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ABSTRACT

Support of many different services, approximately 1000x increase of current data rates,

ultra-reliability, low latency and energy/cost efficiency are among the demands from upcoming 5G

standard. In order to meet them, researchers investigate various potential technologies involving

different network layers and discuss their trade-offs for possible 5G scenarios. Waveform design is a

critical part of these efforts and various alternatives have been heavily discussed over the last few

years. Besides that, wireless technology is expected to be deployed in many critical applications

including the ones involving with daily life activities, health-care and vehicular traffic. Therefore,

security of wireless systems is also crucial for a reliable and confidential deployment. In order to

achieve these goals in future wireless systems, physical layer (PHY) algorithms play a vital role not

only in waveform design but also for improving security.

In this dissertation, we draft the ongoing activities in PHY in terms of waveform design

and security for providing spectrally efficient and reliable services considering various scenarios,

and present our algorithms in this direction. Regarding the waveform design, orthogonal frequency

division multiplexing (OFDM) is mostly considered as the base scheme since it is the dominant

technology in many existing standards and is also considered for 5G new radio. We specifically

propose two approaches for the improvement of OFDM in terms of out-of-band emission and peak

to average power ratio. We also present how the requirements of different 5G RAN scenarios reflect

on waveform parameters and explore the motivations behind designing advanced frames that include

multiple waveforms with different parameters, referred to as numerologies by the 3GPP community,

as well as the problems that arise with such coexistence. On the security aspect, we firstly consider

broadband communication scenarios and propose practical security approaches that suppress the

cyclic features of OFDM and single carrier-frequency domain equalization based waveforms and

remove their vulnerability to the eavesdropping attacks. Additionally, an authentication mechanism

vii



in PHY is presented for wireless implantable medical devices. Thus, we address the security issues

for two critical wireless communication scenarios in PHY to contribute a confidential and reliable

deployment of wireless technologies in the near future.
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CHAPTER 1

INTRODUCTION1

1.1 Introduction

Exponential growth in the variety and the number of data-hungry applications along with

mobile devices leads to an explosion in the need for higher data rates, and this is definitely the

main driving factor in 5G [5]. Therefore, a wide range of data rates up to gigabits per second are

targeted in 5G technologies which are expected to be deployed around 2020. In order to achieve

these goals, academia has been in a great collaboration with industry as obviously seen in European

Union projects as 5GNOW [6], METIS [7], MiWaveS [8] and FANTASTIC-5G [9]. Along with those,

standardization has been started in Third Generation Partnership Project (3GPP) to deliver the

demanded services, timely.

One of the most challenging part of achieving targeted high data rates is physical scarcity

of the spectrum and researchers have been putting an extensive effort to overcome that. One

popular approach is to extend existing spectrum towards virgin higher frequencies up to 100

GHz [10]. Another approach is to increase spectral efficiency for a given spectral resource. mil-

limeter wave (mmWave) communications and massive multiple-input-multiple-output (MIMO) are

the representative concepts of these two approaches and very promising technologies for facilitating

5G goals, especially for enhanced-mobile broadband (eMBB) services which constitutes one of the

main service groups considered for 5G radio-access network (RAN). In addition to improving broad-

band systems, massive machine type of communication and ultra-reliable and low latency services

are in the main agenda of 5G and beyond. Deployment of wireless technology is expected to be
1This chapter was partially published in ZTE Communications Magazine [3] and in IEEE WAMICON 2016 [4].

Permission is included in Appendix A.
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much more pervasive in our daily life with these services and therefore securing them against various

attacks is a critical task for ensuring the confidentiality and reliability of these systems.

Even though not considered as the revolutionary part of 5G, one of the most fundamental

components of any communication system in PHY is the waveform design. Therefore, intensive

discussions have being done in academia and industry in order to select the proper waveform and

physical layer algorithms enhancing the waveform characteristics. In this chapter, we draft various

waveform techniques and selected PHY algorithms along with introducing a new paradigm to wave-

form parameterization, i.e., numerology. Then the security aspect of wireless technologies in PHY

is summarized and dissertation outline is provided in the final section.

1.2 An Overview on Various Waveform Schemes Alternative to OFDM

Among all the candidates, multicarrier techniques are prominent especially for broadband

wireless communications due to several advantages such as immunity against frequency selectivity,

multiuser diversity support and adaptive modulation/coding techniques. orthogonal frequency di-

vision multiplexing (OFDM) has been the dominating technology so far and successfully deployed

in many of the current standards such as Long Term Evolution (LTE) and WiFi. In the transition

from existing technologies (4G) to the next generation, waveform selection ramifies to two paths

for 5G RAN. The first one is re-considering OFDM based methods by improving its characteristics

and handling its drawbacks with proper solutions. The second one, on the other hand, is to imple-

ment alternative multicarrier technologies and redesign everything based on a different rationale.

Transceiver block diagrams for OFDM and other popular multicarrier schemes, filtered multi-tone

mode of filter bank multicarrier (FBMC), universal filtered multicarrier (UFMC) and generalized

frequency division multiplexing (GFDM) are given in Fig. 1.1. Let us firstly provide the merits and

challenges of the multicarrier technologies considered as an alternative to OFDM in the context of

5G expectations.
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1.2.1 FBMC

FBMC is one of the most well-known multi-carrier modulation format in wireless commu-

nications literature which is also discussed as a 5G waveform in [11]. It offers a great advantage of

shaping each subcarrier and facilitate a flexible utilization of spectral resources along with meeting

various system requirements, e.g., low latency, multiple access etc. This is also an advantage for

making signal robust against channel effects, i.e., dispersion in time and frequency domains. For

example, rectangular filters are preferable for time dispersive channels while raised cosine filter are

more robust against frequency dispersion. Many other pulse shaping filters are also investigated in

the literature to cope with various effects of the channel and provide a reliable system design based

on different scenarios [12].

Despite all the advantages FBMC has, the significantly long filter lengths resulting in colossal

symbol durations not only become a problem if low latency applications or short bursts of machine

type communications are in focus [13], but also introduce a excessive computational complexity for

MIMO detection as the channel coherence bandwidth would fall below

1.2.2 UFMC

UFMC is a generalized version of filtered multicarrier techniques where groups of subcarriers,

i.e., sub-bands, are filtered rather than filtering each subcarrier individually [14]. By doing so,

interference between neighboring sub-bands is decreased compared to conventional OFDM. Also,

sub-band based filtering operation, when compared to the subcarrier filtering operation performed

by FBMC, aims to increase the efficiency for short-burst type communications such as IoT scenarios

or very low latency packets by reducing the filtered symbol duration and outperforms both cyclic

prefix (CP)-OFDM and FBMC for such use cases [13]. A similar scheme is also presented as resource

block (RB)-filtered OFDM in [15]. On the other hand, while UFMC aims to solve the problems of

FBMC while maintaining its advantages, the increased fast Fourier transformation (FFT) length

introduces complexity issues at the transmitter and receiver operations.

3



1.2.3 GFDM

GFDM is a block-based multicarrier filtered modulation scheme, designed to address the

challenges in the vast usage scenarios of the fifth generation by providing a flexible waveform [13].

GFDM allows reuse of techniques that were originally developed for OFDM, as circular convolu-

tion is employed to filter the individual subcarriers, making the GFDM frame self-contained in a

block structure. For tactile internet scenarios, GFDM can be distinguished from other multicarrier

waveforms by how it achieves robustness over highly mobile channels. It is done via taking the

advantage of the transmit diversity provided by the easy generation of impulse responses simply

obtained with circularly shifting the single prototype filter in time and frequency. To improve the

reliability and latency characteristics even further, the GFDM waveform can be combined with the

Walsh-Hadamard transform for increased performance in single-shot transmission scenarios. When

combined with offset quadrature amplitude modulation mapping, GFDM avoids self-generated in-

terference if non-orthogonal filters are employed for next generation multiple accessing.

In a different point of view GFDM can be considered as a parameterization of waveform

characteristics that are flexible across frames rather than a single waveform. It was shown in [13] that

by adjusting the parameters accordingly, OFDM, single carrier (SC)-frequency domain equalization

(FDE), FBMC and even Faster Than Nyquist schemes can be obtained. Although, these type

of interesting flexibilities, being unable to use FFT/inverse fast Fourier transformation (IFFT) at

the transmitter makes GFDM a computationally exhaustive scheme [16]. Furthermore, the circular

convolution used in the filtering process, referred to as tail-biting in [17], introduces nonorthogonality

across subcarriers as explained in [12]. Therefore, it requires a successive interference cancellation

at the receiver side to remove inter-carrier interference (ICI) [18].

1.3 Improvements in Waveform Characteristics of OFDM

Unlike the aforementioned technologies, OFDM has been widely and successfully deployed in

wireless communication standards such as LTE and Wi-Fi due to its numerous advantages, e.g. low-

complexity implementation with FFT and the robustness against multipath channels with single-tap

FDE. However, plain OFDM signals suffer from the distortions due to the non-linear characteristics
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of power amplifier (PA). At the same time, the block nature of OFDM symbols may result in

a high out-of-band (OOB) leakage and cause severe adjacent channel interference. Considering

these issues, alternative schemes, GFDM, UFMC and FBMC definitely offer some advantages over

OFDM. However, backward compatibility of OFDM with the existing technologies along with the

other advantages makes enhancement of OFDM more appealing for the industry rather than going

for a new waveform, as far as seen in the current standard discussions [19–21].

