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ABSTRACT

Water quality and wetlands represent two vital elements of a healthy coastal ecosystem.
Both experienced substantial declines in the U.S. during the 20" century. Overall coastal wetland
cover decreased over 50% in the 20" century due to coastal development and water pollution.
Management and legislative efforts have successfully addressed some of the problems and
threats, but recent research indicates that the diffuse impacts of climate change and non-point
source pollution may be the primary drivers of current and future water-quality and wetland
stress. In order to respond to these pervasive threats, traditional management approaches need to
adopt modern technological tools for more synoptic, frequent and fine-scale monitoring and
assessment. In this dissertation, | explored some of the applications possible with new,
commercial satellite imagery to better assess the status of coastal ecosystems.

Large-scale land-cover change influences the quality of adjacent coastal water. Satellite
imagery has been used to derive land-cover maps since the 1960’s. It provides multiple data
points with which to evaluate the effects of land-cover change on water quality. The objective of
the first chapter of this research was to determine how 40 years of land-cover change in the
Tampa Bay watershed (6,500 km?) may have affected turbidity and chlorophyll concentration —
two proxies for coastal water quality. Land cover classes were evaluated along with precipitation
and wind stress as explanatory variables. Results varied between analyses for the entire estuary
and those of segments within the bay. Changes in developed land percent cover best explained

the turbidity and chlorophyll-concentration time series for the entire bay (R? > 0.75, p < 0.02).



The paucity of official land-cover maps (i.e. five maps) restricted the temporal resolution
of the assessments. Furthermore, most estuaries along the Gulf of Mexico do not have forty years
of water-quality time series with which to perform evaluations against land-cover change.
Ocean-color satellite imagery was used to derive proxies for coastal water with near-daily
satellite observations since 2000. The goal of chapter two was to identify drivers of turbidity
variability for 11 National Estuary Program water bodies along the Gulf of Mexico. Land cover
assessments could not be used as an explanatory variable because of the low temporal resolution
(i.e. approximately one map per five-year period). Ocean color metrics were evaluated against
atmospheric, meteorological, and oceanographic variables including precipitation, wind speed, U
and V wind vectors, river discharge, and water level over weekly, monthly, seasonal and annual
time steps. Climate indices like the North Atlantic Oscillation and El Nifio Southern Oscillation
index were also examined as possible drivers of long-term changes. Extreme turbidity events
were defined by the 90" and 95" percentile observations over each time step. Wind speed, river
discharge and EI Nifio best explained variability in turbidity time-series and extreme events (R? >
0.2, p <0.05), but this varied substantially between time steps and estuaries.

The background land cover analyses conducted for coastal water quality studies showed
that there are substantial discrepancies between the wetland extent estimates mapped by local,
state and federal agencies. The third chapter of my research sought to examine these differences
and evaluate the accuracy and precision of wetland maps using high spatial-resolution (i.e. two-
meter) WorldView-2 satellite imagery. Ground validation data showed that wetlands mapped at
two study sites in Tampa Bay were more accurately identified by WorldView-2 than by Landsat
imagery (30-meter resolution). When compared to maps produced separately by the National

Oceanic and Atmospheric Administration, Southwest Florida Water Management District, and

vi



National Wetland Inventory, we found that these historical land cover products overestimated by
2-10 times the actual extent of wetlands as identified in the WorldView-2 maps.

We could find no study that had utilized more than six of these commercial images for a
given project. Part of the problem is cost of the images, but there is also the cost of processing
the images, which is typically done one at a time and with substantial human interaction. Chapter
four explains an approach to automate the preprocessing and classification of imagery to detect
wetlands within the Tampa Bay watershed (6,500 km?). Software scripts in Python, Matlab and
Linux were used to ingest 130 WorldView-2 images and to generate maps that included
wetlands, uplands, water, and bare and developed land. These maps proved to be more accurate
at identifying forested wetland (78%) than those by NOAA, SWFWMD, and NW1 (45-65%)
based on ground validation data. Typical processing methods would have required 4-5 months to
complete this work, but this protocol completed the 130 images in under 24 hours.

Chapter five of the dissertation reviews coastal management case studies that have used
satellite technologies. The objective was to illustrate the utility of this technology. The
management sectors reviewed included coral reefs, wetlands, water quality, public health, and

fisheries and aquaculture.
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CHAPTER ONE:

IMPACTS OF 40 YEARS OF LAND COVER CHANGE ON WATER QUALITY IN
TAMPA BAY, FLORIDA

1. Research Overview

Estuarine water-quality is a foundational element of coastal-ecosystem health. It may be
affected by both natural and anthropogenic phenomena. Managing water quality requires
comprehensive knowledge of the factors that drive local water-quality variability. Four decades
of turbidity and chlorophyll-concentration measurements in Tampa Bay, Florida, were evaluated
for statistical relationships with adjacent land cover change, precipitation, and wind stress. The
spatial extent of analyses included the entire estuary and the three individual bay segments
within the estuary that have heterogeneous characteristics. Land cover classes were selected
based on consistency between mapped products used to cover the study period, and were each
included as unique, independent variables for analysis. Results showed that decreased turbidity
and chlorophyll-concentrations for the estuary as a whole were best explained by increased
developed land fraction. Results for individual bay segments, however, found that developed,
agricultural, and bare land, as well as wind stress, explained variability to different degrees

depending on the bay segment and time of year.

Note to Reader
This chapter was submitted to the peer-reviewed journal Cogent Environmental Science

and is included here in Appendix B. The full citation is: McCarthy, M.J., Muller-Karger,



F.E., Otis, D.B., and Méndez-Lé&zaro, P. Impacts of 40 years of land cover change on
water quality in Tampa Bay, Florida. Cogent Environmental Science, submitted

September 2017.



CHAPTER TWO:
WATER QUALITY DRIVERS IN 11 GULF OF MEXICO ESTUARIES

Abstract

Coastal water-quality is both a primary driver and also a consequence of coastal
ecosystem health. Turbidity, a measure of dissolved and particulate water-quality matter, varies
daily and can also have large interannual fluctuations. Water quality is influenced by a variety of
factors. Identifying which factors drive trends and extreme events in turbidity in an estuary helps
environmental managers and decision makers plan for and mitigate against water-quality issues.
Efforts to do so on large spatial scales have been hampered due to limitations of turbidity data,
including coarse and irregular temporal resolution and poor spatial coverage. We addressed these
issues by deriving a proxy for turbidity using ocean color satellite products for 11 Gulf of
Mexico estuaries from 2000-2014 on weekly, monthly, seasonal and annual time-steps. Turbidity
variability was best explained (R? > 0.2, p < 0.05) by wind speed over short time scales (weekly
to monthly), while occurrence of extreme turbidity events was closely related (R?> > 0.2, p <
0.05) to El Nifio-Southern Oscillation cycles in six estuaries over long time frames (months to
seasons). As expected, river discharge drove both seasonal as well as event-scale variability in

turbidity across estuaries.

1. Introduction
The quality of estuarine and other coastal waters is a complex function of hydrological,

meteorological, oceanographic, and human drivers (Schmidt et al., 2004; Eleveld et al., 2014;



Yin et al., 2005; Moreno Madrifidn et al., 2012). The relative influence of these processes affects
water-quality trends, variability, and the occurrence of extreme events. Identifying the primary
drivers of such events can be useful for management and mitigation purposes. For example, a
state of emergency was declared in two Florida counties in 2016 as a result of thick algal mats
growing along highly populated coastal waterways in the St. Lucie and Caloosahatchee estuaries,
causing massive fish kills. A commentary published by Michalak (2016) called for targeted
research to determine which environmental conditions, and in what combination, increase the
likelihood of extreme water-quality issues.

According to the 2012 Environmental Protection Agency (EPA) National Coastal
Condition Report, the overall rating of Gulf coast waters was 2.4 out of 5, or “fair” (EPA, 2012).
Approximately 10% of the coastal waters were rated “poor”, and 53% were rated “fair” for water
quality index. More specifically, water clarity was rated poor for 21% of the area. In Tampa Bay,
Florida, water quality measured by turbidity and average chlorophyll concentration has improved
since the 1970’s (Janicki et al., 2001; Moreno Madrifidn et al., 2012). This is primarily attributed
to the upgrade of waste water treatment plants to tertiary level starting in 1979. This reduced
point-source pollution to the bay. Greening et al. (2014) found that nitrogen contributions of
point and nonpoint sources to Tampa Bay were 60.3% and 23.9%, respectively, of the total
nitrogen loadings in the 1970’s. By the 2000’s, the total pollution was reduced by about half, but
relative contributions were inverted, with point sources contributing about 19.5% and nonpoint
57.4% to nitrogen discharges into the bay. Other Gulf of Mexico estuaries have seen similar
trends in water quality in recent decades. In order to continue improving water-quality
management in these estuaries, we must better understand the drivers of nonpoint-source water-

quality degradation, and constrain their relative effects on long-term trends as well as extreme



events in the bays. Doing so requires long time-series of water quality with sufficient spatial and
temporal resolution to characterize variability and enable management actions.

