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ABSTRACT 

 

 Water quality and wetlands represent two vital elements of a healthy coastal ecosystem. 

Both experienced substantial declines in the U.S. during the 20th century. Overall coastal wetland 

cover decreased over 50% in the 20th century due to coastal development and water pollution. 

Management and legislative efforts have successfully addressed some of the problems and 

threats, but recent research indicates that the diffuse impacts of climate change and non-point 

source pollution may be the primary drivers of current and future water-quality and wetland 

stress. In order to respond to these pervasive threats, traditional management approaches need to 

adopt modern technological tools for more synoptic, frequent and fine-scale monitoring and 

assessment. In this dissertation, I explored some of the applications possible with new, 

commercial satellite imagery to better assess the status of coastal ecosystems. 

 Large-scale land-cover change influences the quality of adjacent coastal water. Satellite 

imagery has been used to derive land-cover maps since the 1960’s. It provides multiple data 

points with which to evaluate the effects of land-cover change on water quality. The objective of 

the first chapter of this research was to determine how 40 years of land-cover change in the 

Tampa Bay watershed (6,500 km2) may have affected turbidity and chlorophyll concentration – 

two proxies for coastal water quality. Land cover classes were evaluated along with precipitation 

and wind stress as explanatory variables. Results varied between analyses for the entire estuary 

and those of segments within the bay. Changes in developed land percent cover best explained 

the turbidity and chlorophyll-concentration time series for the entire bay (R2 > 0.75, p < 0.02). 
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 The paucity of official land-cover maps (i.e. five maps) restricted the temporal resolution 

of the assessments. Furthermore, most estuaries along the Gulf of Mexico do not have forty years 

of water-quality time series with which to perform evaluations against land-cover change. 

Ocean-color satellite imagery was used to derive proxies for coastal water with near-daily 

satellite observations since 2000. The goal of chapter two was to identify drivers of turbidity 

variability for 11 National Estuary Program water bodies along the Gulf of Mexico. Land cover 

assessments could not be used as an explanatory variable because of the low temporal resolution 

(i.e. approximately one map per five-year period). Ocean color metrics were evaluated against 

atmospheric, meteorological, and oceanographic variables including precipitation, wind speed, U 

and V wind vectors, river discharge, and water level over weekly, monthly, seasonal and annual 

time steps. Climate indices like the North Atlantic Oscillation and El Niño Southern Oscillation 

index were also examined as possible drivers of long-term changes. Extreme turbidity events 

were defined by the 90th and 95th percentile observations over each time step. Wind speed, river 

discharge and El Niño best explained variability in turbidity time-series and extreme events (R2 > 

0.2, p < 0.05), but this varied substantially between time steps and estuaries. 

 The background land cover analyses conducted for coastal water quality studies showed 

that there are substantial discrepancies between the wetland extent estimates mapped by local, 

state and federal agencies. The third chapter of my research sought to examine these differences 

and evaluate the accuracy and precision of wetland maps using high spatial-resolution (i.e. two-

meter) WorldView-2 satellite imagery. Ground validation data showed that wetlands mapped at 

two study sites in Tampa Bay were more accurately identified by WorldView-2 than by Landsat 

imagery (30-meter resolution). When compared to maps produced separately by the National 

Oceanic and Atmospheric Administration, Southwest Florida Water Management District, and 
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National Wetland Inventory, we found that these historical land cover products overestimated by 

2-10 times the actual extent of wetlands as identified in the WorldView-2 maps. 

 We could find no study that had utilized more than six of these commercial images for a 

given project. Part of the problem is cost of the images, but there is also the cost of processing 

the images, which is typically done one at a time and with substantial human interaction. Chapter 

four explains an approach to automate the preprocessing and classification of imagery to detect 

wetlands within the Tampa Bay watershed (6,500 km2). Software scripts in Python, Matlab and 

Linux were used to ingest 130 WorldView-2 images and to generate maps that included 

wetlands, uplands, water, and bare and developed land. These maps proved to be more accurate 

at identifying forested wetland (78%) than those by NOAA, SWFWMD, and NWI (45-65%) 

based on ground validation data. Typical processing methods would have required 4-5 months to 

complete this work, but this protocol completed the 130 images in under 24 hours. 

 Chapter five of the dissertation reviews coastal management case studies that have used 

satellite technologies. The objective was to illustrate the utility of this technology. The 

management sectors reviewed included coral reefs, wetlands, water quality, public health, and 

fisheries and aquaculture. 
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CHAPTER ONE: 

 

IMPACTS OF 40 YEARS OF LAND COVER CHANGE ON WATER QUALITY IN 

TAMPA BAY, FLORIDA 

 

1. Research Overview 

 

 Estuarine water-quality is a foundational element of coastal-ecosystem health. It may be 

affected by both natural and anthropogenic phenomena. Managing water quality requires 

comprehensive knowledge of the factors that drive local water-quality variability. Four decades 

of turbidity and chlorophyll-concentration measurements in Tampa Bay, Florida, were evaluated 

for statistical relationships with adjacent land cover change, precipitation, and wind stress. The 

spatial extent of analyses included the entire estuary and the three individual bay segments 

within the estuary that have heterogeneous characteristics. Land cover classes were selected 

based on consistency between mapped products used to cover the study period, and were each 

included as unique, independent variables for analysis. Results showed that decreased turbidity 

and chlorophyll-concentrations for the estuary as a whole were best explained by increased 

developed land fraction. Results for individual bay segments, however, found that developed, 

agricultural, and bare land, as well as wind stress, explained variability to different degrees 

depending on the bay segment and time of year. 

 

Note to Reader 

This chapter was submitted to the peer-reviewed journal Cogent Environmental Science 

and is included here in Appendix B. The full citation is: McCarthy, M.J., Muller-Karger, 
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F.E., Otis, D.B., and Méndez-Lázaro, P. Impacts of 40 years of land cover change on 

water quality in Tampa Bay, Florida. Cogent Environmental Science, submitted 

September 2017. 
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CHAPTER TWO: 

 

WATER QUALITY DRIVERS IN 11 GULF OF MEXICO ESTUARIES 

 

Abstract 

 Coastal water-quality is both a primary driver and also a consequence of coastal 

ecosystem health. Turbidity, a measure of dissolved and particulate water-quality matter, varies 

daily and can also have large interannual fluctuations. Water quality is influenced by a variety of 

factors. Identifying which factors drive trends and extreme events in turbidity in an estuary helps 

environmental managers and decision makers plan for and mitigate against water-quality issues. 

Efforts to do so on large spatial scales have been hampered due to limitations of turbidity data, 

including coarse and irregular temporal resolution and poor spatial coverage. We addressed these 

issues by deriving a proxy for turbidity using ocean color satellite products for 11 Gulf of 

Mexico estuaries from 2000-2014 on weekly, monthly, seasonal and annual time-steps. Turbidity 

variability was best explained (R2 > 0.2, p < 0.05) by wind speed over short time scales (weekly 

to monthly), while occurrence of extreme turbidity events was closely related (R2 > 0.2, p < 

0.05) to El Niño-Southern Oscillation cycles in six estuaries over long time frames (months to 

seasons). As expected, river discharge drove both seasonal as well as event-scale variability in 

turbidity across estuaries. 

 

1. Introduction 

The quality of estuarine and other coastal waters is a complex function of hydrological, 

meteorological, oceanographic, and human drivers (Schmidt et al., 2004; Eleveld et al., 2014; 
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Yin et al., 2005; Moreno Madriñán et al., 2012). The relative influence of these processes affects 

water-quality trends, variability, and the occurrence of extreme events. Identifying the primary 

drivers of such events can be useful for management and mitigation purposes. For example, a 

state of emergency was declared in two Florida counties in 2016 as a result of thick algal mats 

growing along highly populated coastal waterways in the St. Lucie and Caloosahatchee estuaries, 

causing massive fish kills. A commentary published by Michalak (2016) called for targeted 

research to determine which environmental conditions, and in what combination, increase the 

likelihood of extreme water-quality issues. 

According to the 2012 Environmental Protection Agency (EPA) National Coastal 

Condition Report, the overall rating of Gulf coast waters was 2.4 out of 5, or “fair” (EPA, 2012). 

Approximately 10% of the coastal waters were rated “poor”, and 53% were rated “fair” for water 

quality index. More specifically, water clarity was rated poor for 21% of the area. In Tampa Bay, 

Florida, water quality measured by turbidity and average chlorophyll concentration has improved 

since the 1970’s (Janicki et al., 2001; Moreno Madriñán et al., 2012). This is primarily attributed 

to the upgrade of waste water treatment plants to tertiary level starting in 1979. This reduced 

point-source pollution to the bay. Greening et al. (2014) found that nitrogen contributions of 

point and nonpoint sources to Tampa Bay were 60.3% and 23.9%, respectively, of the total 

nitrogen loadings in the 1970’s. By the 2000’s, the total pollution was reduced by about half, but 

relative contributions were inverted, with point sources contributing about 19.5% and nonpoint 

57.4% to nitrogen discharges into the bay. Other Gulf of Mexico estuaries have seen similar 

trends in water quality in recent decades. In order to continue improving water-quality 

management in these estuaries, we must better understand the drivers of nonpoint-source water-

quality degradation, and constrain their relative effects on long-term trends as well as extreme 
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events in the bays. Doing so requires long time-series of water quality with sufficient spatial and 

temporal resolution to characterize variability and enable management actions.  

Turbidity is an index of water quality used by the U.S. Environmental Protection Agency 

(EPA) that measures light transparency in aquatic environments. Turbidity may be modulated by 

changes in the concentration of colored dissolved organic matter and suspended particulates 

including sediment and phytoplankton, which are affected by changes in hydrological, 

meteorological, and oceanographic phenomena (Eleveld et al., 2014; Chen et al., 2007a; Miller et 

al., 2011). 

Precipitation within a drainage basin influences water quality through increased nutrient 

and sediment discharge into rivers (Al-Taani, 2014; Jordan et al., 2012; Miller et al., 2011). 

Wind also influences water quality through sediment resuspension in coastal areas (Chen et al. 

2007b; Chen et al. 2007c; Hu et al. 2004). Schoen et al. (2014) modeled circulation in an 

estuarine lake and found that circulation patterns were highly influenced by diurnal wind speed 

and direction variability, driving significant intermittent mixing. Dixon et al. (2014) studied 

seasonal colored dissolved organic matter (CDOM) sources within a North Carolina estuary, and 

found that CDOM was controlled by wind speed, wind direction, and river discharge.  

River discharge increases nutrient and sediment loads to coastal waters, thereby 

increasing turbidity with suspended sediments, CDOM, and phytoplankton blooms (Stoker, et al. 

1996; Fernandez-Novoa et al. 2014). Dorado et al. (2015) evaluated the effects of freshwater 

inflow on phytoplankton in Galveston Bay, Texas, and found that a combination of nutrient 

loading and hydraulic displacement drove phytoplankton biomass and community composition 

throughout the bay.  
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In addition to wind and freshwater-inflow variability, other forces that affect water level 

drive estuarine water quality by influencing circulation, sediment suspension, and coastal 

erosion. Over hourly to daily periods, tidal circulation can impact estuarine phytoplankton and 

suspended sediment concentrations (Chen et al., 2010). Over longer periods, the sea-level cycle 

of the Gulf coast has changed such that lower winter and higher summer levels are now observed 

(Wahl et al. 2014). While long-term water level is not typically investigated for effects on water 

quality, we include it here to account for apparent changes in this fundamental element of 

estuarine composition. 

While each of these environmental variables has been shown or hypothesized to influence 

local water quality parameters, broader climatic variability may explain long-term patterns in 

regional water quality. Scarsbrook et al. (2003) studied the effects of El Niño-Southern 

Oscillation (ENSO) patterns on New Zealand riverine water quality and found significant 

relationships between them, even after accounting for river flow variability. Their results 

suggested that ENSO significantly impacted water quality, independent of indirect effects 

through known precipitation variability caused by ENSO patterns. Schmidt et al. (2001) 

evaluated the effects of ENSO patterns on precipitation and river discharge throughout Florida’s 

watersheds. They found a complex pattern of spatially variable, seasonal relationships, including 

statistically significant relationships between extreme ENSO events and winter precipitation and 

river discharge patterns in the Tampa Bay area.  

The North Atlantic Oscillation (NAO) also drives seasonal wind and precipitation 

patterns in the Southeast (Hurrel et al., 2003). The NAO is defined as a meridional alternation of 

atmospheric mass between the subtropical and arctic North Atlantic. NAO phases may vary from 

one year to the next, and are greatest in amplitude during November to April (Stenseth et al., 
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2003). Kenyon and Hegerl (2010) quantified the impact of the NAO on global precipitation 

extremes and found that, while more closely connected with European precipitation, statistically 

significant responses were found in some North American precipitation stations, including those 

along the Gulf of Mexico coast. 

To identify how any of these variables drive bay-wide turbidity patterns, we need time 

series of turbidity observations collected simultaneously throughout an estuary. Data from 

individual stations may reflect localized phenomena. For large estuaries spanning several tens of 

kilometers in length and width, traditional ocean color satellite imagery can improve spatial and 

temporal sampling of water quality by providing data for the entire estuary in a single 

observation, often near daily (Sokoletsky et al., 2011). Chen et al. (2010) employed in-situ 

sensors and satellite data to determine the mechanisms responsible for observed variability in 

phytoplankton and sediment in Tampa Bay over a two-month period. They identified three 

strong wind events, which generated critical bottom shear stress and suspended bottom 

sediments that were observed in concurrent MODIS imagery. They concluded that collecting a 

single monthly grid of samples with one water sample per station per month can lead to 

variability of -50% to 200% of particular samples relative to the monthly mean of chlorophyll or 

sediment. Fernandez-Novoa et al. (2014) used imagery from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) to study turbidity plumes from the Ebro River over the period 

2003-2011. There was sufficient coverage to isolate specific environmental conditions 

coinciding with satellite overpasses, including specific river discharge conditions and wind 

patterns. With this dataset they were able to identify the direction and extent of river plume 

events into the Mediterranean, and conclude that wind direction was the dominant driver of 

turbidity magnitude. 
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Eleven Gulf of Mexico estuaries from Texas to Florida were selected for this study to 

provide a synoptic assessment of water-quality drivers throughout the U.S. Gulf coast. These 

estuaries were chosen, in part, because the surface area of each (Table 1) is large enough to 

accommodate the 250-meter spatial resolution of MODIS imagery. Additionally, all of these 

estuaries are adjacent to large population centers, and therefore their health and management 

may impact more stakeholders than isolated estuaries. 

The objective of this study was to determine the meteorological, oceanographic and 

atmospheric drivers of water quality time-series and extreme events in 11 Gulf of Mexico 

estuaries between 2000 and 2014 using a satellite-derived proxy for turbidity binned to weekly, 

monthly, seasonal and annual time steps.  

1.1 Study areas 

Each of the 11 estuaries studied here is a designated member of the National Estuary 

Program (NEP; Figure 1). The NEP is an Environmental Protection Agency program created to 

protect and restore the water quality and ecological integrity of national estuaries. 

