transcription factor, CCAAT/Enhancer Binding Protein Alpha (CEBPA) was 

identified to be downregulated, which is most notable for its role in cell cycle and proliferation arrest.  IPA 

analysis further confirmed that the expression changes being observed were commonly linked to enzymes 

necessary for ethanol metabolism and the reduction of oxidative stress within the cell.     
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Identification of Nitrotyrosine Modifications on Histone Proteins 

Utilizing both MaxQuant and Mascot proteomic software algorithms, 51 proteins were identified 

to undergo tyrosine nitration (Table 3.1). Excitingly, the search identified 7 novel sites of tyrosine nitration 

Figure 3.2: Quantitative analysis of Mass Spectrometrically Derived Nuclear Fractionation and Changes in 
Protein Upregulation.  A) Total ion current was quantified from the non-normalized data obtained from the 
MaxQuant data analyzed by Scaffold Q/S.  Scaffold’s Gene ontology function was used to quantify all proteins 
isolated and identified within the nuclear compartment.  No significant changes were observed between the 
control and ethanol-fed mice.  B) Comparison of nuclear loading control proteins Histone H3, Lamin B1 and 
HDAC1.  No significant changes were observed across the nuclear loading controls tested, relaying that all 
samples were equally loaded onto the column and mass spectrometer.  C)  Fold-change in significantly different 
proteins between control and ethanol-fed groups were uploaded into Ingenuity Pathway Analysis for analysis of 
protein expression.  IPA results yielded upregulation of proteins and enzymes important in the metabolism of 
ethanol.   
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(nY) on histone proteins.  The histone nY sites that were identified included 3 novel sites of tyrosine 

nitration in Histone H4 (Y51, Y72, and Y98), two nY sites in Histone H1 (Y27 and Y70), and one nY site on 

each, Histone H3 (Y41) and Histone H2B (Y37) (Table 3.2).  All of the prospective nY sites identified on the 

histone proteins received a localization score of 100% as well as a Scaffold PTM A-score of 1000, except 

Assession # Protein names Gene names Peptide Sequence and nY Probabilities Charge

Mass 

error 

[ppm] PEP

MaxQuant 

Score

P63038 60 kDa heat shock protein, mitochondrial Hspd1 SIDLKDKY(1)K 3 -0.360 1.10E-02 57.267

P20029 78 kDa glucose-regulated protein Hspa5 VY(1)EGERPLTK 3 -0.526 2.96E-02 55.467

P59511 A disintegrin and metalloproteinase w ith thrombospondin motifs 20 Adamts20 LEEKY(1)CSHLHK 2 1.839 4.97E-02 55.314

P68134 Actin, alpha skeletal muscle Acta1 LCY(1)VALDFENEMATAASSSSLEK 2 -1.539 4.51E-08 79.177

P68134 Actin, cytoplasmic 2 Actg1 DSY(1)VGDEAQSK 2 0.186 2.76E-05 115.33

Q9JME5 AP-3 complex subunit beta-2 Ap3b2 EAASDMSPY(1)VRK 2 1.776 5.71E-02 43.604

Q61285 ATP-binding cassette sub-family D member 2 Abcd2 PY(1)MSLGSLR 3 0.220 2.57E-02 50.04

Q9Z1N7 AT-rich interactive domain-containing protein 3B Arid3b QILDLY(1)MLY(1)KLVTEK 2 1.581 5.84E-03 42.314

Q9Z1N7 AT-rich interactive domain-containing protein 3B Arid3b QILDLY(1)MLY(1)KLVTEK 2 1.581 5.84E-03 42.314

Q99PF4-2 Cadherin-23 Cdh23 LDY(1)ELIQR 3 -0.649 3.88E-02 47.082

Q8C196 Carbamoyl-phosphate synthase [ammonia], mitochondrial Cps1 LY(1)FEELSLER 2 3.688 7.76E-05 123.79

Q8C196 Carbamoyl-phosphate synthase [ammonia], mitochondrial Cps1 EIEY(1)EVVR 2 -0.402 4.08E-02 67.897

P16015 Carbonic anhydrase 3 Ca3 HDPSLQPWSASY(1)DPGSAK 3 -2.344 7.59E-03 43.383

Q3ULW6-4 Coiled-coil domain-containing protein 33 Ccdc33 Y(1)LRIFHPYQFKLEK 3 -1.730 3.62E-03 55.196

Q8R3L8-3 Cyclin-dependent kinase 8 Cdk8 VGRGTY(1)GHVYK 2 0.416 6.36E-02 64.374

Q9DBT9 Dimethylglycine dehydrogenase, mitochondrial Dmgdh DLEGSY(0.5)Y(0.5)LR 2 0.334 2.45E-02 63.076

Q9DBT9 Dimethylglycine dehydrogenase, mitochondrial Dmgdh DLEGSY(0.5)Y(0.5)LR 2 0.334 2.45E-02 63.076

P06802-2 Ectonucleotide pyrophosphatase/phosphodiesterase family member 1 Enpp1 KY(1)VY(1)LNK 2 -4.361 8.33E-03 100.74

P06802-2 Ectonucleotide pyrophosphatase/phosphodiesterase family member 1 Enpp1 KY(1)VY(1)LNK 2 -4.361 8.33E-03 100.74

P10126 Elongation factor 1-alpha 1 Eef1a1 MDSTEPPY(1)SQK 2 -0.096 1.83E-03 82.437

P10126 Elongation factor 1-alpha 1 Eef1a1 RY(1)EEIVK 2 0.778 3.26E-02 53.968

P26443 Glutamate dehydrogenase 1, mitochondrial Glud1 NY(1)TDNELEK 2 -0.485 1.87E-03 98.048

P16858 Glyceraldehyde-3-phosphate dehydrogenase Gapdh LISWY(0.999)DNEY(0.001)GYSNR 2 0.215 3.87E-04 113.25

P01942 Hemoglobin subunit alpha Hba IGGHGAEY(1)GAEALER 3 -2.323 6.21E-04 79.337

Q8R3H7 Heparan sulfate 2-O-sulfotransferase 1 Hs2st1 PIY(1)INVIR 1 -0.520 4.72E-03 79.939

Q8BG05 Heterogeneous nuclear ribonucleoprotein A3 Hnrnpa3 SSGSPY(0.001)GGGY(0.992)GSGGGSGGY(0.007)GSR 2 -0.210 2.35E-17 144.95

Q8BG05 Heterogeneous nuclear ribonucleoprotein A3 Hnrnpa3 EDTEEY(1)NLR 2 -0.629 1.25E-03 103.55

P15864 Histone H1.2 Hist1h1c ALAAAGY(1)DVEK 2 0.635 3.12E-03 84.479

Q6ZWY9 Histone H2B type 1-P Hist1h2bp KESY(0.08)SVY(0.348)VY(0.572)K 2 0.565 1.61E-02 63.397

Q6ZWY9 Histone H2B type 1-P Hist1h2bp ESY(0.071)SVY(0.465)VY(0.465)K 2 -0.432 2.40E-02 63.397

Q6ZWY9 Histone H2B type 1-P Hist1h2bp ESY(0.808)SVY(0.191)VY(0.001)K 2 -0.482 2.71E-02 66.962

P84244 Histone H3.3, Histone H3.1, Histone H3.2 H3f3a Y(1)RPGTVALR 2 -0.462 4.44E-03 117.02

P62806 Histone H4 Hist1h4a RISGLIY(1)EETRGVLK 3 -3.551 1.81E-07 133.16

P62806 Histone H4 Hist1h4a DAVTY(1)TEHAK 2 -0.025 4.68E-05 110.38

P62806 Histone H4 Hist1h4a TLY(1)GFGG 1 0.464 4.15E-03 92.723

Q62240-3 Lysine-specif ic demethylase 5D Kdm5d LNY(1)LDQIAK 2 -0.063 1.76E-02 67.414

P45952 Medium-chain specif ic acyl-CoA dehydrogenase, mitochondrial Acadm KGDEY(1)VINGQK 2 0.252 8.20E-68 259.18

Q62425 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4 Ndufa4 LGPNEQY(1)K 2 -0.598 3.99E-02 68.224

P51660 Peroxisomal multifunctional enzyme type 2 Hsd17b4 SGSGEVY(1)QGPAK 2 -0.294 1.46E-07 137.01

Q9R0E2 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1 Plod1 FLGSGGFIGY(1)APSLSK 2 1.953 2.95E-03 65.219

O55125 Protein NipSnap homolog 1 Nipsnap1 GWDENVY(0.5)Y(0.5)TVPLVR 2 1.606 1.51E-03 79.614

O55125 Protein NipSnap homolog 1 Nipsnap1 GWDENVY(0.5)Y(0.5)TVPLVR 2 1.606 1.51E-03 79.614

Q9JKF1 Ras GTPase-activating-like protein IQGAP1 Iqgap1 Y(1)QELINDIAK 2 -0.117 4.81E-02 52.49

F6SEU4 Ras/Rap GTPase-activating protein SynGAP Syngap1 YQTMSILPMELY(1)K 2 0.791 7.44E-03 54.023

Q6ZQ82 Rho GTPase-activating protein 26 Arhgap26 GINEQGLY(1)RIVGVNSR 2 1.356 1.95E-02 63.29

P38647 Stress-70 protein, mitochondrial Hspa9 RY(1)DDPEVQK 2 0.750 6.85E-03 73.887

P09671 Superoxide dismutase [Mn], mitochondrial Sod2 HHAAY(1)VNNLNATEEK 3 0.879 1.11E-04 101.43

O08710 Thyroglobulin Tg FLGVPY(1)AAPPLADNR 2 -0.635 1.58E-02 53.377

Q99JY0 Trifunctional enzyme subunit beta, mitochondrial Hadhb MEQDEY(1)ALR 2 -0.371 1.71E-02 67.704

P25688 Uricase Uox GEY(1)SPSVQK 2 0.891 8.86E-03 75.571

Q5DU09-2 Zinc f inger protein 652 Znf652 VFNTRWY(1)LEK 2 -2.145 1.64E-02 67.334

Table 3.1: MaxQuant Nitrotyrosine Identification in Mouse Liver following the 28-Day Chronic Ethanol Diet 
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for H2B.  H2B has 3 tyrosine residues with similar neighboring amino acids, making it difficult for the 

software to localize which tyrosine was nitrated.  Furthermore, all of the nY sites identified fell within the 

allowable range of acceptable mass error (<5ppm) as determined by the performance of the Q-Exactive 

Plus mass spectrometer lowering the probability of a falsely identified PTM.  Because these nitration sites 

are novel, synthetic peptides were used in order to validate the histone nY modifications identified by the 

software.  Multiple parameters were used for the nY PTM to be considered valid, each of the nitrated 

histones must pass the following 4 criteria’s in conjunction with their respective synthetic peptide.  First 

the peptide must be >7 amino acids long, second the majority of peaks must have a relative abundance 

of >20%, third the peptide must have ≥4 consecutive ions identified (b or y), and lastly, the spectrum must 

redundant across samples.  Identified nY sites that did not fully pass the criteria listed above were 

considered invalid until further validation can prove otherwise.  Four positive sites of tyrosine nitration 

on histones were able to be validated, H3 (Y41), H1 (Y70), and H4 (Y51) and (Y72).  The b and y ion series 

identified from MS/MS spectra of the experimental samples (Figure 3.3) were compared to the 

corresponding MS/MS generated from direct infusion of the respective nitrated synthetic peptide (Figure 

3.4).  The remaining experimental peptides originally identified to be nitrated on histone H1 (Y27), H2B 

(Y37) and H4 (Y98) (Figure 3.5), were unable to pass the validation criteria when compared to their 

synthetic counterparts (Figure 3.6).  In regards to peptides that did not pass the validation, the analysis 

Table 3.2: XIC Analysis of Nitrotyrosine on Histone Proteins following the 28-day Chronic Ethanol Diet in Mice 

*Denotes nitrated tyrosine residue 
†Peptide identified by Mascot 
‡Peptide identified by MaxQuant 
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Figure 3.3: Identification and Validation of Histone Tyrosine Nitration that Passed Validation.  (A-D) Annotated 
spectra obtained from histone proteins containing nitrotyrosine residues.  Representative MS/MS that were 
found to have nitrated tyrosine were annotated using Protein Prospector.  Spectra obtained from the synthetic 
peptides were compared to the best scans of histone tyrosine nitration identified from the livers of their 
respective experimental samples obtained from the 28 day chronic ethanol diet.  Validation was dependent on 
the amount and consecutively placed ions that matched between experimental ions and ions obtained from 
the synthetic peptides.  A) Histone H3 tyrosine 41 was identified to be nitrated after ethanol exposure.  B & C) 
Histone H4 was identified to be nitrated at tyrosine residues 51 and 72, respectively after ethanol exposure. 
D) Histone H1 isoforms H1.2, H1.3, H1.4 and H1.5 were identified to be nitrated at tyrosine 70 after ethanol 
exposure.  
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Figure 3.4:  Annotation of Synthetic Peptides H3nY41, H4nY51, H4nY72, and H1nY70.  Synthetic peptides were 
synthesized to mirror the experimental histone nitrotyrosine peptides identified by MaxQuant.  The synthetic 
peptides were infused directly into the Q Exactive Plus mass spectrometer and parameters were adjusted to mirror 
experimental settings.  Synthetic peptides MS/MS were annotated using Protein Prospector and the respective 
MS/MS generated were compared to their respective experimental peptides for validation.  Spectra obtained from 
the synthetic peptides were compared to the best scans of histone tyrosine nitration identified from the livers of 
their respective experimental samples obtained from the 28 day chronic ethanol diet.  A) Histone H3 nY41. B & C) 
Histone H4 nY51 and nY72, respectively. D) Histone H1 isoforms H1.2, H1.3, H1.4 and H1.5 nY70.   
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Figure 3.5: Potential sites of Histone Tyrosine Nitration That Did Not Pass Validation. (A-C) Annotated spectra 
obtained from histone proteins containing nitrotyrosine residues.  Representative MS/MS that were found to have 
nitrated tyrosine were annotated and compared to nitropeptides as previously described.  All experimental settings 
were configured as previously described in Fig.3.  Spectra obtained from the synthetic peptides were compared to 
the best MS/MS of histone tyrosine nitration identified by MaxQuant software.  Figures A-C did not pass validation 
as previously described; A) Histone H1.0 nitration was suggested to be found on tyrosine 27, the coelution of an 
isobaric peptide is shown on the inset.  B) Histone H2B nitration of tyrosine 50 was unable to be fully validated due 
to the sequence similarity between tyrosine residues.  C) Histone H4 tyrosine 98 was unable to be validated due to 
the lack of positively identified consecutive ions. 
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Figure 3.6:  Annotation of Synthetic Peptides Pertaining to H1nY27, H2BnY50, & H4nY98.  Synthetic peptides were 
synthesized to mirror the experimental histone nitrotyrosine peptides identified by MaxQuant.  The synthetic 
peptides were infused directly into the Q Exactive Plus mass spectrometer and parameters were adjusted to mirror 
experimental settings.  Synthetic peptides MS/MS were annotated using Protein Prospector and the respective 
MS/MS generated were compared to their respective experimental peptides for validation.  Spectra obtained from 
the synthetic peptides were compared to the best scans of histone tyrosine nitration identified from the livers of 
their respective experimental samples obtained from the 28 day chronic ethanol diet.  A) Histone H1.0 nY27 B) 
Histone H2B nY50 C) Histone H4 nY98. 
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suggests that the inability to validate may have been due to the low nitrotyrosine abundance, and/or 

possible MS signal interference, most likely due to the coelution of an isobaric peptide. Next, individual 

spectra were used to assess the average percent nitration observed across both the control and ethanol-

fed mice.   

Nitrotyrosine modifications were observed to be present in both the control and ethanol-fed 

mice, however, the quantity of nY detected was minimal in the control-fed mice when compared to their 

pair-fed ethanol-matched mice (Table 3.2).  Analysis of the overall percent nitration showed >2 fold 

change between control and ethanol-fed mice for 3 nitrotyrosine sites; H3nY41 showed a 3.22 fold 

change, H4nY72 revealed a 2.51 fold change, and H1nY27 exhibited a 2.81 fold change (Table 3.2).  

Interestingly, the H3nY41 site is located in the hinge region of the H3-tail, whereas other identified histone 

nitration sites were located towards the center of the nucleosome.  The nitration of H3 in the tail region 

suggests the modification may be important for DNA interactions and gene regulation due to its 

positioning near both DNA and histone H1, this discovery prompted further investigation into H3nY41. 

Implications of Tyrosine Nitration Influences and Gene Regulation 

Protein Tyrosine Nitration Targets Proteins Involved in Gene Regulation 

Next, the addition of the nitrotyrosine modification was assessed on proteins involved in gene 

regulation and transcription.  Notably, heterogeneous nuclear ribonucleoprotein A3 (Hnrnpa3) was 

identified to be nitrated following chronic ethanol exposure.  Hnrnpa3 is often associated with the 

cytoplasmic trafficking of RNA, and may also have a possible role in pre-mRNA splicing.  Mass 

spectrometry identified two novel tyrosine nitration modifications on Hnrnpa3, Y139, and Y303 (Figure 

3.7A & 3.7B).  Moreover, the Y139 nitration site on Hnrnpa 3 is located in the RNA recognition motif 

domain (RRM) (IPR000504), suggesting a role in protein regulation or nucleotide binding.  Also, elongation 

factor 1-alpha 1 (Eef1a1) was found to contain two novel nitrotyrosine modifications at Y61 and Y82 

(Figure 3.7C & 3.7D).  Eef1a1 is important in helping GTP-dependent binding of aminoacyl-tRNA to the A-
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Figure 3.7:  Site-Specific Identification of Nitrotyrosine on Heterogeneous Nuclear Ribonucleoproteins & Eef1a1.  
Heterogeneous nuclear ribonucleoprotein A3 (Hnrnpa3) (A & B) and Elongation factor 1-alpha 1 (Eef1a1) (C & D) 
were both identified to be nitrated after ethanol exposure.  Hnrnpa3 was annotated using protein prospector and a 
positive identification of nitration on Y139 (A) and Y303 (B) was determined after ethanol exposure.  Annotation of 
the protein Eef1a1 also revealed that ethanol exposure induced nitration on Y166 (C) and Y161 (D).  All peptides and 
nitration sites were identified by MaxQuant analysis software. 
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site of the ribosome during elongation, further 

strengthening a plausible role for nY modifications 

in protein and gene regulation during times of cell 

stress.  

Molecular Dynamics Predict H3nY41 Induces a 

Conformational Change in the DNA 

The wild-type and H3nY41 nucleosome 

systems were each simulated for 500 ns. Histone 

and DNA RMSDs suggest that both systems begin 

to converge at t=100 ns (Figure 3.8 A-C).  A 

qualitative analysis was first completed by visually 

comparing ensembles sampled from t=100 ns to 

t=500 ns of the two systems, H3Y41 and H3nY41, 

by superimposing them onto each other.  This 

comparison suggests that when the H3Y41 is 

nitrated, the DNA bulges near its entry/exit sites at 

the nucleosome (Figure 3.9).  To obtain a 

quantitative evaluation of this observation, the 

distance from H3Y41 to the phosphorus atoms of 

those nucleotides that are within 5 Å of H3 in the 

crystallographic conformation was tracked (Figure 3.10).  The distance reported was calculated between 

the center of mass of these P atoms and that of H3Y41. The two histone 3 peptides within the nucleosome 

are considered independently in this analysis and are termed H3A and H3B.  Their respective time-

dependent DNA-P to H3Y41 distances are shown in (Figure 3.10).  The distance reported 

Figure 3.8: Tracking the Time Evolution of Histones 
and DNA RMSDs.  (A-B) The individual histones that 
comprise the nucleosome were placed into the 
simulated environment and tested for equilibrium 
using RMSD over time for both the wild-type (WT) 
H3Y41 (A) and the nitrated H3nY41 (B). (C) DNA 
stability was also assessed for convergence by RMSD 
over time.  Both the nucleosome containing the 
nitrated and unmodified H3Y41 and the DNA 
achieved equilibrium after 100ns.  
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was calculated between the center of mass of 

these P atoms and that of H3Y41. The histone 3 

dimer within the nucleosome is considered 

independently in this experiment and are termed 

H3A and H3B.  Their respective time-dependent 

DNA-P to H3Y41 distances are shown in (Figure 

3.10). This analysis indicates that the DNA P-

H3Y41 distance starts to converge at t=200ns, 

hence, the equilibrated portion is now taken to be 

from t=200 ns to t=500 ns.  Figure 3.10 also shows 

that when H3Y41 is nitrated, the DNA-P to H3Y41 

distance increases by 2 Å on average.  However, 

the average alone does not capture the full effect 

of the nitrated tyrosine because the fluctuation 

about the mean of the H3nY4I to DNA-P is twice 

Figure 3.9: Molecular Dynamic 
Simulations Predict the DNA Prefers 
a Different Conformation upon 
Histone Tyrosine Nitration.  
Computational modeling of the 
nucleosome containing the H3 
dimer with truncated tails.  The 
location of H3Y41 is depicted 
relative to the DNA (Right).  (Left) 
Magnified region of the H3Y41 and 
DNA interface showing the 
predicted DNA conformation in the 
presence of H3nY41 (Pink) and 
H3Y41 (blue).  The algorithm 
predicted the DNA to prefer a 
different conformation upon the 
nitration of H3Y41. 