Turbidity is an index of water quality used by the U.S. Environmental Protection Agency
(EPA) that measures light transparency in aquatic environments. Turbidity may be modulated by
changes in the concentration of colored dissolved organic matter and suspended particulates
including sediment and phytoplankton, which are affected by changes in hydrological,
meteorological, and oceanographic phenomena (Eleveld et al., 2014; Chen et al., 2007a; Miller et
al., 2011).

Precipitation within a drainage basin influences water quality through increased nutrient
and sediment discharge into rivers (Al-Taani, 2014; Jordan et al., 2012; Miller et al., 2011).
Wind also influences water quality through sediment resuspension in coastal areas (Chen et al.
2007b; Chen et al. 2007c; Hu et al. 2004). Schoen et al. (2014) modeled circulation in an
estuarine lake and found that circulation patterns were highly influenced by diurnal wind speed
and direction variability, driving significant intermittent mixing. Dixon et al. (2014) studied
seasonal colored dissolved organic matter (CDOM) sources within a North Carolina estuary, and
found that CDOM was controlled by wind speed, wind direction, and river discharge.

River discharge increases nutrient and sediment loads to coastal waters, thereby
increasing turbidity with suspended sediments, CDOM, and phytoplankton blooms (Stoker, et al.
1996; Fernandez-Novoa et al. 2014). Dorado et al. (2015) evaluated the effects of freshwater
inflow on phytoplankton in Galveston Bay, Texas, and found that a combination of nutrient
loading and hydraulic displacement drove phytoplankton biomass and community composition

throughout the bay.



In addition to wind and freshwater-inflow variability, other forces that affect water level
drive estuarine water quality by influencing circulation, sediment suspension, and coastal
erosion. Over hourly to daily periods, tidal circulation can impact estuarine phytoplankton and
suspended sediment concentrations (Chen et al., 2010). Over longer periods, the sea-level cycle
of the Gulf coast has changed such that lower winter and higher summer levels are now observed
(Wahl et al. 2014). While long-term water level is not typically investigated for effects on water
quality, we include it here to account for apparent changes in this fundamental element of
estuarine composition.

While each of these environmental variables has been shown or hypothesized to influence
local water quality parameters, broader climatic variability may explain long-term patterns in
regional water quality. Scarsbrook et al. (2003) studied the effects of El Nifio-Southern
Oscillation (ENSO) patterns on New Zealand riverine water quality and found significant
relationships between them, even after accounting for river flow variability. Their results
suggested that ENSO significantly impacted water quality, independent of indirect effects
through known precipitation variability caused by ENSO patterns. Schmidt et al. (2001)
evaluated the effects of ENSO patterns on precipitation and river discharge throughout Florida’s
watersheds. They found a complex pattern of spatially variable, seasonal relationships, including
statistically significant relationships between extreme ENSO events and winter precipitation and
river discharge patterns in the Tampa Bay area.

The North Atlantic Oscillation (NAO) also drives seasonal wind and precipitation
patterns in the Southeast (Hurrel et al., 2003). The NAO is defined as a meridional alternation of
atmospheric mass between the subtropical and arctic North Atlantic. NAO phases may vary from

one year to the next, and are greatest in amplitude during November to April (Stenseth et al.,



2003). Kenyon and Hegerl (2010) quantified the impact of the NAO on global precipitation
extremes and found that, while more closely connected with European precipitation, statistically
significant responses were found in some North American precipitation stations, including those
along the Gulf of Mexico coast.

To identify how any of these variables drive bay-wide turbidity patterns, we need time
series of turbidity observations collected simultaneously throughout an estuary. Data from
individual stations may reflect localized phenomena. For large estuaries spanning several tens of
kilometers in length and width, traditional ocean color satellite imagery can improve spatial and
temporal sampling of water quality by providing data for the entire estuary in a single
observation, often near daily (Sokoletsky et al., 2011). Chen et al. (2010) employed in-situ
sensors and satellite data to determine the mechanisms responsible for observed variability in
phytoplankton and sediment in Tampa Bay over a two-month period. They identified three
strong wind events, which generated critical bottom shear stress and suspended bottom
sediments that were observed in concurrent MODIS imagery. They concluded that collecting a
single monthly grid of samples with one water sample per station per month can lead to
variability of -50% to 200% of particular samples relative to the monthly mean of chlorophyll or
sediment. Fernandez-Novoa et al. (2014) used imagery from the Moderate Resolution Imaging
Spectroradiometer (MODIS) to study turbidity plumes from the Ebro River over the period
2003-2011. There was sufficient coverage to isolate specific environmental conditions
coinciding with satellite overpasses, including specific river discharge conditions and wind
patterns. With this dataset they were able to identify the direction and extent of river plume
events into the Mediterranean, and conclude that wind direction was the dominant driver of

turbidity magnitude.



Eleven Gulf of Mexico estuaries from Texas to Florida were selected for this study to
provide a synoptic assessment of water-quality drivers throughout the U.S. Gulf coast. These
estuaries were chosen, in part, because the surface area of each (Table 1) is large enough to
accommodate the 250-meter spatial resolution of MODIS imagery. Additionally, all of these
estuaries are adjacent to large population centers, and therefore their health and management
may impact more stakeholders than isolated estuaries.

The objective of this study was to determine the meteorological, oceanographic and
atmospheric drivers of water quality time-series and extreme events in 11 Gulf of Mexico
estuaries between 2000 and 2014 using a satellite-derived proxy for turbidity binned to weekly,
monthly, seasonal and annual time steps.

1.1 Study areas

Each of the 11 estuaries studied here is a designated member of the National Estuary
Program (NEP; Figure 1). The NEP is an Environmental Protection Agency program created to
protect and restore the water quality and ecological integrity of national estuaries.

Charlotte Harbor (CH), Florida, is a water body of 805 km? and 2.4 m deep on average
that receives water from a watershed extending over 12,000 km? of southwestern Florida (Turner
et al. 2006). Sarasota Bay (SB), Florida, lies between Charlotte Harbor to the south and Tampa
Bay to the north. It drains the smallest watershed (1,100 km?) of those evaluated in this study,
and covers the smallest surface water area at just over 100 km? (https://sarasotabay.org/). Tampa
Bay (TB), Florida covers over 1,000 km? with an average depth of 3.4 m, and drains a watershed
of over 6,500 km? (Dixon et al., 2009). Six counties and the cities of Tampa, Clearwater, and
Saint Petersburg intersect the watershed, making it the second largest metropolitan area in

Florida.



Mobile Bay (MB) is located along the northern Gulf Coast in the state of Alabama. With
an inflow of 1755 cubic meters of water per second it receives 20% of the freshwater supply in
the US and is the fourth largest estuary in the country draining a watershed of 113,084 km?
(Roman et al. 2011).

The Barataria (BTB) and Terrebonne (TBB) estuaries are distinct bodies of water with
separate watersheds, but are managed as a single NEP. They are located between the Mississippi
and Atchafalaya Rivers in southern Louisiana. Freshwater input was effectively cut off by the
flood protection levees erected along the Mississippi River such that rainwater constitutes the
primary source of it. These bays are bounded to the south by barrier islands that are expected to
decline in size from 1,800 acres to 400 acres by 2045 due to erosion, resulting in greater tidal
mixing (https://www.lacoast.gov).

Galveston Bay (GB), Texas, is the seventh largest estuary in the country with over 1,500
km? of surface water and the fourth most populous metropolitan area in the country. The estuary
has experienced substantial environmental degradation, losing over 95% of submerged
vegetation from the 1950’s to 1970’s due in part to poor water clarity caused by increased
erosion (Pulich, 2007).

The Coastal Bend Bays NEP includes the Aransas (ARB), San Antonio (SAB), Corpus
Christi (CCB) and Matagorda (MGB) Bays. These four water bodies combined cover over 1,300

km? and drain the second largest watershed of those studied here at 32,580 km? (Table 1).



Table 1. National Estuary Programs studied here and relevant characteristics.

National Estuary Surface Watershed Average Year
Program Water Area (km?) Dept Designated
Area (km?) (m)

Barataria-Terrebonne 415/1090 16,500 2 1990

Charlotte Harbor 805 12,200 2.4 1995

Coastal Bend Bays 1330 32,580 3 1994

Galveston Bay 1550 12,500 2.1 1988

Mobile Bay 1059 113,084 3.048 1995

Sarasota Bay 106 1,100 1.98 1988

Tampa Bay 1000 6,800 3.6 1990
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Figure 1. National Estuary Programs of the Gulf of Mexico studied here.
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2. Materials and Methods

All independent-variable data preprocessing and statistical analyses were conducted
using Matlab™ and the Fathom toolbox.

