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ABSTRACT  

Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder characterized by chronic 

hyperglycemia, which develops as a consequence of peripheral insulin resistance and defective 

insulin secretion from pancreatic β-cells.  A high calorie diet coupled with physical inactivity are 

known risk factors for the development of T2DM; however, these alone fail to account for the rapid 

rise of the disease.  Recent attention has turned to the role of environmental pollutants in the 

development of metabolic diseases.  PBDEs (polybrominated diphenyl ethers) are environmental 

pollutants that have been linked to the development of type 2 diabetes (T2D), however, the 

precise mechanisms are not clear.  In particular, their direct effect on insulin secretion is unknown.  

In this study, we show that two PBDE congeners, BDE-47 and BDE-85, potentiate glucose-

stimulated insulin secretion (GSIS) in INS-1 832/13 cells.  This effect of BDE-47 and BDE-85 on 

GSIS was dependent on thyroid receptor (TR).  Both BDE-47 and BDE-85 (10 µM) activated Akt 

during an acute exposure.  The activation of Akt by BDE-47 and BDE-85 plays a role in their 

potentiation of GSIS, as pharmacological inhibition of PI3K, an upstream activator of Akt, 

significantly lowers GSIS compared to compounds alone.  This study suggests that BDE-47 and 

BDE-85 directly act on pancreatic β-cells to stimulate GSIS, and that this effect is mediated by 

the thyroid receptor (TR) and Akt activation.  This can cause the β-cells to oversecrete insulin, 

potentially leading to hyperinsulinemia, insulin resistance, and high blood glucose.  In contrast to 

the potential diabetogenic effects of POPs, there are several naturally-derived compounds which 

accomplish just the opposite, exerting sensitizing effect on the peripheral tissues and sparing 

effect on β-cells.  TQ, a natural occurring quinone and the main bioactive component of plant 

Nigella sativa, undergoes intracellular redox cycling and re-oxidizes NADH to NAD+.  TQ 

administration (20 mg/kg/bw/day) to the Diet-Induced Obesity (DIO) mice reduced their diabetic 



x 
 

phenotype by decreasing fasting blood glucose and fasting insulin levels, and improved glucose 

tolerance and insulin sensitivity as evaluated by oral glucose and insulin tolerance tests (OGTT 

and ITT).  Furthermore, TQ decreased serum cholesterol levels and liver triglycerides, increased 

protein expression of phosphorylated Akt, decreased serum levels of inflammatory markers 

resistin and MCP-1, and decreased the NADH/NAD+ ratio. These changes were paralleled by an 

increase in phosphorylated SIRT-1 and AMPKα in liver and phosphorylated SIRT-1 in skeletal 

muscle. TQ also increased insulin sensitivity in insulin-resistant HepG2 cells via a SIRT-1-

dependent mechanism These findings are consistent with the TQ-dependent re-oxidation of 

NADH to NAD+, which stimulates glucose and fatty acid oxidation and activation of SIRT-1-

dependent pathways.  Taken together, these results demonstrate that TQ ameliorates the diabetic 

phenotype in the DIO mouse model of type 2 diabetes.
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CHAPTER ONE: 

INTRODUCTION 

1.1 Defining Persistent Organic Pollutants  

Persistent organic pollutants (POPs), as their name suggests, are organic compounds 

that do not easily degrade in nature and therefore can accumulate in the environment (Manzetti 

et al., 2014).  They are man-made chemicals that are used in various industrial processes, such 

as food packaging, fire-retardant foam, textiles, carpets, plastics, electronic equipment, and fire 

extinguishers among others (Manzetti et al., 2014).  The accumulation of these pollutants in the 

environment is a direct effect and a byproduct of human industrial activity.  POPs can accumulate 

in the oceans, sediments, and air, ultimately making their way up the food chain and into our diets.  

Indeed, diet is one of the main exposure routes by which POPs enter our bodies. The harmful 

effects of POPs can thus be exacerbated due to accumulation in various tissues.  POPs have 

been reported to cause liver, thyroid, and neurodevelopmental toxicity and can accumulate in 

liver, breast milk, and adipose tissue (Manzetti et al., 2014).  Recognizing the harmful effects of 

POPs, the Stockholm Convention was created in 2001 and implemented in 2004 with the goal to 

decrease and prevent the effects of POPs on human health, wildlife, and the environment.  The 

Convention, signed by 152 countries to date, calls for elimination and restriction of certain POPs, 

as well as supports additional research and monitoring to aid in developing successful strategies 

to decrease their impacts.  Initially, the convention characterized 12 POPs divided into three 

categories: pesticides, industrial chemicals, and byproducts and made specific recommendations 

to eliminate, restrict the production, or reduce the unintentional release of such chemicals into the 

environment (Xu et al., 2013).  Among the initial chemicals listed are well-studied POPs, such as 

DDT and polychlorinated biphenyls (PCBs).  In 2009, 9 more chemicals were added to the list, 
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which included tetra and pentabromodiphenyl ether in the polybrominated diphenyl ethers 

(PBDEs class), as well as perfluorooctanesulfonic acid (PFOS) and related compounds (Xu et al., 

2013).  The particular effects of POPs on glucose homeostasis and their role in the development 

of type 2 diabetes and metabolic diseases has only recently received attention.  Particularly, their 

effect on pancreatic β-cell function remains underassessed.  To address the potential role of these 

environmental pollutants, this project focuses on the role of two major categories of POPs: 

polybrominated diphenyl ethers (PBDEs) and perfluorinated compounds (PFCs) on pancreatic β-

cell function.  

1.2 Polybrominated Diphenyl Ethers BDE-47 and BDE-85 

 BDE-47 (2,2',4,4'- tetrabromodiphenyl ether) is the major PBDE congener found in tissue 

samples and in the environment (Shea et al., 2012).  The structure of BDE-47 consists of two 

benzene rings connected by an ester bond, with four bromines located at the 2,2’,4,4’ positions 

(Figure 1.1 A).  BDE-85 (2,2',3,4,4’-pentabromodiphenyl ether) is a PBDE congener and its 

structure consists of two benzene rings connected by an ester bond, with five bromines located 

at the 2,2’,3,4,4’ positions (Figure 1.1 B).  The main route of exposure to PBDEs comes from 

dietary intake, with the consumption of fish products being estimated as the highest in PBDE 

content (Schecter et al., 2010).  In United States, dietary intake of PBDEs is estimated at 50 

ng/day (Schecter et al., 2010).  PBDEs are present in house dust, as a result of their release from 

household products into the air and also as by-products of combustion (Manzetti et al., 2014; 

Linares et al., 2015).  In addition to the dietary exposure, human exposure to PBDEs can be by 

ingestion and inhalation of house dust, which poses a risk particularly for children (Betts, 2008; 

Linares et al., 2015).  Due to their lipophilicity, PBDEs have the tendency to accumulate in lipid-

abundant tissues.  A study from Shea et al. reported that the concentration of BDE-47 in breast 

adipose samples ranged from 7-196 ng/g of lipid weight (lw) (Shea et al., 2012).  In another study, 

mean levels of BDE-47 and BDE-85 were 132 and 6.9 ng/g lw respectively in samples collected 

from patients after liposuction surgery (Johnson-Restrepo et al., 2005).   
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In addition to adipose tissue, PBDEs can accumulate in other tissues.  A study from 

Belgium reported a mean liver concentration of 0.95 ng/g lw for BDE-47, which was similar to the 

concentration in adipose tissue in the same study (Covaci et al., 2008).  In a study of 5 subjects 

in Sweden, levels of different PBDEs were measured; with mean liver BDE-47 concentration of 

around 3 ng/g lw and a much lower BDE-85 concentration (around 0.1 ng/g lw) (Guvenius et al., 

2001). 

Relatively high levels of PBDEs have been reported in human milk, with mean 

concentrations for BDE-47 and BDE-85 of 40.8 ng/g lw and 1.15 ng/g lw (Schecter et al., 2003), 

A later study reported similar concentrations for these two compounds in human milk (She et al., 

2007). 

In addition to accumulating in various tissues, PBDEs have also been detected in plasma 

and serum.  A study from Sjodin et al. measured the serum levels of several PBDE congeners in 

a sample of a US population from 1985-2002, and reported that BDE-47 levels increased from 

5.4 ng/g lw (approx. 10nM) in 1985 to 34 ng/g lw (approx. 64 nM) in 2002, while serum levels of 

BDE-85 did not significantly fluctuate, with a concentration of 0.5-0.7 ng/g lw (approx. 0.8 – 1.1 

nM) during the same period (Sjodin et al., 2004).  A study evaluating occupational exposure to 

PBDEs found high serum levels of PBDEs and most notably BDE-47 compared to control group 

among foam recyclers and carpet installers in the US (Stapleton et al., 2008).  In this study, 

median BDE-47 serum concentrations were 77.8 (approx. 147 nM) and 100 ng/g lw (approx. 190 

nM) for foam workers and carpet layers respectively, while the concentration in the control group 

was 7.9 ng/g lw (approx. 15 nM); also, median PBDE concentrations were higher compared to 

the general population, derived from the National Health and Nutrition Examination Survey 

(NHANES) (Stapleton et al., 2008).   

PBDEs have been reported to cause neurodevelopmental toxicity, possibly by affecting 

thyroid hormone signaling pathways, which are important in growth and development (Manzetti 

et al., 2014).  Due to their hazardous effects, the persistence in the environment and potential to 
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bioaccumulate, the United States Environmental Protection Agency (EPA) has implemented 

policies to monitor the levels of PBDEs.  In 2004, all commercial penta- (which contains BDE-47 

and BDE-85 among other congeners) and octa-BDE compounds were phased out the 

manufacturing and importing industries in the United States, however levels of various PBDEs 

are still being detected in the environment and human samples (US EPA Fact Sheet, 2014).  

1.3 Perfluorinated Compounds PFOS and PFNA 

Perfluorooctanesulfonic acid (PFOS) is a fluorinated organic compound containing an 

eight-carbon backbone and a sulfonate functional group (Figure 1.1 C).  Perfluorononanoic acid 

(PFNA), also a fluorinated organic compound, has a structure consisting of a nine-carbon 

backbone and a carboxylic acid functional group (Figure 1.1 D).  Due to their strong carbon-

fluorine bonds, perfluorinated compounds (PFCs) are very stable and not easily biodegradable, 

for this reason they have the potential to bioaccumulate (Manzetti et al., 2014).  The main route 

of exposure to PFOS comes from dietary and contaminated water sources; with house dust also 

playing an important role in the exposure to PFOS among children (Egeghy and Lorber, 2011).  

In United States, estimated daily intake of PFOS is 160 ng/day for adults and 50 ng/day for 

children (Egeghy and Lorber, 2011).  PFCs can also accumulate in various tissues inside the 

human body.  PFOS has been detected in the liver at concentrations ranging from 13.6 to 26.6 

ng/g of tissue (Maestri et al., 2006; Kärrman et al., 2010), while PFNA has been detected at lower 

concentrations (<1 ng/g) (Kärrman et al., 2010).  PFOS and PFNA have been detected in serum 

of people from different countries (Kannan et al., 2004), as well as in breast milk (Kärrman et al., 

2010; Tao et al., 2008; Tao et al., 2008).  In the United States, serum concentrations of PFOS 

between 11 – 20.75 ng/mL (22-41 nM) have been reported from NHANES studies (Calafat et 

al.,2006; Calafat et al.,2007; Gleason et al., 2015; Olsen et al., 2003); with much higher 

concentrations in occupationally exposed populations, ranging from 74-799 ng/mL (147-1597 nM) 

(Olsen et al., 2007; Rotander et al., 2015).  Serum concentrations of PFNA have been reported 

around 1 ng/mL (2.15 nM) (Calafat et al.,2006; Calafat et al.,2007; Gleason et al., 2015; Rotander 
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et al., 2015).  Since PFCs can cross the placental barrier, they have been associated with 

developmental defects (Stein et al., 2009), cancer (Gilliland and Mandel, 1993), and shown to 

disrupt thyroid hormone signaling (Bloom et al., 2010).  Due to these potential harmful effects in 

humans, 3M, the leading international manufacturer of PFOS, began a voluntary phasing-out of 

the chemical, which was completed in 2003.  However, although the usage of PFOS and other 

PFCs has decreased worldwide, the usage of such chemicals in some big industrial countries 

such as in China has increased (Han, 2009) and can contribute to the persistent worldwide 

problem of bioaccumulation and hazardous effects on human health from PFC exposure. 

1.4 The Potential Role of POPs in the Development of Metabolic Diseases 

Type 2 diabetes prevalence has increased exponentially in the last two decades in the 

United States (CDC, 2016).  Although most risks associated with the development of type 2 

diabetes involve diet, physical activity, and genetic predisposition, these factors alone cannot fully 

explain the increase in prevalence.  It is imperative to not only find new therapies for T2D, but 

also to identify potential causative factors and agents in an effort to control the rise of the disease.  

Recently there is an increased interest in the role of several persistent organic pollutants (POPs) 

as causative agents for type 2 diabetes.  Perfluorinated compounds (PFCs) and brominated flame 

retardants (BFRs) represent two different classes of POPs and are heavily used in various 

industrial processes.  The case for POPs as metabolic disruptors and their link with obesity and 

diabetes is supported by several epidemiological studies.  Clinical studies have shown that 

exposure to POPs is associated with type 2 diabetes (Airaksinen et al., 2011), higher insulin 

concentration and insulin resistance in children (Timmermann et al., 2014), as well as in 

adolescents and adults (Lin et al., 2009).  In an analysis of the National Health Examination and 

Nutrition Survey (NHANES), Lee et al. showed that serum concentrations of six different POPs 

are associated with type 2 diabetes prevalence.   A study analyzing serum concentrations from a 

US population, found that PFOS and PFNA concentrations were correlated with higher total 

cholesterol and non-HDL cholesterol (Nelson et al., 2010); and PFOS was positively associated 
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with higher total cholesterol in a Danish population (Eriksen et al., 2013).  In addition, it was 

reported that exposure to PFOS can change expression of genes involved in cholesterol 

metabolism and may cause hypercholesterolemia (Fletcher et al., 2013).  PFNA was linked to 

diabetes in a study of seniors in Sweden (Lind et al., 2014); as well as with hyperglycemia in 

adolescents and adults from the NHANES survey (Lin et al., 2009).  PFOS is associated with 

increased blood insulin, insulin resistance, and increased pancreatic β-cell function, measured by 

indirect methods calculated from fasting plasma glucose and insulin (Lin et al., 2009; Timmerman 

et al., 2014).  PFOS is also associated with higher total triglycerides in overweight children 

(Timmerman et al., 2014).  Although some studies have found association of PFCs with glucose 

homeostasis parameters, other studies report the opposite (Fisher et al., 2012; Nelson et al., 

2010, Karnes et al., 2013).  In contrast to PFOS and PFNA, the association of PBDEs (particularly 

BDE-47 and BDE-85) with glucose homeostasis parameters and diabetes has not been widely 

studied, although PBDEs have been previously reported not to be associated with diabetes except 

for BDE-153 (Lim et al., 2008).  Recently, due to the increased levels of PBDEs in the 

environment, attention has turned to their role in diabetes, with BDE-47 shown to be associated 

with increased diabetes prevalence (Zhang et al., 2016).   

Studies in rodent models have shown that prolonged exposure to POPs has the capacity 

to influence insulin signaling and glucose homeostasis.  A 14-day exposure to PFNA caused liver 

insulin resistance and hyperglycemia in Sprague-Dawley (SD) rats (Fang et al., 2012).  

Additionally, an 8-week exposure to BDE-47 increased fasting blood glucose and decreased 

fasting insulin in SD rats (Zhang et al., 2016).  Perinatal exposure to BDE-99 decreased 

phosphorylated Akt, a key component in insulin signaling, in rat pup livers (Blanco et al., 2013); 

and similar PFOS exposure caused impaired glucose tolerance, hyperinsulinemia and insulin 

resistance in exposed rats in adulthood (Lv et al., 2013).  A PBDE mixture, DE-71 (which contains 

BDE-85), increased liver lipids in Wistar rats, but did not affect fasting blood glucose and insulin 

levels compared to controls (Nash et al., 2013). 
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In vitro studies have shown that exposure to POPs can affect lipid metabolism.  Exposure 

of 3T3-L1 pre-adipocytes to a commercial PBDE mixture (containing BDE-47) as well as to BDE-

47 alone, increased the differentiation of these cells to mature adipocytes (Tung et al., 2014), 

while the same effect has been observed with PFCs (Yamamoto et al., 2015).  This could imply 

that these POPs can increase adipocyte formation, which can have implications in obesity and 

diabetes.  Taken together, these findings suggest that exposure to the selected POPs can lead 

to insulin resistance, hyperglycemia, and altered pancreatic β-cell function. 

1.5 An Introduction to Thyroid Hormone and Implications in Type 2 Diabetes 

Thyroid hormone is a hormone produced by the thyroid gland and has important 

implications in growth and metabolism (Shoemaker et al., 2012).  The thyroid gland produces 

mainly the inactive form of the hormone, thyroxine (T4), which is then converted to the active 

triiodothyronine (T3) by deiodination in target tissues (Shoemaker et al., 2012).  Thyroid hormones 

(as T4 and T3 are referenced) are transported to their target tissues by binding to several transport 

proteins, more importantly thyroxine-binding globulin (TBG), transthyretin (TTR), and to a lesser 

extent, albumin (Schussler, 2000).  Thyroid hormone acts by binding to the thyroid receptor, a 

nuclear receptor expressed in most tissues, including heart, lung, liver, kidney, brain, and 

pancreas, with different isoforms being predominant in different tissues (Harvey and Williams, 

2002).  Thyroid receptors belong to type II nuclear receptors, which are found primarily in the 

nucleus, and after being activated by ligand binding, act as transcription factors to initiate the 

transcription of target genes (Ren and Guo, 2013).  Some of the main functions of thyroid hormone 

include growth and development of various tissues, as well as several metabolic effects, such as 

increased metabolic rate, stimulation of lipolysis, and stimulation of fatty acid oxidation (Mullur et 

al., 2014).  

Since thyroid receptor is expressed in pancreas and also in the pancreatic β-cells 

(Shoemaker et al., 2012), researchers have looked into the potential role of thyroid hormone 

signaling in glucose homeostasis and β-cell function.  Some of the early research has evidenced 
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that patients with hyperthyroidism (excess production of thyroid hormone) have reduced glucose 

tolerance and insulin action, suggesting that excess thyroid hormone may contribute in the 

development of type 2 diabetes (Shoemaker et al., 2012).  However, since thyroid hormone also 

increases the metabolic rate, this could lead to weight reduction and increase insulin sensitivity, 

which has been shown in rodent studies (Amorim et al., 2009; Erion et al., 2007).  In the β-cell, 

thyroid hormone signaling is important in growth and function (Mullur et al., 2014), but there is 

controversy surrounding whether thyroid hormone has direct effects on GSIS.  While in some in 

vivo and in vitro studies suggest that thyroid signaling is associated with decreased GSIS (Lenzen 

et al., 1974; Ximenes et al., 2007), others have shown an increase in GSIS and cell survival in 

the INS-1 832/13 cells and rat pancreatic islets following thyroid hormone exposure, primarily by 

activating the PI3K/Akt pathway (Falzacappa et al., 2007; Falzacappa et al., 2010).  However, 

further research is needed to address the role of thyroid hormone signaling in glucose 

homeostasis in general, and in pancreatic β-cell function in particular. 

1.6 The Role of the PI3K-Akt Pathway in Pancreatic β-cell Function 

The PI3-Akt pathway plays a major role in many cellular processes, including cell survival, 

growth and metabolism.  In the context of diabetes and glucose homeostasis, this pathway is 

involved in insulin signaling and insulin action, which facilitates glucose entry into the tissues from 

the bloodstream, thus keeping blood glucose levels in check.  Insulin binds to the insulin receptor, 

a tyrosine kinase receptor, which initiates a phosphorylation cascade of many proteins, including 

insulin receptor substrate 1 (IRS1) and 2 (IRS2), leading to the activation of downstream signaling 

proteins PI3K, PDK1/2, and Akt (Guo et al., 2014).  It is Akt (or protein kinase B) activation that 

leads to translocation of glucose transporters to the plasma membrane and increased glucose 

transport inside the cell (Guo et al., 2014). 

Although the role of this pathway in insulin signaling is well established, its role in insulin 

secretion is controversial, with conflicting reports on the role of the pathway in GSIS.  

Downregulation of Akt activity specifically in β-cells led to glucose intolerance due to impaired 
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insulin secretion in mice (Bernal-Mizrachi et al., 2014).  Akt activation was also positively 

implicated in a study looking at the effect of adiponectin on β-cell function, where pre-incubation 

of cells with PI3K inhibitor wortmannin decreased insulin gene expression and GSIS (Wijesekara 

et al., 2010).  Overexpression of dominant negative Akt decreased GSIS, whether overexpression 

of constitutively active Akt increased GSIS in the INS-1 cell line (Le Bacquer et al., 2013).  Akt 

activation has been implicated to play a role in insulin granule exocytosis, thus increasing GSIS 

(Bernal-Mizrachi et al., 2004; Cheng et al., 2012).  Conversely, a study from Ayoagi et al. reported 

that acute pharmacological inhibition of Akt led to an increase in insulin secretion by way of 

increasing insulin granule fusion (Ayoagi et al., 2012).  Furthermore, other studies have reported 

that pharmacological inhibition of PI3K increases GSIS, suggesting that the activation of this 

pathway suppresses insulin secretion (Eto et al., 2002; Kolic et al., 2013; Zawalich et al., 2002).  

Thus, the role of the PI3K-Akt pathway in insulin secretion is not clear and further studies are 

required to determine how activation or downregulation of the pathway affects GSIS. 

1.7 INS-1 832/13 Cell Line as a Pancreatic β-cell Model 

Pancreatic β-cells are a key component in maintaining glucose homeostasis and are part 

of the islets of Langerhans, which also contain α-cells that secrete glucagon, PP cells that secrete 

pancreatic polypeptide, and γ-cells that secrete somatostatin (Hohmeier and Newgard, 2004).  β-

cells can be used to study the effects of different agents and potential new drugs on insulin 

secretion and the underlying mechanisms, and are an important tool in identifying new 

therapeutics and risk agents for type 2 diabetes.  Due to their utility in diabetes research, β-cells 

are constantly in high demand.  However, the availability of human pancreatic islets for research 

is very limited and the alternative of murine pancreatic islets comes with added costs and 

complications for the researcher: murine colony maintenance, cumbersome isolation procedures, 

and the finite life in culture of primary islets.  Because of these challenges, pancreatic β-cell lines 

from a variety of sources have been developed with the goal of having a readily available model 

that mimics the native β-cell.  The ideal model is one that is as close to the native cell as possible: 
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not only expressing high insulin content and having the ability to secrete insulin in response to a 

glucose challenge, but also expressing key genes and enzymes responsible for normal β-cell 

function (Hohmeier and Newgard, 2004).  Most of the established β-cell lines have originated from 

animal insulinoma tumors induced by irradiation or the expression of an oncogene (Hohmeier and 

Newgard, 2004).  The INS-1 parental cell line was first established from x-ray radiation induced 

rat insulinoma, with relatively high insulin content, and no expression of the other pancreatic 

endocrine hormones: glucagon, somatostatin, or pancreatic polypeptide (Asfari et al., 1992), thus 

showing phenotypical features of differentiated β-cells.  Furthermore, these cells responded to 

glucose stimulation within the physiological range, which prompted a 2-4-fold increase in insulin 

secretion (Asfari et al., 1992).   

One of the main challenges with the clonal β-cell models is that after subsequent 

passages, their insulin content decreases, and their ability to secrete insulin in response to a 

glucose challenge is severely impaired, thus causing a change in phenotype (Hohmeier and 

Newgard, 2004).  In an effort to create a model that is phenotypically stable for a relatively long 

time in culture conditions, Hohmeier et al. developed various INS-1 subclones by transfecting 

parental INS-1 cells with a human proinsulin gene.  INS-1 832/13 subclone emerged as the one 

that had the greatest GSIS index, as well as a remarkable phenotypic stability, maintaining the 

ability to respond to glucose over a span of 7 months or about 66 generations in culture (Hohmeier 

et al., 2000).   

Native β-cells respond by secreting insulin only when glucose concentration is higher than 

the physiological range.  This ensures that the cells don’t constantly secrete insulin in response 

to minor increases in glucose concentrations, or when the glucose concentration is low, which 

would eventually cause hypoglycemia.  They achieve this via their characteristic glucose sensing 

mechanisms, which involve glucose transporter GLUT-2 and glucokinase, a subtype of 

hexokinase that phosphorylates glucose upon entry into the β-cell (Fu et al., 2014).  Glucokinase 

has a lower affinity for glucose (with a Km of 6mM) compared to other hexokinases, which allows 
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glucose to be metabolized only at high concentrations (Fu et al., 2014).  In different β-cell models, 

the lack of expression of glucokinase, or expression of hexokinase limits their ability to respond 

to glucose, particularly within the physiological range.  The INS-1 832/13 cells express both 

GLUT-2 and glucokinase, which is a major advantage of this cell line, and allows it to have a 

similar glucose response to the native β-cells (Hohmeier and Newgard, 2004). 

Based on these characteristics, the INS-1 832/13 cell line is one the most physiologically relevant 

β-cell models, which makes it very suitable as a tool to test the effects of POPs or other agents 

of interest on pancreatic β-cell function. 

1.8 Introduction to Thymoquinone and its Anti-Diabetic Potential 

Thymoquinone (TQ) is the main bioactive component of Nigella sativa, a spice plant of the 

Ranunculaceae family that has been used in traditional medicine to treat a variety of diseases, 

including asthma, hypertension, diabetes, and cancer among others (Ali and Blunden, 2003).   

Most of the pharmacological properties of the Nigella sativa plant come from TQ actions (Ali and 

Blunden, 2003).  TQ was first isolated from the plant by El-Dakhakhny in 1963 and has a structure 

of a dione conjugated to a benzene ring, to which a methyl and an isopropyl side chains are added 

in the 2 and 5 positions (Figure 1.1 E) (Ali and Blunden, 2003; El-Dakhakhny, 1963).   

Thymoquinone has been shown to have antioxidative properties, as TQ administration for 

a period of 5 days in mice lowered the activity of antioxidant enzymes superoxide dismutase, 

catalase, and glutathione peroxidase in the liver (Mansour et al., 2002).  Furthermore, this was 

associated with the ability of TQ to scavenge reactive oxygen species (Mansour et al., 2002). TQ 

has shown anti-inflammatory properties by acting on different inflammatory markers and 

transcription factors.  Nuclear-factor-kappa B (NF-kB) is a transcription factor that regulates the 

expression of about 400 genes, including inflammatory cytokines and its activation has been 

associated with oxidative stress, inflammation, and a myriad of diseases, including diabetes (Ahn 

and Aggarwal, 2005).  TQ has been shown to inhibit the activation of NF-kB (Chehl et al., 2009; 

Sethi et al., 2008), as well as to reduce inflammatory cytokine levels in mice (El Gazzar et al., 
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2006). This compound has shown promise in ameliorating dyslipidemia, and has been shown to 

decrease the levels of triglycerides and total cholesterol and low-density lipoprotein (LDL) 

cholesterol (Alenzi et al., 2010; Asgary et al., 2015; Badary et al., 2000).  Since many of the type 

2 diabetes pathophysiologies are characterized by increasing levels of reactive oxygen species, 

pro-inflammatory markers, and dyslipidemia (Lumeng and Saltiel., 2011; Mooradian, 2009; Yan, 

2014), these findings highlight the potential antidiabetic effects of TQ.   

Evidence for the beneficial effects of TQ in maintaining glucose homeostasis and 

ameliorating diabetic symptoms comes from several studies in murine models of type 2 diabetes. 

In streptozotocin (STZ)-induced diabetic rats, TQ improved glucose tolerance, hyperglycemia, 

decreased the activities of hepatic gluconeogenic enzymes, increased the activities of hepatic 

glycolytic enzymes, and decreased the levels of glycated hemoglobin (Pari and 

Sankaranarayanan, 2009).  TQ was found to decrease the activity of glycogen phosphorylase, an 

enzyme that catalyzes the breakdown of liver glycogen in order to release glucose into the 

bloodstream and contributes to increased hepatic glucose production and eventual 

hyperglycemia in type 2 diabetes (El-Ameen et al., 2015).  In a similar study using the STZ-

induced diabetic rats, TQ administration lowered hyperglycemia, increased plasma insulin 

content, and increased total pancreatic insulin levels (Sankaranarayanan and Pari, 2011).  In 

another study using the same model, TQ administration over a 30-day period lowered 

hyperglycemia, increased serum insulin concentration, and decreased oxidative stress by 

restoring the levels of the enzyme superoxide dismutase in the tissues (Abdelmeguid et al., 2010).  

Furthermore, these changes were more apparent with increased study duration (Abdelmeguid et 

al., 2010).  In STZ-induced diabetic hamsters, TQ administration for 4 weeks decreased total 

glycated hemoglobin, hepatic glucose production, and blood glucose (Fararh et al., 2005).  One 

of the possible mechanisms by which TQ could ameliorate the diabetic phenotype in the STZ 

models is the reduction of oxidative stress and inflammation.  A study by El-Mahmoudy et al. 

reported that TQ administration decreased nitric oxide (NO) production, a free radical that can 
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contribute to oxidative stress and diabetes, and prevented the induction of diabetes after STZ 

administration (El-Mahmoudy et al., 2005).  The same group reported that TQ lowered serum 

levels of pro-inflammatory cytokines interleukin 1 beta (IL-1β) and tumor necrosis factor alpha 

(TNF-α) in STZ-induced diabetic rats (El-Mahmoudy et al., 2005).  In rats rendered diabetic by 

high-fructose diet (HFD) feeding, TQ administration ameliorated hyperglycemia, insulin 

resistance, dyslipidemia, and increased levels of antioxidant enzymes catalase and superoxide 

dismutase in a dose-dependent manner (Prabhakar et al., 2015).  In rats rendered insulin-

resistant and hyperglycemic by high-fat high-cholesterol feeding, TQ lowered fasting blood 

glucose, improved insulin sensitivity, improved the lipid profile, and decreased pro-inflammatory 

markers TNF-α and interleukin 10 (IL-10) (Awad et al., 2016). 

Since TQ has been shown to decrease inflammatory markers and oxidative stress, 

researchers have been interested in studying the direct effects of TQ on pancreatic β-cell function.  