Figure 3.10: Distance from H3Y41 to a Set of the DNA 

Phosphorus (P) Atoms.  The distance calculated between 
the center of mass of these P atoms and that of H3Y41.  
The H3 dimer were analyzed independent of each other 
(A and B). The DNA P-H3Y41 distance starts to converge 
at t=200ns, thus shifting the equilibrium starting point 
to t=200 ns to t=500 ns. 
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the distance of the wild-type.  While the H3nY41 

system consistently assumes conformations where the 

DNA-P and H3Y41 distance is >67 Å, it occasionally 

samples the conformational space of the wild-type 

system, yielding a lower average. In contrast, the 

maximum DNA-P to H3Y41 distance observed in the 

wild-type system is <64 Å. Although this difference may 

seem small relative to the scale of the entire 

nucleosome, an increase of just 3-4 Å is enough to 

accommodate the entry of a K+ ion, whose ionic 

diameter is 2.8 Å. To check how closely various moieties 

are to H3Y41, a RDF analysis was performed on DNA P, 

K+, Cl-, and water with respect to the carbon at position 

ε2 of H3Y41, which is the site of nitration introduction 

(Cl- not shown) (Figure 3.11A).  These data show that 

compared to the wild-type system, the K+ ions in the H3nY41 system are found much closer to the carbon 

that gets nitrated, while the RDFs for water and DNA-P are shifted further away. These data also show 

that potassium ion presence is indeed increased in the cavity formed by DNA and the H3 tail bearing 

H3nY41, thereby displacing the DNA further away from the histone core (Figure 3.11B). This phenomenon 

is shown visually in Figure 3.12, which juxtaposes the cavities formed by the H3 tail and DNA in the two 

model systems. The RMSD plot shows that the DNA of both systems undergoes large fluctuations. Hence 

there are instances where potassium ions may enter the H3 tail-DNA cavity in the wild-type system.  

However, it is apparent that this occurs at a much higher rate for the H3nY41 system (Figures 3.11-3.12).  

At time t=0, the DNA P-H3Y41 distance is about 6.1 nm. In order for a K+ ion to potentially be 

Figure 3.11: RDF analysis was performed on DNA 
P, K+, Cl-, and water with respect to the carbon at 
position ε2 of H3Y41.  (A) The K+ ions in the H3nY41 
system are found much closer than the non-nitrated H3, 
while the RDFs for water and DNA-P are shifted further 
away.  (B) DNA-P magnified to show the shift away from 
H3nY41. 
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accommodated in the H3 tail-DNA cavity, this distance must be increased by at least 2.8 Å (Figure 3.10). 

In conformational ensembles consisting of 300 snapshots sampled every nanosecond from t=200 to t=500, 

this threshold is met in 100 of the frames for the H3nY41 system, but it is observed in only two of the 

frames for the wild-type system. Based on these MD results, it can be postulated that the large 

fluctuations in the conformation of the DNA around the histone core, as evidenced by the large DNA RMSD 

in both systems, allow for the entry of ions into cavities formed by DNA and histones. However, in the 

case of the H3nY41 system, the residence time of the potassium ion in this cavity is increased through 

stabilized interactions with the electronegative oxygens of the nitrate group on one side, and the DNA 

phosphorus atoms on the other (Figures 3.11-3.12). Such a series of events could lead to an increased 

likelihood of DNA to be pulled away from the histone core. 

H3(nitro)Y41 and Antibody Validation by ChIP-Seq and qPCR 

Following molecular dynamic simulations, a ChIP-sequencing grade antibody pertaining to the 

peptide sequence surrounding H3nY41 was generated by Covance.  The antibody was tested using the dot 

blot method as previously described in the methods section.  Following the affinity purification, the 

Figure 3.12:  Potassium Ion Presence is in the Cavity Formed by DNA and the H3 Tail Bearing     H3nY41, thereby 
Displacing the DNA Further Away.  (A-C) Different point of views representing the H3nY41 (pink) and H3Y41 (blue) 
proteoforms.  Potassium ions (black spheres) are shown closer to the nY41 site whereas the DNA-P and water (blue 
spheres) are moving further away from the nY41 site.  
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H3nY41 antibody was tested against the previously synthesized nitropeptides used in the validation of the 

nY in the experimental samples.  Dots were placed in rows respective to each nitropeptide and diluted to 

1 µg, 500 ng, 50 ng, 1ng, and 1pg and the antibody tested at 1:1000, 1:5000, and 1:10,000 dilutions (Figure 

3.13).  The H3nY41 antibody was found to be highly specific at low concentrations (1:10,000) and was 

Figure 3.13:  Dot Blots Used to Test the Specificity of the H3nY41 Antibody.  Anti-
H3nY41 stock 0.279 µg/mL was diluted in order to identify optimal binding efficiency 
needed for ChIP-seq (Left) 1:1000 antibody dilution, (Middle) 1:5000 dilution, and 
(Right) 1:10,000 antibody dilution.  Each blots was dotted from left to right 1cµg, 500cng, 
50 ng, 1 ng, & 500 pg.  Nitropeptide order from top to bottom: H1nY70, H1nY27, 
H2BnY50, H3nY41 (USF), H4nY51, H4nY72, H3Y41 (Covance), and H3nY41 (Covance).   
 

 

Table 3.3: Novel Targets of H3nY41 Nitration  
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determined to be suitable for ChIP-sequencing validation.  Livers (~400mg) were taken from three 

different ethanol-fed mice, each having similar consumption levels and weights throughout the 28-day 

chronic ethanol feeding experiment.  The livers were snap frozen for ChIP-seq antibody validation.  Prior 

to ChIP-seq, the ethanol-fed livers were pooled together in order to maximize H3nY41 abundance and 

maximize DNA interactions.  Greater than 10,000,000 reads were obtained for both the input and the pull-

down experimental sample.  ChIP-seq of the H3nY41 pull-down identified 18 novel DNA interacting sites 

for H3nY41 (Table 3.3).  The 18 sites identified were all significantly enriched, having between 10 and 50 

fold enrichment, when compared to the input.  Surprisingly, only five reads were located within the 

annotated region of the genome.  Furthermore, all five known targets were located within the intron 

region of the gene and the peaks were all well-defined (Figure 3.14).  The remaining thirteen identified 

Figure 3.14: ChIP-Seq Peak Identification in the H3nY41 Pull-Down Shows 5 Peaks Found within the Intron Region of Genes 

Important in Metabolism and Liver Disease.  Each of the 5 genes identified are pictured above.  The top read in each 
plot is the input and below is the H3nY41 pull-down.  The red boxes are the peaks identified to be unique found in 
the experimental sample after the H3nY41 pull-down and sequencing.  The genes are in order of chromosome 
starting at the top left to right and in descending order.  The top left is Plxdc2, middle is Ano2, bottom is Myo7; top 
right is Dpp9 and bottom right is Bbx.     
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sites were all located within unannotated 

portions of the genome.  Two potential 

targets identified in ChIP sequencing, 

Ano2, and Dpp9, were further tested for 

validity by quantitative PCR (qPCR) 

because of their functional roles in glucose 

transport, type-2 diabetes, obesity, and 

cancer.  Quantitative PCR was performed 

for Dpp9 and Ano2, primer sets were used 

to assess the ChIP specificity by qPCR. The results indicate that these 2 regions were not significantly 

enriched in the ChIP samples compared to IgG negative control (Table 3.4 and Figure 3.15). 

Discussion 

Tyrosine makes up approximately 1-2% of all amino acids, making it an unlikely target for post-

translational modifications [141].  Here I demonstrate that tyrosine nitration occurs under normal 

physiological conditions, and also increases during times of oxidative stress.  Alcohol consumption seems 

to increase nY abundance within the cell, most likely attributed to the increases in ROS/RNS stemming 

from ethanol metabolism [31-33, 108, 141].  Tyrosine nitration is thought to be a highly selective 

modification and occurs approximately 100-fold times less than tyrosine phosphorylation [106, 236].  It 

Figure 3.15:  qPCR Validation of Ano2 and Dpp9.  Two primer sets 
were designed for each genomic region. Optimal annealing 
temperature for each primer set was determined using end point PCR 
with input genomic DNA. Based on the results both Ano2 and Dpp9 
failed validation. 

Table 3.4: qPCR of Ano2 and Dpp9 following ChIP-Seq 

Figure  
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has previously been reported that nY levels are found elevated in numerous pathological conditions such 

as inflammation, cardiovascular disease, and neurodegenerative disorders, and is thought to contribute 

to disease progression [101, 237-240].  Alcohol consumption and metabolism have been linked to high 

increases of oxidative stress and free radical formation within the liver [4, 20, 134, 135, 137, 142, 222].  

These data further support the notion that nY has an important role in disease progression due to the 

increase of nY abundance for histone proteins after ethanol exposure (Table 3.2).   

Previously, it has also been established that alcohol metabolism has a role in gene regulation by 

altering histone modifications such as acetylation and methylation [17, 18, 43, 96, 204, 241].  These new 

data now demonstrate that histone tyrosine nitration is a novel post-translational modification that is 

expressed endogenously at low levels and alcohol can cause increased expression after exposure (Figure 

3.1 & Table 3.2 respectively).  It has also been speculated that tyrosine nitration may compete with 

tyrosine phosphorylation in order to inhibit signaling pathways and therefore alter transcriptional 

regulation [34, 103-105].  One example of competition between nitration and phosphorylation is the H3 

(Y41) phosphorylation.  H3pY41 signals the activation of Janus kinase 2 (JAK2)-regulated genes, including 

the hematopoietic oncogene Imo2, by inhibiting the binding of heterochromatin binding protein 1 (HBP1) 

[109, 235, 242].  These data show for the first time, the nitration of H3Y41, as well as a conformational 

change in the DNA upon H3Y41 nitration (Figure 3.11 and 3.12).  H3Y41 nitration may have a role in 

repressing the JAK2-regulated genes during times of oxidative stress, offering a protective role against 

oncogenesis.  Furthermore, these data also identified H3 (Y41) nitration was present on all 3 isoforms of 

H3 (3.1, 3.2, 3.3) (Table 3.1), which suggests a possible role in for histone nitration in all stages of DNA 

replication [242].   

The importance of tyrosine nitration in gene regulation if further supported by the identified sites 

of nitration on heterogeneous nuclear ribonucleoproteins (hnRNP-A3) and Elongation factor 1-alpha 1 

(Eef1a1).  Heterogeneous nuclear ribonucleoproteins and enhancer binding proteins are important in the 
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regulation of transcription.  Heterogeneous nuclear ribonucleoproteins are traditionally found in the 

nuclear compartment during transcription.  The hnRNPs function to bind to the intron region of preRNA 

and mark it as not ready for transport into the cytoplasm [243-245].  Once the RNA is mature and ready 

for transport, the hnRNP is spliced out and then acts to mark the intron for degradation within the nucleus 

[243-245].  Eef1a1 is commonly known for its role in delivering transfer RNA (tRNA) to the ribosome during 

protein synthesis [246-249].  Eef1a1 also functions in nuclear export and has involvement in processes 

such as cell growth, cytoskeleton organization, signal transduction, and proliferation [246, 247, 250, 251].  

Upon upregulation, Eef1a1 has also been demonstrated to have a role in the metastasis of different types 

of solid tumors [247, 250].  Nitration on Eef1a1 may act as a regulator for tumor suppression just as it is 

hypothesized to do upon H3nY41 nitration.  When H3nY41 becomes nitrated it inhibits phosphorylation 

of that site, therefore, blocking the JAK2 signaling cascade [235].  Tyrosine nitration on hnRNPs and 

Eef1a1, along with the molecular dynamic evidence presented here, further support the hypothesis that 

tyrosine nitration is important in gene regulation, translation and also potentially tumorigenesis (Figure 

3.7).   

Identifying the mechanism for tyrosine nitration has proven to be difficult due to many different 

obstacles, both at the cellular and technical level.  During times of ethanol consumption, the working 

hypothesis is that the increase in nitration is the result of peroxynitrite formation stemming from 

increased ROS/RNS.  To date, most of the research on nY has been completed in vitro using synthetic 

peptides and peroxynitrite to initiate nitration [103, 104, 107, 109-112].  This method works well to give 

insight to specific tyrosine residues that are targeted for nitration, however, there has been little to no 

reproducibility in vivo because of the inability to mimic the physiological synthesis of peroxynitrite by the 

cell [31, 33, 101].  Tyrosine nitration research is also limited by the gap in knowledge pertaining to the 

possibility of dinitrase activity, which is able to reverse the nitro modification on tyrosine residues.  There 
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have been several reports of dinitrase activity but currently little is known regarding the underlying 

mechanism or cellular environment important for promoting dinitrase activity [109, 113-117].   

 Another large hurdle of in vivo tyrosine nitration is the ability to isolate the nitrated peptide by 

mass spectrometry in complex mixtures.  Nitrotyrosine is a very lowly expressed modification, and often, 

this modification goes undetected in cell lysate by using a traditional mass spectrometry methods.  Recent 

research has suggested that using a pull-down method such as an IP in order to isolate nY from a whole 

cell lysate, works well to detect the nY modification on tryptic peptides [101].  However, using a pull-down 

method limits data analysis of a complex mixture by excluding any changes in protein abundance or 

pathway regulation in the cell.  SILAC has also shown to be a useful resource in identifying nitrotyrosine 

but is limited by the cost of in vivo analysis [252].  Cellular fraction by ultra-centrifugation in combination 

with HPLC & high-resolution MS was sufficient to identify 51 potentially nitrated tryptic peptides after 

MaxQuant analysis.  Even though only 4 out of the 7 histone nitrotyrosine sites (Figure 3.3 & Figure 3.4), 

the remaining 3 histone nitrotyrosine sites are pending further validation of H1 (Y27), H2B (Y37), and H4 

(Y98) (Figure 3.5 & Figure 3.6) based on signal interference. Following the previously described validation 

methods by Stevens et al (2008) [126], the identified peptides failed validation because not enough 

consecutive b or y ions could be referenced at acceptable abundance levels.  Another reason these 

nitrotyrosine sites were not able to be fully annotated was due to the coelution of an isobaric peptide.  

Coelution of an isobaric peptide would cause signal interference, and hinder the mass spectrometers 

ability to differentiate between the 2 peptides fragmentation patterns.  Furthermore, Haqqani et al (2002) 

have previously identified both, H2B (Y37) and H4 (Y98) to be nitrated in the Mutatect tumor mouse 

model, which additionally strengthens the legitimacy of these nY sites to be true [106].  However, 

validation of H2B may prove to be more difficult than expected due to 3 tyrosine residues within close 

proximity to each other (Y37, Y40, and Y42).  Future testing of the validity H2B (Y37) should incorporate 
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nitration at Y40 and Y42 since MaxQuant software identified the likelihood that both H2B (Y37) and (Y40) 

could potentially become nitrated.  

 Nitrotyrosine modifications and their role in gene and protein regulation are only beginning to be 

understood.  The abundance of nY histone proteins and ribonuclear proteins further strengthens the 

probability that nY modifications are important for gene and protein regulation (Figure 3.7).  These data 

now show that by the use of synthetic peptides, four out of seven nY sites identified on histone proteins 

were able to be validated.  Furthermore, molecular dynamic simulations strengthen the hypothesis by 

showing the DNA prefers a different conformation upon histone nitration (Figure 3.8).  Interestingly, ChIP-

seq identified 5 novel targets and 13 unannotated targets in the genome that H3nY41 interacts with 

following ethanol exposure.  All five of the identified chromosome sites were located within the intron 

region, suggesting a potential role in splicing (Figure 3.10).  However, Ano2 and Dpp9 were unable to be 

validated by qPCR following ChIP-seq experiment.  The low abundance of nitrotyrosine may have played 

a role in the binding efficiency, or possibly H3nY41 does not target the genome and instead is a negative 

regulator of phosphorylation.  Molecular dynamics suggest that the DNA prefers a different confirmation 

upon the nitration of H3Y41, however, the mechanism for tyrosine nitration and its functional role with 

the liver are still unknown.  Nevertheless when taken in conjunction with the multiple nitrotyrosine sites 

on hnRNP-A3 as well as Eef1a1, further suggest the importance of nitrotyrosine modifications in RNA 

synthesis and RNA maturity, perhaps through mediating splicing machinery.  
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Chapter 4 
 
 

Metabolic tracing of 13C2 in the livers of 8-week male mice demonstrates the contribution of acetyl- 
CoA derived from ethanol metabolism to histone acetylation 

 
Abstract 

Epigenetic dysregulation through ethanol-induced changes in DNA methylation and histone 

modifications has been implicated in several alcohol-related disorders such as alcoholic liver disease 

(ALD).  It has previously been shown that ethanol induces hyperacetylation in the liver following periods 

of heavy drinking.  Currently, there are two proposed methods of alcohol-induced hyperacetylation.  The 

first hypothesis encompasses ethanol metabolism and the formation of acetate, a metabolite that can be 

further converted to acetyl-CoA.  Acetyl-CoA can then be used by histone acetyltransferases to acetylate 

lysine residues on histone proteins.  This mechanism results in a direct use of ethanol for acetylation of n-

terminal histone proteins, therefore hyperacetylation is a direct result of ethanol consumption.  The 

second hypothesis involves the sirtuin family of deacetylase proteins.  Sirtuin proteins regulate protein 

and histone acetylation throughout the cell because of their ability to remove the acetyl group from a 

protein when it is no longer needed.  Like ethanol metabolism, the sirtuin family of proteins are also 

NAD+/NADH-dependent.  Ethanol metabolism has been linked to the inhibition of sirtuin activity by out-

competing the deacetylases for the available cofactor NAD+.  As a result ethanol metabolism will indirectly 

influence lysine acetylation due to inhibition of sirtuin proteins by increasing the amount of NADH, in turn, 

acetylation is upregulated from the inhibition of sirtuin proteins.   

Alcohol-induced hyperacetylation has been well characterized although the underlying 

mechanism is still unclear.  This study aims to use known targets for histone acetylation in order to identify 
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a mechanistic approach in order to bridge the gap between the two proposed hypotheses.  By 

understanding how ethanol influences lysine acetylation potential targets of transcriptional regulation 

through epigenetic modifications that may influence the pathogenesis of ALD can be established.  In order 

to determine how ethanol metabolism influences histone acetylation heavy-labeled ethanol (13C2) in 

conjunction with UHPLC-mass spectrometry in order to site-specifically quantify lysine acetylation on 

histone proteins after binge drinking.  Using a single binge of ethanol (5g/kg) in 8-week-old male mice, 

ethanol was metabolically traced using the label incorporation derived from acetyl-CoA generated during 

ethanol metabolism.  Blood alcohol levels were observed to be raised 4 hours the gavage, which correlates 

to an increase in 13C2-label incorporation seen on the N-terminal lysine residues of histones H3 and H4.  

Total acetylation quantified from the N-terminal lysine acetylation sites identified on H3 and H4 were also 

observed to be significantly increased after 24 hours.  However, rapid turnover of histone acetylation sites 

was observed, and the heavy label was cleared following 24 h post-gavage.  Moreover, the site-specific 

selectivity of label incorporation was observed to occur preferentially at one lysine acetylation site over 

another as determined by tandem mass spectrometry and when compared to projected isotope 

simulations.  These data provide further evidence that hepatic ethanol metabolism directly impacts 

histone lysine acetylation in a site-specific manner and may also influence ethanol-induced gene 

expression through these transcriptionally activating chromatin marks. 

Introduction  

Chronic liver disease is consistently in the top 15 leading causes of death, of which 50% of those 

deaths are due to ALD [1].  Alcohol liver disease (ALD) is 100% preventable, however, in recent years binge 

drinking has been on the rise, especially in young adults between the ages of 18-34 [253].  Currently, 

alcohol-related expenditures cost the United States healthcare industry over $250 billion dollars each 

year, of which $119 billion stems from binge drinking alone [253].  The National Institute on Alcohol Abuse 

and Alcoholism (NIAAA) define binge drinking as any pattern of drinking that raises a person’s BAC to 
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above 0.08 g/dL in one sitting [253].  Although most binge-drinkers do not exhibit alcohol dependency, 

the health risks are just as dangerous as chronic or heavy drinking [253-257].  Even though there is no 

distinct line in regards to when binge-drinking stops and chronic drinking begins, both are equally as 

dangerous to the consumer.  Surprisingly, much is still unclear regarding the effects of binge drinking and 

ALI, when compared to the current literature regarding chronic ethanol exposure [4, 8].   

Once alcohol is consumed, the liver begins to metabolize it using either ADH or CYP2E1.  Alcohol 

metabolism disrupts normal cellular metabolic pathways by causing shifts redox potential and large 

increases in reactive oxygen species (ROS).  Disruption in redox homeostasis can ultimately lead to 

disruption in pathways such as lipid peroxidation, cellular signaling, inflammation, and most recently 

transcriptional reprogramming and epigenetics, all of which lead to liver injury [89-91, 150].  Recently, the 

role of alcohol-induced epigenetic changes and their role in liver injury have become of great interest to 

scientist [15, 17-19, 25, 43, 96, 258-260].  Currently, little is known about the underlying mechanisms 

relating to alcohol-induced epigenetic changes and liver injury.  This chapter aims to investigate how the 

metabolism of ethanol influences the acetylation of histone proteins.  