2.1 Turbidity Data

We used satellite data from the NASA Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor flown on the Terra satellite to derive a proxy for turbidity. MODIS Terra has
provided a time-series of remote sensing observations at relatively high temporal resolution
(near-weekly or better at the latitudes of Gulf estuaries) and high spatial resolution (250 m pixels
and coarser) since 2000. Specifically, we generated time-series of water quality indices using
remote-sensing reflectance measurements at 645nm using MODIS Band 1 as a proxy. The basic
assumption is that sediments suspended near the water surface provide a signal in this red band.
In general, we assumed that MODIS Band 1 observations have minimal contributions from light
reflected from the sea bottom in estuarine waters deeper than about 2.8 m due to the strong
absorption of red light by water (Chen et al. 2010). This approach has been used several times in
the past, with mixed success, in different estuaries and coastal waters around the world (Miller
and McKee, 2004; Zawada et al. 2007; Chen et al. 2007a,b,c; Lahet and Stramski 2010; Chen et
al. 2010; Moreno et al. 2010; Aurin et al. 2013; and others). Other bio-optical measurements that
use blue, green, or yellow bands to estimate variables such as chlorophyll-a concentration are
usually heavily affected by reflectance from the ocean bottom in shallow areas and give
erroneous values.

We derived remote sensing reflectance at 645 nm (Rrsess) starting from MODIS Terra
Level-1A files. Rrsess represents the normalized water-leaving radiance (Gordon and Clark,

1981) at 645 nm divided by the extraterrestrial solar irradiance at 645 nm. MODIS images were

11



downloaded from the NASA Goddard Space Flight Center Ocean Color data portal. Images were
processed using the SeaWiFS Data Analysis System (SeaDAS) software package, version 7.1.
Processing to Level-2 used the near infrared/short-wave infrared (NIR/SWIR) switching
atmospheric correction approach of Wang and Shi (2007). All data were mapped to an
equidistant cylindrical projection with a nominal pixel size of 262 m. Using the SeaDAS I2gen
module, masks were applied for clouds, straylight, and sunglint. A custom filter file was used to
mask stray light using a 1x1 pixel filter, as opposed to the default 3x3 pixel filter. The cloud
mask was applied using data at 2130 nm with a threshold of 0.018 (Aurin et al. 2013). Individual
scenes with high cloud cover (>85%) and sunglint contamination were removed by visual
inspection of each individual image. To minimize the effects of negative Rrsess retrievals, the
median value of all negative Rrsess values was calculated and applied as a bias to each MODIS
scene (Aurin et al. 2013). Values of this bias ranged from -0.002 sr! to zero. All remaining
negative pixels were excluded from further analyses.

2.2 Meteorological Data

Daily precipitation, wind speed and wind direction data were downloaded from the
NOAA National Climate Data Center (NCDC) for the stations listed in Table 2. Stations were
selected from all available stations adjacent to each estuary that contained data for each variable
covering the 2000-2014 time period. Precipitation data was binned to weekly, monthly, seasonal
and annual time steps by summing the data for each interval. We chose to represent precipitation
cumulatively for two reasons: occasional downpours characteristic of Gulf coast winter frontal
systems and summer convective storms may substantially influence runoff and erosion, but their
extreme nature may be muted by averaging with surrounding days or weeks of little or no rain;

and consistent rain over days or weeks may synergistically impact drainage by reaching a soil

12



saturation point beyond which surface runoff may increase. Unfortunately, precipitation data
from all stations adjacent to the Barataria-Terrebonne NEP were missing more than 25% of daily
observations for this time period, and were therefore excluded from analyses.

Wind speed was binned to the same time steps as precipitation, but using an average for
each time step. Coinciding hourly wind speed and direction observations were additionally
processed by converting to u (east-west) and v (north-south) component vectors, and binning
each to the same time steps by average.

2.3 River Discharge Data

River discharge was downloaded from the United States Geological Survey website
(https://maps.waterdata.usgs.gov/mapper/index.html?state) for every monitored river system that
entered into each estuary. Rivers that were regulated with known dams or bypasses, such as
Hillsborough River in Tampa Bay, were excluded to eliminate potentially anomalous
anthropogenic influence. That is, management of Hillsborough River discharge is likely to
primarily affect Hillsborough Bay — a subset of Tampa Bay — and therefore not be resolved by
the bay-wide turbidity proxy. When data was available for multiple rivers that discharged into
the same estuary, each dataset of daily measurements was compared with daily Rrsess
measurements to determine if substantial gaps in discharge data existed. If more than 25% of
total daily Rrsess observations were missing from any of the rivers’ discharge datasets (i.e. data
gaps), that discharge dataset was considered too sparse for evaluation and excluded from further
analyses. If, however, multiple rivers for a given estuary were found to be sufficient, their data
was combined into one discharge dataset for that estuary by summing daily measurements, and

then binning the data to the weekly, monthly, seasonal and annual time steps by average. Table 2
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lists the rivers used for each estuary. For both Barataria and Terrebonne Bays, water level data
from the Gulf Intracoastal Waterway (GIWW) station at Houma, Louisiana, was used.

2.4 Water Level Data

Hourly water-level data were downloaded from the NOAA website
(tidesandcurrents.noaa.gov) for all stations monitored during the time period and located within
the estuaries (MLLW datum; Table 2). Verified water-level data was missing more than 25% of
daily observations for the study period within the Sarasota Bay, Corpus Christi Bay, Matagorda
Bay, or San Antonio Bay estuaries. Data from Tampa Bay was assumed to be a sufficient proxy
for Sarasota Bay, as was data from Aransas Bay for the three adjacent Coastal Bend Bays.
Datasets were binned to weekly, monthly, seasonal and annual time steps by average.

2.5 NAO Data

Daily NAO index data was downloaded from NOAA
(ftp://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.nao.index.b500101.current.ascii) and binned to
the same time steps.

2.6 ENSO Data

Monthly Nifio-3.4 index data was downloaded from NOAA
(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt)
and binned to seasonal and annual time steps. As weekly data was not available, the ENSO

variable was excluded from weekly analyses.
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Table 2. Station locations used for meteorological, river discharge, and water level data for each

estuary.
Estuary Meteorological River Discharge Water Level
Station Stations
Aransas Bay Corpus Christi, TX Mission Rockport, TX
Barataria Bay Houma, LA GIWW at Houma Grand Isle, LA

Corpus Christi Bay

Corpus Christi, TX

Nueces

Rockport, TX

Charlotte Harbor

Punta Gorda, FL

Myakka and Peace

Fort Myers, FL

Galveston Bay Galveston, TX Trinity Eagle Point, TX

Mobile Bay Mobile, AL Alabama and Dauphin Island, AL
Tombigbee

Matagorda Bay Corpus Christi, TX Lavaca and Palacios | Rockport, TX

San Antonio Bay Corpus Christi, TX Guadelupe Rockport, TX

Sarasota Bay Sarasota, FL Walker Saint Petersburg, FL

Tampa Bay Tampa, FL Alafia and Little Saint Petersburg, FL
Manatee

Terrebonne Bay Houma, LA GIWW at Houma Port Fourchon, LA

2.7 Preprocessing

Observations from each dataset for each time step were first matched to the Rrs dataset

by identifying coinciding observations. This allowed for a direct comparison of datasets to

identify gaps. If any independent variable for a given estuary matched fewer than 75% of Rrs

observations, that variable was eliminated from further analyses. A linear trend was then fit to
each dataset and removed (detrended). Next, climatologies for each time step were computed for
each detrended dataset from the 15-year period of available data. Typically, climatologies are
computed using 30-year time periods, but many of the datasets used for this work, including Rrs,
did not have 30 years of available data. We chose to restrict climatologies to the 15-year period
evaluated here for consistency between datasets. Anomalies were computed by subtracting the
climatology values from the coinciding time-series observation. Extreme events were identified
as those Rrs observations within the 90" and 95™ percentiles of each estuary’s dataset. The time-
series anomalies, and 90" and 95™ percentile extreme-event anomalies (hereafter “XEgo and
XEgs) were then used for statistical analyses.
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2.8 Statistical Analyses

Redundancy Analyses with Akaike’s Information Criterion (RDA AIC) were used first to
identify the independent variables that explained the most variation in the dependent variable.
The f_rdaAIC Matlab™ function from the Fathom toolbox standardized all input independent
variables and determined the ‘best’ independent variables through constrained ordination. This
assessed how much of the variation in one set of variables explained variation in another set,
while accounting for independent-variable multicollinearity (Wollenberg 1977). Akaike (1973)
proposed an information criterion to quantify the amount of information and statistically
determine the number of parameters for an equation that represents a group of experimental data.
The equation with the minimum AIC is considered the best representation of the experimental
data (Yamaoka et al. 1978). A null model is created by assigning a value below which the best
equation’s AIC value must be in order to be considered viable to explain variation in the
dependent variable. If no equation explains more variation than a null model, no independent
variable is selected.