Pancreatic β-cells have very low levels of antioxidant enzymes, making them more prone to 

oxidative stress, which is elevated in type 2 diabetes, and can result in β-cell death (Montane et 

al., 2014).  Reduction of oxidative stress by TQ may protect β-cells in diabetic conditions, which 

can lead to improved β-cell function and overall improvements in glucose homeostasis.  TQ has 

been shown to improve streptozotocin-induced β-cell damage, with pancreatic islets showing 

normal morphology even after STZ treatment in diabetic rats (Abdelmeguid et al., 2010).  The 

increase observed in serum insulin levels after TQ treatment in STZ-induced diabetic rats could 

be a result of improved β-cell function and consequently increased insulin secretion (El-

Mahmoudy et al., 2005; Sankaranarayanan and Pari, 2011).   However, few studies have been 

conducted on the direct effects of TQ on GSIS.  Nigella sativa extract enhanced GSIS in 

pancreatic islets in a concentration-dependent manner (Rchid et al., 2004).  In INS-1 cells, Nigella 

sativa extract increased GSIS, but the same effect was not observed with TQ (Chandra et al., 

2009).  In INS-1 832/13 cells, TQ was shown to normalize defective GSIS due to chronic high 

glucose exposure via inhibition of acetyl CoA carboxylase (ACC) and enhanced oxidation of 
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glucose and fatty acids (Gray et al., 2016).  The same study showed that TQ lowers the 

NADH/NAD+ ratio, leading to more NAD+ being available for glucose oxidation, which can 

potentiate GSIS (Gray et al., 2016). 

In humans, Nigella sativa oil has been shown to reduce fasting blood glucose and glycated 

hemoglobin levels in patients with type 2 diabetes (Heshmati et al., 2015; Kaatabi et al., 2015).  

TQ also improved oxidative stress in patients with type 2 diabetes by reducing the levels of lipid 

peroxidation markers and elevating the levels of SOD, glutathione, and total oxidant capacity 

(Kaatabi et al., 2015).  Lastly, in a clinical trial, Nigella sativa oil enhanced the ability of metformin 

to decrease fasting and postprandial glucose levels in patients with metabolic syndrome (Najmi 

et al., 2008) 

Taken together, these studies demonstrate the potential of TQ to regulate glucose 

homeostasis by acting on key peripheral metabolic tissues, as well as by potentially having a 

direct effect on pancreatic β-cell function; however, the detailed mechanisms of anti-diabetic 

actions of TQ warrant further investigation. 

1.9 Objective, Hypotheses, and Aims 

One of the objectives of this work is to evaluate the effect of BDE-47, BDE-85, PFOS, and 

PFNA on GSIS using the pancreatic β-cell line INS-1 832/13, and the potential mechanisms 

associated with this effect.  Another objective of the work is to evaluate the antidiabetic effects of 

Thymoquinone, the main bioactive component of plant Nigella sativa, in the diet-induced obesity 

(DIO) mouse model of type 2 diabetes.  We hypothesized that the selected POPs will increase in 

vitro GSIS and that the mechanisms by which these POPs affect GSIS depend on thyroid 

hormone receptor and Akt activation.  Secondly, we hypothesized that Thymoquinone will 

ameliorate hyperglycemia, insulin resistance, tissue metabolic imbalances, lipid profile, 

inflammation, and weight gain in the diet-induced obesity (DIO) mouse model of type 2 diabetes.  

Lastly, because TQ has been reported to decrease NADH/NAD+ ratio (Gray et al., 2016), thus 
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increasing NAD+, we hypothesized that the anti-diabetic effects of TQ are mediated by activation 

of NAD+- dependent targets, SIRT-1 and AMPK.   

We will test these hypotheses by executing the following specific aims: 

Specific Aim 1: Examine the effect of selected POPs on glucose-stimulated insulin secretion 

(GSIS) in INS-1 832/13 pancreatic β-cell line.  Cells will be exposed to selected POPs during a 

chronic 48-hour pre-treatment, as well as during a 1-hour acute treatment, and insulin will be 

measured by an ELISA kit.  Compounds that modify GSIS will be selected for mechanistic studies 

in Specific Aim 2. 

Specific Aim 2:  Evaluate the role of thyroid receptor (TR) and Akt in modulation of GSIS by 

selected POP compounds.  GSIS will be performed with the selected compounds in the presence 

or absence of thyroid receptor agonist (T3) & antagonist (1-850); as well as in the presence or 

absence of wortmannin, a specific inhibitor of PI3K upstream of Akt.  Insulin secretion will be 

measured by an Elisa kit and phosphorylation (activation) of Akt will be measured by western 

blotting. 

Specific Aim 3:  Evaluate the antidiabetic effects of TQ in the DIO mouse model of type 2 diabetes.  

DIO mice will be administered TQ by oral gavage and glucose homeostasis will be assessed by 

the following techniques: glucose tolerance by a glucose tolerance test (GTT), insulin sensitivity 

by insulin tolerance test (ITT), fasting blood glucose will be measured as part of the GTT and ITT.  

Effect of TQ on lipid profile will be evaluated by measurement of total tissue triglycerides and 

serum cholesterol, and the effect of TQ on tissue metabolomics will be evaluated by GC/MS.  To 

evaluate whether the antidiabetic effects of TQ are mediated by activating SIRT-1 and AMPK 

pathways, tissue protein levels of activated (phosphorylated) SIRT-1 and AMPKα will be 

measured by western blot.  To evaluate whether the effects of TQ on insulin sensitivity are 

dependent on SIRT-1 and AMPK activation, insulin-resistant HepG2 cells will be exposed to TQ 

in the presence or absence of SIRT-1 and AMPKα pharmacological inhibitors and activators. 
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1.10 Significance and Impact 

The results of this study should serve to initially (1) provide direct evidence for the role of 

the selected POPs in pancreatic β-cell function, (2) describe the mechanisms by which they act 

to affect β-cell function, and (3) to establish the antidiabetic role of TQ and the potential molecular 

mechanisms involved.  This study should serve to identify specific agents and mechanisms that 

can contribute to the development of type 2 diabetes, reinforcing that environmental pollutants 

can play a role in human health and disease, and particularly in metabolic diseases.  The findings 

of the study could also provide the basis for TQ to be further developed as a treatment option for 

type 2 diabetes. 

1.11 References 

Abdelmeguid, N. E., Fakhoury, R., Kamal, S. M., & Al Wafai, R. J. (2010). Effects of Nigella sativa 

and thymoquinone on biochemical and subcellular changes in pancreatic β‐ cells of 

streptozotocin‐ induced diabetic rats. Journal of diabetes, 2(4), 256-266. 

Ahn, K. S., & Aggarwal, B. B. (2005). Transcription Factor NF‐ κB: A Sensor for Smoke and Stress 

Signals. Annals of the new York Academy of Sciences,1056(1), 21 

Airaksinen, R., Rantakokko, P., Eriksson, J. G., Blomstedt, P., Kajantie, E., & Kiviranta, H. (2011). 

Association between type 2 diabetes and exposure to persistent organic pollutants. Diabetes 

Care, 34(9), 1972-1979. 

Alenzi, F. Q., El-Bolkiny, Y. E. S., & Salem, M. L. (2010). Protective effects of Nigella sativa oil 

and thymoquinone against toxicity induced by the anticancer drug cyclophosphamide. British 

journal of biomedical science, 67(1), 20-28. 

Ali, B. H., & Blunden, G. (2003). Pharmacological and toxicological properties of Nigella sativa. 

Phytotherapy Research, 17(4), 299-305. 

Aoyagi, K., Ohara-Imaizumi, M., Nishiwaki, C., Nakamichi, Y., Ueki, K., Kadowaki, T., & 

Nagamatsu, S. (2012). Acute inhibition of PI3K-PDK1-Akt pathway potentiates insulin secretion 

through upregulation of newcomer granule fusions in pancreatic β-cells. PloS one, 7(10), e47381. 

Asfari, M., Janjic, D., Meda, P., Li, G., Halban, P. A., & Wollheim, C. B. (1992). Establishment of 

2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology, 130(1), 

167-178. 

Asgary, S., Sahebkar, A., & Goli-Malekabadi, N. (2015). Ameliorative effects of Nigella sativa on 

dyslipidemia. Journal of endocrinological investigation,38(10), 1039-1046. 



17 
 

Awad, A. S., Al Haleem, E. N. A., El-Bakly, W. M., & Sherief, M. A. (2016). Thymoquinone 

alleviates nonalcoholic fatty liver disease in rats via suppression of oxidative stress, inflammation, 

apoptosis. Naunyn-Schmiedeberg's archives of pharmacology, 389(4), 381-391. 

Badary, O. A., Abdel-Naim, A. B., Abdel-Wahab, M. H., & Hamada, F. M. (2000). The influence 

of thymoquinone on doxorubicin-induced hyperlipidemic nephropathy in rats. Toxicology, 143(3), 

219-226. 

Bernal-Mizrachi, E., Fatrai, S., Johnson, J. D., Ohsugi, M., Otani, K., Han, Z., ... & Permutt, M. A. 

(2004). Defective insulin secretion and increased susceptibility to experimental diabetes are 

induced by reduced Akt activity in pancreatic islet β cells. Journal of Clinical Investigation, 114(7), 

928. 

Betts, K. S. (2008). Unwelcome guest: PBDEs in indoor dust. Environmental health perspectives, 

116(5), A202. 

Blanco, J., Mulero, M., Domingo, J. L., & Sanchez, D. J. (2013). Perinatal exposure to BDE-99 

causes decreased protein levels of cyclin D1 via GSK3β activation and increased ROS production 

in rat pup livers. toxicological sciences, 137(2), 491-498. 

Bloom, M. S., Kannan, K., Spliethoff, H. M., Tao, L., Aldous, K. M., & Vena, J. E. (2010). 

Exploratory assessment of perfluorinated compounds and human thyroid function. Physiology & 

behavior, 99(2), 240-245. 

Calafat, A. M., Kuklenyik, Z., Caudill, S. P., Reidy, J. A., & Needham, L. L. (2006). 

Perfluorochemicals in pooled serum samples from United States residents in 2001 and 

2002. Environmental science & technology, 40(7), 2128-2134. 

Calafat, A. M., Wong, L. Y., Kuklenyik, Z., Reidy, J. A., & Needham, L. L. (2007). Polyfluoroalkyl 

chemicals in the US population: data from the National Health and Nutrition Examination Survey 

(NHANES) 2003–2004 and comparisons with NHANES 1999–2000. Environmental health 

perspectives, 115(11), 1596. 

Centers for Disease Control and Prevention. (2016).  Long term trends in diabetes. Atlanta, GA: 
US Department of Health and Human Services, 2016.  
 
Chandra, S., Murthy, S. N., Mondal, D., & Agrawal, K. C. (2009). Therapeutic effects of Nigella 

sativa on chronic HAART-induced hyperinsulinemia in rats This article is one of a selection of 

papers from the NATO Advanced Research Workshop on Translational Knowledge for Heart 

Health (published in part 2 of a 2-part Special Issue). Canadian journal of physiology and 

pharmacology, 87(4), 300-309. 

Chehl, N., Chipitsyna, G., Gong, Q., Yeo, C. J., & Arafat, H. A. (2009). Anti‐ inflammatory effects 

of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB, 11(5), 373-381. 

Cheng, K. K., Lam, K. S., Wu, D., Wang, Y., Sweeney, G., Hoo, R. L., ... & Xu, A. (2012). APPL1 

potentiates insulin secretion in pancreatic β cells by enhancing protein kinase Akt-dependent 

expression of SNARE proteins in mice. Proceedings of the National Academy of Sciences, 

109(23), 8919-8924. 



18 
 

Covaci, A., Voorspoels, S., Roosens, L., Jacobs, W., Blust, R., & Neels, H. (2008). 

Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in human liver 

and adipose tissue samples from Belgium. Chemosphere, 73(2), 170-175. 

Egeghy, P. P., & Lorber, M. (2011). An assessment of the exposure of Americans to 

perfluorooctane sulfonate: a comparison of estimated intake with values inferred from NHANES 

data. Journal of Exposure Science and Environmental Epidemiology, 21(2), 150-168. 

El Gazzar, M., El Mezayen, R., Nicolls, M. R., Marecki, J. C., & Dreskin, S. C. (2006). 

Downregulation of leukotriene biosynthesis by thymoquinone attenuates airway inflammation in 

a mouse model of allergic asthma.Biochimica et Biophysica Acta (BBA)-General Subjects, 

1760(7), 1088-1095. 

El-Ameen, N. M. H., Taha, M. M. E., Abdelwahab, S. I., Khalid, A., Elfatih, F., Kamel, M. A., & 

Sheikh, B. Y. (2015). Anti-diabetic properties of thymoquinone is unassociated with glycogen 

phosphorylase inhibition.Pharmacognosy Journal, 7(6). 

El-Dakhakhny, M. (1963). Studies on the chemical constitution of Egyptian.Nigella sativa, 465-

70. 

El-Mahmoudy, A., Shimizu, Y., Shiina, T., Matsuyama, H., El-Sayed, M., & Takewaki, T. (2005). 

Successful abrogation by thymoquinone against induction of diabetes mellitus with streptozotocin 

via nitric oxide inhibitory mechanism. International immunopharmacology, 5(1), 195-207. 

El-Mahmoudy, A., Shimizu, Y., Shiina, T., Matsuyama, H., Nikami, H., & Takewaki, T. (2005). 

Macrophage-derived cytokine and nitric oxide profiles in type I and type II diabetes mellitus: effect 

of thymoquinone. Acta diabetologica, 42(1), 23-30. 

Eriksen, K. T., Raaschou-Nielsen, O., McLaughlin, J. K., Lipworth, L., Tjønneland, A., Overvad, 

K., & Sørensen, M. (2013). Association between plasma PFOA and PFOS levels and total 

cholesterol in a middle-aged Danish population. PloS one, 8(2), e56969. 

Erion, M. D., Cable, E. E., Ito, B. R., Jiang, H., Fujitaki, J. M., Finn, P. D., ... & Linemeyer, D. L. 

(2007). Targeting thyroid hormone receptor-β agonists to the liver reduces cholesterol and 

triglycerides and improves the therapeutic index. Proceedings of the National Academy of 

Sciences, 104(39), 15490-15495. 

Eto, K., Yamashita, T., Tsubamoto, Y., Terauchi, Y., Hirose, K., Kubota, N., ... & Tobe, K. (2002). 

Phosphatidylinositol 3-kinase suppresses glucose-stimulated insulin secretion by affecting post-

cytosolic [Ca2+] elevation signals. Diabetes, 51(1), 87-97. 

Falzacappa, C. V., Petrucci, E., Patriarca, V., Michienzi, S., Stigliano, A., Brunetti, E., ... & Misiti, 

S. (2007). Thyroid hormone receptor TRβ1 mediates Akt activation by T3 in pancreatic β cells. 

Journal of molecular endocrinology,38(2), 221-233. 

Fang, X., Gao, G., Xue, H., Zhang, X., & Wang, H. (2012). Exposure of perfluorononanoic acid 

suppresses the hepatic insulin signal pathway and increases serum glucose in rats. Toxicology, 

294(2), 109-115. 



19 
 

Fararh, K. M., Shimizu, Y., Shiina, T., Nikami, H., Ghanem, M. M., & Takewaki, T. (2005). 

Thymoquinone reduces hepatic glucose production in diabetic hamsters. Research in veterinary 

science, 79(3), 219-223. 

Fisher, M., Arbuckle, T. E., Wade, M., & Haines, D. A. (2013). Do perfluoroalkyl substances affect 

metabolic function and plasma lipids? Analysis of the 2007–2009, Canadian Health Measures 

Survey (CHMS) Cycle 1. Environmental research, 121, 95-103. 

Fletcher, T., Galloway, T. S., Melzer, D., Holcroft, P., Cipelli, R., Pilling, L. C., ... & Harries, L. W. 

(2013). Associations between PFOA, PFOS and changes in the expression of genes involved in 

cholesterol metabolism in humans.Environment international, 57, 2-10. 

Fu, Z., R Gilbert, E., & Liu, D. (2013). Regulation of insulin synthesis and secretion and pancreatic 

Beta-cell dysfunction in diabetes. Current diabetes reviews, 9(1), 25-53. 

Gilliland, F. D., & Mandel, J. S. (1993). Mortality among employees of a perfluorooctanoic acid 

production plant. Journal of Occupational and Environmental Medicine, 35(9), 950-954. 

Gleason, J. A., Post, G. B., & Fagliano, J. A. (2015). Associations of perfluorinated chemical 

serum concentrations and biomarkers of liver function and uric acid in the US population 

(NHANES), 2007–2010. Environmental research, 136, 8-14. 

Gray, J. P., Burgos, D. Z., Yuan, T., Seeram, N., Rebar, R., Follmer, R., & Heart, E. A. (2016). 

Thymoquinone, a bioactive component of Nigella sativa, normalizes insulin secretion from 

pancreatic β-cells under glucose overload via regulation of malonyl-CoA. American Journal of 

Physiology-Endocrinology and Metabolism, 310(6), E394-E404. 

Guo, S. (2014). Insulin signaling, resistance, and metabolic syndrome: insights from mouse 

models into disease mechanisms. Journal of Endocrinology, 220(2), T1-T23. 

Han, W. (2009). PFOS related actions in China. In International workshop on managing 

perfluorinated chemicals and transitioning to safer alternatives (pp. 12-13). 

Harvey, C. B., & Williams, G. R. (2002). Mechanism of thyroid hormone action. Thyroid, 12(6), 

441-446. 

Heshmati, J., Namazi, N., Memarzadeh, M. R., Taghizadeh, M., & Kolahdooz, F. (2015). Nigella 

sativa oil affects glucose metabolism and lipid concentrations in patients with type 2 diabetes: A 

randomized, double-blind, placebo-controlled trial. Food Research International, 70, 87-93. 

Hohmeier, H. E., & Newgard, C. B. (2004). Cell lines derived from pancreatic islets. Molecular 

and cellular endocrinology, 228(1), 121-128. 

Hohmeier, H. E., Mulder, H., Chen, G., Henkel-Rieger, R., Prentki, M., & Newgard, C. B. (2000). 

Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and-

independent glucose-stimulated insulin secretion. Diabetes, 49(3), 424-430. 

Johnson-Restrepo, B., Kannan, K., Rapaport, D. P., & Rodan, B. D. (2005). Polybrominated 

diphenyl ethers and polychlorinated biphenyls in human adipose tissue from New York. 

Environmental science & technology, 39(14), 5177-5182. 



20 
 

Kaatabi, H., Bamosa, A. O., Badar, A., Al-Elq, A., Abou-Hozaifa, B., Lebda, F., ... & Al-Almaie, S. 

(2015). Nigella sativa improves glycemic control and ameliorates oxidative stress in patients with 

type 2 diabetes mellitus: Placebo controlled participant blinded clinical trial. PloS one, 10(2), 

e0113486. 

Kannan, K., Corsolini, S., Falandysz, J., Fillmann, G., Kumar, K. S., Loganathan, B. G., ... & 

Aldous, K. M. (2004). Perfluorooctanesulfonate and related fluorochemicals in human blood from 

several countries. Environmental science & technology, 38(17), 4489-4495. 

Karnes, C., Winquist, A., & Steenland, K. (2014). Incidence of type II diabetes in a cohort with 

substantial exposure to perfluorooctanoic acid. Environmental research, 128, 78-83. 

Kärrman, A., Domingo, J. L., Llebaria, X., Nadal, M., Bigas, E., van Bavel, B., & Lindström, G. 

(2010). Biomonitoring perfluorinated compounds in Catalonia, Spain: concentrations and trends 

in human liver and milk samples. Environmental Science and Pollution Research, 17(3), 750-758. 

Kolic, J., Spigelman, A. F., Plummer, G., Leung, E., Hajmrle, C., Kin, T., ... & MacDonald, P. E. 

(2013). Distinct and opposing roles for the phosphatidylinositol 3-OH kinase catalytic subunits 

p110α and p110β in the regulation of insulin secretion from rodent and human beta 

cells.Diabetologia, 56(6), 1339-1349. 

Le Bacquer, O., Queniat, G., Gmyr, V., Kerr-Conte, J., Lefebvre, B., & Pattou, F. (2013). mTORC1 

and mTORC2 regulate insulin secretion through Akt in INS-1 cells. Journal of Endocrinology, 

216(1), 21-29. 

Lee, D. H., Lee, I. K., Song, K., Steffes, M., Toscano, W., Baker, B. A., & Jacobs, D. R. (2006). A 

strong dose-response relation between serum concentrations of persistent organic pollutants and 

diabetes results from the National Health and Examination Survey 1999–2002. Diabetes Care, 

29(7), 1638-1644. 

Lenzen, S., Panten, U., & Hasselblatt, A. (1975). Thyroxine treatment and insulin secretion in the 

rat. Diabetologia, 11(1), 49-55. 

Lim, J. S., Lee, D. H., & Jacobs, D. R. (2008). Association of brominated flame retardants with 

diabetes and metabolic syndrome in the US population, 2003–2004. Diabetes care, 31(9), 1802-

1807. 

Lin, C. Y., Chen, P. C., Lin, Y. C., & Lin, L. Y. (2009). Association among serum perfluoroalkyl 

chemicals, glucose homeostasis, and metabolic syndrome in adolescents and adults. Diabetes 

care, 32(4), 702-707. 

Lind, L., Zethelius, B., Salihovic, S., van Bavel, B., & Lind, P. M. (2014). Circulating levels of 

perfluoroalkyl substances and prevalent diabetes in the elderly. Diabetologia, 57(3), 473-479. 

Lumeng, C. N., & Saltiel, A. R. (2011). Inflammatory links between obesity and metabolic 
disease. The Journal of clinical investigation, 121(6), 2111. 
 
Lv, Z., Li, G., Li, Y., Ying, C., Chen, J., Chen, T., ... & Shu, B. (2013). Glucose and lipid 

homeostasis in adult rat is impaired by early‐ life exposure to perfluorooctane sulfonate. 

Environmental toxicology, 28(9), 532-542. 



21 
 

Maestri, L., Negri, S., Ferrari, M., Ghittori, S., Fabris, F., Danesino, P., & Imbriani, M. (2006). 

Determination of perfluorooctanoic acid and perfluorooctanesulfonate in human tissues by liquid 

chromatography/single quadrupole mass spectrometry. Rapid Communications in Mass 

Spectrometry, 20(18), 2728-2734. 

Mansour, M. A., Nagi, M. N., El‐ Khatib, A. S., & Al‐ Bekairi, A. M. (2002). Effects of thymoquinone 

on antioxidant enzyme activities, lipid peroxidation and DT‐ diaphorase in different tissues of 

mice: a possible mechanism of action. Cell biochemistry and function, 20(2), 143-151. 

Meironyté Guvenius, D., Bergman, Å., & Noren, K. (2001). Polybrominated diphenyl ethers in 

Swedish human liver and adipose tissue. Archives of environmental contamination and 

toxicology, 40(4), 564-570. 

Montane, J., Cadavez, L., & Novials, A. (2014). Stress and the inflammatory process: a major 
cause of pancreatic cell death in type 2 diabetes. Diabetes, metabolic syndrome and obesity: 
targets and therapy, 7, 25. 
 
Mooradian, A. D. (2009). Dyslipidemia in type 2 diabetes mellitus. Nature Reviews. 
Endocrinology, 5(3), 150. 
 
Mullur, R., Liu, Y. Y., & Brent, G. A. (2014). Thyroid hormone regulation of metabolism. 

Physiological reviews, 94(2), 355-382. 

Najmi, A., Nasiruddin, M., Khan, R. A., & Haque, S. F. (2008). Effect of Nigella sativa oil on various 

clinical and biochemical parameters of insulin resistance syndrome. International journal of 

diabetes in developing countries, 28(1), 11. 

Nash, J. T., Szabo, D. T., & Carey, G. B. (2013). Polybrominated diphenyl ethers alter hepatic 

phosphoenolpyruvate carboxykinase enzyme kinetics in male Wistar rats: implications for lipid 

and glucose metabolism. Journal of Toxicology and Environmental Health, Part A, 76(2), 142-

156. 

Nelson, J. W., Hatch, E. E., & Webster, T. F. (2010). Exposure to polyfluoroalkyl chemicals and 

cholesterol, body weight, and insulin resistance in the general US population. Environmental 

health perspectives, 118(2), 197. 

Nelson, J. W., Hatch, E. E., & Webster, T. F. (2010). Exposure to polyfluoroalkyl chemicals and 

cholesterol, body weight, and insulin resistance in the general US population. Environmental 

health perspectives, 118(2), 197. 

Olsen, G. W., Hansen, K. J., Stevenson, L. A., Burris, J. M., & Mandel, J. H. (2003). Human donor 

liver and serum concentrations of perfluorooctanesulfonate and other 

perfluorochemicals. Environmental science & technology, 37(5), 888-891. 

Olsen, G. W., Burris, J. M., Ehresman, D. J., Froehlich, J. W., Seacat, A. M., Butenhoff, J. L., & 

Zobel, L. R. (2007). Half-life of serum elimination of perfluorooctanesulfonate, 

perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production 

workers. Environmental health perspectives, 115(9), 1298. 



22 
 

Pari, L., & Sankaranarayanan, C. (2009). Beneficial effects of thymoquinone on hepatic key 

enzymes in streptozotocin–nicotinamide induced diabetic rats.Life sciences, 85(23), 830-834. 

Prabhakar, P., Reeta, K. H., Maulik, S. K., Dinda, A. K., & Gupta, Y. K. (2015). Protective effect 

of thymoquinone against high-fructose diet-induced metabolic syndrome in rats. European journal 

of nutrition, 54(7), 1117-1127. 

Ren, X. M., & Guo, L. H. (2013). Molecular toxicology of polybrominated diphenyl ethers: nuclear 

hormone receptor mediated pathways.Environmental Science: Processes & Impacts, 15(4), 702-

708. 

Rotander, A., Toms, L. M. L., Aylward, L., Kay, M., & Mueller, J. F. (2015). Elevated levels of 

PFOS and PFHxS in firefighters exposed to aqueous film forming foam (AFFF). Environment 

international, 82, 28-34. 

Sankaranarayanan, C., & Pari, L. (2011). Thymoquinone ameliorates chemical induced oxidative 

stress and β-cell damage in experimental hyperglycemic rats. Chemico-biological interactions, 

190(2), 148-154. 

Schecter, A., Pavuk, M., Päpke, O., Ryan, J. J., Birnbaum, L., & Rosen, R. (2003). Polybrominated 

diphenyl ethers (PBDEs) in US mothers' milk. Environmental health perspectives, 111(14), 1723. 

Schussler, G. C. (2000). The thyroxine-binding proteins. Thyroid, 10(2), 141-149. 

Sethi, G., Ahn, K. S., & Aggarwal, B. B. (2008). Targeting nuclear factor-κB activation pathway by 

thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. 

Molecular cancer research,6(6), 1059-1070. 

She, J., Holden, A., Sharp, M., Tanner, M., Williams-Derry, C., & Hooper, K. (2007). 

Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in breast milk 

from the Pacific Northwest. Chemosphere, 67(9), S307-S317. 

She, J., Petreas, M., Winkler, J., Visita, P., McKinney, M., & Kopec, D. (2002). PBDEs in the San 

Francisco Bay Area: measurements in harbor seal blubber and human breast adipose tissue. 

Chemosphere, 46(5), 697-707. 

Shoemaker, T., Kono, T., Mariash, C., & Evans-Molina, C. (2012). Thyroid hormone analogues 

for the treatment of metabolic disorders: new potential for unmet clinical needs?. Endocrine 

Practice, 18(6), 954-964. 

Sjödin, A., Jones, R. S., Focant, J. F., Lapeza, C., Wang, R. Y., McGahee 3rd, E. E., ... & 

Patterson Jr, D. G. (2004). Retrospective time-trend study of polybrominated diphenyl ether and 

polybrominated and polychlorinated biphenyl levels in human serum from the United States. 

Environmental health perspectives, 112(6), 654. 

Stapleton, H. M., Sjödin, A., Jones, R. S., Niehüser, S., Zhang, Y., & Patterson Jr, D. G. (2008). 

Serum levels of polybrominated diphenyl ethers (PBDEs) in foam recyclers and carpet installers 

working in the United States. Environmental science & technology, 42(9), 3453-3458. 



23 
 

Stein, C. R., Savitz, D. A., & Dougan, M. (2009). Serum levels of perfluorooctanoic acid and 

perfluorooctane sulfonate and pregnancy outcome. American journal of epidemiology, 170(7), 

837-846. 

Tao, L., Kannan, K., Wong, C. M., Arcaro, K. F., & Butenhoff, J. L. (2008). Perfluorinated 

compounds in human milk from Massachusetts, USA. Environmental science & technology, 42(8), 

3096-3101. 

Tao, L., Ma, J., Kunisue, T., Libelo, E. L., Tanabe, S., & Kannan, K. (2008). Perfluorinated 

compounds in human breast milk from several Asian countries, and in infant formula and dairy 

milk from the United States. Environmental science & technology, 42(22), 8597-8602. 

Timmermann, C. A. G., Rossing, L. I., Grøntved, A., Ried-Larsen, M., Dalgård, C., Andersen, L. 

B., ... & Jensen, T. K. (2014). Adiposity and glycemic control in children exposed to perfluorinated 

compounds. The Journal of Clinical Endocrinology & Metabolism, 99(4), E608-E614. 

Tung, E. W., Boudreau, A., Wade, M. G., & Atlas, E. (2014). Induction of adipocyte differentiation 

by polybrominated diphenyl ethers (PBDEs) in 3T3-L1 cells. PloS one, 9(4), e94583. 

US Environmental Protection Agency. Technical Fact Sheet—Polybrominated Diphenyl Ethers 
(PBDEs) and Polybrominated Biphenyls (PBBs). http://www2.epa.gov/fedfac/technical-fact-
sheet-polybrominated-diphenyl-ethers-pbdes-and-polybrominated-biphenyls-pbbs. Published 
January 2014. Accessed July 18, 2017 
 
Verga Falzacappa, C., Mangialardo, C., Raffa, S., Mancuso, A., Piergrossi, P., Moriggi, G., ... & 

Toscano, V. (2010). The thyroid hormone T3 improves function and survival of rat pancreatic 

islets during in vitro culture. Islets, 2(2), 96-103. 

Wijesekara, N., Krishnamurthy, M., Bhattacharjee, A., Suhail, A., Sweeney, G., & Wheeler, M. B. 

