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ABSTRACT 

 

A number of researchers have shown that ear recognition is a viable alternative to more 

common biometrics such as fingerprint, face and iris because the ear is relatively stable over 

time, the ear is non-invasive to capture, the ear is expressionless, and both the ear’s geometry 

and shape have significant variation among individuals. Researchers have used different 

approaches to enhance ear recognition. Some researchers have improved upon existing 

algorithms, some have developed algorithms from scratch to assist with recognizing individuals 

by ears, and some researchers have taken algorithms tried and tested for another purpose, i.e., 

face recognition, and applied them to ear recognition. These approaches have resulted in a 

number of state-of-the-art effective methods to identify individuals by ears. However, most ear 

recognition research has been done using ear images that were captured in an ideal setting: ear 

images have near perfect lighting for image quality, ears are in the same position for each 

subject, and ears are without earrings, hair occlusions, or anything else that could block viewing 

of the entire ear.  

In order for ear recognition to be practical, current approaches must be improved. Ear 

recognition must move beyond ideal settings and demonstrate effectiveness in an unconstrained 

environment reflective of real world conditions. Ear recognition approaches must be scalable to 

handle large groups of people. And, ear recognition should demonstrate effectiveness across a 

diverse population.  
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This dissertation advances ear recognition from ideal settings to real world settings. We 

devised an ear recognition framework that outperformed state-of-the-art recognition approaches 

using the most challenging sets of publicly available ear images and the most voluminous set of 

unconstrained ear images that we are aware of. We developed a Convolutional Neural Network-

based solution for ear normalization and description, we designed a two-stage landmark detector, 

and we fused learned and handcrafted descriptors. Using our framework, we identified some 

individuals that are wearing earrings and that have other occlusions, such as hair. The results 

suggest that our framework can be a gateway for identification of individuals in real world 

conditions. 
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CHAPTER 1: INTRODUCTION1 

 

1.1   Biometric Recognition 

The term ”biometric” infers some sort of life measurement, as the compound word is 

forged from two different words that refer to life and measurement. Biometric recognition is the 

automatic recognition of individuals based on their physiological and/or behavioral 

characteristics [18]. By measuring some physiological characteristic or some part of the body, 

we can determine the identity of individuals and verify the identity of individuals too. At the turn 

of the century, it was rare to hear the term biometric recognition outside of academia. Now, with 

the advances in computer technology and smart devices that have embedded biometric 

recognition software applications on them, biometric recognition is becoming quite popular. It is 

not uncommon to see a popular television show like Naval Criminal Investigative Service 

(NCIS) or NCIS New Orleans use biometric references like facial recognition or finger print 

recognition. But, biometric recognition has been used for centuries. 

There is evidence that fingerprints were used as early as 500 B.C. [34].  However, the 

first systematic capture of handprints was done in 1858 by Sir William Hershel [22]. He was 

working for the Civil Service of India and used the handprints on the back of contracts to 

                                                           
1 Materials from this chapter were published in “Employing Fusion of Learned and Handcrafted 

Features for Unconstrained Ear Recognition”, by E. Hansley, M. Pamplona Segundo, & S. 

Sarkar, 2018, IET Biometrics, http://dx.doi.org/10.1049/iet-bmt.2017.0210 The materials are 

reproduced by permission of the Institution of Engineering & Technology.  Permission is 

included in Appendix A. 
 

http://dx.doi.org/10.1049/iet-bmt.2017.0210
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distinguish employees from others. He wanted to ensure that the people receiving pay were 

contract employees. 

The first documented case study involving biometrics was done by a French Police 

Officer named Alphonse Bertillon in 1885 [3]. Bertillon used body measurements to identify 

criminals.  The method was called anthropometrics.  The combined measurements that he used 

included the ear [1]. In 1886, Richard Imhofer, a Czechoslovakian doctor, was able to distinguish 

500 ears using only four features [1]. In 1964, Iannarelli published a book about his system of 

ear identification [16]. It was based on his research whereby he examined over 10000 ears during 

a 38-year period. These earlier biometric works and ear recognition research have established a 

good basis point for subsequent research. 

There are multiple options for the choice of biometric to use for recognition.  Some of the 

popular biometric methods include: fingerprint, iris, face, gait, and ear. Each method has some 

characteristics that algorithms exploit information from in order to recognize and identify 

individuals.  The choice of biometric selected can be based upon the expected usage and the 

associated advantages. The choice can also be made based on risks associated with weaknesses 

of biometric recognition systems under consideration. Therefore, it is useful to know the 

strengths and weaknesses of biometric methods. 

1.2   Types of Biometric Recognition 

1.2.1  Fingerprint Recognition 

One of the oldest, most used, and most reliable biometric methods is the fingerprint. 