Charlotte Harbor (CH), Florida, is a water body of 805 km2 and 2.4 m deep on average 

that receives water from a watershed extending over 12,000 km2 of southwestern Florida (Turner 

et al. 2006). Sarasota Bay (SB), Florida, lies between Charlotte Harbor to the south and Tampa 

Bay to the north. It drains the smallest watershed (1,100 km2) of those evaluated in this study, 

and covers the smallest surface water area at just over 100 km2 (https://sarasotabay.org/). Tampa 

Bay (TB), Florida covers over 1,000 km2 with an average depth of 3.4 m, and drains a watershed 

of over 6,500 km2 (Dixon et al., 2009). Six counties and the cities of Tampa, Clearwater, and 

Saint Petersburg intersect the watershed, making it the second largest metropolitan area in 

Florida. 
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Mobile Bay (MB) is located along the northern Gulf Coast in the state of Alabama. With 

an inflow of 1755 cubic meters of water per second it receives 20% of the freshwater supply in 

the US and is the fourth largest estuary in the country draining a watershed of 113,084 km2 

(Roman et al. 2011). 

The Barataria (BTB) and Terrebonne (TBB) estuaries are distinct bodies of water with 

separate watersheds, but are managed as a single NEP. They are located between the Mississippi 

and Atchafalaya Rivers in southern Louisiana. Freshwater input was effectively cut off by the 

flood protection levees erected along the Mississippi River such that rainwater constitutes the 

primary source of it. These bays are bounded to the south by barrier islands that are expected to 

decline in size from 1,800 acres to 400 acres by 2045 due to erosion, resulting in greater tidal 

mixing (https://www.lacoast.gov). 

Galveston Bay (GB), Texas, is the seventh largest estuary in the country with over 1,500 

km2 of surface water and the fourth most populous metropolitan area in the country. The estuary 

has experienced substantial environmental degradation, losing over 95% of submerged 

vegetation from the 1950’s to 1970’s due in part to poor water clarity caused by increased 

erosion (Pulich, 2007). 

The Coastal Bend Bays NEP includes the Aransas (ARB), San Antonio (SAB), Corpus 

Christi (CCB) and Matagorda (MGB) Bays. These four water bodies combined cover over 1,300 

km2 and drain the second largest watershed of those studied here at 32,580 km2 (Table 1). 
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Table 1. National Estuary Programs studied here and relevant characteristics. 

National Estuary 

Program 

Surface 

Water 

Area (km2) 

Watershed 

Area (km2) 

Average 

Depth 

(m) 

Year 

Designated 

Barataria-Terrebonne 415/1090 16,500 2 1990 

Charlotte Harbor 805 12,200 2.4 1995 

Coastal Bend Bays 1330 32,580 3 1994 

Galveston Bay 1550 12,500 2.1 1988 

Mobile Bay 1059 113,084 3.048 1995 

Sarasota Bay 106 1,100 1.98 1988 

Tampa Bay 1000 6,800 3.6 1990 

 

 

Figure 1. National Estuary Programs of the Gulf of Mexico studied here. 

 



11 
 

2. Materials and Methods 

All independent-variable data preprocessing and statistical analyses were conducted 

using MatlabTM and the Fathom toolbox. 

2.1 Turbidity Data 

We used satellite data from the NASA Moderate Resolution Imaging Spectroradiometer 

(MODIS) sensor flown on the Terra satellite to derive a proxy for turbidity. MODIS Terra has 

provided a time-series of remote sensing observations at relatively high temporal resolution 

(near-weekly or better at the latitudes of Gulf estuaries) and high spatial resolution (250 m pixels 

and coarser) since 2000. Specifically, we generated time-series of water quality indices using 

remote-sensing reflectance measurements at 645nm using MODIS Band 1 as a proxy. The basic 

assumption is that sediments suspended near the water surface provide a signal in this red band. 

In general, we assumed that MODIS Band 1 observations have minimal contributions from light 

reflected from the sea bottom in estuarine waters deeper than about 2.8 m due to the strong 

absorption of red light by water (Chen et al. 2010). This approach has been used several times in 

the past, with mixed success, in different estuaries and coastal waters around the world (Miller 

and McKee, 2004; Zawada et al. 2007; Chen et al. 2007a,b,c; Lahet and Stramski 2010; Chen et 

al. 2010; Moreno et al. 2010; Aurin et al. 2013; and others). Other bio-optical measurements that 

use blue, green, or yellow bands to estimate variables such as chlorophyll-a concentration are 

usually heavily affected by reflectance from the ocean bottom in shallow areas and give 

erroneous values. 

We derived remote sensing reflectance at 645 nm (Rrs645) starting from MODIS Terra 

Level-1A files. Rrs645 represents the normalized water-leaving radiance (Gordon and Clark, 

1981) at 645 nm divided by the extraterrestrial solar irradiance at 645 nm. MODIS images were 
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downloaded from the NASA Goddard Space Flight Center Ocean Color data portal. Images were 

processed using the SeaWiFS Data Analysis System (SeaDAS) software package, version 7.1.  

Processing to Level-2 used the near infrared/short-wave infrared (NIR/SWIR) switching 

atmospheric correction approach of Wang and Shi (2007). All data were mapped to an 

equidistant cylindrical projection with a nominal pixel size of 262 m. Using the SeaDAS l2gen 

module, masks were applied for clouds, straylight, and sunglint. A custom filter file was used to 

mask stray light using a 1x1 pixel filter, as opposed to the default 3x3 pixel filter. The cloud 

mask was applied using data at 2130 nm with a threshold of 0.018 (Aurin et al. 2013). Individual 

scenes with high cloud cover (>85%) and sunglint contamination were removed by visual 

inspection of each individual image. To minimize the effects of negative Rrs645 retrievals, the 

median value of all negative Rrs645 values was calculated and applied as a bias to each MODIS 

scene (Aurin et al. 2013). Values of this bias ranged from -0.002 sr-1 to zero. All remaining 

negative pixels were excluded from further analyses. 

2.2 Meteorological Data 

Daily precipitation, wind speed and wind direction data were downloaded from the 

NOAA National Climate Data Center (NCDC) for the stations listed in Table 2. Stations were 

selected from all available stations adjacent to each estuary that contained data for each variable 

covering the 2000-2014 time period. Precipitation data was binned to weekly, monthly, seasonal 

and annual time steps by summing the data for each interval. We chose to represent precipitation 

cumulatively for two reasons: occasional downpours characteristic of Gulf coast winter frontal 

systems and summer convective storms may substantially influence runoff and erosion, but their 

extreme nature may be muted by averaging with surrounding days or weeks of little or no rain; 

and consistent rain over days or weeks may synergistically impact drainage by reaching a soil 
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saturation point beyond which surface runoff may increase. Unfortunately, precipitation data 

from all stations adjacent to the Barataria-Terrebonne NEP were missing more than 25% of daily 

observations for this time period, and were therefore excluded from analyses. 

Wind speed was binned to the same time steps as precipitation, but using an average for 

each time step. Coinciding hourly wind speed and direction observations were additionally 

processed by converting to u (east-west) and v (north-south) component vectors, and binning 

each to the same time steps by average. 

2.3 River Discharge Data 

River discharge was downloaded from the United States Geological Survey website 

(https://maps.waterdata.usgs.gov/mapper/index.html?state) for every monitored river system that 

entered into each estuary. Rivers that were regulated with known dams or bypasses, such as 

Hillsborough River in Tampa Bay, were excluded to eliminate potentially anomalous 

anthropogenic influence. That is, management of Hillsborough River discharge is likely to 

primarily affect Hillsborough Bay – a subset of Tampa Bay – and therefore not be resolved by 

the bay-wide turbidity proxy. When data was available for multiple rivers that discharged into 

the same estuary, each dataset of daily measurements was compared with daily Rrs645 

measurements to determine if substantial gaps in discharge data existed. If more than 25% of 

total daily Rrs645 observations were missing from any of the rivers’ discharge datasets (i.e. data 

gaps), that discharge dataset was considered too sparse for evaluation and excluded from further 

analyses. If, however, multiple rivers for a given estuary were found to be sufficient, their data 

was combined into one discharge dataset for that estuary by summing daily measurements, and 

then binning the data to the weekly, monthly, seasonal and annual time steps by average. Table 2 
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lists the rivers used for each estuary. For both Barataria and Terrebonne Bays, water level data 

from the Gulf Intracoastal Waterway (GIWW) station at Houma, Louisiana, was used. 

2.4 Water Level Data 

Hourly water-level data were downloaded from the NOAA website 

(tidesandcurrents.noaa.gov) for all stations monitored during the time period and located within 

the estuaries (MLLW datum; Table 2). Verified water-level data was missing more than 25% of 

daily observations for the study period within the Sarasota Bay, Corpus Christi Bay, Matagorda 

Bay, or San Antonio Bay estuaries. Data from Tampa Bay was assumed to be a sufficient proxy 

for Sarasota Bay, as was data from Aransas Bay for the three adjacent Coastal Bend Bays. 

Datasets were binned to weekly, monthly, seasonal and annual time steps by average.  

2.5 NAO Data 

Daily NAO index data was downloaded from NOAA 

(ftp://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.nao.index.b500101.current.ascii) and binned to 

the same time steps. 

2.6 ENSO Data 

Monthly Niño-3.4 index data was downloaded from NOAA 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt) 

and binned to seasonal and annual time steps. As weekly data was not available, the ENSO 

variable was excluded from weekly analyses. 
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Table 2. Station locations used for meteorological, river discharge, and water level data for each 

estuary. 

Estuary Meteorological 

Station 

River Discharge  Water Level 

Stations 

Aransas Bay Corpus Christi, TX Mission Rockport, TX 

Barataria Bay Houma, LA GIWW at Houma Grand Isle, LA 

Corpus Christi Bay Corpus Christi, TX Nueces Rockport, TX 

Charlotte Harbor Punta Gorda, FL Myakka and Peace Fort Myers, FL 

Galveston Bay Galveston, TX Trinity Eagle Point, TX 

Mobile Bay Mobile, AL Alabama and 

Tombigbee 

Dauphin Island, AL 

Matagorda Bay Corpus Christi, TX Lavaca and Palacios Rockport, TX 

San Antonio Bay Corpus Christi, TX Guadelupe Rockport, TX 

Sarasota Bay Sarasota, FL Walker Saint Petersburg, FL 

Tampa Bay Tampa, FL Alafia and Little 

Manatee 

Saint Petersburg, FL 

Terrebonne Bay Houma, LA GIWW at Houma Port Fourchon, LA 

 

2.7 Preprocessing 

Observations from each dataset for each time step were first matched to the Rrs dataset 

by identifying coinciding observations. This allowed for a direct comparison of datasets to 

identify gaps. If any independent variable for a given estuary matched fewer than 75% of Rrs 

observations, that variable was eliminated from further analyses. A linear trend was then fit to 

each dataset and removed (detrended). Next, climatologies for each time step were computed for 

each detrended dataset from the 15-year period of available data. Typically, climatologies are 

computed using 30-year time periods, but many of the datasets used for this work, including Rrs, 

did not have 30 years of available data. We chose to restrict climatologies to the 15-year period 

evaluated here for consistency between datasets. Anomalies were computed by subtracting the 

climatology values from the coinciding time-series observation. Extreme events were identified 

as those Rrs observations within the 90th and 95th percentiles of each estuary’s dataset. The time-

series anomalies, and 90th and 95th percentile extreme-event anomalies (hereafter “XE90 and 

XE95) were then used for statistical analyses. 
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2.8 Statistical Analyses 

Redundancy Analyses with Akaike’s Information Criterion (RDA AIC) were used first to 

identify the independent variables that explained the most variation in the dependent variable. 

The f_rdaAIC MatlabTM function from the Fathom toolbox standardized all input independent 

variables and determined the ‘best’ independent variables through constrained ordination. This 

assessed how much of the variation in one set of variables explained variation in another set, 

while accounting for independent-variable multicollinearity (Wollenberg 1977). Akaike (1973) 

proposed an information criterion to quantify the amount of information and statistically 

determine the number of parameters for an equation that represents a group of experimental data. 

The equation with the minimum AIC is considered the best representation of the experimental 

data (Yamaoka et al. 1978). A null model is created by assigning a value below which the best 

equation’s AIC value must be in order to be considered viable to explain variation in the 

dependent variable. If no equation explains more variation than a null model, no independent 

variable is selected. 

For any variable(s) identified as ‘best’ for a given estuary, correlation coefficients were 

computed with all other variables. If any correlations with ‘best’ variables exceeded ± 0.7, the 

correlated variables were recorded for consideration. 

Multiple regressions were run on the variable(s) identified as ‘best’ by the RDA AIC using 

the f_mregress function. One thousand iterations were run for each regression to compute 

permutation-based p-values because some of the data were not normally distributed. Adjusted-R2 

coefficients (R2adj) were recorded, as opposed to R2 coefficients, because the former accounts 

for the number of predictors and sample size. Figure 2 summarizes the data on which statistical 

analyses were performed. 
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Figure 2. Summary of the variables, estuaries, time steps and datasets used for statistical 

analyses. 

3. Results 

To identify the drivers of turbidity across the coastal Gulf of Mexico, we evaluated the 

results of statistical analyses by estuary, time step, and time series or extreme event dataset. The 

variable(s) identified as statistically significant drivers of time-series, XE90 and XE95 turbidity 

for each estuary over all time steps are indicated in Table 3 by the number of iterations in which 

they were found to be significant. Additionally, the number of estuaries for which each variable 

was identified as a statistically significant driver is summarized in the Table 4 by time step. 
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Table 3. The number of time steps for which each variable was identified as a significant driver 

(R2adj > 0.2, p < 0.05) of turbidity time-series, 90th percentile events (in parentheses), and 95th 

percentile events [in brackets] for each estuary. 

 Wind 

Speed 

Wind U Wind V Precip Discharge Water 

Level 

NAO ENSO 

ARB 1 (0) [0] 1 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (1) [0] 

BTB 2 (0) [0] 0 (0) [0] 0 (0) [1] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (1) [0] 

CCB 1 (0) [0] 0 (0) [0] 1 (0) [1] 0 (0) [0] 2 (0) [0] 0 (0) [0] 1 (0) [0] 1 (2) [0] 

CH 0 (0) [0] 0 (1) [1] 0 (0) [0] 0 (0) [0] 1 (0) [0] 0 (0) [0] 0 (1) [0] 0 (0) [0] 

GB 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 

MB 3 (1) [0] 2 (0) [0] 0 (1) [0] 1 (0) [0] 4 (0) [0] 1 (0) [0] 0 (0) [0] 0 (1) [0] 

MGB 1 (0) [0] 0 (1) [0] 0 (0) [0] 0 (0) [0] 2 (1) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 

SAB 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [1] 0 (0) [0] 0 (0) [0] 

SB 0 (1) [1] 0 (0) [0] 0 (0) [0] 0 (1) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (1) [0] 

TBB 0 (1) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (1) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 

TB 0 (1) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 2 (0) [0] 

Total 8 (4) [1] 3 (2) [1] 1 (1) [2] 1 (1) [0] 9 (2) [0] 1 (0) [1] 1 (1) [0] 3 (6) [0] 

 

Table 4. The number of estuaries for which each variable was identified as a significant 

driver (R2adj > 0.2, p < 0.05) of turbidity time-series, 90th percentile events (in parentheses), 

and 95th percentile events [in brackets] for each time step. 