Protein acetylation has very important roles throughout the cell, such as metabolic regulation, 

cellular signaling, transcriptional programming and more recently, epigenetics [89-91, 150].  During times 

of ethanol exposure, lysine acetylation has been shown to be altered in a variety of cell types and 

organelles [85, 86, 88, 119, 151, 152].  Hyperacetylation is the most prominent change observed in the 

cell after ethanol exposure, most frequently detected within the mitochondria [85, 86, 88, 119].  These 

changes in acetylation can be attributed to two separate mechanisms since protein acetylation is 

reversible.  The first potential mechanism of hyperacetylation may be caused by the increasing levels of 

acetate that are produced as a byproduct of ethanol metabolism.  Acetate levels have been recorded as 

high as 1.4 µMol/min per 108 cells or as high as 10mM in the perfusate of rat liver [23].  Acetate travels 
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throughout the bloodstream where it can be converted into acetyl-CoA and donate its acetyl group for 

metabolic processes such as lipid metabolism and cellular respiration. The acetyl group is removed from 

coenzyme-A by histone acetyltransferase, and then can be used to acetylate proteins [23, 120].  The 

second mode of action relies heavily on the inhibition of deacetylase proteins, most commonly known as 

the sirtuin family of deacetylase.   Sirtuin activity can be inhibited by the competition for available NAD+ 

that is being used for ethanol metabolism [118].  The metabolism of ethanol within the liver is largely 

dependent on the cofactor NAD+, which is obtained from the mitochondria and cytoplasm within the cell 

[9, 82, 153].  As ethanol is metabolized, it competes with sirtuin deacetylase for available cofactor, in turn, 

promoting hyperacetylation [14, 155, 156].  Although ethanol exposure can lead to decreases in the 

activity of sirtuin 1 and 3 proteins, previous research has shown no changes in sirtuin protein abundance 

[38, 118, 157].   

Post-translational modifications (PTMs), such as lysine acetylation, play important roles in protein 

regulation throughout the cell [158, 159].   Site-specific identification and characterization of PTMs are 

necessary for understanding their biological functions within the cell and their role in the pathogenesis of 

ALD [158].  Lysine acetylation has been implicated to be one of the most important regulators of cellular 

processes and protein regulation [159-162].  Moreover, lysine acetylation has been shown to crosstalk 

with other PTM’s under different environmental conditions in order to control many aspects of cellular 

homeostasis [162].   Recent studies have shifted their focus to understanding how known sites of lysine 

acetylation are affected on histone protein tails following ethanol exposure [24, 151].  Changes in lysine 

acetylation of histone proteins have been attributed to a combination of the metabolism of ethanol [39], 

oxidative stress [163], and mitogen-activated protein kinase (MAPK) signaling pathways.  These epigenetic 

changes in acetylation on histone tails are able to alter gene regulation and transcription to accommodate 

times of cellular stress.   
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Recently interest has developed in understanding how ethanol affects gene regulation through 

targeting known epigenetic marks on histone tails.  For instance, acetylation of histone 3 lysine 9 (H3AcK9) 

induced by ethanol has been shown to be both dose and time-dependent, with notable increases 

occurring between 5 and 100 mM, which peak around 24 hours [23, 151].  Although 100 mM dose of 

ethanol seems high for human consumption (~0.450 g/dl), it is a concentration commonly observed in the 

serum of binge drinkers and chronic alcoholics [23].  In humans, a blood alcohol level (BAC) of 

approximately 0.200 g/dL would equal an approximate dose of 50mM ethanol and 100mM would be 

equivalent to a BAC of 0.400 g/dL.  When acetate is used to mimic ethanol toxicity, doses of 1-10 mM 

showed a marked increase in H3K9Ac over the course of 4 hours and then plateauing until 24 hours when 

it begins to decrease [23].  These data were also verified in rat hepatocytes that were treated with ethanol, 

showing a necessity for H3K9Ac in ethanol metabolism and a possible role in liver injury [151].  For 

example, epigenetic marks of DNA methylation that are inherited, have been implicated in various 

diseases, such as the predisposition to alcoholism and ALD [16, 25-27].  These modifications are thought 

to be influenced by the increase in reactive oxygen species (ROS) and reactive nitrogen species (RNS) 

generated as a result of ethanol metabolism.  

A recent shift in research has focused understanding on how ethanol-induced changes in lysine 

acetylation effect epigenetics by site-specific histone modifications.  An interesting link is now being 

established between oxidative stress and subsequent epigenetic modifications in the liver (as well as other 

tissue types) triggered by ethanol exposure [20].  For example, ROS production in rat hepatocyte primary 

culture after chronic ethanol exposure was shown to contribute to the known liver epigenetic marker 

induced by ethanol, acetylation of histone H3 at Lys9 (H3K9Ac) [18, 43].  Histone acetylation is regulated 

by the activities of various histone acetyltransferases (HATs) and histone deacetylases (HDACs) where the 

activities of these enzymes are altered in hepatocytes after ethanol exposure [17, 18, 23, 39, 43, 121].  

These changes may be explained by deacetylase inhibition,  as well as rising acetate levels in the 
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bloodstream, which can become more than 20 times greater than fasting or consuming foods rich in fat 

[261]. 

Furthermore, ethanol-induced changes in histone acetylation patterns have been shown to 

selectively alter gene expression in rat livers while not affecting global protein expression [43].  Park et. 

al. (2003) discovered that acetylation of histone H3 lysine 9 was upregulated in hepatocytes over the 

course of 24 hours when treated with 50 and 100 mM ethanol [151].  Additionally, Kendrick et. al. (2010), 

showed that metabolically available acetyl-CoA from acetate is vital to the increased acetylation of 

proinflammatory gene histones and consequently the proinflammatory response in ethanol-treated 

macrophages [120].  Shukla et.al. (2015) established that ethanol and acetate exhibit differential 

outcomes of their metabolic effects on hepatic gene expression [23].  Current work by Kori et. al., 2017 

uses stable isotope labeling in cell culture (SILAC) and proteomic analysis to assess histone protein lysine 

acetylation, turnover and their potential targets on the genome [262].  The molecular mechanisms 

underlying how ethanol metabolism is be linked to histone acetylation is still unclear. Moreover, the 

mechanistic detail regarding the impact of oxidative stress on other histone modifications is essentially 

unknown.  These data now demonstrate that ethanol metabolism contributes to the Acetyl-CoA pool, 

where in conjunction with HAT’s can be used to acetylate histone proteins at known epigenetic marks of 

gene activation.    

Materials and Methods 

Acute-Binge Mouse Model using 13C2-Labeled Alcohol or Maltose-Dextrin 

C57bl\6J mice (Jackson Laboratory, Sacramento, California) were maintained at the University of 

South Florida animal facility following the guidelines provided by the Institutional Animal Care and Use 

Committee (Appendix B).   
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Eight-week male C57bl/6 mice (n=3/group) weighing approximately 25 g, were administered an 

acute bolus dose of either 13C2-labeled ethanol (5g/kg) (Cambridge Isotope, Cat. # CLM-551-1, 

Tewksbury Massachusetts) or an isocaloric equivalent dose of maltose dextrin (BioServ , Cat. # 3653, 

Flemington, New Jersey) as previously described by Bertola et. al. [189].  Mice gavaged with 13C2-labeled 

ethanol were placed in their respective cages on top of heating pads to prevent hypothermia. At 0, 4, 

and 24 hours, mice were sedated using isoflurane, and a cardiac puncture were performed prior to 

euthanasia.  Blood was collected and placed in a BD Microtainer (Cat. # 365967, Franklin Lakes, New 

Jersey) and a cervical dislocation was performed according to IACUC standards of humane euthanasia.  

Livers were collected and snap frozen in liquid nitrogen for later processing. 

Blood Alcohol Test 

Microtainers containing whole blood were allowed to clot at room temperature for 30 minutes 

and then spun at 10,000g for 10 minutes using a benchtop centrifuge.  Serum was collected and stored 

in 1.7 µl microcentrifuge tubes (Axygen, Cat. # MCT-175-A, Fisher Scientific, Hampton, New Hampshire). 

Blood alcohol serum levels were measured in a 96-well plate, using Pointe Scientific diagnostic test (Cat. 

# A7504, Fisher Scientific, Hampton, New Hampshire) as per the manufacturer's instructions.  Quality 

control was measured using Pointe Scientific standard (Cat. # A7504-STD, Fisher Scientific, Hampton, 

New Hampshire), and alcohol controls (Cat. #A7504-CTL, Fisher Scientific, Hampton, New Hampshire). 

Samples were read at 340nm using a Powerwave SX2 (BioTek, Winooski, Vermont) microplate 

spectrophotometer and exported to Excel for analysis. Serum collect from the first day was stored at 

­20°C and analyzed a second time with the 24 hr collections.     
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Sample Processing and LC-MS 

Tissue Lysis, Histone Extraction, and Derivatization 

Livers were thawed on ice and 50 mg of tissue was cut and placed into 2 ml homogenization 

buffer containing 10 mM sodium butyrate (Alfa Aesar, Cat. #A1107922, Fisher Scientific, Hampton, New 

Hampshire) and protease inhibitor cocktail (Roche, Cat. # 1183617001, Sigma Aldrich, St. Louis, 

Missouri). Tissues were broken down into a single cell suspension using a Dounce homogenizer with 

pestle A only. The whole cell lysate suspensions were placed into 50 ml conical tubes (Corning, Cat. # 

430291, Fisher Scientific, Hampton, New Hampshire) and spun at 1500 rpm for 10 minutes to form a 

pellet.  The homogenization buffer was discarded and the pellets were washed again in homogenization 

buffer, the spin was repeated and wash was discarded.  Nuclei were isolated using a nuclear extraction 

buffer (homogenization buffer with the addition of 0.1% NP-40 (Thermo Scientific, Cat. # 28324, Fisher 

Scientific, Hampton, New Hampshire).  Pellets were triturated 5-times using a wide-bore pipet tip and 

placed into microcentrifuge tube on ice.  Nuclei were pop-spun 10 sec in a benchtop microcentrifuge 

and supernatant containing the cytoplasmic fractions were discarded.  Nuclei were again washed in 

nuclear isolation buffer and pop-spun two times.  Nuclei were then washed twice in homogenization 

buffer to remove excess detergent before histone isolation.  Histone extraction buffer was prepared by 

adding 0.4N HCl (Fisher Chemical, Cat # A144-500, Fisher Scientific, Hampton, New Hampshire) to the 

homogenization buffer.  Nuclei were resuspended and lysed by sonication (30% amp, 5s on/off for 1 

min) while on ice and supernatant was checked for complete DNA shearing by pipetting up and down.  If 

DNA was present then sonication was repeated until complete lysis.  Histone lysate was placed at 4°C 

over-night, rocking to ensure complete protein precipitation.  The following day the histone lysate was 

spun max rpm and the supernatant, containing the histones, was placed into a clean microcentrifuge 

tube.  Histone lysate was quantified using the BCA kit (Pierce, Cat. # 23225, Thermo Scientific, Hampton, 
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New Hampshire). Histones were placed into 5 µg aliquots and dried in a SpeedVac (Thermo Fisher 

Scientific, Hampton, New Hampshire) for derivitization.  Histones were next subjected to propionylation 

as previously described by the Garcia Lab, except a 3:1 ratio of ACN (Fisher Chemical, Cat. # A998SK-4, 

Fisher Scientific, Hampton, New Hampshire)  to propionic anhydride (Sigma Aldrich, Cat. # 240311, St. 

Louis Missouri) was substituted in lieu of 2-propanol [263].   

LC-MS and Data Analysis  

Lypholyzed samples were resuspended in 0.1% formic acid (Fisher Chemical, Cat. # A117-50, 

Hampton, New Hampshire) and HPLC-grade water (Fisher Chemical, Cat. # W5-4, Hampton, New 

Hampshire).  Samples were next analyzed using tandem mass spectrometry on a UHPLC-MS Q-Exactive 

Plus Mass Spectrometer (Thermo Fisher Scientific, Hampton, New Hampshire) and eluted over 1 hr 

gradient.  Samples were eluted over a NanoViper 50 cm x 75 µm I.D. reversed phase column packed with 

3 µm C18 material with 100 Å pore size (Thermo Fisher Scientific, Hampton, New Hampshire) using a 

stepped normalized collision energy (NCE) of 29 and 32 and a gradient of 2-98% ACN in 0.05% TFA.  A 

precursor MS scan of 350-1550 m/z was performed at a resolution of 70,000 using a larger isolation 

window (2.5 m/z) and the top 10 most abundant peaks were selected for subsequent MS/MS analysis.  

Mass spectra were then processed using the MaxQuant software package (version 1.5.0.30, 

http://maxquant.org) employing the Andromeda search algorithm against the SwissProt reference 

database for Mus musculus (UniprotKB, April 2017), a second database of known contaminants provided 

by the MaxQuant suite was also employed.  Parameters include a minimum peptide length of 7 amino 

acids, a maximum of 2 missed cleavages and a mass tolerance of 20 ppm.  A 0.01% false discovery rate 

was used for both peptides and proteins with a mass error of less than 1.  Protein quantification was 

calculated using N-terminal lysine acetylation and methionine oxidation.   Variable modifications included 

in the search consisted of lysine acetylation, heavy lysine acetylation (13C2), lysine propionylation, and 
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mono- and tri-methylation of lysine and arginine.  Manual data analysis by extracted ion chromatogram 

(XIC) and relative abundance (RA) analysis were completed using Xcalibur software package (version 3.0, 

Thermo Fisher Scientific, Hampton, New Hampshire).  Base peaks were analyzed using a 5 ppm cutoff and 

precision to the 5th decimal for each 12C and 13C2 peak containing a lysine acetylation or propionylation 

site that was identified by MS and verified by tandem mass spectrum.  

Isotopic Precursor Intensity Extraction Using R 

Raw files were converted to .mzML format using Proteowizard [264, 265].  MaxQuant 

“Evidence.txt” search results were used to identify modified Histone H4 peptide-spectrum-matches 

(PSMs) for intensity extraction.  Precursor intensity values were extracted using the Bioconductor package 

“mzR” [264].  MaxQuant results were filtered for modified histone PSMs containing values for ‘Raw file’, 

‘MS/MS Scan Number’, and ‘MS/MS m/z’ value.  These values were compared to the scan header 

information for each raw file to obtain precursor scan numbers.  Intensity values for monoisotopic m/z 

peaks were extracted from the corresponding precursor scan number, using m/z values within 0.01 m/z 

units of the ‘MS/MS m/z’ value.  The maximum intensity value within the given m/z window was used for 

each measurement.  Intensity values for M + 1, M + 2, and M + 3, and M + 4 peak were extracted using 

the ‘MS/MS m/z’ value plus the mass difference of 13C and 12C divided by the charge state (1.003355 / z * 

isotope peak ).  Incorporation of 13C-labeled ethanol was calculated using the ratio of [M + 2] peak to [M] 

peak.  Incorporation values were plotted using ggplot2 from the Tidyverse package [266]. 

Results 

Blood Alcohol Levels after an Acute Alcohol Binge Correlate with 13C2 Incorporation over 24 Hours 

Eight-week-old male mice (n=3) were separated into control or experimental groups based on 

equal weight.  The mice were gavaged in the early morning with an acute dose of either 5g/kg 13C2-labeled 
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ethanol or an isocaloric control of maltose dextrin.  Mice were sedated prior to euthanasia, and blood was 

collected via a cardiac puncture in order to determine the serum blood alcohol content (BAC).  Mice that 

were gavaged with 13C2-heavy labeled ethanol were observed to have average BAC levels of 305 mg/dL 

(n=3) 4-hours after the gavage; following 24-hours serum BAC levels returned to levels comparable to the 

control mice (Figure 4.1A).  Peptides were subjected to propionylation prior to MS analysis, this technique 

adds a propionyl group to all the unmodified lysine residues.  Propionylation makes the N-terminal regions 

of the histone tails more hydrophobic and increases coverage and separation of the column (Figure 4.1F). 

Respectively, each proteoform was next analyzed for relative abundance in 13C2 using mass spectrum 

analysis (Figure 4.1B-E).  Data shown in Figure 4.1B-E corresponds to peptide H3(K18-R26) and is 

representative of the H3(K9-16) peptide (data not shown).  The top two spectra are taken from the 4-hour 

time point pertaining to the control and heavy-labeled ethanol gavaged mice (Figure 4.1B-C).  The [M+2] 

peak labeled in the top spectrum is the naturally occurring 13C2
 peak, and the difference in relative 

abundance calculated for the 13C2 peaks in the control and ethanol mice can be used to quantify the 

amount of ethanol was incorporated into the acetylation site.  Heavy label incorporation was found to 

have a similar increasing trend as the BAC results and was maximized at the 4-hr time point.   The ethanol 

mice gavaged with the 13C2-heavy label showed marked increase of the [M+2 peak] after 4-hours (Figure 

4.1C) when compared to the time-matched control mice (Figure 4.1B).  Following 24-hours 13C2 expression 

returned to basal levels in the ethanol gavaged mice and matched both the 4 and 24-hour control mice 

(Figure 4.1 B, D, & E).   

Next, histone peptide coverage was evaluated using MS in regards to the unmodified, single 

acetyl, and double acetyl H3 peptides containing lysine K9, K14, K18, and K23.  Both H3 peptides identified 

by MS contained two potential acetyl sites, H3 (K9 & K14) and H3(K18 & K23).  Chromatographic 

separation was used in order to isolate the double propionylated, propionylated/ acetylated, and the 

double acetylated peptide for quantitation (Figure 4.1F).  Because of the fragmentation pattern of the b 



 
101 

 

Figure 4.1: Site-Specific Incorporation of Heavy-Labeled Ethanol Peaks Around 4-Hours following the Same Trend as Serum 

BAC Level.  (A) Blood was collected from 8-week-old mice (n=3) and serum was used for BAC analysis at 0, 4, and 
24-hours.  Data was plotted using the average BAC within each group with the standard deviation.  (B-D) 
Representative mass spectrum of the H3K9/K14 peptide demonstrating 13C2-heavy label incorporation at the [M+2] 
peak. (B-C) Mass spectrum taken from the 4 h mice gavaged with either maltose dextrin (C) or 13C2-labeled ethanol 
(D). (E-F) Mass spectrum taken from the 24 h mice gavaged with either maltose dextrin (D) or 13C2-labeled ethanol 
(E).  Endogenous 12C is represented by the monoisotopic peak [M+2H]2+ and either endogenous 13C2 or increased 
13C2 expression from label incorporation is depicted by the [M+2] peak (dashed ovals). (F) Chromatographic 
separation of the peptide coverage representative of Histone 3 K9-R17.  Left peak (black) represents the doubly 
acetylated H3K9Ac and H3K14Ac, middle peaks (grey) include H3K9Ac(left) and H3K14Ac (right), and the dashed 
peak on far right (grey dashed) denotes the doubly propionylated H3K9(prop) and H3K14(prop) peak. 
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and y-ions, H3K9Ac was able to be isolated from H3K14Ac allowing for site-specific quantitation of heavy-

label at each site.  Each modified and unmodified peptide was quantified for heavy-label incorporation 

using extracted ion chromatogram analysis (XIC) of relative abundance (Figure 4.1F).  Relative abundance 

of acetylation at each H3 site was quantified independently for both the 12C [M] and 13C2 [M+2] peaks in 

regards to the individual proteoform (doubly acetylated, singly acetylated (acetyl/propionyl), and doubly 

propionylated) for the identified H3 peptides (Figure 4.1F).  XIC analysis was performed on the two 

consecutive histone H3 peptides, the first is H3 (K9-R17) containing lysine’s K9 and K14, and the second 

peptide covers H3(K18-R26) and contains lysine’s K18 and K23.  The average ratio of 13C2 to 12C was then 

calculated in order to determine the fold-change 13C2 incorporation for each potentially modified site.   

Characterization of 13C2-label incorporation on Histone Proteins after an Acute Ethanol Gavage 

Histone H3K9 and H3K14 proteoforms were analyzed and graphed to show fold change in 13C2 

incorporation (Figure 4.2A). Graphs depict both with (H3K9-R16) and without (H3K17-R26) site specificity 

regarding the singly acetylated proteoform (acetyl/prop) (Figure 4.2A).  Significant incorporation of 13C2 

was established using a 2-tailed Welch’s t-test where p≤0.05) and plotted with standard error of the mean 

(SEM).  Significant incorporation of 13C2 was observed site specifically for H3K14Ac (p=0.004 and p=0.01) 

as well as the non-site specific singly acetylated peptide (p=0.01 and p=0.02) at 4-hours post gavage when 

compared to the 0 (baseline) and 4-hour control, respectively (Figure 4.2A).  The H3K14Ac peptide was 

also found to have a significant increase in 13C2 incorporation (p=0.002) following 24 h ethanol gavage 

when compared to the baseline (0 h control) mice (Fig. 2A).  Fold change of 13C2 incorporation pertaining 

to the peptide containing H3K18/K23 were also calculated as previously described above, and ratios were 

graphed for each proteoform, however without site-specificity (Figure 4.2B).  Significant 13C2 

incorporation was observed on the singly acetylated proteoform at 4 hours (p=0.01) and 24-hours 

(p=0.02) when compared to both the baseline (0 h) and their respective time-matched controls (Figure 
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4.2B).  No significant incorporation of heavy label was observed for either doubly acetylated peptide, 

H3K9Ac/K14Ac or H3K18Ac/K23Ac at any time point (Figure 4.2A-B). 