(2010). Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell 

apoptosis and increases insulin gene expression and secretion. Journal of Biological Chemistry, 

285(44), 33623-33631. 

Ximenes, H. M., Lortz, S., Jörns, A., & Lenzen, S. (2007). Triiodothyronine (T 3)-mediated toxicity 

and induction of apoptosis in insulin-producing INS-1 cells. Life sciences, 80(22), 2045-2050. 

Xu, W., Wang, X., & Cai, Z. (2013). Analytical chemistry of the persistent organic pollutants 

identified in the Stockholm Convention: A review. Analytica chimica acta, 790, 1-13. 

Yamamoto, J., Yamane, T., Oishi, Y., & Kobayashi-Hattori, K. (2015). Perfluorooctanoic acid 

binds to peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation in 

3T3-L1 adipocytes. Bioscience, biotechnology, and biochemistry, 79(4), 636-639. 

Yan, L. J. (2014). Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative 
stress. Journal of diabetes research, 2014. 
 
Zawalich, W. S., Tesz, G. J., & Zawalich, K. C. (2002). Inhibitors of phosphatidylinositol 3-kinase 

amplify insulin release from islets of lean but not obese mice. Journal of Endocrinology, 174(2), 

247-258. 

http://www2.epa.gov/fedfac/technical-fact-sheet-polybrominated-diphenyl-ethers-pbdes-and-polybrominated-biphenyls-pbbs
http://www2.epa.gov/fedfac/technical-fact-sheet-polybrominated-diphenyl-ethers-pbdes-and-polybrominated-biphenyls-pbbs


24 
 

Zhang, Z., Li, S., Liu, L., Wang, L., Xiao, X., Sun, Z., ... & Xu, Q. (2016). Environmental exposure 

to BDE47 is associated with increased diabetes prevalence: Evidence from community-based 

case-control studies and an animal experiment. Scientific reports, 6. 

 

1.12 Tables and Figures 

 

 

Figure 1.1 Illustration of chemical structures.  Chemical structures of BDE-47 (A), BDE-85 (B), 
PFOS (C), PFNA (D), and thymoquinone (E). 
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CHAPTER TWO: 

EFFECTS OF SELECTED POPs ON INSULIN SECRETION 

2.1 The Importance of Identifying Potential Agents that Contribute to β-cell Dysfunction 

Pancreatic β-cells are one of the key components in maintaining glucose homeostasis.  

They are encapsulated within the pancreatic islets, which are robust structures that in addition to 

beta cells, also contain glucagon producing alpha cells, somatostatin producing delta cells, and 

pancreatic polypeptide producing gamma cells (Steiner et al., 2010).  Pancreatic islets are highly 

vascularized, which allows for their glucose-sensing capability (Steiner et al., 2010).  β-cells 

secrete insulin in response to elevated blood glucose levels (e.g. following a meal), which helps 

re-establish normoglycemia by promoting glucose uptake and utilization by insulin-sensitive 

peripheral tissues (Kahn et al., 2014).  Insulin also suppresses hepatic gluconeogenesis as a 

signal that the body doesn’t need more glucose, which helps establish normoglycemia (Muoio 

and Newgard, 2008).  In non-diabetic individuals, there is cross-talk between pancreatic beta cells 

and insulin-sensitive tissues (most importantly liver, skeletal muscle, and adipose tissue) that 

allows for adequate insulin secretion (Kahn et al., 2006; Kahn et al., 2014).  Failure of this 

communication continuum can lead to the emergence of type 2 diabetes, although the 

mechanisms by which this occurs are not clear.  One traditional view is that insulin resistance (or 

the inability of insulin to enter and/or exert its metabolic functions in target tissues) causes 

overproduction of insulin from β-cells to compensate for this resistance, which eventually leads to 

β-cell failure and hyperglycemia (Kahn et al., 2014).  This view is supported by observations that 

in early diabetes, there is increased β-cell mass and hyperinsulinemia (Kahn et al., 2006; Fu et 

al., 2013).  This increased β-cell function, on the other hand, may cause hyperinsulinemia, which 

can worsen insulin resistance (Shanik et al., 2008).  Another view is that insulin secretion and 
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insulin sensitivity are in a continuum (Kahn et al., 2014); however, it is widely accepted that β-cell 

failure is a critical step in the emergence of hyperglycemia (Kahn et al., 2006; Kahn et al., 2014; 

Muoio and Newgard, 2008; Fu et al., 2013).  Thus, any deviation from normal β-cell function (e.g. 

β-cell failure or overstimulation) has very important implications in glucose homeostasis and 

development of type 2 diabetes.  Because of this, it is crucial to identify potential factors that can 

alter pancreatic β-cell function.  In the current work, we examined the direct role of environmental 

pollutants, PFOS, PFNA, BDE-47, and BDE-85 in pancreatic β-cell function using the INS-1 

832/13 insulin-producing cells.  

2.2 Hypothesis 

Exposure of INS-1 832/13 cells to PFOS, PFNA, BDE-47, or BDE-85 will increase 

glucose-stimulated insulin secretion compared to vehicle control treated cells. 

2.3 Methods 

2.3.1 INS-1 832/13 Cell Culture and Maintenance 

INS-1 832/13 cells (passages 51-60), provided by Dr. Christopher Newgard (Duke 

University School of Medicine) were cultured in RMPI-1640 glucose-free medium supplemented 

with 11 mmol/l glucose, 10% fetal bovine serum, 1mmol/l sodium pyruvate, 5mmol/l HEPES, 2g/L 

sodium bicarbonate, 2mmol/l L-glutamine, 50 µmol/l 2-mercaptoethanol, 10000 U/ml penicillin, 

and 10 mg/ml streptomycin (Karandrea et al., 2017).  Cells were maintained at 37°C in a 

humidified incubator with 5% CO2.  Cells were subcultured when confluency was around 80% and 

medium was replaced every 3 days. 

2.3.2 Glucose-stimulated Insulin Secretion (GSIS) 

INS-1 832/13 cells grown to confluency in 24 well plates, were washed 3 times with and 

pre-incubated in Krebs Ringer Buffer (KRB) (120 mM NaCl, 25 mM HEPES, 4.6 mM KCl, 1 mM 

MgSO4, 0.15 mM Na2HPO4, 0.4 mM KH2PO4, 5 mM NaHCO3, 2 mM CaCl2) containing 3 mmol/l 

glucose at 37°C for 2 h; followed by a static 1 h incubation at 37°C in KRB containing 3 or 16 

mmol/l glucose.  KRB buffer was collected and centrifuged at 5000 x g for 3 min at 4°C to pellet 
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out any cells.  For acute GSIS, compounds were present only during the 1hr static incubation 

phase.  Insulin secreted in buffer was measured by an ELISA kit (Alpco Diagnostics, Salem, NH).  

All insulin secretion data shown in this study were normalized to the total protein content, 

measured by the Micro-BCA Protein Assay kit (Pierce, Rockford, IL).  For chronic pre-treatment, 

cells were exposed to indicated concentrations of BDE-47 and BDE-85 in complete growth media 

for 48 hours, after which cells were washed and preincubated in KRB buffer containing 3 mmol/l 

glucose and static incubation was performed as described above (compounds not present during 

the 2 hr pre-incubation or static 1hr glucose stimulation). For all insulin secretion experiments, 

controls cells were treated with vehicle (DMSO) at 0.1% concentration.  Acute vs. chronic pre-

treatment exposure design for GSIS is illustrated in Figure 2.1. 

2.3.3 Cell Viability 

Cell viability was measured by the reduction of Cell Titer Blue (Promega, Madison, WI) 

according to the manufacturer’s protocol.  Cells were plated in 96-well plates and treated with 

indicated concentrations of compounds for 48 hours in culture medium, after which Cell Titer Blue 

(10% in growth medium) was added to wells and the increase in fluorescence (560 nm excitation, 

590 nm emission) was measured using a SpectraMax M5 multi-mode microplate reader 

(Molecular Devices, Sunnyvale, CA).  IC50 was calculated using a least squares fit with variable 

slope using GraphPad Prism (version 6.07). 

2.3.4 Chemicals 

BDE-47 and BDE-85 were purchased from AccuStandard (New Haven, CT).  PFOS and 

PFNA were purchased from Sigma (St. Louis, MO).  Stock solutions (25 mM for BDE-47 and 

BDE-85; 100 mM for PFOS and PFNA) of BDE-47, BDE-85, PFOS, and PFNA were prepared in 

dimethyl sulfoxide (DMSO) and were added directly to the culture medium and/or KRB buffer to 

achieve the indicated concentrations. 
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2.3.5 Statistical Analysis 

Data are expressed as means ± SEM and are representative from at least three 

independent experiments performed in quadruplicates or octuplets (for cell viability only). 

Significance was determined for multiple comparisons using one or two-way analysis of variance 

(ANOVA) followed by Sidak post-hoc analysis (Abdi, 2007).  A p-value of ≤ 0.05 was considered 

significant.  All analyses were conducted using the GraphPad Prism (version 6.07) statistical 

program software. 

2.4 Results 

2.4.1 Concentration-response Curves for Cell Viability After 48-hour Exposure to 

PFOS, PFNA, BDE-47 or BDE-85 

Due to the absence of prior studies on the effect of PFOS, PFNA, BDE-47, and BDE-85 

on INS-1 832/13 cell viability, we performed concentration-response curves during a 48-hour 

exposure with each respective compound.  Furthermore, it is important to choose concentrations 

of compounds that don’t cause cell death, which could be a confounding factor for GSIS, 

particularly during the 48-hour chronic pre-treatment exposure.  Based on prior studies about in-

vitro toxicity of each of the four compounds in different cell lines (Hu and Hu, 2009; Jin et al., 

2010; Kleszczyński et al., 2007; Yan et al., 2011), we chose the following concentrations for our 

viability studies: PFOS and PFNA (0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, and 600 

µM); and for BDE-47 and BDE-85 (0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250 µM).  We 

were able to observe a concentration-dependent decrease in cell viability in the chosen 

concentration ranges for each compound (Figure 2.2).  PFOS and PFNA had similar IC50 values 

(394.9 µM and 370.7 µM respectively), as did BDE-47 and BDE-85 (108.50 µM and 111.5 µM 

respectively).  These results corroborate prior studies and our IC50 values are within the range 

reported for these four compounds (Hu and Hu, 2009; Jin et al., 2010; Kleszczyński et al., 2007; 

Yan et al., 2011), albeit tested in different cell lines and with different exposure times in these 

prior studies. 
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2.4.2 PFOS Does Not Affect GSIS During Chronic Pre-treatment and                                               

 Acute Exposure 

Chronic pre-treatment GSIS with 10 µM PFOS did not affect insulin secretion compared 

to vehicle control (Figure 2.3 A).  During an acute GSIS, exposure to 10, 25, and 50 µM PFOS 

did not significantly alter insulin secretion compared to vehicle control, although there was a trend 

towards increased insulin secretion particularly at the 25 µM concentration, which did not reach 

statistical significance (Figure 2.3 B).  No changes were observed between groups in basal (3 

mM) glucose conditions compared to vehicle control (Figure 2.3 A and B) 

 2.4.3 PFNA Does Not Affect GSIS During Chronic Pre-treatment and Acute Exposure 

Chronic pre-treatment GSIS with 10 µM PFNA did not affect insulin secretion compared 

to vehicle control (Figure 2.4 A).  During an acute GSIS, exposure to 10, 25, and 50 µM PFNA 

did not significantly alter insulin secretion compared to vehicle control, although there was a trend 

towards increased insulin secretion, which did not reach statistical significance (Figure 2.4 B).  No 

changes were observed between groups in basal (3 mM) glucose conditions compared to vehicle 

control (Figure 2.4 A and B) 

2.4.4 BDE-47 Does Not affect GSIS During Chronic Pre-treatment; Increases Acute 

GSIS 

Chronic pre-treatment GSIS with 10 µM BDE-47 did not affect insulin secretion compared 

to vehicle control (Figure 2.5 A).  Acute GSIS with 5 and 10 µM BDE-47 caused a significant 

increase in insulin secretion, with no change at the 1 µM concentration (Figure 2.5 B). Higher 

concentrations of BDE-47 (25 and 50 µM) also significantly increased insulin secretion during an 

acute GSIS (Figure 2.7 A), with the maximal response occurring at 25 µM.  No changes were 

observed between groups in basal (3 mM) glucose conditions compared to vehicle control (Figure 

2.5 A and B, Figure 2.7 A). 
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2.4.5 BDE-85 Does Not Affect GSIS During Chronic Pre-treatment; Increases Acute 

GSIS 

Chronic pre-treatment GSIS with 10 µM BDE-85 did not affect insulin secretion compared 

to vehicle control (Figure 2.6 A).  Acute GSIS with 1, 5, 10 µM BDE-85 caused a significant 

increase in insulin secretion compared to vehicle controls (Figure 2.6 B).  Higher concentrations 

of BDE-85 (25 and 50 µM) also significantly increased insulin secretion during an acute GSIS 

(Figure 2.7 B), with the maximal response occurring at 25 µM.  No changes were observed 

between groups in basal (3 mM) glucose conditions compared to vehicle control (Figure 2.6 A 

and B, Figure 2.7 B). 

2.5 Discussion 

Epidemiological and animal studies suggest a potential role of PBDEs and PFCs in 

contributing to the development of type 2 diabetes (Airaksinen et al., 2011; Fang et al., 2012; Lin 

et al., 2009; Zhang et al., 2016; Timmerman et al., 2014).  However, the precise mechanisms are 

not known.  In the present study, we investigated the role of PFOS, PFNA, BDE-47, and BDE-85 

in pancreatic β-cell function.  We found that BDE-47 and BDE-85 increased acute GSIS, and 

there was a trend towards increased GSIS during acute incubation with PFOS and PFNA which 

was not statistically significant.  Neither compound increased GSIS during chronic-pretreatment. 

This suggests that the effect of BDE-47 and BDE-85 on GSIS is not likely due to potential changes 

in expression of metabolic enzymes or transcription factors involved in GSIS, but rather could be 

due to acute actions, such as increasing insulin granule exocytosis.  Due to the fact that PFOS 

and PFNA did not elicit a significant increase in GSIS compared to controls, we chose to examine 

only the potential mechanisms of GSIS potentiation by BDE-47 and BDE-85 in our subsequent 

work described in chapter three.  

GSIS is initiated when glucose enters the β-cell and gets metabolized (glycolysis), which 

leads to an increase in ATP/ADP ratio, closure of KATP channels, membrane depolarization, 

opening of voltage-gated Ca2+ channels, calcium entry, and the eventual calcium-induced insulin 



31 
 

granule exocytosis (Rorsman et al., 2000).  It is widely accepted that glucose induces a biphasic 

release of insulin from β-cells, with the first phase being a rapid response involving the change in 

energy described above, and the second phase where the signal is amplified leading to more 

insulin secretion over time (Rorsman et al., 2000; Henquin et al., 2002).  Insulin secretagogues, 

or compounds that increase insulin secretion, are classified into nutrient (e.g. glucose, GLP-1, 

GIP-1) and non-nutrient (e.g KCl, sulfonylureas) secretagogues, with only the former believed to 

induce the biphasic insulin secretion (Rorsman et al., 2000).  Non-nutrient secretagogues can 

increase insulin secretion even during low glucose concentrations by closing KATP channels (Proks 

et al., 2002).  Other environmental pollutants that are similar in structure to PBDEs, such as 

polychlorinated biphenyls (PCBs) have been shown to increase insulin release from RINm5F cells 

by increasing intracellular calcium stores (Fischer et al., 1996; Fischer et al., 1999).  These studies 

have suggested that PCBs act in similar fashion to insulin secretagogues to increase intracellular 

calcium stores and consequently insulin secretion.  It is possible that BDE-47 and BDE-85 may 

act via this pathway to increase insulin secretion.  As we observed, during low glucose 

concentrations at basal conditions (3 mM), BDE-47 and BDE-85 did not increase insulin secretion, 

suggesting that their effects are dependent on glucose stimulation.  Thus, it is unlikely that these 

compounds act as non-nutrient secretagogues to independently close KATP channels.  It is 

possible that BDE-47 and BDE-85 potentiate GSIS by other unknown pathways that may increase 

insulin granule exocytosis independent of increasing intracellular calcium levels.   

The increase in GSIS observed with the exposure to these compounds can have important 

potential implications in long-term β-cell function and glucose homeostasis.  Exposure to POPs, 

such as BDE-47 and BDE-85, coupled with a nutrient-rich diet, may cause insulin oversecretion, 

which can lead to β-cell exhaustion and failure.  Furthermore, insulin oversecretion may cause 

hyperinsulinemia, which can lead to desensitization of insulin receptors in peripheral tissues and 

insulin resistance (Fu et al., 2013; Grill and Björklund, 2002).  
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2.7 Tables and Figures 

 

Figure 2.1 Experimental design workflow to test the effects of selected POPs on GSIS.  INS-
1 832-13 cells will be chronically pre-treated with BDE-47, BDE-85, PFOS, or PFNA for 48-hours 
in growth medium, after which GSIS will be conducted in the absence of compounds (A). 
Exposure of INS-1 832-13 cells to BDE-47, BDE-85, PFOS, or PFNA will occur during GSIS in 
either 3mM or 16 mM glucose KRB buffer during a 1 hour acute treatment (B).   
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Figure 2.2 PFOS, PFNA, BDE-47, and BDE-85 affect INS-1 832/13 cell viability.  Cell viability 
studies in INS-1 832/13 cells treated with PFOS, IC50 = 394.90 µM (A), PFNA, IC50 = 370.70 µM 
(B), BDE-47, IC50 = 108.50 µM (C), and BDE-85, IC50 = 111.50 µM (D) for 48 hours.  Data are 
means ± SEM from three independent experiments performed in octuplets (n = 3). 
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Figure 2.3. Chronic pre-treatment and acute exposure to PFOS does not affect GSIS.  GSIS 
in INS-1 832/13 cells incubated with 10 µM PFOS during chronic pre-treatment exposure (A) and 
10, 25, or 50 µM PFOS during an acute (B) exposure.  No significant differences were noted in 
the groups compared to vehicle controls using two-way ANOVA followed by Sidak post-test.  3 
mM G = 3mM glucose, 16 mM G = 16mM glucose.  Data are means ± SEM from three 

independent experiments performed in quadruplicates (n = 3). 
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Figure 2.4   Chronic pre-treatment and acute exposure to PFNA does not affect GSIS.  GSIS 
in INS-1 832/13 cells incubated with 10 µM PFNA during chronic pre-treatment exposure (A) and 
10, 25, or 50 µM PFNA during an acute (B) exposure.  No significant differences were noted in 
the groups compared to vehicle controls using two-way ANOVA followed by Sidak post-test.  3 
mM G = 3mM glucose, 16 mM G = 16 mM glucose.  Data are means ± SEM from three 
independent experiments performed in quadruplicates (n = 3). 
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Figure 2.5 BDE-47 potentiates GSIS during acute exposure but not during chronic pre-
treatment.  GSIS in INS-1 832/13 cells incubated with 10 µM BDE-47 during chronic pre-
treatment (A), and 1, 5, or 10 µM BDE-47 during an acute (B) exposure.  No significant differences 
were noted in the 10 µM BDE-47 group compared to vehicle control (A).  No significant differences 
in the 1 and 5 µM BDE-47 groups compared to vehicle control, 10 µM BDE-47 significantly 
increased GSIS compared to control (B). *p < 0.05 when compared to 16 mM G vehicle control 
using two-way ANOVA followed by Sidak post-test.  3 mM G = 3mM glucose, 16 mM G = 16mM 
glucose.  Data are means ± SEM from three independent experiments performed in 
quadruplicates (n = 3). 
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Figure 2.6 BDE-85 potentiates GSIS during acute exposure but not during chronic pre-
treatment.  GSIS in INS-1 832/13 cells incubated with 10 µM BDE-85 during chronic pre-
treatment (A), and 1, 5, or 10 µM BDE-85 during an acute (B) exposure.  No significant differences 
were noted in the 10 µM BDE-85 group compared to vehicle control (A).  No significant differences 
in the 1 µM BDE-47 group compared to vehicle control, 5 and 10 µM BDE-47 significantly 
increased GSIS compared to control (B). *p < 0.05 when compared to 16 mM G vehicle control 
using two-way ANOVA followed by Sidak post-test.  3 mM G = 3mM glucose, 16 mM G = 16mM 
glucose.  Data are means ± SEM from three independent experiments performed in 
quadruplicates (n = 3). 
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Figure 2.7 High concentrations of BDE-47 and BDE-85 potentiate acute GSIS.  GSIS in INS-
1 832/13 cells incubated with 25 or 50 µM BDE-47 (A) and BDE-85 (B) during an acute exposure. 
*p<0.05 when compared with 16mM G vehicle control using two-way ANOVA followed by Sidak 
post-test.  3 mM G = 3mM glucose, 16 mM G = 16mM glucose.  Data are means ± SEM from 
three independent experiments performed in quadruplicates (n = 3). 
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CHAPTER THREE: 

POTENTIAL MECHANISMS FOR BDE-47 AND BDE-85-MEDIATED INCREASE IN GSIS 

3.1 Polybrominated Diphenyl Ethers and Thyroid Hormone Receptor 

PBDEs have structural similarities with thyroid hormones and may disrupt thyroid hormone 

signaling by binding to thyroid receptor and mimicking thyroid hormones (Ren and Guo, 2013).  

One of the ways that PBDEs interfere with normal thyroid hormone signaling is by interfering with 

thyroid hormone transport proteins, such as transthyretin. A study measuring the effect of BDE-

47 on plasma levels of thyroxine (T4) in rats found that it leads to decreased circulating thyroxine 

(Hallgren and Darnerud, 2002).  This result was confirmed by other studies reporting a decrease 

in plasma thyroid hormones after BDE-47 exposure in both mice and rats (Hallgren et al., 2001; 

Richardson et al., 2007).  Furthermore, these studies established that the decrease in thyroid 

hormone concentration was not due to inhibiting thyroid hormone production, but rather 

decreasing the expression and activity of one of the major T4 carriers, transthyretin (Hallgren et 

al., 2001; Hallgren and Darnerud, 2002; Richardson et al., 2007).  In addition to decreasing 

plasma T4 levels, dietary exposure to BDE-47 has been reported to alter the expression levels of 

thyroid hormone receptor in the brains of male and female minnows; revealing that these effects 

are consistent even in non-mammalian species (Lema et al., 2008).  Furthermore, direct binding 

and affinity to transthyretin has been shown in competitive in vitro assays for BDE-47 and some 

of its hydroxylated metabolites (Cao et al., 2010; Hamers et al., 2008; Morgado et al., 2007). 

Another way that PBDEs disrupt thyroid hormone signaling is by directly binding to the 

thyroid receptor.  Several studies have measured via in vitro assays whether different PBDE 

congeners bind directly to the thyroid hormone receptor.  A study using chinese hamster ovary 

(CHO) cells showed that BDE-85, but not BDE-47 inhibited T3 binding to thyroid receptor alpha 
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1 (TRα1), acting as a weak agonist (Nakamura et al., 2013).  BDE-47 decreased mRNA and 

protein levels of TRα1 and TRβ1 isoforms in HepG2 cells (Hu et al., 2014).  Several PBDE 

congeners showed thyroid hormone-like activity in the absence of thyroid hormone, and 

potentiated T3-dependent cell proliferation in the rat pituitary tumor cell line GH3 in the absence 

of T3, showing TR agonistic activity (Hamers et al., 2006).  Another study reported weak TR 

agonistic activities for several PBDE congeners, which was not statistically significant, and 

reported strong T3 antagonistic effects for BDE-206 using the GH3 screen mentioned above 

(Schriks et al., 2006).  In addition, hydroxylated metabolites of BDE-47 have been shown to bind 

to the thyroid receptor and inhibit T3 binding (Kitamura et al., 2008).  In another study, 

hydroxylated metabolites of BDE-47 were shown to have TR agonistic activity and enhance T3-

dependent GH3 cell proliferation (Ren et al., 2013).  From these studies, there are contradicting 

effects on the role of PBDEs and their metabolites on the thyroid receptor, as both agonistic and 

antagonistic activities have been reported.  Some of them are due to the use of different cell lines 

for evaluating whether PBDEs directly bind to the TR and only recently studies have taken a more 

integrative approach for evaluating this relationship (Ren et al., 2013).   

In human studies, PBDE exposure has been associated with thyroid hormone signaling 

parameters, however conflicting results have been reported.  In a study looking at the associations 

between PBDE levels and thyroid hormones in a healthy adult population in North America, 

several PBDEs (including BDE-47) were associated with decreased serum T4 levels, which is 

similar to what is observed in animal studies (Makey et al., 2016).  This study also reported that 

PBDEs were not associated with T3 or thyroid stimulating hormone (TSH), suggesting that PBDE 

exposure doesn’t affect the hypothalamus-pituitary-thyroid axis, which controls thyroid hormone 

production and homeostasis (Makey et al., 2016).  In a population of Great Lakes fishermen, 

which can be exposed to higher PBDE levels since the fish species in these lakes have been 

reported to be high in PBDE content (Luross et al., 2002), it was found that PBDEs were not 

associated with thyroid hormones (Bloom et al., 2008).  BDE-47, BDE-85 and the other PBDE 
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congeners were not associated with T4, T3, or TSH levels in this study.  However, studies in 

humans have also reported a positive association between BDE-47 and T4 levels, with T3 shown 

to be negatively associated with T3 and TSH (Turyk et al., 2008).   

Taken together, the studies in cells, animals, and humans show that PBDEs can affect 

thyroid hormone balance by a variety of mechanisms, such as thyroid hormone transport 

disruption, mimicking thyroid hormone effects, and potentially acting as agonists and antagonists 

to alter thyroid signaling at the level of the thyroid receptor.  Since thyroid hormone signaling is 

important in normal development and metabolism, imbalance of such pathways may interfere not 

only with growth, but also have important metabolic effects (Mullur et al., 2014). 

3.2 Polybrominated Diphenyl Ethers and Akt Activation 

In addition to interfering with thyroid hormone homeostasis, PBDEs have been shown to 

activate the PI3K-Akt pathway.  Activation of this pathway has implications in cell growth and 

proliferation, as well as insulin signaling (Guo et al., 2014) and insulin secretion from pancreatic 

β-cells (Bernal-Mizrachi et al., 2014).  Since upregulation and constant activation of the PI3-Akt 

pathway is related to uncontrolled cell growth, most of the studies evaluating the effects of PBDEs 

on this pathway have been done in cancer cell lines. BDE-47 activated Akt during an acute 

incubation in human neuroblastoma SH-SY5Y cells, and the effects of BDE-47 on cell migration 

were significantly reduced by treatment with the PI3K-Akt inhibitor LY294002 (Tian et al., 2016).  

Effects of BDE-99 on inducing epithelial to mesenchymal transition (EMT) in the human colon 

carcinoma cell line HCT-116 were blocked by PI3K-Akt inhibitor LY294002, suggesting that BDE-

99 activates this pathway in HCT-116 cells (Wang et al., 2015).  In the human hepatoma cell line 

HepG2, low concentrations of BDE-47 exposure for a period of 24-72 hours increased Akt 

phosphorylation (Wang et al., 2012).  Akt phosphorylation was also increased in a study exposing 

HepG2 cells to BDE-47 for 3 and 24 hours, with a significant increase only after the 24-hour 

exposure (Khalil et al., 2017).  The hydroxylated metabolite of BDE-47, 6-OH-BDE-47 was shown 

to induce EMT in lung cancer cells via upregulation of the PI3K-Akt pathway (Qu et al., 2015). 
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However, in animal studies results have been ambiguous.  In mice with liver-specific 

phosphatase and tensin homolog (PTEN) protein deletion, a negative regulator of PI3K-Akt 

signaling (Gupta and Dey, 2012), BDE-47 had no effect on Akt activation in the liver (McIntyre et 

al., 2015).  In rat testes, BDE-47 treatment increased PTEN activation and decreased Akt 

phosphorylation in a dose-dependent manner (Zhang et al., 2013).  A study evaluating the 

differences in gene expression after BDE-47 exposure in the marine medaka, a potential model 

for investigating the effects of POP on marine fish, found that several genes associated with the 

activation of PI3K-Akt pathway were overexpressed in livers of both male and female animals (Yu 

et al., 2013).  Developmental exposure to BDE-47 has been shown to increase liver Akt activation 

in CD-1 mice offspring at postnatal day (PND) 21 (Khalil et al., 2017). 

The results of the highlighted studies demonstrate that PBDEs, and particularly BDE-47 

have the potential to interfere with the PI3K-Akt pathway and affect cell growth, insulin signaling, 

and pancreatic β-cell function among other functions.  These metabolic effects can be in addition 

to the disruption of thyroid hormone homeostasis by PBDEs.  Since it has been reported that 

thyroid hormone can activate Akt in pancreatic β-cells (Falzacappa et al., 2007), it is possible that 

BDE-47 and BDE-85, by acting as thyroid hormone mimics, increase GSIS by acting through TR 

and Akt.   

3.3 Hypothesis 

BDE-47 and BDE-85 increase acute glucose-stimulated insulin secretion (GSIS) in INS-1 

832/13 cells through the thyroid hormone receptor and Akt activation. 

3.4 Methods 

 3.4.1 INS-1 832/13 Cell Culture and Maintenance 

INS-1 832/13 cells (passages 51-60), provided by Dr. Christopher Newgard (Duke 

University School of Medicine) were cultured in RMPI-1640 glucose-free medium supplemented 

with 11 mmol/l glucose, 10% fetal bovine serum, 1mmol/l sodium pyruvate, 5mmol/l HEPES, 2g/L 

sodium bicarbonate, 2mmol/l L-glutamine, 50 µmol/l 2-mercaptoethanol, 10000 U/ml penicillin, 
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and 10 mg/ml streptomycin.  Cells were maintained at 37°C in a humidified incubator with 5% 

CO2.  Cells were subcultured when confluency was around 80% and medium was replaced every 

3 days. 

 3.4.2 Chemicals 

BDE-47 and BDE-85 were purchased from AccuStandard (New Haven, CT).  Thyroid 

hormone T3 (3,3',5-Triiodo-L-thyronine) was purchased from Alfa Aesar (Lancashire, United 

Kingdom).  Thyroid hormone receptor antagonist 1-850 was purchased from EMD Millipore 

(Darmstadt, Germany).  Wortmannin was purchased from Acros Organics (Geel, Belgium).  Stock 

solutions of BDE-47, BDE-85, T3, 1-850, and wortmannin were prepared in dimethyl sulfoxide 

(DMSO) and were added directly to the culture medium and/or KRB buffer to achieve the indicated 

concentrations. All other chemicals were purchased from Sigma (St. Louis, MO) unless otherwise 

specified. 

