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ABSTRACT 

 

Passive ultra-high frequency (UHF) radio frequency identification (RFID) systems have 

gained immense popularity in recent years for their wide-scale industrial applications in inventory 

tracking and management. In this study, we explore the potential of passive RFID systems for 

indoor localization by developing a grid-based experimental framework using two standard and 

easily measurable performance metrics: received signal strength indicator (RSSI) and tag read 

count (TRC).  We create scenarios imitating real life challenges such as placing metal objects and 

other RFID tags in two different read fields (symmetric and asymmetric) to analyze their impacts 

on location accuracy.  We study the prediction potential of RSSI and TRC both independently and 

collaboratively. In the end, we demonstrate that both signal metrics can be used for localization 

with sufficient accuracy whereas the best performance is obtained when both metrics are used 

together for prediction on an artificial neural network especially for more challenging scenarios.  

Experimental results show an average error of as low as 0.286 (where consecutive grid distance is 

defined as unity) which satisfies the grid-based localization benchmark of less than 0.5. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Localization 

In recent years, location-based services(LBSs) have gained importance due to 

groundbreaking advances in wireless devices and technologies. These services improve the 

convenience of human life in places such as industrial warehouses, libraries, hospitals, smart 

homes and other places where quick and accurate localization of objects is of main concern [1].  

In the literature, numerous solutions using Cellular-network, Computer Vision, 

Ultrasound, Infrared Ray, Bluetooth, RFID and so on have been proposed for indoor positioning. 

This work focuses on indoor localization in industrial warehouse using passive RFID systems 

which are considered dominant. Indoor localization involves tracking of objects, vehicles, or 

people within a building or enclosed infrastructure. The main warehouse activities include 

receiving, transfer, order picking, calibration, order sorting and shipping [2]. In applications 

involving supply chain management, inventory control and monitoring of the objects in the 

warehouse is critical.  The numerous objects in the warehouse are referred to as pallets. Position 

information of pallets is beneficial to perform the above tasks. Henceforth, each objects needs to 

been monitored carefully every now and then to ensure efficient operation of the warehouse.  

  For order picking, pallet position information can efficiently reduce the distance of travel 

and location response time. Likewise, the decision of order routing demands the exact position of 

each pallet. This also helps in removing the faulty objects and sorting the objects in the warehouse 

in real-time. The receiving activity includes unloading products and moving them into the 
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warehouse. Although information is recorded when products go in or out of the warehouse, there 

is ample opportunity for errors to occur which demands the need for developing a reliable 

localization system. This work presents a novel RFID localization approach using two easily 

obtainable system performance metrics: tag read count(TRC) and received signal strength 

indicator(RSSI).  

1.2 Indoor Localization 

Indoor localization is generally used for tracking and monitoring objects (e.g., track objects 

in shopping centers or in big warehouses), navigating individuals to a point of interest (e.g., 

entry/exit point in the building), or even in advanced games that depend on the current location 

context. In addition, there are other potential scenarios for such kind of localization systems in 

industrial environments [3]. For instance, maintenance employees who are responsible for multiple 

large industry halls could use the location for a context-aware system to effortlessly locate and 

navigate in an industrial environment. It can help them discover and maintain machines, turbines, 

or other industry equipment. In addition, it could give live information for real-time tracking of 

the nearby engines, turbines, outlets, or other equipment’s [4][5]. 

In the literature, it is stated frequently that localization in an industrial environment 

confronts additional challenges causing deviations (scattering, diffraction or reflection) in the radio 

frequency (RF) signal. This is because of the large number of active and passive paths of the RF 

signal. Active paths include electromagnetic radiations by other industrial equipments such as 

engines, vents, and panels, and by the equipments using the same frequency range. Passive paths 

can emerge mainly through metallic and nonmetallic walls or objects absorbing signals that results 

in shadowing effects or by metallic objects such as metallic meshes and pipes that reflect and 

diffuse signals which creates multipath transmission [6]. The people working in the indoor 
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environment can also cause passive paths. To achieve indoor localization, we can use any of the 

common identification technologies such as GPS, Bluetooth, Wi-Fi and RFID depending on the 

nature of the environment. 

1.3 Outdoor Localization 

Outdoor Localization is extremely crucial in applications such as road vehicular tracking, 

distance education, disaster management, battlefield, marine biology and warehouse management. 

Some of the outdoor localization techniques capable of tracking large number of objects are Global 

Positioning System (GPS), cellular-based, Wi-Fi technology and RFID technology [7]. The GPS 

Localization System, which is commonly used for outdoor localization suffers from high power 

consumption and high cost since it has to localize hundreds of objects present in the environment. 

The accuracy of GPS system is in the range of few meters depending on the application. 

Localization using mobile technology measures received signal strength indicator (RSSI), which 

is the measure of the power present in a received radio signal. The base transceiver stations (BTS) 

communicates the value of the RSSI to the mobile terminal which has the location information. 

The architecture of a time difference of arrival based localization system for GSM mobile terminals 

provides localization accuracy of 5 meters [8]. Outdoor localization using Wi-Fi access points with 

specific IDs provides a mean error of few meters based on the level of received signals and number 

of neighbors. The active RFID positioning systems provides outdoor localization by combining 

relevant information, such as received signal strength indicator (RSSI), round-trip time-of-flight 

(TOF), time-difference of arrival (TDOA), or phase difference-of-arrival (PDOA) of the RFID 

signals. 
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CHAPTER 2: LOCALIZATION TECHNIQUES 

 

 Various geolocation technologies can be utilized to estimate client (person or object) 

geographical position. The large diversification of prevailing wireless technologies and the 

growing number of wireless enabled devices triggered the widespread use of Location Based 

Services (LBS). The measurement of Radio Frequency signals in indoor environment is difficult 

to achieve as it is subjected to numerous problems such as extreme multipath, erratic line-of-sight 

(LOS) path, absorption, diffraction, and reflection. Henceforth, location systems consist of three 

main phases to counter these effects. In the following sections, we discuss the different 

measurement techniques, Position computation methods and localization algorithms which are 

required for indoor localization.  

2.1 Measurement Techniques  

The objects in the indoor environment needs to be tracked every now and then. This phase 

is responsible for measuring the physical quantity of the object with which the object can be 

localized [9]. Different techniques can be used for this purpose, such as Received Signal Strength 

(RSS), Time of Arrival (TOA), Time Difference of Arrival (TDOA), Phase difference of arrival 

(PDOA), or Proximity [1] [10] [11] [12]. 

2.1.1 TOA 

The propagation time of a radio signal is proportional to the distance between a reference 

point such as a single transmitter to the target such as a remotely based server or receiver. For 2-

D positioning, TOA signal measurements must be obtained from at least three reference points, as 
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shown in Figure 2.1 with a technique called triangulation. The one-way propagation time is 

measured, and the distance between the two points is calculated. The distance ‘d’ between a pair 

of  nodes can be obtained by using measurements of signal propagation delay or time of flight (𝜏𝑝) 

calculated as follows. 

𝜏𝑝= 
𝑑

𝑐
 

where, c is the speed of electromagnetic waves in air (c=3 x 108 m/s). 