 Wind 

Speed 

Wind U Wind V Precip Discharge Water 

Level 

NAO ENSO 

Weekly 1 (0) [0] 1 (0) [0] 0 (0) [1] 1 (0) [0] 1 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 

Monthly 2 (2) [1] 0 (2) [1] 0 (1) [1] 0 (1) [0] 1 (0) [0] 1 (0) [1] 0 (1) [0] 1 (2) [0] 

Seasonal 3 (2) [0] 0 (0) [0] 1 (0) [0] 0 (0) [0] 4 (2) [0] 0 (0) [0] 0 (0) [0] 1 (4) [0] 

Annual 2 (0) [0] 2 (0) [0] 0 (0) [0] 0 (0) [0] 3 (0) [0] 0 (0) [0] 1 (0) [0] 1 (0) [0] 

 

Analyses of time series data identified statistically significant relationships (p < 0.05) 

between turbidity and at least one independent variable for all time steps (i.e. weekly, monthly, 

seasonal, and annual) in all estuaries, with the exception of nine iterations. That is, no variables 

were identified as “best” by the AIC step in four runs, and only five runs identified at least one 

“best” variable, but the resulting model could not explain turbidity variation significantly. 

Excluding those results, the variables most often found to explain turbidity variation were wind 

speed (25 iterations) and discharge (15 iterations). If we exclude those statistically significant 

relationships that found R2adj values under 0.2, the variables found to most frequently explain 
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turbidity variation were discharge (9 times) and wind speed (8 times; Table 3). Discharge data 

was found to contain too many gaps to be sufficient for weekly or monthly analyses in Galveston 

Bay. Also, water level was excluded from Terrebonne Bay weekly and monthly analyses for the 

same reason. 

Analyses of 90th percentile extreme events (XE90) found statistically significant 

relationships between turbidity and at least one independent variable in 20 of the 44 analyses. 

None of the annual analyses identified a “best” variable, probably due to low sample sizes. For 

all analyses that identified a significant variable, wind speed (7 times) was identified the most, 

followed by ENSO (6 times), and discharge (3 times). Excluding significant relationships with 

R2adj values under 0.2, the variables found to most frequently explain turbidity variation were 

ENSO (6 times), and wind speed (4 times; Table 3). Discharge and water level were excluded 

from Galveston Bay and Terrebonne Bay, respectively, due to insufficient data. 

Analyses of 95th percentile extreme events (XE95) found statistically significant 

relationships between turbidity and at least one independent variable in 7 of the 44 runs. None of 

the seasonal or annual runs identified a “best” variable, probably due to low sample sizes. For all 

runs that identified a significant variable, the V vector (3 times), and U vector (2 times) were 

identified most. Excluding significant relationships with R2adj values under 0.2, the variable 

found to most frequently explain turbidity variation was the V vector (2 times; Table 3). 

Discharge and water level were excluded from Galveston Bay and Terrebonne Bay, respectively, 

due to insufficient data. 

4. Discussion 

We will refer to variables that were identified as statistically significantly (p < 0.05) 

correlated to the Rrs turbidity proxy with R2adj values greater than 0.2 as “significant drivers” of 
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turbidity. Because RDA AIC and multiple regression analyses may identify more than one 

variable per iteration, we will discuss the results by noting both the number of estuaries for 

which an independent variable was identified as a driver, and the number of times a variable was 

identified as a driver. 

For time-series datasets, wind speed and discharge were each found to be a significant 

driver of turbidity in more estuaries than any other variable (wind: 5 estuaries, and discharge: 4 

estuaries). These two variables alone were found to be significantly correlated with turbidity in 

six of the 11 estuaries. The direction of the relationship between these two variables and turbidity 

was consistent for wind speed (i.e. positive relationship in all 8 time-series iterations), but not for 

discharge (i.e. four positive relationships in Mobile Bay, and five negative relationships among 

three estuaries.). This suggests that increased wind speed consistently increases turbidity, but that 

discharge has a more dynamic relationship that varies among estuaries and possibly with other 

factors. Galveston Bay, San Antonio Bay, Sarasota Bay, and Terrebonne Bay turbidity time-

series were not significantly driven by any variable. 

For extreme-event datasets, ENSO was found to be a significant driver of turbidity in 

more estuaries than any other variable (5 estuaries), followed by wind speed (4 estuaries). 

However, the direction of the relationships was inconsistent: 3 estuaries displayed negative 

turbidity responses to ENSO variability while 2 estuaries were positive. 

Analyses of weekly time-series datasets found that significant drivers of turbidity could 

only be identified for Mobile Bay. Here, turbidity was driven by four variables (wind speed, U 

vector, precipitation, and discharge). Monthly time-series analyses revealed significant drivers in 

only two estuaries: Mobile Bay (wind speed, discharge, and water level) and Corpus Christi Bay 

(wind speed and ENSO). Seasonal analyses of time-series datasets found significant drivers in 
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seven estuaries, explained most frequently by discharge (4 times) and wind speed (3 times). 

Annual analyses of time-series datasets found significant drivers in six estuaries, explained most 

frequently by discharge (3 times), followed by wind speed and the u vector (2 times each). 

Weekly extreme-event analyses found that no estuaries had a significant turbidity driver 

of XE90 data. However, weekly XE95 data for three estuaries (Barataria Bay, Charlotte Harbor, 

and Matagorda Bay) were driven by the wind vector variables (V twice, and U once). Monthly 

analyses of XE90 (XE95) data found significant drivers in eight (four) estuaries, explained twice 

(once) each by wind speed, u vector, and ENSO (wind speed, u, v, water level).  Monthly 

analyses of XE95 data found significant drivers in four estuaries, explained once each by wind 

speed, u, v, and water level. Seasonal XE95  sample sizes were too small to detect any significant 

relationships, but seasonal XE90 analyses revealed significant drivers in seven estuaries with 

ENSO (4 times) driving turbidity more than any other variable, followed by wind speed and 

discharge (twice each).  

Evaluating the results by time step reveals that turbidity time-series variability across the 

Gulf of Mexico can be more frequently explained by these independent variables for seasonal 

and annual steps (7 estuaries and 6 estuaries, respectively) than weekly and monthly variability 

(1 and 2 estuaries, respectively). Similarly, extreme-event variability can be more frequently 

explained on monthly and seasonal periods (7 estuaries each for XE90; 4 estuaries for monthly 

XE95), than on weekly scales (none for XE90; once for XE95; note that XE95 seasonal, and both 

XE annual data sample sizes were too small for analyses). This may indicate that short-term 

turbidity responses lag behind environmental phenomena. Schmidt et al. (2001) found that river 

discharge in Florida watersheds lagged an ENSO index by several months, depending on season. 
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Lagged relationships between independent variables and turbidity were not included in 

this study. We decided that lag estimates could not be constrained well enough for all estuaries at 

all time-scales to facilitate accurate comparisons, but that the identification and evaluation of 

lagged effects of these variables on turbidity is a possible area of valuable future research for 

these estuaries. Further, Eleveld et al. (2014) compared satellite-derived water quality products 

with modelled water quality and found that sun-synchronous satellites alias tidal patterns and are 

also biased by acquiring usable data under cloud-free conditions. These constraints led to biases 

in satellite-derived water quality products (Eleveld et al. 2014), and may have limited our ability 

to resolve water quality in this study. Further, Zheng et al. (2017) reviewed satellite-derived 

ocean color products and concluded that, while coastal turbidity proxies tend to be relatively 

accurate in the 2-7 NTU range, they also tend to lose sensitivity beyond 7 NTU depending 

largely on colored dissolved organic matter concentration and atmospheric correction techniques. 

This relatively narrow range of turbidity values that tend to be accurately identified by satellite 

data may explain the paucity of significant relationships and prevalence of low R2adj values for 

many of these analyses, especially regarding extreme events (i.e. high-turbidity observations). 

Nonetheless, the consistent identification of wind speed and ENSO as drivers of turbidity 

variability across estuaries in agreement with past work leads us to believe that our product is 

sufficient to identify broad patterns in water-quality drivers. 

We were able to synoptically assess environmental drivers of water-quality variation in 

all Gulf of Mexico National Estuary Programs over multiple time steps (weekly, monthly, 

seasonal and annual data bins), including extreme events (90th and 95th percentile observations) 

and identify statistically significant drivers for some estuaries. In doing so, we spatially and 
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temporally scale up what are typically short-term, local evaluations of water-quality variability to 

identify drivers across the basin. 

5. Conclusions 

 Fifteen years of satellite-derived turbidity data for 11 Gulf of Mexico estuaries revealed 

statistically significant relationships with several environmental variables. Wind speed was 

found to be the most consistent driver of turbidity time-series variability across estuaries, while 

ENSO was the primary driver of extreme turbidity events. River discharge was also found to 

drive turbidity variability, increasing turbidity in Mobile Bay, but decreasing it in three other 

estuaries (Corpus Christi Bay, Charlotte Harbor, and Matagorda Bay).  

The explanatory variables investigated here were found to have stronger statistical 

relationships with turbidity when the data were binned over longer time steps (i.e. monthly to 

annual). This may be due to lags, which were not evaluated here and should be considered for 

future work, or may indicate that the turbidity proxy used contained a low signal-to-noise ratio 

for weekly binned data. Longer bins averaged more data points, which may have improved the 

accuracy of the monthly, seasonal and annual products over weekly data. 

While these results find a consistent relationship between high winds and increased 

turbidity, they also reveal varied dynamics between turbidity and environmental phenomena 

between estuaries. Muller-Karger et al. (2015) found substantial changes in Gulf of Mexico wind 

speed from the 1980s to 2012. As climate change modulates future patterns in wind, 

precipitation, discharge, sea level, and climate oscillations, local water-quality managers should 

consider the dynamics of their local estuarine water-quality responses to environmental forcings 

to prepare for future water-quality trends and extreme events. 
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CHAPTER THREE: 

 

IMPROVED COASTAL WETLAND MAPPING USING VERY-HIGH 2-METER 

SPATIAL RESOLUTION IMAGERY 

 

1. Research Overview  

Wetlands provide valuable ecosystem services that contribute to both human and 

ecological health, yet they have declined in extent by over 50% in the U.S. during the 20th 

century. Restoration efforts have successfully mitigated losses in recent years with the 

help of synoptic wetland coverage surveys. Unfortunately, existing maps produced by 

local, state and federal agencies show substantially inconsistent wetland extent due, in 

part, to the discrepancies in their mapping data and methods.  

Satellite images allow land cover classes, including wetlands, to be mapped 

efficiently using objective methods of identification that have been shown to improve on 

photo interpretations of aerial imagery. The spatial resolution of the digital satellite data 

typically used, however, is relatively coarse, and may cause inaccurate wetland extent 

estimations in areas of mixed wetland and upland vegetation. For this research, wetlands 

were initially mapped using Landsat imagery (30 m resolution) and WorldView-2 

imagery (2 m resolution) for two study sites in Tampa Bay, Florida. Ground-validation 

points found that WorldView-2 produced more accurate maps than Landsat (82% vs. 

46%). To further improve classification accuracy by distinguishing wetland from upland 

vegetation, a Decision Tree classification system was developed and applied to the 

WorldView-2 images. The resulting maps accurately identified wetlands to 82% and 
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90%, and uplands to 94% and 83%, at Fort De Soto State Park and Weedon Island 

Preserve, respectively. When compared to existing wetland maps, these results showed 

that published maps overestimate wetland surface cover by factors of 2-10 in these study 

areas. 

 

Note to Reader 

  This chapter was published in the peer-reviewed Elsevier journal International 

Journal of Applied Earth Observation and Geoinformation and is included here in 

Appendix B. The full citation is: McCarthy, M.J., Merton, E.J., & Muller-Karger, F.E. 

(2015). Improved coastal wetland mapping using very-high 2-meter spatial resolution 

imagery. International Journal of Applied Earth Observation and Geoinformation, 40, 

11–18. 
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CHAPTER FOUR: 

 

ENABLING EFFICIENT, LARGE-SCALE HIGH-SPATIAL RESOLUTION WETLAND 

MAPPING USING SATELLITES 

 

1. Research Overview 

  The Decision Tree approach developed in the previous chapter successfully 

improved wetland-mapping accuracy using an objective, pixel-based method. Similar 

algorithms have produced accurate results in previous work, but none had been applied to 

large-scale wetland mapping due, in part, to processing inefficiencies. That is, 

preprocessing and classifying a single high-resolution image on a standard computer 

would take about one day to complete. Given that a single image covers approximately 

270 km2, water-shed scale maps (i.e. 5,000 km2 or more) would require weeks of 

dedicated processing. Additionally, images often contain substantial cloud-cover, thereby 

restricting the view of the ground and requiring multiple, typically offset images to 

complete the ground coverage.  

The goal of this chapter was to develop a protocol to efficiently map large-scale 

wetland coverage by automating the preprocessing and classification schemes executed 

with programming languages run over the USF supercomputer. Using this approach, 130 

2-meter spatial resolution WorldView-2 images mapped wetland, upland, water, and bare 

and developed land for the entire 6,500 km2 Tampa Bay watershed in under 24 hours. 

The classified images were mosaicked into a single map, and compared with existing 

maps of the watershed for accuracy based on ground validation data. The WorldView-2 

map more accurately identified coastal and freshwater wetland (78%) and upland (64%) 
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than the existing maps (45-65% and 49-53%, respectively). An algorithm was also 

developed that identified wetlands using a scene-specific index, as opposed to a static 

threshold, which may allow this approach to be applied to similar watersheds without 

retraining the classification scheme. This work has high potential for large-scale wetland 

mapping and change detection at 2-meter resolution. 

 

Note to Reader 

  This chapter was submitted to the peer-reviewed journal Remote Sensing of 

Environment and is included here in Appendix B. The full citation is: McCarthy, M.J., 

Radabaugh, K.R., Moyer, R.P., and Muller-Karger, F.E. (2017) Enabling efficient, large-

scale, high-spatial resolution wetland mapping using satellites. Remote Sensing of 

Environment. (Major Revision following Reviewer/Editorial comments). 
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CHAPTER FIVE: 

 

SATELLITE REMOTE SENSING FOR COASTAL MANAGEMENT: A REVIEW OF 

SUCCESSFUL APPLICATIONS 

 

1. Research Overview 

 

 Traditional coastal ecosystem management approaches will require strategies to address 

the compounding challenges of climate change and a growing global population. Satellite 

technology has been used in limited applications to supplement management efforts, but 

concerns over its accuracy, utility and efficacy have restricted wider adoption. The goal of this 

chapter was to encourage managers to embrace satellite technology by reviewing examples of its 

use in coastal ecosystems to successfully contribute to management. A background of remote 

sensing specifications is provided, along with a comprehensive table of existing satellite data that 

is available for use in a variety of coastal management sectors. Literature reviewed covers the 

sectors of coral reefs, wetland, water quality, public health, and fisheries and aquaculture. 