Fingerprints have one of the highest reliabilities [30]. A fingerprint has ridges, patterns, and 

minutiae that are distinct. And, fingerprints are difficult to alter. Because of the reliability, the 

fingerprint is used to identify suspects of criminal activity and to prosecute criminals.  It is those 
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distinct qualities that enable identification of individuals. Even identical twins have different 

fingerprints [18]. Because of the popularity of fingerprints, many smart devices have embedded 

fingerprint capabilities. But, a small group of the population may not be good fingerprinting 

subjects, and some skilled labor workers that are subject to occasional cuts on their hands may 

not be ideal subjects [18]. 

1.2.2  Iris Recognition 

The iris is becoming a popular choice of biometric. The iris is a circular structure in the 

eye that surrounds the pupil and its patterns are used to distinguish individuals. Although it is 

small and sometimes difficult to image, the iris pattern variability among different individuals is 

enormous.  The iris has unique patterns that are complex and can be recognized from a distance.  

Therefore, it is non-invasive to capture. Some iris recognition systems have been employed by 

various governments. But, acquisition of the iris for identification can be challenging because of 

its small size, especially if someone is moving. 

1.2.3  Face Recognition 

A very popular choice of biometric is face recognition. The face’s eyes, nose and mouth 

are some of the attributes on the face that can be used to extract features or compute distances 

among them for identification.  Face recognition is popular because it is non-invasive and faces 

can be captured at a distance. The Face Recognition Technology (FERET) program was 

implemented to assess the state-of-the-art in face recognition, to identify future areas of research, 

and to test algorithms performance on a large scale [32]. The program tremendously advanced 

the field of face recognition research.  And since the FERET program began, face recognition 

has been used in several settings. One such usage that received a lot of notoriety was the Super 

Bowl that Tampa, FL hosted in 2001. Additionally, Apple has implemented facial recognition on 
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its iPhone X smartphone. A lot of different face recognition algorithms have been tested over the 

years. But pose angle, pose variations, different expressions, and different lighting remain 

challenges that impact face recognition. And, it has been shown that face images taken a year 

apart can degrade performance [14]. Faces, do however, remain one of the most popular 

biometrics. And, because of that popularity, face recognition is likely to become available on 

more smart devices. 

1.2.4  Gait Recognition 

Gait recognition is recognizing people by the way they walk or run. Researchers posed 

the question of whether humans can be recognized by their gait in 1977 [7]. In 1999 researchers 

showed that humans can identify people by their gait signature [33]. And, computer vision 

researchers have shown that simple approaches using silhouettes can be used for gait recognition 

[28]. The benefit of gait recognition is that it can be used for surveillance and it can be used from 

a distance when another biometric may fail or not be as useful. For example, if someone is 

walking towards a highly secure building or towards an airport, contact methods such as 

fingerprints are not options. Also, face recognition requires quality images for effective 

recognition and the face may not always be visible if a subject is walking. Therefore, gait can be 

an attractive option. But, because gait recognition is done by capturing video sequence footage, it 

is computationally expensive [18]. 

1.2.5  Retinal Scan Recognition 

Retina scans are another effective biometric means to identify someone. The retina is an 

inner coat of the eye with rich vascular structure. The unique structure of the retina enables 

identification [6] and, it is considered to be the most secure biometric [18]. It is difficult to 

change or replicate the retina’s vascular structure. Governmental agencies such as the Central 
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Intelligence Agency, the Federal Bureau of Investigation, and the National Aeronautical Space 

Agency use retina scanning.  Retina scans can become more popular with commercial usage. To 

capture a retina scan does require some participation from the subject. That requirement has 

possibly slowed the commercial adaption for usage. But, a September 2017 report suggested that 

using the retina scan could be the future of biometrics and banking [26].  People may not mind 

interacting with a scanner to safeguard their assets from theft. 

1.2.6  Ear Recognition 

Ear recognition is another common biometric, and it is a good alternative to the biometric 

options discussed in the preceding paragraphs.  Different parts of ear images are marked for ear 

recognition algorithms to detect features and compare them to different ear images. Ear images 

can passively be captured and the stability of the ear affords a more consistent biometric 

identification method. Additionally, researchers have shown that ear recognition can be used to 

distinguish identical twins [29]. This is significant in that recognition of identical twins is an 

unsolved problem for face recognition.  Because ear images can be captured from a distance and 

because they have some advantages over other biometric methods, ear recognition could become 

the biometric of choice for governmental agencies, and advances in ear recognition research 

could accelerate commercial adaptations. 

 



6 
 

 

 

 

 

 

CHAPTER 2: RELATED WORK2 

 

 

2.1   Ear Recognition in Computer Vision 

The first image-based work for ear recognition was done by Burge and Burger [4]. They 

made a case for ear biometrics being viable and developed a Machine Vision system as a proof 

of concept of the viability of ear biometrics for passive identification. Their system consists of 

three parts: localization and segmentation, feature extraction, and feature comparison. In that 

their system is a proof of concept [4], they do not provide recognition results. But, their 

foundational approach has resulted in their work being amongst the most cited papers in 

Computer Vision ear recognition research. Since Burge and Burger’s work, there has been a 

number of different approaches for ear recognition. 