 In Figure 2.1, node A transmits a packet to node B. Node B transmitts an 

acknowledgement packet after a known or measured response delay (𝜏𝑑). After receiving the 

acknowledgment, node A estimates the signal round-trip time (𝜏𝑅𝑇) as per the below equation. 

𝜏𝑅𝑇= 2𝜏𝑝+ 𝜏𝑑 

Knowing the value of  signal round-trip time, node A then calculates the actual distance 

between the two nodes. This procedure is repeated at all the nodes and the intersection of the 

measured distance of all the three nodes denotes the position.  

                               

Figure 2.1  Positioning based on TOA measurements. 

For proper estimation using direct TOA, the below mentioned criterias must be employed 

in the system. First, all transmitters and receivers in the system have to be precisely synchronized. 
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Second, a timestamp must be labeled in the transmitting signal in order for the measuring unit to 

discern the distance the signal has traveled. 

2.1.2 TDOA 

In TDOA technique, the relative location of a transmitter is calculated by using the 

difference in time at which the signal emitted by a target arrives at single or multiple measuring 

units called as the receivers. TDOA  can be calculated by any of the two methods described below. 

In the first method multiple signals are broadcasted from synchronized transmitters and the 

receiver measures the TDOA. In the second method a reference signal is broadcasted by receiver 

and is received by several fixed transmitters. The prerequisite for both the method is that the 

transmitters are firmly synchronized through a network. A 2-D target location can be estimated 

from the two intersections of two or more TDOA measurements, as shown in Figure 2.2.  

                      

Figure 2.2  Positioning based on TDOA measurements. 

The Figure 2.2 consists of three fixed receivers giving two TDOAs and thus provide an 

intersection point which is the estimated location of the target. This method requires a precise time 

reference between the measuring units. Like TOA, TDOA has few drawbacks. In indoor 
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environments, a LOS channel is rarely available. Moreover, radio propagation often suffers from 

multipath effects thus affecting the time of flight of the signals. 

2.1.3 RSS 

The RSS measurement is mainly based on the principle that greater the distance between 

two nodes, the weaker the strength of the received signal.The previously discussed two schemes 

have some drawbacks. For indoor environments, it is difficult to find a LOS channel between the 

transmitter and the receiver. Radio propagation in such environments would suffer from multipath 

effect. The time and angle of an arrival signal would be affected by the multipath effect; thus, the 

accuracy of estimated location could be decreased. An alternative approach is signal attenuation-

based methods which attempts to calculate the signal path loss due to propagation. Theoretical and 

empirical models are used to translate the difference between the transmitted signal strength and 

the received signal strength into a range estimate, as shown in Figure 2.3. 

 

Figure 2.3  Positioning based on RSS measurements. 

In the Figure, LS1,LS2 and LS3 are values of the received signal strengths of signals 

received at Nodes A,B and C respectively.   Due to severe multipath fading and shadowing present 

in the indoor environment, path-loss models do not always hold. The parameters employed in these 

models are site-specific. The accuracy of this method can be improved by utilizing the premeasured 
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RSS contours centered at the receiver [12] or by taking multiple measurements at several base 

stations. 

2.1.4 PDOA 

The Phase-difference-of-arrival method uses the carrier phase (or phase difference) to 

estimate the distance of the target as shown in the Figure 2.4. This method is also called phase of 

arrival (POA) or received signal phase (RSP)[12]. It requires transmitters placed at particular 

locations and assumes that they emit pure sinusoidal signals with frequency f, with zero phase 

offset for calculation of the phases of signals received at a target point. A finite transit delay should 

be maintained for the signal transmitting from each transmitter to the receiver.The disadvantage 

of the RSP method with respect to the indoor environments is that it strongly needs a LOS signal 

path to mimimize localization errors. 

 

Figure 2.4  Positioning based on phase of signal. 

2.1.5 Proximity 

Proximity approach relies on dense deployment of antennas. The target is located when it 

enters in the radio range of a single antenna, each having a well-known position. When a mobile 

target is detected by a single antenna, it is considered to be co-located with it. When more than 

one antenna detects the mobile target, it is considered to be co-located with the one that receives 
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the strongest signal. This method is relatively simple to implement. However, the accuracy 

depends on the size and number of the cells. 

2.2 Methods for Position Computation  

This component is responsible for computing the position of a node based on available 

information about the estimated distance from previous signal measurements and the position of 

reference points. Recognized techniques used in this component include triangulation, 

trilateration, and multilateration [14]. These three algorithms have unique advantages and 

disadvantages for the particular chosen applications or services. Hence, using more than one type 

of positioning algorithms at the same time could result in better performance. In order to alleviate 

the measurement errors, traditional triangulation with positioning algorithms such as scene 

analysis or proximity is developed. 

2.2.1 Triangulation 

This technique estimates the direction of the nodes, as in angle of arrival(AoA) systems 

[15]. The node positions are determined with the help of the trigonometry laws of sines and cosines 

and properties of triangles to estimate the target’s location. The triangulation approach, illustrated 

in Figure 2.5, consists of measuring the angle of incidence (or Angle of Arrival - AOA) of at least 

two reference points. The estimated position corresponds to the intersection of the lines defined by 

the angles.  
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Figure 2.5  Triangulation technique. 

2.2.2 Trilateration 

This technique determines the position of a node from the intersection of three circles of 

the three anchor nodes. The radius of each circle corresponds to the measured distance at that 

particular node as shown in Figure 2.6 below. The intersection point ‘P’ is the estimated point. 

However, in an irrational environment, the distance measurement is not perfect; hence, more than 

three nodes are required to achieve localization. 

 

Figure 2.6  Trilateration technique. 
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2.2.3 Multilateration 

 Trilateration technique cannot accurately estimate the position of a node if the distance 

measurements are noisy. A possible solution is to use multilateration technique or also known as 

Maximum Likelihood (ML) estimation, which determines distance measurements at multiple 

neighbor nodes to localize as shown in Figure 2.7 below. By this method we can achieve a more 

accurate estimated distance compared to Trilateration technique since there are more neighbor 

nodes [15]. It is not easy to model the radio propagation in the indoor environment because of 

severe multipath, low probability for availability of line-of sight (LOS) path, and specific site 

parameters such as floor layout, moving objects, and numerous reflecting surfaces. In such cases, 

we can use an alternative measurement metrics such as received signal strength Indicator (RSSI) 

or tag read count (TRC) to improve the accuracy.  