In a general sense, the key terms characterizing a basic OFDM waveform are multicarrier

modulation and rectangular pulse shape2, and the majority of the advantages and disadvantages of

OFDM are stemming from these features. In this section, we discuss how to improve characteristics

of OFDM over well known approaches in the literature in order to make it a more convenient

waveform for 5G RAN in terms of peak-to-average power ratio (PAPR) and OOB leakage.

1.3.1 OOB Leakage Suppression

High OOB leakage is a major issue in OFDM due to the inherent rectangular shape of

OFDM symbols. In the frequency domain, subcarriers are shaped by sinc functions and addition of

their sidelobes results in a considerable energy leakage on the neighboring channels as shown in Fig.

5.12. Although there are well-known filters emitting less energy on side bands, e.g., raised cosine and

Gaussian filters, OFDM does not allow pulse shaping unlike FBMC and GFDM, and therefore, a

severe interference might be inevitable for users operating on the neighboring frequencies, especially

for asynchronous scenarios. Leaving sufficient guard bands between the users might be considered

as a practical solution, but this would not be an efficient way of utilizing spectral resources. In

5G scenarios, as far as envisioned so far, a huge number of asynchronous and data-hungry users

should co-exist within a limited spectrum. Therefore, OFDM signals should be more localized in

the frequency domain by handling OOB leakage problem in a practical way to adapt OFDM to such

scenarios.

For the aforementioned purpose, OOB leakage of OFDM signals have been extensively ad-

dressed with numerous techniques in the literature as reviewed and compared in [22]. For instance,
2CP deployment can also be considered among these terms, however, that will be discussed in later sections

5
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Figure 1.2 Frequency responses of an OFDM subcarrier (sinc) and various filters.

a time domain windowing approach is proposed in [23], in order to make the transitions between

the OFDM symbols smoother and to avoid signal components at higher frequencies. Hence, the

OOB leakage of OFDM symbols is significantly reduced. This approach became very popular due

to its simplicity, effectiveness and requirement of no modification at the receiver side. However,

the introduction of an extra redundancy as much as the windowing duration remained a prob-

lem. In [24], while the total duration for CP and windowing is kept constant for all subcarriers,

windowing is mostly applied to the edge subcarriers since the leakage of edge subcarriers causes

more interference on the adjacent frequencies. In a practical multiuser scenario where users need

different CP sizes, this approach can decrease the windowing redundancy compared to the classical

approach via a convenient user scheduling. Users with low time-dispersive channels are assigned

to the edge subcarriers and users having highly time-dispersive channels are assigned to the inner
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subcarriers. Thus, the total duration required for CP and windowing could be shorter without

causing any problem. In [25–28], address the OOB leakage from frequency domain perspective. A

set of subcarriers, named as cancellation carriers, are allocated for canceling the sidelobes in [25,26].

However, such approaches also introduce redundancy in the frequency domain and degrade spectral

efficiency similar to classical windowing approach. In [27], sidelobe suppression is done by weight-

ing subcarriers in such a way that sidelobes are combined on adjacent frequencies as destructively

as possible. However, weighting leads to a pre-distortion of subcarriers and bit-error-rate (BER)

performance naturally reduces. In order to limit this distortion, a frequency domain precoder is

proposed in [28], which only maintains the spectrum of OFDM signals under the prescribed mask

rather than forcing OOB leakage to zero. By doing so, interference on the adjacent frequencies are

kept on a reasonable level at the expense of a smaller degradation BER performance.

1.3.2 PAPR Mitigation

As a consequence of multicarrier transmission, i.e., transmitting multiple signals in parallel,

high PAPR is inevitable for OFDM signals due to the probable constructive combination of signals in

time domain. In Fig. 5.11, a comparison between SC signals having various modulation orders up to

256-QAM, and OFDM signals having a different number of subcarriers (N) is provided. Obviously,

there is a huge difference in PAPR even when the number of subcarriers is as low as 32. It could be

ignored for users requiring low power transmission. However, in many scenarios such as the mobile

users on the cell edges, a reliable transmission requires high power and high PAPR of the signal for

this scenario makes the signal vulnerable to non-linear effects of RF front-end components. These

components typically have a limited linear range, and any part of the signal exceeding the linear

range is non-linearly scaled. Non-linear scaling of a signal can also be referred as multiplying a

part of signal components with various coefficients. This makes a time-varying channel effect on the

signal, and the signal is distorted as if it is exposed to a Doppler spread effect at the transmitter. As

a result, non-linearity of RF components may lead to severe interference not only in the user’s band

but also for the others operating on neighboring frequencies due to the spectral regrowth. At this

point, one may notice that the OOB leakage is not only the function of the waveform itself but also
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Figure 1.3 PAPR comparison between single carrier signals with different modulation orders and
OFDM with different number of subcarriers (N).

the spectral regrowth of the ideal waveform signals due to the high PAPR in practice. Then, even

if the OOB suppression performance of the related studies in the literature are quite satisfactory,

a good scheme needs to address PAPR and OOB leakage jointly for fixing these two shortcomings,

practically.

PAPR suppression techniques are surveyed well in [29], however, many of them tackle with

PAPR individually without considering OOB. On the other hand, some existing studies uses PAPR

reduction concepts for also suppressing OOB. This is achieved by actively selecting some pre-

designed sequences, i.e., selected mapping (SLM) sequences in [30]. Another well-known PAPR

reduction method, partial transmit sequences are applied on OFDM signals partitioned into con-

tiguous blocks in the frequency domain in [31]. Additionally, the optimized phase rotations are

multiplied by each sub-block to provide a contiguous transition between the OFDM symbols to sup-
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Figure 1.4 Illustration of different numerologies.

press OOB leakage along with PAPR. Another joint suppression method is presented in [32], where

the constellation points are dynamically extended. For the similar purpose, a method called CP

alignment is proposed in [33] similar to the interference alignment methods presented in [34,35]. The

key idea in this method is to add a perturbation signal, called alignment signal (AS), to the plain

OFDM symbols in order to reduce the PAPR and the OOB leakage such that the AS aligns with

the CP duration of the OFDM symbols after passing through the channel. However, this method

completely relies on the perfect channel estimation and any error might result in an interference on

the data part. In order to fix this problem, a recent method called static CP alignment is proposed

in [36] where the AS is designed based on a pre-determined filter independent of the channel.

Joint PAPR and OOB leakage suppression techniques are definitely offering a comprehensive

solution in enhancing characteristics of OFDM signals. However, they require symbol based active

optimization which introduce complexity issues at the transmitter side. Therefore, simpler solutions

such as windowing are still needed in this field.

1.4 Numerology

Wireless users have different requirements in waveform based on the service that they get or

channel conditions. Therefore, there is not any one-size-fits-all solution for waveform design. The
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ongoing discussions on the usage of different numerologies also confirm this argument and conse-

quently, one crucial expectation from future standards is the allowance to use multiple waveforms in

one frame. This would definitely constitute a great relaxation in selecting the most proper waveform

based on user needs. However, managing their coexistence is a critical issue. Especially, inter-user

interference management for uplink/downlink, synchronous and asynchronous scenarios should be

carefully investigated to utilize spectral resources efficiently.

In the context of 3GPP 5G standardization contributions, the term numerology refers to

the configuration of waveform parameters, and different numerologies are considered as OFDM-

based sub-frames having different parameters such as subcarrier spacing/symbol time, CP size

etc. [37]. By designing such numerologies based on user requirements, industry targets to meet the

aforementioned user-specific demands to some extent. A general illustration of such numerologies

is provided in Fig. 1.4. Here, numerology-I would be properly assigned to highly mobile users

having more time-variant channels and the ones with low latency requirement. On the other hand,

numerology-II offers more robustness against frequency selectivity and includes less redundancy due

to low CP rate.

Let us give more details on the role of the parameters and the importance of their selection

for designing different numerologies:

• CP Length: The basic function of CP is to avoid inter-symbol interference and in-band

interference. In order to achieve that, CP length should be specified as longer than the

maximum excess delay of the channel impulse response. Therefore, users experiencing a

wireless channel causing high dispersion in time (or more selectivity in frequency) should

have longer CP lengths compared to the users with low dispersive channels. In addition,

CP makes the signal robust against time synchronization errors. This might be very critical

especially for asynchronous uplink (UL) scenarios and low latency demanding services.

• Subcarrier Spacing: It can also be referred to as subcarrier bandwidth and is directly

related to the duration of an OFDM symbol. When the CP size is determined based on

the channel conditions and the application requirements, decreasing subcarrier spacing
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increases spectral efficiency as the CP rate decreases. However, for highly mobile users,

channel response might vary within a symbol duration which leads to in-band interference.

Therefore, symbol time should be kept smaller by increasing subcarrier spacing in order

to make the transmission robust against time-varying, i.e., frequency dispersive channels.

Additionally, proper choice of subcarrier spacing is very critical for immunity against phase

noise which specifically important for users operating on high frequencies such as mmWave

frequencies.