2.2  Principal Component Analysis for Ear Recognition 

Victor, et al. published the first work on using principal component analysis (PCA) for 

ear recognition in 2002[41]. Principal component analysis is a statistical analysis method that is 

used to detect patterns and variations in a dataset.  It is also a dimensionality reduction technique, 

which makes it an attractive choice for ear recognition even with the advances in computer 

technology. 

                                                           
2 Materials from this chapter were published in “Employing Fusion of Learned and Handcrafted 

Features for Unconstrained Ear Recognition”, by E. Hansley, M. Pamplona Segundo, & S. 

Sarkar, 2018, IET Biometrics, http://dx.doi.org/10.1049/iet-bmt.2017.0210 The materials are 

reproduced by permission of the Institution of Engineering & Technology.  Permission is 

included in Appendix A. 
 

http://dx.doi.org/10.1049/iet-bmt.2017.0210
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Victor, et al. modeled the work done by Turk and Pentland who applied PCA to face 

recognition [40]. Turk and Pentland projects face images onto a feature space and refer to it as 

face space. They use PCA to find the eigenvectors corresponding to the face images. Because the 

eigenvectors are face-like in appearance, Turk and Pentland refer to them as eigenfaces.  Victor 

et al. refer to the ears analyzed using PCA as eigen-ears in their work. 

Victor et al.’s approach consisted of three steps: 1) Preprocessing, 2), Normalization, and 

3) Identification. In the preprocessing step, images are cropped, the ear is centered, and 

landmarks are annotated.  In the normalization step, they scale images and apply a mask to get 

rid of hair and anything else in the background of the image that may not be helpful. And, the 

image is normalized for illumination. They ensure that the training set has clean images without 

earrings. Their identification step consists of training and testing. Victor et al. tested PCA with 

their method using 76 images in the gallery set and 73 images in the probe set. This is a very 

small dataset compared to the size of the datasets we tested for this work. But, at the time of their 

research that was adequate to show that PCA can be used for ear recognition. 

2.3  Convolutional Neural Network for Ear Recognition 

A relatively new approach for ear recognition involves using a convolutional neural 

network (CNN).  This approach became very popular during an image net competition [24] 

because the winners of the competition achieved the best error rates. Their results were 

significantly better than all competitors. Their Top-1 performance and Top-5 performance are 8 

to 10 percent better than their closest competitors. What is equally significant is that their results 

were obtained using 1.3 million images with 1000 different classes. 

A CNN has neurons applied across a space that enables detecting and learning features 

such as lines and curves.  Those learned features are used to compare different ear images in 
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order to determine the identity of an individual. A CNN applied to ear image is different from the 

state-of-the-art algorithms that have traditionally been used. Some traditional ear recognition 

approaches search for features such as lines and curves.  Other approaches collect some sort of 

statistics.  What is different about a CNN is that it does not search for lines, curves, or statistical 

patterns. What CNN is searching for is not predetermined.  A CNN extracts information from the 

data that is representative of features such as curves that could represent an animal, an ear, or 

something else. Then CNN learns the features and those learned features are used to help 

delineate whatever is in the image, such as an ear or an animal if there is an animal or ear that is 

present in the image. 

In 2016, Tian, et al. applied CNN to ear recognition [39]. They designed a CNN with 

three convolutional layers, a fully-connected layer and a soft-max classifier.  They used a dataset 

of 79 subjects.  The images from the subjects have some pose angle variations, but they are a 

constrained set of images. There are no earrings, headsets, or similar occlusions. They did test 

partial occlusions that they added to the corners of the ear images. But, self-manufactured 

occlusions are not the same as testing with unconstrained ear images. In 2017, Emersic, et al. 

reported that Istanbul Technical University (ITU) used a deep learning approach based on Visual 

Geometry Group 16-layer CNN model (VGG-16) [36] to identify individuals from ears [11].  

They used a dataset of 2304 images from 166 subjects and submitted their finding as part of the 

Unconstrained Ear Recognition Challenge(UERC) [11].   
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CHAPTER 3: OVERVIEW OF OUR APPROACH3 

 

A number of researchers have shown that ear recognition is a viable alternative to more 

common biometrics such as fingerprint, face and iris [5, 25, 45]. The ear is stable over time, is 

less invasive to capture, and does not require as much control during image acquisition as other 

biometrics. And, it is reasonable to assert that there are fewer privacy issues for the ear than there 

are for the face. 

Traditionally, ear recognition research has been performed on ear images that were 

captured in an ideal setting. In an ideal setting, the ears are all captured in the same position, with 

identical lighting, and identical resolution. With the advances in computer vision and pattern 

recognition techniques, research of ear recognition is shifting to a more challenging scenario 

whereby ear images are acquired from real world (unconstrained) settings [12, 11]. It is more 

difficult to recognize ears in the wild.  In this paper we use ”ears in the wild” and ”unconstrained 

ears” interchangeably. Figure 1 illustrates the difficulty of recognizing individuals using ears in 

the wild. 