 3.4.3 Glucose-stimulated Insulin Secretion 

INS-1 832/13 cells grown to confluency in 24-well plates, were washed 3 times with and 

preincubated in KRB buffer containing 3 mmol/l glucose at 37°C for 2 h. Following a static 1 h 

incubation at 37°C in KRB (Krebs Ringer Buffer) containing 3 or 16 mmol/l glucose, KRB buffer 

was collected and centrifuged at 5000 x g for 3 min at 4°C to pellet out any cells.  Insulin secreted 

in buffer was measured by an ELISA kit (Alpco Diagnostics, Salem, NH).  All insulin secretion 

data shown in this study were normalized to the total protein content, measured by the Micro-

BCA Protein Assay kit (Pierce, Rockford, IL).  For antagonist experiments, after 2 hr preincubation 

with 3 mmol/l glucose KRB, cells were preincubated with antagonists or vehicle control (DMSO) 

at indicated concentrations for 30 min in 3 mmol/l glucose KRB, washed once with 3 mmol/l 

glucose KRB, followed by static 1 h incubation at 37°C in KRB buffer containing 16 mmol/l glucose 

(Karandrea et al., 2017).  For chronic pre-treatment, cells were exposed to indicated 

concentrations of T3 in complete growth media for 48 hours, after which cells were washed and 
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preincubated in KRB buffer containing 3 mmol/l glucose and static incubation was performed as 

described above (compounds not present during the static incubation phase). For all insulin 

secretion experiments, controls cells were treated with vehicle (DMSO) at 0.1% concentration. 

3.4.4 Western Blot Analysis 

INS-1 832/13 cells were grown to confluence in 6-well plates, washed two times in serum-

free growth media, and incubated for 30 min at 37°C in serum-free growth media containing BDE-

47, BDE-85, T3, or vehicle control.  After exposure, cells were solubilized in RIPA lysis buffer 

(Pierce, Rockford, IL).  Protein content was determined using a BCA Protein Assay Kit (Pierce, 

Rockford, IL) and SDS samples were prepared. Equal amount of protein (100 μg per lane) were 

electrophoretically separated on SDS-polyacrylamide gel, followed by blotting onto PVDF 

membrane. Following the transfer, membranes were blocked with TBST (10 mmol/l Tris-HCl pH 

7.4, 150 mmol/l NaCl, and 0.1% Tween 20) containing 5% nonfat dry milk (blocking buffer) and 

incubated with the primary antibodies (diluted in blocking buffer overnight at 4°C) against Akt (Cell 

Signaling, cat. #9272), p-Akt (Cell Signaling, cat. #9271), and β-actin (Cell Signaling, cat. #4970). 

Membranes were incubated with goat anti-rabbit immunoglobulin (IgG) secondary antibody 

(Santa Cruz, cat. #sc-2030) for 1 h at room temperature, and washed 5 times. Proteins were 

detected by using enhanced chemiluminescence. 

3.4.5 Reverse Transcription and Quantitative Real-time RT-PCR (qRT-PCR) 

INS-1 832/13 cells were grown to confluence in 6-well plates, washed two times in serum-

free growth media, and incubated for 1 or 12 hours at 37°C in serum-free growth media containing 

BDE-47, BDE-85, T3, inhibitors or vehicle control (0.1 % DMSO) as indicated.  Total RNA was 

prepared using the TRIzol reagent according to the manufacturer's protocol (Invitrogen, Carlsbad, 

CA) and single-strand cDNA was synthesized from the RNA using a Maxime RT PreMix kit 

(iNtRON Biotechnology, Seongnam, South Korea). qRT-PCR amplifications were performed 

using rEVAlution 2x qPCR Master Mix (Empirical Bioscience, Grand Rapids, MI) in an MyIQ2 

Real-Time PCR Detection System (Bio-Rad, Richmond, CA) following manufacturer's protocol. 
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To determine the specificity of amplification, melting curve analysis was applied to all final PCR 

products. The relative amount of target mRNA was calculated by the comparative threshold cycle 

method by normalizing target mRNA threshold cycle to those for glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH).  The primers were purchased from Integrated DNA Technologies 

(Coralville, IA) and were as follows: rat TRɑ (NM_031134) forward 5’-

CCTGGATGATACGGAAGTG-3’, reverse 5’-AGTGCGGAATGTTGTGTT-3’; rat TRβ 

(NM_012672) forward 5’-ATCATCACACCAGCAATCA-3’, reverse 5’-

GTCCGTCACCTTCATCAG-3’; rat GAPDH (NM_017008) forward 5’-

GACATGCCGCCTGGAGAAAC-3’, reverse 5’-AGCCCAGGATGCCCTTTAGT-3’. 

3.4.6 Statistical Analysis 

Data are expressed as means ± SEM and are representative of at least three independent 

experiments. Significance was determined for multiple comparisons using two-way analysis of 

variance (ANOVA) followed by Sidak post-hoc analysis (Abdi).  A p-value of ≤ 0.05 was 

considered significant.  All analyses were conducted using the GraphPad Prism (version 6.07) 

statistical program software. 

3.5 Results 

 3.5.1 BDE-47 and BDE-85 Do Not Affect TR Expression 

There are two major genes of the thyroid receptor (TR), alpha and beta, which generate 

several isoforms (TRα1, TRα2, TRβ1, ad TRβ2) that are expressed in different tissues (Zinke et 

al., 2003).  Out of these isoforms, TRα2 does not bind T3, thus it doesn’t act as a transcription 

factor for thyroid hormone-mediated gene activation, but can have non-genomic effects (Zinke et 

al., 2003).  During development, TRα is expressed first, followed by TRβ (Mullur et al., 2014).  In 

pancreatic islets, several studies have shown TR expression, however there is little consensus 

about which isoform is the predominant one.  A study showed that TRα1 and TRβ1 were 

expressed in the mouse pancreatic islets, with the TRα1 localized in the glucagon producing alpha 

cells within the islet, however the localization of the TRβ1 was not determined (Zinke et al., 2003).  
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In rat islets, it was found that during development, TRα and TRβ are expressed in β-cells, with 

TRβ being the major isoform during adulthood (Aguayo-Mazzucato et al., 2013).   

In β-cell clonal models, expression of both TRα and TRβ isoforms have been reported.  

TRα was expressed in the mouse insulinoma-derived MIN6 cells (Takahashi et al., 2014).  In the 

RIN5F cells, a rat insulinoma-derived β-cell, TRα is expressed, however the expression of other 

isoforms was not measured in this study (Furuya et al., 2010).  In the INS-1 832/13 cell line, 

Shoemaker et al. reported that both TRα and TRβ were expressed, with TRβ expression being 

higher.  In our study, we measured the mRNA expression of TRα and TRβ in INS-1 832/13 cells 

and found that TRα, but not the TRβ isoform is expressed (Figure 3.1 A).  To test whether BDE-

47 or BDE-85 exposure affected the mRNA expression of TRα, INS-1 832/13 cells, grown to 

confluence in 6-well plates, were exposed to 10 or 25 µM BDE-47 or BDE-85 for 1 or 12 hours in 

serum-free media, and mRNA levels were measured as in section 3.4.5.  BDE-47 and BDE-85 

did not change TRα mRNA expression during all exposure windows (Figure 3.1 B and C).  In 

parallel experiments, INS-1 832/13 cells were treated with 5 µM T3, and T3 exposure did not 

induce changes in TRα expression (Figure 3.1 B and C). 

 3.5.2 Thyroid Hormone Increases GSIS 

Thyroid hormone (T3) increased GSIS during chronic pre-treatment at the 5 µM 

concentration, with no change for the 0.1 µM concentration under the same conditions (Figure 

3.2 A).  During acute GSIS, thyroid hormone increased insulin secretion in a concentration-

dependent manner for the concentrations of 0.1, 1, 5, and 100 µM (Figure 3.2 B).  In addition to 

increasing insulin secretion at the high glucose (16 mM) concentration, T3 increased insulin 

secretion at the basal (3 mM) glucose conditions at the 5 µM concentration during chronic pre-

treatment (Figure 3.2 A) and at the 5 and 100 µM concentrations during acute exposure (Figure 

3.2 B).   
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3.5.3 Combined Effects of Thyroid Hormone and BDE-47/85 on GSIS  

During an acute GSIS, BDE-47 and BDE-85 increased insulin secretion compared to 

vehicle control at the 10 µM concentration as previously observed (Figure 3.3).  This concentration 

(10 µM) for BDE-47 and BDE-85 was chosen since it was the lowest observed concentration that 

consistently increases insulin secretion during acute GSIS.  Furthermore, as expected, T3 alone 

increased acute GSIS at the 5 and 100 µM concentrations (Figure 3.3).  When cells were treated 

with both BDE-47 or 85 and T3, there was an additional increase in insulin secretion during an 

acute GSIS (Figure 3.3).  For cells treated in combination with 10 µM BDE-47 or BDE-85 and 5 

or 100 µM T3, insulin secretion was increased compared to either compound or T3 alone (Figure 

3.3).  As previously observed, T3 increased insulin secretion during basal glucose conditions 

(3mM) at the 100 µM concentration, as well as in combination with 10 µM BDE-47 or 10 µM BDE-

85 (Figure 3.3) 

 3.5.4 Thyroid Receptor Antagonist Decreases T3-mediated GSIS Potentiation 

To validate the actions of the thyroid receptor antagonist 1-850 in the INS-1 832/13 cells, 

we tested whether this antagonist would decrease the potentiation of GSIS after T3 treatment 

during an acute incubation.  Cells were starved for 2 hours in low glucose (3 mM) KRB buffer and 

after pre-incubated for 30 mins with either vehicle control or different concentrations of 1-850 (5, 

10, or 20 µM).  After pre-incubation, cells were incubated for 1 hour with either T3 (1 µM) or 

vehicle control in high glucose (16 mM) KRB buffer (antagonist not present during this stimulatory 

phase), and insulin secretion was measured.  As expected, treatment with 1 µM T3 alone 

significantly increased GSIS compared to vehicle control (Figure 3.4).  There was a concentration-

dependent decrease in T3-potentiation of GSIS after pre-incubation with 1-850 (Figure 3.4).  GSIS 

in pre-treated groups with 5 or 10 µM 1-850 followed by T3 exposure was still significantly higher 

than vehicle treated control alone (Figure 3.4).  Pre-treatment with 20 µM 1-850 followed by T3 

significantly decreased GSIS compared to T3 alone (Figure 3.4).  Pre-treatment with antagonist 
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alone (at 5, 10, and 20 µM) did not significantly alter GSIS compared to vehicle control (Figure 

3.4). 

3.5.5 BDE-47 and BDE-85 Effect on GSIS is Mediated by TR 

Since thyroid hormone administration increased acute GSIS and co-administration with 

thyroid hormone in the presence of BDE-47 and BDE-85 caused an increase in this response, we 

set out to determine whether the effects of these two compounds on GSIS are mediated by their 

actions on thyroid hormone receptor.  To evaluate the role of thyroid receptor (TR), we pre-treated 

the cells with thyroid receptor antagonist 1-850 for 30 minutes, and performed an acute GSIS (as 

described in Methods).  Pre-treatment with TR antagonist caused a decrease in insulin secretion 

from INS-1 832/13 cells treated with 10µM BDE-47 or 10µM BDE-85 compared to compound 

alone; and with no significant increase compared to untreated control (Figure 3.5) 

 3.5.6 BDE-47 and BDE-85 Activate Akt in INS-1 832/13 cells 

Recently, it has been suggested that thyroid hormone can have important implications in 

pancreatic β-cell growth and function by activating Akt (Falzacappa et al., 2007; Falzacappa et 

al., 2010).  To evaluate whether thyroid hormone, BDE-47, and BDE-85 active Akt in INS-1 832/13 

cells during an acute incubation, cells were treated for 30 minutes and levels of total and 

phosphorylated (activated) Akt were measured by Western Blot. Both BDE-47 and BDE-85 (at 

10µM concentration) activate Akt during an acute incubation at both low (3 mM) and high (16 mM) 

glucose compared to vehicle control (Figure 3.6 A).  High glucose treatment in the absence of 

compounds did not increase phosphorylated Akt (Figure 3.6 A). The 10 µM concentration was 

chosen since it was shown to increase GSIS after acute exposure to both compounds, although 

lower and higher concentrations were also shown to activate Akt at the normal (11 mM) glucose 

condition (Figure 3.6 B).   
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3.5.7 Effect of BDE-47 and BDE-85 on Insulin Secretion is Dependent on Akt 

Activation 

To evaluate whether the activation of Akt plays a role in BDE-47 and BDE-85-mediated 

increase in GSIS, we tested whether pharmacological inhibition of PI3K, an upstream activator of 

Akt (Sargis, 2014; Guo, 2014), would affect this response.  A 30-min pre-treatment with PI3K 

inhibitor, wortmannin, followed by a static one hour GSIS, caused a decrease in insulin secretion 

when cells were treated with BDE-47 or BDE-85 compared to compounds alone (Figure 3.8).  The 

concentration of wortmannin (50nM) was chosen from a previous study showing that this 

concentration effectively blocked Akt phosphorylation while not affecting insulin secretion (Collier 

et al., 2004).  This was also confirmed in our work, where we show that wortmannin by itself didn’t 

affect GSIS (Figure 3.8), but effectively inhibited BDE-47 and BDE-85-induced Akt activation 

(Figure 3.7).  

3.6 Discussion 

BDE-47 and BDE-85 are similar to thyroid hormones in structure and have been shown to 

disrupt thyroid hormone signaling (Ren and Guo, 2013; Richardson et al., 2008; Blanco et al., 

2014).   Thyroid hormone is important in development, but also in metabolic rate and weight 

management (Casals-Casas and Desvergne, 2011). It acts by binding to the thyroid hormone 

receptor (TR) in various tissues, including the pancreatic β-cell; however, its direct role in β-cell 

function remains controversial (Shoemaker et al., 2012). While some in vitro and in vivo studies 

suggested that thyroid signaling is associated with decreased GSIS (Ximenes et al., 2007; Lenzen 

et al., 1975); others have shown an increase in GSIS and cell survival in the INS-1 832/13 cells 

following thyroid hormone treatment (Falzacappa et al, 2007; Falzacappa et al., 2010). Our own 

data show an increase in insulin secretion in INS-1 832/13 cells during an acute incubation with 

thyroid hormone (T3), suggesting an important role for the thyroid hormone signaling in GSIS.  

Furthermore, there was an additional increase in acute GSIS with co-treatment of T3 and BDE-

47 or BDE-85.  Based on these observations, we tested whether these compounds might act via 
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the thyroid receptor to increase insulin secretion.  Pharmacological inhibition of the thyroid 

receptor (TR) by the specific antagonist 1-850 led to a decrease in BDE-47 and BDE-85-mediated 

GSIS. This suggests that the potentiating effects of these compounds on GSIS are mediated via 

the TR.  It is unlikely that the TR antagonist has off-target effects due to its specificity and pre-

treatment with the antagonist alone did not affect GSIS.  In this study, we reported expression of 

TRα and no expression of TRβ at the mRNA level, however we did not check the protein 

expression of these TR isoforms in the INS-1 832/13 cell line.  Although we observed our effects 

with TR antagonist 1-850, an antagonist to both isoforms, further studies are required to confirm 

their expression in the INS-1 832/13 cell line and consequently the role of TR in BDE-47 and BDE-

85-mediated potentiation of GSIS. 

Thyroid hormone has been shown to have a beneficial effect on pancreatic β-cell growth 

and function by activating Akt (Falzacappa et al, 2007; Falzacappa et al., 2010).  Although the 

role of Akt in the insulin signaling pathway is well established (reviewed in Guo, 2014), its role in 

insulin secretion is controversial.  Downregulation of Akt activity specifically in β-cells led to 

glucose intolerance due to impaired insulin secretion in mice (Bernal-Mizrachi et al., 2004).  Akt 

activation has been implicated to play an important role in increasing insulin granule exocytosis 

(Bernal-Mizrachi et al., 2004; Cheng et al., 2012).  Conversely, Akt inhibition has been shown to 

potentiate insulin secretion and increase insulin granule fusion (Aoyagi et al., 2012).  Since BDE-

47 and BDE-85 activate Akt during an acute incubation (Figure 4A and B), we were interested to 

determine whether this activation played a role in their potentiation of GSIS.   Treatment with PI3K 

inhibitor wortmannin inhibited BDE-47 and BDE-85-induced GSIS, suggesting that Akt activation 

plays a role.  In contrast, PI3K inhibition in the absence of compounds didn’t affect GSIS, 

suggesting that this pathway might be involved in insulin secretion only when activated.  However, 

the role of Akt in GSIS and the specific mechanisms involved require further characterization. 

Thyroid hormone and BDE compounds both potentiate GSIS, but we also observed 

significant differences in their actions on pancreatic β-cell function.  The potentiation of GSIS from 
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BDE-47 and BDE-85 occurred only during acute exposure, with no changes in the chronic pre-

treatment exposure.  T3, on the other hand, in addition to potentiating GSIS during acute 

exposure, had the same effect during chronic pre-treatment.  Furthermore, in addition to 

increasing insulin secretion in high glucose (16 mM) conditions, T3 did so also during basal 

glucose conditions (3 mM), a phenomenon not observed with either BDE-47 or BDE-85.  This 

suggests that T3 might influence insulin secretion by additional mechanisms, potentially by 

activating targets implicated in glucose-independent insulin secretion such as protein kinase 

alpha (PKA) or protein kinase C (PKC) and consequently upregulate expression of important 

genes involved in β-cell mass and function (reviewed in Komatsu et al., 2013).  However, further 

studies are required to establish if the role of T3 in insulin secretion is mediated by these 

pathways. 

This study shows for the first time that BDE-47 and BDE-85 increase GSIS in pancreatic 

β-cells and that this effect is mediated by the thyroid receptor and Akt.  Further studies are 

required to determine the specific mechanisms by which Akt activation by BDE-47 and BDE-85 

can lead to increased GSIS; or whether other mechanisms in addition to the one proposed are 

involved.  Additionally, this study provides evidence that these two compounds have a direct role 

in pancreatic β-cell function.  It is possible that exposure to BDE-47 and BDE-85 can cause β-

cells to overproduce insulin.  This excess insulin could lead to hyperinsulinemia, which can cause 

insulin resistance, one of the hallmarks of type 2 diabetes (Nolan et al., 2015). These potential 

long-term implications need to be further assessed in physiologically relevant animal models of 

type 2 diabetes and in epidemiological studies. 
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3.8 Tables and Figures 

 

Figure 3.1 BDE-47 and BDE-85 do not affect thyroid receptor α expression.  Expression of 
TRα and GAPDH in INS-1 832/13 cells (A).  Expression of TRα and GAPDH after a 1 hour 

treatment in serum-free media with vehicle control, 5 µM T3, 10 or 25 µM BDE-47 or BDE-85 (B).  
Expression of TRα and GAPDH after a 12-hour treatment in serum-free media with vehicle 

control, 5 µM T3, 10 or 25 µM BDE-47 or BDE-85 (C).  No significant differences were noted in 
all groups compared to vehicle control using two-way ANOVA followed by Sidak post-test.  
GAPDH = Glyceraldehyde 3-phosphate dehydrogenase.  Data are means ± SEM from three 

independent experiments (n = 3).  
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Figure 3.2 Thyroid hormone increases GSIS during chronic pre-treatment and acute 
exposure.  GSIS in INS-1 832/13 cells incubated with 0.1 and 5 µM T3 during chronic pre-
treatment exposure (A).  GSIS in INS-1 832/13 incubated with 0.1, 1, 5, or 100 µM T3 during an 
acute exposure(B).   *p<0.05 when compared with control 16mM G, ∇p<0.05 when compared 
with control 3mM G using two-way ANOVA followed by Sidak post-test.  3mM glucose, 16 mM G 
= 16mM glucose.  Data are means ± SEM from three independent experiments performed in 
quadruplicates (n = 3). 
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Figure 3.3 Co-treatment with BDE-47 or BDE-85 and thyroid hormone potentiates GSIS 
compared to single treatment. GSIS in INS-1 832/13 cells treated with T3 alone (5 or 100 µM), 
BDE-47 alone (10 µM), BDE-85 alone (10 µM), T3 + BDE-47 (5 µM or 100 µM T3 + 10 µM BDE-
47), or T3 + BDE-85 (5 µM or 100 µM T3 + 10 µM BDE-85) during an acute exposure.  *p<0.05 
when compared with control 16mM G, ∇p<0.05 when compared with control 3mM G using two-
way ANOVA followed by Sidak post-test.  3mM G = 3mM glucose, 16mM G = 16mM glucose.  

Data are means ± SEM from three independent experiments performed in quadruplicates (n = 3). 
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Figure 3.4 Thyroid receptor antagonist 1-850 decreases GSIS potentiation by T3.  INS-1 
832/13 cells were pre-incubated for 2 hours in 3mM glucose KRB buffer, followed by a 30 pre-
incubation with TR antagonist 1-850 (5, 10, or 20 µM) or vehicle in 3mM glucose KRB, washed 
once with 3mM glucose KRB, and acute GSIS was done in 16mM glucose KRB for 1 hour with 
T3 (1 µM) or vehicle control.  * p≤0.05 when compared with vehicle control.  #p≤0.05 when 
compared with 1 µM T3 alone using two-way ANOVA followed by Sidak post-test.  Data are 
means ± SEM from three independent experiments performed in quadruplicates (n = 3). 
 

 
Figure 3.5 Thyroid Receptor Antagonist 1-850 decreases GSIS potentiation by BDE-47 and 
BDE-85.  INS-1 832/13 cells were pre-incubated for 2 hours in 3mM glucose KRB buffer, followed 
by a 30 pre-incubation with TR antagonist 1-850 (10 µM) or vehicle in 3mM glucose KRB, washed 
once with 3mM glucose KRB, and acute GSIS was done in 16mM glucose KRB for 1 hour with 
BDE-47 (10 µM), BDE-85 (10 µM), or vehicle control.  * p≤0.05 when compared with vehicle 
control.  #p≤0.05 when compared with BDE-47 or BDE-85 alone using two-way ANOVA followed 
by Sidak post-test.  Data are means ± SEM from three independent experiments performed in 
quadruplicates (n = 3). 
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Figure 3.6 BDE-47 and BDE-85 activate Akt during an acute exposure.  INS-1 832/13 cells 
were exposed to 10 µM BDE-47 or BDE-85 for 30 mins in serum-free media containing 3 mM or 
16 mM glucose and Akt, p-Akt, and β-actin protein were measured as described in methods (A).  
INS-1 832/13 cells exposed to 5, 10, or 25µM BDE-47 or BDE-85 for 30 mins in serum-free media 
containing 11 mM glucose and Akt, p-Akt, and β-actin protein were measured as described in 
methods (B).  G: glucose.  Western blot images are representative of three independent 
experiments (n=3).  

 

 

 

Figure 3.7 Wortmannin inhibits BDE-47 and BDE-85-mediated Akt activation.  INS-1 832/13 
cells exposed to wortmannin (50 nM) or vehicle for 30 mins, followed by incubation with BDE-47 
(10 µM), BDE-85 (10 µM), or vehicle for 30 mins in serum-free 11 mM glucose media and Akt, p-
Akt, and β-actin protein were measured as described in methods. W: wortmannin.  Western blot 
image is representative of three independent experiments (n=3). 

 

A 

B 
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Figure 3.8 Effect of PI3K inhibitor wortmannin on BDE-47 and BDE-85-mediated GSIS 
potentiation. Cells were pre-incubated for 2 hours in 3mM glucose KRB buffer, followed by a 30 
pre-incubation with wortmannin or vehicle in 3mM glucose KRB, washed once with 3mM glucose 
KRB, acute GSIS was done in 16 mM glucose KRB for 1 hour with BDE-47 (10 µM), BDE-85 (10 
µM), or vehicle control. Data are means ± SEM from three independent experiments performed 
in quadruplicate. * p≤0.05 when compared with vehicle control.  #p≤0.05 when compared with 
BDE-47 or BDE-85 alone using two-way ANOVA followed by Sidak post-test.  Data are means ± 
SEM from three independent experiments performed in quadruplicates (n = 3). 
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CHAPTER FOUR:   

ANTI-DIABETIC EFFECTS OF THYMOQUINONE IN THE DIET-INDUCED OBESITY (DIO) 

MOUSE MODEL OF TYPE 2 DIABETES 

4.1 Prevalence and Overall Impact of Type 2 Diabetes 

Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder characterized by chronic 

hyperglycemia, which develops as a consequence of peripheral insulin resistance and defective 

insulin secretion from pancreatic β-cells (ADA, 2014).  In addition to hyperglycemia, common 

symptoms of T2DM include polydipsia, polyphagia, and polyuria (ADA, 2014).   29.1 million people 

have diabetes in the US with 1.7 million new cases reported in 2012.  In the US, most patients 

(90-95%) diagnosed with diabetes have type 2 diabetes and only 5% have type 1 (CDC, 2014).  

Type 2 diabetes prevalence has increased exponentially in the last two decades in the United 

States (CDC, 2016).   As of 2012, 9.3% of the US population has diabetes, and the numbers are 

projected to be on the rise, with as many as 7.2 million undiagnosed cases.  Diabetes can lead to 

major complications, including blindness, heart disease, stroke, kidney failure, while causing 

about 240,000 deaths/year, making it the 7th leading cause of death in the US.  Annually, diabetes 

related medical care costs the US economy $245 billion, up from $174 billion in 2007 (CDC, 

2014).  There are an estimated 86 million people in the US with prediabetes, a state where blood 

glucose levels are above normal but fall just below diagnostic criteria, making these individuals 

prone to developing type 2 diabetes (Dall et al., 2014).  In addition, prediabetes healthcare costs 

are estimated at $25 billion annually (Dall et al., 2014).  Furthermore, 85% of people with type 2 

diabetes are also overweight or obese, which exacerbates the impacts of the disease.   

It is now believed that type 2 diabetes is a multifactorial disease, where contributions from 

many factors such as lifestyle, environment, and genetics can lead to its development.  Thus, it 

is critical to identify new risk factors and potential treatments to design effective interventions to 
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minimize the impacts of this disease.  One of the goals of this study is to evaluate the anti-

diabetogenic effects of Thymoquinone and assess its potential in treating type 2 diabetes, as well 

as to demonstrate the possible mechanisms by which Thymoquinone ameliorates hyperglycemia 

and other metabolic imbalances related to type 2 diabetes. 

4.2 Current Treatments for Type 2 Diabetes 

Type 2 diabetes is commonly referred to as a disease of high blood sugar.  There are 

many factors that contribute to this end result and the chronology of these events is still being 

debated in the scientific community.  One of the main contributors to hyperglycemia is insulin 

resistance in target tissues, most importantly skeletal muscle, liver, and adipose tissue.  If insulin 

fails to exert its actions in these tissues, it would translate to less glucose uptake and consequently 

increased blood glucose.  Insulin resistance causes hyperinsulinemia, one of the hallmarks of the 

disease.  Furthermore, since most type 2 diabetics are also overweight or obese, it can contribute 

to the insulin resistant state.  Initially, the pancreatic β-cells tend to compensate for this insulin 

resistance by increasing in size and secreting more insulin (Kahn et al., 2006).  Eventually, this 

can lead to β-cell failure and decreased insulin production, which can exacerbate the phenotype 

(Fu et al., 2013; Kahn et al., 2006).  Lack of insulin production or insulin action leads to the failure 

of insulin to suppress hepatic gluconeogenesis and to counteract the actions of glucagon-

producing alpha cells in the islets, both of which contribute to increasing blood sugar (Inzucchi et 

al., 2012).  Although traditionally type 2 diabetes is referred to as non-insulin dependent, most 

type 2 diabetics will end up needing exogenous insulin to treat the disease.  

Treatments for type 2 diabetes are aimed at improving one or more of these 

pathophysiological defects.  Metformin is a drug that is used as a first line of defense since it has 

minimal side effects and doesn’t cause hypoglycemia.  It is an AMPK activator and it decreases 

hepatic glucose production (Inzucchi et al., 2012).  Due to its activation of AMPK, an important 

metabolic regulator, metformin has been associated with additional beneficial effects, such as 

increasing fatty acid oxidation and improving oxidative stress and inflammation associated with 
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type 2 diabetes and obesity (Rojas and Gomez, 2013).  Although initially metformin is very 

effective in blood glucose control, its effects decrease over time, and most patients end up 

needing a second form of therapy in addition (Rojas and Gomez, 2013). 

One of the critical components of glucose homeostasis is adequate and proper insulin 

secretion from pancreatic β-cells.  There are many drugs on the market aimed to improve this 

function in type 2 diabetics.  Sulfonylureas and glinides are two classes of drugs that increase 

insulin secretion by closing KATP channels on β-cell membranes, leading to depolarization, calcium 

entry and insulin granule exocytosis (Inzucchi et al., 2012).  Some of the disadvantages of these 

drugs include risk of hypoglycemia and weight gain due to adipogenic actions of excess insulin 

(Dimitriadis et al., 2011; Inzucchi et al., 2012).  Incretins are gut hormones that are released in 

the bloodstream after eating and have been shown to increase insulin secretion (Kim and Egan, 

2008).  They do so by a variety of mechanisms, such as stimulation of the cAMP-PKA pathway, 

KATP channel closure, and increased intracellular Ca2+ in the β-cells (Kim and Egan, 2008).  

Because of this important role, incretin mimics or agents that prevent the breakdown of 

endogenous incretins are being used to augment insulin secretion (Inzucchi et al., 2012; Kim and 

Egan, 2008).  In patients with inadequate insulin secretion, exogenous insulin administration is 

recommended.  Exogenous insulin comes in a variety of forms with different actions (e.g. short 

vs. long acting), mimics the endogenous counterpart and lowers blood glucose and suppresses 

liver glucose production (Inzucchi et al., 2012).  However, patients must closely monitor their 

blood glucose and calculate the amount of insulin being injected to minimize the risk of 

hypoglycemia.  In addition, one of the challenges of this therapy is the rising cost of insulin 

worldwide (Sorli and Heile, 2014).  