 

Figure 2.7  Multilateration technique. 
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2.3 Localization Algorithm 

This is the main component of a localization system which determines how the available 

information will be manipulated in order to estimate the target’s position. The performance of any 

localization algorithm depends on a number of factors, such as number of anchor nodes, node 

density, computation and communication costs, algorithm accuracy and so on [14]. All approaches 

have their own advantages and disadvantages, making them feasible for different applications. We 

discuss proximity based localization algorithms below. This type of algorithm uses location 

fingerprinting technique to localize the object [16]. Location fingerprinting refers to techniques 

that match the fingerprint of some characteristic of a signal that is location dependent. The 

algorithm first collects the features (fingerprints) of an area and then estimates the location of an 

object by matching measurements with the nearest priori location fingerprints. RSS-based location 

fingerprinting is commonly used for indoor localization. There are two phases for location 

fingerprinting: offline phase and online or run-time phase. During the offline phase, a site survey 

of the environment is achieved. The location coordinates/labels and respective signal strengths 

from nearby base stations/measuring units are collected. During the online phase, a location 

positioning technique uses the currently observed signal strengths and previously collected 

information to figure out an estimated location. This model provides inaccurate estimation in cases 

where there is deviation in the measurement of the fingerprints caused as a result of diffraction, 

reflection, and scattering in the indoor environments. The location fingerprinting-based positioning 

algorithms use pattern recognition techniques such as probabilistic methods, k-nearest-neighbor 

(kNN), Artificial Neural Networks (ANN), support vector machine (SVM), and smallest M-vertex 

polygon (SMP) [7][8]. The section below discusses Probabilistic Models, k-nearest-neighbor 

(kNN) and Artificial Neural Networks (ANN). 
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2.3.1 Probabilistic Models 

Common pattern recognition algorithms are probabilistic in nature which use statistical 

inference to find the accurate location for a given object [17]. Unlike other algorithms, which 

simply provides the best output, probabilistic algorithms also output a probability of the object in 

the estimated location. In addition, many probabilistic algorithms provide a list of the N-best 

locations with associated probabilities, for some value of N, instead of simply a single best 

location. When the number of possible locations is very small as in the case of classification 

algorithms, N may be set so that the probability of all possible locations is considered. Probabilistic 

algorithms have many advantages over non-probabilistic algorithms: 

• They provide a confidence value associated with their choice.  

• They can discard an output when the confidence of choosing this particular output is too low. 

• Probabilistic pattern-recognition algorithms can be more successfully incorporated into larger 

machine-learning tasks to avoid the problem of error propagation by considering the output 

probabilities. 

Bayesian-network-based and/or tracking-assisted positioning techniques are used for 

location-aware and location-sensitive applications which involves realistically significant issues 

like calibration, active learning, error estimation, and tracking with history. 

2.3.2 K-nearest Neighbor (kNN) 

In pattern recognition, the k-nearest neighbors algorithm (k-NN) is a non-

parametric method used for classification and regression[18]. The kNN algorithm uses the 

collected data to search for k closest matches of known locations in signal space from the 

previously-built database [19]. The matching is performed based on the principle of root mean 

square (RMS) errors. The two types of kNN that can be used to estimate the location of the object 

https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Regression_analysis
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are weighted kNN, where averaging the k location values is achieved with adopting the distances 

in signal space as weights and unweighted kNN, where averaging the k location values is achieved 

without adopting the distances in signal space. In this algorithm, k is the parameter adapted for 

better performance. 

2.3.3 Neural Networks 

Neural network or 'artificial' neural network (ANN), is a computing system made up of a 

number of simple, highly interconnected processing elements, which process information by their 

dynamic state response to external inputs [20]. Neural networks comprise of layers. Layers consists 

of a numerous interconnected 'nodes' which contain an 'activation function'. Patterns that are fed 

to the network via the 'input layer' communicates to one or more 'hidden layers' where the desired 

processing is done by means of a system of weighted 'connections’. The graphic representation of 

the neural network is shown in Figure 2.8 below. 

 

Figure 2.8  Graphic view of the basic Neural Network. 
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Most of the ANNs have some form of 'learning rule' which modifies the weights of the 

connections considering the fed-in input patterns. Although there are many different kinds of 

learning rules used by neural networks, the delta rule is often utilized by the most common class 

of ANNs called 'backpropagation neural networks' (BPNNs). Here, backpropagation refers to the 

backwards propagation of error. After the training phase of the neural network, the remaining input 

samples can be analyzed. To achieve this, the neural network runs in forward propagation mode. 

In the forward propagation mode, the new inputs are processed by the middle layers just as in 

training phase, however, at this point the output is preserved with no backpropagation. At the last 

stage, an output layer compiles propagated activations of the hidden layers to generate a decision 

which can be used for further analysis and interpretation. 
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CHAPTER 3:  WIRELESS-BASED POSITIONING SYSTEMS 

 

 

3.1 GPS 

Global positioning system (GPS) is one of the most commonly used positioning systems 

in outdoor environments [21]. GPS signals are quite weak, and they can even be blocked to some 

extent by the roof and walls of the building. In addition, GPS can only be implemented in places 

where line-of-sight is available for the satellite signals. Hence, poor coverage of satellite signal for 

indoor environments decreases its accuracy and makes it unsuitable for indoor localization. GPS 

indoors technique provides an accuracy of about 5–50m in most indoor environments.  

3.2 WLAN 

The wireless local area network (WLAN) operating in 2.4 GHz Industrial, Scientific and 

Medical (ISM) band has become very popular in public places. This technology has a bit rate of 

11, 54, or 108 Mbps and a range of 50–100 m. WLAN can be combined with a location server for 

indoor localization. The accuracy of typical WLAN positioning systems using RSS measurements 

is approximately 3 to 30 m, with an update rate of few seconds. 

3.3 Bluetooth 

Bluetooth operates in the 2.4-GHz Industrial, Scientific and Medical (ISM) band. It 

provides a gross bit rate of 1 Mbps and an approximate range of 10–15 m. Bluetooth is highly 

ubiquitous being embedded in most phones, personal digital assistants (PDAs), etc. Bluetooth tags 

are nothing but small transceivers where every Bluetooth device has a unique ID. This ID is used 

for locating the Bluetooth tag using three major types of units: positioning server(s), wireless 
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access points, and wireless tags.. This technology provides an accuracy of around 2m with the 

positioning delay of 15 to 30 seconds. 

3.4 Cellular Networks 

For the estimation of location of outdoor mobile users, a number of systems have used 

global system of mobile/code division multiple access (GSM/CDMA) mobile cellular network. 

However, this technology cannot be used for indoor tracking systems to estimate the location of 

indoor mobile clients since the accuracy of the method is generally low in the range of 50–200m 

depending on the cell size. Indoor positioning based on mobile cellular network is possible if the 

received RSS is strong. The received RSS depends on the base station covering the building. 

Accurate GSM-based indoor localization is possible with larger base stations which provide good 

RSS values. It is also observed that the accuracy is higher in densely covered areas such as urban 

places compared to the rural environments due to presence of large number of base stations. 

3.5 Ultra-Wide Band Technology 

This technology is rapidly growing for its suitability in the indoor environment [1] [22]. In 

UWB, an active RFID tag transmits signals as a computer calculates the position of the tag with 

the estimation algorithms such as Time of arrival(TOA) or time difference of arrival (TDOA) and 

so on. UWB technology provides good accuracy as the computed estimation is easy with minimal 

errors. Therefore, UWB is viewed as a promising technology in Indoor positioning. UWB operates 

by sending ultrashort pulses of typically less than 1 ns, with a low duty cycle of typically 1: 1000. 