This example mostly illustrates the problem of pose variation, but many other factors 

may affect the recognition performance: different acquisition devices, low resolution, 

illumination variations, occlusions caused by hair and head accessories, earrings, headsets and so 

                                                           
3 Materials from this chapter were published in “Employing Fusion of Learned and Handcrafted 

Features for Unconstrained Ear Recognition”, by E. Hansley, M. Pamplona Segundo, & S. 

Sarkar, 2018, IET Biometrics, http://dx.doi.org/10.1049/iet-bmt.2017.0210 The materials are 

reproduced by permission of the Institution of Engineering & Technology.  Permission is 

included in Appendix A. 
 

http://dx.doi.org/10.1049/iet-bmt.2017.0210
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on. To overcome these recognition challenges, ear recognition has to achieve good results for 

non-cooperative subjects. This will make ear biometric recognition very useful for practical 

purposes, like video surveillance and continuous authentication. 

 

 
Figure 1: Example of a challenging task for ear recognition in an unconstrained setting. 

In order to carry out the task of recognizing humans through their ears, a common 

sequence of steps is usually followed (see Figure 2). 

 
Figure 2: Diagram of our ear recognition framework. 

 

The first step is to capture a digital biometric sample using an appropriate sensor. For all 

of our experiments we used images from five publicly available databases.  The second step is 

the localization step. The algorithm locates the biometric information and separates it from 

irrelevant parts of the acquired sample. The images we used were either already cropped or the 

ground truth location of the ears was provided; thus we do not perform the localization step. 
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However, it is possible to find successful approaches that perform ear detection in the wild in the 

literature [46, 10]. A very critical step is the normalization step. In this step, we are reshaping the 

input sample to a standard format to reduce unwanted variations.  We used a landmark detector 

based on Convolutional Neural Networks (CNN) [23] to locate a set of 55 landmarks, which 

were then employed to translate, rotate and scale the input image to a standard configuration. 

We used the landmarked points to aid with feature description. In the feature description 

step, discriminant features were extracted from a normalized sample. This usually reduces its 

dimensionality. We used a state-of- the-art CNN architecture that was designed for face 

recognition, to do the task of ear recognition in the wild, and we used different traditional ear 

description approaches, too. 

The final step is the Recognition step. In the recognition step, we compare the results 

from the descriptors and determine if the same person matches or not. All images are compared 

to each other using the descriptor’s distance metric. All scores are normalized using min-max 

normalization [17]; then score level fusion [21] is used to combine results of different descriptors 

and inform the decision. After implementing our framework and evaluating the results, the 

following contributions were achieved.  We designed and developed a two-stage CNN-based 

landmark detector that produces accurate results even in the presence of variations not seen in 

the training data. We used our detector to automatically normalize images and instantly observed 

a boost in the recognition rate. We devised a CNN-based ear descriptor based on a state-of-the-

art face recognition architecture that outperformed similar state-of-the-art ear recognition works 

that are based on CNNs. We demonstrated that handcrafted and learned descriptors are 

complementary, and thus fusing them results in a considerable increase in performance. 
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CHAPTER 4: LANDMARK AND NORMALIZATION4 

 

 

4.1   Landmark Detection 

Even with the recent emergence of deep learning methods for biometric recognition in 

uncontrolled scenarios, normalization is still necessary to achieve better results. For instance, a 

landmark-based orientation and scale normalization is a standard procedure in face recognition 

state-of-the-art works [42, 43]. With this in mind, we pursued a similar path for the ear 

recognition problem by investigating the use of CNNs for the landmark detection task. To this 

end, we used images and annotations provided in Collection A of the ITWE database for CNN 

training and accuracy evaluation.  As only 500 images were available for training, we performed 

different data augmentation operations in order to avoid overfitting and increase the network 

generalization power. For each training image, we used principal component analysis (PCA) [2] 

on the 2D coordinates of the annotated landmarks to obtain the upright orientation of the ear (i.e. 

we assumed it corresponds to the direction of the first component). Then, we created multiple 

images by rotating the upright ear from −45◦ to 45◦ with steps of 3◦. Each ear was also 

transformed by a random scale change of up to 20% of the original ear size in both axes, as well 

as a random translation of up to 20% of the original ear size in each axis. After applying all these 

                                                           
4 Materials from this chapter were published in “Employing Fusion of Learned and Handcrafted 

Features for Unconstrained Ear Recognition”, by E. Hansley, M. Pamplona Segundo, & S. 

Sarkar, 2018, IET Biometrics, http://dx.doi.org/10.1049/iet-bmt.2017.0210 The materials are 

reproduced by permission of the Institution of Engineering & Technology.  Permission is 

included in Appendix A. 
 

http://dx.doi.org/10.1049/iet-bmt.2017.0210


13 
 

modifications, images were rescaled to 96×96 pixels, and we ended up with 15500 training 

images. 