In the light of aforementioned facts, obviously, the coexistence of different numerologies offers

a great advantage in serving users with different requirements. However, such a design obviously

removes the orthogonality between the numerologies, i.e., sinc shaped subcarriers with different

spacings as illustrated in Fig. 1.4, and inter-numerology interference becomes inevitable. This is a

major issue in numerology design and guard band determination between numerologies. Therefore,

for the sake of communication performance and spectral efficiency, minimization of OOB leakage

of each numerology or keeping their orthogonality with various methods should be investigated

carefully.

1.5 Security

Throughout the last decade, wireless technologies have been deployed in many critical fields

such as military and health-care, and it is envisioned that the usage of wireless devices will expo-

nentially increase in the near future. For example, ongoing extensive research on internet-of-things

(IoT) verifies that much more wireless devices will take place in our life and we will rely on these

devices more in our daily activities. Also, the role of mobile terminals becomes more significant

along with their continuously increasing capabilities and huge number of applications. However,

the key requirement for providing a confident usage of these devices is to guarantee the security of

their communication.

As a matter of fact, wireless signals remain vulnerable against malicious attacks because

of the broadcast nature of the wireless medium. Adversaries that likely located around legitimate

users constitute a critical threat in terms of the security of the communications in different ways.
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An adversary may passively wait to capture private information transferred between legitimate

nodes (eavesdropping), may actively attempt to intervene the communication to deceive users (im-

personation) or intercept the whole communication (blocking). Considering the existence of these

adversaries and their attacks, developing solid countermeasures for different scenarios has gained a

paramount importance to ensure the security of communication systems.

In order to design a secure communication system, cryptography has been widely used for

wireless systems. Basically, legitimate nodes are encrypting their information based on a shared

secret key and adversaries are prevented from carrying out eavesdropping or impersonation attacks.

Recently, security in physical layer (PHY) has been proposed as an additional and complementary

countermeasure against wireless attacks and has become very popular in the literature. Unlike

cryptography, PHY security achieves the avoidance of malicious attacks in signal level, e.g., eaves-

droppers are prevented from receiving the signal properly rather than hiding the actual content of

the information carried by the signal. Thus, adversaries are precluded by another means of security.

Considering the widespread usage of wireless technologies, PHY security algorithms provide a great

opportunity to ensure a safe and reliable utilization of broadband and narrow band systems.

1.6 Dissertation Outline

In this dissertation, we present PHY algorithms for improving the spectral efficiency and

reliability of wireless communication systems. In Chapter 1, we drafted the various aspects of

these algorithms which also represent the content of the dissertation. In Chapter 2, an algorithm

jointly suppressing the OOB emission and PAPR of OFDM based waveforms by utilizing the time

domain and frequency domain resources is presented. In Chapter 3, we present a novel approach

that removes the practically challenging assumptions of the algorithm provided in Chapter 2 at the

expense of some performance degradation. In Chapter 4, we discuss the radio access technologies

beyond 5G and introduce new concepts in waveform parameterization and frame design via including

multiple waveform techniques. In Chapter 5, two methods removing the cyclic features of OFDM

signal are proposed in order to design broadband signals robust against eavesdropping attacks. In

Chapter 6, the security of wireless implantable medical device applications is considered and an
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authentication mechanism ensuring the security of these devices against impersonation attacks is

presented. Chapter 7 concludes the dissertation along with a final summary and open issues in

proposed algorithms.
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CHAPTER 2

JOINT TIME/FREQUENCY ALIGNMENT FOR SUPPRESSING OOBE AND

PAPR OF OFDM-BASED WAVEFORMS1

2.1 Introduction

OFDM has been the prominent waveform in the literature due to its flexibility in spectrum,

robustness against frequency selective channels, and simplicity in equalization. Therefore, it has

been adopted in many wireless communication standards such as 5th generation (5G) New Ra-

dio, Wi-Fi, and Long Term Evolution. However, high out-of-band emission (OOBE) degrades the

spectral compactness of OFDM and may cause severe interference on adjacent channels in certain

scenarios. Additionally, its high PAPR makes the OFDM signal vulnerable against non-linear dis-

tortion due to PAs, and decreases the coverage range in cellular scenarios. Therefore, maintaining

OOBE and PAPR low for OFDM signals is critically important for an efficient deployment of OFDM

in future standards including 5G.

Although OOBE and PAPR of OFDM signals are well discussed separately in the literature,

only few approaches investigate their joint suppression. In [32], a joint OOBE and PAPR suppression

technique is proposed for cognitive radio scenarios. In [31], partial-transmit sequences (PTS) are

deployed for the same goal, however, it requires sharing PTS information for each OFDM symbol.

Recently, CP alignment (CPA) concept is proposed in [2]. In this method, an additive signal, called

AS, is designed for joint OOBE and PAPR suppression and transmitted along with the OFDM

symbol. After passing through the wireless channel, the AS aligns with the CP portion, similar to

the alignment concept presented in [34,35], and offers a promising solution to high PAPR and OOBE

without introducing any problem at the receiver side. However, the suppression performance of this
1This chapter was patented [38] and published in IEEE Communications Letters [39]. Permission is included in

Appendix A.
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method heavily depends on the degrees-of-freedom (DoF) provided by the CP size, which may be

small in certain scenarios. In addition, due to the constraint of alignment with CP duration, which

is a local portion of OFDM symbol in time domain, the AS mostly concentrates around CP and does

not effectively reduce the amplitude variation of OFDM symbol. Therefore, CPA is limited especially

in PAPR suppression. In [40], channel independent CPA where the alignment is achieved by receive

filter is also investigated. However, no solution is provided for the aforementioned problems.

In this chapter, we introduce a novel joint time-frequency alignment (JTFA) concept to over-

come the shortcomings of original CPA. We allow AS to align with both time and frequency domain

resources that are not effectively used at the receiver, i.e. CP, guard tones, and subcarriers that are

severely faded by the channel. Thus, not only is the available DoF for AS generation substantially

increased as compared to the CPA, but also the power of AS is optimally distributed across time

and frequency domains in the sense that it leads to further PAPR and OOBE suppression, jointly.

The remainder of the chapter is organized as follows. Section II explains system model and

Section III presents the proposed method. Numerical results are provided in Section VI and Section

V concludes the chapter.

In our notation, IIIN represents N×N identity matrix and 000N×M is N×M zero matrix. (·)T,

(·)H and ker(·) denote transpose, conjugate transpose and kernel of a matrix. CN (0,C) represents

a zero mean complex Gaussian distribution with the covariance matrix C. R and C denote the real

and complex number fields, respectively.

2.2 System Model

We consider a single link OFDM-based communication system with N subcarriers. The ith

OFDM symbol, xxx(i) ∈ C(N+K)×1, is expressed in time domain as

xxx(i) = AAAFFFHMMMdddi, (2.1)

where dddi ∈ CNs×1 is the vector of data symbols, MMM ∈ RN×Ns is the mapping matrix assigning the

data symbols to the selected subcarriers, FFF is the N -point DFT matrix, AAA ∈ R(N+K)×N represents
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the CP insertion matrix explicitly given by

AAA =

 000K×N−K IIIK

IIIN

 , (2.2)

K is the number of samples in CP, and Ns is the number of data symbols. In [2], PAPR and OOBE

characteristics of OFDM signals are improved by adding an AS, ccci ∈ C(N+K)×1, and the transmitted

signal is formed as

ttti = xxx(i) + ccci. (2.3)

The AS vector ccci can be calculated as

ccci = PPPsssi. (2.4)

In (3.4), PPP ∈ C(N+K)×K̂ is an orthonormal precoder matrix 2 that generates the AS vector ccci from

any sssi ∈ CK̂×1 where K̂ represents the DoF for designing ccci
1. In CPA, K̂ corresponds to CP size

to avoid interference on the information symbols.

We assume that ttti passes through an independently and identically distributed multipath

channel withR taps whose vector representation is given by hhh(t) = [h0, h1, ..., hR]T ∼ CN (0, IIIR+1/(R+

1)). Power Delay Profile (PDP) of hhh(t) is considered as an exponential decaying channel. We then

calculate the ith received signal vector as

rrri =

[
HHHp HHH

]ttti−1

ttti

+ nnn, (2.5)

where nnn ∈ C(N+K)×1 ∼ CN (0, σ2IIIN+K) is an additive white Gaussian noise vector, HHHp ∈ C(N+K)×(N+K)

characterizes the leakage of the previous signal ttti−1 on the current signal ttti, and HHH ∈ C(N+K)×(N+K)

is the channel convolution matrix.
2Since PPP is an orthonormal matrix, cccTi ccci = sssTi PPP

TPPPsssi = sssTi sssi.
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After discarding the CP, the signal can be expressed as

yyyi = BBBrrri = BBBHHHAAAFFFHMMMdddi + BBBHHHccci

+ BBBHHHpAAAFFFHMMMdddi−1 + BBBHHHpccci−1 + nnn, (2.6)

where BBB ∈ RN×(N+K) is the CP removal matrix as

BBB =

[
000N×K IIIN

]
. (2.7)

Discarding the CP nullifies the third and fourth terms of (3.8) as the leakage from the (i−1)th OFDM

symbol falls into ith symbol’s CP duration. Then, after the DFT and de-mapping operations, the

received signal in frequency domain can be calculated as

ỹyyi = MMMHFFFBBBHHHAAAFFFHMMMdddi + MMMHFFFBBBHHHPPPsssi + n̂̂n̂n. (2.8)

The second term in (3.10) corresponds to the interference because of the AS and n̂̂n̂n is the

noise. Hence, MMMHFFFBBBHHHPPPsssi should be zero for carrying out an interference free transmission. In [2],

this is ensured by setting the columns of PPP in a way that they span the null space of BBBHHH, i.e.

ker(BBBHHH). Thus, PPPsssi can be optimized for PAPR and OOBE suppression while sssi is mapped into the

null space of BBBHHH, which corresponds to the CP part of the OFDM symbols.