 

Note to Reader 

 

  This chapter was published in the peer-reviewed journal Environmental 

Management and is included here in Appendix B. The full citation is: McCarthy, M.J., 

Colna, K.E., El-Mezayen, M.M., Laureano-Rosario, A.E., Méndez-Lázaro, P., Otis, D.B., 

Toro-Farmer, G., Vega-Rodriguez, M., and Muller-Karger, F.E. (2017). Satellite remote 

sensing for coastal management: A review of successful applications. Environmental 

Management, doi: 10.1007/s00267-017-0880-x 
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Abstract 

 Land cover changes in the Tampa Bay watershed (Florida) over the past four decades 

were examined along with precipitation and wind observations to help understand causes of 

long-term changes in turbidity and chlorophyll concentration within the Tampa Bay estuary. 

Water quality showed a statistically significant relationship to land cover fraction in the 

watershed compared to long-term precipitation or wind stress. Redundancy Analyses with 

Akaike’s Information Criterion and non-parametric multiple regressions determined that 

turbidity and chlorophyll concentration decreased bay-wide from 1974-2012 with increased 

developed land fraction (R2 > 0.75, p-value < 0.05). Various segments of the estuary showed 

different significant responses to developed land (R2 > 0.75, p-value < 0.05), agricultural land 

(R2 > 0.93, p-value < 0.02), bare land (R2 = 0.77, p-value = 0.001), and wind stress (R2 = 0.91, p-

value = 0.04) at different times of year. 

Keywords: land cover, land use change, water quality, Tampa Bay estuary  
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1. Introduction 

 The quality of estuarine and other coastal waters is a complex function of hydrological, 

meteorological, oceanographic, and human drivers (Chen et al., 2010; Schmidt et al., 2004; 

Eleveld et al., 2014; Yin et al., 2005; Moreno Madriñán et al., 2012). The interplay between 

these different processes may lead to different water quality outcomes over time. In Tampa Bay, 

Florida, turbidity and average chlorophyll concentration have decreased since the 1970’s (Janicki 

et al. 2001; Moreno Madriñán et al. 2012). This is a result of the upgrade of waste water 

treatment plants to tertiary level starting in 1979 and other voluntary and regulated reductions in 

point-source pollution. Nonpoint sources have not been managed as effectively. Greening et al. 

(2014) found that nitrogen contributions of point and nonpoint sources to Tampa Bay were 

60.3% and 23.9%, respectively, of the total nitrogen loadings in the 1970’s. By the 2000’s, the 

relative contributions were inverted, with point sources contributing about 19.5% and nonpoint 

57.4% to nitrogen discharges into the bay. Much of this change may be expected to be related to 

urbanization and other changes in land use in the Tampa Bay watershed. In this study we 

evaluate the role of land cover changes, precipitation, and wind stress on turbidity in Tampa Bay 

between the 1970s and 2010. 

Tampa Bay (27.5 – 28.08° N and 82.36 – 82.75° W) is the largest open-water estuary in 

Florida (Figure 1). It covers over 1,000 km2 at high tide, with an average depth of 3.4 m. The 

watershed area covers over 6,500 km2. Six counties and the city of Tampa, the second largest 

metropolitan area in Florida, intersect the watershed. An estimated 2.3 million people lived in the 

Tampa Bay watershed in 2003, with population growth between 1990 and 2003 reaching ~22% 

(US Census 2007). Approximately 500 new residents moved to counties surrounding Tampa Bay 

each week during this timeframe. 
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Turbidity is a measure of light transparency in aquatic environments used by the U.S. 

Environmental Protection Agency (EPA) as an index of water quality. Turbidity may be 

influenced by changes in the concentration of colored dissolved matter and suspended 

particulates including sediment and phytoplankton. These variables are affected by changes in 

hydrological, meteorological, and oceanographic phenomena (Eleveld et al., 2014; Chen et al., 

2007a; Chen et al., 2010; Miller et al., 2011). 

Land cover and land use affect downstream water quality through runoff of freshwater, 

nutrients, sediment, and pollution (Wickham et al. 2005; Bateni et al. 2013; Miller et al. 2011; 

Jordan et al. 2012).  Nelson and Booth (2002) conducted a watershed-scale sediment budget 

analysis in western Washington state, and found that urban development and subsequent stream-

channel erosion has contributed an increase of nearly 50% in the annual sediment yield. 

However, impervious surfaces (e.g. roads, buildings, parking lots) tend to enhance sediment-free 

stormwater runoff (Estes et al. 2009; Miller et al. 2011; Moreno Madriñán et al. 2012). Miller et 

al. (2011) developed regression models for 43 watersheds in Illinois. They found that during base 

flow conditions, agriculture-dominated watersheds had significantly higher turbidity and total 

suspended solid concentrations compared with urban watersheds. Turbidity during storm flow 

conditions was also significantly lower in urban watersheds. Moreno Madriñán et al. (2012) 

found a negative relationship between the fraction of developed land in each watershed segment 

and turbidity at the mouths of the rivers entering Tampa Bay. 

Precipitation in the watershed affects estuarine water quality through increased nutrient and 

sediment discharge into rivers (Al-Taani 2014; Estes et al. 2009; Jordan et al. 2012; Miller et al. 

2011). Le et al. (2013) used satellite-derived chlorophyll concentration maps of Tampa Bay from 

1998-2011 to show that river discharge explains approximately 60% of seasonal variability and 
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about 90% of interannual variability in chlorophyll in the bay. Interannual variability was 

strongly influenced by El Niño-Southern Oscillation cycles and tropical cyclones.  Le et al. 

(2013) were not able to detect long-term variations, in part because the satellite data record used 

was short. Eleveld et al. (2014) compared satellite-derived water quality products with modelled 

water quality and found that sun-synchronous satellites alias tidal patterns and are also biased by 

acquiring usable data under cloud-free conditions. These constraints led to biases in satellite-

derived water quality products (Eleveld et al. 2014). Schoonard et al. (2014) examined spatial 

patterns of precipitation in Pinellas County, which forms the western boundary of Tampa Bay, 

from 2003 to 2007 and found that convective storms related to the seabreeze during the summer 

wet season were highly spatially variable and heavily influenced by dominant wind direction. 

This process results in a broad and diffuse discharge into Tampa Bay which cannot be quantified 

as river discharge. Most of the river discharge enters Tampa Bay from the north and eastern sides 

of the bay. 

Winds also influence sediment load by resuspension in Tampa Bay and in other coastal areas 

(Chen et al. 2007b; Chen et al. 2007c; Hu et al. 2004; Miller et al. 2004). Wind stress is a well-

known driver of sediment resuspension (Demers et al. 1987; Madsen et al. 1993; Schoen et al. 

2014; Sheng and Lick 1979). In Tampa Bay, turbidity is directly related to seasonal wind 

forcing, especially in the lower segment of the estuary (Chen et al., 2007b; Chen et al. 2010). 

 

1.1 Study Area 

The Tampa Bay watershed has historically been divided into segments (Janicki et al., 2001; 

see Figure 1). The landward extent of the watershed for each segment was defined using the 

level 8 hydrologic units of the Tampa Bay watershed. Each land cover map (described below) 
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was clipped to match the watershed for each bay segment. The Hillsborough Bay (HB) 

watershed (3,192 km2) is dominated by wetland and agricultural land. We limited Old Tampa 

Bay (OTB) to the area north of a causeway (specifically Gandy Bridge) because this structure 

limits water exchange with the rest of Tampa Bay (Zhu et al. 2014). Figure 2 shows the gap we 

created by limiting the coverage of what is formally known as OTB. The OTB watershed (822 

km2) is dominated by developed land and wetland. The Middle Tampa Bay (MTB) watershed 

(1,073 km2) is dominated by agricultural land and wetland. Land cover area from each of these 

segments was combined for an aggregated assessment (hereafter referred to as Bay-Wide or 

Upper TB). The Lower TB segment was excluded from this study because water quality here is 

more strongly influenced by oceanographic processes of exchange with the Gulf of Mexico than 

by the adjacent watershed (Zhu et al. 2014). Thirty-year precipitation and temperature normals 

based on data during the period 1981-2010 from this station are presented in Table 1. 
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Figure 1. The Tampa Bay watershed study area as defined by the National Estuary 

Program. The map shows drainage basins (black polygons) as per hydrologic unit code-8 (HUC-

8), and watersheds for Old Tampa Bay (red), Hillsborough Bay (green) and Middle Tampa Bay 

(blue). 

 

Table 1. Annual and seasonal precipitation and temperature normals (1981-2010). 

Season Precip (cm) Min Tmp (°C) Avg Tmp (°C) Max Tmp (°C) 

Annual 117.6 18.4 23.0 27.6 

DJF 19.1 11.9 16.9 21.9 

JJA 54.7 24.2 28.2 32.2 

MAM 18.2 17.6 22.6 27.5 

SON 25.7 19.8 24.3 28.8 
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1.2 Hypotheses 

The following null hypotheses guided this study:  

1. Neither bay-segment nor bay-wide water-quality are significantly related to land cover, 

precipitation, or wind stress (p < 0.05); 

2. Neither bay-segment nor bay-wide periods of high turbidity or high chlorophyll 

concentration are significantly related to land cover, precipitation, or wind stress (p < 

0.05); 

3. Neither bay-segment nor bay-wide periods of low turbidity or low chlorophyll 

concentration are significantly related to land cover, precipitation or wind stress (p < 

0.05); 

We examined precipitation, wind stress, and historical land use changes as possible drivers of 

changes in water quality within Tampa Bay over the period 1970s-2010. Turbidity and 

chlorophyll concentration served as indices of water quality. Analyses focused on possible 

relationships between water quality within each segment of the bay and changes in the 

watershed. A similar analysis was done for bay-wide conditions. We examined changes over 

time since the 1970’s, within annual periods as well as during periods of high and low turbidity 

and chlorophyll concentration separately. 

  

2. Materials and Methods 

2.1 Land Cover Data 

Land cover maps were downloaded from the United States Geological Survey (USGS) 

Enhanced Historical Land-Use and Land-Cover Data Sets 

(http://water.usgs.gov/GIS/dsdl/ds240/index.html) and the National Oceanic and Atmospheric 
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Administration (NOAA) Coastal-Change Analysis Program (C-CAP; 

http://csc.noaa.gov/ccapftp/). The former was created using high-altitude aerial photographs of 

the U.S. collected in 1970-1985. The USGS land cover datasets were created to support the 

National Water-Quality Assessment Program and other environmental impact assessments 

(Anderson et al., 1976; Price et al., 2007). The data represent the initial land cover status (1970-

1985; Figure 2) and will hereafter be referred to as the 1977 map as the central year of this 

period. The specific date of each classified region within this period is not documented. The 

USGS maps were digitized at a scale of 1:250,000. The minimum size of most class polygons is 

4 hectares, although for some it is 16 hectares. Seven class groups were identified for this region: 

urban or built-up land, agricultural land, rangeland, forest land, water, wetland, and barren land. 

NOAA C-CAP maps were created from the National Land Cover Database (NLCD). These 

were derived from 30 meter spatial resolution Landsat satellite images. Each mapped product 

was based on imagery from multiple years centered on a nominal date, specifically 1996 (1995-

1997), 2001 (2000-2002), 2006 (2005-2007), and 2010 (2009-2011) (Figure 2). Multiple years of 

satellite imagery were required to create the maps to minimize interference from cloud cover. C-

CAP maps for this region include class groups similar to those described above from the USGS: 

developed land, agricultural land, grassland, forest land, scrubland, barren land, palustrine 

wetland, estuarine wetlands, and water and submerged lands. Based on the definitions of the 

classes, C-CAP grassland and scrubland classes were merged into one ‘rangeland’ class for 

consistency with the USGS maps. 
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Figure 2. Top panel: USGS map representing land use classes for 1970-1985. Bottom 

panel: C-CAP map representing land use classes during the three-year period centered on 2010 

(2009-2011). 

 

A comparison of the USGS and NOAA land use products with wetland maps produced by the 

National Wetlands Inventory (NWI) and the Southwest Florida Water Management District 

(SWFWMD) (Rains et al. 2012) suggested that the USGS and NOAA products substantially 

overestimate wetland area at the expense of forest area. C-CAP maps show over 2,000 km2 of 
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wetlands for 1996, 2001, and 2006. NWI and SWFWMD report approximately 800-900 km2 in 

wetlands for the same time periods. A previous C-CAP accuracy assessment indeed reports high 

errors of omission and of commission (up to 94%) for wetland and forest classes (Assessment 

Report 2013). To minimize biases in our conclusions, we merged wetland and forest land classes 

for USGS and C-CAP maps into one forest/wetland class.  

 

2.2 Water Quality Data 

In situ water quality data for each segment of the Tampa Bay estuary were obtained from 

the Environmental Protection Commission of Hillsborough County (EPCHC; the Tampa Bay 

Water Atlas: http://www.tampabay.wateratlas.usf.edu). Samples were collected monthly at over 

60 stations in Tampa Bay. Anomalously high turbidity values (i.e. turbidity >24 NTU) were 

removed following Chen et al. (2010). Data were averaged over the following epochs to match 

the land cover map periods: 1976-1978, 1995-1997, 2000-2002, 2005-2007, and 2009-2011. The 

first epoch (1976-1978) was chosen as the middle three years of the USGS land cover map 

period, instead of the entire period (1970-1985), to maintain consistency with the other three-

year epochs examined. 

Monthly water-quality climatologies (averages calculated for each month from every year 

of available data) were computed based on data from 1974-2011. These climatologies were used  

to identify periods of higher or lower turbidity, and higher or lower chlorophyll concentration. 

Periods of reduced and enhanced water-quality were assessed separately to help understand 

possible interactions between land cover and precipitation-driven runoff on water quality. 

Separating these seasons as opposed to conducting an analysis that simply aggregates data by 
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epoch over entire annual periods helped to minimize possible confounding of zero-precipitation 

periods and the land cover change. 

High-turbidity and high-chlorophyll periods were identified as those months in which 

climatology values exceeded the climatological average plus one standard deviation. Low-

turbidity and low-chlorophyll periods were identified simply as those months in which 

climatology values fell below the climatological mean. High-turbidity and low-turbidity months 

were examined separately from high-chlorophyll and low-chlorophyll months. Low turbidity and 

low chlorophyll months represent “background” water quality conditions. Averages for each of 

those periods, and annual overall averages, were computed for all epochs. These were used as the 

“response variable” in analyses over the corresponding epochs. 

 

2.3 Meteorological Data 

 Daily precipitation and wind speed data for Tampa International Airport (1893-2012) 

were downloaded from the National Climate Data Center (NCDC; http://www.ncdc.noaa.gov/). 

These data were binned to monthly values using MatlabTM. Precipitation was assumed to have a 

cumulative effect and was therefore binned monthly by summing daily data. Daily East-West (u) 

and North-South (v) wind components were averaged separately before recombining to compute 

average daily wind speed and direction (see method of Gilhousen 1987). Wind stress was 

computed from the daily wind speed data (Equation 1), and binned as monthly averages (Wu 

1969). 

Equation 1:     

where CD is a drag coefficient (1.2 x 10-3), ρair is the density of air (1.22 kg/m3), and U is wind 

velocity. 
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Averages of monthly precipitation and wind stress were computed for annual, high, and low 

water-quality periods. Both meteorological variables (precipitation and wind stress) were used as 

explanatory variables. 