On the spectral domain, the system has a wide band ranging larger than 500 MHz. Localization 

with UWB technology has the following advantages. UWB transmits a signal over multiple bands 

of frequencies simultaneously from 3.1 GHz to 10.6 GHz which is better than conventional RFID 

systems which operate on single bands of the radio spectrum. 
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Figure 3.1 Communication of basic RFID System. 

UWB tags can operate across a broad area of the radio spectrum with consuming less power 

than conventional RF tags. UWB short duration pulses are easy to filter thereby rejecting multipath 

signals. The UWB signal passes easily through walls, equipment and clothing and provides 

minimal interference in metallic and liquid environments. With exploiting the characteristics of 

time synchronization of UWB communication, very high indoor location accuracy of 20 cm can 

be achieved. However, UWB systems are not as widespread as passive RFID systems for a number 

of reasons. First if all, the up-front implementation costs for UWB systems are very high. In 

addition to that, UWB uses active tags for communication which are more expensive and also 

require consistent maintenance for batter upkeep. 

3.6 Near-Field Technology 

This technology is based on near field electromagnetic ranging (NFER) that uses low 

frequency up to 1 MHz and long wavelength of 300 m. This technology uses the deterministic 

relationship that exists between angle formed by the magnetic field and electric field of the 

received signal. The operating distance is usually less than 10 centimeters with NFC technology. 

The main problem with this technology is its high cost to achieve localization due to the use of 

large antennas. 

 

Data 
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CHAPTER 4: RFID LOCALIZATION SYSTEM – 1 

 

 

Passive RFID readers uses the electromagnetic backscatter to communicate with the tags. 

An RFID tag gets activated when the continuous wave signal is incident on its antenna. The tags 

reply by modulating the backscatter wave using on-off keying (OOK) technique. In this 

experiment, we investigate the localization potential of a passive RFID system on a grid-based 

setup where the read field is divided into 6 locations and a passive tag can be placed in any one of 

these locations. We use the Ultra High Frequency (860-960 MHz) band for this indoor localization 

application [13]. This section briefly describes the localization system setup, conditions at which 

the data is collected and the proposed localization algorithm. 

4.1 System Description 

The system consists of two main components: ATID AB700 UHF RFID handheld reader 

and a UPM Frog 3D RFID tag. This localization system is setup similarly to available localization 

systems in the literature [22] [23]. We utilized the handheld Reader for capturing tag read count 

(TRC) information. The handheld reader that works on EPC Global Class 1 Gen 2 protocol has an 

internal circularly polarized antenna. The operating frequencies of the handheld reader are in the 

range of 900 MHz to 928 MHz, which is the legal UHF band in the United States. The passive 

RFID tag is of size 5 cm x 5 cm and is attached to a box of dimensions 23 cm x 23 cm x 23 cm for 

this experiment.  

The size of the testing area on the laboratory floor used for the experiments is chosen as 

0.96 square meters (a rectangular region of 1.2 x 0.8 sq. m.). We use traditional grid-based 
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approach to localize the tags. The testing area is divided into a 3x2 rectangular grid comprising of 

six cells. The size of each cell is 0.4 x 0.4 sq. m. The handheld reader was set-up along the 

diagonals of the grid. The experimental set-up is shown in the Figure 4.1 below. 

     

Figure 4.1 RFID Localization System-1 setup. 

4.2 Data Collection Phase 

As mentioned above, the RFID tag is attached to one of the outer sides of the box. The 

output power level of the RFID handheld reader is set to 27 dBm which is equal to 0.5 Watts 

except for metal phase where the power level used is 24 dBm which is equal to 0.25 Watts. The 

height of the RFID handheld reader is set to 0.4 meters. The time period for phase 1 at which each 

TRC value is collected is set to 10 seconds, whereas for all the remaining phases, TRC values are 

collected for two time periods of 5 and 10 seconds. Figure 4.2 shows picture of the handheld 

reader.  
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Figure 4.2 A photo of the RFID handheld reader. 

4.2.1 Phase 1: Orientation 

For each grid location, the TRC values were collected by the antennas placed at the four 

corners of the grid. Therefore, we get four TRC values for each position of the tag in the grid. The 

TRC values were collected with respect to all the six possible orientations of the RFID tag- top, 

bottom and four sides of the box. The overall data collection procedure of the RFID localization 

system is as shown in the Figure 4.3 below. 
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Figure 4.3 Flowchart showing the operation of the RFID Localization System-1 setup. 

This procedure is repeated for all the six grid locations of the tagged object resulting in a 

total of 6 (orientation) x 6 (grid locations) x 4 (antenna positons) = 144 measurements. In addition, 

the power level is changed to 24 dBm which is equal to 0.25 Watts for one of the orientation (tag 

facing upwards) resulting in 6 grid locations x 4 antenna positions = 24 measurements. Lastly, the 
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height of the antenna is changed to one meter keeping the same orientation (tag facing upwards) 

resulting in 6 grid locations x 4 antenna positions = 24 measurements. Hence this phase results in 

a total of 144+24+24=192 measurements. The RFID tag used in the localization system is shown 

in Figure 4.4. 

                      

Figure 4.4 A photo of the RFID tag attached to the box. 

4.2.2 Phase 2:  Metal 

In this case, a metal object of dimensions 20 cm x 20 cm is introduced to the rectangular 

grid. In this phase, the orientation of the tag is fixed and its attached to the box facing upwards as 

in the previous phase as shown in Figure 4.5. By keeping the same orientation of the tag we can 

observe the effect of the metal on the TRC [24]. Initially, the metal object and RFID tag is placed 

in the first grid location. The effect of the metal object on the RFID tag can be found by observing 

the TRC values for all the grid locations of the tag and antenna positions resulting in 1 (TRC) x 6 

(grid locations) x 4 (antenna positions) = 24 measurements. Next, the same procedure is repeated 

by all the six grid locations of the metal object resulting in 6 x 24 = 144 measurements. This 
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procedure is used to collect TRC for two time periods (5s and 10s) resulting in a total measurement 

count of 288. Figure 4.6 shows the photograph of the metal piece used for this phase. 

     

Figure 4.5 RFID Localization System-1 setup with metal piece. 

                            

Figure 4.6 A photo of the metal piece. 
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4.2.3 Phase 3: One Additional Tag 

In this phase, an additional RFID tag is introduced to the rectangular grid and the effect is 

observed as shown in Figure 4.7. This additional tag is attached to the side of a second object such 

that they can be moved separately within the grid. The photograph of the added RFID tag is shown 

in Figure 4.8. Both RFID tags are initially present at the first grid location and the TRC is captured 

for the primary RFID tag. Just like the previous metal case, the primary RFID tag is moved to all 

the grid locations keeping the added RFID tag constant at the first grid location for all the four 

antenna positions resulting in 6 x 4 =24 measurements. The same procedure is repeated until the 

additional tag is placed in all the six grid locations resulting in a total number of 24 x 4 = 144 

measurements. This procedure is used to collect TRC for two time periods (5s and 10s) resulting 

in a total measurement count of 288. 

 

Figure 4.7 RFID Localization System-1 with one additional tag. 
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Figure 4.8 A photo of the additional RFID tag. 