2.3 Joint Time-Frequency Alignment for Joint OOBE and PAPR Suppression

In the proposed method, to enable joint utilization of time and frequency domain resources,

we design the mapping matrix MMM such that it discards the guard tones and the subcarriers expe-

riencing a deep channel fading for data transmission. This is done by selecting the active data

subcarriers and forming MMM with Ns corresponding columns of IIIN . The columns of PPP span the null

space of ΓΓΓ, i.e. ker(ΓΓΓ), where ΓΓΓ = MMMHFFFBBBHHH ∈ CNs×(N+K). Thus, by generating ccci as PPPsssi, we can

allow the AS to align with the CP duration in time domain, the guard tones and the subcarriers

faded by the channel in frequency domain. As we also include the frequency domain resources in
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Figure 2.1 Block diagram for the proposed system (AS aligns with the CP duration, the guard
tones and the faded subcarriers at the receiver side).

null space calculation, K̂ increases to the sum of the CP size, the number of allocated subcarriers

experiencing a deep fading and the guard tones. Then, a more effective sssi can be designed for joint

PAPR and OOBE suppression, as compared to CPA.

It is worth noting that we introduce a small loss in capacity due to the faded subcarriers

allocated for the alignment purpose. These subcarriers are selected based on a threshold in channel

gain, φtr. In other words, the subcarriers experiencing a channel gain below the selected threshold are

exploited for alignment purpose and ignored at the receiver side. For instance, the receiver can decide

φtr based on a tolerable loss in capacity and feedback that information to the transmitter along with

the channel state information (CSI). Then, the transmitter determines the active subcarriers, design

AS based on the CSI and φtr, and transmit the OFDM signal combined with AS. Finally, the active

subcarriers are selected at the receiver side and data detection is performed. The block diagram

of the transceiver with JTFA and illustrations of transmitted and received signals are provided in

Fig. 3.1.

Using singular value decomposition, ΓΓΓ can be decomposed as ΓΓΓ = UUUΣΣΣVVVH, where UUU ∈ CNs×Ns

and VVV ∈ C(N+K)×(N+K) are unitary matrices that contain the singular vectors of ΓΓΓ, and ΣΣΣ ∈

RNs×(N+K) is a diagonal matrix including the singular values of ΓΓΓ, arranged in descending order.

As the null space of ΓΓΓ is spanned by the last K̂ columns of VVV = [vvv0,vvv1, ...,vvvN+K−1], PPP ∈ C(N+K)×K̂

can be created as PPP = [vvvN+K−K̂ ,vvvN+K−K̂+1, ...,vvvN+K−1].
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After guaranteeing the avoidance of AS’s interference with the precoding matrix PPP, sssi can

be optimized for suppressing OOBE and PAPR of the digital signal xxx(i) as

sssi = arg min
ŝssi

(1− λ)‖FO(xxx(i) + PPPŝssi)‖2+λ‖(xxx(i) + PPPŝssi)‖∞

over ŝssi ∈ CK̂×1 (2.9)

subject to ‖ŝssi‖2≤
√
α‖xxx(i)‖2,

where FO is the matrix that contains the rows of an oversampled DFT matrix, corresponding to

the signal elements in the out-of-band region, α is a power limiting parameter for ccci, and λ ∈ [0, 1]

is the weighting factor in the joint OOBE and PAPR optimization. While larger λ yields a lower

PAPR, smaller λ leads to a better OOBE suppression. Also, ‖·‖2 and ‖·‖∞ represent the 2-norm

and infinity norm operators, respectively.

The objective function and the constraint are both convex in (3.18). Therefore, the problem

can be solved by a convex optimization solver. In this study, YALMIP is utilized [41].

2.4 Numerical Results

In this section, we demonstrate BER, OOBE, and PAPR suppression performance of the

JTFA through simulations. We consider OFDM symbols with 128 subcarriers and 16 samples for

CP, where the 64 subcarriers of each OFDM symbol are utilized for 16-QAM symbols. PDP of the

channel is assumed to be a 17-tap exponential decaying function, expressed as h(τ) = ae−τn, where

a is the normalization factor, n indicates the tap index, τ is the decaying factor, and the amplitude

of each tap follows Rayleigh distribution. In the simulations, we set τ to 0.2 unless otherwise

stated. The threshold φtr is set to 0.2. We also compare JTFA with CPA [2] and cancellation

carrier insertion (CCI) [42]. For the sake of a fair comparison, we use the same set of subcarriers

for both CCI and JTFA, and keep the total signal power the same for all the approaches.

In Figure2.2, we show the energy distribution of the AS in time domain for CPA and JTFA

for λ = 0.99. When AS is designed based solely on CP duration, as done in CPA method, most of

the energy concentrates around the CP duration and dramatically decreases on the middle samples
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even for large λ values. As shown in Figure2.2, the energy of the samples located in the data

duration of OFDM symbol is approximately 13 dB weaker than the samples of OFDM symbol for

CPA, even when the channel decaying rate, τ , is zero which corresponds to a uniform PDP. As τ

increases, which is likely in practical scenarios, AS concentrates further on the edges. Since any

sample may have a high amplitude in an OFDM symbol, the AS in CPA is ineffective to cancel the

peak sample, which yields a limited PAPR suppression. In JTFA, since time and frequency domain

resources are jointly utilized, the energy of the samples of AS are distributed more uniformly across

the useful OFDM symbol duration as shown in Figure2.2. Hence, JTFA is more effective than CPA

to reduce PAPR.

In Fig. 2.3, the PAPR performances are provided for JTFA, CPA, and CCI when α = 0.25

and λ = {0.5, 0.9, 0.98}. The simulation results show that JTFA method achieves 4 dB suppression

while CPA can only suppress less than 1 dB for λ = 0.98, as compared to plain OFDM symbols.

As discussed earlier, this is because of the fact that JTFA is more effective than CPA to cancel

the peak sample of OFDM symbols since it exploits the frequency domain resources along with the

CP duration. It is also worth noting that CCI remains around 3 dB reduction in PAPR as only

frequency domain resources are employed in this scheme. As a result, JTFA is superior to CPA and

CCI in terms of PAPR suppression. This is achieved at the expense of approximately 6% capacity

loss when γ = 10 dB, which is calculated based on Shannon’s channel capacity.

In Fig. 2.4, we compare OOBE reduction performance of aforementioned schemes. JTFA

method reduces the OOBE up to 24 dB when λ = 0.5, while CPA and CCI provide approximately

13 dB and 10 dB suppressions, respectively. Our simulation results show that JTFA is better than

CPA and CCI in both OOBE and PAPR reduction for the investigated λ values.

In Fig. 2.5, BER results are provided for JTFA, CPA and CCI for different mean-square

errors (MSEs) in channel estimation. We quantify MSE as the expected value of the normalized

difference between the channel response h and the channel estimated by the receiver h̃, and defined

as σ2e = E[|h̃−h|2]
E[|h|2] where E[·] denotes the expected value. When there is no channel estimation error,

i.e. σ2e = 0, CPA, JTFA and CCI methods are slightly worse than the plain OFDM generated with

the same active subcarriers since a part of the power (20% for α = 0.25) is used for either AS or
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inserted carriers. However, the impact of equalization with an erroneous channel estimation mostly

dominates the effect of power discrepancy and BER performances of JTFA and CPA become similar

to that of CCI and regular OFDM transmission, respectively, for σ2e > 0.

2.5 Conclusion

In this study, we present a joint PAPR and OOBE reduction technique for OFDM systems.

We significantly increase the DoF in designing AS by jointly exploiting specific subchannels, i.e.

guard tones and subcarriers faded by the channel, and CP in the optimization. Thus, a substantial

suppression is obtained in PAPR and OOBE at the cost of a small loss in capacity.
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CHAPTER 3

STATIC CP ALIGNMENT1

3.1 Introduction

OFDM has been widely used in wireless digital communication systems such as LTE and

Wi-Fi due to its numerous advantages such as low-complexity implementation with FFT and the

robustness against multipath channels with single-tap frequency domain equalization (FDE). How-

ever, plain OFDM signals suffer from the distortions due to the non-linear characteristics of PA.

At the same time, the block nature of plain OFDM symbols may cause severe adjacent channel

interference.