The architecture of our network is based on a common design nowadays, even for 

landmark detection [37], which consists of alternating between convolution and max pooling 

layers in the beginning, and then following with a sequence of fully-connected layers. We used 

rectified linear units in convolution and fully-connected layers to train models from scratch. We 

also added dropouts after all max pooling and the first fully-connected layers to avoid overfitting 

the training data. A complete description of our architecture is presented in Table 1.  It was 

implemented using TensorFlow, and the optimization to minimize the mean squared error in the 

output was carried out by the Nesterov’s Momentum algorithm [38] for 2000 epochs. 

 

Table 1: Network architecture for landmark detection in ear images. 

 

 

Although this network achieved an admirable accuracy considering the level of variations 

in unconstrained scenarios, we evaluated a two-stage solution, whereby the first network was 

used to create an easier landmark detection scenario by reducing scale and translation variations, 

and the second network is used to generate the 2D coordinates for landmarks.  We used the 

coordinates obtained by the network described above to refine the center and the orientation of 
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an ear using PCA, and then fed the rectified image to a second network that was trained in a 

more controlled scenario. The second network has the same architecture and optimization 

procedure of the first one, the only difference is the training data, which uses less variation in the 

augmentation process. Rotations are performed from −15◦ to 15◦ with steps of 1◦, and random 

scale and translation changes are limited to up to 10% of the original ear size. 

4.2   Geometric Normalization 

After landmark detection, we performed a geometric normalization of the ears by 

applying PCA on the retrieved landmarks. We used the first component as the orientation of the 

ear and the center of the oriented bounding box as the center of the ear. We then interpolated a 

128 × 128 image with these parameters considering that the distance between the center of the 

ear and the top of the image is equal to two times the square root of the first eigenvalue in the 

original image. However, as ears in the wild may present significant pose variations, this also 

occurs in width variations that may affect the recognition performance, as shown in Figures 3a 

and 3b. Thus, we used different sampling rates in x and y directions in a way that the distance 

between the center of the ear and one side of the image is equal to two times the square root of 

the second eigenvalue in the original image. This way, the width and the height of the 

normalized ear were approximately the same, as may be seen in Figures 3c and 3d, and image 

variations caused by pose became less intense. 

 

 
Figure 3: Normalization results (a)-(b) with and (c)-(d) without the same sampling rate in both 

axis for two ear images of the same person with pose variations. 
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The ear images we experimented with contained a variety of different sizes and different 

orientations. In order to make a fair comparison of ear images, they must be aligned to a 

common reference. We used geometric normalization to align them to a common reference. The 

images were rotated, scaled, and translated to make them all the same size, to place them all in 

the same position, and to place them equidistant from a reference position.
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CHAPTER 5: DESCRIPTION AND MATCHING5 

 

 

5.1   Overview of Description and Matching 

We evaluated three different description and matching schemes based on 1) holistic 

image features, 2) handcrafted features and 3) learned features. We then investigated if fusing 

some of them would achieve a higher accuracy. 

5.2   Holistic Features 

PCA was one of the first methods employed to the ear recognition problem [5], as it 

provides a holistic description of the sample images while reducing the dimensionality of the 

data. However, even the pioneer works using PCA have already reported a performance drop 

caused by variations in pose and illumination, and such variations are much more intense in 

recent uncontrolled databases. We tested a PCA implementation available in the Face 

Identification Evaluation System [44] as a baseline approach, and its feature vectors were 

matched though the Mahalanobis distance. The first 20 eigenvectors were dropped to avoid 

illumination and background variations, and we kept 60% of the eigenvectors in our PCA 

descriptor. 

 

 

                                                           
5 Materials from this chapter were published in “Employing Fusion of Learned and Handcrafted 

Features for Unconstrained Ear Recognition”, by E. Hansley, M. Pamplona Segundo, & S. 

Sarkar, 2018, IET Biometrics, http://dx.doi.org/10.1049/iet-bmt.2017.0210 The materials are 

reproduced by permission of the Institution of Engineering & Technology.  Permission is 

included in Appendix A. 
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5.3   Handcrafted Features 

As holistic features are strongly affected by different variations, specialists designed 

different feature extraction approaches, which are known as handcrafted features, seeking to 

overcome some of these problems. Emersic et al. [12, 11] released a toolbox that contains the 

best performing  state-of-the-art handcrafted features for ear recognition:   local binary patterns 

(LBP), binarized statistical image features (BSIF),  local phase quantization features (LPQ), 

rotation invariant LPQs (RILPQ),  patterns of oriented edge magnitudes (POEM),  HOG, dense 

scale-invariant feature transform (DSIFT)  and Gabor wavelets.  All descriptors were extracted 

using the default parameters of the toolbox. For matching, as in Emersic et al.’s work [12], we 

compared histogram-based descriptors using the chi-square distance and Gabor descriptors using 

the cosine distance. 