4.2.4 Phase 4: Two Additional Tags 

This setup is exactly the same as one additional tag setup except two additional tags are 

attached to one side of the second object and they are moved together as TRC values are collected 

resulting in the same number of 288 measurements. The system setup and photograph of the two 

RFID tags are shown in Figure 4.9 and Figure 4.10 respectively. 

 

Figure 4.9 RFID Localization System-1 setup with two additional tags. 
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Figure 4.10 A photo of the two additional RFID tags. 

4.3 Neural Network 

An Artificial Neural Network (ANN) is an information processing prototype that is built 

with inspiration from our biological nervous systems such as the brain [25]. The main component 

of this prototype is the unique structure of the information processing system which comprises of 

a large number of highly interconnected processing elements called neurons working in agreement 

to solve specific problems. An ANN operates in three main phases: training phase, testing phase 

and validation phase. An ANN can be configured for a specific application such as pattern 

recognition or data classification during the training phase when the connections between neurons 

and their relative weights are adjusted depending on the input data samples. 

4.3.1 Data Processing Phase 

The obtained TRC from the experimental measurements as described in the previous 

section are fed into the ANN (Artificial Neural network) in Matlab as shown in Figure 4.11. The 

experimental data collected from the four phases (single tag/metal object/additional tag/two 
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additional tags) are fed into the neural network in stages. Initially, 192 samples of TRC values 

obtained from the first phase is fed into the neural network. Six-fold cross-validation technique is 

used to validate the algorithm as follows. Out of the 192 samples, in six-fold cross validation the 

collected data samples are divided into six partitions. The training/testing of the network is 

repeated six times, using a different partition for testing each time the network is trained.  In this 

approach 4/6th of the samples are set aside for training the algorithm, 1/6th is set aside for early-

stopping to prevent the algorithm from overfitting and 1/6th is set aside for testing and validating 

the algorithm. Using the data samples, the neural network learns to identify the grid location of the 

tag during the training phase. To estimate to error in the identified location, the distance between 

the adjacent grid locations is assumed as unity and the relative distance between each grid location 

is computed to generate a distance matrix of dimensions 6x6 where D(i,j) corresponds to the scaled 

distance between grid numbers i and j. 

               

Figure 4.11 Flowchart showing the operation of the Neural Network. 
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In the second stage, additional TRC values obtained from the metal phase is added to the 

existing dataset which then goes through the same six-fold cross-validation training/testing 

process. In the third and fourth stages of data augmentation, additional TRC values from one and 

two additional tag phases of the experiment is added to the dataset for subsequent six-fold cross-

validation process. 

4.4 Results and Discussion 

Table 4.1 Location accuracy results using different neural network topologies / augmented datasets 

and scenarios.  Each scenario corresponds to a different phase of data collection process where: 

S1 - single tag with different orientations/antenna heights/power, S2 - single tag with metal object, 

S3 - one additional tag on the grid and S4 - two additional tags on the grid. 

Hidde

n layer 

size 

Sample

s 

Total 

samples 

Experimen

t 

fold-1 

error 

fold-2 

error 

fold-3 

error 

fold-4 

error 

fold-5 

error 

fold-6 

error 

Average 

Error 

5 5 192 

(48 x 4) 

192 

(48 x 4) 

 S1 0.9268 1.0303 1.0303 0.6768 1.5081 0.9563 1.02143333 

 288 

( 72 x 4) 

480 

(120 x 4) 

S2 0.5207 0.7328 0.5207 0.15 0.25 0.4207 0.43248333 

 288 

( 72 x 4) 

768 

(192 x 4) 

S3 0.8609 0.5333 0.3567 0.2942 1.0504 1.006 0.68358333 

 288 

( 72 x 4) 

1056 

(264 x 4) 

S4 0.6568 0.4318 0.4601 0.5149 0.9362 0.761 0.6268 

10 10 192 

(48 x 4) 

192 

(48 x 4) 

S1 0.375 0.6036 0.8536 0.5518 0.8018 0.4268 0.6021 

 288 

( 72 x 4) 

480 

(120 x 4) 

S2 0.5828 0.8121 0.35 0.15 0.4 0.35 0.44081666 

 288 

( 72 x 4) 

768 

(192 x 4) 

S3 0.5571 0.4192 0.1875 0.5 0.6379 0.5571 0.47646666 

 288 

( 72 x 4) 

1056 

(264 x 4) 

S4 0.6567 0.4091 0.6458 0.4373 0.5737 0.67 0.56543333 

5 192 

(48 x 4) 

192 

(48 x 4) 

S1 0.7286 0.8313 1.1036 0.8018 0.8536 0.6768 0.83261666 

 

 

288 

( 72 x 4) 

480 

(120 x 4) 

S2 0.6828 0.8121 0.4 0.15 0.3207 0.25 0.43593333 

 288 

( 72 x 4) 

768 

(192 x 4) 

S3 0.5388 0.5203 0.2942 0.4192 0.7652 0.596 0.52228333 

 288 

( 72 x 4) 

1056 

(264 x 4) 

S4 0.6472 0.4412 0.4867 0.4734 0.5696 0.737 0.55918333 
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Table 4.1(Continued) 

10 192 

(48 x 4) 

192 

(48 x 4) 

S1 0.7286 0.5518 0.7286 0.5518 0.9786 0.7286 0.711333333 

 288 

( 72 x 4) 

480 

(120 x 4) 

S2 0.5621 0.6914 0.3 0.2 0.4707 0.3707 0.432483333 

 288 

( 72 x 4) 

768 

(192 x 4) 

S3 0.6272 0.5516 0.2813 0.375 0.6768 0.7339 0.540966667 

 288 

( 72 x 4) 

1056 

(264 x 4) 

S4 0.7223 0.3182 0.4318 0.551 0.5925 0.6058 0.536933333 

20 192 

(48 x 4) 

192 

(48 x 4) 

S1 0.6768 0.5518 0.7803 0.6768 0.9786 1.2581 0.8204 

 288 

( 72 x 4) 

480 

(120 x 4) 

S2 0.7328 0.7414 0.7414 0.15 0.4 0.5707 0.55605 

 288 

( 72 x 4) 

768 

(192 x 4) 

S3 0.7286 0.3696 0.2188 0.375 0.583 0.6531 0.488016667 

 288 

( 72 x 4) 

1056 

(264 x 4) 

S4 0.5604 0.3182 0.4185 0.5149 0.5391 0.6848 0.505983333 

 

The results presented in the Table 4.1 shows that TRC can reasonably localize an RFID tag 

in a rectangular grid of 1.2 x 0.8 sq. m with six locations.  Most of the common experimental 

scenarios that the RFID tag can be exposed are considered in this experiment.  A total combined 

number of 1056 samples were collected from all the above scenarios. The selection of hidden layer 

size is important to get accurate results [26]. The optimal size of the hidden layer is recommended 

to be usually between the size of the input and size of the output layers and generally provides 

decent performance when the number of hidden layers equals one or the number of neurons is the 

mean of the number of neurons in the input and output layers. Hence, we evaluated a selection of 

hidden layer sizes around these commonly accepted numbers such as [5 5], [10 10], 5, 10 and 20 

provided the results for each of these selections for a final comparison. An average error of 0.5059 

was achieved for the network with hidden layer size of 20 neurons when using all the data samples 

collected in the experiment using six-fold cross-validation. This distance error is satisfactory 

considering the fact that a single grid distance was taken as unity (1) which means an error of 

approximately 0.5 corresponds to the “correct-localization-within-grid” benchmark.  