Another important pathophysiology of type 2 diabetes is insulin resistance, with many 

treatment options available to target and improve insulin action in key peripheral tissues.  One 

such drug class are thiazolidinediones (TZDs), which are peroxisome proliferator receptor gamma 

(PPARγ) activators, which improve insulin sensitivity in skeletal muscle (Inzucchi et al., 2012).  
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However, TZDs are associated with weight gain, which can counteract their beneficial effect on 

insulin signaling (Inzucchi et al., 2012).  Some of the other commonly prescribed options include 

agents that slow down the breakdown of glucose in the gut, delaying an immediate spike in blood 

glucose after a meal and helping patients in administering hyperglycemia (Fonseca et al., 2010; 

Van de Laar et al., 2006).  It is important to note that one of the first recommended strategies for 

managing diabetes is a change in life habits, such as increased exercise coupled with a low-

carbohydrate diet, which should always be recommended either as single therapy or in 

combination depending on the current health and advancement of type 2 diabetes. However, the 

challenges of adhering to these lifestyle changes can minimize their positive impacts. 

Even with these existing therapies, there is a need to develop new and more effective 

ones that can be used alone or in combination with the existing options to improve treatment of 

type 2 diabetes.  One of the aims of this study is to provide more evidence for the anti-diabetic 

role of Thymoquinone, which can be developed as a type 2 diabetes therapeutic in the near future. 

4.3 Diet-induced Obesity (DIO) Mouse Model of Type 2 Diabetes 

To study new potential treatments for type 2 diabetes, it is necessary to use animal models 

to not only to study the related pathophysiologies, but also the possible mechanisms of action.  

Thus, an adequate animal model of the disease would need to display some of the most important 

phenotypic abnormalities of type 2 diabetes: hyperglycemia, hyperinsulinemia, and insulin 

resistance.  In humans, the development of the disease occurs in a progression and is the result 

of many factors including lifestyle and genetic predisposition.  An animal model of type 2 diabetes 

that mimics the disease progression including these causative factors is closer to being a relevant 

physiological model.   

One animal model of type 2 diabetes is the Diet Induced Obesity (DIO) mouse.  The DIO 

mice belong to the C57/BL6J strain and when fed a high fat diet (HFD), they become obese, and 

are otherwise lean when fed a low fat diet (Reuter, 2007).  In addition to obesity, these mice show 

a progression towards the diabetic phenotype while on the HFD, becoming hyperglycemic, insulin 
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resistant, and hyperinsulinemic (Reuter, 2007; Surwit et al., 1988).  Furthermore, their pancreatic 

β-cell function is impaired (Lee et al., 1995; Wencel et al., 1995).  Additionally, they show a genetic 

predisposition to developing type 2 diabetes under HFD that is strain-specific for the C57/BL6J 

strain, as mice from other backgrounds (such as C/J and C57BL/KsJ) do not develop this 

phenotype under HFD (Reuter, 2007).  With comparison to other genetic models or models 

rendered diabetic by streptozotocin injection, DIO mice have an advantage because they show a 

less severe phenotype that develops over time, thus better mimicking the pathophysiology of type 

2 diabetes in humans (King, 2012).  Additionally, in these models, diabetes is caused by genetic 

mutations (such as in the leptin or leptin receptor genes) that are very rare in human T2D (Kim et 

al., 2009), whereas the genetic susceptibility to T2D in DIO mice is broader and viewed as 

polygenic or multifactorial, which is closer to the human condition.  Due to these characteristics, 

the DIO mice are a physiologically relevant model of both diabetes and obesity and have been 

vastly utilized in the research of new therapeutics for these diseases (Reuter et al., 2007). 

Furthermore, this model has been extensively used to test the effects of various natural products 

on diabetes and metabolic disorders (Choi et al., 2016; Hamza et al., 2012; Kim et al., 2009; 

Ouchfoun et al., 2016; Winters et al., 2003; Yang et al., 2010).  Thus, we believe that the DIO 

mouse is a very suitable model to study the effects of Thymoquinone on glucose homeostasis, 

dyslipidemia, and inflammation in type 2 diabetes. 

4.4 Hypothesis 

Thymoquinone will ameliorate hyperglycemia, insulin resistance, tissue metabolic 

imbalances, lipid profile, inflammation, and weight gain in the diet-induced obesity (DIO) mouse 

model of type 2 diabetes.  Because TQ has been reported to decrease NADH/NAD+ ratio (Gray 

et al., 2016), thus increasing NAD+, we also hypothesize that the anti-diabetic effects of TQ are 

mediated by activation of NAD+- dependent targets, SIRT-1 and AMPK.   
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4.5 Methods 

 4.5.1 Mouse Colony Maintenance and Ethical Statement 

Male C57BL/6J mice (6 weeks of age) were purchased from Jackson Laboratories (Bar 

Harbor, ME) and housed (4 animals per cage) in a USF Animal Facility; room was maintained at 

a constant temperature (25°C) in a light:dark 12:12-h schedule. Food and water was available ad 

libitum. Body weight was monitored on a weekly basis. Mice were pair fed either control low fat 

diet, LFD (10% fat cal, Research Diets, New Brunswick, NJ) or high fat diet, HFD (45% fat cal, 

Research Diets, New Brunswick, NJ).  Mice were separated in the following groups: LFD, 

LFD+TQ, HFD, HFD+TQ.  TQ (dissolved in canola oil) was administered daily by oral gavage at 

20 mg/kg body weight, respectively, for the duration of the study. Vehicle only (canola oil) was 

administered to control groups (LFD and HFD).  The dose of TQ was chosen because it was 

shown to lower blood glucose (Pari and Sankaranarayanan, 2009), albeit in a non-physiological 

rodent model of diabetes.  The chosen dose is well below toxic doses established for oral 

administration in mice (Al-Ali et al., 2008).  As expected, TQ was well tolerated, and TQ 

administration did not affect the overall health of the animals in the study. After 24 weeks, animals 

were euthanized with isoflurane, tissues and serum collected, and either used immediately or 

were snap frozen in liquid nitrogen and stored in -80°C until further use.  All animal procedures 

were performed in accordance with and approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University of South Florida. 

 4.5.2 HepG2 Cell Culture and Treatment 

HepG2 cells were obtained from American Tissue Culture Collection (ATCC) and were 

cultured in DMEM containing 1 g/L glucose and L-glutamine, and supplemented with 10% fetal 

bovine serum, 3.4 g/L sodium bicarbonate, 10000 U/mL penicillin, and 10 mg/mL streptomycin.  

Cells were maintained at 37°C in a humidified incubator with 5% CO2.  Cells were subcultured 

when confluency was around 80% using 0.25% Trypsin-EDTA and the suspension was passed 

3 times through an 18-gauge needle to aid in cell dispersion and avoid cell clustering.   
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Cells were made insulin resistant by treatment with 20mM glucose for 18 hours, as 

previously described (Zhu et al., 2017).  Following high glucose treatment, cells were starved for 

2 hours in serum-free media, prior to treatment with the respective compounds for 24 hours.  For 

inhibitor treatment, cells were pre-incubated with the inhibitors for 30 mins, and the inhibitors were 

also present during the 24-hour incubation period.  To measure insulin signaling, insulin was 

added during the last 30 minutes.  Vehicle-treated cells (0.5% DMSO) in normal (5.5 mM) and 

high (20 mM) glucose conditions served as controls.  

 4.5.3 Chemicals 

Human recombinant insulin, resveratrol, and AICAR were purchased from Tocris 

Bioscience (Bristol, UK).  Nicotinamide was purchased from Acros Organics (Geel, Belgium) and 

Compound C was purchased from EMD Millipore (Billerica, MA).  All other chemicals and reagents 

were purchased from Sigma (St Louis, MO) unless specified otherwise.  Stock solutions of 

thymoquinone, resveratrol, AICAR, Nicotinamide, and Compound C were prepared in DMSO and 

added to culture medium to achieve the indicated concentrations.   

 4.5.4 Oral Glucose Tolerance Tests (OGTT) and Insulin Tolerance Tests (ITT) 

Mice were anesthetized with ketamine (80 mg/kg body weight). Oral glucose and insulin 

tolerance tests were performed following a 6 hr fast. Mice were oral gavaged with 2 mg/kg/bw 

glucose (OGTT), or injected intraperitoneally with 0.5 IU insulin/kg/bw (ITT). Blood was obtained 

at 0, 15, 30, 60, 90, 120 and 180 minutes post-glucose or insulin administration from the tail vein 

and blood glucose was measured with a glucometer (Bayer Contour). 

 4.5.5 Serum Collection 

Whole blood was collected via cardiac puncture.  After collection, blood was allowed to 

clot in room temperature for 30 minutes.  Clot was removed by centrifuging at 2000 x g for 10 

minutes, the resultant supernatant (serum) was collected and frozen at -80°C until further 

analysis. 
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4.5.6 Tissue Collection and Storage 

At the end of the experiment, animals were euthanized; soleus muscle and liver were 

collected from mice in each group.  To maximize the experimental efforts, each tissue was 

appropriately divided into three tubes: tissue collected for protein, metabolomics (GC-MS), or 

RNA analysis.  Tissues for RNA analysis were collected in RNAlater (Sigma, St Louis, MO).  All 

tissues were immediately snap-frozen in liquid nitrogen and stored at -80°C until further analysis. 

 4.5.7 Serum Cholesterol Content Measurement 

Total cholesterol, HDL, and LDL/VLDL content was determined from serum samples using 

the HDL and LDL/VLDL Cholesterol Assay Kit (abcam, Cambridge, MA) according to the 

manufacturer’s protocols. 

 4.5.8 Serum Measurements of Insulin, Resistin, and MCP-1 

  Serum levels of insulin, resistin and MCP-1 were determined by Ocean Ridge Biosciences 

(Deerfield Beach, FL) using a Luminex multiplex protein profiling assay (Luminex Corp., Austin, 

TX) per the manufacturer’s protocols. 

 4.5.9 Western Blot Analysis 

Liver and soleus muscle tissues were solubilized in RIPA lysis buffer (Pierce, Rockford, 

IL) using Fast Prep 24G system (MP Biosciences, Santa Ana, CA).  After exposure, HepG2 cells 

were solubilized in RIPA lysis buffer.  Protein content was determined using a BCA Protein Assay 

Kit (Pierce, Rockford, IL) and SDS samples were prepared. Equal amount of protein (100 μg per 

lane) were electrophoretically separated on SDS-polyacrylamide gel, followed by blotting onto 

PVDF membrane. Following the transfer, membranes were blocked with TBST (10 mmol/l Tris-

HCl pH 7.4, 150 mmol/l NaCl, and 0.1% Tween 20) containing 5% nonfat dry milk (blocking buffer) 

and incubated with the primary antibodies (diluted in blocking buffer overnight at 4°C) against 

SIRT-1 (Cell Signaling, cat. #9475), p-SIRT-1 (Cell Signaling, cat. #2314), Akt (Cell Signaling, 

cat. #9272), p-Akt (Cell Signaling, cat. #9271), AMPKα (Cell Signaling, cat. #5831), p-AMPKα 

(Cell Signaling, cat. #2535), NQO1 (Santa Cruz, cat. #sc-16464), β-actin (Cell Signaling, cat. 
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#4970), and β-tubulin (Cell Signaling, cat. #2146). Membranes were incubated with goat anti-

rabbit immunoglobulin (IgG) secondary antibody (Santa Cruz, cat. #sc-2030) for 1 h at room 

temperature, and washed 5 times. Proteins were detected by using enhanced 

chemiluminescence. 

 4.5.10 Reverse Transcription and Quantitative Real-time RT-PCR (qRT-PCR) 

The tissue samples stored in RNAlater (Invitrogen, Carlsbad, CA) were homogenized by 

using the FastPrep 24G instrument (MP Biosciences, Santa Ana, CA). Total RNA was prepared 

using the TRIzol reagent according to the manufacturer's protocol (Invitrogen, Carlsbad, CA) and 

single-strand cDNA was synthesized from the RNA in a reaction mixture containing optimum 

blend of oligo(dT) primers and iScript reverse transcriptase (Bio-Rad, Richmond, CA). qRT-PCR 

amplifications were performed using rEVAlution 2x qPCR Master Mix (Empirical Bioscience, 

Grand Rapids, MI) in an MyIQ2 Real-Time PCR Detection System (Bio-Rad, Richmond, CA) 

following manufacturer's protocol. To determine the specificity of amplification, melting curve 

analysis was applied to all final PCR products. The relative amount of target mRNA was calculated 

by the comparative threshold cycle method by normalizing target mRNA threshold cycle to those 

for glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The primers used for analysis were 

as follows: NQO1: sense primer, 5’-AGGATGGGAGGTACTCGAATC-3’, anti-sense primer, 5’-

AGGCGTCCTTCCTTATATGCTA-3’; GAPDH: sense primer, 5’-

CTTCACCACCATGGAGAAGGC-3’, anti-sense primer, 5’-GGCATGGACTGTGGTCATGAG-3’. 

 4.5.11 Metabolomics Analysis (GC/MS) 

INS-1 832/13 cells, and frozen liver and soleus muscle samples were sent to the University 

of Utah Metabolomics core for Gas Chromatography Mass Spectrometry (GC/MS) analysis and 

were analyzed according to an in-house protocol.  The levels of 80, 97, and 102 different 

metabolites were measured respectively in cells, liver, and soleus muscle and statistically relevant 

results from the appropriate control groups were reported.  



73 
 

 

4.5.12 Tissue Triglyceride Content Measurements 

Triglyceride content was determined in liver and soleus muscle RIPA buffer lysates 

(lysates as described above) using the Triglyceride kit (Pointe Scientific, Canton, MI) according 

to the manufacturer’s protocols. 

 4.5.13 Tissue NADH/NAD+ Measurement 

Adenine nucleotides were measured in liver and soleus muscle using the NAD/NADH 

assay kit as per the manufacturer’s protocol (Abcam, Cat #65348, Cambridge, UK).  

4.5.14 Statistical Analysis 

Data are expressed as means ± SEM and are results from at least three independent 

experiments. Significance was determined for multiple comparisons using one-way or two-way 

analysis of variance (ANOVA) followed by Sidak or Holm-Sidak multiple comparisons tests (Neter 

et al., 1996; Wright, 1992) for planned comparisons (as mentioned in each figure) or independent 

t-test as indicated.  A p-value of ≤0.05 was considered significant. 

4.6 Results 

4.6.1 C57/BL6J Mice Became Diabetic and Obese Following High Fat Diet 

Administration 

The Diet Induced Obesity (DIO) mice develop obesity, hyperinsulinemia, glucose 

intolerance and insulin resistance when fed a high fat diet, making them a suitable model to study 

type 2 diabetes pathophysiology.  The emergence of the obese phenotype is confirmed in our 

study, where after HFD administration, C57/BL6J mice weight gain was significant from week 8 

until the end of the study compared to the LFD counterparts (Figure 4.1A).  Mean weight of HFD 

mice was 36 grams compared to 29 grams for LFD during the same period, and this difference 

became much more apparent by the last week of the study.   

HFD mice became hyperglycemic (as demonstrated by fasting blood glucose) and 

hyperinsulinemic (Figure 4.1 B and C).  Furthermore, they displayed decreased glucose tolerance 
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and insulin sensitivity as shown by the OGTT and ITT tests (Figure 4.2 A and B).  These results 

are in agreement with prior studies showing the emergence of the diabetic and obese phenotype 

in C57/BL6J mice fed a HFD compared to their LFD counterparts (Reuter, 2007; Surwit et al., 

1988).   

4.6.2 Thymoquinone Ameliorates Weight Gain and Lowers Fasting Blood Glucose 

in DIO Mice 

TQ treatment led to a mild amelioration of the weight gain in HFD group compared to HFD 

alone, with the decrease being significant only during weeks 22 and 23 of the study, and no 

differences were observed in the LFD with TQ (Figure 4.1 A).  TQ administration lowered fasting 

blood glucose in HFD mice compared to HFD alone (Figure 4.1 B).  No differences were seen in 

the LFD groups with TQ administration (Figure 4.1 B).   

4.6.3 Thymoquinone Ameliorates Hyperinsulinemia, Improves Glucose Tolerance 

and Insulin Sensitivity in DIO Mice 

One of the distinct pathophysiologies of type 2 diabetes is hyperinsulinemia, which we 

observe in DIO mice after HFD regimen.  TQ treatment decreased the hyperinsulinemia as 

measured by serum insulin levels in DIO mice compared to HFD alone, with no change in the 

LFD group (Figure 4.1 C).   

Glucose tolerance tests (GTTs) measure the ability of the body to normalize blood glucose 

levels after a bolus glucose challenge.  GTTs are done to assess pancreatic response (insulin 

secretion) and insulin action (sensitivity) during and after the glucose challenge (Ayala et al., 

2010).  As a result, animals with impaired β-cell function or with insulin resistance will clear 

glucose at a slower rate than non-impaired animals.  Indeed, the blood glucose spike that we saw 

in DIO mice treated with TQ is significantly lower than that of HFD mice after 15, 30, and 60-

minutes post-glucose bolus (Figure 4.2 B) 

Similar to GTTs, insulin tolerance tests measure the ability of the body to normalize blood 

glucose levels after a bolus insulin challenge and indicates a whole-body response to insulin 
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(Ayala et al., 2010).  Thus, in animals with insulin resistance, the decrease in blood glucose is 

smaller compared to animals with normal insulin sensitivity.  TQ treatment in DIO mice caused a 

more rapid decrease in blood glucose at 15 and 30-minutes post-injection compared to HFD mice, 

improving their insulin sensitivity (Figure 4.2 B).    

 4.6.4 Thymoquinone Lowers Serum Levels of Resistin and MCP-1 in DIO Mice 

Type 2 diabetes is associated with increased inflammation, which can contribute to insulin 

resistance and is shown to be detrimental to many tissues including pancreatic β-cells (Dula et 

al., 2010; Lumeng and Saltiel, 2011).  Resistin, a hormone secreted by adipocytes, impairs 

glucose tolerance and insulin sensitivity in mice (Steppan et al., 2001) and has been associated 

with insulin resistance in humans (Rodriguez et al., 2016; Santilli et al., 2016).  Monocyte 

chemoattractant protein-1 (MCP-1) is a pro-inflammatory chemokine that can induce insulin 

resistance (Tateya et al., 2010) and circulating levels of this chemokine are increased in patients 

with type 2 diabetes (Nomura et al., 2000; Piemonti et al., 2009; Zietz et al., 2005).  TQ lowered 

serum levels of resistin in DIO mice (Figure 4.3 A). There was a trend to lower the MCP-1 levels, 

however, this didn’t reach statistical significance in HFD animals (p = 0.06), although TQ 

decreased MCP-1 in LFD animals (Figure 4.3 B).  

 4.6.5 Thymoquinone Normalizes Lipid Profile in DIO Mice  

Elevated levels of triglycerides, together with decreased HDL and increased LDL 

cholesterol levels are the key identifiers of diabetic dyslipidemia, which can exacerbate insulin 

resistance (Mooradian et al., 2009). Consistent with previously reported data demonstrating TQ-

dependent increase in fatty acid oxidation (Gray et al., 2016), and observed increased peripheral 

insulin sensitivity in this study (as shown by the improvement of the ITT in DIO mice, Figure 4.2 

B), TQ ameliorated HFD-dependent increase in liver triglyceride levels (Figure 4.4 A). There was 

a trend to lower HFD-dependent muscle triglyceride content, however this did not reach statistical 

significance (Figure 4.4 B).  There was also a trend to decrease serum cholesterol level, albeit 

statistically not significant (Figure 4.5 A). However, TQ significantly decreased the levels of LDL 
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cholesterol in the serum of HFD animals (Figure 4.5 C), with no effect on the HDL levels (Figure 

4.5 B). This effect was selective to the HFD diet, as LFD animals did not demonstrate changes in 

their HDL or LDL/VLDL cholesterol in response to TQ regimen.  We saw similar trends when 

analyzing serum glycerol and three relevant fatty acids: palmitic acid, oleic acid, and stearic acid.  

GC/MS analysis showed that serum levels of these metabolites were decreased in DIO mice 

treated with TQ compared to HFD alone (Table 4.1), however this didn’t reach statistical 

significance.   

 4.6.6 Thymoquinone Activates SIRT-1 and AMPKɑ in Insulin-sensitive Tissues 

The lowered tissue triglyceride levels following TQ administration argues for the TQ-

dependent activation of the oxidative pathways (and consequent oxidation, rather than deposition 

of metabolic substrates). NADH/NAD+ ratio is important determinant of metabolic flux (Wu et al., 

2016), and a prior study reported that TQ lowers NADH/NAD+ ratio in pancreatic β-cells exposed 

to glucose overload (Gray et al., 2016). Since NADH/NAD+ ratio is known to regulate SIRT-1 

pathway, we analyzed effect of TQ feeding on this pathway in the liver and soleus muscle of TQ-

treated compared to control mice. Liver and soleus muscle from mice treated with TQ had 

enhanced phosphorylated (activated) SIRT-1 in both LFD and HFD groups (Figure 4.7 A-D).  In 

the liver, TQ enhanced AMPKα phosphorylation as well as phosphorylation of Akt (protein kinase 

B), a key member of insulin signaling pathway (reviewed in Tanti and Jager, 2009) (Figure 4.8 A 

and B). 

 4.6.7 Thymoquinone Lowers NADH/NAD+ Ratio in Liver and Soleus Muscle 

To determine whether the increase in SIRT-1 activation in liver and soleus muscle is due 

to the increase in NAD+ in these tissues, we examined the NADH/NAD+ ratio.  In liver, we saw an 

increase in this ratio in DIO mice (Figure 4.6 A), which agrees with prior studies reporting an 

increase in NADH with obesity and type 2 diabetes (Wu et al., 2016).  However, we did not 

observe this in soleus muscle, as we saw no change in this ratio compared to lean mice (Figure 

4.6 B).  In both liver and solus muscle, we saw a decrease in the NADH/NAD+ ratio in TQ-treated 



77 
 

DIO mice compared to HFD alone (Figures 4.6 A and B).  This result is in agreement with a prior 

study by Gray et al., showing that TQ lowers the NADH/NAD+ ratio in INS-1 832/13 cells 

chronically exposed to high glucose concentrations. 

4.6.8 Thymoquinone Improves Insulin Resistance via SIRT-1 Activation in HepG2 

Cells 

To evaluate the mechanistic actions behind TQ-induced insulin sensitivity, we used the 

HepG2 cell line, a widely used in vitro model of insulin resistance to assess whether this action is 

SIRT-1-dependent.  HepG2 cells were made insulin resistant as described above, which was 

confirmed by decreased p-Akt protein after high glucose treatment (Figure 4.9 A and B).  TQ 

increased p-Akt in high-glucose treated cells, restoring these levels to that of the control cells 

(Figure 4.9 A and B). This shows that TQ improves insulin resistance in similar fashion to what 

we see in livers of DIO mice.  This action showed to be SIRT-1-dependent, as pre-treatment of 

insulin resistant cells with SIRT-1 inhibitor nicotinamide in the presence of TQ, significantly 

decreases p-Akt protein and TQ-induced insulin sensitivity (Figure 4.9 A and B).  Furthermore, 

treatment with resveratrol (a SIRT-1 activator) and AICAR (an AMPKα activator) increased insulin 

sensitivity, although this trend was not statistically significant (Figure 4.9 A and B).  Pre-treatment 

with compound C (AMPKα inhibitor) or compound C and nicotinamide in the presence of TQ 

decreased insulin sensitivity compared to TQ treatment alone, albeit statistically insignificant 

(Figure 4.9 A and B). 

TQ treatment showed similar trends to the in vivo experiments in increasing 

phosphorylation of SIRT-1 and AMPKα in insulin-resistant cells, which was not significant (Figure 

4.10 A-D).  Trends were also observed in increased p-SIRT-1 and p-AMPKα with resveratrol and 

AICAR in the presence of TQ (Figure 4.10 A-D), as well as a decrease in phosphorylation of SIRT-

1 with nicotinamide or compound C in the presence of TQ after high glucose treatment (Figure 

4.10 A and B).  Pre-treatment with compound C and combined pre-treatment with compound C 

and nicotinamide significantly decreased p-AMPKα in the presence of TQ compared to TQ 
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treatment alone (Figure 4.10 C and D).  Taken together, these results provide additional support 

about the role of TQ in improving insulin resistance, as well as show that this action is likely 

mediated by SIRT-1 activation. 

 4.6.9 Thymoquinone Does Not Induce Oxidative Stress 

TQ applied in this study was within the physiologically relevant diet-derived levels. 

However, non-physiologically high and toxic levels of quinones are known to generate excessive 

levels of reactive oxygen intermediates via quinone-dependent redox cycling, and this causes 

induction of the NAD(P)H-dependent Quinone Oxidoreductase 1 (NQO1). NQO1 is a phase 2 

detoxification enzyme induced in response to oxidative stress, which expression is regulated by 

the Keap1/Nrf2/ARE pathway (Dinkova-Kostova and Talalay, 2010; Gray et al., 2016), and NQO1 

alone has been show to regulate NADH/NAD+ ratio (Gaikwad et al., 2001; Gray et al., 2016).  To 

ascertain that applied doses of TQ were physiologically low and not inductive of NQO1 and/or 

oxidative stress, mRNA and protein levels of NQO1 were measured in liver and muscle. Levels 

of NQO1 were not elevated in any of these tissues, confirming that applied doses, while effective 

in regulating the cellular redox status, do not activate the Keap1/Nrf2/ARE pathway and do not 

increase oxidative stress (Figure 4.11 A-D). This further supports our hypothesis that TQ-

dependent re-oxidation of NADH and consequent decrease of the NADH/NAD+ ratio is the main 

mechanism to activate SIRT-1/AMPK pathway and promote fuel oxidation rather than deposition, 

which leads to the observed changes in normalization of glucose homeostasis in DIO mice 

following TQ administration. 

4.6.10 Thymoquinone Lowers Levels of TCA Cycle Anaplerotic Intermediates in INS-

1 832/13 Cells but Not in the DIO Mice 

Western style diets have contributed to the rise in obesity and diabetes in the last two 

decades.  Obesity is closely associated with type 2 diabetes, as most type 2 diabetics are either 

overweight or obese.  Obesity can increase insulin resistance in the metabolically relevant tissues.  

One proposed mechanism is that obesity increases anaplerotic (storage promoting) intermediates 
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of the TCA cycle, leading to a decrease in fuel mobilization by the insulin sensitive periphery, 

which can exacerbate insulin resistance (Muoio and Newgard, 2008).  Due to the protective effect 

on β-cells under hyperglycemia and nutrient overload via enhanced glucose and fatty acid 

oxidation observed in vitro (Gray et al., 2016), we hypothesized that TQ may decrease the levels 

of TCA cycle anaplerotic intermediates.  To mimic the HFD (or nutrient overload) state in cells, 

INS-1 832/13 cells were exposed to high glucose (25 mM) chronically for 72 hours in the presence 

or absence of TQ.  Cells in growth media (containing 11 mM glucose) served as controls.  After 

72 hours, cells were collected and the levels of TCA cycle intermediates were analyzed by 

GC/MS.  There was an increase in TCA cycle anaplerotic intermediates with high glucose 

treatment (Table 4.2).  Treatment with TQ decreased the levels of citric acid, aconitate, isocitric 

acid, and malic acid in high glucose-treated cells, suggesting that TQ might be beneficial in 

decreasing the storage-promoting functions of the TCA cycle. 

To evaluate whether a similar action was taking effect in vivo, livers and soleus muscle 

from DIO and LFD mice treated with TQ or vehicle were analyzed for the levels of TCA cycle 

intermediates.  However, in liver and soleus muscle, we did not see any expected trends either in 

the increase of anaplerotic intermediates with HFD administration, or the decrease of them after 

TQ treatment in DIO mice (Tables 4.3 and 4.4).  Significant changes in the liver included 

decreases in fumaric acid, malic acid, and aspartic acid with in DIO mice compared to lean (LFD) 

(Table 4.3).  In soleus muscle, there was an increase in pyruvic acid with HFD administration, as 

well as a decrease in 2-ketoglutaric acid in DIO mice after TQ administration (Table 4.4) There 

were no significant changes in the other TCA cycle intermediates in liver and soleus muscle when 

comparing LFD with HFD, and HFD with HFD + TQ (Tables 4.3 and 4.4). 

4.7 Discussion 

This is one of the first in vivo studies, to our knowledge, aimed to comprehensively 

evaluate the effect of thymoquinone (TQ), a bioactive component of the Nigella sativa plant, on 

whole body glucose homeostasis using a physiologically-relevant mouse model of type 2 
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diabetes. In our published in vitro study, we have reported that both Nigella sativa extract (NSE) 

of high thymoquinone (TQ) content, as well as TQ alone, decreased NADH/NAD+ ratio and 

stimulated glucose and fatty acid oxidation in pancreatic β-cells, and this action was accompanied 

by the restoration of the glucose-stimulated insulin secretion (GSIS) in cells exposed to glucose 

overload (Gray et al., 2016).  Here we have expanded our studies to an in vivo model with focus 

on the TQ effect on the insulin sensitive peripheral tissues, and evaluated the action of TQ on 

glucose homeostasis in Diet Induced Obesity (DIO) mice. 

After 24 weeks of HFD, C57/BL6J mice became obese and diabetic, as demonstrated by 

their increased body weight (Figure 4.1 A), elevated fasting blood glucose (Figure 4.1 B), insulin 

(Figure 4.1 C) and impaired OGTT and ITT (Figure 4.2). While TQ treatment improved all these 

parameters in HFD animals, TQ had no significant effect on weight, fasting blood glucose and 

insulin, or OGTT /ITT in animals treated with LFD, suggesting that TQ primarily affects DIO 

metabolism by increasing oxidation of diet-derived fatty acid surplus.  However, it is still possible 

that TQ treatment beyond the 24 weeks could lead to observed changes in physiological 

parameters in the LFD group as well, and further studies are required to address this issue.  

Bioavailability of TQ after an oral administration can be a limiting factor on TQ actions.  Although 

such studies have been very limited in mice, studies with other animal models have shown that 

TQ is rapidly eliminated and slowly absorbed (Alkharfy et al., 2015; Elmowafy et al., 2016).  

Therefore, further studies are required to address the bioavailability of TQ after oral administration 

in mice to properly determine a relevant dose and exposure window, particularly in physiologically 

relevant mouse models of type 2 diabetes. 

Metabolism is governed by the oxidation status of nicotinamide adenine dinucleotide, 

represented by the ratio between its reduced and oxidized forms (NADH/NAD+) (Wu et al., 2016).  