For any variable(s) identified as ‘best’ for a given estuary, correlation coefficients were
computed with all other variables. If any correlations with ‘best’ variables exceeded + 0.7, the
correlated variables were recorded for consideration.

Multiple regressions were run on the variable(s) identified as ‘best” by the RDA AIC using
the f_mregress function. One thousand iterations were run for each regression to compute
permutation-based p-values because some of the data were not normally distributed. Adjusted-R?
coefficients (R%adj) were recorded, as opposed to R? coefficients, because the former accounts
for the number of predictors and sample size. Figure 2 summarizes the data on which statistical

analyses were performed.
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Ds::’;zf:t Independent Variables
Turbidity (Rrs645) Wind Speed u v precipitation | | Discharge Water Level NAO ENSO
Estuaries
ARB BTB CCB CH GB MB MGB SAB SB TBB B
Time Steps Weekly Monthly | | Seasonal Annual I
I Dataset Time-series XEQO XE95 |

Figure 2. Summary of the variables, estuaries, time steps and datasets used for statistical
analyses.

3. Results

To identify the drivers of turbidity across the coastal Gulf of Mexico, we evaluated the
results of statistical analyses by estuary, time step, and time series or extreme event dataset. The
variable(s) identified as statistically significant drivers of time-series, XEgo and XEgs turbidity
for each estuary over all time steps are indicated in Table 3 by the number of iterations in which
they were found to be significant. Additionally, the number of estuaries for which each variable

was identified as a statistically significant driver is summarized in the Table 4 by time step.
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Table 3. The number of time steps for which each variable was identified as a significant driver
(R%adj > 0.2, p < 0.05) of turbidity time-series, 90" percentile events (in parentheses), and 95™
percentile events [in brackets] for each estuary.

Wind | Wind U | WindV | Precip | Discharge | Water NAO | ENSO

Speed Level
ARB | 1(0)[0] | 1(0)[0] | 0(0)[0] | O(0)[O] | 0O(0)[0] | O(0)[0] | O(0)[O] | O(1)[O]
BTB | 2(0)[0] | 0(0)[0] | 0(0)[1] | O(0)[0] | O(O)[0O] | O(0)[O] | O(0)[O] | O(2)[0]
CCB | 1(0)[0] | 0(0)[0] | 1(0)[1] | O(0)[0] | 2(0)[0] | O(0)[0] | 1(0)[0] | 1(2)][O]
CH 0(0)[0] | 0(1)[1] | 0(0)[0] | 0(0)[0] | 1(0)[0] | O(O)[0] | O(1)[0] | O(O)[O]
GB 0(0)[0] | 0(0)[0] | O(0)[0] | O(O)[O] | O(O)[O] | O(0)[O] | O(0O)([O] | O(O) O]
MB 3(1)[0] | 2(0)[0] [ O(1)[0] | 1(0)[0] | 4(0)[0] | 1(0)[0] | 0(0)[O] | O(1)[O]
MGB | 1(0)[0] | 0(1)[0] | 0(0)[0] | O(O)[O] | 2(1)[0] | O(0O)[0] | O(0)[O] | O(O)[O]
SAB | 0(0)[0] | 0(0)[0] | 0(0)[0] | O(0)[O] | O(0)[0] | O(0)[1] | O(0)[O] | O(O)[O]
SB 0(2)[1] | o(o)[0o] | 0(0)[0] | 0(2)[0] | O(0)[0] | O(0)[0] | 0(0)[O] | O(1)[O]
TBB | 0(1)[0] | 0(0)[0] [ O(0)[0] | O(O)[O] | O(1)[0] | O(0)[0] | O(0)[O] | O(O)[O]
B 0(2)[0] | o(0)[0] | 0(0)[0] | 0(0)[0] | 0O(0)[0] | O(0)[0] | 0(0)[O] | 2(0)I[O]
Total | 8(4)[1] | 3(2)[1] | 1(1)[2] | 1(1)[0] | 9(2)[0] | 1(0)[1] | 1(1)[0] | 3(6)][O]

Table 4. The number of estuaries for which each variable was identified as a significant
driver (R%adj > 0.2, p < 0.05) of turbidity time-series, 90" percentile events (in parentheses),

and 95" percentile events [in brackets] for each time step.
Wind | WindU | WindV | Precip | Discharge | Water NAO ENSO
Speed Level
Weekly | 1(0)[0] | 1(0)[0] [0(0)[1] [1(0)[0] | 1(0)[0] | O(0)[O] | 0(0)[O] | O(O)[O]
Monthly [ 2(2)[1] [ 0(2)[1] |0 () [1] [0(M)[O] | 1(0)[0] | 1(0)[1] | 0(1)[O] | 1(2)]0]
Seasonal | 3(2)[0] | 0(0)[0] | 1(0)[0] | 0(0)[0] | 4(2)[0] | 0(0)[0] | 0(0)[O] | 1 (4)I[O]
Annual | 2(0)[0] | 2(0)[0] | 0(0)[0] | 0(0)[0] | 3(0)[0] | 0(O)[0] | 1(0)[0] | 1(0)[0]

Analyses of time series data identified statistically significant relationships (p < 0.05)

between turbidity and at least one independent variable for all time steps (i.e. weekly, monthly,
seasonal, and annual) in all estuaries, with the exception of nine iterations. That is, no variables
were identified as “best” by the AIC step in four runs, and only five runs identified at least one
“best” variable, but the resulting model could not explain turbidity variation significantly.
Excluding those results, the variables most often found to explain turbidity variation were wind
speed (25 iterations) and discharge (15 iterations). If we exclude those statistically significant

relationships that found R?adj values under 0.2, the variables found to most frequently explain
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turbidity variation were discharge (9 times) and wind speed (8 times; Table 3). Discharge data
was found to contain too many gaps to be sufficient for weekly or monthly analyses in Galveston
Bay. Also, water level was excluded from Terrebonne Bay weekly and monthly analyses for the
same reason.

Analyses of 90" percentile extreme events (XEgo) found statistically significant
relationships between turbidity and at least one independent variable in 20 of the 44 analyses.
None of the annual analyses identified a “best” variable, probably due to low sample sizes. For
all analyses that identified a significant variable, wind speed (7 times) was identified the most,
followed by ENSO (6 times), and discharge (3 times). Excluding significant relationships with
RZadj values under 0.2, the variables found to most frequently explain turbidity variation were
ENSO (6 times), and wind speed (4 times; Table 3). Discharge and water level were excluded
from Galveston Bay and Terrebonne Bay, respectively, due to insufficient data.

Analyses of 95" percentile extreme events (XEgs) found statistically significant
relationships between turbidity and at least one independent variable in 7 of the 44 runs. None of
the seasonal or annual runs identified a “best” variable, probably due to low sample sizes. For all
runs that identified a significant variable, the V vector (3 times), and U vector (2 times) were
identified most. Excluding significant relationships with R?adj values under 0.2, the variable
found to most frequently explain turbidity variation was the V vector (2 times; Table 3).
Discharge and water level were excluded from Galveston Bay and Terrebonne Bay, respectively,
due to insufficient data.

4. Discussion
We will refer to variables that were identified as statistically significantly (p < 0.05)

correlated to the Rrs turbidity proxy with R?adj values greater than 0.2 as “significant drivers” of
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turbidity. Because RDA AIC and multiple regression analyses may identify more than one
variable per iteration, we will discuss the results by noting both the number of estuaries for
which an independent variable was identified as a driver, and the number of times a variable was
identified as a driver.

For time-series datasets, wind speed and discharge were each found to be a significant
driver of turbidity in more estuaries than any other variable (wind: 5 estuaries, and discharge: 4
estuaries). These two variables alone were found to be significantly correlated with turbidity in
six of the 11 estuaries. The direction of the relationship between these two variables and turbidity
was consistent for wind speed (i.e. positive relationship in all 8 time-series iterations), but not for
discharge (i.e. four positive relationships in Mobile Bay, and five negative relationships among
three estuaries.). This suggests that increased wind speed consistently increases turbidity, but that
discharge has a more dynamic relationship that varies among estuaries and possibly with other
factors. Galveston Bay, San Antonio Bay, Sarasota Bay, and Terrebonne Bay turbidity time-
series were not significantly driven by any variable.

For extreme-event datasets, ENSO was found to be a significant driver of turbidity in
more estuaries than any other variable (5 estuaries), followed by wind speed (4 estuaries).
However, the direction of the relationships was inconsistent: 3 estuaries displayed negative
turbidity responses to ENSO variability while 2 estuaries were positive.