In the literature, PAPR and OOB leakage of OFDM signals have been extensively studied

and addressed with numerous techniques. In reference [23], a time domain windowing is applied

to the OFDM symbols in order to smooth the transitions between the OFDM symbols. Hence,

the OOB leakage of OFDM symbols is significantly reduced. In reference [24], the time-domain

windowing approach is particularly applied to the edge subcarriers as the edge subcarriers cause

more interference to the adjacent channels than the inner subcarriers. In references [25–28], the

OOB leakage is addressed in frequency domain. While a set of subcarriers in the band, known as

cancellation carriers, are allocated in order to cancel the sidelobes in reference [25], a set of carriers

located at the adjacent channels and the redundancy of CP duration are utilized for the same purpose

in reference [26]. In reference [27], a sidelobe suppression method based on the multiplication of

the used subcarriers with some weights is proposed. Similarly, a frequency domain precoding which

maintains the spectrum of OFDM signals under the prescribed mask is introduced in reference [28].
1This chapter was published in IEEE Global Communication Conference, 2016 [40]. Permission is included in

Appendix A.
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Albeit their remarkable OOB performance of the aforementioned approaches, in practice,

the OOB leakage is not only the function of the waveform itself but also the PAPR characteristics

of the waveform. This is due to the fact that the PA distorts ideal waveform signals and also causes

spectral regrowth. Therefore, a good scheme needs to address PAPR and OOB leakage jointly. In

reference [30], the joint reduction is achieved by actively selecting some predesigned sequences, i.e.,

selected mapping (SLM) sequences. In reference [31], OFDM signal is partitioned into contiguous

blocks in frequency and partial transmit sequences (PTS) are applied to reduce the PAPR. In

addition, the optimized phase rotations are applied to each sub-block to maintain the contiguity

between the OFDM symbols. In reference [32], joint PAPR reduction and sidelobe suppression

are achieved by dynamically extending the constellation points. For the similar purpose, recently,

a method called CP alignment is introduced in reference [43] and [2], similar to the interference

alignment methods presented in [34, 35]. The key idea in this method is to add a perturbation

signal, called AS, to the plain OFDM symbols in order to reduce the PAPR and the OOB leakage

such that the AS aligns with the CP duration of the OFDM symbols after passing through the

channel. Therefore, the AS improves the signal characteristics at the transmitter side while it does

not cause any interference on the data symbols at the receiver side. On the other hand, the AS does

not align with the CP duration, i.e., remains spread on the OFDM symbols after passing through a

channel different than the channel of the intended user. Thus, the AS also provides PHY security

by distorting the data symbols of any users except the intended user.

There are two major challenges with original CP alignment method. First, the original

approach requires the exact CSI in order to maintain the alignment with the CP duration. However,

due to the mobility and the channel estimation error in low signal-to-noise ratio (SNR) conditions,

the exact CSI and the CSI used in the design of AS may not match in practice (see e.g., [44, 45],

and the references listed therein). Second, the original approach requires strong frequency selective

multipath channel for enhancing the waveform characteristics [2, 43]. This is due to the fact that

the AS spreads in time domain at the transmitter side when the channel is frequency selective. For

example, the peak value may occur in any sample of an OFDM symbol. Then, in order to suppress

the peaks, AS should be able to reach any sample of the OFDM symbol effectively. However, the
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Figure 3.1 Block diagram for the proposed system.

AS remains localized in the CP duration when the channel is not frequency selective. In this case,

the original approach cannot reduce the PAPR efficiently. In order to overcome these challenges,

i.e., misalignment due to the outdated CSI and channel estimation errors, and the need of strong

frequency selectivity, we propose a CP alignment method referred to as static CP alignment, which

generates the AS based on a predetermined receiver filter, rather than the instantaneous CSI. Our

contributions with this scheme can be given as follows:

• In order to achieve perfect alignment, the need of having the exact CSI at transmitter is

eliminated. Hence, the proposed scheme provides seamless alignment in mobile scenarios

where the CSI is time-varying.

• The need of strong frequency selective multipath channel of the original method is removed.

Hence, the proposed method provides enhancements in waveform characteristics even in

frequency flat channels.

• The proposed scheme reduces PAPR and OOB leakage, jointly. At the same time, it does

not cause any interference to the data symbols.

The rest of the chapter is organized as follows: In Section II, the system model is provided.

The concept of static CP alignment is described in Section III. The numerical results are given in

Section IV. Finally, the concluding remarks are provided in Section V.

In our notation, IIIN is the N×N identity matrix, 000N×M is the N×M zero matrix. Hermitian

operation and the transpose operation are denoted by (·)H and (·)T, respectively. The 2-norm and
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infinity norm are denoted by ‖·‖2 and ‖·‖∞, respectively. E[·] represents the expectation operator

while ker(·) denotes the kernel of the matrix. Zero mean complex Gaussian distribution with the

covariance matrix C is denoted by CN (0,C). The field of real and field of complex numbers are

represented by R and C, respectively.

3.2 System Model

We consider an OFDM-based single link communication system as shown in Fig. 3.1. The

ith OFDM signal can be analytically expressed as

xxx(i) = AAAFFFHMMMdddi, (3.1)

where xxx(i) ∈ C(N+K)×1 is the OFDM symbol vector in time, dddi ∈ CNd×1 is the data vector, MMM ∈

RN×Nd is the subcarrier mapping matrix that maps the data symbols to the active data subcarriers,

AAA ∈ R(N+K)×N is the CP insertion matrix given by

AAA =

 000K×N−K IIIK

IIIN

 , (3.2)

FFF is the N -point DFT matrix, K is the number samples for CP duration, and Nd is the number of

data symbols.

As shown in [2], the PAPR and OOB leakage performance of OFDM can be improved by

addition of an alignment signal vector ccci = [ci,1, ci,2, ..., ci,N+K ]T. The transmitted signal vector can

be expressed as

ttti = xxx(i) + ccci, (3.3)

where

ccci = PPPsssi. (3.4)
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Here, PPP ∈ C(N+K)×K̂ forms ccci as the alignment signal vector that aligns on the first K̂ samples

of the CP after passing through the channel, and sssi ∈ CK̂×1 is a data-dependent vector which is

optimized to minimize the PAPR and the OOB leakage of the plain OFDM symbols, jointly. In

order not to cause interference due to the vector ccci, PPP is designed based on the CSI.

In this study, the channel between the transmitter and the receiver is characterized as an i.i.d.

Rayleigh fading channel with the vector of hhh(t) = [h0(t), h1(t), ..., hR(t)]T ∼ CN (0, IIIR+1/(R + 1)).

After the signal passes though the channel, the received signal vector can then be calculated as

rrri =

[
HHHp HHH

]ttti−1

ttti

+ nnn, (3.5)

where nnn ∈ C(N+K)×1 ∼ CN (0, σ2IIIN+K) is an additive white Gaussian noise vector, HHHp ∈ C(N+K)×(N+K)

and HHH ∈ C(N+K)×(N+K) are the convolution matrices, explicitly given by

HHHp =



0 ... ... hR(t) ... h0(t)

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . hR(t)

...
. . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...

0 ... ... ... ... 0


, (3.6)
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and

HHH =



h0(t) 0 ... ... ... ... 0

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

hR(t) ... ... h0(t) 0 ... 0

0
. . . . . . . . . . . . . . .

...

0
. . . 0 hR(t) ... ... h0(t)


. (3.7)

At the receiver side, the resulting signal after CP removal operation can be expressed as

yyyi = BBBrrri

= BBBHHHAAAFFFHMMMdddi + BBBHHHccci

+BBBHHHpAAAFFFHMMMdddi−1 + BBBHHHpccci−1 + nnn, (3.8)

where BBB ∈ RN×(N+K) is the CP removal matrix given by

BBB =

[
000N×K IIIN

]
. (3.9)

Since the contribution of the (i − 1)th symbol falls into the CP duration of ith symbol, the CP

removal operation makes the third and fourth terms of (3.8) zero and after the DFT operation, the

received signal in frequency domain is obtained as

ỹyyi = FFFBBBHHHAAAFFFHMMMdddi + FFFBBBHHHPPPsssi + n̂̂n̂n. (3.10)

In (3.10), the second term represents the interference due to the AS and n̂̂n̂n is the noise in frequency

domain. In order to avoid interference on the data symbols, the second term should be zero, which

can be achieved by forming the columns of PPP as spanning the null space of BBBHHH, i.e., ker(BBBHHH). In

the original scheme [2], the vector PPPsssi is optimized to minimize the PAPR and OOB leakage while

31



the precoder PPP maps sssi into the null space of the matrix BBBHHH, i.e., the CP duration of the OFDM

symbols. As a result, the interference on the data symbols is avoided at the receiver side. Detailed

discussions regarding the practical issues such as synchronization are provided in [2].

Note that the transmitter should be able to calculate the matrix PPP based on the CSI.

However, in practice, the CSI may be aged due to the mobility and it may erroneous due to

imperfect channel estimation. Therefore, the alignment may not be achieved perfectly and the data

symbols are interfered by the alignment signal.

3.3 Static CP Alignment

In this section, we describe the static CP alignment method which introduces an extra

filtering operation with an alignment filter at the receiver. Let ĥhh(t) be [ĥ0, ĥ1, ..., ĥL] ∈ C1×(L+1).

At the receiver side, the received signal is filtered with the alignment filter ĥhh(t) before the CP

removal operation. Then, the conventional OFDM receiver structure is applied as

ŷyyi = FFFBBBĤHHHHHAAAFFFHMMMdddi + FFFBBBĤHHHHHPPPsssi + n̂̂n̂n, (3.11)

where the convolution matrix of ĥhh(t), ĤHH ∈ C(N+K)×(N+K) is given as

ĤHH =



ĥ0 0 ... ... ... ... 0

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

ĥL ... ... ĥ0 0 ... 0

0
. . . . . . . . . . . . . . .