 

2.4 Statistical Analyses 

Standard normal homogeneity tests (SNHT) were run on all variables (wind speed was used 

to represent wind stress) to find breaks in the datasets which may indicate changes in sampling 

technique or location. Significance values were computed using 10,000 Monte Carlo simulations. 

Mann-Kendall Trend Tests (MK) were run on each time series of monthly values to evaluate 

possible trends (Mei et al. 2014). 

Multiple regressions alone would be insufficient for this study because of the high ratio of 

explanatory variables to sample size (9:5). Therefore, Redundancy Analyses with Akaike’s 

Information Criterion (RDA AIC) were used first to identify those explanatory variables that 

explained the most variation in the response variable. These analyses were conducted using 

MatlabTM. The RDA AIC function standardized all input explanatory variables and determined 

the best explanatory variables through constrained ordination. This assessed how much of the 

variation in one set of variables explained variation in another set, while accounting for 

explanatory variable multicollinearity (Wollenberg 1977). Akaike (1973) proposed an 

information criterion to quantify the amount of information and statistically determine the 

number of parameters for an equation that represents a group of experimental data. The equation 

with the minimum AIC is considered the best representation of the experimental data (Yamaoka 

et al. 1978). A null model is created by assigning a value below which the best equation’s AIC 
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value must be in order to be considered viable to explain variation in the dependent variable. If 

no equation explains more variation than a null model, no independent variable is selected. 

Multiple regressions were run on the variable(s) identified as ‘best’ by the RDA AIC. One 

thousand iterations were run for each regression to compute permutation-based p-values because 

much of the data were not normally distributed. Finally, an outlier test was run on all significant 

relationships because any one outlier could have significantly influenced results sice we only 

have five sample epochs. For each observation, an outlying value was identified as exceeding 

‘N’ divided by the sum of squared differences, normalized by subtracting the median and 

dividing by the median absolute deviation (i.e. median of absolute value of each sample minus 

the median of the array). Breiman and Cutler (2003) suggested that values >10 be considered 

outliers when using this method. 

 

3. Results 

Percent of watershed area that was covered by each class for each map epoch are shown in 

Tables 2-5. Total percent is shown at the bottom of each table. This number is <100 for each 

1970s map because these used an additional class called “transitional areas”. “Transitional areas” 

were defined “by the lack of remote sensor information which could enable the interpreter to 

predict reliably the future use or discern the past use” (Anderson et al. 1976). Because land of 

this class could not be accurately described, and it could not be reconciled with any C-CAP class, 

it was excluded from this analysis. Percent cover of each class for each bay segment is shown in 

Tables 2-5. 

Turbidity and chlorophyll averages for each segment and respective segment area are 

presented in Table 6. Upper Tampa Bay turbidity and chlorophyll, and Tampa International 
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Airport precipitation, wind speed time series, and climatologies are shown in Figure 3. Monthly 

turbidity and chlorophyll climatologies for each bay segment and Upper Tampa Bay are shown 

in Figures 4 and 5. Table 7 lists the months that were identified for each bay segment as “high” 

and “low” for turbidity and chlorophyll. 

SNHT evaluations found significant changes in wind speed, chlorophyll concentration, and 

turbidity time series. The time series of wind speed shows a significant decrease in values 

starting in May 1993. The mean of the data before May 1993 was 3.45 m/s and average wind 

speed decreased gradually over time through December 2012, to give an average of 3.02 m/s for 

this period following the break (Figure 6a). Bay-wide chlorophyll concentration showed a 

change in December of 1983. The mean of the data prior to December 1983 was 16.1 mg/m3, and 

9.6 mg/m3afterward (Figure 6b). This change corresponds to the period of intensive wastewater 

treatment plant improvements, but it also marks a period of substantial increase in turbidity in 

Tampa Bay. Bay-wide turbidity showed marked variability over time. Turbidity was about 5 

NTU on average before 1989. Turbidity was anomalously high between 1990 and 1993. The 

mean of the data after this period was about 3.4 NTU (Figure 6c). Precipitation data tested as 

homogenous (i.e. no apparent mid-series breaks; Figure 6d). 

 

Table 2. Hillsborough Bay land cover class as percent of watershed. 

 1970s 1996 2001 2006 2010 

Developed 17.5 16.6 18.9 19.2 18.2 

Agriculture 39.1 22.0 21.4 20.9 23.5 

Forest/Wetland 17.7 43.9 43.5 42.7 38.3 

Unconsolidated 

Shore 0.0 0.0 0.0 0.0 0.0 

Bare 4.3 1.5 1.7 2.3 2.0 

Water 5.1 4.8 4.7 5.4 5.5 

Range 15.6 11.2 9.8 9.6 12.6 

Total 99.4 100.0 100.0 100.0 100.0 
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Table 3. Old Tampa Bay land cover class as percent of watershed. 

 1970s 1996 2001 2006 2010 

Developed 27.0 34.8 38.1 38.2 36.0 

Agriculture 24.3 7.3 6.6 6.5 10.1 

Forest/Wetland 10.4 28.7 27.7 27.6 25.5 

Unconsolidated 

Shore 0.0 0.0 0.0 0.0 0.0 

Bare 0.3 0.5 0.1 0.2 0.1 

Water 25.7 24.6 24.6 24.7 24.8 

Range 10.9 4.0 2.9 2.8 3.5 

Total 98.7 100.0 100.0 100.0 100.0 

 

Table 4. Middle Tampa Bay land cover class as percent of watershed. 

 1970s 1996 2001 2006 2010 

Developed 7.2 9.5 10.2 10.6 10.6 

Agriculture 33.5 31.7 30.0 28.1 27.2 

Forest/Wetland 12.0 26.5 26.3 25.3 22.8 

Unconsolidated 

Shore 0.0 0.0 0.0 0.0 0.1 

Bare 0.0 1.0 2.8 3.7 3.4 

Water 25.4 26.2 26.1 27.4 27.7 

Range 20.9 5.2 4.6 4.9 8.3 

Total 99.0 100.0 100.0 100.0 100.0 

 

Table 5. Upper Tampa Bay land cover class as percent of watershed. 

 1970s 1996 2001 2006 2010 

Developed 16.9 18.0 20.2 20.5 19.5 

Agriculture 35.5 21.7 20.8 20.1 22.1 

Forest/Wetland 15.4 37.8 37.3 36.6 32.9 

Unconsolidated 

Shore 0.0 0.0 0.0 0.0 0.0 

Bare 2.8 1.2 1.7 2.2 2.0 

Water 12.7 12.5 12.4 13.2 13.3 

Range 15.9 8.8 7.6 7.5 10.2 

Total 99.2 100 100 100 100 

 

Table 6. Average turbidity and chlorophyll concentrations for the study areas with their 

respective bay and watershed areas (1974-2012). 

Region Avg. Turbidity 

(NTU) 

Avg. Chlorophyll 

(mg/m3) 

Bay Area (km2) Watershed Area 

(km2) 

Upper TB 3.65 9.92 676 5,088 

OTB 3.83 9.77 204 822 

HB 4.81 14.56 175 3,192 

MTB 3.26 7.38 298 1,073 
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Figure 3. Monthly time series (blue) and mean annual cycle (red) for bay-wide turbidity 

and chlorophyll, and Tampa International Airport precipitation and wind speed. 

 

 

Figure 4. Monthly turbidity climatologies for each bay segment and Upper Tampa Bay. 
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Figure 5. Monthly chlorophyll climatologies for each bay segment and Upper Tampa Bay. 

 

Table 7. Months corresponding to high and low turbidity and chlorophyll for each bay segment.  

 High Turbidity 

Months 

Low Turbidity 

Months 

High Chlorophyll 

Months 

Low Chlorophyll 

Months 

Upper TB Apr, May Jan, Feb, Mar, 

Nov, Dec 

Aug, Sep, Oct Jan-Jun, Dec 

HB Apr, May Jan, Feb, Jul, 

Aug, Oct, Dec 

Jul, Aug, Sep Jan-Jun, Nov, Dec 

OTB May Jan, Feb, Mar, 

Nov, Dec 

Aug, Sep, Oct Jan-May, Dec 

MTB Apr Jan, Feb, Nov, 

Dec 

Jul-Oct Jan-May, Dec 
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a 

b

 

c
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Figure 6. Monthly time series plots of bay-wide wind speed, chlorophyll concentration, turbidity 

and precipitation with averages (mu) of break periods where applicable as identified by SNHT 

tests. 

 

SNHT evaluations on monthly turbidity (Figure 7a-c) and chlorophyll concentration (Figure 

8a-c) binned within each bay segment also show discontinuities. Turbidity breaks occurred in 

June of 1997, May of 1996, and June of 2000 for HB, OTB and MTB, respectively. The means 

of the data before and after the breaks were 6.55 NTU and 4.21 NTU (HB), 5.05 NTU and 3.41 

NTU (OTB), and 4.21 NTU and 2.70 NTU (MTB). All three breaks follow a period of high 

turbidity that was sustained for several years during the early 1990’s. 

Chlorophyll concentration breaks occurred in December of 1983, January of 1984, and 

December of 1985 for HB, OTB and MTB, respectively. Again, these changes coincide with the 

initial indications of the increase in turbidity leading to the turbidity maxima observed in the 

early 1990’s. The means of the data before and after the breaks were 26.48 mg/m3 and 12.91 

mg/m3 (HB), 13.52 mg/m3 and 9.50 mg/m3 (OTB), and 12.78 mg/m3 and 7.14 mg/m3 (MTB). 

d

 



55 
 

 

 

 
Figure 7. Monthly time series plots of turbidity for HB (a), OTB (b) and MTB (c) with averages 

(mu) of break periods, where applicable, as identified by SNHT tests. 

a

 

b

 

c
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Figure 8. Monthly time series plots of chlorophyll concentration for HB (a), OTB (b) and MTB 

(c) with averages (mu) of break periods where applicable as identified by SNHT tests. 

a

 

b

 

c
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MTB

 



57 
 

 

MK tests found that monthly wind speed and stress decreased significantly (p < 0.017) every 

month during this 39-year period. No trends were found in monthly precipitation with the 

exception of marginally significant increases in April and decreases in May (p = 0.02 and p = 

0.068, respectively). Bay-wide chlorophyll concentration decreased significantly every month (p 

< 0.022) except for September and October, during which it showed no change (p > 0.1). On 

average, bay-wide turbidity also decreased every month (p < 0.05) except for August and 

September, which again showed no change (p > 0.1). The months with no trend in turbidity 

coincided with the months showing peak chlorophyll concentration.  

Variables identified as ‘best’ by RDA AIC analyses are presented here with the corresponding 

multiple regression results (Tables 8-9). OTB year-round turbidity was significantly negatively 

related to developed land percent cover (R2 = 0.76, p = 0.001; Figure 9a). MTB year-round 

turbidity was significantly positively related to agricultural land percent cover (R2 = 0.97, p = 

0.001; Figure 9b). None of our variables explained HB year-round turbidity patterns over time. 

Similar trends were observed for high turbidity months. OTB high-turbidity was significantly 

negatively related to developed land percent cover (R2 = 0.92, p = 0.001; Figure 9c). MTB high-

turbidity was significantly positively related to agricultural land percent cover (R2 = 0.93, p = 

0.021; Figure 9d). No variable explained HB high-turbidity. 

During low-turbidity months, MTB turbidity was significantly positively related to 

agricultural land percent cover (R2 = 0.98, p = 0.001; Figure 9e). HB low-turbidity was also 

significantly positively related to wind stress (R2 = 0.91, p = 0.041; Figure 9f). This suggests 

that, during background turbidity months, increased wind stress led to an increase in turbidity. 

No variable could explain OTB low-turbidity better than a null model during this period. 
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HB year-round chlorophyll concentration was significantly positively related to agricultural 

land percent cover (R2 = 0.96, p = 0.001). This relationship was heavily influenced by an outlier 

in 1977, which, when removed, rendered the relationship insignificant. MTB year-round 

chlorophyll was significantly negatively related to developed land percent cover (R2 = 0.98, p = 

0.019; Figure 10a). OTB year-round chlorophyll was negatively related to developed land 

percent cover, but the relationship was only marginally significant (R2 = 0.86, p = 0.095). 

During high-chlorophyll months, HB chlorophyll was significantly negatively related to 

forest/wetland percent cover (R2 = 0.91, p = 0.001). Again, this relationship was influenced by 

an outlier in 1977, which, when removed, rendered the relationship insignificant. MTB high-

chlorophyll was found to be significantly negatively related to bare land percent cover (R2 = 

0.77, p = 0.001; Figure 10b) during this period. No variable could explain OTB high-chlorophyll 

better than a null model. 

During low-chlorophyll months, HB chlorophyll was significantly positively related to 

agricultural land percent cover (R2 = 0.98, p = 0.001), but this relationship was heavily 

influenced by an outlier in 1977, which, when removed, rendered the relationship insignificant. 

OTB low chlorophyll was found to be significantly negatively related to developed land percent 

cover (R2 = 0.92, p = 0.001), but this relationship was also heavily influenced by an outlier in 

1977, which, when removed, rendered the relationship insignificant. MTB low chlorophyll was 

found to be significantly negatively related to developed land percent cover (R2 = 0.97, p = 0.02; 

Figure 10c). 

Analyses for the entire upper bay found that year-round turbidity was significantly negatively 

related to developed land percent cover (R2 = 0.76, p = 0.02; Figure 11a). Year-round 

chlorophyll was significantly positively related to agricultural land percent cover (R2 = 0.97, p = 



59 
 

0.001). This relationship was influenced by an outlier in 1977, which, when removed, renders the 

relationship the insignificant. Bay-wide high turbidity was significantly negatively related to 

developed land percent cover (R2 = 0.83, p = 0.02; Figure 11b), but no variable could explain 

bay-wide low turbidity better than a null model. Bay-wide high chlorophyll was negatively 

related to developed land percent cover (R2 = 0.82, p = 0.043; Figure 11c). An outlier influenced 

the otherwise significant bay-wide low-chlorophyll relationship with agricultural land percent 

cover and rendered it insignificant when removed. 

Table 8. RDA AIC-identified ‘best’ variables and multiple regression results for land cover, 

precipitation, and wind stress vs. turbidity for the Tampa Bay estuary and each segment. “Agr” 

refers to agricultural land. “Dev” refers to developed land. 
 Tampa Bay OTB HB MTB 

Period Variable R2 p Variable R2 p Variable R2 p Variable R2 p 

Annual Dev 0.76 0.02 Dev 0.76 0.001 None N/A N/A Agr 0.97 0.001 

HT Dev 0.83 0.02 Dev 0.92 0.001 None N/A N/A Agr 0.93 0.021 

LT None N/A N/A None N/A N/A Wind 

Stress 

0.91 0.041 Agr 0.98 0.001 

 

 

Table 9. RDA AIC-identified ‘best’ variables and multiple regression results for land cover, 

precipitation, and wind stress vs. chlorophyll for the entire Tampa Bay estuary and for each 

separate segment (italics indicates a relationship that was skewed by an outlier). “Agr” refers to 

agricultural land. “Dev” refers to developed land. “For/Wet” refers to the combined 

Forest/Wetland class. 
 Tampa Bay OTB HB MTB 

Period Variable R2 p Variable R2 p Variable R2 p Variable R2 p 

Annual Agr 0.97 0.001 Dev 0.86 0.095 Agr 0.96 0.001 Dev 0.98 0.019 

HC Dev 0.82 0.043 None N/A N/A For/Wet 0.91 0.001 Bare 0.77 0.001 

LC Agr 0.98 0.001 Dev 0.92 0.001 Agr 0.98 0.001 Dev 0.97 0.02 
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Figure 9. (a) Plot of annual average turbidity in Old Tampa Bay against developed land percent 

cover. (b) Plot of annual average turbidity in Middle Tampa Bay against agricultural land percent 

cover. (c) Plot of high-period turbidity in Old Tampa Bay against developed land percent cover. 