5.4   Learned Features 

Considering that the performance of handcrafted descriptors degrades when using 

uncontrolled ear images [12], we explored CNNs so that we could improve performance and so 

that we could learn more about the images, as well as how to describe them in a more 

discriminatory and concise way. The CNN that we implemented is a state-of-the-art CNN 

architecture employed for face recognition in the wild [42]. We trained it from scratch for the ear 

recognition in the wild problem. We present a complete description of the chosen CNN 

architecture as well as specific layer configurations in Table 2. This network was implemented 

using TensorFlow, and the Adam optimization algorithm [20] was used to minimize the 

weighted sum of softmax and center losses. As in Wen et al.’s work [42], we set the center loss 

weight to 0.003.  
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Table 2: Network architecture for feature extraction in ear images. 

 

 

 

This CNN outputs 512-dimensional descriptors that can be matched through the cosine 

distance, making the entire processing time (i.e. description and matching) comparable to that of 

handcrafted descriptors. For a given training  set, the network optimization  was performed in 

batches of 128 images for 1000 epochs using softmax loss only, and then the weighted sum of 

softmax and center losses was used until convergence was reached (i.e. no improvement after 50 

epochs).  As was done during landmark detection, we performed data augmentation operations to 

increase the number of training images by: applying random rotation between −10◦ and 10◦, 

applying random crop with 85% to 100% of the original image size and by applying a random 

contrast change increasing or decreasing the range of pixel intensities in up to 50%.  
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CHAPTER 6: FUSION6 

 

Although the goal during image acquisition is to capture perfect ear images, that is 

difficult to do. And, ear images captured in real world conditions are far from perfect. This has 

led to researchers looking for ways to improve recognition with the images that they have. 

Researchers have concatenated different biometrics to make multimodal images, they have used 

multiple samples of single biometrics, and they have used several types of fusion methods to 

improve biometric recognition results. As the computer vision field has progressed, recent efforts 

to identify individuals using unconstrained ear images reflect the realization that image 

acquisitions will not always be under ideal circumstances. This motivated us to consider a 

number of different algorithms that could help identify individuals from ears in real conditions.  

We reviewed numerous scientific journal publications and examined advantages and 

disadvantages of ear recognition methods.  There are different kinds of multimodal systems that 

address problems associated with single modality systems [19], but a multimodal system based 

on multiple matchers is the most adequate one for wild scenarios. The reason is that it may not 

always be possible to have multiple biometric traits (e.g. face and ear), multiple units of a 

biometric trait (e.g. thumb and index fingerprints) or multiple samples of the same biometric trait 

                                                           
6 Materials from this chapter were published in “Employing Fusion of Learned and Handcrafted 

Features for Unconstrained Ear Recognition”, by E. Hansley, M. Pamplona Segundo, & S. 

Sarkar, 2018, IET Biometrics, http://dx.doi.org/10.1049/iet-bmt.2017.0210 The materials are 

reproduced by permission of the Institution of Engineering & Technology.  Permission is 

included in Appendix A. 
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(e.g. face in video). But, we can always apply multiple matching techniques to a single biometric 

sample. 

There are many choices of algorithms to use for fusing single biometric samples. And, 

there are multiple ways to approach which algorithms to use. One way is to study the advantages 

and disadvantages of multiple algorithms and try to find a complementary combination whereby 

a disadvantage of one algorithm may be an advantage for another approach and vice-versa. 

Another approach is to select algorithms that have achieved good results for the biometric than 

one is testing. In that we were using the UERC toolkit, we had 9 state-of-the-art algorithms 

available to consider. We added PCA to the experiments and that gave us a total of 10 algorithms 

to consider. We were interested in determining if a particular fusion combination of size two 

could improve performance. Since we started with 10 algorithms, we had 45 pairings to consider. 

We were also interested in learning whether a particular fusion scheme was best. In order to fuse 

matchers based on the descriptors previously presented, we evaluated different fusion schemes at 

score level, such as sum, min, max and product rules. We used the sum rule [21] as it achieved 

the best results in our experiments. Because we are experimenting with different algorithms, the 

scores generated by different algorithms are dissimilar as each algorithm captures something 

different during feature extraction. And, dependent upon the algorithm used, a different distance 

metric is used to determine the distance between images. Therefore, we normalized all the 

scores.  

In order to normalize the scores we established probe versus gallery sets of scores based 

on the FERET study to make our fusion simpler to implement. Then, we used min-max 

normalization[17]. Let a gallery set for a biometric (e.g. ear) be denoted by Ge = {ge_1, ...., 

ge_N} and the corresponding probe set be denoted by Pe = {pe_1, ...., pe_N}. Let de_{ij} = 
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distance between ith ear probe with the jth gallery probe. Let the normalized distance of the ear 

be: dne_{ij} = (de_{ij} – min_j de_{i,j})/(max_j de_{ij} – min_j de_{ij}). The normalized 

distance of the ear is : dne_{ij} = (de_{ij} – min_j de_{ij})/(max_j de_{ij} – min_j de_{ij}). 