Next, total acetylation was quantified as a ratio of ratios; equal to the ratio of the acetylated (13C2 

+ 12C) peptide to non-acetylated peptide, divided by the ratios of the ratio of the acetylated (13C2 + 12C) 

peptide to non-acetylated peptide for each time-matched control and the ratio of the acetylated (13C2 + 

12C) peptide to non-acetylated peptide for the ethanol-treated mice (Figure 4.3 A-B).  The ratio of ratios 

was calculated for both the H3K9/K14 (Figure 4.3A) and H3K18/K23 (Figure 4.3B) peptides.  Propagation 

Figure 4.2: Label Incorporation for each H3 Peptide were Quantified by Extracted Ion   Chromatogram Analysis. 
(A-B) Fold change in 13C2 incorporation was calculated by taking the average of the XIC ratios of 13C2:12C 
(n=3) for peptides containing H3K9/K14 (A) and H3K18/K23 (B).  Individual standard deviations were used 
to calculate were the samples fell in regards to the mean. Significant 13C2 incorporation is denoted by * 
p≤0.05 or ** p≤0.01, and calculated using a Welch’s t-test.  (A) Fold change of 13C2 incorporation pertaining 
to the peptide containing H3K9/K14.  Ratios were graphed for 0, 4 and 24 hours for the doubly acetylated 
H3K9 and K14, either H3K9 or K14 single acetylation, the sum of both singly acetylated peptides or total 
peptide single acetylation and the doubly propionylated peptide.  (B)  Fold change of 13C2 incorporation 
for the peptide containing H3K18/K23 was calculated as stated above.  Ratios were graphed for the doubly 
acetylated, singly acetylated, and doubly propionylated peptide containing H3K18/K23.   
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of error was used to calculate the random error within the sample distribution.  Increases in overall 

acetylation of the H3K9/K14 peptide, show a significant increase (p=0.04) in acetylation over the 24-hour 

time-course when compared to the baseline (0 h) (Figure 4.3A, left).  Total change in acetylation was also 

calculated site-specifically to include H3K9 (Figure 4.3, middle) and H3K14 independently from each other 

(Figure 4.3A, right).  Interestingly, total acetylation excluding H3K14 acetylation (Figure 4.3A, middle) was 

not found significant, whereas the total acetylation excluding H3K9 was found to be significant (p= 0.02) 

Figure 4.3: Overall Changes in Total Acetylation on H3 were quantified by Extracted Ion Chromatogram 
Analysis.  (A-B)  Total acetylation was expressed as the average of the sum of 13C2 and 12C for each mouse 
and then taking the ratio of total acetylation to unacetylated over the ratio of ethanol-treated to their 
time matched controls for the H3K9/K14 (A) and H3K18/K23 (B).  Propagation of error was used to 
calculate the random error within the sample distribution for each peptide.  Significance was determined 
using a 2-tailed paired students t-test and denoted by denoted by * p≤0.05 or ** p≤0.01.  (A) Overall 
acetylation was calculated for the peptide corresponding to H3K9/K14 as well as site-specifically for K9 
and K14 acetylation and the doubly acetylated peptide. (B) Overall total acetylation was calculated for 
the peptide pertaining to H3K18/K23 in its entirety. 
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after 24 h when compared to the 0-hr control mice and not to their time-matched control (Figure 4.3A, 

middle).  Next, the overall changes in acetylation were calculated as described above in regards to the 

peptide containing H3K18 and H3K23.  Total acetylation on the H3K18 and H3K23 peptide was found to 

be significantly increased (p= 0.02) in ethanol-treated mice after 24-hr when compared to the 0-hr control 

mice, however, no changes in overall acetylation were observed between the ethanol- and control-

treated mice at 4 hours (Figure 4.3B).   

Isotope Simulation Suggests a Mixture of 13C2 Incorporation on the Double Acetylated Peptide after 4-

hours Ethanol Exposure  

H3K9-R17 Analysis of 13C2 Incorporation on the Doubly Acetylated Peptide After 4-hours Ethanol 

Gavage 

Mass spectrum obtained from the doubly acetylated H3K9/K14 and H3K18/K23 peptides were 

compared to predicted isotope simulations generated in X-Caliber Software.  The simulation is based on 

the naturally occurring 12C isotopic peak distribution for the peptide of interest.  Figure 4A depicts the 

predicted isotope simulation of the naturally occurring doubly acetylated peptide containing H3K9Ac and 

H3K14Ac (H3K9-R16). Below the isotope, simulation is the mass spectrum pertaining to a representative 

spectrum obtained from a control mouse 4-hours after being gavaged with maltose dextrin (Figure 4.4B).  

The isotope distribution was found to be comparable between the simulation and experimental sample, 

with no detectable increases in the 13C2 ([M+2]) peak.  However, when the [M+4] peaks are compared 

between the simulation and the control mouse, the signal was lost in the experimental sample due to 

coelution of an isobaric peptide (Figure 4.4A and 4.4B).  Below the control sample, is spectra obtained 

from a mouse gavaged with heavy-labeled ethanol, and data indicates a marked increase in relative 

abundance of 13C2 [M+2] and 13C4 [M+4] when compared to the control mouse (Figure 4.4C and 4.4B).  
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Figure 4.4: Mass Spectra of the H3 Doubly Acetylated Peptide Representative of H3K9/K14     Suggests Site-Specific and Time-

Dependent Incorporation of the Heavy-Label Ethanol.  (A-D) Mass spectrum comparison of the isotopic distribution of 
the doubly acetylated peptide covering H3K9/K14 by simulation (A) Isotope 12C simulation predicting the expected 
isotopic distribution of the doubly acetylated peptide H3K9/K14 (m/z=521.28801). (B-C) 8-week mice gavaged with 
either 13C2-labeled ethanol (C) or maltose dextrin (B).  Increases in heavy-label incorporation can be determined by 
peak comparison of the 13C2 [M+2], and 13C4 [M+4] peaks (dashed ovals).  (D) Mass spectra simulation depicting a 
ratio of no label incorporation [M+2H]2+, 13C2 incorporated at a single acetyl site [M+2], or incorporation at both 
acetylation sites [M+4].  
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Also, the 13C2 [M+2] peak was found to exceed 13C2 peak at the 4-hour time point in the ethanol gavaged 

mice (Figure 4.4C).  The 13C4 [M+4] peak obtained from the ethanol mouse had to be compared to the 

isotope simulation because of the isobaric interference of the coeluted peptide in the control mouse 

spectra (Figure 4.4A-C).  Finally, in order to assess the incorporation of the heavy-label, a mixture of 

isotopes containing 12C, 13C2, and 13C4 was used to simulate the ratio of isotopes observed the ethanol-

treated mice after 4-hours (Figure 4.4D).  The simulation predicted a mixture of isotopes arising from 

different incorporation rates on the separate acetylation sites (Figure 4.4D).  Simulation analysis showed 

that 41% of 13C2 incorporation occurred at a single acetyl site, whereas 19% of incorporation occurred at 

both sites, leaving 40% of the acetyl groups unlabeled (Figure 4.4D). 

H3K18-R26 Analysis of 13C2 Incorporation on the Doubly Acetylated Peptide 4-hours After Ethanol 

Gavage 

The same analysis of isotopic distribution was completed for the doubly acetylated peptide 

containing H3K18Ac/K23Ac (Figure 4.5A-D).  Figure 4.5A shows the 12C simulation for the H3K18-R26 

peptide.  A mixture of label incorporation was again observed when comparing the 12C simulation to the 

control gavage mouse 4-hours post maltose dextrin (Figure 4.5A-B).  Results were similar for the control 

and the 12C simulation, except the 4-hour control mouse, did not display the 13C2 peak due to coelution 

of an isobaric peptide (Figure 4.5A-B).  Because both the 4-hour control mice and simulated isotopic 

distributions closely resembled each other, they were considered equal to the heavy-label ethanol 

comparison (Figure 4.5A and C).  Furthermore, the mice receiving the heavy-label gavage also 

demonstrated a mixture of label incorporation when comparing the 12C, 13C2, and 13C4 peaks (Figure 4.5C).  

Simulation of the doubly acetylated peptide, H3K18Ac/K23Ac, indicated that 44% of label incorporation 

only occurred at a single acetylation site and, 23% of peptides show incorporation at both acetyl sites,  

leaving 33% of the remaining peptides unlabeled when compared to the 4-hr ethanol-treated mice (Figure 
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Figure 4.5:  Four-Hour Comparison of Simulated Mass Spectra to the Experimental MS of the H3 Doubly Acetylated 
Peptide H3K18/K23 Suggests Site-Specific and Time-Dependent Incorporation of the Heavy-Label Ethanol.  (A-D) 
Isotopic distribution of the doubly acetylated peptide corresponding to the peptide containing H3K18/K23.  (A) 
Simulated mass spectra portraying the expected 12C isotope distribution for peptide H3K18-R26. (m/z=521.28801) 
(C-D) Isotopic distribution taken from the 8-week –old mice gavaged with either 13C2-labeled ethanol (C) or maltose 
dextrin (D).  Increases in heavy-label incorporation can be determined by peak comparison of the 13C2 [M+2], and 
13C4 [M+4] peaks (dashed ovals).   
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4.5C-D).  These data suggest that following an acute ethanol binge, label incorporation is preferential at a 

single acetylation site before being incorporated at both sites (Figure 4.5C). 

Incorporation of 13C2 on Multiple N-Terminal Acetylation Sites on H4 (K5-R17)  

The N-terminal region of histone H4 consists of 4 lysine residues, H4K5, K8, K12, and K16, all of 

which are free to become acetylated and/or methylated (data not shown).  XIC analysis proved to be an 

impractical method of quantification on H4 due to the numerous different configurations of lysine 

modifications that could be detected at any given time.  The software R was used to extract the acetylated 

H4 intensities identified by MaxQuant.  Nine separate acetylation configurations were identified on 

H4(G4-R17) (Figure 4.6)  Box plots were used to illustrate each of the identified H4 proteoforms identified 

Figure 4.6:  R Facilitates Quantitation of 13C2 Incorporation for the Multiple Acetylation Sites              on Histone 
4 (G4-R17).  Precursor intensity values for 13C2 and 12C isotopic peaks were extracted using the Bioconductor 
package “mzR”.  Plot values represent the ratio of 13C2 / 12C peak intensities for each identified Histone H4 
proteoform after 4-hours and 24-hours post 13C2-labeled ethanol gavage or dextrin gavage.  The points represent 
average incorporation for each mouse, and line ranges represent 0.5 standard deviations above and below the 
average. 
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by MaxQuant from both the control and heavy-label gavaged mice.  The average intensities for each 

proteoform were calculated from both the control and ethanol gavaged mice and used to find the ratio 

of 13C2 to 12C.  Surprisingly, each singly acetylated H4 proteoform was identified as a single modification, 

and 13C2 was incorporated within 4-hours post gavage (Figure 4.6).  Histone H4K12Ac was found in each 

mouse to have the greatest fold-change, and the smallest standard deviations (Figure 4.6).  All 

proteoforms identified followed the same metabolic trend of the greatest heavy-label incorporation 

occurring within 4-hours (Figure 4.6).  Interestingly, the monoacetylated (H4K16Ac), and triacetylated 

(H4K5Ac, H4K8Ac, H4K12Ac and H4K5Ac, H4K12Ac, H4K16Ac) peptides showed 13C2-label incorporation 

remaining after 24 hours (Figure 4.6).  These data show that once multiple acetylation sites are 

incorporating the heavy-label at different rates, combined with acetylation turnover rates, quantification 

gets more difficult to assess.  In cases like H4, where the sequence is lysine and glycine-rich, tandem mass 

spectrometry and de novo sequencing can be used as a way to cross-reference heavy-label incorporation 

at a specific site (Figure 4.7, top).  Annotating a respective spectra displays a mass shift of 2+ Da when an 

acetylated residue contains the heavy-label (Figure 4.7, top).  When the peaks are magnified, the peak 

distribution contains the y7 monoisotopic peak, as well as peaks pertaining to the 13C2 and 13C4 peaks 

(Figure 4.7, bottom).  These data present challenges for the software to decipher if the peak profile 

contains label incorporation at one site as a 12C monoisotopic peak, a true monoisotopic peak with 13C2 

heavy label or as a mixture of label incorporation (Figure 4.7, bottom). 

Discussion 

Chronic ethanol exposure has been shown to induce hyperacetylation of proteins within the 

mitochondria and cytoplasm [85, 87, 88, 118, 119].  Dysregulation of lysine acetylation has been linked to 

having numerous implications in diseases such as oncogenesis, DNA damage, inflammation, and 

neurogenesis, however, its role in alcoholic liver disease is still largely unexplored [120, 262, 267-269].  
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Figure 4.7:  Tandem Mass Spectrometry in Conjunction with De Novo Sequencing Offers Potential Insight in 
Quantifying 13C2-Label Incorporation on Peptides with Multiple Acetylation Sites such as Histone 4 G4-R17.  
(Top) Tandem mass spectrometry was used to annotate the H4 peptide, in which all 4 lysine (5, 8, 12, and 14) are acetylated.  
Sequencing was completed on the MS2 using MS-Product, (UCSF, Protein Prospector v. 5.20.0, http://prospector.ucsf.edu) 
and a mass shift of +2 Da on either the b or y ion series inferred incorporation of the 13C2.on the respective lysine residues.   
(Bottom) Magnification of the MS2 (Top) showing the y7 12C monoisotopic peak (m/z= 757.4315) as well as increased 13C2 
[m+2] and a 2+ Da mass shift 

http://prospector.ucsf.edu/
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Recently, a link has been established between alcohol use and changes to histone acetylation [15, 18, 21, 

25, 39].  Moreover, mass spectrometry-based identification and metabolic tracing techniques are 

becoming more prominently used in the identification of histone epigenetic changes induced by external 

sources, such as alcohol abuse [3, 15-17, 21, 23, 25, 39, 262, 270-274].  These data show the first in vivo 

experiment using a heavy-labeled ethanol to metabolically trace ethanol metabolism to histone 

acetylation thought the metabolite acetyl-CoA.  These data now show a correlation between serum BAC 

levels and 13C2-label incorporation on histone proteins over the course of 24-hours (Figure 4.1A-B).  Lysine 

acetylation sites on histones have a relatively fast turnover, typically between 53 – 87 minutes, which is 

faster than methylation, however, still slower than phosphorylation [262].  The fast turnover rate 

observed in these data suggests that acetylation stemming from alcohol may be transient and work as a 

mechanism to alleviate cellular stress during ethanol metabolism.   

Traditional methods of SILAC ensure that complete label incorporation is achieved through many 

cell passages and supplemented media in order to minimize variability and assess differences in control 

and experimental groups.  These experiments used one bolus dose of heavy-labeled alcohol, which was 

then metabolically traced throughout the Acetyl-CoA pool to histone acetylation.  Furthermore, these 

data suggest that the increased lysine acetylation observed after alcohol exposure was due to alcohol 

ensued by shifts in redox potential, however, the contribution of deacetylase activity or inhibition may 

also have been a factor because of the fast rates of histone turnover (Figure 4.2C-D).  Previous work done 

by You et.al demonstrate that sirtuin 1 and histone 3 lysine 9 may work in tandem to prevent and slow 

the development of lipid accumulation in the liver in order to stall the onset of alcoholic liver disease 

[275].  These findings in combination with the new evidence presented here, suggest that during times of 

alcohol-induced stress, acetylation on histones may be site-selective in order to prevent liver injury by 

transcriptional regulation.  This hypothesis is could be further supported if the binge was repeated for a 
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longer period of time if hyperacetylation ensued the heavy-label incorporation should be identifiable in 

the majority of acetyl sites. 

The new data presented here now propose that alcohol can be incorporated, site-specifically onto 

known N-terminal histone acetylation sites important in chromatin remodeling (Figure 4.2 and 4.3).  

Furthermore, when two or more acetylation sites are available, incorporation of heavy-label occurs as a 

site-specific mixture (Figures. 4.4 and 4.5).  Site-specific incorporation of ethanol into histone protein 

acetylation advocates the need for specific transcriptional activation based on the type of liver injury the 

cells are experiencing.  For example, if an acute binge of alcohol is consumed and the alcohol can be 

metabolized and used as for transient acetylation and gene regulation, however during chronic exposure 

this mechanism will lead to hyperacetylation in order to prevent or promote long-term liver injury.  This 

hypothesis is consistent with our findings, in which label incorporation was found to have a fast turnover, 

signifying that the alcohol-induced modifications are transient and may be used as a mechanism by 

hepatocytes to alleviate stress and injury to the liver after alcohol exposure as deemed necessary by other 

signaling pathways.   

Recent advances in mass-spectrometry-based post-translational identification and quantitation 

have advanced the understanding of epigenetics and disease progression, such as ALD [272-274, 276].  

Histone 3K9Ac has been identified to upregulated during times of alcohol exposure and thought to play a 

protective role in the development of ALD [275, 277].  Interestingly, these new data show that 

incorporation and increased in site-specific acetylation are time-dependent.  Histone H3K14Ac was 

significantly increased within 4-hours of ethanol exposure and H3K9Ac was not observed to be 

significantly changed until after 24-hours when H3K14Ac was no longer upregulated (Figure 4.3A-B).  

Furthermore, overall total acetylation for the singly acetylated H3K9Ac and H3K14Ac peptide was found 

to be significant after 24-hours, these data suggest the need for site-specific quantitation (Figure 4.3A). 
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In order to assess site-specific label incorporation and overall acetylation of peptides through 

mass spectrometry, chromatographic separation of MS2 must be achieved (Figure 4.1F).  In addition, data 

analysis by XIC was limited when analyzing peptides such as H4 (K5-R17), which contained multiple 

acetylation sites on a peptide rich in glycine residues (Figures 4.6 and 4.7).  More comprehensive analysis 

using computer programs may offer some benefits over traditional methods of quantitation by XIC.  

Programs such as MaxQuant, extract intensities of the identified various proteoforms can be used to 

compare the modified and unmodified forms (Figures 4.6) [278].  Nevertheless, when relying on computer 

analysis, data must be validated and confirmed using the .raw data before assumptions can be made (Fig. 

6) [278].  One pitfall of computerized analysis is that it excludes peptides of low protein expression so 

mass spectrometer sensitivity must have high enough resolution in order for accurate quantitation [278].  

Furthermore, Histone elution in mass spectrometry often poses a problem with coelution of other 

histones or proteoforms [271, 274].  Coelution of simultaneous proteoforms or partially labeled peptides 

makes quantitation accuracy difficult when studying overall changes in alcohol-induced lysine acetylation.  

These data open the door for in vivo experimentation using a mass spectrometry SILAC approach.  These 

data have demonstrated that ethanol is metabolized and becomes a contributor to histone lysine 

acetylation via acetyl-CoA.  Further research using stable isotopes will help to identify novel targets and 

pathways directly impacted by alcohol consumption and the onset of alcoholic liver disease.      
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Chapter 5 
 
 

Conclusions and Future Directions 
 

Alcoholism and Alcohol Liver Disease a Review 

Alcoholism is a global issue that affects millions of people every year worldwide [1, 279].  Over 

3.3 million deaths are attributed to alcohol consumption every year and it is currently the 5th leading cause 

of premature death and disability [1].  The reason alcohol claims so many lives is because of its damaging 

effects on the entire body, affecting major organs such as the brain, heart, liver and immune system [1].  