(d) Plot of high-period turbidity in Middle Tampa Bay against agricultural land percent cover. (e) 

a b 

c d 

e f 
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Plot of low-period turbidity in Middle Tampa Bay against agricultural land percent cover. (f) 

Plot of low-period turbidity in Hillsborough Bay against wind stress. 

 

 

 

 
Figure 10. (a) Plot of annual chlorophyll concentration in Middle Tampa Bay against developed 

land percent cover. (b) Plot of high-period chlorophyll concentration in Middle Tampa Bay 

against bare land percent cover. (c) Plot of low-period chlorophyll concentration in Middle 

Tampa Bay against developed land percent cover. 
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Figure 11. (a) Plot of annual turbidity in Upper TB against developed land percent cover. (b) Plot 

of high-period turbidity in Upper TB against developed land percent cover. (c) Plot of high-

period chlorophyll concentration in Upper TB against developed land percent cover. 

 

4. Discussion 

Overall, monthly turbidity and chlorophyll in Tampa Bay show decreasing trends for all 

months from 1974 to 2011 (p < 0.05) except for August, September, and October, for which they 

show no significant trend. These three months correspond to the annual chlorophyll 

concentration peaks (Table 7), which follow summer precipitation maxima for the region (Figure 

12). The lack of a significant trend in summer chlorophyll concentration over the study period 

suggests that variables or policies that have effected improved water quality for the rest of the 

year have had minimal impact on peak chlorophyll each year.  

a

 

b

 

c
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Figure 12. Monthly climatologies of bay-wide turbidity and chlorophyll, and Tampa 

International Airport precipitation and wind speed. 

 

Increasing urbanization led to a three-fold increase in developed-land within the Tampa Bay 

watershed from 1991-2002. Developed land replaced other land cover classes. This has led to a 

significant increase in impervious land surface in the watershed and resulted in increased surface 

rainfall runoff in a watershed dominated by karst geology that otherwise would allow percolation 

(Xian and Crane 2005). Developed land percent cover showed a significant inverse relationship 

with both annual and high turbidity periods, as well as high chlorophyll concentration periods. 

As developed land area increased, turbidity and chlorophyll concentration decreased, especially 

during the low discharge season. This is consistent with previous research that concluded that 

increased impervious surfaces associated with developed land cover leads to sediment-free 

runoff and lower total suspended solid concentrations compared with agricultural watersheds 

(Estes et al. 2009; Miller et al. 2011; Moreno Madriñán et al. 2012). 

Interannual variation in turbidity and chlorophyll in Tampa Bay were strongly affected by 

land cover changes, but they are also consistent with the long-term weakening of the wind. The 

changing turbidity and chlorophyll concentrations are otherwise inconsistent with the lack of a 
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long-term trend in precipitation. Normally, increased precipitation is expected to diminish water 

quality. In some areas of the bay, such as in MTB, low-turbidity was significantly related to 

agricultural land percent cover. Agriculture may modulate water quality through irrigation and 

changes in fertilizer application practices, and thus a connection with precipitation is not always 

obvious. Overall, turbidity was most clearly and significantly related to wind stress during the 

low-turbidity months in HB. Wind stress is also an important driver on very short time scales 

(i.e. hours; see Chen et al. 2010; Demers et al. 1987). 

Annual, high, and low turbidity periods were significantly positively related to agricultural 

land percent cover in MTB. Annual and low chlorophyll concentration periods were also 

significantly related to agricultural land percent cover in HB and the entire upper bay, but these 

relationships were influenced by outliers. All outliers identified occurred in the 1977 period and 

appear to be due largely to land cover changes. The period between 1977 and 1996 experienced 

significant growth and thus may appear as outliers relative to change over the shorter gaps in 

subsequent land use assessments. In any case, turbidity and chlorophyll in Tampa Bay segments 

always decreased with decreased agricultural land; similar to what has been found elsewhere 

(Harding et al. 1999; Schlosser and Karr 2007; Sharpley et al. 1994). 

Different segments of Tampa Bay have different, localized water quality drivers. OTB is 

separated by a peninsula from HB and lacks the large riverine influxes of HB and MTB. OTB is 

also traversed by three causeways and bridges that impact flushing time (Zhu et al. 2014). The 

only variable assessed here that had an influence on OTB annual or periodic turbidity or 

chlorophyll concentration was developed land percent cover. 

HB is the smallest of the three bay segments, but it has the largest watershed and the highest 

average turbidity observed over the study period (Table 2). The only variable found to be 
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significantly related to turbidity here was wind stress. Higher wind stress led to increased 

turbidity during low-turbidity periods (Figure 9f). Winds likely led to resuspension of sediments 

(Demers et al. 1987; Madsen et al. 1993; Schoen et al. 2014; Sheng and Lick 1979). No variables 

were significantly related to chlorophyll concentration when outliers were removed. HB annual 

and high turbidity periods were not found to be significantly related to any variable, which may 

be a reflection of the minimal (0.62%) change in developed land in this watershed from the 

1970s to 2010 relative to respective changes in OTB (9.03%) and MTB (3.39%). 

The number of sampling observations of this study was limited to the epochs for which land 

cover maps were available. The analysis spans four decades. One variable, specifically 

developed land percent cover, was consistently the most strongly and significantly related to 

water quality (Figure 13). Our results indicate that increased developed land percent cover was 

strongly associated with continued decrease in turbidity and chlorophyll concentration over time. 

The effect may be due to both increased low-sediment runoff during precipitation events, as well 

as to reduced inputs of nutrients and sediments due to reduced agricultural land cover.  Other 

studies that have assessed other water quality parameters (e.g. pollution, nitrate concentration, 

pH, sulfate concentration) found positive relationships with developed land cover (Burgos-

Caraballo et al. 2014; Coulter et al. 2004; Ren et al. 2003). Clearly, “water quality” is a complex 

concept that must be defined appropriately for the research question being assessed. In any case, 

given the extensive efforts to improve point-source pollution to Tampa Bay, there is likely a 

dynamic combination of targeted pollution reduction and non-point source land cover change 

that has contributed to the general water quality improvement in the bay over the past 40 years. 

Constraining the contribution of each land cover type is difficult. Greening and Janicki (2014) 

point out that the substantial decrease of point source pollution to the bay has led to an increase 
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in the relative contribution of non-point source pollution. Therefore, identifying substantial non-

point sources and evaluating their trends and impacts on Tampa Bay are essential for continued 

water quality improvement. 

Tampa Bay has also undergone substantial changes as a result of concerted efforts to restore 

wetland and seagrass coverage to historic levels, and reduce point- and non-point-source 

pollution. Starting in 1992, almost 1,000 individual projects designed to restore seagrass and 

reduce pollution may have also contributed to improved long-term water-quality conditions 

(https://apdb.tbeptech.org/). Efforts like these should be considered by managers for their 

relevance to addressing water-quality issues, but were beyond the scope of this work. There was 

also a period of substantially elevated turbidity (Figure 3) spanning the late-1980’s to early-

1990’s that did not coincide with land cover map years and was therefore not evaluated here, but 

is worth evaluating further in future research. No independent variables appeared to explain this 

prolonged deviation, which suggests that additional elements not investigated here (e.g. channel-

dredging activities) may substantially influence water quality. 

 
Figure 13. Plot of Tampa Bay-wide turbidity with developed land percent of watershed area 

for each epoch. 
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5. Conclusions 

Land cover and water quality show a relationship in Tampa Bay from scales spanning local 

river mouths to the entire estuary. The long-term decrease in turbidity and chlorophyll 

concentration shows a strong negative correlation with developed land percent cover. There was 

no clear long-term change in precipitation between the 1970’s and the 2000’s, but the trend in 

water quality may have also been in part driven by a small decrease in average annual wind 

speed over the study period. 

Changes in agricultural land cover were significantly related to turbidity only for MTB. 

Improving water quality in this bay segment seems to have been related to the decrease in 

agricultural land use in the adjacent watershed. Wind stress was significantly positively related to 

low-turbidity periods in HB (i.e. higher wind stress was correlated with higher turbidity during 

these generally low-turbidity months). There was no relationship between precipitation and 

turbidity or chlorophyll concentration over any spatial scale or period. The increase of 

impervious cover likely led to increased low-nutrient and low-sediment runoff, which helped 

improve water quality. Future research should focus on higher temporal resolution data and 

extreme events to identify drivers of short-term water quality events that may have greater 

impact on the bay’s overall health as inter-annual water quality continues to improve. 
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Abstract 

 Global coastal and freshwater wetlands provide ecosystem services valued at over 

$200,000 USD per hectare per year. Despite their value, wetlands continue to be lost at alarming 

rates worldwide, with as much as 71% of global wetland extent being converted to other land-

cover types since 1900. Targeted conservation and restoration efforts, however, have proven 

successful, particularly in Europe and North America. Such efforts require accurate protocols to 

identify, assess, and map wetlands repeatedly to enable detection of change. High-resolution (i.e. 

2-meter pixel) satellite imagery has proven effective to map wetlands at higher accuracies than 

historical 30-meter or coarser satellite data. We describe a method to process and classify high 

volumes of multispectral high-resolution satellite data to update land cover and land use maps. 

We show the results of a study conducted with 130 2-meter resolution WorldView-2 satellite 

images to map forested wetland, upland, water, bare land, and developed lands in a 6,500 km2 

watershed. The processing of the land cover map was completed in under 24 hours and was more 

accurate at identifying forested wetland (78%) and upland (64%) than three previous, widely 

used maps of the same area (45–65%, and 49–53%, respectively). This method offers high 

potential for monitoring change in coastal areas and adjacent watersheds over large geographic 

scales. 

 

Keywords: land cover classification, wetlands, mangroves, Tampa Bay, WorldView-2 

 

1. Introduction 

Wetlands provide a host of essential ecosystem services including nutrient removal, 

carbon sequestration, shoreline stabilization, flood prevention, and provision of habitat for 

numerous species of protected or commercially and recreationally important fish, birds, and 

invertebrates (Barbier, 2015; Barbier et al., 2011; Lewis et al., 1985; Martin et al., 2016; Mcleod 

et al., 2011). De Groot et al. (2012) estimated the value of tidal and freshwater wetlands at 

$193,845 and $25,682 USD per hectare per year, respectively – second only to coral reefs in 

terms of global ecosystem value. Despite increasing recognition of the importance of their 
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ecosystem services, wetlands continue to be lost at unprecedented rates worldwide. Globally, 

tidal wetland cover is expected to decline at a rate of 0.7 – 3.0% per year, with freshwater 

wetlands disappearing at about 1% per year (Davidson, 2014; Mcleod et al., 2011). Local losses 

within smaller geographic areas, including individual watersheds and estuaries may be 

significantly higher than the global average (Davidson 2014). Prior to the 1850s, Florida is 

estimated to have contained 8.2 million hectares of wetlands. Today, roughly half of these 

swamps and marshes have been lost to draining, flooding, and human development (Dahl 2005). 

Coastal wetlands in Florida, which include mangrove, salt marsh, and salt barren habitats, have 

suffered extensive losses to human development in the early- and mid-1900’s as a result of 

concentrated human development along the coast (Lewis et al., 1985; Sherwood and Greening, 

2014).  

Management of human activities to conserve and restore wetland resources and services 

requires accurate and up-to-date mapping of these critical ecosystems. Yet wetland cover has 

been historically difficult to assess. These areas are typically difficult to access, and mapping 

using field efforts is time-intensive, even for relatively small areas. Remote sensing has served as 

a valuable tool to evaluate land cover and wetland habitat extent since the 1960's (see references 

in Tiner et al., 2015). Common remote sensing tools to map wetlands include aerial photography 

and videography, hyperspectral sensors, radar and LiDAR, and high- and medium-resolution 

multispectral and radar satellite images (Klemas, 2009; Kuenzer et al., 2011; McCarthy et al., 

2015). Aerial photographs are useful for location-specific projects as they provide excellent 

spatial resolution that can be used to create detailed maps at a relatively low cost (Tiner, 1997). 

However, the cost of aerial imagery increases with spatial and repeat coverage. 
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Satellite data offers a cost-effective option for large-scale projects with spatially 

continuous coverage (Green et al., 1998; Keunzer et al., 2011; Tiner et al., 2015). Additionally, 

digital data from satellite imagery enable efficient and rapid classifications through automated 

methods that have been shown to improve accuracy over aerial photo interpretations (Tiner et al., 

2015). Medium-resolution imagery from the series of Landsat and SPOT satellite sensors have 

been used since the 1980's for the classification of land cover types and change detection over 

large scales, at a spatial resolution of 10–30 m pixels. Higher resolution satellite imagery (i.e., 

meter-scale pixels) enables study of details such as plant species, damage following severe 

weather, or fine-scale habitat mapping (Klemas, 2009; Keunzer et al., 2011; McCarthy et al., 

2015). The accuracy of habitat maps depends both upon the spatial and spectral resolutions of the 

data, the preprocessing methods applied, and the accuracy of the algorithm to discern the spectral 

signature of the target habitats (Green et al., 1998; Hestir et al., 2015; Klemas, 2014; Klemas, 

2013a, b; Turpie et al., 2015; Turpie, 2013). 

Mapping mangroves and other forested wetlands is complicated by the variety of 

substrates, species, and adjacent habitats associated with these complex ecosystems. Many 

mangroves are intermixed with other salt marsh or upland vegetation that grows in pockets of 

higher elevation. For example, in Florida, mangrove landscapes are also often interrupted by 

mosquito ditching and adjacent spoil piles, which are then vegetated by invasive non-wetland 

species such as Brazilian pepper (Schinus terebinthifolius) (Smith et al., 2007). Mangroves in the 

oligohaline reaches of estuaries are often intermixed with transitional upland and freshwater 

vegetation. The spectral signature of mangroves also varies with species, physiology and health, 

age, and season (Blasco et al., 1998; Kuenzer et al., 2011; Wang et al., 2008). Despite this 

variability among and within wetland habitats, similarities in spectral characteristics enable 
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differentiation between wetland and upland vegetation through the use of digital classification 

techniques, including unsupervised and supervised statistical methods, spectral indices, object-

based analysis, and more (Carle et al., 2014; Chakravortty, 2013; Gianinetto et al., 2014; Giri et 

al., 2011; Jia et al., 2014; Kamal and Phinn, 2011; Wang et al., 2004). Ground truthing is used to 

assess the accuracy of habitat maps, but many mangrove maps lack these assessments due to the 

difficulty of accessing the wetland (Green et al., 1998).  