Analyses of weekly time-series datasets found that significant drivers of turbidity could
only be identified for Mobile Bay. Here, turbidity was driven by four variables (wind speed, U
vector, precipitation, and discharge). Monthly time-series analyses revealed significant drivers in
only two estuaries: Mobile Bay (wind speed, discharge, and water level) and Corpus Christi Bay

(wind speed and ENSQO). Seasonal analyses of time-series datasets found significant drivers in
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seven estuaries, explained most frequently by discharge (4 times) and wind speed (3 times).
Annual analyses of time-series datasets found significant drivers in six estuaries, explained most
frequently by discharge (3 times), followed by wind speed and the u vector (2 times each).

Weekly extreme-event analyses found that no estuaries had a significant turbidity driver
of XEgo data. However, weekly XEgs data for three estuaries (Barataria Bay, Charlotte Harbor,
and Matagorda Bay) were driven by the wind vector variables (V twice, and U once). Monthly
analyses of XEgo (XEgs) data found significant drivers in eight (four) estuaries, explained twice
(once) each by wind speed, u vector, and ENSO (wind speed, u, v, water level). Monthly
analyses of XEgs data found significant drivers in four estuaries, explained once each by wind
speed, u, v, and water level. Seasonal XEgs sample sizes were too small to detect any significant
relationships, but seasonal XEgo analyses revealed significant drivers in seven estuaries with
ENSO (4 times) driving turbidity more than any other variable, followed by wind speed and
discharge (twice each).

Evaluating the results by time step reveals that turbidity time-series variability across the
Gulf of Mexico can be more frequently explained by these independent variables for seasonal
and annual steps (7 estuaries and 6 estuaries, respectively) than weekly and monthly variability
(1 and 2 estuaries, respectively). Similarly, extreme-event variability can be more frequently
explained on monthly and seasonal periods (7 estuaries each for XEgo; 4 estuaries for monthly
XEgs), than on weekly scales (none for XEgo; once for XEgs; note that XEgs seasonal, and both
XE annual data sample sizes were too small for analyses). This may indicate that short-term
turbidity responses lag behind environmental phenomena. Schmidt et al. (2001) found that river

discharge in Florida watersheds lagged an ENSO index by several months, depending on season.
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Lagged relationships between independent variables and turbidity were not included in
this study. We decided that lag estimates could not be constrained well enough for all estuaries at
all time-scales to facilitate accurate comparisons, but that the identification and evaluation of
lagged effects of these variables on turbidity is a possible area of valuable future research for
these estuaries. Further, Eleveld et al. (2014) compared satellite-derived water quality products
with modelled water quality and found that sun-synchronous satellites alias tidal patterns and are
also biased by acquiring usable data under cloud-free conditions. These constraints led to biases
in satellite-derived water quality products (Eleveld et al. 2014), and may have limited our ability
to resolve water quality in this study. Further, Zheng et al. (2017) reviewed satellite-derived
ocean color products and concluded that, while coastal turbidity proxies tend to be relatively
accurate in the 2-7 NTU range, they also tend to lose sensitivity beyond 7 NTU depending
largely on colored dissolved organic matter concentration and atmospheric correction techniques.
This relatively narrow range of turbidity values that tend to be accurately identified by satellite
data may explain the paucity of significant relationships and prevalence of low R?adj values for
many of these analyses, especially regarding extreme events (i.e. high-turbidity observations).
Nonetheless, the consistent identification of wind speed and ENSO as drivers of turbidity
variability across estuaries in agreement with past work leads us to believe that our product is
sufficient to identify broad patterns in water-quality drivers.

We were able to synoptically assess environmental drivers of water-quality variation in
all Gulf of Mexico National Estuary Programs over multiple time steps (weekly, monthly,
seasonal and annual data bins), including extreme events (90"" and 95" percentile observations)

and identify statistically significant drivers for some estuaries. In doing so, we spatially and
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temporally scale up what are typically short-term, local evaluations of water-quality variability to
identify drivers across the basin.
5. Conclusions

Fifteen years of satellite-derived turbidity data for 11 Gulf of Mexico estuaries revealed
statistically significant relationships with several environmental variables. Wind speed was
found to be the most consistent driver of turbidity time-series variability across estuaries, while
ENSO was the primary driver of extreme turbidity events. River discharge was also found to
drive turbidity variability, increasing turbidity in Mobile Bay, but decreasing it in three other
estuaries (Corpus Christi Bay, Charlotte Harbor, and Matagorda Bay).

The explanatory variables investigated here were found to have stronger statistical
relationships with turbidity when the data were binned over longer time steps (i.e. monthly to
annual). This may be due to lags, which were not evaluated here and should be considered for
future work, or may indicate that the turbidity proxy used contained a low signal-to-noise ratio
for weekly binned data. Longer bins averaged more data points, which may have improved the
accuracy of the monthly, seasonal and annual products over weekly data.

While these results find a consistent relationship between high winds and increased
turbidity, they also reveal varied dynamics between turbidity and environmental phenomena
between estuaries. Muller-Karger et al. (2015) found substantial changes in Gulf of Mexico wind
speed from the 1980s to 2012. As climate change modulates future patterns in wind,
precipitation, discharge, sea level, and climate oscillations, local water-quality managers should
consider the dynamics of their local estuarine water-quality responses to environmental forcings

to prepare for future water-quality trends and extreme events.
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CHAPTER THREE:

IMPROVED COASTAL WETLAND MAPPING USING VERY-HIGH 2-METER
SPATIAL RESOLUTION IMAGERY

1. Research Overview

Wetlands provide valuable ecosystem services that contribute to both human and
ecological health, yet they have declined in extent by over 50% in the U.S. during the 20"
century. Restoration efforts have successfully mitigated losses in recent years with the
help of synoptic wetland coverage surveys. Unfortunately, existing maps produced by
local, state and federal agencies show substantially inconsistent wetland extent due, in
part, to the discrepancies in their mapping data and methods.

Satellite images allow land cover classes, including wetlands, to be mapped
efficiently using objective methods of identification that have been shown to improve on
photo interpretations of aerial imagery. The spatial resolution of the digital satellite data
typically used, however, is relatively coarse, and may cause inaccurate wetland extent
estimations in areas of mixed wetland and upland vegetation. For this research, wetlands
were initially mapped using Landsat imagery (30 m resolution) and WorldView-2
imagery (2 m resolution) for two study sites in Tampa Bay, Florida. Ground-validation
points found that WorldView-2 produced more accurate maps than Landsat (82% vs.
46%). To further improve classification accuracy by distinguishing wetland from upland
vegetation, a Decision Tree classification system was developed and applied to the

WorldView-2 images. The resulting maps accurately identified wetlands to 82% and
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90%, and uplands to 94% and 83%, at Fort De Soto State Park and Weedon Island

Preserve, respectively. When compared to existing wetland maps, these results showed

that published maps overestimate wetland surface cover by factors of 2-10 in these study

areas.
Note to Reader

This chapter was published in the peer-reviewed Elsevier journal International
Journal of Applied Earth Observation and Geoinformation and is included here in
Appendix B. The full citation is: McCarthy, M.J., Merton, E.J., & Muller-Karger, F.E.
(2015). Improved coastal wetland mapping using very-high 2-meter spatial resolution
imagery. International Journal of Applied Earth Observation and Geoinformation, 40,

11-18.
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CHAPTER FOUR:

ENABLING EFFICIENT, LARGE-SCALE HIGH-SPATIAL RESOLUTION WETLAND
MAPPING USING SATELLITES

1. Research Overview
The Decision Tree approach developed in the previous chapter successfully

improved wetland-mapping accuracy using an objective, pixel-based method. Similar
algorithms have produced accurate results in previous work, but none had been applied to
large-scale wetland mapping due, in part, to processing inefficiencies. That is,
preprocessing and classifying a single high-resolution image on a standard computer
would take about one day to complete. Given that a single image covers approximately
270 km?, water-shed scale maps (i.e. 5,000 km? or more) would require weeks of
dedicated processing. Additionally, images often contain substantial cloud-cover, thereby
restricting the view of the ground and requiring multiple, typically offset images to
complete the ground coverage.

The goal of this chapter was to develop a protocol to efficiently map large-scale
wetland coverage by automating the preprocessing and classification schemes executed
with programming languages run over the USF supercomputer. Using this approach, 130
2-meter spatial resolution WorldView-2 images mapped wetland, upland, water, and bare
and developed land for the entire 6,500 km? Tampa Bay watershed in under 24 hours.
The classified images were mosaicked into a single map, and compared with existing
maps of the watershed for accuracy based on ground validation data. The WorldView-2

map more accurately identified coastal and freshwater wetland (78%) and upland (64%)
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than the existing maps (45-65% and 49-53%, respectively). An algorithm was also
developed that identified wetlands using a scene-specific index, as opposed to a static
threshold, which may allow this approach to be applied to similar watersheds without
retraining the classification scheme. This work has high potential for large-scale wetland

mapping and change detection at 2-meter resolution.