Sum Fusion We apply the simple sum of scores[21] by summing the matching scores of each 

algorithm. Let the normalized score of Algorithm A matching scores be represented by 

AlgAScore1.....AlgAScoreN for a probe versus gallery matching. Let the normalized score of 

Algorithm B matching points be represented by AlgBScore1.....AlgBScoreN for a probe versus 

gallery matching. The simple sum of scores is the summation from 0 to max of Algorithm A 

score 0 and Algorithm B score 0......n. The fused scores are normalized. 
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CHAPTER 7: DATABASE7 

 

There are many things that can affect the performance of ear recognition and some sets of 

ear images are easier than others. Therefore, it is a good idea for researchers to experiment with 

multiple image datasets when feasible. A test may include using ideal images, then progressing 

to unconstrained more difficult images to recognize. In this work we used five different 

databases to train and evaluate our ear recognition framework. We used images from the Indian 

Institute of Technology Delhi Ear Database (IIT), the West Pomeranian University  of 

Technology  Ear Database (WPUTE),  the Annotated  Web Ears database (AWE), the In-the-

wild Ear Database (ITWE) and the Unconstrained Ear Recognition Challenge database (UERC).  

More details about each of them are given in the subsequent sections. 

7.1   Indian Institute of Technology Delhi Ear Database 

The IIT database [25] was released in two different formats, a raw version and a 

normalized version. We used the raw version for our experiments.  It contains 493 images with 

size 272 × 204 from 125 different subjects. Each image shows a small region around the left ear 

and was collected in an indoor environment in a well-controlled acquisition setup, which makes 

this database a suitable benchmark for a nearly ideal ear recognition scenario. Figure 4a shows 

some raw images provided by the IIT database that appear to have been taken in an ideal setting.

                                                           
7 Materials from this chapter were published in “Employing Fusion of Learned and Handcrafted 

Features for Unconstrained Ear Recognition”, by E. Hansley, M. Pamplona Segundo, & S. 

Sarkar, 2018, IET Biometrics, http://dx.doi.org/10.1049/iet-bmt.2017.0210 The materials are 

reproduced by permission of the Institution of Engineering & Technology.  Permission is 

included in Appendix A. 
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have not verified.  It seems that they may be using test images for training. CMC curves for the 

best performing works are presented in Figure 6a. 

Table 6: Individual and fusion results for CNN, HOG, POEM and LBP in the overall 

performance evaluation through the UERC protocol, as well as the top scoring participants of the 

UERC challenge.  

 

 
 

For the scalability evaluation, we matched all images from subjects with at least two 

images to all other test images, totaling 7,442×9,499 matching pairs. This experiment increased 

the number of subjects to 3,540 and also adds many images with poor quality, affecting 

considerably the performance of the evaluated approaches.  In Table 7 we show results for CNN, 

HOG and POEM, for all possible fusion among two of them, and for the best performing 

approaches in the UERC challenge. We can see that the combination of CNN and HOG was 

again the best performing method for lower ranks, and that these results show that our approach 

is the most scalable unconstrained ear recognition approach. CMC curves for the best performing 

works are presented in Figure 6b and show how well our approach performs for lower ranks, 

outperforming all other works by at least 10% in most ranks before Rank-300. 
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Table 7: Individual and fusion results for CNN, HOG and POEM in the scalability evaluation 

through the UERC protocol, as well as the top scoring participants of the UERC challenge. 

 
∗These results still require verification 

 

 

Table 7 also shows that our CNN outperformed the other two top-scoring CNN-based 

approaches proposed by researchers from the Islamic Azad University (IAU) and the Istanbul 

Technical University (ITU- II) [11]. Similar to Zhou and Zaferiou [47], IAU and ITU-II 

employed transfer learning approaches in a network from a different domain [35] and were not 

able to achieve results as high as our domain-specific CNN. 

8.5   Discussion 

Unconstrained ear recognition is a very challenging problem, and recent efforts to 

provide data for un- constrained ear images for research are helpful. Initial databases such as IIT 

and WPUTE were captured images instead of wild images. They do not have much intraclass 

and interclass variations. The initial wild databases collected images from the Internet such as 

AWE and ITWE still lack interclass variability due to their small number of subjects.  The 

UERC database is a vast repository with thousands of subjects and images with intraclass 

variations and interclass variations.  It is the most challenging ear dataset that we are aware of. 

Although initial ear recognition works have consistently used ear alignment before 

recognition [5, 25], researches for unconstrained ear recognition were most focused on finding 

robust features [12].  Even among the UERC participants, only the Imperial College London 
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(ICL) used an alignment step, although they used an AAM-based  solution [47] that may not be 

as successful  for wild images as recent techniques such  as CNNs (see Figure  5).  Nevertheless, 

we attribute a big part of the success in our results to the normalization step. It considerably 

increased the performance of traditional methods, such as handcrafted features in Tables 3 and 6, 

and, also helped the deep learning process by letting it focus on what matters the most for the 

recognition task. It also helped in our cross-dataset experiments shown in Table 4, as we do not 

have problems with different cropping areas or noise in ear location. 