Recent studies have capitalized on the enhanced spatial resolution of new satellite 

sensors. These data can provide greater accuracy and precision of land cover maps by reducing 

spectral mixing caused when coarse-resolution imagery captures multiple habitats in a single 

pixel (Chen et al. 2015; McCarthy et al., 2015). MacKay et al. (2009) found that high spatial-

resolution imagery is more useful for wetland mapping than medium spatial-resolution imagery, 

even if the latter also contains greater spectral resolution. Turpie et al. (2015) also finds that the 

ability to evaluate wetland cover decreases rapidly as spatial resolution decreases (i.e. becomes 

coarser).  

The primary goal of the work presented here was to improve the accuracy and precision 

of coastal wetland cover maps, by automating the processing and classification of 2-meter 

resolution satellite imagery collected with the WorldView-2 sensor from DigitalGlobeTM. We 

describe an approach to automate the preprocessing, classification, and post-classification of 

large numbers of images of the Tampa Bay watershed in Florida. The strategy addresses large 

data volumes as well as improved land cover maps. 

 

 

3. Materials and Methods 
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3.1 Study area 

 The study focused on the Tampa Bay watershed, located in a subtropical climate zone on 

the west-central coast of the State of Florida (Figure 1). The watershed spans over 6,500 km2 and 

contains the second-largest metropolitan area in Florida, including the cities of Tampa, St. 

Petersburg, and Clearwater. Vegetation in the watershed includes mangroves, salt marshes, 

freshwater swamps, palm hammocks, hardwoods, and grass lands. Mangroves comprise 

approximately 74% of coastal wetland habitats in Tampa Bay, while salt marshes and salt 

barrens make up about 24% and 2%, respectively (Sherwood and Greening, 2014). Mangrove 

forests include three prevalent mangrove species (Rhizophora mangle, Avicennia germinans, and 

Laguncularia racemosa), and the mangrove associate buttonwood (Conocarpus erectus). The 

majority (70%) of freshwater wetlands within the Tampa Bay watershed are dominated by 

woody vegetation (SWFWMD, 2011). Common palustrine swamp species include cypress trees 

(Taxodium spp.), tupelo trees (Nyssa spp.), and an assortment of bottomland hardwood trees 

(FDOT 1999). Upland habitats contain live oaks (Quercus spp.), cabbage palms (Sabal 

palmetto), saw palmetto (Serenoa repens), and slash pine (Pinus elliotti). 
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Figure 1. Tampa Bay watershed study area. The watershed boundary, as defined by the U.S. 

Environmental Protection Agency’s National Estuary Program, is outlined in red. 

 

3.2 Satellite imagery 

We used 130 WorldView-2 satellite images acquired in 2010 (33), 2011 (20), 2012 (21), 

2013 (16), and 2014 (40) to cover the study area. The WorldView-2 satellite sensor, operated by 

DigitalGlobeTM, was launched in 2009. It collects data in eight multispectral bands of the visible 

and near-infrared (NIR; Table 1), at a nominal resolution of two meters, from an altitude of 770 

km in a sun-synchronous orbit, and a revisit time of ~1.1 days. It is capable of covering about 1 

million km2 of land area per day (DigitalGlobeTM, 2009). The four new spectral bands (coastal, 
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yellow, red edge, and near-infrared II; see Table 1) improve overall accuracy of land cover 

classifications over similar high-resolution satellite sensors with fewer spectral bands (Carle et 

al., 2014; McCarthy and Halls, 2014; Puetz et al., 2009). Images were obtained through a 

partnership with the Polar Geospatial Center (PGC, University of Minnesota), in Level-1B 

National Imagery Transmission Format (NITF) along with corresponding metadata. 

 

Table 1. WorldView-2 sensor specifications (NIR stands for Near-Infrared). 

Band 

Name 

Band 

Number 

Center 

Wavelength 

(nm) 

Band  

Coverage (nm) 

Effective 

Bandwidth 

(nm) 

Coastal B1 427 396–458 47.3 

Blue B2 478 442–515 54.3 

Green B3 546 506–586 63.0 

Yellow B4 608 584–632 37.4 

Red B5 659 624–694 57.4 

Red Edge B6 724 699–749 39.3 

NIR I B7 833 765–901 98.9 

NIR II B8 949 856–1043 99.6 

 

3.3 Preprocessing 

 Preprocessing of the imagery was done with Python code (pgc_ortho.py, available from 

the PGC, University of Minnesota) to convert the Level-1B NITF images to Level 2A GeoTIFFs 

and mapping the image to a pre-defined map projection (European Petroleum Survey 

Group/EPSG code 32617 for UTM zone 17 North and WGS84 datum). The Python code allows 

georectification using ground-control points or rational polynomial coefficients that may 

accompany a raw image, but neither option produced satisfactory results and were not used. The 

standard geolocation accuracy of 3–5 meters for raw WorldView-2 imagery was acceptable for 

the scope of this work. The optional ortho-rectification using a digital elevation model (DEM) 
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was not used as the study area comprised a coastal-plain watershed with minimal topographic 

change. This avoided unnecessary resampling of the digital images. 

 

3.4 Radiometric adjustment and image classification 

 Further preparation and thematic classification of the WorldView-2 GeoTIFFs was 

completed using MatlabTM 
 software. This included: radiometric calibration, atmospheric 

correction, remote sensing reflectance (Rrs) computation, classification, smoothing, and output 

of a classified GeoTIFF and its complementary Rrs GeoTIFF. 

 

3.4.1 Radiometric calibration 

 WorldView-2 GeoTIFFs were converted to top-of-atmosphere spectral radiance 

according to Updike and Comp (2010; Eq. 1) using metadata supplied with each image. 

(Eq. 1):  Li = Ki * qi/λi 

Here, Li is the top-of-atmosphere spectral radiance per band (W m-2 sr-1 µm-1), Ki is the absolute 

radiometric calibration factor (W m-2 sr-1 count-1) for a given band, qi are radiometrically 

corrected data (counts), and λi is the effective bandwidth (µm), defined as the width of the 

radiation at half of its maximum throughput, for a given band (Table 1). Values for K and λ were 

extracted from the metadata file accompanying each image. 

 

3.4.2 Atmospheric correction 

 The attenuation of radiation due to atmospheric scattering must be accounted for to 

estimate the radiance reflected by the Earth's surface, which is used for the spectral classification. 

We accounted for scattering due to atmospheric gas molecules (Rayleigh scattering) using 
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methods outlined by Dash et al. (2012) and Chandrasekhar (1960). This considered sun-sensor 

geometries (i.e. solar azimuth, sensor azimuth, solar elevation, and sensor elevation angles), 

band-averaged solar spectral irradiance, and Earth-Sun distance. The latter is derived from scene-

specific acquisition dates using equations from Updike and Comp (2010). For Rayleigh optical 

thickness estimates, we assumed standard atmospheric pressure for all images. The Rayleigh 

scattering phase function equation (Eq. 2) of Chandrasekhar (1960) was substituted for the more 

simplified equation used in Dash et al. (2012). The former better accounts for molecular 

anisotropy affecting the angular distribution of Rayleigh-scattered light (Bucholtz, 1995). 

(Eq. 2): Pray(Ɵ)i = (3/4*(1+2ɣi)*[(1+3ɣi) + (1-ɣi)*cos2(Ɵ)] 

where Pray represents the Rayleigh phase function per band, ɣi (from Table 1 of Bucholtz, 1995) 

considers the band-specific depolarization factor, and Ɵ is the scattering angle. 

 

3.4.3 Remote Sensing Reflectance (Rrs) 

 Scene-specific, Rayleigh-scattered radiances were subtracted from radiometrically 

calibrated pixels using Eq. (3). This yields surface-reflected radiance. Dividing by solar 

irradiance (Ei) in that band gives remote sensing reflectance (Rrs). Solar irradiance was adjusted 

for Earth-Sun distance (ESd), which varies with time of year, and for atmospheric transmittance 

in the solar path (TZ) and view path (TV). TZ is estimated based on the solar zenith angle, and 

TV is estimated from the satellite view angle (Eq. 3 and Eq. 4; Chavez, 1996; Wu et al., 2005). 

Rrs (sr-1) was calculated according to (Eq. 5; Schowengerdt, 1997; Updike and Comp, 2010). 

(Eq. 3): TZ = cos(Ɵsun) where Ɵsun is the solar zenith angle. 

(Eq. 4): TV = cos(Ɵsat) where Ɵsat is the satellite view angle. 

(Eq. 5): Rrsi = (π*(Li – LRayi)*ESd2)/(Ei*TZ*TV) 
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3.4 Decision Tree classification 

 The image classification strategy used a Decision Tree. This is a multi-stage classifier 

tool that uses a series of binary decisions to assign a thematic class to each image pixel. This 

approach identifies specific classes based on spectral signatures of the target land-cover type. 

 The Decision Tree was built to identify five thematic classes: forested wetland (including 

mangroves and freshwater swamps), upland, marsh, bare and developed land, and water. The 

primary goal was to distinguish between wetland and upland vegetation. The forested wetland 

class was merged with the marsh class to create a single “wetland” class. Initial spectral analyses 

were conducted using WorldView-2 images covering the Charlotte Harbor watershed, 

independent from this study area but adjacent to it. The classification was trained using the Land 

Use/Land Cover map from 2009. The data were obtained from the Water Atlas portal for the 

Charlotte Harbor National Estuary Program (http://maps.wateratlas.usf.edu/chnep/). 

 The first node of the Decision Tree identified "No Data" pixels and excluded them from 

the remainder of the classification. The second node used a Normalized Difference Vegetation 

Index (NDVI) to isolate pixels containing vegetation. Specifically, the WorldView Improved 

Vegetative Index (WV-VI) was used (Eq. 6; Wolf, 2010). Some pixels containing vegetation also 

contained shadows cast by canopy cover and other structures. These pixels were identified with 

an ad hoc shadow filter (Eq. 7). These pixels were assigned a value of zero (0), but could be 

reclassified based on surrounding classified pixels using a post-classification moving filter. 

(Eq. 6): (B8 – B5)/(B8 + B5) > 0.3 

(Eq. 7): (B7 – B2)/(B7 + B2) < 0.2 AND (B7 – B8)/(B7 + B8) > 0.01 
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 Wetlands were distinguished from uplands using a robust yet simple approach. Numerous 

algorithms that have been successfully used and published in wetland-mapping literature, 

including NDVI variants and other band ratios (see Table 2 of Heenkenda et al., 2016 for a 

summary), were tested on 20 WorldView-2 images, ranging from coastal to inland scenes and 

collected throughout the year. However, no wetland index consistently distinguished between 

wetland and upland vegetation across the scenes based on visual analysis relative to existing 

wetland maps. This could be due to discrepancies in imagery processing between studies, or due 

to the combination of diverse ecosystems imaged under varying sun and sensor geometries 

throughout the year. This may be a novel issue inherent with high-resolution images that had not 

been reported because these images just recently started being processed in massive batches. We 

could find no peer-reviewed publications that used more than six such images for land-cover 

mapping, and none that spanned coastal to inland habitats.  

 A consistent pattern within and across scenes was that wetland vegetation pixels showed 

substantially lower reflectance in bands 3, 4 and 5 than upland vegetation pixels. Kamal et al. 

(2015) show this pattern in comparing spectral reflectance of mangroves and upland vegetation 

types from a WorldView-2 image, and note that bands 3 and 5 yield optimal spectral separation 

between these vegetation types. Kuenzer et al. (2011) note that spectral discrepancies are related 

to the internal leaf structure of mangroves, as well as their biophysical and chemical properties 

(e.g. water, cellulose, lignin and protein content, and leaf pigments chlorophyll a and b and 

carotenoids). 

 This pattern was exploited early in the Decision Tree process. Pixels containing 

vegetation were identified using Eq. 6 with a threshold of 0.6 sr-1, which captured scrub and 

forested vegetation to the exclusion of grass. Shadows were again excluded using Eq. 7. Rrs 
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values in bands 3–5 for all shadowless vegetated pixels were summed, and an average 

“vegetation value” was computed for the image. Grassland pixels were excluded because they 

tended to have very high Rrs values in bands 3–5, thereby raising the average vegetation value 

for the scene and potentially causing overestimates of wetland by incorporating more forested 

upland in the wetland classification. This approach avoided the need to identify a threshold 

common to all scenes. Rather, a scene-specific metric was thus developed to distinguish between 

wetland and upland vegetation. 

 Using this average vegetation value in the Decision Tree, upland vegetation was 

identified if the sum of Rrs values in bands 3–5 for a given pixel was greater than the average 

vegetation value. The pixel was then assigned a classification value of four (4), representing 

upland. Remaining vegetation pixels tended to contain either forested wetland, marsh, or 

agricultural crops. Crops tended to exhibit relatively high Rrs values in band 2, and were 

identified as upland using Eq. 8. 

(Eq. 8): (B2 – B5)/(B2 + B5) > 0.4 

 Marsh was identified in the remaining pixels if the Rrs value in band 7 was greater than 

the sum of the values in band 1 and band 5 (Eq. 9), and assigned a value of five (5). This ad hoc 

pattern was adapted from Equation 2 of Kamal et al. (2015), and also derived from investigation 

of multiple scenes in Charlotte Harbor. 

(Eq. 9): B7 > (B5 + B1) 

All remaining vegetated pixels were assigned a value of six (6), representing forested wetland. 

 Water was identified using a version of the Normalized Difference Water Index (NDWI) 

combined with a requirement that band 8 have a value less than 0.1 sr-1 to exclude dark, bare land 
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(Eq. 10). Water pixels were assigned a classification value of three (3). All remaining pixels 

were identified as bare and developed, and assigned a value of two (2). 

Eq. (10): (B8 – B2)/(B8 + B2) < 0 AND B8 < 0.1 

3.4.1 Smoothing of the land cover product 

 Land-cover classifications often use a moving-window filter to smooth the raw map and 

remove erroneous pixels (Figure 2; Kim et al., 2014; Lv et al., 2016; McCarthy et al., 2015). Our 

method applies an 11x11-pixel moving-window filter on the initial classification. The filter 

calculates the mode of the pixels in a roughly 22x22 meter area, and assigns to the central pixel 

the most common value found in the 11x11-pixel box. Excluded from the mode calculation are 

any pixels containing a value of zero (shadows). This yields a more homogenous product and 

allows shadowed vegetation pixels to be reclassified based on the most common pixels adjacent 

to them for a more accurate identification of otherwise muted spectral signatures. Figure 2 shows 

an example of the smoothed thematic classification product. 

 If a pixel in the center of the box was initially classified as wetland (value = 6), all of the 

pixels in this box that were classified as wetland, upland (value = 4), or bare and developed 

(value = 2) were counted, and the value assigned to the central pixel was wetland only if at least 

two-thirds of the pixels in the window were classified as wetland. Otherwise, the central pixel 

was reclassified as upland. This two-thirds requirement was based on our observation that 

wetlands tend to be found as clumped stands, as opposed to isolated, individual trees.  
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Figure 2. A moving-window filter applied to an initial classified map (left) produces a 

“smoother” map (right) by using adjacent-pixel information to remove pixilation. 