Every day more than 6 people die from alcohol poisoning alone and currently, alcohol abuse has become 

the 2nd leading cause of preventable deaths, just under tobacco [1, 279].  In the United States (US) alone, 

over 80,000 people die every year from alcohol-related deaths and currently, 15 million people are 

struggling with an alcohol disorder [1, 279].  As a result, the US spends upwards of 250 billion dollars every 

year on alcohol-related treatments, of which three-quarters of the total cost originates from binge 

drinking.  Binge drinking has been on the rise especially in young adults ranging in ages from 18-34.  The 

National Institute on Alcohol Abuse and Alcoholism (NIAAA) define binge drinking as any pattern of 

drinking that raises the blood alcohol level to greater than 0.08mg/dL, which typically translates to 5 drinks 

in 2-hours for men and 4 for women [1, 2, 279].  Men are more likely than women to excessively drink 

alcohol, which increases their chances of alcohol-related injury [1, 279].  Close to 60% of men reported 

drinking in the last 30-days, of that 23% admitted to binge drinking at least 8 drinks in a sitting [279].  Only 

45% of women reported drinking alcohol in the last 30 days, and only 12% of those women admitted to 

binge drinking [1, 279].  Although women drink less than men they are more prone to liver injury for 

reasons still unknown.  
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Alcohol liver injury develops over 3 stages, steatosis, hepatitis, and cirrhosis, with no clear 

definition of where one stage ends and the next begins.  Both steatosis and hepatitis are reversible until 

fibroid tissue forms during cirrhosis when the irreversible fibroid tissue develop.  The first stage of ALD is 

steatosis and begins with the development of fatty liver.  Fatty liver development is the result of lipid 

peroxidation caused by the inhibition of PPAR α and AMPK activity [280].  The inhibition of AMPK results 

in SREBP1 activation of fatty acid synthesis [280].  Chronic drinking results in inhibition of PPARα and 

activation of SREBP1, which results in lipid accumulation and the development of fatty liver.  Without 

abstinence, steatosis will become hepatitis and liver injury progresses.  Eventually, long-term heavy 

alcohol consumption cause hepatocytes to become necrotic and fibroid tissue develops causing the 

irreversible steatosis.  Alcohol metabolism is an oxidative process that predominantly takes place in the 

liver.  The two enzymes in the liver responsible for the metabolism alcohol are alcohol dehydrogenase 

(ADH) and Cytochrome IIE1 (CYP2E1).  Both enzymes require the cofactors NAD+/NADH to catalyze the 

breakdown of ethanol into acetate.  The breakdown of alcohol induces shifts in redox potential and long-

term exposure can lead to mitochondria dysfunction and liver injury [4, 5, 48, 174, 221, 222].  The 

development of ALD has been well characterized, however many gaps in knowledge still remain. 

Overview of Major Findings 

Chapter 2 uses a chronic-binge mouse model of ALI to look for possible mechanisms responsible 

for gender differences commonly observed after chronic binging.  Following the 10-day chronic-binge, 

BAC levels were raised in both the male and female mice, where males showed approximately a 1.6 fold 

change in serum BAC.  Visual inspection of the H&E stained livers displayed no visible changes between 

the male and female mice receiving the high-fat control diet.  Both male and female mice receiving the 

ethanol diet displayed a clear indication of lipid accumulation in both genders when compared to their 

respective control-fed mice.  Although there were noticeable differences in both mouse genders, female 
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mice that had received ethanol exhibited more severe lipid accumulation when compared to their male 

pair-fed counterparts.  These data confirmed that the 10-day chronic-binge mouse model would be a good 

model to study gender differences in ALI.   

Proteomic analysis of whole cell liver lysate using Ingenuity Pathway Analysis (IPA) predicted 

women to upregulate genes and proteins more commonly associated with liver damage whereas males 

were predicted to upregulate genes and proteins commonly observed in liver injury.  Furthermore, 

Cytochrome P450 proteins, which are most known for their role in the metabolic breakdown of drugs 

used to treat diseases [281, 282], A wide range of CYP expression was observed between genders 

following the 10-day chronic-binge.  There are 18 families of CYP P450 proteins and families are grouped 

based on their primary function [281-283].  Interestingly the different families (2, 3, and 4) of cytochromes 

that were identified following the 10-day chronic binge in male and female mice tend to be involved in 

the metabolism of drugs, outside chemicals, and fatty acids [281, 282].  Hepatic cytochromes have been 

implicated in the development of liver disease because of a loss in their activity as liver injury increases. 

[282]  For example, hepatic CYP2E1 is well known for its role in oxidative alcohol metabolism, lipid 

peroxidation and the generation of reactive oxygen species, and was found upregulated in both genders 

following chronic-binge ethanol-diet [71, 75, 182, 221, 284-286].  Cytochromes belonging to the family’s 

1A, 2C19, and 3A activity have been shown to have increased sensitivity as the liver disease worsens [282].  

This may explain a loss of activity observed in the female mice since only expressed CYP3A44 and CYP3A16 

in the control-fed mice.  Males did not express those CYP3A44 and CYP3A16 in either the control or 

ethanol-fed mice, suggesting the use of different isoform to aid in metabolic clearance in the liver.  Also, 

CYP2A4, CYP2C70, CYP4V2, and CYP2F1 were only expressed in female mice after ethanol exposure, 

whereas male mice solely expressed CYP1A2 and CYP4F15.  Male mice did, however, exhibit a large 

increase in fold-change of CYP2A5, and CYP4A14 when compared to their female counterparts.  Although 

the role of Cyp2e1 has been studied extensively in the context of ALI [173, 174, 177, 182, 197-199], the 
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results from our preliminary studies are intriguing as the contribution of other CYP enzymes in ALI is largely 

unexplored.  In addition to CYP differential expression and lipid metabolism, proteomic analysis revealed 

greater activities of transcription factors associated with oxidative stress (Nrf2) affirming the previously 

established links between oxidative stress in ALI [6, 7, 134-138, 174, 177, 221, 222, 287, 288].  Results 

from this analysis have provided detailed information at the protein level for future mechanistic studies 

aimed to identify therapeutic targets with consideration of possible sex-specific strategies for prevention 

or treatment of alcoholic liver disease.  These differences may propose potential targets in gender-bias 

and liver injury.  One mechanism that may aid in cytochrome P450 development of gender influenced ALD 

is by their role in the formation of protein-aldehyde adducts and NADPH oxidase activity [288, 289]. 

Hepatocytes in the liver use pathways such as cellular respiration, CYP2E1, and NADPH oxidase, 

during ethanol metabolism which in turn promote the formation of ROS [4, 5, 7-9, 165, 209, 214, 215, 

287-289].  Cytochrome IIE1 is known for generating copious amount of superoxide (O2
-) and hydrogen 

peroxide (H2O2) and creating mitochondrial dysfunction during ethanol metabolism [42, 71, 174, 177, 182, 

198, 221, 286].  In turn, the elevated hepatic oxidative stress levels will lead to an inflammatory response 

[7].  Nitric oxide (NO) is a key regulator of the inflammatory response and often plays a dual role in cellular 

protection and cell injury [290-293].  Nitric oxide is a free radical that is a generated by inducible nitric 

oxide synthase [291, 294].  Nitric oxide is important in maintaining cellular homeostasis through its 

signaling properties; while scavenging, it can react with excess superoxide generated from alcohol 

metabolism to form peroxynitrite (ONOO-), thus altering the pathways open to NO signaling [219, 295, 

296].  Both NO or O2
- are considered to have weak oxidizing potential, however, once they combine to 

form ONOO- the newly formed radical has powerful oxidizing potential and can target a wide range of 

biological targets [94, 199, 219, 291-293, 295-298].  An interesting target of ONOO- in alcohol liver injury 

is tyrosine when ONOO- reacts with tyrosine to form nitrotyrosine [29, 94, 297]. 
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Tyrosine nitration is a post-translational modification that poses an interesting target in the 

pathogenesis of alcohol liver injury (ALI) because of its ability to alter protein function [29, 94, 299, 300].  

The ability of ONOO- to form nitrotyrosine in vivo has recently questioned due to the naturally low 

abundance of cellular ONOO- [300].  Alcohol-induced liver injury provides a conducive environment for 

nitrotyrosine formation because of increased nitrosative and oxidative stress incurred mitochondria 

dysfunction and inflammation [300-303].  Numerous efforts have been made to study this lowly expressed 

modification in vivo but have fallen short with traditional techniques of enrichment [300, 301].  These 

data now show a significant (p=.0001) increase in the amount of endogenous nitrotyrosine found in the 

mouse liver after 28-days of chronic ethanol exposure when compared to their control-fed counterparts.  

Furthermore, I was able to identify and validate 4 histone targets of nitration.  The 4 sites that were 

positively identified for tyrosine nitration were H3nY41, H1nY70, and H4nY51 and H4nY72.  These sites 

have all previously been demonstrated to have a role in epigenetic modulation when modified.  Histone 

3 tyrosine 41 can also be phosphorylated.  Upon H3Y41 phosphorylation the JAK2 kinase pathway is 

activated by excluding HP1α chromatin binding, which then allows for the activation oncogenes such as 

Imo2 [109, 235].  Histone 4 tyrosine’s 51 and 72 phosphorylation have also been implicated in DNA 

damage, chromatin restructures, histone turnover and transcriptional regulation [304].  Histone Y51 is 

recognized by the Abelson murine leukemia viral oncogene homolog 1 (ABL1), upon phosphorylation of 

H4Y51 ABL1 recognizes the signal as DNA damage, and recruits DNA repair machinery [304].  Histone 4 

tyrosine 72 phosphorylation also has a role in DNA damage and repair by signaling for epidermal growth 

factor receptor (EGFR) [305, 306].  Epidermal growth factor receptor is a receptor that aids in cell division 

and is often found upregulated in cancers due to the rapid proliferation during tumor growth and 

metastasis [305, 306].  The identification and validation of nitration on H1Y70 pose as an interesting 

epigenetic target.  Histone 1 is a linker protein which binds DNA around the nucleosome aiding in structure 

and chromatin remodeling, [307, 308].  Previous work in vitro has identified H1 to become nitrated as well 
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as be a target for dinitrase activity [114], and more recently histone H1 acetylation has recently been 

demonstrated to cross-talk with DNA methylation in order to promote gene silencing [309-311]. 

Molecular dynamics now predict that histone H3nY41 promotes a change in DNA conformation 

over the native unmodified H3Y41 by molecular dynamic simulations.  In order to further understand how 

H3nY41 affected the DNA, the phosphorus atoms of those nucleotides that are within 5 Å of H3 in the 

crystallographic conformation were tracked from both H3 proteins within the nucleosome and found to 

converge at t=200ns.  Also, when H3Y41 is nitrated, the DNA-P to H3Y41 distance increases on average by 

2 Å, which is the approximate distance of 2 hydrogen atoms.  The maximum DNA-P to H3Y41 distance 

observed in the wild-type system is <64 Å, while the H3nY41 system consistently assumes conformations 

where the DNA-P and H3Y41 distance is >67 Å.  Furthermore, the H3nY41 occasionally samples the 

conformational space of the wild-type system, yielding a lower average.  Although these distances seem 

relatively small they are large enough for the nitro group to draw in potassium ions, creating a water shell.  

In turn, as the positively charged ions move closer to the nitro group the water and phosphate move 

further away.  In order to further investigate how H3nY41 affects the DNA conformation, ChIP-sequencing 

was performed using an antibody synthesized against H3nY41.  ChiP-sequencing yielded 18 novel and 

potential sites within the genome that may interact with H3nY41.  Of these 18 sites, only 5 were located 

within the annotated portion of the genome.  Two of these sites, Ano2 and Dpp9, were used for validation 

by qPCR analysis and were found to not be significantly expressed when compared to the IgG negative 

control.  These data now show that chronic alcohol exposure increases levels of nitrotyrosine in the liver, 

with localization surrounding vascular regions as well as the nucleus.  The increased levels of nitrotyrosine 

in the nucleus following ethanol exposure were identified on numerous proteins important for 

transcriptional regulation, of those were 4 novel sites located on the N-terminal histone protein tail.  

These new data of histone nitration along with the molecular dynamic simulations suggest a possible role 

in transcriptional regulation and/or signaling mechanisms.  Previous data suggest that histone nitration is 
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reversible and found to increase in diseased or injured environments [106, 114].  Further understanding 

of the mechanisms involved in nitration regulation and disease progression will provide new epigenetic 

therapeutic targets.  Furthermore, understanding the relationship between tyrosine nitration and 

phosphorylation will provide an understanding of cellular signaling in disease causation and progression 

not only in ALI but many other diseases, which rely heavily on phosphorylation signaling pathways, such 

as cancer.   

In parallel to histone tyrosine nitration, protein and histone acetylation has previously been 

demonstrated to become upregulated following alcohol exposure [87, 88, 163].  Chapter 4 looks at the 

effects of acute alcohol exposure on hepatic histone acetylation using stable isotope labeling and mass 

spectrometry.  These experiments are the first to use heavy-labeled ethanol to metabolically trace ethanol 

to histone acetylation through its metabolite acetyl-CoA.  Significant incorporation of the 13C2 heavy-label 

was observed on histone 3 lysine 14 after 4 h (p=0.004) and still at 24 h (p=0.002) following alcohol 

exposure.  Incorporation was also found to be significant on both of the singly acetylated peptides 

containing H3K9/K14 and H3K18/23 after 24 hours (p=0.002, and p=0.02 respectively).  Although 

incorporation was not found to be significant on the doubly acetylated peptides containing H3K9/K14 and 

H3K18/K23, data does show that the 13C2 heavy-label is incorporated site-specifically as a mixture.  Histone 

H4 also showed to incorporate the 13C2 heavy-label at all 4 H4 lysine residues (K5, K8, K12, and K16), 

although quantitation had to be completed using computational extraction of intensities because of 

incorporation rates and histone turnover.  Data also showed that overall acetylation significantly 

increased during the 24 h post ethanol gavage in both the H3K9/K14 peptide (p= and also the H3K18/K23 

(p= peptide.  However, the H3K9 acetylation site was found not to have any significant contribution to 

overall acetylation, whereas the H3K14Ac peptide did (p=0.02).  These data now propose a link between 

ethanol metabolism, acetyl-CoA, and histone acetylation.  By ethanol seemingly targeting the N-terminal 

region on histone tails, it can be inferred that the changes in acetylation may play a role in chromatin 
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remodeling and transcriptional regulation.  This notion is further supported that when there are 2 or more 

acetylation sites, incorporation occurred as a mixture between sites.  Site-specificity of label incorporation 

provided by ethanol through acetate into acetyl-CoA to histone protein acetylation proposes a specific 

and transient response for transcriptional regulation based on the immediate reaction to acute ethanol 

exposure.  These findings, in combination with the new evidence presented here, suggest that during 

times of alcohol-induced stress, epigenetic changes to histones could regulate a selective transcriptional 

response related to ethanol response and liver injury. 

Future Directions 

 These studies use different models of alcohol exposure to close the gap in knowledge in the 

development of alcohol-induced liver injury (ALI).  The 10-day chronic-binge ethanol diet was used to 

study gender differences in the development of ALI.  Although the 10-day ethanol diet is easy to perform 

and has been shown to induce elevated levels of ALT and steatosis, it does not encompass chronic or acute 

drinking.  Women have been shown to develop more severe liver injury and faster when compared to 

males that consume the same or more quantities of alcohol [165, 167, 179, 312].  One approach that may 

help to capture the difference in short and long-term markers of liver injury in males and females might 

include varying the lengths of alcohol consumption.  By assessing both short and long-term changes 

induced by alcohol in males and females, will provide a more rounded approach to understanding 

pathways and proteins that influence gender bias in ALI.  Such approaches may include whole proteome 

studies using mass spectrometry, which will provide a global analysis of liver proteins responsible for the 

alcohol-induced liver injury.  Programs such as Ingenuity Pathway Analysis (IPA) can help to identify which 

genes, pathways, and proteins can be targeted for further analysis.   

 Another future direction will be to isolate Cytochrome P450 proteins that were identified to be 

differentially expressed in males and females following alcohol consumption.  The Cyp450 family of 
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enzymes is important in the metabolism of drugs, alcohol, cholesterol, steroids, and lipids [78, 211, 282, 

289, 313].  Interestingly, these enzymes are involved in lipid metabolism where sex-specific CYP activity 

could be related to the enhanced lipid accumulation phenotype observed in female mice after chronic-

binge ethanol feeding.  Cyp2j5 is important in the metabolism of arachidonic acid to various 

epoxyeicosatrienoic acids where metabolites from this pathway could have a role in protection against 

cellular oxidative stress.  Using methods of gene editing such as Cre recombinant or Crisper/Cas systems 

to knock out expression of highly upregulated CYPP450 proteins such as Cyp2j5 may offer insight into how 

these proteins alter ALI between genders.   

 Analysis of gender-specific epigenetic marks following long-term alcohol consumption would also 

provide an interesting look at transcriptional regulation during the development of alcohol liver disease.  

It would be interesting to look at nitrotyrosine and acetylation differences in male and female mice 

following both acute and long-term alcohol exposure.  In order to assess targets within the genome that 

are modulated by N-terminal histone acetylation during the development of ALI, ChIP-sequencing could 

be used to identify novel targets and then compared to known targets in wild-type and other diseases.  

The same histone acetylation sites that were identified using the 13C2 experiment (H3K9, K14, K18, and 

K23, and also H4K5, K8, K12, and K16) have ChIP-sequencing grade antibodies commercially available.  

These residues are important in transcriptional activation, however, their role in gene regulation after 

ethanol exposure has not yet been investigated.   

 Histone tyrosine nitration may also be further investigated using ChIP-seq.  The H3nY41 antibody 

can be further optimized using different concentrations of cells and antibody. The remaining 3 sites 

identified in the preliminary study should also be validated using qPCR.  The analysis can include both the 

wild-type and ethanol-treated mice and can be expanded to include both male and female mice.  Another 

technical approach in developing the H3nY41 ChIP analysis would be the further enrichment of nitrated 
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proteins prior to sequencing.  A stable protocol for enrichment of nitrotyrosine has been yet to be 

established.  Histone or protein may be the best way to enrich for the identification of nitrotyrosine site 

due to the low amounts of the modification observed in vivo.  Another method to enhance the 

understanding of alcohol-induced nitrotyrosine formation would be to target the nitric oxide producer 

inducible nitric oxide synthase (iNOS).  Creating a mouse model that overexpresses iNOS can be used to 

theoretically generate more nitrotyrosine formation.  In order to assess the role of nitrotyrosine in the 

development of ALI, when more NO is synthesized it can readily combine with increasing amounts of ROS 

within the liver.  Long-term upregulation of nitrotyrosine can be assessed in terms of liver damage by 

using markers for ALT, AST, triglycerides, and cholesterol.  Livers can also be used for histology to for a 

visual inspection of nitrotyrosine and lipid accumulation.  On the other hand, a mouse model deficient in 

iNOS can be used to which pathways and proteins are down-regulated following long-term alcohol 

exposure. 

 Next, the use of stable isotope labeling in vivo can be of great use in quantitative epigenetic 

studies.  Recently, stable isotope labeled mouse chow has become commercially available.  The cost of 

conducting experiments using stable isotopes is considerably high for both in vitro and in vivo but provides 

a way for researchers to quantify changes in protein expression using mass spectrometry.  By using a 

stable isotope labeled mouse chow in conjunction with another method of alcohol administration, 

changes in ALI can be quantified long-term using mass spectrometry.  Using labeled mouse chow also 

opens the door for heritability studies in the predisposition to ALI or alcohol fetal syndrome.  Labeled 

chow can be fed in conjunction with long-term alcohol binges to identify epigenetic marks in offspring 

contributed by the female, male, or both.  This type of study can be used to assess different epigenetic 

marks including methylation, acetylation, and phosphorylation.  Furthermore, generational studies can 

be conducted due to the fast breeding rate of mice. 
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Lastly, one obstacle that needs further optimization in order to use a labeling approach for 

epigenetic studies, both short and long-term, is the use of computational analysis in quantitating multiple 

sites of label incorporation on proteins and histones.  Multiple epigenetic marks that were identified to 

incorporate heavy label in the 13C2 experiment were difficult to quantify due to the fast rate of histone 

turnover as well as the rate of label incorporation.  The addition of more time points and the use of 

multiple labels will provide a kinetic approach to quantifying the rate of incorporation in regards to the 

rate of incorporation to turnover.  Because the liver can only metabolize ethanol based on the availability 

of proteins necessary for metabolism, such as alcohol dehydrogenase and the cofactor NAD+, 

incorporation rates over long-term alcohol studies may show different trends. 

Conclusions 

 These studies provide novel results into how different rates of alcohol consumption affect the 

liver and the pathogenesis of ALI.  These data now show that male and female mice express different 

proteins and pathways important in the onset and development of ALI.  Furthermore, the Cyp P450 family 

of proteins, which have a large role in lipid accumulation and liver toxicity are differentially expressed 

between genders.  These data also show that during the time of alcohol metabolism protein nitration is 

upregulated within the liver.  This discovery prompted the evaluation of histone tyrosine nitration.  

Interestingly, histone tyrosine nitration was identified to be on multiple histones in the N-terminal region.  

These sites are known for the role in transcriptional regulation and prompted further analysis by 

molecular dynamics simulations and ChIP-sequencing.  Molecular dynamic simulations predict the 

nitrotyrosine on H3Y41 caused the DNA to prefer a conformational change.  This change may allow for 

transcription of genes important in the alleviation of ROS/RNS, inflammation, and lipid accumulation.  On 

the other hand, the dysregulation of transcription may also lead to more severe liver injury, which raises 

the need for further investigation.  This thought is further supported by the increased acetylation 
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observed on histone H3 following acute alcohol exposure.  Lable incorporation was observed to occur in 

as soon as 4 hours following alcohol exposure.  This demonstrates a link between ethanol and histone 

acetylation through the metabolites acetate and acetyl-CoA.  In conclusion here, I now show both a direct 

and indirect repercussion of alcohol abuse.  Ethanol can be directly linked via metabolism to histone 

acetylation and indirectly linked to histone tyrosine nitration as a result if increased ROS and 

inflammation.  