During glycolysis NAD+ is reduced to NADH, which needs to be re-oxidized back to NAD+ (Wu et 

al., 2016).  In chronic hyperglycemic conditions, such as in type 2 diabetes, there can be NADH 

overproduction due to the fact that mitochondrial shuttles are unable to efficiently re-oxidize 
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NADH, which leads to the condition known as reductive stress (Ido et al., 2007; Wu et al., 2016).  

This leads to increased pressure on mitochondrial complex I, the primary site of NADH recycling, 

which in turn causes the formation of superoxide (Ido et al., 2007; Wu et al., 2016) and enhanced 

oxidative stress, known to be detrimental to insulin sensitivity and insulin secretion and 

exacerbate the diabetic phenotype (Luo et al., 2015; Yan, 2014).  NADH excess inhibits glycolytic 

and TCA cycle enzymes (glyceraldehyde 3-phosphate dehydrogenase, pyruvate dehydrogenase, 

isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase), leading to 

the impairment of glucose oxidation and TCA cycle oxidative pathways (Wu et al., 2016; Yan, 

2014.  TQ has been shown to regulate oxidation level of adenine nucleotides (Gray et al., 2016).  

Due to its conjugated double bond system, TQ is able to re-oxidize NADH in the process of 

NAD(P)-dependent redox cycling (Khader et al., 2009), and thus decrease the NADH/NAD+ ratio, 

as shown by our group (Gray et al., 2016).  Furthermore, in this study we also demonstrate that 

TQ treatment leads to a decrease in the NADH/NAD+ ratio in liver and skeletal muscle in HFD 

mice (Figure 4.6). Regeneration of NAD+ from TQ can thus increase glucose and fatty acid 

oxidation and ameliorate diabetic dyslipidemia. Diabetic dyslipidemia is characterized by high 

plasma triglyceride concentration, low HDL cholesterol and elevated non-HDL cholesterol 

(Mooradian, 2009).  The main cause of this phenotype is the increased free fatty acid release 

from insulin-resistant adipose tissue in type 2 diabetes (Krauss and Siri, 2009; Taskinen, 2003).  

The influx of free fatty acids in the liver can promote triglyceride synthesis, increasing the 

production of non-HDL (LDL, VLDL) cholesterol to transfer lipids to tissues and decreasing HDL 

cholesterol levels, which transfer lipids back to liver for degradation (Mooradian, 2009).  Indeed, 

our data demonstrating that TQ treatment decreased serum LDL/VLD levels (while not affecting 

HDL levels) and tissue level of triglycerides (Figures 4.4 and 4.5) in HFD mice are consistent with 

TQ antidiabetic action and effect on lipid homeostasis. TQ-dependent decrease in triglyceride and 

LDL/VLDL levels correlated with improved insulin signaling and insulin sensitivity judged by 

enhanced phosphorylation of Akt (Figure 4.8). Akt activation is consistent with the observed 
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improvement in insulin sensitivity seen with the insulin tolerance test (Figure 2B).  These results 

are in accordance with our previously reported in vitro results (Gray et al., 2016) that TQ increases 

glucose and fatty acid oxidation, which can lead to enhanced fuel oxidation by peripheral tissues, 

weight loss and increased insulin sensitivity.  

In addition to serving as a regulator of metabolic flux and substrate for metabolic 

processes, NAD+ can activate sirtuin 1 (SIRT-1) and consequently SIRT-1-dependent pathways 

(Kitada and Koya, 2015).  SIRT-1 is a class III histone deacetylase, where NAD+ functions as a 

substrate for SIRT-1 deacetylation of target proteins (Kitada and Koya, 2015).  SIRT-1 has been 

implicated directly in critical aspects of glucose homeostasis, such as increasing insulin secretion 

and insulin sensitivity, and lowering the inflammation and oxidative stress associated with 

diabetes and obesity (Bordone et al., 2005; Karandrea et al., 2017; Kitada and Koya, 2015; Sun 

et al., 2007; Zhang, 2007). Enhanced production of NAD+ via TQ-dependent redox cycling is 

consistent with increased level of SIRT-1 phosphorylation in liver and muscle (Figure 4.7 A-D).  It 

has been previously shown that SIRT-1 can activate AMPK (AMP-activated protein kinase) by 

de-acetylating and activating serine-threonine liver kinase B1 (LBK1), an upstream activator of 

AMPK (Ruderman et al., 2010).  AMPK is activated when cellular energy levels are low (e.g. high 

AMP/ATP ratio), and has been shown to enhance fatty acid oxidation, glycolysis, stimulate 

glucose uptake in skeletal muscle, and inhibit cholesterol synthesis (Coughlan et al., 2014). We 

saw increased phosphorylated AMPKα protein in the liver of both LFD and HFD animals treated 

with TQ (Figure 4.8), suggesting that TQ can activate AMPK-dependent pathways.  Due to 

similarities in their action on different processes, such as cellular metabolism and inflammation, it 

has been suggested that AMPK and SIRT-1 are involved in a cycle where they regulate each 

other (Ruderman et al., 2010).   Whether TQ administration activates AMPK indirectly via SIRT-

1, or directly via alteration of parameters different from NADH/NAD+ ratio, warrants further 

investigation. To mechanistically explore whether the increase in insulin sensitivity with TQ 

treatment is SIRT-1-dependent, we used the HepG2 cell line as a model of insulin resistance.  TQ 
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treatment reversed insulin resistance after 24 hours, shown by the increase in phosphorylated 

Akt (Figure 4.9).  Pre-treatment with SIRT-1 inhibitor nicotinamide suppressed this TQ effect on 

insulin signaling, suggesting that it is likely SIRT-1-dependent.  Pre-treatment with AMPKα 

inhibitor compound C also inhibited the effect of TQ, albeit statistically insignificant.  Furthermore, 

there was an improvement in insulin resistance after treatment with SIRT-1 and AMPK activators, 

suggesting a positive role of these pathways in insulin signaling. 

Diabetes and obesity are associated with tissue inflammation, which can exacerbate 

insulin resistance.  Adipose-derived pro-inflammatory markers such as resistin and chemokines 

(MCP-1) can exacerbate insulin resistance by activating c-Jun N-terminal (JNK) kinases and NF-

κB transcription factors, which can promote serine phosphorylation (inhibition) of insulin receptor 

substrate-1 (IRS-1), a key component of insulin signaling (Shoelson et al., 2006).  SIRT-1 has 

been shown to inhibit NF-κB activity, and therefore suppress the inflammatory process (Yoshizaki 

et al., 2010).  Indeed, TQ treatment decreased serum levels of the pro-inflammatory marker 

resistin (Figure 4.3 A). Lower resistin levels are consistent with observed increase in the insulin 

sensitivity in HFD animals (Figure 4.2 B).  Since resistin has been shown to increase LDL levels 

(Rashid, 2013), lowering of this marker is also consistent with the observed decreases in serum 

LDL cholesterol (Figure 4.5 C). 

Taken together, our study shows that TQ administration improves glucose tolerance and 

insulin sensitivity in the diet-induced obesity (DIO) mouse model of type 2 diabetes.  Furthermore, 

TQ treatment has the potential to ameliorate inflammation, altered lipid profile, and weight gain 

associated with the diabetic and obese state.  These anti-diabetic effects of TQ may be mediated 

by activating SIRT-1 and AMPK pathways, as shown from this study.  Our results add to the 

existing evidence supporting the role of TQ as a natural therapeutic for the treatment of type 2 

diabetes, however, further studies are necessary to establish the potential of TQ to treat type 2 

diabetes in humans. 
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4.9 Tables and Figures 

 

Figure 4.1 TQ ameliorates weight gain, lowers fasting blood glucose and insulin in DIO 
mice.  (A)  Effect of TQ on body weight (B) Effect of TQ treatment on fasting blood glucose after 
a 6 hour fast. (C) Effect of TQ on serum insulin.  Total body weight was measured weekly for the 
duration of the study.   p<0.05 when comparing HFD and LFD (+), and HFD and HFD+TQ (*), 
using a one-way ANOVA followed by Sidak post-test (A and B) or independent t-test (C).  Results 
are means ± SEM (n = 10-12 mice per treatment group). LFD: low fat diet, HFD: high fat diet, TQ: 
thymoquinone. 
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Figure 4.2 TQ improves glucose tolerance and insulin sensitivity.  (A) Blood glucose levels 
in response to oral glucose tolerance test (OGTT).  (B) Blood glucose levels in response to insulin 
tolerance test (ITT).   p<0.05 when comparing HFD and LFD (+), and HFD and HFD+TQ (*), using 
a two-way ANOVA followed by Holm-Sidak post-test. Results are means ± SEM (n = 10-12 mice 
per treatment group).  LFD: low fat diet, HFD: high fat diet, TQ: thymoquinone. 
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Figure 4.3 Effects of TQ on serum resistin and MCP-1.  (A) Resistin serum concentration. (B) 
MCP-1 serum concentration.  p≤0.05 when comparing (+) HFD and LFD, (*) HFD + TQ and HFD, 
and (#) LFD and LFD + TQ using independent t-tests. Results are means ± SEM (n = 10-12 mice 
per treatment group).  LFD: low fat diet, HFD: high fat diet, TQ: thymoquinone, MCP-1: monocyte 

chemotactic protein 1. 
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Figure 4.4 Effects of TQ on triglyceride content in liver and muscle. (A) Triglyceride 
concentration in liver. (B) Triglyceride concentration in soleus muscle. (*) p<0.05 when comparing 
HFD + TQ and HFD using a one-way ANOVA followed by Sidak post-test. Results are means ± 

SEM (n=8-12 mice per treatment group).  LFD: low fat diet, HFD: high fat diet, TQ: thymoquinone. 
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Table 4.1 Effect of TQ on serum glycerol and fatty acids.  Results expressed as means ± SEM 
(n= 10-12 mice per treatment group).  Means within the same row with different superscripts differ, 
p ≤ 0.05 as determined by using a one-way ANOVA followed by Sidak post-test. a,b = LFD vs. 
HFD only; a,c = LFD vs. LFD + TQ only.  TQ = Thymoquinone, LFD = low fat diet, HFD = high fat 
diet 

        Treatment     

              

Metabolite   LFD LFD + TQ HFD HFD + TQ 

Glycerol   844.7 ± 70.1a 1282 ± 101.9c 1348 ± 124.2b 1186 ± 47.1 

Palmitic Acid  820.3 ± 26.1 970.4 ± 61.3 862.7 ± 53.8 798.7 ± 23.4 

Oleic Acid  2851 ± 179.8 3335 ± 195.8 2807 ± 345.9 2597 ± 114.5 

Stearic Acid   381.9 ± 15.0 371.9 ± 22.3 471.2 ± 25.8 437.5 ± 21.4 
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Figure 4.5 Effects of TQ on serum cholesterol. (A) Total cholesterol serum concentration. (B) 
HDL cholesterol serum concentration. (C) LDL/VLDL cholesterol serum concentration.  p≤0.05 
when comparing (+) HFD and LFD, (*) HFD + TQ and HFD using independent t-tests. Results are 
means ± SEM (n=6-7 mice per treatment group).  LFD: low fat diet, HFD: high fat diet, TQ: 
thymoquinone, LDL: low-density lipoprotein, HDL: high-density lipoprotein, VLDL: very-low-
density lipoprotein.  
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Figure 4.6 TQ decreases NADH/NAD+ ratio in liver and soleus muscle.  (A) NADH/NAD+ ratio 
in liver. (B) NADH/NAD+ ratio in soleus muscle.  p ≤ 0.05 when comparing (+) HFD and LFD, (*) 
HFD + TQ and HFD, and (#) LFD and LFD + TQ using independent t-tests. Results are means ± 
SEM (n = 8-10 mice per treatment group).  LFD: low fat diet, HFD: high fat diet, TQ: thymoquinone. 
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Figure 4.7 TQ activates SIRT-1 in liver and soleus muscle. (A) Western blot images of SIRT-
1 and p-SIRT-1 protein in liver. β-actin was used as a loading control. (B) Western blot images of 
SIRT-1 and p-SIRT-1 protein in soleus muscle.  β-tubulin was used as a loading control.  Western 
blot images are representative of combined liver and soleus muscle lysates from n=10-12 mice 
per treatment group.  (C and D) Protein band quantification using densitometry from three 
independent experiments.  p ≤ 0.05 when comparing (+) HFD and LFD and (*) HFD + TQ and 

HFD using independent t-tests LFD: low fat diet, HFD: high fat diet, TQ: thymoquinone. 
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Figure 4.8 TQ activates Akt and AMPKα in liver.  (A) Western blot images of Akt, p-Akt, AMPKα 
and p-AMPKα protein in liver.  β-actin was used as a loading control.  Western blot images are 
representative of combined liver lysates from n=10-12 mice per treatment group.  (B) Protein band 
quantification using densitometry from three independent experiments.   p≤0.05 when comparing 
(+) HFD and LFD, (*) HFD + TQ and HFD, and (#) LFD and LFD + TQ using independent t-tests. 
LFD: low fat diet, HFD: high fat diet, TQ: thymoquinone. 
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Figure 4.9 TQ improves insulin sensitivity in HepG2 cells via a SIRT-1 dependent 
mechanism.  HepG2 cells were cultured in high (20 mM) glucose or in growth media containing 
5.5 mM glucose for 18 hours, starved with serum-free media for 2 hours, then pre-incubated with 
vehicle control, nicotinamide, compound C, or with nicotinamide and compound C together for 30 
mins, followed by incubation with TQ in the presence or absence of nicotinamide and compound 
C; or with TQ, resveratrol, or AICAR alone for 24 hours in 20mM glucose media. Vehicle-treated 
cells in 5.5 mM glucose served as control.  Insulin was added during the last 30 min. (A) Western 
blot images of p-Akt, Akt, and β-actin. (B) Protein band quantification using densitometry from 
three independent experiments (n=3). p≤ 0.05 where (*) is significantly different from 5.5G, (#) is 
significantly different from 20G, and (Δ) is significantly different from 20G + TQ using independent 
t-tests.  5.5 G: 5.5 mM glucose, 20G: 20 mM glucose, TQ: thymoquinone, R: resveratrol, AIC: 
AICAR, NIC: nicotinamide, C: compound C.  1: 5.5G, 2: 20G, 3: 20G +TQ, 4: 20G + R, 5: 20G + 

AIC, 6: 20G + TQ + NIC, 7: 20G + TQ + C, 8: 20G + TQ + NIC + C.    
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Figure 4.10 Effect of TQ on SIRT-1 and AMPKα activation in HepG2 cells. HepG2 cells were 
cultured in high (20 mM) glucose or in growth media containing 5.5 mM glucose for 18 hours, 
starved with serum-free media for 2 hours, then pre-incubated with vehicle control, nicotinamide, 
compound C, or with nicotinamide and compound C together for 30 mins, followed by incubation 
with TQ in the presence or absence of nicotinamide and compound C; or with TQ, resveratrol, or 
AICAR alone for 24 hours in 20mM glucose media. Vehicle-treated cells in 5.5 mM glucose served 
as control.  Insulin was added during the last 30 min. (A) Western blot images of p-SIRT-1, SIRT-
1, and β-actin. (C) Western blot images of p-AMPKα, AMPKα, and β-actin. (B and D) Protein band 
quantification using densitometry from three independent experiments (n=3). p≤ 0.05 where (*) is 
significantly different from 20G + TQ using independent t-tests.  5.5 G: 5.5 mM glucose, 20G: 20 
mM glucose, TQ: thymoquinone, R: resveratrol, AIC: AICAR, NIC: nicotinamide, C: compound C. 
1: 5.5G, 2: 20G, 3: 20G +TQ, 4: 20G + R, 5: 20G + AIC, 6: 20G + TQ + NIC, 7: 20G + TQ + C, 8: 
20G + TQ + NIC + C.  
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Figure 4.11 Effects of TQ on NQO1 expression.  NQO1 mRNA expression in liver (A) and 
soleus muscle (B).  (C) Western blot images of NQO1 and β-actin protein in liver (D) Western blot 
images of NQO1 protein in soleus muscle.  β-tubulin was used as a loading control.  Statistical 
analysis (A and B): one-way ANOVA followed by Sidak post-test (p≤0.05). qPCR results are 
means ± SEM (n=8-12 mice per treatment group).  Western blot images are representative of 
combined liver and soleus muscle lysates from n=10-12 mice per treatment group.  LFD: low fat 

diet, HFD: high fat diet, TQ: thymoquinone. 
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Table 4.2.  TQ decreases the levels of anaplerotic TCA cycle metabolites in INS-1 832/13 
cells exposed to high glucose.  Effect of TQ treatment on TCA cycle intermediates following 
chronic exposure (72 h) of INS 832/13 cells to 11 or 25 mM glucose.  Results expressed as means 
± SEM from three independent experiments (n=3).  Means within the same row with different 
superscripts differ (25G vs. 25G + TQ only), p<0.05 when comparing 25G to 25G + TQ using one-
way ANOVA followed by Sidak post-tests.  11G = 11mM glucose, 25G = 25mM glucose, TQ = 
Thymoquinone. 
 

  Treatment 

Metabolite   11G 11G + TQ 25G 25G + TQ 

       

Citric Acid  24.20 ± 0.97 28.69 ± 1.21 38.18 ± 1.36a 26.2 ± 1.55b 

Aconitate   1.28 ± 0.09 1.38 ± 0.16 2.18 ± 0.12a 1.52 ± 0.11b 

Isocitric Acid  6.16 ± 0.22 6.87 ± 0.31 10.11 ± 0.36a 7.29 ± 0.42b 

Malic Acid   83.56 ± 1.97 91.32 ± 1.86 156.86 ± 2.97a 141.28 ± 5.40b 

      

 
 

 

Table 4.3 Effect of TQ on TCA cycle intermediates in liver.  Results expressed as means ± 
SEM (n=10-12 mice per treatment group).  Means within the same row with different superscripts 
differ, p<0.05 a,b = LFD vs. HFD only; c,d = HFD vs. HFD + TQ only, a,e = LFD vs. LFD + TQ 
only. TQ = Thymoquinone, LFD = low fat diet, HFD = high fat diet. 
 

      Treatment     

Metabolite   LFD LFD + TQ HFD HFD + TQ 

Pyruvic acid  673.4 ± 51.90 700.3 ± 85.47 653.1 ± 93.72 656.2 ± 72.94 

Citricacid   129.9 ± 21.48a 221.3 ± 33.18e 72.15 ± 5.495b 75.52 ± 8.924 

cis-Aconitic acid  7.577 ± 1.22 12.81 ± 2.53 5.145 ± 0.36 5.466 ± 0.65 

Isocitric acid  10.77 ± 1.69a 17.56 ± 3.59 6.181 ± 0.78b 6.650 ± 0.62 

2-ketoglutaric acid  10.23 ± 0.75a 15.22 ± 1.42e 11.19 ± 1.01 10.43 ± 0.83 

Succinic acid  230.5 ± 28.46 235.4 ± 32.90 183.4 ± 21.08 165.0 ± 18.34 

Fumaric acid  977.6 ± 146.6a 851.9 ± 82.34 538.8 ± 45.18b 567.6 ± 70.44 

Malicacid   611.1 ± 62.42a 683.6 ± 55.50 456.8 ± 29.85b 564.3 ± 74.77 

Aspartic acid   584.6 ± 43.27a 515.1 ± 44.42 400.8 ± 23.08b 419.6 ± 28.93 
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Table 4.4 Effect of TQ on TCA cycle intermediates in soleus muscle.  Results expressed as 
means ± SEM (n=10-12 mice per treatment group).  Means within the same row with different 
superscripts differ, p<0.05 a,b = LFD vs. HFD only; c,d = HFD vs. HFD + TQ only, a,e = LFD vs. 
LFD + TQ only. TQ = Thymoquinone, LFD = low fat diet, HFD = high fat diet. 
 

  Treatment 

Metabolite   LFD LFD + TQ HFD HFD + TQ 

Pyruvic acid  177.6 ± 19.96a 203.5 ± 25.68 286.8 ± 40.97b 222.0 ± 53.64 

Citricacid   249.3 ± 30.28a 443.3 ± 45.58e 252.0 ± 32.28 229.5 ± 34.51 

Isocitric acid  19.86 ± 2.08a 28.85 ± 2.23e 20.00 ± 1.74 19.76 ± 2.37 

2-ketoglutaric acid  4.150 ± 0.58 4.690 ± 0.61 5.217 ± 0.68c 2.782 ± 0.60d 

Succinic acid  1669 ± 141.1 1420 ± 69.31 1484 ± 169.6 1516 ± 189.1 

Fumaric acid  878.8 ± 54.70 799.7 ± 61.13 782.2 ± 101.3 674.0 ± 59.67 

Malicacid   687.7 ± 34.32 695.5 ± 45.25 670.3 ± 57.30 574.2 ± 35.23 

Aspartic acid   1171 ± 64.00a 1487 ± 111.9e 1423 ± 281.9 1160 ± 125.6 
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CHAPTER FIVE: 

CONCLUSIONS 

5.1 Adverse Effects of Selected POPs on Pancreatic β-cell Function 

The results presented in this study show the potential of four selected POPs, PFNA, 

PFOS, BDE-47, and BDE-85 to alter pancreatic β-cell function.  Specifically, BDE-47 and BDE-

85 increased GSIS in INS-1 832/13 cells during an acute exposure, while a similar trend was 

observed with PFOS and PFNA that didn’t reach statistical significance.  Chronic pre-treatment 

for 48 hours didn’t increase GSIS, performed in the absence of compounds, suggesting that both 

BDE-47 and BDE-85 must be present during glucose stimulation in order to increase insulin 

secretion.  This is confirmed by our results showing that in basal glucose conditions, none of the 

selected compounds increase insulin secretion, suggesting that their effects on GSIS are likely 

mediated by potentiating the actions of high glucose on β-cell function during an acute exposure. 

Mechanistically, it was determined that BDE-47 and BDE-85 act via thyroid hormone receptor to 

increase GSIS and this response was shown to be Akt-dependent, as pharmacological inhibition 

of PI3K, an upstream activator of Akt, abolishes this response (Karandrea et al., 2017a).  These 

results confirm prior reports of the role of PBDEs and their metabolites in disrupting thyroid 

hormone signaling by mimicking the role of thyroid hormones and potentially binding to thyroid 

receptor (Dong et al., 2014; Ibhazehiebo et al., 2011; Li et al., 2010; Ren et al., 2013; Ren and 

Guo, 2013).  Since thyroid hormones can activate Akt, we hypothesized that BDE-47 and BDE-

85 also activate Akt and that this activation plays a role in potentiation of GSIS.  Indeed, we found 

out that BDE-47 and BDE-85 activate Akt and that this pathway plays a role in the effect of BDE-

47 and BDE-85 on GSIS.  The activation of Akt by several PBDEs has been previously reported, 

albeit in different cell lines (Qu et al., 2015; Wang et al., 2015; Tian et al., 2016).  Furthermore, 
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activation of Akt has important implications on GSIS, although the effects of the PI3K-Akt pathway 

have been controversial.  It is possible that BDE-47 and BDE-85 act via thyroid receptor to activate 

Akt, which in turn potentiates GSIS by an unknown mechanism (Figure 5.1).  Further studies are 

required to evaluate the role of Akt in BDE-47/85-mediated potentiation of GSIS in INS-1 832/13 

cells and the mechanisms associated with this action.   

These results suggest that exposure to BDE-47 and BDE-85 can increase GSIS, which 

can have detrimental effects to exposed human populations.  Since PBDEs can accumulate in 

the body and humans can be exposed to these compounds in a variety of ways, it is possible that 

they can cause β-cells to oversecrete insulin, particularly when coupled with a high-calorie and 

high-carbohydrate diet.  The excess insulin may cause hyperinsulinemia, insulin resistance, and 

possibly β-cell exhaustion and failure, leading to increased blood glucose and emergence of type 

2 diabetes.  Our work provides a basis for future studies to explore the role of BDE-47, BDE-85 

and other PBDEs or classes of POPs in pancreatic β-cell function, glucose homeostasis, and the 

mechanisms responsible for such metabolic effects. 

5.2 Effects of Thymoquinone in the DIO Mouse Model of Type 2 Diabetes 

Our work highlights the anti-diabetic effects of Thymoquinone in a physiologically-relevant 

animal model of type 2 diabetes, such as the DIO mice.  Although positive effects on glucose 

homeostasis have been reported from prior in vivo studies, most of them have used animal 

models rendered diabetic by chemically-induced β-cell death, which doesn’t allow for proper 

evaluation of β-cell function.  To our knowledge, this is the first study to report that TQ improves 

glucose homeostasis parameters, such as glucose intolerance, insulin resistance, and 

hyperglycemia in diabetic and obese DIO mice.  Furthermore, TQ improved low-grade 

inflammation, dyslipidemia, and decreased the levels of tissue triglycerides in DIO mice compared 

to controls, suggesting that it has an important role not only in glucose homeostasis, but also 

potentially ameliorating these conditions that are elevated in type 2 diabetes.  TQ decreased 

NADH/NAD+ ratio, leading to more NAD+ being available, which can reduce the effects of oxidative 
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and reductive stress on insulin resistance and hyperglycemia (Wu et al., 2016).  Furthermore, 

increased NAD+ can potentiate glucose metabolism in pancreatic β-cells, which can increase 

GSIS and ameliorate hyperglycemia (Revollo et al., 2007).  We show increased SIRT-1 and 

AMPKα activation in liver and skeletal muscle of DIO mice treated with TQ, which could be a 

consequence of increased NAD+, thus activating SIRT-1 and potentially AMPK.  Both SIRT-1 and 

AMPK have been implicated in ameliorating insulin resistance, oxidative stress and inflammation, 

as well as increasing GSIS in pancreatic β-cells (Coughlan et al., 2014; Moynihan et al., 2005; 

Sun et al., 2007; Zhang et al., 2007).  TQ improved hepatic insulin sensitivity by increasing Akt 

phosphorylation (activation), an important component of insulin signaling pathway.  This 

improvement in insulin sensitivity could be due to the lipid lowering effects of TQ, as well as 

activation of SIRT-1 dependent pathways.  Indeed, we showed that in insulin-resistant HepG2 

cells, TQ restores insulin sensitivity via a SIRT-1-dependent mechanism.  By undergoing quinone-

dependent redox cycling, we propose that TQ decreases NADH/NAD+ ratio, which in turn 

activates SIRT-1 and AMPK, leading to improved glucose and fatty acid oxidation and insulin 

sensitivity, a mechanism shown in Figure 5.2. 

Taken together, the results of our study show additional evidence for the anti-diabetic 

effects of TQ.  Furthermore, this study suggests that these effects and in particular the increase 

in insulin sensitivity, can be due to activation of SIRT-1 and AMPK pathways in DIO mice 

(Karandrea et al., 2017b).  This provides a platform to investigate the specific role of these 

pathways in TQ-mediated improvement of glucose homeostasis, such as (but not limited to) the 

use of transgenic mouse models or treatment with agonists and inhibitors of such pathways. 

5.3 Future Directions 

One immediate future direction as the result of this work is to study the effects of exposure 

to BDE-47 and BDE-85 on glucose homeostasis in a diabetic susceptible murine model, such as 

the C57/BL6J mice on a lean background and fed a high fat diet.  One purpose of such exposure 

is to evaluate whether exposure to these compounds alone is sufficient to induce the diabetic 
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phenotype, or whether they exacerbate the diabetic state in the animals fed a high fat diet.  To 

evaluate their role on glucose homeostasis, glucose tolerance tests (GTTs), insulin tolerance tests 

(ITTs), fasting blood glucose, and insulin measurements can be performed.  Furthermore, to 

assess whether BDE-47 and BDE-85 increase in vivo insulin secretion, hyperglycemic clamp 

experiments can be used to evaluate pancreatic β-cell function (Ayala et al., 2010).  After the 

duration of the study, pancreatic islets can be collected to study GSIS and evaluate whether these 

compound increase ex vivo insulin secretion.  Furthermore, insulin-sensitive tissues such as liver, 

skeletal muscle, and adipose tissue can be collected to evaluate the degree of insulin resistance 

by analyzing activation of proteins in the PI3K-Akt pathway.  This in vivo study will serve to confirm 

the role of BDE-47 and BDE-85 on insulin secretion, and evaluate whether they cause 

hyperinsulinemia and insulin resistance as a result of increased pancreatic β-cell function.  One 

important component can be to analyze insulin secretion during the study to determine whether 

there is an initial increase, followed by a progressive decrease in β-cell function, which can 

suggest ultimate β-cell exhaustion due to POP exposure.  These studies could confirm the role of 

BDE-47 and BDE-85 in altering β-cell function and their importance in the development of type 2 

diabetes, expanding upon the results obtained from INS-1 832/13 cells.  

Another important future direction of this study is to evaluate the role of SIRT-1 and 

AMPKα in TQ-mediated amelioration of diabetic phenotype in DIO mice.  Our results with HepG2 

human liver cancer cell line suggest that TQ reverses insulin resistance via a SIRT-1 dependent 

mechanism.  Furthermore, AMPKα also was shown to be important in this response.  A study 

using a SIRT1 or AMPKα inhibitors in DIO mice exposed to TQ would provide additional evidence 

about whether these pathways play a role in the anti-diabetic effects of TQ.  Furthermore, to 

bypass some of the off-target effects of inhibitors, SIRT-1 (Herranz and Serrano, 2010) or AMPKα 

knock out mice (Viollet et al., 2009) can be used to assess whether the effects of TQ on insulin 

resistance and glucose homeostasis are dependent on the activation of these pathways.   
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We showed that TQ improves insulin sensitivity both in vivo and in vitro, but we did not 

study the effects of TQ treatment on pancreatic β-cell function in DIO mice.  Future experiments 

measuring in vivo GSIS or ex vivo pancreatic islet function in DIO mice treated with TQ are needed 

to establish the role of this compound on β-cell function. 
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5.5 Tables and Figures 

 

Figure 5.1 Proposed mechanisms for potentiation of GSIS by BDE-47 and BDE-85.  BDE-
47 and BDE-85 bind to the thyroid receptor (TR), leading to Akt activation, which in turn leads to 
increased GSIS by an unknown mechanism. 
 