 

3.5 Supercomputing batch processing 

 Both the Python and Matlab functions were run on the University of South Florida (USF) 

supercomputing cluster to increase processing speed. This supercomputer is comprised of over 

4,000 processors with 2.5 terabytes of memory. While the Python and Matlab codes can each be 

run on a standard computer, using the cluster allowed us to process up to 20 images at a time (the 

actual number processed at any one time was limited by assignment by the supercomputer 

management center). 

 Traditional methods to preprocess and classify these images, including radiometric 

calibration, atmospheric correction and unsupervised classification, took us on average about one 

full day per image using ENVI software tools on a 64-bit Windows-platform computer. 
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Processing times per image for the Python and Matlab codes run on the same computer were 

approximately 10 minutes, and 20 minutes, respectively. Using the filter (recommended) 

increased the Matlab processing time to about 3 hours. The supercomputer allowed us to classify 

20 WorldView-2 images at a time, cutting the total per-image processing down to approximately 

17 seconds using the Python code and 1 minute using the Matlab code. The subsequent spatial 

filter could be completed in under 10 minutes per image using the Matlab code on the 

supercomputer. In total, the 130 images were processed through both Python and Matlab code, 

including filtration, in under 20 hours. 

 

3.6 Field validation 

 Ground reference points (GRPs) were collected throughout the Tampa Bay watershed 

during surveys conducted from 2014 to 2016. This included surveys reported in McCarthy et al. 

(2015) using a Trimble GeoExplorer 6000 series GPS unit (horizontal accuracy 2.5 cm). Most of 

the points were collected during field work for unrelated projects using a Garmin GPS MAP 

78SC. Points were primarily collected in vegetated habitats and excluded bare and developed 

land cover and water. A total of 226 points were collected, including 150 forested wetland and 

76 upland (Figure 3). 
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Figure 3. Ground-reference points collected to validate the classified maps. 

 

3.7 Post-processing 

 All classified GeoTIFF images were evaluated in ArcGIS 10.1 for quality control. 

Evaluation revealed substantial cloud cover interference in 9 images, which were then discarded 

from further use. The remaining 121 mapped images were mosaicked using the Mosaic to New 

Raster tool. To counterbalance the conservative 2/3 wetland-filter requirement (see section 

3.4.1), the ArcGIS 10.1 Mosaic tool’s Mosaic Operator function was set to “Maximum”. When 

two or more images overlapped, the mosaic would preferentially assign the highest value of any 
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overlapping pixels to the output class. As wetlands were assigned the highest value (6) in the 

Decision Tree, wetlands were preferentially assigned to the output. 

 The mosaicked map was then clipped using the ArcGIS Extract by Mask tool to match 

the extent of the watershed. This facilitates comparison with other maps of the same extent. The 

final surface area of the mosaicked map was 2 km2 smaller than the watershed as a result of data 

lost due to cloud cover identified during the quality-control process. 

 

3.8 Accuracy assessment 

 Field survey data were segregated into upland and wetland validation data sets. Accuracy 

of these classes was determined in ArcMap by intersecting the points with the underlying 

classified-map pixels and recording the number of pixels that agreed and disagreed with 

validation data. Percent accuracies were calculated for these two classes and their combined 

accuracy, and Kappa coefficients were calculated for each map. Kappa coefficients consider 

overall accuracy and individual class accuracy, and provide a useful, additional measure of 

classifier agreement. 

 

3.9 Map comparisons 

 The results of this study were compared to a National Wetlands Inventory (NWI) map 

published in 2009, a NOAA Coastal Change Analysis Program (CCAP) map from 2010, and a 

2011 land use/land cover map from the Southwest Florida Water Management District 

(SWFWMD). 

 NWI has been generating detailed wetland maps of the United States since the mid-

1970’s, following the Cowardin et al. (1979) land cover classification scheme. NWI uses a 
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variety of methods and data sources, including aerial photography and satellite images, to obtain 

land cover information (Dahl et al., 2015). NWI classes considered wetland for comparison 

included all estuarine and palustrine scrub-shrub and forested wetlands (Cowardin et al., 1979). 

NWI does not identify upland or human-development land-cover classes.  

 The NOAA CCAP provides information on regional land cover change for the coastal 

United States. Data for CCAP are based on medium-resolution satellite data and are classified 

according to a CCAP classification scheme (Dobson et al., 1995). For comparison with this 

study, CCAP classes considered "wetland" include Palustrine Forested Wetland, Palustrine 

Scrub/Shrub Wetland, Estuarine Forested Wetland, and Estuarine Scrub/Shrub Wetland. CCAP 

classes that were considered "upland" included Developed Open Space, Cultivated Crops, 

Pasture/Hay, Grassland/Herbaceous, Deciduous Forest, Evergreen Forest, Mixed Forest, and 

Scrub/Shrub. CCAP classes that were considered "bare and developed" included Developed 

(Low – High Intensity), Unconsolidated Shore, and Bare Land. 

 Finally, the Florida Water Management Districts develop their own land use and land 

cover maps within their jurisdictions. Tampa Bay is located within the jurisdiction of 

SWFWMD. SWFWMD land cover maps are based on aerial photography, which is processed 

and interpreted following the Florida Land Use, Cover and Forms Classification System 

(FLUCCS) protocol (FDOT, 1999) to a scale of 1:12,000. Minimum mapping units are 0.5 acres 

(2,023 m2) for wetlands and 5 acres (20,234 m2) for uplands. FLUCCS classes that were 

considered "wetland" included Bay Swamps, Cypress, Mangrove Swamps, Stream and Lake 

Swamps (Bottomland), Wetland Coniferous Forests, Wetland Forested Mixed, and Wetland 

Hardwood Forests. FLUCCS land cover categories considered "upland" were Cropland and 

Pastureland, Golf Courses, Hardwood Conifer Mixed, Herbaceous, Longleaf Pine - Xeric Oak, 
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Mixed Rangeland, Nurseries and Vineyards, Open Land, Other Open Lands, Pine Flatwoods, 

Recreational, Row Crops, Shrub and Brushland, Tree Crops, Tree Plantations, Upland 

Coniferous Forest, and Upland Hardwood Forests. FLUCCS land cover categories considered 

"bare and developed" land included Beaches Other Than Swimming Beaches, Commercial and 

Services, Communications, Disturbed Land, Extractive, Industrial, Institutional, Residential 

(High, Med and Low Density), Sand Other Than Beaches, Transportation, and Utilities. 

 

4. Results 

4.1 Accuracy assessment 

 Accuracy assessments of our map (hereafter referred to as the “IMaRS” map, referring to 

the Institute for Marine Remote Sensing) resulted in greater accuracies for forested wetland, 

upland, and overall, and a greater Kappa coefficient than the maps from CCAP, SWFWMD, and 

NWI (Table 2). Forested wetlands were classified to 78% accuracy in this work, as compared 

with 62.7%, 64.7% and 48.7% in CCAP, SWFWMD and NWI maps, respectively. Where the 

NOAA CCAP map disagreed with forested wetland ground reference points, they were most 

commonly misclassified as Cultivated Crops, Developed (Low and Medium Intensity), Open 

Space, and Scrub Shrub. The most common misclassification categories for SWFWMD included 

Recreational, Saltwater Marshes, and Open Land. Where forested wetlands were misclassified by 

NWI, categories included Estuarine Emergent Vegetation and upland (i.e. no data). Misclassified 

forested wetlands in the IMaRS map were primarily classified as upland vegetation. 
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Table 2. Accuracy assessment results based on 150 wetland and 76 upland ground-reference 

points. Note that the NWI map does not contain upland classes. 

 IMaRS CCAP SWFWMD NWI 

Forested wetland (%) 78.0 62.7 64.7 30.7 

Upland (%) 64.5 28.9 67.1 N/A 

Overall (%) 73.5 51.3 65.5 30.7 

Kappa 0.42785 0.11681 0.38160 0.12948 

 

4.2 Area cover estimates 

 Each of the maps evaluated here from different sources obtained substantially different 

areal cover or extent of wetland and upland vegetation. Our study identified 1,312, and 3,053 

km2 of wetland and upland vegetation, respectively (Table 3). This wetland estimate falls 

between the higher CCAP estimate of 1,439 km2, and the lower estimates of NWI (705 km2) and 

SWFWMD (442 km2). We also found substantially more upland area and less bare and 

developed area than the CCAP (Figure 4) and SWFWMD maps. 

Table 3. Bare and developed, forested wetland, and upland area (km2) identified by this work 

(IMaRS; 2010–2014), NOAA CCAP (2009–2011), Southwest Florida Water Management 

District (2011), and National Wetland Inventory (NWI; 2009). NWI did not map upland 

vegetation. 

 IMaRS CCAP SWFWMD NWI 

Bare and 

Developed 
979 1326 1549 N/A 

Forested wetland 1312 1439 442 705 

Upland 3053 2502 1182 N/A 

Total Vegetation 4364 3941 1624 705 
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Figure 4. IMaRS (2010–2014) and NOAA CCAP (2010) map comparison. 

 

4. Discussion 

 The application of two-meter resolution satellite imagery and automated classification 

and smoothing methods to map wetlands in the 6,500 km2 Tampa Bay watershed resulted in 

greater accuracy and precision than existing state- and federal-agency maps. The Decision-Tree 

technique used for wetland classification combined standard spectral indices with a novel, scene-

specific spectral criterion to distinguish between wetland and upland vegetation. 
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 Our results identified both wetland and upland vegetation more accurately than the most 

recent NOAA CCAP, NWI, and SWFWMD products. We attribute this to the use of high spatial 

resolution multispectral data. The WorldView-2 pixels mapped 127 fewer square kilometers of 

wetland and 551 more square kilometers of upland vegetation than the CCAP map. Similarly, we 

found that bare and developed land comprised approximately 979 km2 of the 6,500 km2 of 

watershed, whereas CCAP identified 1,326 km2 of bare and developed land.  

 These discrepancies are likely due in part to the resolution of the imagery used. Coarser 

pixels cause spectral confusion between habitat types, and spectral diversity within a single 

habitat type (Chen et al., 2015; McCarthy et al., 2015). Figure 5 highlights the capacity for high-

resolution WorldView-2 imagery to distinguish between adjacent wetland and upland vegetation 

on a finer scale than Landsat imagery. The SWFWMD map identified more bare and developed 

land than CCAP despite the higher spatial resolution of the aerial photography used to digitize 

the land cover. This is likely due to SWFWMD definitions of residential and urban areas, which 

include small areas of vegetation such as private yards. 
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Figure 5. Comparison of IMaRS (left) and NOAA CCAP (right) maps at a scale of 1:10,000 

focused on a section of Fort De Soto Park to highlight the effects of spatial resolution on the 

ability of the land cover classifications to distinguish between fringing mangroves and adjacent 

upland forest, in addition to parking lots and roads. 

 

 Where SWFWMD land cover classes disagree with forested wetland ground reference 

points, they were most commonly labeled as saltwater marsh, freshwater marsh, salt barrens, or 

open land. Part of the discrepancy between wetland mapping estimates is likely due to habitat 

shifts between years when data were collected for the map products. Aerial images from 2010 
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were used in the 2011 SWFWMD land use maps. The CCAP mapping effort was based upon 

Landsat images from 2009 to 2011. The NWI mapping effort used aerial images that span 

several decades. The WorldView-2 imagery used in this effort was collected in 2010–2014, a 

time span that overlaps with the imagery used for the other mapping efforts, so this dataset may 

also be impacted by recent habitat shifts. Mangroves are encroaching into salt marsh and salt 

barren habitats across Tampa Bay as a result of sea-level rise and a lack of recent severe cold 

events (Raabe et al., 2012; Sherwood and Greening, 2014). Mangrove encroachment can be 

clearly seen in aerial imagery within a span of 3–5 years, which may account for some of the 

discrepancies in this study.  

 Mapping resolution also impacts accuracy. The SWFWMD photo-interpretations 

included minimum mapping units of 0.5 acres (2,023 m2) for wetlands, and 5 acres (20,234 m2) 

for uplands. These requirements preclude identification of smaller stands of forested wetland, 

thereby potentially underestimating their extent. The digital classification of individual two-

meter pixels may overcome this limitation. 

 Misclassifications were addressed during post-classification processes. A conservative 

wetland estimate was made during the filtration process using a conservative requirement that 

two thirds of the pixels classified as vegetation in an 11x11-pixel box had to be wetland in order 

for the pixel in the center of the box to be considered wetland. Large upland trees are often found 

in residential neighborhoods, and were confirmed as upland by using the context of the 

surrounding roads and houses (i.e. bare and developed land cover) to rule out the likelihood of 

wetland vegetation. Further, when two images overlapped, the higher pixel value of any 

overlapping pixels was assigned to the mosaicked pixel. Wetland pixels (value = 6) were 

assumed to be more accurate than upland pixels (value = 4) based on the increased scrutiny of 
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wetland pixels during the filtration process. Therefore, preferentially assigning wetlands to the 

mosaicked map was expected to produce more accurate results. 

 The identification and reclassification of shadows accounts for a common high-resolution 

image-mapping issue by reclaiming otherwise unidentifiable surfaces since the filtering process 

used the context of adjacent pixels to fill missing values (Bhaskaran et al., 2013). A novel 

spectral pattern was used here for those shadows that met the NDVI criterion, which suggested 

that the shadow was cast atop vegetated surfaces.  

 Limitations of this work include the potential for misclassification of vegetation due to 

seasonal phenology or interannual weather variations (e.g. drought, storm-related destruction, 

flooding). This is a common problem in aggregating mosaics using sparse remote-sensing data 

that may be addressed using season-specific imagery. Another potential for error is in the 

change-detection analysis if there were geographic errors in the IMaRS products, since we did 

not use a digital elevation model or an automated georectification method. 

 Our approach was to use a batch process to advance products from level-1B images to 

surface-radiated remote sensing reflectance, identify five land-cover types through a Decision 

Tree, and apply a moving-window filter to 130 WorldView-2 8-band multispectral images. Once 

the process was set up, we were able to run the sequence in under 24 hours. Traditional digital 

classification tools probably would have completed the same work in approximately four to five 

months with one workstation. Future work may include the use of parallelization to further 

enhance processing speed, and additional or improved algorithms to identify more habitat types, 

including saltwater and freshwater marshes. 

 The efficiency of this wetland-mapping method will allow coastal managers to generate 

high-resolution thematic maps more frequently, and thereby better monitor fine-scale wetland 
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change over shorter periods than current products allow. Florida’s coasts are particularly 

vulnerable to some climate change effects, including accelerated sea-level rise, and tropical-

storm intensification. In the past 170 years, Florida has already lost over half of its wetlands to 

human development (Dahl 2005). While remaining wetlands have been afforded some degree of 

legal protection, growing populations and urban infrastructure continue to put these valuable 

habitats at risk. Wetland habitats are also shifting in response to climate change, as mangroves 

overtake salt marshes in regions where periodic cold events previously kept them at bay. 

Management policies and conservation efforts depend upon accurate and frequent data to map 

the status and trends in the extent and health of these dynamic habitats. The results presented 

here enable such assessments. An important step is to now develop a strategy to conduct such 

mapping efforts over regional, national and global scales.  
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