Note to Reader
This chapter was submitted to the peer-reviewed journal Remote Sensing of

Environment and is included here in Appendix B. The full citation is: McCarthy, M.J.,
Radabaugh, K.R., Moyer, R.P., and Muller-Karger, F.E. (2017) Enabling efficient, large-
scale, high-spatial resolution wetland mapping using satellites. Remote Sensing of

Environment. (Major Revision following Reviewer/Editorial comments).
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CHAPTER FIVE:

SATELLITE REMOTE SENSING FOR COASTAL MANAGEMENT: A REVIEW OF
SUCCESSFUL APPLICATIONS

1. Research Overview

Traditional coastal ecosystem management approaches will require strategies to address
the compounding challenges of climate change and a growing global population. Satellite
technology has been used in limited applications to supplement management efforts, but
concerns over its accuracy, utility and efficacy have restricted wider adoption. The goal of this
chapter was to encourage managers to embrace satellite technology by reviewing examples of its
use in coastal ecosystems to successfully contribute to management. A background of remote
sensing specifications is provided, along with a comprehensive table of existing satellite data that
is available for use in a variety of coastal management sectors. Literature reviewed covers the

sectors of coral reefs, wetland, water quality, public health, and fisheries and aquaculture.

Note to Reader

This chapter was published in the peer-reviewed journal Environmental
Management and is included here in Appendix B. The full citation is: McCarthy, M.J.,
Colna, K.E., EI-Mezayen, M.M., Laureano-Rosario, A.E., Méndez-Lé&zaro, P., Otis, D.B.,
Toro-Farmer, G., Vega-Rodriguez, M., and Muller-Karger, F.E. (2017). Satellite remote
sensing for coastal management: A review of successful applications. Environmental

Management, doi: 10.1007/s00267-017-0880-x
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Abstract

Land cover changes in the Tampa Bay watershed (Florida) over the past four decades
were examined along with precipitation and wind observations to help understand causes of
long-term changes in turbidity and chlorophyll concentration within the Tampa Bay estuary.
Water quality showed a statistically significant relationship to land cover fraction in the
watershed compared to long-term precipitation or wind stress. Redundancy Analyses with
Akaike’s Information Criterion and non-parametric multiple regressions determined that
turbidity and chlorophyll concentration decreased bay-wide from 1974-2012 with increased
developed land fraction (R? > 0.75, p-value < 0.05). Various segments of the estuary showed
different significant responses to developed land (R? > 0.75, p-value < 0.05), agricultural land
(R? > 0.93, p-value < 0.02), bare land (R? = 0.77, p-value = 0.001), and wind stress (R? = 0.91, p-
value = 0.04) at different times of year.

Keywords: land cover, land use change, water quality, Tampa Bay estuary
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1. Introduction

The quality of estuarine and other coastal waters is a complex function of hydrological,
meteorological, oceanographic, and human drivers (Chen et al., 2010; Schmidt et al., 2004;
Eleveld et al., 2014; Yin et al., 2005; Moreno Madrifian et al., 2012). The interplay between
these different processes may lead to different water quality outcomes over time. In Tampa Bay,
Florida, turbidity and average chlorophyll concentration have decreased since the 1970’s (Janicki
et al. 2001; Moreno Madrifian et al. 2012). This is a result of the upgrade of waste water
treatment plants to tertiary level starting in 1979 and other voluntary and regulated reductions in
point-source pollution. Nonpoint sources have not been managed as effectively. Greening et al.
(2014) found that nitrogen contributions of point and nonpoint sources to Tampa Bay were
60.3% and 23.9%, respectively, of the total nitrogen loadings in the 1970’s. By the 2000’s, the
relative contributions were inverted, with point sources contributing about 19.5% and nonpoint
57.4% to nitrogen discharges into the bay. Much of this change may be expected to be related to
urbanization and other changes in land use in the Tampa Bay watershed. In this study we
evaluate the role of land cover changes, precipitation, and wind stress on turbidity in Tampa Bay
between the 1970s and 2010.

Tampa Bay (27.5 - 28.08° N and 82.36 — 82.75° W) is the largest open-water estuary in
Florida (Figure 1). It covers over 1,000 km? at high tide, with an average depth of 3.4 m. The
watershed area covers over 6,500 km?. Six counties and the city of Tampa, the second largest
metropolitan area in Florida, intersect the watershed. An estimated 2.3 million people lived in the
Tampa Bay watershed in 2003, with population growth between 1990 and 2003 reaching ~22%
(US Census 2007). Approximately 500 new residents moved to counties surrounding Tampa Bay

each week during this timeframe.
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Turbidity is a measure of light transparency in aquatic environments used by the U.S.
Environmental Protection Agency (EPA) as an index of water quality. Turbidity may be
influenced by changes in the concentration of colored dissolved matter and suspended
particulates including sediment and phytoplankton. These variables are affected by changes in
hydrological, meteorological, and oceanographic phenomena (Eleveld et al., 2014; Chen et al.,
2007a; Chen et al., 2010; Miller et al., 2011).

Land cover and land use affect downstream water quality through runoff of freshwater,
nutrients, sediment, and pollution (Wickham et al. 2005; Bateni et al. 2013; Miller et al. 2011;
Jordan et al. 2012). Nelson and Booth (2002) conducted a watershed-scale sediment budget
analysis in western Washington state, and found that urban development and subsequent stream-
channel erosion has contributed an increase of nearly 50% in the annual sediment yield.
However, impervious surfaces (e.g. roads, buildings, parking lots) tend to enhance sediment-free
stormwater runoff (Estes et al. 2009; Miller et al. 2011; Moreno Madrifian et al. 2012). Miller et
al. (2011) developed regression models for 43 watersheds in Illinois. They found that during base
flow conditions, agriculture-dominated watersheds had significantly higher turbidity and total
suspended solid concentrations compared with urban watersheds. Turbidity during storm flow
conditions was also significantly lower in urban watersheds. Moreno Madrifian et al. (2012)
found a negative relationship between the fraction of developed land in each watershed segment
and turbidity at the mouths of the rivers entering Tampa Bay.

Precipitation in the watershed affects estuarine water quality through increased nutrient and
sediment discharge into rivers (Al-Taani 2014; Estes et al. 2009; Jordan et al. 2012; Miller et al.
2011). Le et al. (2013) used satellite-derived chlorophyll concentration maps of Tampa Bay from

1998-2011 to show that river discharge explains approximately 60% of seasonal variability and
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about 90% of interannual variability in chlorophyll in the bay. Interannual variability was
strongly influenced by EI Nifio-Southern Oscillation cycles and tropical cyclones. Le et al.
(2013) were not able to detect long-term variations, in part because the satellite data record used
was short. Eleveld et al. (2014) compared satellite-derived water quality products with modelled
water quality and found that sun-synchronous satellites alias tidal patterns and are also biased by
acquiring usable data under cloud-free conditions. These constraints led to biases in satellite-
derived water quality products (Eleveld et al. 2014). Schoonard et al. (2014) examined spatial
patterns of precipitation in Pinellas County, which forms the western boundary of Tampa Bay,
from 2003 to 2007 and found that convective storms related to the seabreeze during the summer
wet season were highly spatially variable and heavily influenced by dominant wind direction.
This process results in a broad and diffuse discharge into Tampa Bay which cannot be quantified
as river discharge. Most of the river discharge enters Tampa Bay from the north and eastern sides
of the bay.

Winds also influence sediment load by resuspension in Tampa Bay and in other coastal areas
(Chen et al. 2007b; Chen et al. 2007c; Hu et al. 2004; Miller et al. 2004). Wind stress is a well-
known driver of sediment resuspension (Demers et al. 1987; Madsen et al. 1993; Schoen et al.
2014; Sheng and Lick 1979). In Tampa Bay, turbidity is directly related to seasonal wind

forcing, especially in the lower segment of the estuary (Chen et al., 2007b; Chen et al. 2010).

1.1 Study Area
The Tampa Bay watershed has historically been divided into segments (Janicki et al., 2001;
see Figure 1). The landward extent of the watershed for each segment was defined using the

level 8 hydrologic units of the Tampa Bay watershed. Each land cover map (described below)
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was clipped to match the watershed for each bay segment. The Hillsborough Bay (HB)
watershed (3,192 km?) is dominated by wetland and agricultural land. We limited Old Tampa
Bay (OTB) to the area north of a causeway (specifically Gandy Bridge) because this structure
limits water exchange with the rest of Tampa Bay (Zhu et al. 2014). Figure 2 shows the gap we
created by limiting the coverage of what is formally known as OTB. The OTB watershed (822
km?) is dominated by developed land and wetland. The Middle Tampa Bay (MTB) watershed
(1,073 km?) is dominated by agricultural land and wetland. Land cover area from each of these
segments was combined for an aggregated assessment (hereafter referred to as Bay-Wide or
Upper TB). The Lower TB segment was excluded from this study because water quality here is
more strongly influenced by oceanographic processes of exchange with the Gulf of Mexico than
by the adjacent watershed (Zhu et al. 2014). Thirty-year precipitation and temperature normals

based on data during the period 1981-2010 from this station are presented in Table 1.
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Figure 1. The Tampa Bay watershed study area as defined by the National Estuary
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Table 1. Annual and seasonal precipitation and temperature normals (1981-2010).