 
127 

 

 
 
 
 
 

Literature Cited 
 

1. WHO, Global status report on alcohol and health 2014. World Health Organization 2014(2014 
ed.): p. 1-364. 

2. (NIAAA)., N.I.o.A.A.a.A. NIAAA Council Approves Definition of Binge Drinking. NIAAA Newsletter 
2004  [cited Winter No. 3]; Available from: 
http://pubs.niaaa.nih.gov/publications/Newsletter/winter2004/Newsletter_Number3.pdf. 

3. Aroor, A.R., et al., A proteomic analysis of liver after ethanol binge in chronically ethanol treated 
rats. Proteome Sci, 2012. 10(1): p. 29. 

4. Das, S.K. and D.M. Vasudevan, Alcohol-induced oxidative stress. Life Sci, 2007. 81(3): p. 177-87. 
5. Feldstein, A.E. and S.M. Bailey, Emerging role of redox dysregulation in alcoholic and 

nonalcoholic fatty liver disease. Antioxid Redox Signal, 2011. 15(2): p. 421-4. 
6. Galligan, J.J., et al., Oxidative Stress and the ER Stress Response in a Murine Model for Early-

Stage Alcoholic Liver Disease. J Toxicol, 2012. 2012: p. 207594. 
7. Hoek, J.B. and J.G. Pastorino, Ethanol, oxidative stress, and cytokine-induced liver cell injury. 

Alcohol, 2002. 27(1): p. 63-68. 
8. Reuben, A., Alcohol and the liver. Curr Opin Gastroenterol, 2007. 23(3): p. 283-91. 
9. Ronis, M.J., et al., The role of ethanol metabolism in development of alcoholic steatohepatitis in 

the rat. Alcohol, 2010. 44(2): p. 157-69. 
10. Tsedensodnom, O., et al., Ethanol metabolism and oxidative stress are required for unfolded 

protein response activation and steatosis in zebrafish with alcoholic liver disease. Dis Model 
Mech, 2013. 6(5): p. 1213-26. 

11. Garcia-Ruiz, C., et al., Role of oxidative stress generated from the mitochondrial electron 
transport chain and mitochondrial glutathione status in loss of mitochondrial function and 
activation of transcription factor nuclear factor-kappa B: studies with isolated mitochondria and 
rat hepatocytes. Mol Pharmacol, 1995. 48(5): p. 825-34. 

12. Turrens, J.F., A. Alexandre, and A.L. Lehninger, Ubisemiquinone is the electron donor for 
superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys, 1985. 237(2): 
p. 408-14. 

13. Turrens, J.F. and A. Boveris, Generation of superoxide anion by the NADH dehydrogenase of 
bovine heart mitochondria. Biochem J, 1980. 191(2): p. 421-7. 

14. Hoek, J.B., A. Cahill, and J.G. Pastorino, Alcohol and mitochondria: a dysfunctional relationship. 
Gastroenterology, 2002. 122(7): p. 2049-63. 

15. Mandrekar, P., Epigenetic regulation in alcoholic liver disease. World J Gastroenterol, 2011. 
17(20): p. 2456-64. 

16. Nieratschker, V., A. Batra, and A.J. Fallgatter, Genetics and epigenetics of alcohol dependence. 
Journal of Molecular Psychiatry, 2013. 1(1): p. 1-6. 

17. Park, P.H., R.W. Lim, and S.D. Shukla, Involvement of histone acetyltransferase (HAT) in ethanol-
induced acetylation of histone H3 in hepatocytes: potential mechanism for gene expression.  Am J 
Physiol Gastrointest Liver Physiol, 2005. 289(6): p. G1124-36. 

18. Park, P.H., R. Miller, and S.D. Shukla, Acetylation of histone H3 at lysine 9 by ethanol in rat 
hepatocytes. Biochem Biophys Res Commun, 2003. 306(2): p. 501-4. 

http://pubs.niaaa.nih.gov/publications/Newsletter/winter2004/Newsletter_Number3.pdf


 
128 

 

19. Ponomarev, I., Epigenetic control of gene expression in the alcoholic brain. Alcohol Res, 2013. 
35(1): p. 69-76. 

20. Shukla, S.D. and A.R. Aroor, Epigenetic effects of ethanol on liver and gastrointestinal injury. 
World J Gastroenterol, 2006. 12(33): p. 5265-71. 

21. Shukla, S.D., et al., In Vivo Acute on Chronic Ethanol Effects in Liver: A Mouse Model Exhibiting 
Exacerbated Injury, Altered Metabolic and Epigenetic Responses. Biomolecules, 2015. 5(4): p. 
3280-3294. 

22. Shukla, S.D., et al., Acetaldehyde alters MAP kinase signalling and epigenetic histone 
modifications in hepatocytes. Novartis Found Symp, 2007. 285: p. 217-24; discussion 224-8. 

23. Shukla, S.D., et al., Different mechanisms for histone acetylation by ethanol and its metabolite 
acetate in rat primary hepatocytes. J Pharmacol Exp Ther, 2015. 354(1): p. 18-23. 

24. Shukla, S.D., et al., Emerging role of epigenetics in the actions of alcohol. Alcohol Clin Exp Res, 
2008. 32(9): p. 1525-34. 

25. Starkman, B.G., A.J. Sakharkar, and S.C. Pandey, Epigenetics-beyond the genome in alcoholism. 
Alcohol Res, 2012. 34(3): p. 293-305. 

26. Zhang, H., et al., Array-based profiling of DNA methylation changes associated with alcohol 
dependence. Alcohol Clin Exp Res, 2013. 37. 

27. Zhang, R., et al., Genome-wide DNA methylation analysis in alcohol dependence. Addict Biol, 
2013. 18. 

28. Choudhury, M., et al., Evidence for the role of oxidative stress in the acetylation of histone H3 by 
ethanol in rat hepatocytes. Alcohol (Fayetteville, N.Y.), 2010. 44(6): p. 531-540. 

29. Baraona, E., et al., Ethanol consumption increases nitric oxide production in rats, and its 
peroxynitrite-mediated toxicity is attenuated by polyenylphosphatidylcholine. Alcohol Clin Exp 
Res, 2002. 26(6): p. 883-9. 

30. Deng, X.-s. and R.A. Deitrich, Ethanol Metabolism and Effects: Nitric Oxide and its Interaction. 
Current clinical pharmacology, 2007. 2(2): p. 145-153. 

31. Beckman, J.S., Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol, 
1996. 9(5): p. 836-44. 

32. Beckman, J.S., et al., Reactions of nitric oxide, superoxide and peroxynitrite with superoxide 
dismutase in neurodegeneration. Prog Brain Res, 1994. 103: p. 371-80. 

33. Beckman, J.S. and W.H. Koppenol, Nitric oxide, superoxide, and peroxynitrite: the good, the bad, 
and ugly. Am J Physiol, 1996. 271(5 Pt 1): p. C1424-37. 

34. Di Stasi, A.M., et al., Peroxynitrite induces tryosine nitration and modulates tyrosine 
phosphorylation of synaptic proteins. J Neurochem, 1999. 73(2): p. 727-35. 

35. Gambini, J., et al., Free [NADH]/[NAD(+)] regulates sirtuin expression. Arch Biochem Biophys, 
2011. 512(1): p. 24-9. 

36. Lombard, D.B., D.X. Tishkoff, and J. Bao, Mitochondrial sirtuins in the regulation of mitochondrial 
activity and metabolic adaptation. Handb Exp Pharmacol, 2011. 206: p. 163-88. 

37. Nakagawa, T. and L. Guarente, Sirtuins at a glance. J Cell Sci, 2011. 124(Pt 6): p. 833-8. 
38. Fritz, K.S., et al., Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver 

injury utilizing SIRT3 knockout mice. J Proteome Res, 2012. 11(3): p. 1633-43. 
39. Choudhury, M. and S.D. Shukla, Surrogate alcohols and their metabolites modify histone H3 

acetylation: involvement of histone acetyl transferase and histone deacetylase. Alcohol Clin Exp 
Res, 2008. 32(5): p. 829-39. 

40. Lieber, C.S., et al., Alcohol alters hepatic FoxO1, p53, and mitochondrial SIRT5 deacetylation 
function. Biochem Biophys Res Commun, 2008. 373(2): p. 246-52. 



 
129 

 

41. Santos, L., C. Escande, and A. Denicola, Potential Modulation of Sirtuins by Oxidative Stress. 
Oxidative Medicine and Cellular Longevity, 2016. 2016: p. 12. 

42. Song, B.-J., et al., Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic 
substances and pathological conditions through post-translational protein modifications. Redox 
Biology, 2014. 3(Supplement C): p. 109-123. 

43. Park, P.H., R.W. Lim, and S.D. Shukla, Gene-selective histone H3 acetylation in the absence of 
increase in global histone acetylation in liver of rats chronically fed alcohol. Alcohol Alcohol, 
2012. 47(3): p. 233-9. 

44. Llerena, S., et al., Binge drinking: Burden of liver disease and beyond. World Journal of 
Hepatology, 2015. 7(27): p. 2703-2715. 

45. Ventura, H.E., et al., 6 - Binge Drinking: Patterns, Explanations, and Policy A2 - Watson, Victor R. 
PreedyRonald Ross, in Comprehensive Handbook of Alcohol Related Pathology. 2005, Academic 
Press: Oxford. p. 59-73. 

46. Lunetta, P. and G.S. Smith, 13 - The Role of Alcohol in Injury Deaths A2 - Preedy, Victor R, in 
Comprehensive Handbook of Alcohol Related Pathology, R.R. Watson, Editor. 2005, Academic 
Press: Oxford. p. 147-164. 

47. Alpert, L. and J. Hart, The Pathology of Alcoholic Liver Disease. Clinics in Liver Disease. 
48. Gao, B.I.N. and R. Bataller, Alcoholic Liver Disease: Pathogenesis and New Therapeutic Targets. 

Gastroenterology, 2011. 141(5): p. 1572-1585. 
49. Lívero, F.A.R. and A. Acco, Molecular basis of alcoholic fatty liver disease: From incidence to 

treatment. Hepatology Research, 2016. 46(1): p. 111-123. 
50. Uchida, T., et al., Alcoholic foamy degeneration--a pattern of acute alcoholic injury of the liver. 

Gastroenterology, 1983. 84(4): p. 683-92. 
51. Takei, K.S.a.Y., Pathogenesis of alcoholic liver disease. 2016. 
52. Seitz, H.K., et al., Ethanol metabolism in the gastrointestinal tract and its possible consequences. 

Alcohol Alcohol Suppl, 1994. 2: p. 157-62. 
53. Lieber, C.S., R.T. Gentry, and E. Baraona, First pass metabolism of ethanol. Alcohol Alcohol Suppl, 

1994. 2: p. 163-9. 
54. Oneta, C.M., et al., First pass metabolism of ethanol is strikingly influenced by the speed of 

gastric emptying. Gut, 1998. 43(5): p. 612-9. 
55. Sharma, R., et al., First-pass metabolism of alcohol. Digestive Diseases and Sciences, 1995. 

40(10): p. 2091-2097. 
56. Lim, R.T., Jr., et al., First-pass metabolism of ethanol is predominantly gastric. Alcohol Clin Exp 

Res, 1993. 17(6): p. 1337-44. 
57. Lieber, C.S., 2 - Alcohol Metabolism: General Aspects  A2 - Preedy, Victor R, in Comprehensive 

Handbook of Alcohol Related Pathology, R.R. Watson, Editor. 2005, Academic Press: Oxford. p. 
15-26. 

58. Marshall, S.J. and G.K. Chambers, 4 - Genetic Aspects of Alcohol Metabolism: An Overview A2 - 
Preedy, Victor R, in Comprehensive Handbook of Alcohol Related Pathology, R.R. Watson, Editor. 
2005, Academic Press: Oxford. p. 31-48. 

59. Zakhari, S., Overview: How Is Alcohol Metabolized by the Body? Alcohol Research & Health, 
2006. 29(4): p. 245-255. 

60. Seitz, H.K. and G. Poschl, The role of gastrointestinal factors in alcohol metabolism. Alcohol 
Alcohol, 1997. 32(5): p. 543-9. 

61. Ladero, J.M., 37 - Polymorphism and Alcoholic Liver Disease  A2 - Preedy, Victor R, in 
Comprehensive Handbook of Alcohol Related Pathology, R.R. Watson, Editor. 2005, Academic 
Press: Oxford. p. 481-490. 



 
130 

 

62. Hardman, M.J., et al., Regulation of Rates of Ethanol Metabolism and Liver [NAD+]/[NADH] 
Ratio, in Alcoholism: A Molecular Perspective, T.N. Palmer, Editor. 1991, Springer US: Boston, 
MA. p. 27-33. 

63. Lieber, C.S., The discovery of the microsomal ethanol oxidizing system and its physiologic and 
pathologic role. Drug Metab Rev, 2004. 36(3-4): p. 511-29. 

64. Lieber, C.S., Ethanol metabolism, cirrhosis and alcoholism. Clinica Chimica Acta, 1997. 257(1): p. 
59-84. 

65. Lieber, C.S., Microsomal ethanol-oxidizing system (MEOS): the first 30 years (1968-1998)--a 
review. Alcohol Clin Exp Res, 1999. 23(6): p. 991-1007. 

66. Hammes-Schiffer, S. and S.J. Benkovic, Relating Protein Motion to Catalysis. Annual Review of 
Biochemistry, 2006. 75(1): p. 519-541. 

67. Ji, C., Mechanisms of alcohol-induced endoplasmic reticulum stress and organ injuries. Biochem 
Res Int, 2012. 2012: p. 216450. 

68. Lieber, C.S., Alcohol and the liver: metabolism of alcohol and its role in hepatic and extrahepatic 
diseases. The Mount Sinai journal of medicine, New York, 2000. 67(1): p. 84-94. 

69. Lieber, C.S. and L.M. DeCarli, The role of the hepatic microsomal ethanol oxidizing system 
(MEOS) for ethanol metabolism in vivo. J Pharmacol Exp Ther, 1972. 181(2): p. 279-87. 

70. Teschke, R.H., Yasushi;  Lieber, Charles S., Hepatic Ethanol Metabolism: Respective Roles of 
Alcohol Dehydrogenase, the Microsomal Ethanol-Oxidizing System, and Catalase. Archives of 
biochemistry and biophysics, 1967. 175(2): p. 635-643. 

71. Lu, Y. and A.I. Cederbaum, CYP2E1 and Oxidative Liver Injury by Alcohol. Free radical biology & 
medicine, 2008. 44(5): p. 723-738. 

72. McGehee, R.E., Jr., et al., Characterization of cytochrome P450 2E1 induction in a rat hepatoma 
FGC-4 cell model by ethanol. Biochem Pharmacol, 1994. 48(9): p. 1823-33. 

73. Cederbaum, A.I., Molecular mechanisms of the microsomal mixed function oxidases and 
biological and pathological implications. Redox Biology, 2015. 4: p. 60-73. 

74. Kim, S.G., et al., Evidence for increased translational efficiency in the induction of P450IIE1 by 
solvents: analysis of P450IIE1 mRNA polyribosomal distribution. Biochem Biophys Res Commun, 
1990. 172(2): p. 767-74. 

75. Koop, D.R. and D.J. Tierney, Multiple mechanisms in the regulation of ethanol-inducible 
cytochrome P450IIE1. Bioessays, 1990. 12(9): p. 429-35. 

76. Song, B.J., et al., Stabilization of cytochrome P450j messenger ribonucleic acid in the diabetic rat. 
Mol Endocrinol, 1987. 1(8): p. 542-7. 

77. Morgan, E.T., D.R. Koop, and M.J. Coon, Comparison of six rabbit liver cytochrome P-450 
isozymes in formation of a reactive metabolite of acetaminophen. Biochem Biophys Res 
Commun, 1983. 112(1): p. 8-13. 

78. Morgan, E.T., D.R. Koop, and M.J. Coon, Catalytic activity of cytochrome P-450 isozyme 3a 
isolated from liver microsomes of ethanol-treated rabbits. Oxidation of alcohols. J Biol Chem, 
1982. 257(23): p. 13951-7. 

79. Johansso, M.I.-S.a.I., Mechanisms of Hydroxyl Radical Formation and Ethanol Oxidation by 
Ethanol-inducible and Other Forms of Rabbit Liver Microsomal Cytochromes P-450. THE 
JOURNAL OF BIOLOGICAL CHEMISTRY 1984. 259(10): p. 6447-6458. 

80. Koop, D.R. and J.P. Casazza, Identification of ethanol-inducible P-450 isozyme 3a as the acetone 
and acetol monooxygenase of rabbit microsomes. Journal of Biological Chemistry, 1985. 260(25): 
p. 13607-12. 



 
131 

 

81. Chung S. Yang, Y.Y.T., Dennis R. Koop, and Minor J. Coon, Metabolism of Nitrosamines by 
Purified Rabbit Liver Cytochrome P-450 Isozymes1. Cancer Research, 1985. 45(March 1985): p. 
1140-1145. 

82. Zakhari, S., Overview: how is alcohol metabolized by the body? Alcohol Res Health, 2006. 29(4): 
p. 245-54. 

83. Lieber, C.S., Ethanol metabolism, cirrhosis and alcoholism. Clinica Chimica Acta, 1997(257): p. 
59-84. 

84. Berg JM, T.J., Stryer L., Ethanol Alters Energy Metabolism in the Liver, in Biochemistry. 2002, W H 
Freeman: New York. 

85. Harris, P.S., et al., Chronic ethanol consumption induces mitochondrial protein acetylation and 
oxidative stress in the kidney. Redox Biology, 2015. 6: p. 33-40. 

86. Kim, S.J., et al., Characterization of novel mechanisms for steatosis from global protein 
hyperacetylation in ethanol-induced mouse hepatocytes. Biochemical and Biophysical Research 
Communications, 2015. 463(4): p. 832-838. 

87. Shepard, B.D., D.J. Tuma, and P.L. Tuma, Chronic Ethanol Consumption Induces Global Hepatic 
Protein Hyperacetylation. Alcoholism, clinical and experimental research, 2010. 34(2): p. 280-
291. 

88. Shepard, B.D. and P.L. Tuma, Alcohol-induced protein hyperacetylation: Mechanisms and 
consequences. World Journal of Gastroenterology : WJG, 2009. 15(10): p. 1219-1230. 

89. Choudhary, C., et al., The growing landscape of lysine acetylation links metabolism and cell 
signalling. Nat Rev Mol Cell Biol, 2014. 15(8): p. 536-550. 

90. Patel, J., R.R. Pathak, and S. Mujtaba, The biology of lysine acetylation integrates transcriptional 
programming and metabolism. Nutrition & Metabolism, 2011. 8: p. 12-12. 

91. Verdin, E. and M. Ott, 50 years of protein acetylation: from gene regulation to epigenetics, 
metabolism and beyond. Nat Rev Mol Cell Biol, 2015. 16(4): p. 258-264. 

92. Beier, J.I. and C.J. McClain, Mechanisms and cell signaling in alcoholic liver disease. Biol Chem, 
2010. 391(11): p. 1249-64. 

93. Bonet-Ponce, L., et al., On the mechanism underlying ethanol-induced mitochondrial dynamic 
disruption and autophagy response. Biochimica et Biophysica Acta (BBA) - Molecular Basis of 
Disease, 2015. 1852(7): p. 1400-1409. 

94. McKim, S.E., et al., Inducible nitric oxide synthase is required in alcohol-induced liver injury: 
studies with knockout mice. Gastroenterology, 2003. 125(6): p. 1834-44. 

95. Wang, K., Molecular mechanisms of hepatic apoptosis. Cell Death Dis, 2014. 5: p. e996. 
96. Zakhari, S., Alcohol metabolism and epigenetics changes. Alcohol Res, 2013. 35(1): p. 6-16. 
97. Bürkle, A., Posttranslational Modification A2 - Brenner, Sydney, in Encyclopedia of Genetics, J.H. 

Miller, Editor. 2001, Academic Press: New York. p. 1533. 
98. Lee, Y.J. and S.D. Shukla, Histone H3 phosphorylation at serine 10 and serine 28 is mediated by 

p38 MAPK in rat hepatocytes exposed to ethanol and acetaldehyde. Eur J Pharmacol, 2007. 
573(1-3): p. 29-38. 

99. Jaenisch, R. and A. Bird, Epigenetic regulation of gene expression: how the genome integrates 
intrinsic and environmental signals. Nat Genet, 2003. 33. 

100. Gonzalez-Zuniga, M., et al., c-Abl stabilizes HDAC2 levels by tyrosine phosphorylation repressing 
neuronal gene expression in Alzheimer's disease. Mol Cell, 2014. 56(1): p. 163-73. 

101. Yeo, W.-S., et al., Mass spectrometric analysis of protein tyrosine nitration in aging and 
neurodegenerative diseases. Mass Spectrometry Reviews, 2015. 34(2): p. 166-183. 

102. Rayala, S.K., et al., Dynamic interplay between nitration and phosphorylation of tubulin cofactor 
B in the control of microtubule dynamics. Proc Natl Acad Sci U S A, 2007. 104(49): p. 19470-5. 