 

https://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw%5d.%20Hence


 

31 

 

 

 

 

 

CHAPTER 5: RFID LOCALIZATION SYSTEM – 2 

 

 

Although TRC can be used as a reliable metric for grid localization as seen from the results 

in chapter 4, RFID readers can collect other signal information from the read field, one of which 

is the received signal strength indicator (RSSI). In this chapter, we describe a second experiment 

where we measure both RSSI and TRC values in a similar grid-based localization framework. We 

localize the tag using TRC and RSSI both separately and collaboratively using three experimental 

phases: single tag, metal object and two additional tags. The system performance for all the three 

cases is observed. The details about the experimental system setup, hardware and data processing 

systems are discussed in the sections below. 

5.1 System Description 

The localization system in this setup comprises of four main components; Motorola 

FX7400 fixed RFID reader, UPM Frog 3D RFID tag, Motorola ANT-71720-01 RFID Antenna 

and the control unit (PC). The fixed RFID reader which is suitable for retail inventory and asset 

management provides tag processing in real time for EPC Class1 Gen2 compliant RFID tags.  The 

reader is connected to the RFID Antenna using a copper cable of length equal to 2 meters 

throughout this experiment. The RFID Reader is a 4- Port device, i.e., four RFID antennas can be 

connected at a given time which captures both RSSI and TRC values at a given time. In our 

experiment, we used a single antenna. RFID Antenna is reliable for both indoor environments 

(warehouse) as well as outdoor environments (docking zone). It is resistant to extreme heat and 

cold, making it applicable to any application. The antenna which is right hand circularly polarized, 
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operates in the UHF Band (900MHz to 928 MHz) and provides a gain of 6 dBi. The UPM Frog 

3D RFID tag used in this localization system is the same tag as in the previous localization system 

and is attached to a box of dimensions 23 cm x 23 cm x 23 cm as before.  

Experiments are conducted on the lab floor as in the previous localization system. Unlike 

the first experiment which uses an asymmetrical grid (2x3), this experiment utilizes a slightly 

larger grid with a symmetrical setup (3x3) which occupies 1.44 square meters (a square region of 

1.2 x 1.2 sq. m.). Traditional grid-based approach is utilized to localize the tags. The testing area 

is divided into a 3x3 square grid comprising of nine cells. The size of each cell is 0.4 x 0.4 sq. m 

which is the same as localization system-1. The RFID antenna is placed along the diagonals of the 

grid to obtain the measurements. The experimental set-up is shown in the figure below. 

      

Figure 5.1 RFID Localization System-2 setup.  
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5.2 Data Collection Phase 

The RFID tag is attached to the side of the box. The power level of the fixed RFID reader 

as shown in Figure 5.2 is set to 30 dBm which is equal to 1 Watt. The fixed RFID reader is placed 

vertically to the ground. The time period at which each TRC value is collected is 5 seconds. In this 

localization system, there are three phases of data collection. One additional tag phase of RFID 

localization system-1 is neglected here since the obtained localization accuracies from localization 

sysem-1 for one and two additional tag phases were almost identical. A photo of the RFID antenna 

used to collect the data is shown in Figure 5.3. 

                   

Figure 5.2 A photo of fixed RFID reader.  
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Figure 5.3 A photo showing the front side and back side of the RFID antenna. 

5.2.1 Phase 1: Orientation 

For each grid location, the TRC and RSSI values are collected by antennas placed at the 

four corners of the grid as shown in the Figure 5.4. Therefore, we get four TRC and RSSI values 

for each position of the tag in the grid with respect to all the six possible orientations of the RFID 

tag. The overall data collection procedure of the RFID localization system is as shown in the 

flowchart below. This procedure is repeated for all the six grid locations of the metal object 

resulting in 2 (RSSI + TRC) x 9 (cells) x 6 (orientations) x 4 (antenna positions) = 432 

measurements. 
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Figure 5.4 Flowchart showing the operation of the RFID Localization System-2 setup.   

5.2.2 Phase 2:  Metal 

This phase is the same as RFID localization system-1 except that both the TRC and RSSI 

values are captured. The experimental setup is shown in Figure 5.5. The resulting measurements 

from this phase is 2 (RSSI + TRC) x 9 (metal positions) x 9 (grid locations) x 4 (antenna positions) 

= 648.  
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Figure 5.5 RFID Localization System-2 setup with metal piece. 

5.2.3 Phase 3: Two Additional Tags 

This operation of this phase is the same as RFID localization system-1. The same procedure 

is repeated until the additional tag is placed in all the six grid locations. The experimental setup is 

shown in Figure 5.6. A total number of 2 (RSSI + TRC) x 9 (additional tag positions) x 9 (grid 

locations) x 4 (antenna positions) = 648 measurements were collected in this phase. 
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Figure 5.6 RFID Localization System-2 setup with two additional tags. 

5.3 Data Processing Phase 

Fixed RFID reader along with the antenna is used to collect the TRC and RSSI values. To 

control the reader, a USB cable is connected between the reader and personal computer (control 

unit). The necessary software is also installed in the personal computer. RFID fixed reader is 

connected to the personal computer using the IP address of the RFID reader. The screenshot in 

Figure 5.7 shows the connected RFID reader detecting the RFID tag with EPC: 

000000000000000000011BAD. We can also see the TRC and RSSI readings for a run time of 

about 5 seconds. For each trail, the average value of the RSSI reading is computed.   
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Figure 5.7 Screenshot of the captured TRC and RSSI with the fixed RFID reader. 

The obtained TRC and RSSI values from the experimental measurements as described in 

the previous section are fed into the ANN in Matlab and the operation is as shown in Figure 5.7.  

 

Figure 5.8 Flowchart showing the operation of the Neural Network. 
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The experimental data collected from the three phases (single tag/metal object/two 

additional tags) are fed into the neural network in stages. Initially, 432 samples of TRC values 

obtained from the first phase is fed into the neural network. Six-fold cross-validation technique is 

used to validate the algorithm as follows. A total of 432 collected data samples are divided into six 

partitions using six-fold cross validation technique as in RFID localization system-1.  The 

training/testing phase is also the same as RFID localization system-1. To estimate to error in the 

identified location, the distance between the adjacent grid locations is assumed as unity and the 

relative distance between each grid location is computed to generate a distance matrix of 

dimensions 9x9 where D(i,j) corresponds to the scaled distance between grid numbers i and j. 

Figure 5.9 shows the relative distance computation with respect to tag at grid location 1.  

                    

Figure 5.9 Figure showing the relative distances with respect to tag at grid location 1. 