(blue).

Season | Precip (cm) | Min Tmp (°C) | Avg Tmp (°C) | Max Tmp (°C)
Annual 117.6 18.4 23.0 27.6

DJF 19.1 11.9 16.9 21.9

JJA 54.7 24.2 28.2 32.2
MAM 18.2 17.6 22.6 27.5

SON 25.7 19.8 243 28.8
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1.2 Hypotheses

The following null hypotheses guided this study:

1. Neither bay-segment nor bay-wide water-quality are significantly related to land cover,
precipitation, or wind stress (p < 0.05);

2. Neither bay-segment nor bay-wide periods of high turbidity or high chlorophyll
concentration are significantly related to land cover, precipitation, or wind stress (p <
0.05);

3. Neither bay-segment nor bay-wide periods of low turbidity or low chlorophyll
concentration are significantly related to land cover, precipitation or wind stress (p <
0.05);

We examined precipitation, wind stress, and historical land use changes as possible drivers of
changes in water quality within Tampa Bay over the period 1970s-2010. Turbidity and
chlorophyll concentration served as indices of water quality. Analyses focused on possible
relationships between water quality within each segment of the bay and changes in the
watershed. A similar analysis was done for bay-wide conditions. We examined changes over
time since the 1970’s, within annual periods as well as during periods of high and low turbidity

and chlorophyll concentration separately.

2. Materials and Methods
2.1 Land Cover Data

Land cover maps were downloaded from the United States Geological Survey (USGS)
Enhanced Historical Land-Use and Land-Cover Data Sets

(http://water.usgs.gov/G1S/dsdl/ds240/index.html) and the National Oceanic and Atmospheric
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Administration (NOAA) Coastal-Change Analysis Program (C-CAP;
http://csc.noaa.gov/ccapftp/). The former was created using high-altitude aerial photographs of
the U.S. collected in 1970-1985. The USGS land cover datasets were created to support the
National Water-Quality Assessment Program and other environmental impact assessments
(Anderson et al., 1976; Price et al., 2007). The data represent the initial land cover status (1970-
1985; Figure 2) and will hereafter be referred to as the 1977 map as the central year of this
period. The specific date of each classified region within this period is not documented. The
USGS maps were digitized at a scale of 1:250,000. The minimum size of most class polygons is
4 hectares, although for some it is 16 hectares. Seven class groups were identified for this region:
urban or built-up land, agricultural land, rangeland, forest land, water, wetland, and barren land.
NOAA C-CAP maps were created from the National Land Cover Database (NLCD). These
were derived from 30 meter spatial resolution Landsat satellite images. Each mapped product
was based on imagery from multiple years centered on a nominal date, specifically 1996 (1995-
1997), 2001 (2000-2002), 2006 (2005-2007), and 2010 (2009-2011) (Figure 2). Multiple years of
satellite imagery were required to create the maps to minimize interference from cloud cover. C-
CAP maps for this region include class groups similar to those described above from the USGS:
developed land, agricultural land, grassland, forest land, scrubland, barren land, palustrine
wetland, estuarine wetlands, and water and submerged lands. Based on the definitions of the
classes, C-CAP grassland and scrubland classes were merged into one ‘rangeland’ class for

consistency with the USGS maps.
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Figure 2. Top panel: USGS map representing land use classes for 1970-1985. Bottom
panel: C-CAP map representing land use classes during the three-year period centered on 2010
(2009-2011).

A comparison of the USGS and NOAA land use products with wetland maps produced by the
National Wetlands Inventory (NWI) and the Southwest Florida Water Management District
(SWFWMD) (Rains et al. 2012) suggested that the USGS and NOAA products substantially

overestimate wetland area at the expense of forest area. C-CAP maps show over 2,000 km? of
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wetlands for 1996, 2001, and 2006. NWI and SWFWMD report approximately 800-900 km? in
wetlands for the same time periods. A previous C-CAP accuracy assessment indeed reports high
errors of omission and of commission (up to 94%) for wetland and forest classes (Assessment
Report 2013). To minimize biases in our conclusions, we merged wetland and forest land classes

for USGS and C-CAP maps into one forest/wetland class.

2.2 Water Quality Data

In situ water quality data for each segment of the Tampa Bay estuary were obtained from
the Environmental Protection Commission of Hillsborough County (EPCHC; the Tampa Bay
Water Atlas: http://www.tampabay.wateratlas.usf.edu). Samples were collected monthly at over
60 stations in Tampa Bay. Anomalously high turbidity values (i.e. turbidity >24 NTU) were
removed following Chen et al. (2010). Data were averaged over the following epochs to match
the land cover map periods: 1976-1978, 1995-1997, 2000-2002, 2005-2007, and 2009-2011. The
first epoch (1976-1978) was chosen as the middle three years of the USGS land cover map
period, instead of the entire period (1970-1985), to maintain consistency with the other three-
year epochs examined.

Monthly water-quality climatologies (averages calculated for each month from every year
of available data) were computed based on data from 1974-2011. These climatologies were used
to identify periods of higher or lower turbidity, and higher or lower chlorophyll concentration.
Periods of reduced and enhanced water-quality were assessed separately to help understand
possible interactions between land cover and precipitation-driven runoff on water quality.

Separating these seasons as opposed to conducting an analysis that simply aggregates data by
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epoch over entire annual periods helped to minimize possible confounding of zero-precipitation
periods and the land cover change.

High-turbidity and high-chlorophyll periods were identified as those months in which
climatology values exceeded the climatological average plus one standard deviation. Low-
turbidity and low-chlorophyll periods were identified simply as those months in which
climatology values fell below the climatological mean. High-turbidity and low-turbidity months
were examined separately from high-chlorophyll and low-chlorophyll months. Low turbidity and
low chlorophyll months represent “background” water quality conditions. Averages for each of
those periods, and annual overall averages, were computed for all epochs. These were used as the

“response variable” in analyses over the corresponding epochs.

2.3 Meteorological Data

Daily precipitation and wind speed data for Tampa International Airport (1893-2012)
were downloaded from the National Climate Data Center (NCDC; http://www.ncdc.noaa.gov/).
These data were binned to monthly values using Matlab™. Precipitation was assumed to have a
cumulative effect and was therefore binned monthly by summing daily data. Daily East-West (u)
and North-South (v) wind components were averaged separately before recombining to compute
average daily wind speed and direction (see method of Gilhousen 1987). Wind stress was
computed from the daily wind speed data (Equation 1), and binned as monthly averages (Wu
1969).

Equation 1: 1= Cpp,; U”

where Cp is a drag coefficient (1.2 x 10°®), pair is the density of air (1.22 kg/m?), and U is wind

velocity.
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Averages of monthly precipitation and wind stress were computed for annual, high, and low
water-quality periods. Both meteorological variables (precipitation and wind stress) were used as

explanatory variables.

2.4 Statistical Analyses

Standard normal homogeneity tests (SNHT) were run on all variables (wind speed was used
to represent wind stress) to find breaks in the datasets which may indicate changes in sampling
technique or location. Significance values were computed using 10,000 Monte Carlo simulations.
Mann-Kendall Trend Tests (MK) were run on each time series of monthly values to evaluate
possible trends (Mei et al. 2014).

Multiple regressions alone would be insufficient for this study because of the high ratio of
explanatory variables to sample size (9:5). Therefore, Redundancy Analyses with Akaike’s
Information Criterion (RDA AIC) were used first to identify those explanatory variables that
explained the most variation in the response variable. These analyses were conducted using
Matlab™. The RDA AIC function standardized all input explanatory variables and determined
the best explanatory variables through constrained ordination. This assessed how much of the
variation in one set of variables explained variation in another set, while accounting for
explanatory variable multicollinearity (Wollenberg 1977). Akaike (1973) proposed an
information criterion to quantify the amount of information and statistically determine the
number of parameters for an equation that represents a group of experimental data. The equation
with the minimum AIC is considered the best representation of the experimental data (Yamaoka

et al. 1978). A null model is created by assigning a value below which the best equation’s AIC
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value must be in order to be considered viable to explain variation in the dependent variable. If
no equation explains more variation than a null model, no independent variable is selected.
Multiple regressions were run on the variable(s) identified as ‘best’ by the RDA AIC. One
thousand iterations were run for each regression to compute permutation-based p-values because
much of the data were not normally distributed. Finally, an outlier test was run on all significant
relationships because any one outlier could have significantly influenced results sice we only
have five sample epochs. For each observation, an outlying value was identified as exceeding
‘N’ divided by the sum of squared differences, normalized by subtracting the median and
dividing by the median absolute deviation (i.e. median of absolute value of each sample minus
the median of the array). Breiman and Cutler (2003) suggested that values >10 be considered

outliers when using this method.