 
132 

 

103. Shi, W.Q., et al., Tyrosine phosphorylation/dephosphorylation regulates peroxynitrite-mediated 
peptide nitration. Regul Pept, 2007. 144(1-3): p. 1-5. 

104. Kong, S.K., et al., Peroxynitrite disables the tyrosine phosphorylation regulatory mechanism: 
Lymphocyte-specific tyrosine kinase fails to phosphorylate nitrated cdc2(6-20)NH2 peptide. Proc 
Natl Acad Sci U S A, 1996. 93(8): p. 3377-82. 

105. Li, X., et al., Peroxynitrite modulates tyrosine phosphorylation and phosphoinositide signalling in 
human neuroblastoma SH-SY5Y cells: attenuated effects in human 1321N1 astrocytoma cells. 
Biochem J, 1998. 331 ( Pt 2): p. 599-606. 

106. Haqqani, A.S., J.F. Kelly, and H.C. Birnboim, Selective Nitration of Histone Tyrosine Residues in 
Vivo in Mutatect Tumors. Journal of Biological Chemistry, 2002. 277(5): p. 3614-3621. 

107. Bartesaghi, S., et al., Protein tyrosine nitration in hydrophilic and hydrophobic environments. 
Amino Acids, 2007. 32(4): p. 501-15. 

108. Seeley, K.W. and S.M. Stevens, Jr., Investigation of local primary structure effects on 
peroxynitrite-mediated tyrosine nitration using targeted mass spectrometry. J Proteomics, 2012. 
75(6): p. 1691-700. 

109. Gow, A.J., et al., Effects of peroxynitrite-induced protein modifications on tyrosine 
phosphorylation and degradation. FEBS Lett, 1996. 385(1-2): p. 63-6. 

110. Guingab-Cagmat, J.D., et al., Identification of tyrosine nitration in UCH-L1 and GAPDH. 
Electrophoresis, 2011. 32(13): p. 1692-705. 

111. Yi, D., et al., Peroxynitrite-mediated nitration of peptides: characterization of the products by 
electrospray and combined gas chromatography-mass spectrometry. Arch Biochem Biophys, 
1997. 344(2): p. 253-9. 

112. Greis, K.D., S. Zhu, and S. Matalon, Identification of nitration sites on surfactant protein A by 
tandem electrospray mass spectrometry. Arch Biochem Biophys, 1996. 335(2): p. 396-402. 

113. Greenacre, S.A., et al., Formation and loss of nitrated proteins in peroxynitrite-treated rat skin in 
vivo. Biochem Biophys Res Commun, 1999. 262(3): p. 781-6. 

114. Irie, Y., et al., Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine 
immunoreactivity in proteins. Proc Natl Acad Sci U S A, 2003. 100(10): p. 5634-9. 

115. Kamisaki, Y., et al., An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc 
Natl Acad Sci U S A, 1998. 95(20): p. 11584-9. 

116. Kuo, W.N., R.N. Kanadia, and V.P. Shanbhag, Denitration of peroxynitrite-treated proteins by 
"protein nitratases" from dog prostate. Biochem Mol Biol Int, 1999. 47(6): p. 1061-7. 

117. Kuo, W.N., et al., Denitration of peroxynitrite-treated proteins by 'protein nitratases' from rat 
brain and heart. Mol Cell Biochem, 1999. 201(1-2): p. 11-6. 

118. Fritz, K.S., et al., Ethanol Metabolism Modifies Hepatic Protein Acylation in Mice. PLoS ONE, 
2013. 8(9): p. e75868. 

119. Picklo Sr, M.J., Ethanol intoxication increases hepatic N-lysyl protein acetylation. Biochemical 
and Biophysical Research Communications, 2008. 376(3): p. 615-619. 

120. Kendrick, S.F., et al., Acetate, the key modulator of inflammatory responses in acute alcoholic 
hepatitis. Hepatology, 2010. 51(6): p. 1988-97. 

121. Kim, S.J., et al., Characterization of novel mechanisms for steatosis from global protein 
hyperacetylation in ethanol-induced mouse hepatocytes. Biochem Biophys Res Commun, 2015. 
463(4): p. 832-8. 

122. Woodruff, M. UHPLC or Core-Shell Which is the Winner? Chromatography Today, 2014. 
May/June. 

123. Law, K.P. and Y.P. Lim, Recent advances in mass spectrometry: data independent analysis and 
hyper reaction monitoring. Expert Rev Proteomics, 2013. 10(6): p. 551-66. 



 
133 

 

124. Huang, H., et al., Quantitative Proteomic Analysis of Histone Modifications. Chemical reviews, 
2015. 115(6): p. 2376-2418. 

125. Marshall, A.G., C.L. Hendrickson, and G.S. Jackson, Fourier transform ion cyclotron resonance 
mass spectrometry: a primer. Mass Spectrom Rev, 1998. 17(1): p. 1-35. 

126. Stevens, S.M., Jr., K. Prokai-Tatrai, and L. Prokai, Factors that contribute to the misidentification 
of tyrosine nitration by shotgun proteomics. Mol Cell Proteomics, 2008. 7(12): p. 2442-51. 

127. Chen, Y., et al., PTMap--a sequence alignment software for unrestricted, accurate, and full-
spectrum identification of post-translational modification sites. Proc Natl Acad Sci U S A, 2009. 
106(3): p. 761-6. 

128. Bernstein, B.E., et al., A bivalent chromatin structure marks key developmental genes in 
embryonic stem cells. Cell, 2006. 125(2): p. 315-26. 

129. Ong, S.E. and M. Mann, A practical recipe for stable isotope labeling by amino acids in cell 
culture (SILAC). Nat Protoc, 2006. 1(6): p. 2650-60. 

130. Pichler, P., et al., Peptide Labeling with Isobaric Tags Yields Higher Identification Rates Using 
iTRAQ 4-Plex Compared to TMT 6-Plex and iTRAQ 8-Plex on LTQ Orbitrap. Analytical Chemistry, 
2010. 82(15): p. 6549-6558. 

131. Latosinska, A., et al., Comparative Analysis of Label-Free and 8-Plex iTRAQ Approach for 
Quantitative Tissue Proteomic Analysis. PLOS ONE, 2015. 10(9): p. e0137048. 

132. Cox, J., et al., Accurate proteome-wide label-free quantification by delayed normalization and 
maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics, 2014. 13(9): p. 2513-26. 

133. Garcia, B.A., et al., Chemical derivatization of histones for facilitated analysis by mass 
spectrometry. Nature protocols, 2007. 2(4): p. 933-938. 

134. Koch, O.R., et al., Alcohol-induced oxidative stress in rat liver. Xenobiotica, 1991. 21(8): p. 1077-
84. 

135. Wu, D. and A.I. Cederbaum, Alcohol, oxidative stress, and free radical damage. Alcohol Res 
Health, 2003. 27(4): p. 277-84. 

136. Wu, D., Q. Zhai, and X. Shi, Alcohol-induced oxidative stress and cell responses. J Gastroenterol 
Hepatol, 2006. 21 Suppl 3: p. S26-9. 

137. Zima, T., et al., Oxidative stress, metabolism of ethanol and alcohol-related diseases. J Biomed 
Sci, 2001. 8(1): p. 59-70. 

138. Fernandez-Checa, J.C., Alcohol-induced liver disease: when fat and oxidative stress meet. Ann 
Hepatol, 2003. 2(2): p. 69-75. 

139. Turko, I.V. and F. Murad, Protein nitration in cardiovascular diseases. Pharmacol Rev, 2002. 
54(4): p. 619-34. 

140. Ferrer, M.D., et al., The double edge of reactive oxygen species as damaging and signaling 
molecules in HL60 cell culture. Cell Physiol Biochem, 2010. 25(2-3): p. 241-52. 

141. Radi, R., Protein tyrosine nitration: biochemical mechanisms and structural basis of functional 
effects. Acc Chem Res, 2013. 46(2): p. 550-9. 

142. Reddy, V.D., et al., Alcohol-induced oxidative stress in rat liver microsomes: Protective effect of 
Emblica officinalis. Pathophysiology, 2014. 21(2): p. 153-9. 

143. Fernandez-Checa, J.C., M. Ookhtens, and N. Kaplowitz, Effect of chronic ethanol feeding on rat 
hepatocytic glutathione. Compartmentation, efflux, and response to incubation with ethanol. 
Journal of Clinical Investigation, 1987. 80(1): p. 57-62. 

144. Speisky, H., et al., Depletion of Hepatic Glutathione by Ethanol Occurs Independently of Ethanol 
Metabolism. Alcoholism: Clinical and Experimental Research, 1988. 12(2): p. 224-228. 

145. Viña, J., et al., Effect of ethanol on glutathione concentration in isolated hepatocytes. 
Biochemical Journal, 1980. 188(2): p. 549-552. 



 
134 

 

146. Bryan, N. and J. Lancaster, Jr., Nitric Oxide Signaling in Health and Disease, in Nitrite and Nitrate 
in Human Health and Disease, N.S. Bryan and J. Loscalzo, Editors. 2011, Humana Press. p. 169-
186. 

147. Arif, M., et al., Nitric Oxide-Mediated Histone Hyperacetylation in Oral Cancer: Target for a 
Water-Soluble HAT Inhibitor, CTK7A. Chemistry & Biology, 2010. 17(8): p. 903-913. 

148. Berghella, L. and P.L. Puri, Nitric Oxide and Histone Acetylation—Shaping Craniofacial 
Development. Chemistry & Biology. 21(5): p. 565-566. 

149. Hickok, J.R., et al., Nitric oxide modifies global histone methylation by inhibiting Jumonji C 
domain-containing demethylases. J Biol Chem, 2013. 288(22): p. 16004-15. 

150. Turner, B.M., Histone acetylation as an epigenetic determinant of long-term transcriptional 
competence. Cell Mol Life Sci, 1998. 54(1): p. 21-31. 

151. Park, P.-H., R. Miller, and S.D. Shukla, Acetylation of histone H3 at lysine 9 by ethanol in rat 
hepatocytes. Biochemical and Biophysical Research Communications, 2003. 306(2): p. 501-504. 

152. Shibasaki, M., et al., Enhancement of histone acetylation in midbrain of mice with ethanol 
physical dependence and its withdrawal. Synapse, 2011. 65(11): p. 1244-50. 

153. Cohen, J.I. and L.E. Nagy, Pathogenesis of alcoholic liver disease: interactions between 
parenchymal and non-parenchymal cells. J Dig Dis, 2011. 12(1): p. 3-9. 

154. Manzo-Avalos, S. and A. Saavedra-Molina, Cellular and mitochondrial effects of alcohol 
consumption. Int J Environ Res Public Health, 2010. 7(12): p. 4281-304. 

155. Picklo, M.J., Sr., Ethanol intoxication increases hepatic N-lysyl protein acetylation. Biochem 
Biophys Res Commun, 2008. 376(3): p. 615-9. 

156. Shulga, N. and J.G. Pastorino, Ethanol sensitizes mitochondria to the permeability transition by 
inhibiting deacetylation of cyclophilin-D mediated by sirtuin-3. J Cell Sci, 2010. 123(Pt 23): p. 
4117-27. 

157. Lieber, C.S., et al., Effect of chronic alcohol consumption on Hepatic SIRT1 and PGC-1alpha in 
rats. Biochem Biophys Res Commun, 2008. 370(1): p. 44-8. 

158. Karve, T.M. and A.K. Cheema, Small changes huge impact: the role of protein posttranslational 
modifications in cellular homeostasis and disease. J Amino Acids, 2011. 2011: p. 207691. 

159. Lin, H., et al., Post-Translational Modifications to Regulate Protein Function, in Wiley 
Encyclopedia of Chemical Biology. 2007, John Wiley & Sons, Inc. 

160. Sadoul, K., et al., The tale of protein lysine acetylation in the cytoplasm. J Biomed Biotechnol, 
2011. 2011: p. 970382. 

161. Verdin, E. and M. Ott, 50 years of protein acetylation: from gene regulation to epigenetics, 
metabolism and beyond. Nat Rev Mol Cell Biol, 2014. 

162. Yang, X.J. and E. Seto, Lysine acetylation: codified crosstalk with other posttranslational 
modifications. Mol Cell, 2008. 31(4): p. 449-61. 

163. Choudhury, M., et al., Evidence for the role of oxidative stress in the acetylation of histone H3 by 
ethanol in rat hepatocytes. Alcohol, 2010. 44(6): p. 531-40. 

164. Gao, B. and R. Bataller, Alcoholic liver disease: pathogenesis and new therapeutic targets. 
Gastroenterology, 2011. 141(5): p. 1572-85. 

165. Eagon, P.K., Alcoholic liver injury: influence of gender and hormones. World J Gastroenterol, 
2010. 16(11): p. 1377-84. 

166. Guy, J. and M.G. Peters, Liver Disease in Women: The Influence of Gender on Epidemiology, 
Natural History, and Patient Outcomes. Gastroenterology & Hepatology, 2013. 9(10): p. 633-
639. 

167. Shimizu, I., et al., Gender Difference in Alcoholic Liver Disease, in Trends in Alcoholic Liver Disease 
Research - Clinical and Scientific Aspects, I. Shimizu, Editor. 2012, InTech: Rijeka. p. Ch. 02. 



 
135 

 

168. Ikejima, K., et al., Estrogen increases sensitivity of hepatic Kupffer cells to endotoxin. Am J 
Physiol, 1998. 274(4 Pt 1): p. G669-76. 

169. Nanji, A.A., et al., Pathogenesis of alcoholic liver disease--recent advances. Alcohol Clin Exp Res, 
2002. 26(5): p. 731-6. 

170. Thurman, R.G., II. Alcoholic liver injury involves activation of Kupffer cells by endotoxin. Am J 
Physiol, 1998. 275(4 Pt 1): p. G605-11. 

171. Colantoni, A., et al., Influence of sex hormonal status on alcohol-induced oxidative injury in male 
and female rat liver. Alcohol Clin Exp Res, 2000. 24(9): p. 1467-73. 

172. Miller, A.M., et al., Molecular mechanisms of alcoholic liver disease: innate immunity and 
cytokines. Alcohol Clin Exp Res, 2011. 35(5): p. 787-93. 

173. Cederbaum, A.I., Role of CYP2E1 in ethanol-induced oxidant stress, fatty liver and hepatotoxicity. 
Dig Dis, 2010. 28(6): p. 802-11. 

174. Cederbaum, A.I., Y. Lu, and D. Wu, Role of oxidative stress in alcohol-induced liver injury. Arch 
Toxicol, 2009. 83(6): p. 519-48. 

175. Mari, M., et al., Redox control of liver function in health and disease. Antioxid Redox Signal, 
2010. 12(11): p. 1295-331. 

176. Nanji, A.A., et al., Increased severity of alcoholic liver injury in female rats: role of oxidative 
stress, endotoxin, and chemokines. Am J Physiol Gastrointest Liver Physiol, 2001. 281(6): p. 
G1348-56. 

177. Zima, T. and M. Kalousova, Oxidative stress and signal transduction pathways in alcoholic liver 
disease. Alcohol Clin Exp Res, 2005. 29(11 Suppl): p. 110S-115S. 

178. Albano, E., New concepts in the pathogenesis of alcoholic liver disease. Expert Rev Gastroenterol 
Hepatol, 2008. 2(6): p. 749-59. 

179. Durazzo, M., et al., Gender specific medicine in liver diseases: A point of view. World Journal of 
Gastroenterology : WJG, 2014. 20(9): p. 2127-2135. 

180. Sato, N., et al., Sex difference in alcohol-related organ injury. Alcohol Clin Exp Res, 2001. 25(5 
Suppl ISBRA): p. 40S-45S. 

181. Tadic, S.D., et al., Sex differences in hepatic gene expression in a rat model of ethanol-induced 
liver injury. J Appl Physiol (1985), 2002. 93(3): p. 1057-68. 

182. Cederbaum, A.I., et al., CYP2E1 Sensitizes the Liver to LPS- and TNF alpha-Induced Toxicity via 
Elevated Oxidative and Nitrosative Stress and Activation of ASK-1 and JNK Mitogen-Activated 
Kinases. Int J Hepatol, 2012. 2012: p. 582790. 

183. Chen, J., G. Kunos, and B. Gao, Ethanol rapidly inhibits IL-6-activated STAT3 and C/EBP mRNA 
expression in freshly isolated rat hepatocytes. FEBS Lett, 1999. 457(1): p. 162-8. 

184. Lu, C. and C.B. Thompson, Metabolic regulation of epigenetics. Cell Metab, 2012. 16(1): p. 9-17. 
185. Yokoyama, Y., et al., Current understanding of gender dimorphism in hepatic pathophysiology. J 

Surg Res, 2005. 128(1): p. 147-56. 
186. Banerjee, A., et al., The influence of estrogen on hepatobiliary osteopontin (SPP1) expression in a 

female rodent model of alcoholic steatohepatitis. Toxicol Pathol, 2009. 37(4): p. 492-501. 
187. Becker, U., et al., Prediction of risk of liver disease by alcohol intake, sex, and age: A prospective 

population study. Hepatology, 1996. 23(5): p. 1025-1029. 
188. Colantoni, A., et al., Hepatic estrogen receptors and alcohol intake. Mol Cell Endocrinol, 2002. 

193(1-2): p. 101-4. 
189. Bertola, A., et al., Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat 

Protoc, 2013. 8(3): p. 627-37. 
190. Lieber, C.S. and L.M. DeCarli, The Feeding of Alcohol in Liquid Diets: Two Decades of Applications 

and 1982 Update. Alcoholism: Clinical and Experimental Research, 1982. 6(4): p. 523-531. 



 
136 

 

191. Donohue, T.M., et al., Lysosomal leakage and lack of adaptation of hepatoprotective enzyme 
contribute to enhanced susceptibility to ethanol-induced liver injury in female rats. Alcohol Clin 
Exp Res, 2007. 31(11): p. 1944-52. 

192. Sharma, M.R., et al., Increased severity of alcoholic liver injury in female verses male rats: a 
microarray analysis. Exp Mol Pathol, 2008. 84(1): p. 46-58. 

193. Athirakul, K., et al., Increased blood pressure in mice lacking cytochrome P450 2J5. FASEB J, 
2008. 22(12): p. 4096-108. 

194. Ma, J., et al., Regulation of mouse renal CYP2J5 expression by sex hormones. Mol Pharmacol, 
2004. 65(3): p. 730-43. 

195. Enomoto, N., et al., Estriol sensitizes rat Kupffer cells via gut-derived endotoxin. Am J Physiol, 
1999. 277(3 Pt 1): p. G671-7. 

196. Avila Escribano, J.J. and D. Gonzalez Parra, [Gender differences in alcoholism]. Adicciones, 2007. 
19(4): p. 383-92. 

197. Cederbaum, A.I., Iron and CYP2E1-dependent oxidative stress and toxicity. Alcohol, 2003. 30(2): 
p. 115-20. 

198. Cederbaum, A.I., et al., CYP2E1-dependent toxicity and oxidative stress in HepG2 cells. Free Radic 
Biol Med, 2001. 31(12): p. 1539-43. 

199. Lu, Y. and A.I. Cederbaum, CYP2E1 potentiation of LPS and TNFalpha-induced hepatotoxicity by 
mechanisms involving enhanced oxidative and nitrosative stress, activation of MAP kinases, and 
mitochondrial dysfunction. Genes Nutr, 2010. 5(2): p. 149-67. 

200. Cheng, J., et al., Vascular characterization of mice with endothelial expression of cytochrome 
P450 4F2. The FASEB Journal, 2014. 28(7): p. 2915-2931. 

201. Cluzeau, C.V.M., et al., Microarray expression analysis and identification of serum biomarkers for 
Niemann–Pick disease, type C1. Human Molecular Genetics, 2012. 21(16): p. 3632-3646. 

202. Smart, R.C. and E. Hodgson, Molecular and Biochemical Toxicology. 2017: Wiley. 
203. Reddy, V.D., et al., Alcohol-induced oxidative/nitrosative stress alters brain mitochondrial 

membrane properties. Mol Cell Biochem, 2013. 375(1-2): p. 39-47. 
204. Song, B.-J., et al., Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic 

substances and pathological conditions through post-translational protein modifications. Redox 
Biology, 2014. 3(0): p. 109-123. 

205. Zhong, L., et al., Ethanol and its metabolites induce histone lysine 9 acetylation and an alteration 
of the expression of heart development-related genes in cardiac progenitor cells. Cardiovasc 
Toxicol, 2010. 10(4): p. 268-74. 

206. Giannini, E.G., R. Testa, and V. Savarino, Liver enzyme alteration: a guide for clinicians. CMAJ : 
Canadian Medical Association Journal, 2005. 172(3): p. 367-379. 