...

0
. . . 0 ĥL ... ... ĥ0


. (3.12)

As shown in (3.11), the new interference term with the alignment filter becomes BBBĤHHHHHPPPsssi. Therefore,

the precoder matrix should be designed such that PPPsssi is in the null space of BBBĤHHHHH. At this point, it

is important to emphasize that our goal is to achieve a channel-independent precoder, rather than
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increasing the channel selectivity. In the following part of this section, we will show that a subspace

of the ker(BBBĤHHHHH) is static due to the pre-determined alignment filter.

Note that we partially use the CP for the alignment purposes in the proposed approach

and set K̂ = L. In order to maintain the circularity and avoid inter-symbol interference, CP size is

determined based on the number of taps for multipath channel and alignment filter, i.e., K ≥ L+R.

Let B̂BB ∈ R(N+R)×(N+K) be an auxiliary matrix given by

B̂BB =

[
000(N+R)×L IIIN+R

]
. (3.13)

Using singular value decomposition, B̂BBĤHH can be decomposed as

B̂BBĤHH = UUUΣΣΣVVVH, (3.14)

where UUU ∈ C(N+R)×(N+R) and VVV ∈ C(N+K)×(N+K) are unitary matrices containing the singular

vectors of B̂BBĤHH, and ΣΣΣ ∈ C(N+R)×(N+K) is a diagonal matrix consisting of the singular values of

B̂BBĤHH. Since the last L columns of the matrix VVV = [vvv0,vvv1, ...,vvvN+L−1] spans the null space of B̂BBĤHH,

PPP ∈ C(N+K)×L is formed as PPP = [vvvN ,vvvN+1, ...,vvvN+L−1].

Since the cascaded filtering operation has commutative property, HHH and ĤHH in the interference

term given in (3.11) can be replaced as

FFFBBBĤHHHHHPPPsssi = FFFBBBHHHĤHHPPPsssi. (3.15)

Then, let ĤHH be

ĤHH ≡

WWW

B̂BBĤHH

 , (3.16)
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where WWW ∈ CL×(N+K) consists of the first L rows of ĤHH. As ĤHH is multiplied with the matrix PPP in

(3.15), the resulting matrix can be obtained as

ĤHHPPP ≡

WWWPPP

B̂BBĤHHPPP

(a)=

 ŴWWL×L

000(N+R)×L

 . (3.17)

In (3.17), (a) holds true as the vector sssi ∈ CL×1 is designed such that PPPsssi lies in ker(B̂BBĤHH). As a

result, the interference term FFFBBBĤHHHHHPPPsssi becomes zero regardless of the channel condition.

Based on the optimization problem proposed in [2], we can then generate ccci for reducing

OOB emission and PAPR as

ccci = arg min
ĉcci

(1− λ)‖FO(xxx(i) + ĉcci)‖2+λ‖(xxx(i) + ĉcci)‖∞ (3.18)

over ĉcci ∈ C(N+K)×1

subject to B̂BBĤHHĉcci = 0,

‖ĉcci‖2≤
√
α‖xxx(i)‖2,

where FO is the matrix that extracts the signal components in the OOB region, α is a parameter

that limits the power of ccci, and λ ∈ [0, 1] is the weighting factor for the joint optimization of OOB

and PAPR. Note that while increasing λ yields a scheme with a lower PAPR, small λ achieves a

better OOB leakage performance [2].

In (18), since the constraint and the objective function are convex, the problem becomes

a convex optimization problem and its numerical solution could be done by a convex optimization

solver. In this study, we use YALMIP as the underlying solver [41].

3.4 Practical Issues

3.4.1 Design of Alignment Filter

The characteristics of the alignment filter determines the improvement on the PAPR and

OOB leakage performance. There are two fundamental approaches for design of the alignment filter.
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Figure 3.2 Illustration for the covariance matrix of an alignment signal designed based on a uniform
alignment filter.

In the first case, the alignment filter is generated based on a properly shared CSI. Although this

approach may not yield an optimum filter design, the scheme allows enhancement on the physical

layer security for TDD-based systems. This is due to the fact that the same channel cannot be

estimated by an adversary and the AS remains as an interference signal on non-intended users.

In the second case, the transmitter and the receiver share the information of alignment filter.

Therefore, it is possible to design an alignment filter which achieves better OOB leakage performance

and PAPR reduction. In order to achieve that, the alignment signal’s energy should be spread on

the OFDM symbol as uniform as possible. This is because the peak power may occur in any sample

of the OFDM symbol. Thus, maximum control on the PAPR and OOB leakage can be obtained

by having the flexibility of modifying any sample of the OFDM symbol. Filters having a uniform

power profile are prominent for designing such an AS. In order to verify that, covariance matrices
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Figure 3.3 Illustration for the covariance matrix of an alignment signal designed based on an
exponentially decaying alignment filter.

of ASs designed with filters having a uniform (ĥ(τ) = 1) and exponential decaying (ĥ(τ) = e−τ )

power profiles are illustrated in Fig. 3.4.1 and 3.4.1 where N = 128, the CP rate is 1/4, λ = 0.99

and α = 0.25. Here, half of the CP is utilized for alignment purposes, i.e., K̂ = N/8. As shown

on the diagonal of each diagram whose elements correspond to the expected power of AS on each

sample, the uniform filter spreads the energy of AS while the exponentially decaying filter cannot

disperse the AS effectively, i.e., the energy of AS spread mostly over the first 20 samples. Therefore,

the uniform filter yields a better OOB leakage and PAPR reduction performance.

3.4.2 Complexity

In the original CP alignment [2], the feasible solutions for the alignment signal lie on the

null space of BBBHHH. Therefore, the precoder PPP in which its columns span the null of BBBHHH needs to
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be calculated for a given CSI. However, the complexity of calculating the precoder matrix PPP is

O(N(N + K)2) with singular value decomposition. The proposed method eliminates the need of

this operation as the feasible solutions are in the null space of B̂BBĤHH, which is not a function of the

multipath channel. Therefore, the subspace for the feasible solutions can be calculated offline.

The optimization problem in (18) reduces to a least squares with quadratic inequality con-

straint (LSQI) if λ = 0. In this case, LSQI problem can be solved over Lagrangian function with

bisection method. It is worth noting that the roots of the Lagrangian function can also be obtained

with a closed-form expression for a given Lagrangian multiplier [2]. Thus, by rewriting the optimiza-

tion problem with Lagrangian function, it is possible to obtain a closed-form linear precoder, which

leads to the complexity of O(2(N +G)L). If λ > 0, there is no closed-form solution available for the

optimization problem in (18) and the optimizer should follow an iterative strategy. Nevertheless,

(18) is a convex optimization problem and it can still be solved efficiently.

3.5 Numerical Results

In this section, the proposed scheme is evaluated through simulations. We consider an

OFDM system where the IDFT size is 128 and the number of active subcarriers is 64. Throughout

the simulations, we consider 16-QAM and the CP rate is set to 1/4. A seventeen tap Rayleigh fading

multipath channel is generated for each realization, and the power delay profile (PDP) is assumed

to be exponentially decaying as h(τ) = e−τ where τ = 1. For the alignment filter, we consider a

filter which has the same number of taps with the channel and has a uniform power profile in the

light of our discussions in Section IV.

In Fig. 6.2, BER results are provided for plain OFDM, OFDM with original CP alignment

[2], and OFDM with the proposed method. For the simulations, we consider a scenario where the

CSI at the transmitter is stale (or outdated) due to the high-mobility. This is quantified by MSE

of the estimated channel, h̃, defined as σ2e = E[|h̃−h|2]
E[|h|2] . Under these circumstances, the original

method fails to maintain the alignment on the CP duration due to the stale CSI and the AS

interferes with the actual data which results in significant degradation on the BER performance.

In addition, as illustrated in Fig. 6.2, the interference due to the AS increases with the MSE

37



0 5 10 15 20 25

E
b
/N

0
 (dB)

10-4

10-3

10-2

10-1

100

B
E

R

Plain OFDM

Original CP Align. (α = 0.1, MSE = 0.25)

Original CP Align. (α = 0.1, MSE = 1)

Original CP Align. (α = 0.25, MSE = 0.25)

Original CP Align. (α = 0.25, MSE = 1)

Static CP Align. (α = 0.1)

Static CP Align.(α = 0.25)

Static CP Align. / Eavesdropper (α = 0.1)

Static CP Align. / Eavesdropper (α = 0.25)
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tion type is 16-QAM).

of the channel estimation and α parameter which controls the energy of AS. On the other hand,

the proposed method relies on the alignment filter at the receiver side without the CSI at the

transmitter. Therefore, we achieve perfect alignment and eliminate the limitation of the original

method as shown in Fig. 6.2. In this analysis, we assume that the total signal power is shared by

the AS and the plain OFDM signal. Therefore, the proposed method causes a shift in the BER

performance, i.e., less than 0.5 dB when α = 0.1 and less than 1.5 dB when α = 0.25. Nevertheless,

the proposed method does not introduce any error floor.