3. Results

Percent of watershed area that was covered by each class for each map epoch are shown in
Tables 2-5. Total percent is shown at the bottom of each table. This number is <100 for each
1970s map because these used an additional class called “transitional areas”. “Transitional areas”
were defined “by the lack of remote sensor information which could enable the interpreter to
predict reliably the future use or discern the past use” (Anderson et al. 1976). Because land of
this class could not be accurately described, and it could not be reconciled with any C-CAP class,
it was excluded from this analysis. Percent cover of each class for each bay segment is shown in
Tables 2-5.

Turbidity and chlorophyll averages for each segment and respective segment area are

presented in Table 6. Upper Tampa Bay turbidity and chlorophyll, and Tampa International
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Airport precipitation, wind speed time series, and climatologies are shown in Figure 3. Monthly
turbidity and chlorophyll climatologies for each bay segment and Upper Tampa Bay are shown
in Figures 4 and 5. Table 7 lists the months that were identified for each bay segment as “high”
and “low” for turbidity and chlorophyll.

SNHT evaluations found significant changes in wind speed, chlorophyll concentration, and
turbidity time series. The time series of wind speed shows a significant decrease in values
starting in May 1993. The mean of the data before May 1993 was 3.45 m/s and average wind
speed decreased gradually over time through December 2012, to give an average of 3.02 m/s for
this period following the break (Figure 6a). Bay-wide chlorophyll concentration showed a
change in December of 1983. The mean of the data prior to December 1983 was 16.1 mg/m?, and
9.6 mg/m3afterward (Figure 6b). This change corresponds to the period of intensive wastewater
treatment plant improvements, but it also marks a period of substantial increase in turbidity in
Tampa Bay. Bay-wide turbidity showed marked variability over time. Turbidity was about 5
NTU on average before 1989. Turbidity was anomalously high between 1990 and 1993. The
mean of the data after this period was about 3.4 NTU (Figure 6c). Precipitation data tested as

homogenous (i.e. no apparent mid-series breaks; Figure 6d).

Table 2. Hillsborough Bay land cover class as percent of watershed.

1970s 1996 2001 2006 2010

Developed 17.5 16.6 18.9 19.2 18.2
Agriculture 39.1 22.0 21.4 20.9 23.5
Forest/Wetland 17.7 439 43.5 42.7 38.3

Unconsolidated

Shore 0.0 0.0 0.0 0.0 0.0
Bare 4.3 1.5 1.7 2.3 2.0
Water 5.1 4.8 4.7 54 5.5
Range 15.6 11.2 9.8 9.6 12.6

Total 99.4 100.0 100.0 100.0 100.0
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Table 3. Old Tampa Bay land cover class as percent of watershed.

1970s 1996 2001 2006 2010
Developed 27.0 34.8 38.1 38.2 36.0
Agriculture 24.3 7.3 6.6 6.5 10.1
Forest/Wetland 10.4 28.7 27.7 27.6 25.5
Unconsolidated
Shore 0.0 0.0 0.0 0.0 0.0
Bare 0.3 0.5 0.1 0.2 0.1
Water 25.7 24.6 24.6 24.7 24.8
Range 10.9 4.0 2.9 2.8 3.5
Total 98.7 100.0 100.0 100.0 100.0
Table 4. Middle Tampa Bay land cover class as percent of watershed.
1970s 1996 2001 2006 2010
Developed 7.2 9.5 10.2 10.6 10.6
Agriculture 33.5 31.7 30.0 28.1 27.2
Forest/Wetland 12.0 26.5 26.3 25.3 22.8
Unconsolidated
Shore 0.0 0.0 0.0 0.0 0.1
Bare 0.0 1.0 2.8 3.7 3.4
Water 25.4 26.2 26.1 27.4 27.7
Range 20.9 5.2 4.6 4.9 8.3
Total 99.0 100.0 100.0 100.0 100.0
Table 5. Upper Tampa Bay land cover class as percent of watershed.
1970s 1996 2001 2006 2010
Developed 16.9 18.0 20.2 20.5 19.5
Agriculture 35.5 21.7 20.8 20.1 22.1
Forest/Wetland 15.4 37.8 37.3 36.6 32.9
Unconsolidated
Shore 0.0 0.0 0.0 0.0 0.0
Bare 2.8 1.2 1.7 2.2 2.0
Water 12.7 12.5 12.4 13.2 13.3
Range 15.9 8.8 7.6 7.5 10.2
Total 99.2 100 100 100 100

Table 6. Average turbidity and chlorophyll concentrations for the study areas with their
respective bay and watershed areas (1974-2012).

Region Avg. Turbidity Avg. Chlorophyli Bay Area (km?) | Watershed Area
(NTU) (mg/m?3) (km?)
Upper TB 3.65 9.92 676 5,088
OTB 3.83 9.77 204 822
HB 4.81 14.56 175 3,192
MTB 3.26 7.38 298 1,073
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Figure 3. Monthly time series (blue) and mean annual cycle (red) for bay-wide turbidity
and chlorophyll, and Tampa International Airport precipitation and wind speed.
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Figure 4. Monthly turbidity climatologies for each bay segment and Upper Tampa Bay.
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Figure 5. Monthly chlorophyll climatologies for each bay segment and Upper Tampa Bay.

Table 7. Months corresponding to high and low turbidity and chlorophyll for each bay segment.

High Turbidity

Low Turbidity

High Chlorophyll

Low Chlorophyll

Months Months Months Months
Upper TB | Apr, May Jan, Feb, Mar, Aug, Sep, Oct Jan-Jun, Dec

Nov, Dec

HB Apr, May Jan, Feb, Jul, Jul, Aug, Sep Jan-Jun, Nov, Dec
Aug, Oct, Dec

OoTB May Jan, Feb, Mar, Aug, Sep, Oct Jan-May, Dec
Nov, Dec

MTB Apr Jan, Feb, Nov, | Jul-Oct Jan-May, Dec
Dec
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Figure 6. Monthly time series plots of bay-wide wind speed, chlorophyll concentration, turbidity
and precipitation with averages (mu) of break periods where applicable as identified by SNHT
tests.

SNHT evaluations on monthly turbidity (Figure 7a-c) and chlorophyll concentration (Figure
8a-c) binned within each bay segment also show discontinuities. Turbidity breaks occurred in
June of 1997, May of 1996, and June of 2000 for HB, OTB and MTB, respectively. The means
of the data before and after the breaks were 6.55 NTU and 4.21 NTU (HB), 5.05 NTU and 3.41
NTU (OTB), and 4.21 NTU and 2.70 NTU (MTB). All three breaks follow a period of high
turbidity that was sustained for several years during the early 1990’s.

Chlorophyll concentration breaks occurred in December of 1983, January of 1984, and
December of 1985 for HB, OTB and MTB, respectively. Again, these changes coincide with the
initial indications of the increase in turbidity leading to the turbidity maxima observed in the
early 1990’s. The means of the data before and after the breaks were 26.48 mg/m? and 12.91

mg/m?® (HB), 13.52 mg/m? and 9.50 mg/m?® (OTB), and 12.78 mg/m® and 7.14 mg/m® (MTB).
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Figure 7. Monthly time series plots of turbidity for HB (a), OTB (b) and MTB (c) with averages

(mu) of break periods, where applicable, as identified by SNHT tests.
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Figure 8. Monthly time series plots of chlorophyll concentration for HB (a), OTB (b) and MTB
(c) with averages (mu) of break periods where applicable as identified by SNHT tests.
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MK tests found that monthly wind speed and stress decreased significantly (p < 0.017) every
month during this 39-year period. No trends were found in monthly precipitation with the
exception of marginally significant increases in April and decreases in May (p = 0.02 and p =
0.068, respectively). Bay-wide chlorophyll concentration decreased significantly every month (p
< 0.022) except for September and October, during which it showed no change (p > 0.1). On
average, bay-wide turbidity also decreased every month (p < 0.05) except for August and
September, which again showed no change (p > 0.1). The months with no trend in turbidity
coincided with the months showing peak chlorophyll concentration.

Variables identified as ‘best’ by RDA AIC analyses are presented here with the corresponding
multiple regression results (Tables 8-9). OTB year-round turbidity was significantly negatively
related to developed land percent cover (R? = 0.76, p = 0.001; Figure 9a). MTB year-round
turbidity was significantly positively related to agricultural land percent cover (R?2=0.97, p =
0.001; Figure 9b). None of our variables explained HB year-round turbidity patterns over time.

Similar trends were observed for high turbidity months. OTB high-turbidity was significantly
negatively related to developed land percent cover (R? = 0.92, p = 0.001; Figure 9¢). MTB high-