 In the second stage, additional TRC and RSSI values obtained from metal phase is added 

to the existing dataset which then goes through the same six-fold cross-validation training/testing 

process. In the third stage of data augmentation, additional TRC and RSSI values from two 

additional tag phases is added to the dataset for subsequent six-fold cross-validation process. 
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5.4 Results and Discussion 

5.4.1 Using Tag Read Count(TRC)  

The results presented in the below table are obtained by using the TRC values only. The 

values of the hidden layer size are chosen the same as the first experiment as the data dimensions 

are approximately the same. The algorithm is run 100 times for all six folds for highest statistical 

significance. The last column describes the overall average error which is the averaged over all six 

folds. It can be concluded that the localization is possible for the selected square grid of 1.2 x 1.2 

sq. m with nine locations.  

Table 5.1 Location accuracy results using TRC for different neural network topologies / 

augmented datasets and scenarios.  Each scenario corresponds to a different phase of data 

collection process where: S1 - single tag with different orientations/antenna heights/power, S2 - 

single tag with metal object, and S3 - one additional tag on the grid.  

Hidden 

layer 

size 

Samples Total 

samples 

Experiment fold-1 

error 

fold-2 

error 

fold-3 

error 

fold-4 

error 

fold-5 

error 

fold-6 

error  

Average 

Error 

[5 5] 216 216(54 x 4) S1: TRC 1.4488 1.3521 1.3736 1.4383 1.4106 1.433 1.4094 

 324 540 (135 x 4) S2: TRC 1.0756 1.4397 1.6326 1.6176 1.8521 1.6931 1.551783333 

 324 864 (216 x 4) S3: TRC 1.1183 1.3667 0.6016 0.6278 1.1643 1.393 1.045283333 

[10 10] 216 216(54 x 4) S1: TRC 1.4332 1.3455 1.3818 1.425 1.425 1.4403 1.408466667 

 324 540 (135 x 4) S2: TRC 0.9492 1.4002 1.649 1.5554 1.9099 1.7257 1.531566667 

 324 864 (216 x 4) S3: TRC 1.2103 1.2754 0.6667 0.3794 0.6278 1.8508 1.001733333 

5 216 216(54 x 4) S1: TRC 1.3556 1.3038 1.3962 1.4247 1.4336 1.4099 1.3873 

 324 540 (135 x 4) S2: TRC 0.9772 1.4104 1.6672 1.5355 1.9203 1.7256 1.539366667 

 324 864 (216 x 4) S4: TRC 0.6278 1.4516 0.3596 0.3794 0.7191 1.439 0.829416667 

10 216 216(54 x 4) S1: TRC 1.3982 1.3024 1.3644 1.3822 1.3975 1.4017 1.3744 

 324 540 (135 x 4) S2: TRC 0.9001 1.4285 1.6298 1.499 1.927 1.7646 1.524833333 

 324 864 (216 x 4) S4: TRC 1.073 1.4976 0.5167 0.3143 0.5818 0.85 0.805566667 

20 216 216(54 x 4) S1: TRC 1.3896 1.329 1.3054 1.4456 1.3976 1.4137 1.38015 

 324 540 (135 x 4) S2: TRC 0.8958 1.4289 1.6075 1.4898 1.9435 1.775 1.523416667 

 324 864 (216 x 4) S4: TRC 0.8302 1.3469 0.7389 0.4254 0.6278 1.0072 0.8294 
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From the table, it can be observed that minimum error of 0.8294 is achieved for a hidden 

layer size of 20 neurons considering the data collected from all the phases. The error values in 

table 5.1 are significantly higher than the ones reported in table 4.1.  The best localization 

performance is obtained with a hidden layer size of 20 neurons when cumulative dataset is used.  

The error in this case is 0.83 compared to 0.51 obtained in table 4.1.  There could be various 

reasons for this discrepancy but the biggest impact is the change in grid size.  Whereas in the 

previous system a grid size of 2x3 was used in this particular setup the grid size is 3x3 which is a 

50% increase in the number of possible cell locations.  The same level of increase is observed in 

the average error which is based upon the unity distance between adjacent cells.  Furthermore, a 

fixed reader is used in this case with a more powerful antenna which might results in power leakage 

in a larger number of cells compared to the prior experiment. 

5.4.2 Using Received Signal Strength Indicator(RSSI) 

The results presented in the table 5.2 are obtained by using RSSI values only. We use the 

same hidden layer parameters as before. As before, the algorithm is run 100 times for all six folds 

for highest statistical significance and the average value is shown in the table. The last column 

describes the overall average error which is the averaged over six-folds. The results reported in 

this table for RSSI are worse than the ones reported above for TRC.  The best localization 

performance is obtained at the same hidden layer size - however, the error is 1.33 which is larger 

than the unity error for adjacent cells.  In fact, in a grid size of 3x3, a random guess of cell location 

results in an approximate error of 1.4 so the performance of the localization system is only slightly 

better than a random placement scheme.  These results may indicate that RSSI by itself is not a 

reliable location indicator possibly due to susceptibility to noise and other factors. 
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Table 5.2 Location accuracy results using RSSI for different neural network topologies / 

augmented datasets and scenarios.  Each scenario corresponds to a different phase of data 

collection process where: S1 - single tag with different orientations/antenna heights/power, S2 - 

single tag with metal object and S3 - one additional tag on the grid. 

Hidden 

layer 

size 

Samples Total samples Experiment fold-1 

error 

fold-2 

error 

fold-3 

error 

fold-4 

error 

fold-5 

error 

fold-6 

error  

Average 

Error 

[5 5] 216 216(54 x 4) S1: RSSI 1.2652 1.1885 1.2061 1.1125 1.1084 1.4077 1.214733333 

 324 540 (135 x 4) S2: RSSI 0.6218 1.4728 1.3152 1.4194 1.7394 1.848 1.402766667 

 324 864 (216 x 4) S4: RSSI 1.3263 1.351 1.3582 1.3551 1.3183 1.3394 1.341383333 

[10 10] 216 216(54 x 4) S1: RSSI 1.1783 0.9884 1.034 0.9404 1.0346 1.319 1.08245 

 324 540 (135 x 4) S2: RSSI 0.6083 1.4447 1.2924 1.3753 1.823 1.9112 1.40915 

 324 864 (216 x 4) S4: RSSI 1.3578 1.3495 1.3422 1.3284 1.3366 1.3276 1.34035 

5 216 216(54 x 4) S1: RSSI 1.2483 1.1183 1.1038 1.0701 1.091 1.3727 1.167366667 

 324 540 (135 x 4) S2: RSSI 0.5987 1.445 1.2188 1.4129 1.8092 1.9283 1.40215 

 324 864 (216 x 4) S4: RSSI 1.3343 1.376 1.3293 1.3545 1.336 1.3326 1.343783333 

10 216 216(54 x 4) S1: RSSI 1.1902 1.0133 1.0536 0.9842 0.9999 1.289 1.088366667 

 324 540 (135 x 4) S2: RSSI 0.6167 1.4376 1.2566 1.3717 1.8237 1.9589 1.410866667 

 324 864 (216 x 4) S4: RSSI 1.3697 1.3253 1.3392 1.3387 1.3495 1.3564 1.346466667 

20 216 216(54 x 4) S1: RSSI 1.1158 0.9412 1.0686 0.9529 0.9094 1.2727 1.043433333 

 324 540 (135 x 4) S2: RSSI 0.6479 1.4411 1.2997 1.3619 1.8584 1.9571 1.427683333 

 324 864 (216 x 4) S4: RSSI 1.3166 1.3294 1.3314 1.3505 1.3434 1.3163 1.331266667 

 