 
 
 

 
 
Figure 5.2 Proposed mechanism for anti-diabetic actions of TQ.  TQ undergoes redox cycling 
in metabolically relevant tissues, which leads to a decrease in the NADH/NAD+ ratio, activation of 
SIRT-1 and AMPKα, which leads to decreased insulin resistance, hyperglycemia, dyslipidemia, 
and inflammation. 
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A B S T R A C T

PBDEs (polybrominated diphenyl ethers) are environmental pollutants that have been linked to the development
of type 2 diabetes, however, the precise mechanisms are not clear. Particularly, their direct effect on insulin
secretion is unknown. In this study, we show that two PBDE congeners, BDE-47 and BDE-85, potentiate glucose-
stimulated insulin secretion (GSIS) in INS-1 832/13 cells. This effect of BDE-47 and BDE-85 on GSIS was de-
pendent on thyroid receptor (TR). Both BDE-47 and BDE-85 (10 μM) activated Akt during an acute exposure. The
activation of Akt by BDE-47 and BDE-85 plays a role in their potentiation of GSIS, as pharmacological inhibition
of PI3K, an upstream activator of Akt, significantly lowers GSIS compared to compounds alone. This study shows
that BDE-47 and BDE-85 directly act on pancreatic β-cells to stimulate GSIS, and that this effect is mediated by
the thyroid receptor (TR) and Akt activation.

1. Introduction

Type 2 diabetes is a metabolic disorder characterized by chronic
hyperglycemia, which develops as a consequence of peripheral insulin
resistance and defective insulin secretion from pancreatic β-cells
(Sargis, 2014). Diabetes prevalence has been on the rise and it can lead
to major health complications, which increase the impacts of the dis-
ease in our society (Guariguata et al., 2014). A high calorie diet coupled
with physical inactivity are known risk factors for the development of
type 2 diabetes; however, these alone fail to account for the rapid rise of
the disease (Sargis, 2014).

Recent attention has turned to the role of environmental pollutants
in the development of metabolic diseases. Persistent organic pollutants
(POPs), as their name suggests, are compounds that do not degrade
easily and can bioaccumulate in the environment (Manzetti et al.,
2014). They are man-made chemicals that are byproducts of various
industrial processes (Manzetti et al., 2014). Polybrominated diphenyl
ethers (PBDEs) are a class of POPs, and have been extensively used as
flame retardants (Airaksinen et al., 2011; Darnerud et al., 2001). BDE-
47 (2,2′,4,4′- tetrabromodiphenyl ether) and BDE-85 (2,2′,3,4,4′-pen-
tabromodiphenyl ether) are two of the congeners in this class (Darnerud
et al., 2001; Vagula et al., 2011). Data from epidemiological studies
have suggested that PBDEs may be involved in the development of type
2 diabetes (Airaksinen et al., 2011; Lim et al., 2008; Zhang et al., 2016).

PBDEs have been positively associated with diabetes and metabolic
syndrome (Lim et al., 2008), although in this study BDE-47 did not
reach statistical significance. Data from animal studies show that BDE-
47 exposure increases fasting blood glucose in mice (Zhang et al.,
2016), whether commercial mixture penta-BDE exposure (containing
BDE-47 and BDE-85 among others) increased lipolysis and decreased
glucose oxidation in rat adipocytes (Hoppe and Carey, 2007). These
findings suggest that exposure to these compounds may lead to changes
in glucose and lipid homeostasis and thus contribute to diabetes de-
velopment.

Limited studies have been done to address the diabetogenic poten-
tial of BDE-47 and BDE-85. Although some PBDE studies have focused
on BDE-47, as it is one of the most abundant PBDE congeners (Darnerud
et al., 2001), there are no studies done on BDE-85. Particularly, the
direct effect of these compounds on pancreatic β-cell function remains
underassessed. β-cells secrete an appropriate amount of insulin in re-
sponse to elevated blood glucose levels (such as after a meal), which
helps re-establish normoglycemia by promoting glucose uptake and
utilization by insulin-sensitive peripheral tissues (Kahn et al., 2014).
Altering this normal β-cell function can disrupt glucose homeostasis;
inadequate insulin secretion can cause severe hyperglycemia whether
oversecretion can possibly lead to hyperinsulinemia, resulting in per-
ipheral insulin resistance and β-cell defects. In order to minimize the
impacts of the disease it is important to identify potential risk agents
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that can cause β-cell dysfunction. In the present study, we examined
whether BDE-47 and BDE-85 exposure alters GSIS in insulin-producing
INS-1 832/13 cells, and the potential underlying molecular mechanisms
involved.

2. Materials and Methods

2.1. Chemicals

BDE-47 and BDE-85 were purchased from AccuStandard (New
Haven, CT). Thyroid hormone T3 (3,3′,5-Triiodo-L-thyronine) was
purchased from Alfa Aesar (Lancashire, United Kingdom). Thyroid
hormone receptor antagonist 1–850 was purchased from EMD Millipore
(Darmstadt, Germany). Wortmannin was purchased from Acros
Organics (Geel, Belgium). Stock solutions of BDE-47, BDE-85, T3,
1–850, and wortmannin were prepared in dimethyl sulfoxide (DMSO)
and were added to the culture medium and/or KRB buffer to achieve
the indicated concentrations. Final concentration of DMSO did not ex-
ceed 0.1%. All other chemicals were purchased from Sigma (St Louis,
MO) unless otherwise specified.

2.2. Cell culture

INS-1 832/13 cells were a kind gift by Dr. Christopher Newgard
(Duke University School of Medicine) and were cultured in RMPI-1640
glucose-free medium supplemented with 11 mmol/l glucose, 10% fetal
bovine serum, 1 mmol/l sodium pyruvate, 5 mmol/l HEPES, 2 g/l so-
dium bicarbonate, 2 mmol/l L-glutamine, 50 μmol/l 2-mercap-
toethanol, 10000 U/ml penicillin, and 10 mg/ml streptomycin. Cells
were maintained at 37 °C in a humidified incubator with 5% CO2 and
used at passages 51–56.

2.3. Cell viability

Cell viability was measured by the reduction of CellTiter-Blue®

(Promega, Madison, WI) according to the manufacturer’s protocol. In
brief, cells were plated in 96-well plates and treated with indicated
concentrations of compounds for 48 h in culture medium, after which
CellTiter-Blue® was added to wells and the increase in fluorescence
(560 nm excitation, 590 nm emission) was measured using a
SpectraMax M5 multi-mode microplate reader (Molecular Devices,
Sunnyvale, CA). IC50 was calculated using a least squares fit with
variable slope using GraphPad Prism (version 6.07).

2.4. Glucose-stimulated insulin secretion (GSIS)

INS-1 832/13 cells grown to confluency in 24-well plates, were
washed 3 times with and pre-incubated in Krebs Ringer Buffer (KRB,
120 mM NaCl, 25 mM HEPES, 4.6 mM KCl, 1 mM MgSO4, 0.15 mM
Na2HPO4, 0.4 mM KH2PO4, 5 mM NaHCO3, 2 mM CaCl2) buffer con-
taining 3 mmol/l glucose at 37 °C for 2 h; followed by a static 1 h in-
cubation at 37 °C in KRB containing 3 (basal) or 16 (stimulating) mmol/
l glucose. For acute GSIS, compounds were present only during the 1hr
static incubation phase. KRB buffer was collected and centrifuged at
5000 x g for 3 min at 4 °C to pellet out any cells. Insulin released in
buffer was measured by an ELISA kit (Alpco Diagnostics, Salem, NH)
and data were normalized to the protein content, measured by the
Micro-BCA Protein Assay kit (Pierce, Rockford, IL). For antagonist ex-
periments, after a 2 h preincubation with 3 mmol/l glucose KRB, cells
were preincubated with antagonists or vehicle control (DMSO) at in-
dicated concentrations for 30 min in 3 mmol/l glucose KRB, washed
once with 3 mmol/l glucose KRB, followed by static 1 h incubation at
37 °C in KRB buffer containing 16 mmol/l glucose. For chronic pre-
treatment, cells were exposed to indicated concentrations of BDE-47
and BDE-85 for 48 h, after which cells were washed and preincubated
in KRB buffer containing 3 mmol/l glucose and static incubation was

performed as described above (compounds not present during the 2 h
pre-incubation or static 1 h glucose stimulation). For all insulin secre-
tion experiments, controls cells were treated with vehicle (DMSO) at
0.1% concentration.

2.5. Western blot analysis

INS-1 832/13 cells were grown to confluence in 6-well plates, wa-
shed two times in serum-free growth media, and incubated for 30 min
at 37 °C in serum-free growth media containing BDE-47, BDE-85, or T3.
For inhibitor experiments, cells were preincubated with inhibitor or
vehicle control (0.1% DMSO) at indicated concentrations for 30 min in
serum-free growth media, washed once, and incubated for 30 min at
37 °C in serum-free media containing BDE-47 or BDE-85. After ex-
posure, cells were solubilized in RIPA lysis buffer (Pierce, Rockford, IL).
Protein content was determined using a BCA Protein Assay Kit (Pierce,
Rockford, IL) and SDS samples were prepared. Equal amounts of protein
were electrophoretically separated on SDS-polyacrylamide gel, fol-
lowed by blotting onto PVDF membrane. Following the transfer,
membranes were blocked with TBST (10 mmol/l Tris-HCl pH 7.4,
150 mmol/l NaCl, and 0.1% Tween 20) containing 5% nonfat dry milk
(blocking buffer) and incubated with the primary antibodies diluted in
blocking buffer overnight at 4 °C, followed by application of appro-
priate secondary antibodies for 1 h at room temperature. Proteins were
detected by using enhanced chemiluminescence (ECL).

2.6. Reverse transcription and quantitative real-time RT-PCR (qRT-PCR)

INS-1 832/13 cells were grown to confluence in 6-well plates and
total RNA was prepared using the TRIzol reagent according to the
manufacturer's protocol (Invitrogen, Carlsbad, CA) and single-strand
cDNA was synthesized from the RNA using a Maxime RT PreMix kit
(iNtRON Biotechnology, Seongnam, South Korea). qRT-PCR amplifica-
tions were performed using rEVAlution 2x qPCR Master Mix (Empirical
Bioscience, Grand Rapids, MI) in an MyIQ2 Real-Time PCR Detection
System (Bio-Rad, Richmond, CA) following manufacturer's protocol. To
determine the specificity of amplification, melting curve analysis was
applied to all final PCR products. The relative amount of target mRNA
was calculated by the comparative threshold cycle method by nor-
malizing target mRNA threshold cycle to those for glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). The primers were purchased from
Integrated DNA Technologies (Coralville, IA) and were as follows: rat
TRα (NM_031134) forward 5′-CCTGGATGATACGGAAGTG-3′, reverse
5′-AGTGCGGAATGTTGTGTT-3′; rat TRβ (NM_012672) forward 5′-
ATCATCACACCAGCAATCA-3′, reverse 5′-GTCCGTCACCTTCATCAG-3′;
rat GAPDH (NM_017008) forward 5′-GACATGCCGCCTGGAGAAAC-3′,
reverse 5′-AGCCCAGGATGCCCTTTAGT-3′

2.7. Statistical analysis

Data are expressed as means ± SEM and are results from at least
three independent experiments performed in quadruplicate measure-
ments. Significance was determined for multiple comparisons using
two-way analysis of variance (ANOVA) followed by Sidak post-hoc
analysis (Abdi, 2007). A p-value of ≤0.05 was considered significant.
All analyses were conducted using the GraphPad Prism (version 6.07)
statistical program software.

3. Results

To evaluate the role of chronic BDE-47 and BDE-85 exposure on
INS-1 832/13 cell function, cells were exposed to different concentra-
tions of compounds for 48 h, and GSIS was measured after the removal
of these compounds. Chronic pre-treatment with 10 μM BDE-47 or BDE-
85 didn’t affect insulin secretion (Fig. 1A and B). The concentrations
used for chronic pre-treatment GSIS did not affect cell viability during
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the same 48–h exposure period (Fig. 1C and D).
To evaluate whether these compounds have an acute effect on GSIS,

we performed a 1 h static incubation in either 3 (low) or 16 mmol/l
(high) glucose KRB buffer in the presence of compounds at 1, 5, or
10 μM concentrations. We observed a concentration-dependent in-
crease in GSIS compared to vehicle control for both BDE-47 and BDE-85
during acute exposure. This increase was significant at 5 and 10 μM
BDE-85 and 10 μM BDE-47 (Fig. 2A and B).

Since BDE-47 and BDE-85 have structural similarity with thyroid
hormones (Ren and Guo, 2013), we investigated whether thyroid hor-
mone signaling has any role in mediating the observed increase in GISIS
caused by these compounds. Thyroid hormone (T3) administration in-
creased acute GSIS in a concentration-dependent manner (data not
shown). Furthermore, co-administration with T3 (5 μM) in the presence
of 10 μM BDE-47 or BDE-85 caused an increase in this response
(Fig. 3A). Based on this observation, we set to determine whether the

effects of these two compounds on GSIS are mediated by their actions
on the thyroid hormone receptor. To confirm the expression of the
thyroid receptor in the INS-1 832/13 cells, we measured the levels of
two receptor isoforms (α and β) by qRT-PCR. As shown in Fig. 3B, TRα
(but not TRβ) is expressed in this cell line, suggesting a possible role of
thyroid hormone signaling in pancreatic β-cell function. To evaluate the
role of thyroid receptor (TR) in BDE-mediated potentiation of GSIS, we
pre-treated the cells with TR antagonist 1–850 (which inhibits both
isoforms of the TR) for 30 min, and performed an acute GSIS (as de-
scribed in Methods). Pre-treatment with TR antagonist decreased BDE-
47 and BDE-85-mediated enhancement of GSIS, while the antagonist
alone had no effect on GSIS (Fig. 3C).

Recently, it has been suggested that thyroid hormone can have
important implications in pancreatic β-cell growth and function by
activating Akt (Falzacappa et al., 2007, 2010). To evaluate whether
BDE-47 and BDE-85 activate Akt in INS-1 832/13 cells during an acute

Fig. 1. Effect of chronic BDE-47 and BDE-85 exposure on GSIS and cell viability. INS-1 832/13 cells were pre-treated with BDE-47 (A) or BDE-85 (B) for 48 h and GSIS was assessed (as
described in materials and methods). Effect of BDE-47 (C) and BDE-85 (D) on INS-1 832/13 cell viability after 48 h of exposure. 3 mM G= 3 mM glucose, 16 mM G= 16 mM glucose.

Fig. 2. Effect of BDE-47 and BDE-85 on acute GSIS. Acute GSIS (as described in methods) in INS-1 832/13 cells incubated with 1, 5, or 10 μM BDE-47 (A) or BDE-85 (B). * p≤ 0.05 when
compared with control 16 mM G. 3 mM G= 3 mM glucose, 16 mM G= 16 mM glucose.
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incubation, cells were treated for 30 min with these compounds and
levels of total and phosphorylated (activated) Akt were measured by
Western Blot. Both BDE-47 and BDE-85 (at 10 μM concentration) acti-
vate Akt during an acute incubation at high (16 mM) glucose compared
to vehicle control (Fig. 4A). High glucose treatment in the absence of
compounds did not increase phosphorylated Akt (Fig. 4A). The 10 μM
concentration was chosen since it was shown to increase GSIS after
acute exposure to both compounds, although lower and higher con-
centrations were also shown to activate Akt at the normal (11 mM)
glucose condition (Fig. 4B).

To evaluate whether Akt plays a role in BDE-47 and BDE-85-
mediated increase in GSIS, we tested whether pharmacological inhibi-
tion of PI3 K, an upstream activator of Akt (Sargis, 2014; Guo, 2014),
would affect this response. A 30–min pre-treatment with PI3 K

inhibitor, wortmannin, followed by a static one hour GSIS, caused a
decrease in GSIS when cells were treated with BDE-47 or BDE-85
compared to compounds alone (Fig. 4C). The concentration of wort-
mannin (50 nM) was chosen from a previous study showing that this
concentration effectively blocked Akt phosphorylation while not af-
fecting insulin secretion (Collier et al., 2004). Indeed, at this con-
centration (50 nM), wortmannin didn’t affect GSIS (Fig. 4C), but ef-
fectively inhibited BDE-47 and BDE-85-induced Akt phosphorylation
(Fig. 4D). Furthermore, acute incubation with T3 (5 μM) increased Akt
phosphorylation (Fig. 4D) as expected and as previously reported
(Falzacappa et al., 2007, 2010).

Fig. 3. Effect of BDE-47 and BDE-85 on GSIS is mediated via the thyroid receptor. (A) Acute GSIS in INS-1 832/13 cells treated with 10 μM BDE-47, 10 μM BDE-85, 5 μM T3, or co-treated
with BDE-47 or BDE-85 and T3 as indicated. (B) Quantitative real-time polymerase chain reaction (qRT-PCR) showing expression of TRα and GAPDH in INS-1 832/13 cells. (C) INS-1
832/13 cells were pre-incubated with thyroid receptor antagonist 1–850 (10 μM) or vehicle for 30 min, followed by the addition of BDE-47 (10 μM), BDE-85 (10 μM) or vehicle for 1 h
and GSIS was measured (as described in methods). 3 mM G= 3 mM glucose, 16 mM G= 16 mM glucose, CTR = vehicle control. * p≤ 0.05 when compared with control 16 mM G (A)
or vehicle control (B), #p≤ 0.05 when compared with compound alone.

Fig. 4. Effect of BDE-47 and BDE-85 on GSIS is mediated through Akt. (A) Western blot images of p-Akt, Akt, and β-actin after 30-min exposure to BDE-47 (10 μM), BDE-85 (10 μM), or
vehicle control in either low (3 mM) or high (16 mM) glucose media as described in methods. (B) Western blot images of p-Akt, Akt, and β-actin after 30-min exposure to BDE-47 (5, 10, or
25 μM), BDE-85 (5, 10, or 25 μM), or vehicle control in 11 mM glucose media as described in methods (C) INS-1 832/13 cells were pre-incubated with PI3 K inhibitor, wortmannin
(50 nM) or vehicle for 30 min, followed by the addition of BDE-47 (10 μM), BDE-85 (10 μM) or vehicle for 1 h and GSIS was measured (as described in methods). (D) INS-1 832/13 cells
were pre-incubated with wortmannin (50 nM) or vehicle for 30 min in 11 mM glucose media, followed by the addition of BDE-47 (10 μM), BDE-85 (10 μM), T3 (5 μM) or vehicle in
11 mM glucose media for 30 min, after which protein levels of p-Akt, Akt, and β-actin were measured by western blot. 3 mM G= 3 mM glucose, 16 mM G = 16 mM glucose,
W = wortmannin, CTR = vehicle control. *p≤ 0.05 when compared with vehicle control, #p≤ 0.05 when compared with compound alone.
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4. Discussion

Polybrominated diphenyl ethers (PBDEs) such as BDE-47 and BDE-
85 are heavily used in various industrial processes. These compounds,
once disseminated into the environment, do not degrade easily, and can
thus bioaccumulate in the food chain, making their way into our diets.
Dietary intake is one of the main routes of exposure; with high esti-
mated intake from food (ng/kg range) in humans previously reported
(Manzetti et al., 2014). Furthermore, they can bioaccumulate in various
tissues, thus increasing their potential effects (Manzetti et al., 2014;
Airaksinen et al., 2011). Epidemiological and animal studies suggest a
potential role of PBDEs in contributing to the development of type 2
diabetes (Airaksinen et al., 2011; Hoppe and Carey, 2007; Lim et al.,
2008; Zhang et al., 2016). However, the precise mechanisms are not
known. In the present study, we have investigated the role of BDE-47
and BDE-85 in pancreatic β-cell function and demonstrate that these
two compounds increase acute glucose-stimulated insulin secretion
(GISIS). This effect was mediated by the thyroid hormone receptor (TR)
and was dependent on Akt activation.

Concentrations as low as 1 μM affected GSIS, although the max-
imum increase in insulin secretion was achieved at the 10 μM con-
centration for both BDE-47 and BDE-85. This increase happened only
during an acute (1 h) static incubation, and no change was observed
during a 48 h chronic pre-treatment (compounds absent during GSIS).
This suggests that BDE-47 and BDE-85 have a direct effect on beta-cell
function that is not likely due to potential changes in expression of
metabolic enzymes or transcription factors involved in GSIS.

PBDEs are similar to thyroid hormones in structure and have been
shown to disrupt thyroid hormone signaling (Blanco et al., 2014; Ren
and Guo, 2013; Richardson et al., 2008). Thyroid hormone is important
in development, but also in metabolic rate and weight management
(Casals-Casas and Desvergne, 2011). It acts by binding to the thyroid
hormone receptor (TR) in various tissues, including the pancreatic β-
cell; however, its direct role in β-cell function remains controversial
(Shoemaker et al., 2012). While some in vitro and in vivo studies sug-
gested that thyroid signaling is associated with decreased GSIS (Lenzen
et al., 1975; Ximenes et al., 2007); others have shown an increase in
GSIS and cell survival in the INS-1 832/13 cells following thyroid
hormone treatment (Falzacappa et al., 2007, 2010). Our own data show
an increase in GSIS in INS-1 832/13 cells during an acute incubation
with thyroid hormone, suggesting an important role for the thyroid
hormone signaling in GSIS. Furthermore, there was an additional in-
crease in acute GSIS with co-treatment of T3 and BDE-47 or BDE-85.
Based on these observations, we tested whether these compounds might
act via the thyroid receptor to potentiate GSIS. Pharmacological in-
hibition of the thyroid receptor (TR) by the specific antagonist 1–850
led to a decrease in BDE-47 and BDE-85-mediated GSIS. This suggests
that the potentiating effects of these compounds on GSIS are mediated
via the TR. It is unlikely that the TR antagonist has off-target effects due
to its specificity and the fact that pre-treatment with the antagonist
alone did not affect GSIS.

Thyroid hormone has been shown to have a beneficial effect on
pancreatic β-cell growth and function by activating Akt (Falzacappa
et al., 2007, 2010). Although the role of Akt in the insulin signaling
pathway is well established (Guo, 2014), its role in insulin secretion is
controversial. Downregulation of Akt activity specifically in β-cells led
to glucose intolerance due to impaired insulin secretion in mice (Bernal-
Mizrachi et al., 2004). Akt activation has been implicated to play an
important role in increasing insulin granule exocytosis (Bernal-Mizrachi
et al., 2004; Cheng et al., 2012). Conversely, Akt inhibition has been
shown to potentiate insulin secretion and increase insulin granule fu-
sion (Aoyagi et al., 2012). Since BDE-47 and BDE-85 activate Akt
during an acute incubation (Fig. 4A and B), we were interested to de-
termine whether this activation played a role in their potentiation of
GSIS. Treatment with PI3 K inhibitor wortmannin inhibited BDE-47 and
BDE-85-induced GSIS, suggesting that Akt activation plays a role. In

contrast, PI3 K inhibition in the absence of compounds didn’t affect
GSIS, suggesting that this pathway might be involved in insulin secre-
tion only when activated. However, the role of Akt in GSIS and the
specific mechanisms involved require further characterization. It is
unclear whether BDE-47 and BDE-85 bind to thyroid receptor in the
nucleus or whether their effects are due to binding cytosolic TR, thus
having non-genomic actions. A prior study showed that thyroid hor-
mone activates Akt via a non-genomic mechanism (Falzacappa et al.,
2007); however further studies are needed to determine whether BDE-
47 and BDE-85 bind to TR and activate Akt via a similar mechanism.

Most of the effects on GSIS for these two compounds were observed
at the 10 μM concentration, which is higher than the nanomolar ranges
of concentrations reported in human tissues (Costa et al., 2014;
Darnerud et al., 2001). However, given the fact that PBDEs bioaccu-
mulate in various tissues and have estimated half-lives measured in
years in humans (Geyer et al., 2004), it is possible that cells in the
human body are exposed to similar concentrations of PBDEs in vivo.
Furthermore, prolonged or chronic exposure to PBDEs even at lower
concentrations could cause a similar effect on insulin secretion ob-
served with the acute exposure in our study. Thus, further work is re-
quired to adequately assess the relevant concentrations of PBDEs that
affect pancreatic β-cell function and glucose homeostasis in vivo.

This study shows for the first time that BDE-47 and BDE-85 increase
GSIS in pancreatic β-cells and that this effect is possibly mediated by
the thyroid receptor and Akt. This provides evidence that exposure to
environmental pollutants such as PBDEs can alter pancreatic β-cell
function, a key player in glucose homeostasis. Further studies are re-
quired to determine the specific mechanisms by which Akt activation
by BDE-47 and BDE-85 can lead to increased GSIS; or whether other
mechanisms in addition to the one proposed are involved. It is possible
that chronic exposure to PBDEs can cause chronic elevated insulin se-
cretion. This excess insulin could lead to hyperinsulinemia, which can
cause insulin resistance, one of the hallmarks of type 2 diabetes (Nolan
et al., 2015). These potential long-term implications need to be further
assessed in physiologically relevant animal models of type 2 diabetes
and in epidemiological studies.
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Abstract

Thymoquinone, a natural occurring quinone and the main bioactive component of plant

Nigella sativa, undergoes intracellular redox cycling and re-oxidizes NADH to NAD+. TQ

administration (20 mg/kg/bw/day) to the Diet-Induced Obesity (DIO) mice reduced their

diabetic phenotype by decreasing fasting blood glucose and fasting insulin levels, and

improved glucose tolerance and insulin sensitivity as evaluated by oral glucose and insulin

tolerance tests (OGTT and ITT). Furthermore, TQ decreased serum cholesterol levels and

liver triglycerides, increased protein expression of phosphorylated Akt, decreased serum

levels of inflammatory markers resistin and MCP-1, and decreased NADH/NAD+ ratio.

These changes were paralleled by an increase in phosphorylated SIRT-1 and AMPKα in

liver and phosphorylated SIRT-1 in skeletal muscle. TQ also increased insulin sensitivity in

insulin-resistant HepG2 cells via a SIRT-1-dependent mechanism. These findings are con-

sistent with the TQ-dependent re-oxidation of NADH to NAD+, which stimulates glucose and

fatty acid oxidation and activation of SIRT-1-dependent pathways. Taken together, these

results demonstrate that TQ ameliorates the diabetic phenotype in the DIO mouse model of

type 2 diabetes.

Introduction

Maintenance of glucose homeostasis involves insulin secretion from the pancreatic β-cells in

response to a rise in blood glucose, and insulin action in target tissues (predominantly liver,

muscle, and adipose tissue) to stimulate glucose entry and utilization, and inhibit hepatic glu-

cose production [1]. Development of type 2 diabetes (T2D) involves both peripheral insulin

resistance and pancreatic β-cell dysfunction. Insulin resistance, the inability of peripheral tis-

sues to properly respond to insulin, is initially compensated by a rise in insulin output in order

to maintain normoglycemia [1]. However, this compensatory mechanism is impaired in indi-

viduals predisposed to T2D, and later results in overt hyperglycemia [2, 3].

Thymoquinone (TQ) is the main bioactive component of Nigella sativa, a spice plant of

Ranunculacea family, and a traditional medicine that has been used to treat diabetes symptoms
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and to lower blood glucose [4]. Nigella sativa has been reported to increase both insulin secre-

tion and insulin sensitivity [5, 6]. TQ has been shown to reduce hepatic glucose production [7]

and protect β-cells from oxidative stress following streptozotocin (STZ) treatment [8]. How-

ever, mechanistic studies and comprehensive evaluation of TQ action under physiological dia-

betic conditions and models is currently lacking.

TQ belongs to the family of quinones, naturally-derived compounds featuring a conjugated

double bond system, which is responsible for their reactivity and intracellular process known

as “redox cycling” [9]. Our laboratory has been instrumental in establishing the concept that

re-oxidation of NADH back to NAD+ via quinone-dependent redox cycling lowers cellular

reductive poise and facilitates glucose and fatty acid oxidation, and is necessary for the overall

health of the cells [9, 10]. Our group has previously shown that TQ supports redox cycling in

pancreatic β-cells, resulting in the reduction of NADH/NAD+ ratio and normalization of

defective glucose-stimulated insulin secretion (GSIS) under chronically elevated glucose via

inhibition of acetyl CoA carboxylase (ACC) and enhanced oxidation of glucose and fatty acids

[11].

The oxidation status of nicotinamide adenine dinucleotide, represented by the ratio

between its reduced and oxidized forms (NADH/NAD+) is a critical determinant of the direc-

tion of metabolic flux [12, 13], as NAD+ promotes oxidative pathways via activation of TCA

cycle enzymes [14]. Furthermore, increased intracellular level of NAD+ activates SIRT1-de-

pendent metabolic pathways, which stimulate energy metabolism, enhance life span, and can

positively regulate insulin secretion and insulin signaling [14, 15].

Here we evaluated the capacity of TQ to ameliorate the diabetic phenotype in a physiologi-

cally relevant rodent model of obesity and diabetes, Diet-Induced Obesity (DIO) mice. We

hypothesized that sustained decrease in the NADH/NAD+ ratio due to TQ-dependent redox

cycling will result in the enhanced fuel oxidation and amplification of NAD+-dependent SIRT-

1 pathway in metabolic tissues, leading to the enhanced insulin sensitivity and improved glu-

cose homeostasis.

Materials and methods

Chemicals

Human recombinant insulin, resveratrol, and AICAR were purchased from Tocris Bioscience

(Bristol, UK). Nicotinamide was purchased from Acros Organics (Geel, Belgium) and Com-

pound C was purchased from EMD Millipore (Billerica, MA). All other chemicals and reagents

were purchased from Sigma (St Louis, MO) unless specified otherwise. Stock solutions of thy-

moquinone, resveratrol, AICAR, Nicotinamide, and Compound C were prepared in DMSO

and added to culture medium to achieve the indicated concentrations.

Ethics statement

All procedures were performed in accordance with and approved by the Institutional Animal

Care and Use Committee (IACUC) of the University of South Florida.

Animals

Male C57BL/6J mice (6 weeks of age) were purchased from Jackson Laboratories (Bar Harbor,

ME) and housed (4 animals per cage) in a USF Animal Facility; room was maintained at a con-

stant temperature (25˚C) in a light:dark 12:12-h schedule. Food and water was available ad libi-
tum. Body weight was monitored on a weekly basis. Mice were pair fed either control low fat

diet, LFD (10% fat cal, Research Diets, New Brunswick, NJ) or high fat diet, HFD (45% fat cal,
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Research Diets, New Brunswick, NJ). Mice were separated in the following groups: LFD, LFD

+TQ, HFD, HFD+TQ. TQ (dissolved in canola oil) was administered daily by oral gavage at

20 mg/kg body weight for the duration of the study. Vehicle only (canola oil) was administered

to control groups (LFD and HFD). The dose of TQ was chosen because it was shown to lower

blood glucose [16], albeit in a non-physiological rodent model of diabetes. The chosen dose is

well below toxic doses established for oral administration in mice [17]. As expected, TQ was

well tolerated, and TQ administration did not affect the overall health of the animals in the

study. After 24 weeks, animals were euthanized with isoflurane, tissues and serum collected,

and either used immediately or were snap frozen in liquid nitrogen and stored in -80˚C until

further use.