It is worth noting that the addition of AS causes severe interference on the data symbols

if the alignment filter is not employed at the receiver side. This is exactly the case for an illegiti-

mate user who does not have the alignment filter information. Therefore, if the alignment filter is
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securely shared between the legitimate nodes, the illegitimate users such as eavesdroppers receive

distorted data symbols due to the AS. In order to illustrate that, we also provide BER curves for

an eavesdropper in Fig. 6.2. As clearly seen, a significant error floor is introduced and therefore,

the proposed technique also enhances the security of the signal in PHY.

In order to show the OOB leakage suppression performance, the simulations are performed

for different values of λ which weights the optimization toward PAPR or OOB leakage suppression.

As shown in Fig. 5.12, the OOB leakage of the plain OFDM is suppressed around 8 dB and 14 dB

for λ = 0.99, and λ = 0.9, respectively. On the other hand, the original method presented in [2]

achieves 5 dB suppression at most, even though the CP is fully utilized for the alignment purpose.

This is because of the fact that the AS of the original method is designed based on the CSI where the

PDP is modeled as exponentially decaying. On the other hand, the proposed method provides the

flexibility of using a more proper filter, i.e., a uniform filter, as discussed in Section 3.4.1. Because

of this flexibility, the proposed method achieves a better suppression even with less CP usage for

the alignment.

In Fig. 5.11, the PAPR reduction performance of the proposed approach is investigated.

We observe that the proposed method yields more than 1 dB improvement when λ = 0.9 which

is better than the performance of [2]. The suppression performance increases close to 2 dB for

λ = 0.99 while it is around 1 dB for the original method. Note that the power of the AS provides an

additional degree of freedom for a better OOB leakage and PAPR reduction, i.e., the suppression

performance can be enhanced further by increasing α. However, we do not set it more than 0.25 in

our simulations to maintain the power efficiency.

In Fig. 3.7, we investigate the effect of the alignment filter length on the PAPR reduction

and OOB leakage suppression. The suppression of the OOB leakage over the subcarrier indexes from

60 to 64 and the reduction of the PAPR are provided for different λ values. It is observed that the

filter length has significant effect on the suppression performance. Also, the analysis are performed

for an exponentially decaying and uniform alignment filters to show the importance of alignment

filter choice. As discussed in Section 3.4.1, the AS cannot be spread when it is designed based on
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Figure 3.5 OOB emission suppression performance of proposed method for different λ values (α =
0.25,K = N/4).

an exponentially decaying filter. On the other hand, uniform filters allow transmitter to design a

well spread AS. Therefore, a better suppression performance is achieved with uniform filters.

3.6 Conclusion

In this study, we propose a practical solution to the outdated CSI problem of the original

CP alignment method. Unlike the original approach where the AS is generated based on CSI at

transmitter, the proposed method generates the AS by utilizing a fixed receive filter which maintains

the alignment on a portion of the CP duration. As a result, the waveform characteristics are

enhanced regardless of the frequency selectivity of the channel while the original approach requires

a strong frequency selective channel. Static CP alignment also offers less complexity than that of
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the original CP alignment method since the exact CSI does not involve in the calculation of AS.

As compared to conventional joint OOB leakage and PAPR mitigation methods for OFDM, the

proposed scheme achieves the same goal without introducing any distortion on the received data

symbols and yields a BER performance without error floor. Additionally, since the alignment filter

can be generated based on the outdated channel, the proposed scheme may also provide improvement

in PHY security.

41



0 5 10 15 20 25 30 35

Alignment Filter Length (num. of taps)

0

2

4

6

8

10

12

14

16

18

20

S
u
p
p
re

s
s
io

n
 (

d
B

)

 PAPR (λ = 0.5)

 PAPR (λ = 0.9)

 PAPR (λ = 0.99)

 OOB (λ = 0.99)

 OOB (λ = 0.9)

 OOB (λ = 0.5)

Uniform

Exponentially

Decaying

Figure 3.7 OOB leakage suppression and PAPR mitigation performance for uniform and exponen-
tially decaying filters with different alignment filter lengths (α = 0.25).

42



CHAPTER 4

FLEXIBLE RADIO ACCESS BEYOND 5G: A FUTURE PROJECTION ON

WAVEFORM, NUMEROLOGY AND FRAME DESIGN PRINCIPLES 1

4.1 Introduction

Exponential growth in variety and quantity of mobile devices along with the mobile ap-

plications lead to an explosion in the need for higher data rates, reliability, power efficiency, low

latency and vast number of diverse connectivity [5, 47]. Such needs are the main driving factors in

5G and many projects have been launched to deliver them on time, as done in European Union

projects e.g., 5GNOW [6], METIS [7], MiWaveS [8] and FANTASTIC-5G [9]. Mainly, three services

in 5G agenda can be given as; eMBB, ultra reliable and low latency communications (URLLC) and

massive machine type communications (mMTC). The standardization has already started by 3GPP

and the first products are expected to be available by 2020.

Although there is not an expectation of a major shift in base waveform selection for 5G

new radio (NR) 2, the need for flexibility is strongly highlighted for embracing diverse applications,

channel conditions and system scenarios [48]. For example, large subcarrier spacing is preferable

for URLLC applications due to the smaller symbol time. It is also better for highly mobile users

because of the robustness against Doppler spread. On the other hand, small subcarrier spacing is

more convenient for supporting massive connectivity which is required for mMTC scenarios and

for reducing the effect of delay spread. Considering numerous cases as these examples, academia

and industry agreed on the need of more flexible radio access technologies (RATs). Thus, usage of

resource blocks with different parameters can be enabled and various user requirements can be met
1This chapter was published in IEEE Access, 2017 [46]. Permission is included in Appendix A.
2OFDM will remain as the base technology for 5G NR.
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properly. For that purpose, co-existence of different numerologies, i.e., different parameterization of

different subframes, have been intensively discussed in ongoing 5G standardization activities [49].

As a matter of fact, the number of users and the diversity in user requirements, e.g., de-

manded services, channel conditions, used applications, types of mobile devices etc., are going to

keep increasing with the lapse of time. For example, in a forecast provided by [50], the number of

smartphone users will be 264.3 million in the United States by 2021, while it was 189 million in

2015. As a result of a global projection of that increase, monthly mobile data traffic will reach up

to 30.6 exabytes which is eightfold of the one in 2015 [51]. Such a growth in traffic will likely lead to

some enhancements on current concepts such as operation in much higher frequencies beyond the

currently discussed mmWave bands (<100 GHz), deployment of more antennas than the presented

massive-MIMO systems. In this case, current problems faced in these concepts will definitely be

more severe. On the other hand, researchers should get ready for brand new problems as well, with

the development of the novel future concepts which are hard to predict for the time being. Consid-

ering these facts, potential future scenarios will lead to an increase in aforementioned radio access

flexibility requirement for the standards beyond 5G. However, the majority of the current discus-

sions on flexibility for the RATs in NR design are conducted in a limited range by only focusing

on adopting OFDM-based waveform parameters. Reviewing the user requirements along with the

trend from 2G to potential 5G technologies, we believe that the definition of radio access flexibility

should gain a much broader meaning for meeting the future service needs optimally. Therefore, in

this chapter, we discussed some potential directions and provide our proposals on RATs that enable

much more flexibility for standards beyond 5G. In order to avoid any confusion in terminology, let us

define the fundamental terms of RATs in the context of our discussions and wireless communications

literature.

• Waveform: Signal shape in the physical medium formed by a specific method. We consider

waveform as the most basic component of RATs.
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• Numerology: Waveform parameterization to form resource blocks based on user require-

ments and channel conditions. It could be applied to all the users uniformly, or specifically

to user subgroups having similar requirements.

• Frame: The data unit encapsulating the resource blocks generated for the users in the

system. It can be formed using single or multiple numerologies.

The core discussions of this chapter are conducted on the flexibilization of these three elements

representing the RATs. These elements and the challenges to be addressed in order to achieve the

future expectations beyond 5G are visualized in Fig. 4.1. Our contributions in this direction can

be given herein as follows:

• Selected waveform technologies and their flexibility aspects considering the basic waveform

expectations are analyzed.

• Promising concepts are proposed for more advanced parameterization schemes in numerol-

ogy design.

• Novel frame design principles are proposed and a framework is provided for developing

more flexible radio accessing schemes.

• Potential solutions for the issues of future heterogeneous cellular systems are discussed

utilizing flexible RATs.

• Future research directions to develop more efficient multiple accessing schemes using flex-

ible RATs are provided.

In the rest of the chapter, we provide a historical overview on flexible signaling and radio

accessing schemes from 2G to 5G in Section II. Then, discussions evaluating the selected waveform

technologies are provided in Section III. In Section IV, potential improvements upon the numerology

design principles are proposed in order to serve various users more properly with the existing wave-

form technologies. In Section V, we introduce new frame design concepts based on the proposed

numerology principles and two different numerology containment strategies. The first strategy is
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Figure 4.1 Future wireless communication challenges aimed to be addressed by flexible RATs
components.

based on forming the frame with numerologies set by one-waveform and multiple-parameter, while

the second strategy expands that to a hybrid frame consisting of multiple-waveform and multiple-

parameter numerologies. Then, the role that will potentially be played by the flexible RATs for

handling the problems of future cellular systems is discussed in Section VI. Finally, how different

multiple accessing schemes can be enhanced using flexible RATs is discussed in Section VII, and

Section VIII concludes the chapter.
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4.2 A Historical Overview on Flexible Signaling and Radio Access Schemes

Flexible signaling was introduced to cellular communications as early as 2G standardization

via link adaptation techniques, e.g., power control, adaptive modulation and coding (AMC) [52–55].