5.4.3 Using Tag Read Count(TRC) and Received Signal Strength Indicator(RSSI) 

The results presented in the table 5.3 are obtained by combining the TRC and RSSI values 

using the same hidden layer size parameters as before. As before, the algorithm is run 100 times 

for all six folds for highest statistical significance and the average value is shown in the table.  As 

can be seen from the table above, the prediction algorithm combining TRC and RSSI 

measurements provide significantly superior results compared to using each feature alone.  Like 

the previous neural networks, the best performance is obtained at a hidden layer size of 20.  In fact, 

the lowest localization error of 0.29 is achieved when the combined dataset is used for training and 
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testing.  This is significantly lower than any of the prior experiments including the 2x3 grid setup 

and almost half the benchmark error of 0.5 (within-cell-accuracy).   

Table 5.3 Location accuracy results using TRC and RSSI different neural network topologies / 

augmented datasets and scenarios.  Each scenario corresponds to a different phase of data 

collection process where: S1 - single tag with different orientations/antenna heights/power, S2 - 

single tag with metal object, S3 - one additional tag on the grid and S4 - two additional tags on the 

grid. 

Hidde

n layer 

size 

Sample

s 

total 

sample

s 

Experiment fold-1 

error 

fold-2 

error 

fold-3 

error 

fold-4 

error fold-5 

error 

fold-6 

error  

Average 

Error 

[5 5] 432 432 

(54 x 8) 

S1 : TRC + 

RSSI 

1.316 1.0981 1.129

3 

1.091 1.0781 1.4424 1.19258333 

 648 1080 

(135x8) 

S2 : TRC + 

RSSI 

0.667 1.3512 1.571 1.4484 1.8834 1.8455 1.46125 

 648 1728 

(216x8) 

S4: TRC + 

RSSI 

1.235 0.5556 0.268 0.2222 0.8698 0.4905 0.60701667 

[10 10] 432 432 

(54 x 8) 

S1 : TRC + 

RSSI 

1.204 0.8984 1.002 0.9943 0.8774 1.4483 1.07083333 

 648 1080 

(135x8) 

S2 : TRC + 

RSSI 

0.587 1.3154 1.531 1.4299 1.8811 1.9616 1.45115 

 648 1728 

(216x8) 

S4: TRC + 

RSSI 

1.661 0.6476 0.268 0.1111 0.3794 0.1571 0.53755 

5 432 432 

(54 x 8) 

S1 : TRC + 

RSSI 

1.163 0.8745 0.867 0.9162 0.7737 1.4528 1.008 

 648 1080 

(135x8) 

S2 : TRC + 

RSSI 

0.614 1.2995 1.515 1.431 1.8934 1.9622 1.45268333 

 648 1728 

(216x8) 

S4: TRC + 

RSSI 

0.692 0.4444 0.268 0.2682 0.2222 1.027 0.48715 

10 432 432 

(54 x 8) 

S1 : TRC + 

RSSI 

1.076 0.75 0.807 0.8661 0.659 1.4691 0.93811667 

 648 1080 

(135x8) 

S2 : TRC + 

RSSI 

0.526 1.2964 1.415 1.4086 1.9008 1.9875 1.42248333 

 648 1728 

(216x8) 

S4: TRC + 

RSSI 

0.831 0.4444 0.111 0.1571 0.4905 0.1111 0.35753333 

20 432 432 

(54 x 8) 

S1 : TRC + 

RSSI 

1.042 0.6351 0.806 0.8067 0.5977 1.4039 0.882 

 648 1080 

(135x8) 

S2 : TRC + 

RSSI 

0.504 1.2924 1.399 1.3898 1.8981 2.0104 1.41571667 

 648 1728 

(216x8) 

S4: TRC + 

RSSI 

0.738 0.4905 0 0 0.3794 0.1111 0.28665 
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CHAPTER 6:  CONCLUSION AND FUTURE WORK 

 

 

In this work we explored the potential of passive RFID systems for indoor localization by 

developing two grid-based experimental frameworks (symmetrical and asymmetrical) and using 

two standard and easily measurable performance metrics: received signal strength indicator (RSSI) 

and tag read count (TRC).  Multiple scenarios were created to imitate real life challenges such as 

placing metal objects and other RFID tags in the read field.  A neural network based prediction 

algorithm was used to analyze the localization accuracy when RSSI and TRC features where used 

both separately and together.  

It was identified that the combination of both features provide the best prediction of cell 

location whereas TRC by itself could still provide reasonable localization in a grid-based setup.  

However, RSSI measurements by themselves proved to be susceptible to noise and other factors 

in the field resulting in subpar performance compared to using TRC or TRC + RSSI.  Interestingly, 

while RSSI measurements alone performed almost similarly to random guessing of cell location, 

they worked to improve the performance of TRC features when combined due to enrichment of 

mutual information between these two feature sets. 

Hidden layer size of the neural network also had an impact on performance as explained in 

the figure below. This graph below shows the plot of average error versus the hidden layer size. It 

can be observed that as the hidden layer size increases, the average error is reduced. From the 

graph, it is also clear that when compared one-on-one, TRC yield better indoor localization than 

RSSI for our particular experimental setup. The received signal strength Indicator(RSSI) metric is 
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susceptible to the presence of obstacles such as metal piece and other RFID tags in our 

experimental area. On the other hand, we can use the RSSI values along with TRC values to 

significantly improve the indoor localization. This is clearly seen in the Figure 6.1.    

 

Figure 6.1 Comparison of hidden layer size and average error. 

The Figure 6.2 shows the average errors for a set hidden layer size (20) for different 

datasets used in training.  In the first data point, only the training data collected using a single tag 

is used.   As one can see, when new data is introduced to the prediction algorithm by using the 

metal object, the performance of all three combinations (TRC, RSSI and TRC+RSSI) drop 

significantly.  This is due to the novelty of introduced data for the neural network.  This situation 

can be overcome by collecting more data as can be seen in the third section of the graph where 

additional measurements are added to the dataset in the form of two tag measurements which 

improve the performance of all three combinations.  The biggest gains in localization accuracy is 

observed in the feature combination of TRC and RSSI - this is probably due to the fact that with 
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increasing dataset size, mutual information potential between these feature sets is also improved 

resulting in much reduced average errors compared to using TRC or RSSI alone. 

 

Figure 6.2 Average errors for a set hidden layer size (20) for different datasets. 

As future work, the grid area can be expanded to study the effects of distance on passive 

RFID tags. We can look into the analysis of the effects of neural network size and topology on 

localization performance. Run various competing algorithms such as triangulation and other data-

driven approaches like regression to compare performance results with ANN. Also, we hope to 

explore the impact with change of the size and direction of data used in training the neural network 

on the localization performance. We will also explore expanding the feature set dimensions by 

including more antennas (in the fixed reader setup). 
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