Cell culture

HepG2 human hepatoma cell line was purchased from American Type Culture Collection

(ATCC, Manassas, VA) and cultured in DMEM medium supplemented with 10% FBS, 100

units of penicillin, and 100 μg/mL streptomycin at 37˚C in a humified incubator with 5% CO2.

Cells were made insulin resistant by treatment with 20mM glucose for 18 hours, as previously

described [18, 19]. Following high glucose treatment, cells were starved for 2 hours in serum-

free medium, prior to treatment with the respective compounds for 24 hours. For inhibitor

treatment, cells were pre-incubated with the inhibitors for 30 mins, and the inhibitors were

also present during the 24-hour incubation period. To measure insulin signaling, insulin was

added during the last 30 minutes. Vehicle-treated cells (0.5% DMSO) in normal (5.5 mM) and

high (20 mM) glucose conditions served as controls.

OGTT and ITT

For in vivo studies, animals were anesthetized with ketamine (80 mg/kg body weight). Oral

glucose and insulin tolerance tests were performed following a 6 hr fast. Mice were oral

gavaged with 2 mg/kg/bw glucose (OGTT), or injected intraperitoneally with 0.5 IU insulin/

kg/bw (ITT). Blood glucose, obtained at 0, 15, 30, 60, 90, 120 and 180 minutes from the tail

vein was measured with a glucometer (Bayer Contour).

Cholesterol content

Total cholesterol, HDL, and LDL/VLDL content was determined from serum samples using

the HDL and LDL/VLDL Cholesterol Assay Kit (abcam, Cambridge, MA) according to the

manufacturer’s protocols.

Serum profile

Serum levels of insulin, resistin and MCP-1 were determined by Ocean Ridge Biosciences

(Deerfield Beach, FL) using a Luminex multiplex protein profiling assay (Luminex Corp., Aus-

tin, TX) according to the manufacturer’s protocols.

Western blot analysis

Liver and soleus muscle tissues were solubilized in RIPA lysis buffer (Pierce, Rockford, IL)

using Fast Prep 24G system (MP Biosciences, Santa Ana, CA). After exposure, HepG2 cells

were solubilized in RIPA lysis buffer. Protein content was determined using a BCA Protein

Assay Kit (Pierce, Rockford, IL) and SDS samples were prepared. Equal amount of protein

(100 μg per lane) were electrophoretically separated on SDS-polyacrylamide gel, followed by

blotting onto PVDF membrane. Following the transfer, membranes were blocked with TBST
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(10 mmol/l Tris-HCl pH 7.4, 150 mmol/l NaCl, and 0.1% Tween 20) containing 5% nonfat dry

milk (blocking buffer) and incubated with the primary antibodies (diluted in blocking buffer

overnight at 4˚C) against SIRT-1 (Cell Signaling, cat. #9475), p-SIRT-1 (Cell Signaling, cat.

#2314), Akt (Cell Signaling, cat. #9272), p-Akt (Cell Signaling, cat. #9271), AMPKα (Cell Sig-

naling, cat. #5831), p-AMPKα (Cell Signaling, cat. #2535), NQO1 (Santa Cruz, cat. #sc-16464),

β-actin (Cell Signaling, cat. #4970), and β-tubulin (Cell Signaling, cat. #2146). Membranes

were incubated with goat anti-rabbit immunoglobulin (IgG) secondary antibody (Santa Cruz,

cat. #sc-2030) for 1 h at room temperature, and washed 5 times. Proteins were detected by

using enhanced chemiluminescence. Semiquantitative analysis of Western blot images were

performed using ImageJ.

Triglyceride content

Triglyceride content was determined in liver and soleus muscle RIPA buffer lysates (lysates as

described above) using the Triglyceride kit (Pointe Scientific, Canton, MI) according to the

manufacturer’s protocols.

Metabolomics analysis

Serum levels of glycerol, palmitic acid, oleic acid, and stearic acid were measured by gas chro-

matography—mass spectrometry (GC/MS) analysis. The GC/MS experiments were performed

by the University of Utah Metabolomics Core.

Determination of nucleotides

NADH/NAD+ ratio was determined in liver and soleus muscle using the NAD/NADH assay

kit as per the manufacturer’s protocol (Abcam, Cat #65348, Cambridge, UK).

Quantitative real time RT-PCR

The tissue samples stored in RNAlater (Invitrogen, Carlsbad, CA) were homogenized by using

the Fast Prep 24G instrument (MP Biosciences, Santa Ana, CA). Total RNA was prepared

using the TRIzol reagent according to the manufacturer’s protocol (Invitrogen, Carlsbad, CA)

and single-strand cDNA was synthesized from the RNA in a reaction mixture containing opti-

mum blend of oligo(dT) primers and iScript reverse transcriptase (Bio-Rad, Richmond, CA).

qRT-PCR amplifications were performed using rEVAlution 2x qPCR Master Mix (Empirical

Bioscience, Grand Rapids, MI) in an MyIQ2 Real-Time PCR Detection System (Bio-Rad,

Richmond, CA) following manufacturer’s protocol. To determine the specificity of amplifica-

tion, melting curve analysis was applied to all final PCR products. The relative amount of tar-

get mRNA was calculated by the comparative threshold cycle method by normalizing target

mRNA threshold cycle to those for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

The primers used for analysis were as follows: NQO1: sense primer, 5’-AGGATGGGAGGTAC
TCGAATC-3’, anti-sense primer, 5’-AGGCGTCCTTCCTTATATGCTA-3’; GAPDH: sense

primer, 5’-CTTCACCACCATGGAGAAGGC-3’, anti-sense primer, 5’-GGCATGGACTGTGG
TCATGAG-3’.

Statistical analysis

Data are expressed as means ± SEM. Significance was determined for multiple comparisons

using one-way or two-way analysis of variance (ANOVA) followed by Sidak or Holm-Sidak

multiple comparisons tests [20, 21] for planned comparisons (as mentioned in each figure) or

independent t-test as indicated. A p-value of�0.05 was considered significant.
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Results

The Diet Induced Obesity (DIO) mice develop obesity, hyperinsulinemia, glucose intolerance

and insulin resistance when fed a high fat diet, making them a suitable model to study type 2

diabetes pathophysiology [22, 23]. This is confirmed in our study, where after high fat feeding,

mice developed a diabetic phenotype as shown by the weight gain (Fig 1A), elevated fasting

blood glucose (BG) and insulin levels (Fig 1B and 1C), and impaired oral glucose and insulin

tolerance tests (OGTT an ITT) (Fig 2A and 2B). TQ administration was effective in ameliorat-

ing these parameters: TQ lowered body weight (Fig 1A), fasting blood glucose and insulin (Fig

1B and 1C, respectively), and improved glucose tolerance and insulin sensitivity, evaluated by

OGTT and ITT (Fig 2A and 2B).

Type 2 diabetes is associated with increased inflammation, which can contribute to insulin

resistance and is shown to be detrimental to many tissues including pancreatic β-cells [24, 25].

Resistin, a hormone secreted by adipocytes, impairs glucose tolerance and insulin sensitivity in

mice [26] and has been associated with insulin resistance in humans [27, 28]. Monocyte che-

moattractant protein-1 (MCP-1) is a pro-inflammatory chemokine that can induce insulin

resistance [29] and circulating levels of this chemokine are increased in patients with type 2

diabetes [30–32]. TQ lowered serum levels of resistin in DIO mice (Fig 3A). There was a trend

to lower the MCP-1 levels, however, this didn’t reach statistical significance in HFD animals

(p = 0.06), although TQ decreased MCP-1 in LFD animals (Fig 3B). These results demonstrate

the potential of TQ to alleviate tissue inflammation in diabetes and obesity.

Elevated levels of triglycerides, together with decreased HDL and increased LDL cholesterol

levels are the key identifiers of diabetic dyslipidemia, which can exacerbate insulin resistance

[33]. Consistent with our previously reported data demonstrating TQ-dependent increase in

fatty acid oxidation [11], and observed increased peripheral insulin sensitivity in this study (as

shown by the improvement of the ITT in DIO mice, Fig 2B), TQ ameliorated HFD-dependent

increase in liver triglyceride levels (Fig 4A). There was a trend to lower HFD-dependent mus-

cle triglyceride content, however this did not reach statistical significance (Fig 4B). We saw

similar trends when analyzed serum glycerol and three relevant fatty acids: palmitic acid, oleic

acid, and stearic acid. GC/MS analysis of serum levels of these metabolites were decreased

compared to HFD alone (Table 1), however this didn’t reach statistical significance.

There was also a trend to decrease serum cholesterol level, albeit statistically not significant

(Fig 5A). However, TQ significantly decreased the levels of LDL cholesterol in the serum of

HFD animals (Fig 5C), with no effect on the HDL levels (Fig 5B). This effect was selective to

the HFD diet, as LFD animals did not demonstrate changes in their HDL or LDL/VLDL cho-

lesterol in response to TQ regimen.

The lowered tissue triglyceride levels following TQ administration argues for the TQ-

dependent activation of the oxidative pathways (and consequent oxidation, rather than deposi-

tion of metabolic substrates). NADH/NAD+ ratio is important determinant of metabolic flux

[14], and our group previously reported that TQ lowers NADH/NAD+ ratio in pancreatic β-

cells exposed to glucose overload [11]. To confirm that TQ exerts this effect in vivo, we mea-

sured NADH/NAD+ ratio in liver and skeletal muscle. In liver, there was an increase in this

ratio in HFD mice (Fig 6A), which is in agreement with prior studies suggesting an increase in

NADH in diabetes and obesity [14]. However, we did not observe this change in skeletal mus-

cle (Fig 6B). In both liver and soleus muscle, TQ lowered the NADH/NAD+ ratio in the HFD

group compared to HFD alone (Fig 6A and 6B).

Since NADH/NAD+ ratio is known to regulate SIRT-1 pathway, we analyzed effect of TQ

feeding on this pathway in the liver and soleus muscle of TQ-treated compared to control

mice. Liver and soleus muscle from mice treated with TQ had enhanced phosphorylated

TQ improves diabetes in DIO mice by activating SIRT-1

PLOS ONE | https://doi.org/10.1371/journal.pone.0185374 September 26, 2017 5 / 19

https://doi.org/10.1371/journal.pone.0185374


Fig 1. TQ ameliorates weight gain, lowers fasting blood glucose and insulin in DIO mice. (A) Effect of

TQ on body weight (B) Effect of TQ treatment on fasting blood glucose after a 6 hour fast. (C) Effect of TQ on

serum insulin. Total body weight was measured weekly for the duration of the study. p<0.05 when comparing

HFD and LFD (+), and HFD and HFD+TQ (*), using a one-way ANOVA followed by Sidak post-test (A and B)

or independent t-test (C). Results are means ± SEM (n = 10–12 mice per treatment group). LFD: low fat diet,

HFD: high fat diet, TQ: thymoquinone.

https://doi.org/10.1371/journal.pone.0185374.g001
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Fig 2. TQ normalizes glucose tolerance and insulin sensitivity. (A) Blood glucose levels in response to

oral glucose tolerance test (OGTT). (B) Blood glucose levels in response to insulin tolerance test (ITT).

p<0.05 when comparing HFD and LFD (+), and HFD and HFD+TQ (*), using a two-way ANOVA followed by

Holm-Sidak post-test. Results are means ± SEM (n = 10–12 mice per treatment group). LFD: low fat diet,

HFD: high fat diet, TQ: thymoquinone.

https://doi.org/10.1371/journal.pone.0185374.g002

Fig 3. Effects of TQ on serum resistin and MCP-1. (A) Resistin serum concentration. (B) MCP-1 serum

concentration. p�0.05 when comparing (+) HFD and LFD, (*) HFD + TQ and HFD, and (#) LFD and LFD +

TQ using independent t-tests. Results are means ± SEM (n = 10–12 mice per treatment group). LFD: low fat

diet, HFD: high fat diet, TQ: thymoquinone, MCP-1: monocyte chemotactic protein 1.

https://doi.org/10.1371/journal.pone.0185374.g003

Fig 4. Effects of TQ on triglyceride content in liver and muscle. (A) Triglyceride concentration in liver. (B)

Triglyceride concentration in soleus muscle. (*) p<0.05 when comparing HFD + TQ and HFD using a one-way

ANOVA followed by Sidak post-test. Results are means ± SEM (n = 8–12 mice per treatment group). LFD: low

fat diet, HFD: high fat diet, TQ: thymoquinone.

https://doi.org/10.1371/journal.pone.0185374.g004
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(activated) SIRT-1 in both LFD and HFD groups (Fig 7A–7D). We also analyzed the protein

expression levels of other SIRT proteins in the liver, and did not see a difference with TQ treat-

ment across groups for SIRT-2, SIRT-3, SIRT-5, SIRT-6, and SIRT-7 (S1 Fig). This could be

due to SIRTs 2–7 having a lower deacetylase activity, as SIRT-6 and SIRT-7 have been previ-

ously shown to have a lower NAD+-deacetylase activity compared to SIRT-1 [34]. In the liver,

TQ enhanced AMPKα phosphorylation as well as phosphorylation of Akt (protein kinase B), a

key member of insulin signaling pathway [35,36] (Fig 8A and 8B).

To evaluate the mechanistic actions behind TQ-induced insulin sensitivity, we used the

HepG2 cell line as an in vitro model of insulin resistance to assess whether this action is SIRT-

1-dependent. HepG2 cells were made insulin resistant as previously described [18, 19], which

was confirmed by decreased p-Akt protein after high glucose treatment (Fig 9A and 9B). TQ

increased p-Akt in high-glucose treated cells, restoring these levels to that of the control cells

(Fig 9A and 9B). This shows that TQ improves insulin resistance in similar fashion to what we

see in livers of DIO mice. This action showed to be SIRT-1-dependent, as pre-treatment of

insulin resistant cells with SIRT-1 inhibitor nicotinamide in the presence of TQ, significantly

decreases p-Akt protein and TQ-induced insulin sensitivity (Fig 9A and 9B). Furthermore,

treatment with SIRT-1 activator resveratrol and AMPKα activator AICAR increased insulin

sensitivity, although this trend was not statistically significant (Fig 9A and 9B). Pre-treatment

with compound C (AMPKα inhibitor) or compound C and nicotinamide in the presence of

TQ decreased insulin sensitivity compared to TQ treatment alone, albeit statistically insignifi-

cant (Fig 9A and 9B). TQ treatment showed similar trends to the in vivo experiments in

increasing phosphorylation of SIRT-1 and AMPKα in insulin-resistant cells (S2A–S2D Fig).

Trends were also observed in increased p-SIRT-1 and p-AMPKα with resveratrol and AICAR

in the presence of TQ (S2A–S2D Fig), as well as a decrease in phosphorylation of SIRT-1 with

nicotinamide or compound C in the presence of TQ after high glucose treatment (S2A and

S2B Fig). Pre-treatment with compound C or with compound C and nicotinamide signifi-

cantly decreased p-AMPKα in the presence of TQ compared to TQ treatment alone (S2C and

S2D Fig). Taken together, these results provide additional support about the role of TQ in

improving insulin resistance, as well as show that this action is likely mediated by SIRT-1

activation.

TQ applied in this study was within the physiologically relevant diet-derived levels. How-

ever, non-physiologically high and toxic levels of quinones is known to generate excessive lev-

els of reactive oxygen intermediates via quinone-dependent redox cycling, and this causes

induction of the NAD(P)H-dependent Quinone Oxidoreductase 1 (NQO1). NQO1 is a phase

2 detoxification enzyme induced in response to oxidative stress, which expression is regulated

by the Keap1/Nrf2/ARE pathway [10, 37], and NQO1 alone has been show to regulate NADH/

Table 1. Effect of TQ on serum glycerol and fatty acids.

Metabolite Treatment

LFD LFD + TQ HFD HFD + TQ

Glycerol 844.7 ± 70.1a 1282 ± 101.9c 1348 ± 124.2b 1186 ± 47.1

Palmitic Acid 820.3 ± 26.1 970.4 ± 61.3 862.7 ± 53.8 798.7 ± 23.4

Oleic Acid 2851 ± 179.8 3335 ± 195.8 2807 ± 345.9 2597 ± 114.5

Stearic Acid 381.9 ± 15.0 371.9 ± 22.3 471.2 ± 25.8 437.5 ± 21.4

Results expressed as means ± SEM. n = 10–12 mice/group. Means within the same row with different superscripts differ, p� 0.05 as determined by using a

one-way ANOVA followed by Sidak post-test. a, b = LFD vs. HFD only; a, c = LFD vs. LFD + TQ only. TQ = Thymoquinone, LFD = low fat diet, HFD = high

fat diet.

https://doi.org/10.1371/journal.pone.0185374.t001
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Fig 5. Effects of TQ on serum cholesterol. (A) Total cholesterol serum concentration. (B) HDL cholesterol

serum concentration. (C) LDL/VLDL cholesterol serum concentration. p�0.05 when comparing (+) HFD and

LFD, (*) HFD + TQ and HFD using independent t-tests. Results are means ± SEM (n = 6–7 mice per

treatment group). LFD: low fat diet, HFD: high fat diet, TQ: thymoquinone, LDL: low-density lipoprotein, HDL:

high-density lipoprotein, VLDL: very-low-density lipoprotein.

https://doi.org/10.1371/journal.pone.0185374.g005
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NAD+ ratio [10, 38]. To ascertain that applied doses of TQ were physiologically low and not

inductive of NQO1 and/or oxidative stress, mRNA and protein levels of NQO1 were measured

in liver and muscle. Levels of NQO1 were not elevated in any of these tissues, confirming that

applied doses, while effective in regulating the cellular redox, do not activate the Keap1/Nrf2/

ARE pathway and do not increase oxidative stress (Fig 10). This further supports our

Fig 6. Effects of TQ on NADH/NAD+ ratio in liver and soleus muscle. (A) NADH/NAD+ ratio in liver. (B)

NADH/NAD+ ratio in soleus muscle. p� 0.05 when comparing (+) HFD and LFD, (*) HFD + TQ and HFD, and

(#) LFD and LFD + TQ using independent t-tests. Results are means ± SEM (n = 8–10 mice per treatment

group). LFD: low fat diet, HFD: high fat diet, TQ: thymoquinone.

https://doi.org/10.1371/journal.pone.0185374.g006

Fig 7. Effects of TQ on SIRT-1 protein expression. (A) Western blot images of SIRT-1 and p-SIRT-1

protein in liver. β-actin was used as a loading control. (B) Western blot images of SIRT-1 and p-SIRT-1 protein

in soleus muscle. β-tubulin was used as a loading control. Western blot images are representative of

combined liver and soleus muscle lysates from n = 10–12 mice per treatment group. (C and D) Protein band

quantification using densitometry from three independent experiments. p� 0.05 when comparing (+) HFD

and LFD and (*) HFD + TQ and HFD using independent t-tests LFD: low fat diet, HFD: high fat diet, TQ:

thymoquinone.

https://doi.org/10.1371/journal.pone.0185374.g007
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hypothesis that TQ-dependent re-oxidation of NADH and consequent decrease of the

NADH/NAD+ ratio is the main mechanism to activate SIRT-1/AMPK pathway and promote

fuel oxidation rather than deposition, which leads to the observed changes in normalization of

glucose homeostasis in DIO mice following TQ administration.

Discussion and conclusions

This is the first in vivo study aimed to comprehensively evaluate the effect of thymoquinone

(TQ), a bioactive component of the Nigella sativa plant, on whole body glucose homeostasis

using a physiologically-relevant mouse model of type 2 diabetes. In our published in vitro
study, we have reported that both Nigella sativa extract (NSE) of high thymoquinone (TQ)

content, as well as TQ alone, decreased NADH/NAD+ ratio and stimulated glucose and fatty

acid oxidation in pancreatic β-cells, and this action was accompanied by the restoration of the

glucose-stimulated insulin secretion (GSIS) in cells exposed to glucose overload [11]. Here we

have expanded our studies to an in vivo model with focus on the TQ effect on the insulin sensi-

tive peripheral tissues, and evaluated the action of TQ on glucose homeostasis in Diet Induced

Obesity (DIO) mice.

After 24 weeks of HFD, C57/BLJ mice became obese and diabetic, as demonstrated by their

increased body weight (Fig 1A), elevated fasting blood glucose (Fig 1B), insulin (Fig 1C) and

impaired OGTT and ITT (Fig 2). While TQ treatment improved all these parameters in HFD

animals, TQ had no significant effect on weight, fasting blood glucose and insulin, or OGTT

/ITT in animals treated with LFD, suggesting that TQ primarily affects DIO metabolism by

increasing oxidation of diet-derived fatty acid surplus. However, it is still possible that TQ

treatment beyond the 24 weeks could lead to observed changes in physiological parameters in

the LFD group as well, and further studies are required to address this issue. Bioavailability of

TQ after an oral administration can be a limiting factor on TQ actions. Although such studies

have been very limited in mice, studies with other animal models have shown that TQ is rap-

idly eliminated and slowly absorbed [39,40]. Therefore, further studies are required to address

the bioavailability of TQ after oral administration in mice to properly determine a relevant

Fig 8. Effects of TQ on Akt and AMPKα protein expression in liver. (A) Western blot images of Akt, p-Akt,

AMPKα and p-AMPKα protein in liver. β-actin was used as a loading control. Western blot images are

representative of combined liver lysates from n = 10–12 mice per treatment group. (B) Protein band

quantification using densitometry from three independent experiments. p�0.05 when comparing (+) HFD and

LFD, (*) HFD + TQ and HFD, and (#) LFD and LFD + TQ using independent t-tests. LFD: low fat diet, HFD:

high fat diet, TQ: thymoquinone.

https://doi.org/10.1371/journal.pone.0185374.g008
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Fig 9. TQ improves insulin sensitivity in HepG2 cells via a SIRT-1 dependent mechanism. HepG2 cells

were cultured in high (20 mM) glucose or in growth media containing 5.5 mM glucose for 18 hours, starved

with serum-free media for 2 hours, then pre-incubated with vehicle control (0.5% DMSO), nicotinamide (0.5

mM), compound C (20 μM), or with nicotinamide and compound C together for 30 mins, followed by

incubation with TQ (10 μM) in the presence or absence of nicotinamide and compound C; or with TQ,

resveratrol (50 μM), or AICAR (2 mM) alone for 24 hours in 20mM glucose media. Vehicle-treated cells in 5.5

mM glucose served as control. Insulin (100 nM) was added during the last 30 min. (A) Western blot images of

p-Akt, Akt, and β-actin. (B) Protein band quantification using densitometry from three independent

experiments. p� 0.05 where (*) is significantly different from 5.5G, (#) is significantly different from 20G, and

(Δ) is significantly different from 20G + TQ using independent t-tests. 5.5 G: 5.5 mM glucose, 20G: 20 mM

glucose, TQ: thymoquinone, R: resveratrol, AIC: AICAR, NIC: nicotinamide, C: compound C.

https://doi.org/10.1371/journal.pone.0185374.g009
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dose and exposure window, particularly in physiologically relevant mouse models of type 2

diabetes.

Metabolism is governed by the oxidation status of nicotinamide adenine dinucleotide, rep-

resented by the ratio between its reduced and oxidized forms (NADH/NAD+) [14]. During

glycolysis NAD+ is reduced to NADH, which needs to be re-oxidized back to NAD+ [14]. In

chronic hyperglycemic conditions, such as in type 2 diabetes, there can be NADH overproduc-

tion due to the fact that mitochondrial shuttles are unable to efficiently re-oxidize NADH,

which leads to the condition known as reductive stress [14, 41]. This leads to increased pres-

sure on mitochondrial complex I, the primary site of NADH recycling, which in turn causes

the formation of superoxide [14, 42] and enhanced oxidative stress, known to be detrimental

to insulin sensitivity and insulin secretion and exacerbate the diabetic phenotype [43]. NADH

excess inhibits glycolytic and TCA cycle enzymes (glyceraldehyde 3-phosphate dehydrogenase,

pyruvate dehydrogenase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate

dehydrogenase), leading to the impairment of glucose oxidation and TCA cycle oxidative path-

ways [14, 43]. TQ has been shown to regulate oxidation level of adenine nucleotides [11]. Due

to its conjugated double bond system, TQ is able to re-oxidize NADH in the process of NAD

(P)-dependent redox cycling [44], and thus decrease the NADH/NAD+ ratio, as shown by our

group [11]. Furthermore, in this study we also demonstrate that TQ treatment leads to a

decrease in the NADH/NAD+ ratio in liver and skeletal muscle in HFD mice (Fig 6). Regener-

ation of NAD+ from TQ can thus increase glucose and fatty acid oxidation and ameliorate

diabetic dyslipidemia. Diabetic dyslipidemia is characterized by high plasma triglyceride

Fig 10. Effects of TQ on NQO1 expression. NQO1 mRNA expression in liver (A) and soleus muscle (B). (C)

Western blot images of NQO1 and β-actin protein in liver (D) Western blot images of NQO1 protein in soleus

muscle. β-tubulin was used as a loading control. Statistical analysis (A and B): one-way ANOVA followed by

Sidak post-test (p�0.05). qPCR results are means ± SEM (n = 8–12 mice per treatment group). Western blot

images are representative of combined liver and soleus muscle lysates from n = 10–12 mice per treatment

group. LFD: low fat diet, HFD: high fat diet, TQ: thymoquinone.

https://doi.org/10.1371/journal.pone.0185374.g010
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concentration, low HDL cholesterol and elevated non-HDL cholesterol [33]. The main cause

of this phenotype is the increased free fatty acid release from insulin-resistant adipose tissue in

type 2 diabetes [45, 46]. The influx of free fatty acids in the liver can promote triglyceride syn-

thesis, which increases the production of non-HDL (LDL, VLDL) cholesterol to transfer lipids

to tissues and decreases HDL cholesterol levels, which transfers lipids back to liver for degrada-

tion [33]. Indeed, our data demonstrating that TQ treatment decreased serum LDL/VLD levels

(while not affecting HDL levels) and tissue level of triglycerides (Figs 4 and 5) in HFD mice

are consistent with TQ antidiabetic action and effect on lipid homeostasis. TQ-dependent

decrease in triglyceride and LDL/VLDL levels correlated with improved insulin signaling and

insulin sensitivity judged by enhanced phosphorylation of Akt (Fig 8). Akt activation is consis-

tent with the observed improvement in insulin sensitivity seen with the insulin tolerance test

(Fig 2B). These results are in accordance with our previously reported in vitro results [11] that

TQ increases glucose and fatty acid oxidation, which can lead to enhanced fuel oxidation by

peripheral tissues, weight loss and increased insulin sensitivity.

In addition to serving as a regulator of metabolic flux and substrate for metabolic processes,

NAD+ can activate sirtuin 1 (SIRT-1) and consequently SIRT-1-dependent pathways [15].

SIRT-1 is a class III histone deacetylase, where NAD+ functions as a substrate for SIRT-1 dea-

cetylation of target proteins [15]. SIRT-1 has been implicated directly in critical aspects of glu-

cose homeostasis, such as increasing insulin secretion and insulin sensitivity, and lowering the

inflammation and oxidative stress associated with diabetes and obesity [15, 47–49]. Enhanced

production of NAD+ via TQ-dependent redox cycling is consistent with increased level of

SIRT-1 phosphorylation in liver and muscle (Fig 7A–7D). It has been previously shown that

SIRT-1 can activate AMPK (AMP-activated protein kinase) by de-acetylating and activating

serine-threonine liver kinase B1 (LBK1), an upstream activator of AMPK [50]. AMPK is acti-

vated when cellular energy levels are low (e.g. high AMP/ATP ratio), and has been shown to

enhance fatty acid oxidation, glycolysis, stimulate glucose uptake in skeletal muscle, and

inhibit cholesterol synthesis [51]. We saw increased phosphorylated AMPKα protein in the

liver of both LFD and HFD animals treated with TQ (Fig 8), suggesting that TQ can activate

AMPK-dependent pathways. Due to similarities in their action on different processes, such as

cellular metabolism and inflammation, it has been suggested that AMPK and SIRT-1 are

involved in a cycle where they regulate each other [50]. Whether TQ administration activates

AMPK indirectly via SIRT-1, or directly via alteration of parameters different from NADH/

NAD+ ratio, warrants further investigation. To mechanistically explore whether the increase

in insulin sensitivity with TQ treatment is SIRT-1-dependent, we used the HepG2 cell line as a

model of insulin resistance. TQ treatment reversed insulin resistance after 24 hours, shown by

the increase in phosphorylated Akt (Fig 9). Pre-treatment with SIRT-1 inhibitor nicotinamide

suppressed this TQ effect on insulin signaling, suggesting that it is likely SIRT-1-dependent.

Pre-treatment with AMPKα inhibitor compound C also inhibited the effect of TQ, albeit sta-

tistically insignificant. Furthermore, there was an improvement in insulin resistance after

treatment with SIRT-1 and AMPK activators, suggesting a positive role of these pathways in

insulin signaling.

Diabetes and obesity are associated with tissue inflammation, which can exacerbate insu-

lin resistance. Adipose-derived pro-inflammatory markers such as resistin and chemokines

(MCP-1) can exacerbate insulin resistance by activating c-Jun N-terminal (JNK) kinases

and NF-κB transcription factors, which can promote serine phosphorylation (inhibition) of

insulin receptor substrate-1 (IRS-1), a key component of insulin signaling [52]. SIRT-1 has

been shown to inhibit NF-κB activity, and therefore suppress the inflammatory process

[53]. Indeed, TQ treatment decreased serum levels of the pro-inflammatory marker resistin
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(Fig 3A). Lower resistin levels are consistent with observed increase in the insulin sensitivity

in HFD animals (Fig 2B). Since resistin has been shown to increase LDL levels [54], lower-

ing of this marker is also consistent with the observed decreases in serum LDL cholesterol

(Fig 5C).

Taken together, our study shows that TQ administration improves glucose tolerance and

insulin sensitivity in the diet-induced obesity (DIO) mouse model of type 2 diabetes. Further-

more, TQ treatment has the potential to ameliorate inflammation, altered lipid profile, and

weight gain associated with the diabetic and obese state. These anti-diabetic effects of TQ may

be mediated by activating SIRT-1 and AMPK pathways, as shown from this study. Our results

add to the existing evidence supporting the role of TQ as a natural therapeutic for the treat-

ment of type 2 diabetes, however, further studies are necessary to establish the potential of TQ

to treat type 2 diabetes in humans.
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