Our CNN descriptors were not only comparable to the best handcrafted descriptors in 

terms of Rank-N results, but they performed better in terms of EER in all experiments, meaning 

that they were more accurate for verification purposes. In addition, our performance was 

favorably compared to the best performing participants of the UERC challenge, as shown in 

Table 7, and to the best results from the state-of-the-art approaches. There were two factors that 

may have helped us to achieve these results: we trained CNNs from scratch specifically to our 

problem domain, and we used a discriminative learning technique based on center loss that was 

proposed by Wen et al. [42]. 

Finally, as learned and handcrafted features were achieving similar ranking results for our 

normalized images, we decided to combine them through score fusion in order to seek a better 

performance rate. We discovered that the combination of our CNN descriptors and handcrafted 

descriptors achieved much better results in all experiments. None of the combinations between a 

pair of handcrafted features could get close to the top scores, which may be explained by the fact 

that handcrafted features are highly correlated due to their similar design.  On the other hand, 

CNN descriptors do not follow an expert’s design and are likely learning some discriminative 
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information that is complementary to most handcrafted descriptors, as may be observed in Tables 

5, 6 and 7. 

 

 

Figure 6: CMC curves for all participants of the UERC challenge plus our best fusion results 

obtained by combining CNN and HOG considering the (a) overall performance evaluation and 

(b) scalability evaluation protocols. 

 

Finally, as learned and handcrafted features were achieving similar ranking results for our 

normalized images, we decided to combine them through score fusion in order to seek a better 
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performance rate. We discovered that the combination of our CNN descriptors and handcrafted 

descriptors achieved much better results in all experiments. None of the combinations between a 

pair of handcrafted features could get close to the top scores, which may be explained by the fact 

that handcrafted features are highly correlated due to their similar design.  On the other hand, 

CNN descriptors do not follow an expert’s design and are likely learning some discriminative 

information that is complementary to most handcrafted descriptors, as may be observed in Tables 

5, 6 and 7. 
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CHAPTER 9: CONCLUSION9 

 

Ear recognition has progressed from the initial research conducted two centuries ago 

whereby identification of individuals from ears was done manually by a subject matter expert. 

With the advances in Computer Technology, today ear recognition is an automated process. And, 

because of the availability of faster and cheaper computers with more storage capacity, one can 

assert that it is a lot easier to do ear recognition nowadays. But, ear recognition research has not 

reached a plateau. There is still a lot of room for improvementThe foundational ear recognition 

research and most prior ear recognition research has been done using ideal ear images captured 

in a laboratory or similar setting. Using ideal ear images has some advantages. They enable 

researchers to provide a proof of concept for their ideas and they provide a starting point that 

allows small successful steps. It is those small steps of starting with easy biometric recognition 

problems that enable research to progress to the point being able to experiment with very 

difficult images and identify individuals from them. In order to advance the field of Computer 

Vision, ear recognition research must move beyond using constrained images that are taken in a 

controlled environment to being able to handle unconstrained ear images.  

Unconstrained ear recognition is a very challenging problem. To address the challenge of 

unconstrained ear recognition, we devised a framework that combines handcrafted features and 

CNN. We tested our framework using the most challenging publicly available ear databases that 

                                                           
9 Materials from this chapter were published in “Employing Fusion of Learned and Handcrafted 

Features for Unconstrained Ear Recognition”, by E. Hansley, M. Pamplona Segundo, & S. 

Sarkar, 2018, IET Biometrics, http://dx.doi.org/10.1049/iet-bmt.2017.0210 The materials are 

reproduced by permission of the Institution of Engineering & Technology.  Permission is 

included in Appendix A. 
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we are aware of. Our results are considerably better than recently published works and less 

impacted by database scale. But, this isn’t the only significant thing about our research. Using 

our framework, we were able to identify individuals from ears using ear images that that 

contained earrings and other ear occlusions.  This is also significant because these types of 

images would not have been considered just ten years ago. And, most previous ear recognition 

research does not use unconstrained images.   

As a result of our research, we gained invaluable lessons that can further enhance 

unconstrained ear recognition research. Handcrafted features are not dead. Handcrafted features 

and CNN are complementary. Normalization is critical and enhances performance recognition of 

handcrafted features. CNN combined with any of the state-of-the-art descriptors that we used 

improves recognition.  

There is still a lot to be learned in order to address the difficult challenges associated with 

unconstrained ear recognition. This dissertation demonstrates that CNN and handcrafted features 

are a good starting point. Our ear recognition framework is a major step towards identification of 

individuals from ears in real world conditions. 
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