207. M.D., F.F.F., LABORATORY TESTS, in Geriatric Clinical Advisor. 2007, Mosby: Philadelphia. p. 138. 
208. Nyblom, H., et al., HIGH AST/ALT RATIO MAY INDICATE ADVANCED ALCOHOLIC LIVER DISEASE 

RATHER THAN HEAVY DRINKING. Alcohol and Alcoholism, 2004. 39(4): p. 336-339. 
209. Kundu, D., et al., Oxidative Stress in Alcoholic and Viral Hepatitis. North American Journal of 

Medical Sciences, 2012. 4(9): p. 412-415. 
210. Ohta, Y., et al., Involvement of Oxidative Stress in Increases in the Serum Levels of Various 

Enzymes and Components in Rats with Water-Immersion Restraint Stress. Journal of Clinical 
Biochemistry and Nutrition, 2009. 45(3): p. 347-354. 

211. Hong, F., et al., Absence of cytochrome P450 2A5 enhances alcohol-induced liver injury in mice. 
Dig Liver Dis, 2015. 47(6): p. 470-7. 



 
137 

 

212. Hardwick, J.P., et al., PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid ω-
Hydroxylase (CYP4) Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease. 
PPAR Research, 2009. 2009: p. 952734. 

213. Montagner, A., et al., Liver PPARα is crucial for whole-body fatty acid homeostasis and is 
protective against NAFLD. Gut, 2016. 

214. Zhang, X., et al., Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic 
steatosis and fibrosis. Proceedings of the National Academy of Sciences, 2017. 114(12): p. 3181-
3185. 

215. Farber, J.L., Mechanisms of cell injury by activated oxygen species. Environmental Health 
Perspectives, 1994. 102(Suppl 10): p. 17-24. 

216. Cavin, C., et al., Ochratoxin A-mediated DNA and protein damage: roles of nitrosative and 
oxidative stresses. Toxicol Sci, 2009. 110(1): p. 84-94. 

217. Beckman, J.S., et al., Oxidative chemistry of peroxynitrite. Methods Enzymol, 1994. 233: p. 229-
40. 

218. Ferrante, R.J., et al., Increased 3-nitrotyrosine and oxidative damage in mice with a human 
copper/zinc superoxide dismutase mutation. Ann Neurol, 1997. 42(3): p. 326-34. 

219. Pacher, P., J.S. Beckman, and L. Liaudet, Nitric oxide and peroxynitrite in health and disease. 
Physiol Rev, 2007. 87(1): p. 315-424. 

220. Yakovlev, V.A. and R.B. Mikkelsen, Protein tyrosine nitration in cellular signal transduction 
pathways. Journal of receptor and signal transduction research, 2010. 30(6): p. 420-429. 

221. Albano, E., Alcohol, oxidative stress and free radical damage. Proc Nutr Soc, 2006. 65(3): p. 278-
90. 

222. Arteel, G.E., Alcohol-induced oxidative stress in the liver: in vivo measurements. Methods Mol 
Biol, 2008. 447: p. 185-97. 

223. Nguyen, D., Quantifying chromogen intensity in immunohistochemistry via reciprocal intensity. 
2013. 

224. Hattori, M., et al., A simplified method for the preparation of transcriptionally active liver nuclear 
extracts. DNA Cell Biol, 1990. 9(10): p. 777-81. 

225. Lee, A.H., et al., Regulation of hepatic lipogenesis by the transcription factor XBP1. Science, 
2008. 320(5882): p. 1492-6. 

226. Davey, C.A., et al., Solvent mediated interactions in the structure of the nucleosome core particle 
at 1.9 a resolution. J Mol Biol, 2002. 319(5): p. 1097-113. 

227. Shaytan, A.K., et al., Coupling between Histone Conformations and DNA Geometry in 
Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions. J Mol 
Biol, 2016. 428(1): p. 221-237. 

228. Berendsen, H.J.C., J.R. Grigera, and T.P. Straatsma, The missing term in effective pair potentials. 
The Journal of Physical Chemistry, 1987. 91(24): p. 6269-6271. 

229. Myung, Y. and S. Han, Force Field Parameters for 3-Nitrotyrosine and 6-Nitrotryptophan. Bulletin 
Korean Chemical Society, 2010. 31(9): p. 2581-2587. 

230. Hess, B., et al., GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable 
Molecular Simulation. Journal of Chemical Theory and Computation, 2008. 4(3): p. 435-447. 

231. Lindorff-Larsen, K., et al., Improved side-chain torsion potentials for the Amber ff99SB protein 
force field. Proteins: Structure, Function, and Bioinformatics, 2010. 78(8): p. 1950-1958. 

232. Parrinello, M. and A. Rahman, Polymorphic transition in single crystals: A new molecular 
dynamics method. Journal of Applied Physics, 1981. 52: p. 7128-7190. 

233. Bussi, G., D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling. J Chem 
Phys, 2007. 126(1): p. 014101. 



 
138 

 

234. Darden, T., D. Yrok, and L. Pedersen, Particle mesh Ewald: an NLog(N) method for Ewald sums in 
large systems. The Journal of Chemical Physics, 1993. 98: p. 10089-10092. 

235. Dawson, M.A., et al., JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from 
chromatin. Nature, 2009. 461(7265): p. 819-22. 

236. Souza, J.M., G. Peluffo, and R. Radi, Protein tyrosine nitration--functional alteration or just a 
biomarker? Free Radic Biol Med, 2008. 45(4): p. 357-66. 

237. Brennan, M.-L., et al., A Tale of Two Controversies: DEFINING BOTH THE ROLE OF PEROXIDASES 
IN NITROTYROSINE FORMATION IN VIVO USING EOSINOPHIL PEROXIDASE AND 
MYELOPEROXIDASE-DEFICIENT MICE, AND THE NATURE OF PEROXIDASE-GENERATED REACTIVE 
NITROGEN SPECIES. Journal of Biological Chemistry, 2002. 277(20): p. 17415-17427. 

238. Leeuwenburgh, C., et al., Reactive nitrogen intermediates promote low density lipoprotein 
oxidation in human atherosclerotic intima. J Biol Chem, 1997. 272(3): p. 1433-6. 

239. Shishehbor, M.H., et al., Association of nitrotyrosine levels with cardiovascular disease and 
modulation by statin therapy. Jama, 2003. 289(13): p. 1675-80. 

240. MacPherson, J.C., et al., Eosinophils are a major source of nitric oxide-derived oxidants in severe 
asthma: characterization of pathways available to eosinophils for generating reactive nitrogen 
species. J Immunol, 2001. 166(9): p. 5763-72. 

241. Mandrekar, P., Epigenetic regulation in alcoholic liver disease. World Journal of 
Gastroenterology : WJG, 2011. 17(20): p. 2456-2464. 

242. Baek, Sung H., When Signaling Kinases Meet Histones and Histone Modifiers in the Nucleus. 
Molecular Cell, 2011. 42(3): p. 274-284. 

243. Chaudhury, A., P. Chander, and P.H. Howe, Heterogeneous nuclear ribonucleoproteins (hnRNPs) 
in cellular processes: Focus on hnRNP E1's multifunctional regulatory roles. RNA, 2010. 16(8): p. 
1449-1462. 

244. Geuens, T., D. Bouhy, and V. Timmerman, The hnRNP family: insights into their role in health and 
disease. Human Genetics, 2016. 135: p. 851-867. 

245. Piñol-Roma, S. and G. Dreyfuss, hnRNP proteins:Localization and transport between the nucleus 
and the cytoplasm. Trends in Cell Biology. 3(5): p. 151-155. 

246. Becker, M., J. Kuhse, and J. Kirsch, Effects of two elongation factor 1A isoforms on the formation 
of gephyrin clusters at inhibitory synapses in hippocampal neurons. Histochem Cell Biol, 2013. 
140(6): p. 603-9. 

247. Hamrita, B., et al., An elongation factor-like protein (EF-Tu) elicits a humoral response in 
infiltrating ductal breast carcinomas: an immunoproteomics investigation. Clin Biochem, 2011. 
44(13): p. 1097-104. 

248. Itagaki, K., et al., Eukaryotic Translation Elongation Factor 1A Induces Anoikis by Triggering Cell 
Detachment. The Journal of Biological Chemistry, 2012. 287(19): p. 16037-16046. 

249. Rehman, I., et al., iTRAQ identification of candidate serum biomarkers associated with 
metastatic progression of human prostate cancer. PLoS One, 2012. 7(2): p. e30885. 

250. Liu, H., et al., Increased expression of elongation factor-1alpha is significantly correlated with 
poor prognosis of human prostate cancer. Scand J Urol Nephrol, 2010. 44(5): p. 277-83. 

251. Morrissey, C., et al., The eukaryotic elongation factor eEF1A1 interacts with SAMHD1. Biochem J, 
2015. 466(1): p. 69-76. 

252. Seeley, K.W., et al., Evaluation of a method for nitrotyrosine site identification and relative 
quantitation using a stable isotope-labeled nitrated spike-in standard and high resolution fourier 
transform MS and MS/MS analysis. Int J Mol Sci, 2014. 15(4): p. 6265-85. 

253. Prevention, C.f.D.C.a. Binge Drinking. Fact Sheets 2017; Available from: 
https://www.cdc.gov/alcohol/fact-sheets/binge-drinking.htm. 

https://www.cdc.gov/alcohol/fact-sheets/binge-drinking.htm


 
139 

 

254. Llerena, S., et al., Binge drinking: Burden of liver disease and beyond. World J Hepatol, 2015. 
7(27): p. 2703-15. 

255. Naimi, T.S., et al., Binge drinking among us adults. JAMA, 2003. 289(1): p. 70-75. 
256. Shukla, S.D., et al., Binge ethanol and liver: new molecular developments. Alcohol Clin Exp Res, 

2013. 37(4): p. 550-7. 
257. Wechsler, H. and T.F. Nelson, Binge drinking and the American college student: what's five 

drinks? Psychol Addict Behav, 2001. 15(4): p. 287-91. 
258. Ponomarev, I., et al., Mechanistic insights into epigenetic modulation of ethanol consumption. 

Alcohol, 2017. 60: p. 95-101. 
259. Restrepo, R.J., et al., Binge alcohol alters PNPLA3 levels in liver through epigenetic mechanism 

involving histone H3 acetylation. Alcohol, 2017. 60: p. 77-82. 
260. Shukla, S.D., et al., In Vivo Acute on Chronic Ethanol Effects in Liver: A Mouse Model Exhibiting 

Exacerbated Injury, Altered Metabolic and Epigenetic Responses. Biomolecules, 2015. 5(4): p. 
3280-94. 

261. Lundquist, F., et al., ETHANOL METABOLISM AND PRODUCTION OF FREE ACETATE IN THE 
HUMAN LIVER. Journal of Clinical Investigation, 1962. 41(5): p. 955-961. 

262. Kori, Y., et al., Proteome-wide acetylation dynamics in human cells. Sci Rep, 2017. 7(1): p. 10296. 
263. Evertts, A.G., et al., Quantitative Dynamics of the Link between Cellular Metabolism and Histone 

Acetylation. The Journal of Biological Chemistry, 2013. 288(17): p. 12142-12151. 
264. Chambers, M.C., et al., A cross-platform toolkit for mass spectrometry and proteomics. Nat 

Biotechnol, 2012. 30(10): p. 918-20. 
265. Martens, L., et al., mzML--a community standard for mass spectrometry data. Mol Cell 

Proteomics, 2011. 10(1): p. R110 000133. 
266. Wickham, H., ggplot2 Elegant Graphics for Data Analysis. Springer-Verlag New York 2009. Ed. 1: 

p. VIII, 213. 
267. Kim, G.W. and X.J. Yang, Comprehensive lysine acetylomes emerging from bacteria to humans. 

Trends Biochem Sci, 2011. 36(4): p. 211-20. 
268. Simpson, C.L., et al., Variants of the elongator protein 3 (ELP3) gene are associated with motor 

neuron degeneration. Hum Mol Genet, 2009. 18(3): p. 472-81. 
269. Spange, S., et al., Acetylation of non-histone proteins modulates cellular signalling at multiple 

levels. Int J Biochem Cell Biol, 2009. 41(1): p. 185-98. 
270. Lin, S., et al., Stable-isotope-labeled histone peptide library for histone post-translational 

modification and variant quantification by mass spectrometry. Mol Cell Proteomics, 2014. 13(9): 
p. 2450-66. 

271. Zee, B.M., et al., Global turnover of histone post-translational modifications and variants in 
human cells. Epigenetics & Chromatin, 2010. 3: p. 22-22. 

272. Evertts, A.G., et al., Quantitative dynamics of the link between cellular metabolism and histone 
acetylation. J Biol Chem, 2013. 288(17): p. 12142-51. 

273. Li, Y., et al., Mass spectrometry-based detection of protein acetylation. Methods in molecular 
biology (Clifton, N.J.), 2013. 1077: p. 81-104. 

274. Zee, B.M. and B.A. Garcia, Validation of Protein Acetylation by Mass Spectrometry. Methods in 
molecular biology (Clifton, N.J.), 2013. 981: p. 1-11. 

275. You, M., et al., Mammalian Sirtuin 1 Is Involved in the Protective Action of Dietary Saturated Fat 
against Alcoholic Fatty Liver in Mice. The Journal of Nutrition, 2008. 138(3): p. 497-501. 

276. Britton, L.-M.P., et al., Breaking the histone code with quantitative mass spectrometry. Expert 
review of proteomics, 2011. 8(5): p. 631-643. 



 
140 

 

277. Park, P.-H., R.W. Lim, and S.D. Shukla, Involvement of histone acetyltransferase (HAT) in ethanol-
induced acetylation of histone H3 in hepatocytes: potential mechanism for gene expression.  
American Journal of Physiology - Gastrointestinal and Liver Physiology, 2005. 289(6): p. G1124-
G1136. 

278. Yuan, Z.-F., et al., Evaluation of proteomic search engines for the analysis of histone 
modifications. J Proteome Res, 2014. 13. 

279. Richards, P. 2018 Alcoholism Statistics You Need to Know. 2018; Available from: 
https://talbottcampus.com/alcoholism-statistics/. 

280. Rasineni, K. and C.A. Casey, Molecular mechanism of alcoholic fatty liver. Indian Journal of 
Pharmacology, 2012. 44(3): p. 299-303. 

281. Nebert, D.W., K. Wikvall, and W.L. Miller, Human cytochromes P450 in health and disease. 
Philosophical Transactions of the Royal Society B: Biological Sciences, 2013. 368(1612): p. 
20120431. 

282. Villeneuve, J.P. and V. Pichette, Cytochrome P450 and liver diseases. Curr Drug Metab, 2004. 
5(3): p. 273-82. 

283. Pikuleva, I.A. and M.R. Waterman, Cytochromes P450: Roles in Diseases. The Journal of 
Biological Chemistry, 2013. 288(24): p. 17091-17098. 

284. Pochareddy, S. and H.J. Edenberg, Chronic alcohol exposure alters gene expression in HepG2 
cells. Alcoholism, Clinical and Experimental Research, 2012. 36(6): p. 1021-1033. 

285. Bardag-Gorce, F., et al., S-adenosylmethionine decreases the peak blood alcohol levels 3 h after 
an acute bolus of ethanol by inducing alcohol metabolizing enzymes in the liver. Exp Mol Pathol, 
2010. 89(3): p. 217-21. 

286. Jin, M., et al., Regulation of cytochrome P450 2e1 expression by ethanol: role of oxidative stress-
mediated pkc/jnk/sp1 pathway. Cell Death & Disease, 2013. 4(3): p. e554. 

287. Ceni, E., T. Mello, and A. Galli, Pathogenesis of alcoholic liver disease: Role of oxidative 
metabolism. World Journal of Gastroenterology : WJG, 2014. 20(47): p. 17756-17772. 

288. Galicia-Moreno, M. and G. Gutiérrez-Reyes, The role of oxidative stress in the development of 
alcoholic liver disease. Revista de Gastroenterología de México (English Edition), 2014. 79(2): p. 
135-144. 

289. Niemela, O., et al., Induction of cytochrome P450 enzymes and generation of protein-aldehyde 
adducts are associated with sex-dependent sensitivity to alcohol-induced liver disease in 
micropigs. Hepatology, 1999. 30(4): p. 1011-7. 

290. Baker, P.R., et al., Convergence of nitric oxide and lipid signaling: anti-inflammatory nitro-fatty 
acids. Free Radic Biol Med, 2009. 46(8): p. 989-1003. 

291. Chen, T., et al., Role of nitric oxide in liver injury. Curr Mol Med, 2003. 3(6): p. 519-26. 
292. Clemens, M.G., Nitric oxide in liver injury. Hepatology, 1999. 30(1): p. 1-5. 
293. Iwakiri, Y. and M.Y. Kim, Nitric oxide in liver diseases. Trends in Pharmacological Sciences, 2015. 

36(8): p. 524-536. 
294. Teresa Priego, M.G., Estibaliz Castillero, Ana Isabel Martın, M Angeles Villanua and Asuncion 

Lo´pez-Calderon, Nitric oxide production by hepatocytes contributes to the inhibitory effect of 
endotoxin on insulin-like growth factor I gene expression. Journal of Endocrinology, 2006. 190: p. 
847-856. 

295. Muijsers, R.B., et al., Peroxynitrite: a two-faced metabolite of nitric oxide. Life Sci, 1997. 60(21): 
p. 1833-45. 

296. Pryor, W.A. and G.L. Squadrito, The chemistry of peroxynitrite: a product from the reaction of 
nitric oxide with superoxide. Am J Physiol, 1995. 268(5 Pt 1): p. L699-722. 

https://talbottcampus.com/alcoholism-statistics/


 
141 

 

297. Abdelmegeed, M.A. and B.J. Song, Functional roles of protein nitration in acute and chronic liver 
diseases. Oxid Med Cell Longev, 2014. 2014: p. 149627. 

298. Davis, K.L., et al., Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol, 2001. 41: p. 203-36. 
299. Dhiman, M., et al., Enhanced nitrosative stress during Trypanosoma cruzi infection causes 

nitrotyrosine modification of host proteins: implications in Chagas' disease. Am J Pathol, 2008. 
173(3): p. 728-40. 

300. Radi, R., Nitric oxide, oxidants, and protein tyrosine nitration. Proceedings of the National 
Academy of Sciences, 2004. 101(12): p. 4003-4008. 

301. Abdelmegeed, M.A. and B.-J. Song, Functional Roles of Protein Nitration in Acute and Chronic 
Liver Diseases. Oxidative Medicine and Cellular Longevity, 2014. 2014: p. 21. 

302. Greenacre, S.A. and H. Ischiropoulos, Tyrosine nitration: localisation, quantification, 
consequences for protein function and signal transduction. Free radical research, 2001. 34(6): p. 
541-581. 

303. Pacher, P., J.S. Beckman, and L. Liaudet, Nitric Oxide and Peroxynitrite in Health and Disease. 
Physiological Reviews, 2007. 87(1): p. 315-424. 

304. Hossain, M.B., et al., TIE2-mediated tyrosine phosphorylation of H4 regulates DNA damage 
response by recruiting ABL1. Sci Adv, 2016. 2(4): p. e1501290. 

305. Johnson, H.M. and C.M. Ahmed, Noncanonical IFN Signaling: Mechanistic Linkage of Genetic and 
Epigenetic Events. Mediators of Inflammation, 2016. 2016: p. 9564814. 

306. Mahajan, K. and N.P. Mahajan, Cross talk of tyrosine kinases with the DNA damage signaling 
pathways. Nucleic Acids Research, 2015. 43(22): p. 10588-10601. 

307. Izzo, A. and R. Schneider, The role of linker histone H1 modifications in the regulation of gene 
expression and chromatin dynamics. Biochim Biophys Acta, 2016. 1859(3): p. 486-95. 

308. Starkova, T.Y., et al., Post-translational modifications of linker histone H1 variants in mammals. 
Phys Biol, 2017. 14(1): p. 016005. 

309. Hassan, Y.I. and J. Zempleni, Epigenetic Regulation of Chromatin Structure and Gene Function by 
Biotin. The Journal of nutrition, 2006. 136(7): p. 1763-1765. 

310. Vaissière, T., C. Sawan, and Z. Herceg, Epigenetic interplay between histone modifications and 
DNA methylation in gene silencing. Mutation Research/Reviews in Mutation Research, 2008. 
659(1): p. 40-48. 

311. Yang, S.-M., et al., H1 linker histone promotes epigenetic silencing by regulating both DNA 
methylation and histone H3 methylation. Proceedings of the National Academy of Sciences of 
the United States of America, 2013. 110(5): p. 1708-1713. 

312. Müller, C., Liver, Alcohol and Gender. Wiener Medizinische Wochenschrift, 2006. 156(19): p. 
523-526. 

313. Marcucci, C., The Cytochrome P450 System in Disease States—A Brief Review, in A Case 
Approach to Perioperative Drug-Drug Interactions, C. Marcucci, et al., Editors. 2015, Springer 
New York: New York, NY. p. 61-63. 

 

 



 
142 

 

 
 
 
 
 
Appendix A: IACUC Approval-Impact of Ethanol-Induced Protein Nitration on the Histone Modification 

Code 
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Appendix B: IACUC Approval-Role of Methylation in Ethanol-Induced Microglia Activation 
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Appendix C: AALAS Certification of USF Animal Research Orientation 


	Investigation of Alcohol-Induced Changes in Hepatic Histone Modifications Using Mass Spectrometry Based Proteomics
	Scholar Commons Citation

	Alcohol-Induced Epigenetics