Such methods improved the user experience by satisfying user needs in various ways [56]. For

example, with AMC, users with low SNR could still receive the data by maintaining the error

performance with lower coding rates or low order (less sensitive) modulations, while users with

higher SNR are able to experience higher data rates [57]. Also, via power control techniques, SNR

of a user can be controlled and a balance between the error performance and power efficiency is

provided.

Link adaptation techniques operate based on the observed SNR without considering the

elements forming the noise3 effect on the signal. If the increase in the error rate occurs due to

the insufficient received power compared to the thermal noise floor, aforementioned link adaptation

techniques are quite useful for sustaining the communication quality. However, degradation in SNR

might also be caused by interference effects (self-interference, other user interference) and hardware

impairments, and link adaptation techniques are usually ineffective in such cases [58]. At this point,

waveform design emerges as another degree-of-freedom to cope against various signal distortions and

interference types. By adapting the waveform parameters properly, wireless signals can easily gain

more robustness against interference [59] and maintain the communication performance [14]. For

example, if the time dispersiveness of the medium increases for any reason, extending the CP rate

as much as the increase in time dispersion avoids inter-symbol interference (ISI) for OFDM-based

signals at the expense of some degradation in spectral efficiency. In addition, different waveform

technologies exhibit different inherent advantages under specific scenarios and circumstances [60].

Therefore, flexibility in waveform selection and parameter adaptation based on varying medium and

user conditions are very critical to optimize the communication performance for all the users.

The early indications of the paradigm shift from the constant waveform design is seen in 4G

standardization for all the links. In Evolved Universal Mobile Telecommunications Service (UMTS)

Terrestrial Radio Access (E-UTRA), usage of different waveforms was proposed for the first time
3Noise represents all the distortion sources in the given SNR expression, here.
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to address the different requirements in the UL and downlink (DL) [61]. As a matter of fact,

DL prioritizes spectral efficiency to satisfy the data hungry users whereas power efficiency is more

critical in the UL to minimize the power consumption of the size limited and battery operated

mobile terminals. Therefore, OFDM is used for the DL while the single carrier-frequency division

multiple accessing (SC-FDMA) is deployed for the UL [62]. Also, in LTE-Advanced (LTE-A), the

first flexible parameter utilization is offered for OFDM based waveforms. Depending on the cell

size, OFDM symbols are designed with either normal CP or extended CP at the base station in

order to maintain interference-free communications [63]. These steps could be considered as the

initial phase of the transition from the fixed waveform to the flexible waveform paradigm. However,

provided flexibility still remains very limited since all the users in a cell are still forced to operate

with a predefined waveform even if they have different requirements.

In order to address the diversified user requirements more conveniently, the trend in 5G

standardization is to extend waveform flexibility to additional parameters such as subcarrier spac-

ing [64]. For carrying that out, the concept of multiple numerology usage, i.e., assigning specific

numerologies to the subgroups formed by users with similar requirements/channel conditions, is

proposed and mostly accepted in 3GPP discussions [65,66]. This concept constitutes a critical mile-

stone in the development of flexible RATs, however, peaceful coexistence of different numerologies

should be investigated carefully.

4.3 Flexibility in Waveform Design

Many waveform schemes addressing various issues have been proposed in the literature so

far and each of them provides different advantages on different use cases and medium conditions.

In 3GPP standardization discussions, OFDM-based technologies have become prominent especially

for broadband systems because of their tempting advantages experienced in the previous genera-

tion and backward compatibility with the existing technologies [67]. However, OFDM is not the

optimum waveform for meeting all the user requirements and has serious shortcomings in some

specific scenarios. Based on the applications, channel conditions and user requirements, alternative

waveforms have obvious advantages and flexibilities not present in OFDM. For example, inherent
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Figure 4.2 The various parameters of OFDM and FBMC waveforms and the physical metrics they
primarily affect (Further indirect relations could be considered, however, only the primary relations
are embodied for the sake of clarity).

rectangular pulse shaping of OFDM symbols forms the OFDM subcarriers with a sinc function.

Therefore, a significant interference on the neighboring frequencies occurs due to the combination

of many subcarrier sidelobes. Also, sinc shaped OFDM subcarriers are very sensitive to channel

frequency dispersions and not preferable for highly mobile scenarios. On the other hand, FBMC

allows subcarrier based filtering with various pulse shaping functions, and forms the time-frequency

characteristics of the signal flexibly. Therefore, aforementioned OFDM problems can easily be solved

by FBMC with a frequency localized pulse shaping function such as root-raised cosine (RRC).

As a matter of fact, each waveform technology is formed by their own specific parameters.

Since these parameters constitute the flexibility aspect of waveform design, their investigation is

critically important for future RATs. However, our goal is to introduce a framework for designing

flexible RATs beyond 5G, rather than a detailed investigation of existing technologies. Therefore,

our arguments and concept proposals will be provided for two fundamental waveforms, OFDM and
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FBMC, for the sake of a clear presentation. However, proposed concepts can be generalized over

other popular waveforms such as UFMC and GFDM as well.

Various waveform parameters representing the flexibility aspects of OFDM and FBMC are

summarized and matched with the main waveform requirements in Fig. 4.2. Note, more parameters

and further relations between these parameters and metrics could be established. However, our

goal is to draft the general picture containing various metrics that could be primarily controlled

by widely known given parameters. These parameters will also be re-visited for the later sections

in which we discuss the potential concepts for developing a fully flexible radio accessing scheme

including the proposals on numerology and frame design principles.

4.3.1 OFDM

OFDM is firstly proposed in the 1960s by Chang [68] and Saltzberg [69], and became very

popular following the development of FFT algorithm. A basic block diagram of its transceiver is

given in Fig. 4.3. It has already been widely deployed in previous wireless digital communication

standards such as LTE and Wi-Fi because of its tempting advantages, e.g., low-complexity imple-

mentation and the robustness against multipath channels with single-tap FDE [70]. However, plain

OFDM signals have high PAPR as a result of parallel signal transmission, and therefore, suffer

from the distortions due to the non-linear characteristics of the PAs [12]. In addition, sinc shaped

subcarriers make OFDM vulnerable against Doppler spread and result in a high OOB radiation

which degrades the efficiency of overall spectrum utilization. Considering these advantages and

shortcomings, the main parameters representing the flexibility aspect of OFDM can be given as

follows.

• CP Rate: One of the most critical and characteristic parameters of OFDM is CP which

enables converting the linear convolution of the wireless channel and signal to a circular

convolution, and facilitates the single-tap FDE. When CP length is determined as large

as the delay spread, an ISI-free transmission is guaranteed. Therefore, CP rate directly

provides robustness against the time dispersion effect of the wireless medium. Also, CP

enables compensation of timing errors unless the error is smaller than the CP duration [71].
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In addition to these advantages, CP could be exploited for many useful receiver operations

such as signal parameter estimation [72], synchronization [73] and channel estimation [74]

without pilot signals, i.e., blindly. However, increasing CP rate results in a degradation

in spectral efficiency along with more latency and the introduced cyclic features might

degrade the signal security [75].

• Windowing/Filtering4: In order to suppress OOB leakage, transmitter windowing and fil-

tering operations are well-accepted methods in the literature because of their low complex

implementation and compatibility with the conventional receivers. Also, windowing at

the receiver reduces the interference received from adjacent channels [76]. However, they

require an extension in CP size for maintaining ISI-free transmission which decreases the

spectral efficiency and increases the latency.

• Subcarrier Spacing: Multicarrier systems inherently provide robustness to time dispersions

by dividing the wide transmission band into smaller subcarriers whose bandwidth is less

than the coherence bandwidth. However, that cause a serious extension in symbol time and

in highly mobile/time-varying medium, OFDM signals may seriously suffer from Doppler

spread if the channel response significantly changes within a symbol duration. Therefore,

subcarrier spacing should also be large enough to keep the symbol time shorter than

the effective channel coherence time [77]. This is also critical for users demanding low

latency requiring services [78] and mmWave systems that experience high phase noise

with increasing carrier frequency. Yet, reducing symbol time corresponds to a proportional

increase in CP rate for a given CP length and therefore, degrades the spectral efficiency.

• Num. of Subcarriers: Data transmission speed is directly related to the bandwidth and

the only way of increasing it for a given subcarrier spacing is to increase the number of

subcarriers. However, this corresponds to parallel transmission of more signals which leads

to a proportional growth in PAPR problem [79].
4Windowing and filtering based OFDM signals are also considered as different waveforms in the literature, i.e.,

filtered-OFDM and WOLA-OFDM. However, we prefer to include them in OFDM parameters for providing a better
understanding of OFDM flexibility.
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Figure 4.3 OFDM transceiver block diagram including windowing and filtering.

Backward compatibility with the existing technologies along with the aforementioned ad-

vantages makes OFDM an appealing technology. Therefore, the primary waveform preference will

be in favor of OFDM rather than going for a new waveform, as can be seen in the current stan-

dard discussions [19–21] conducted for 5G. However, alternative schemes, e.g., GFDM, UFMC and

FBMC, offer critical advantages over OFDM in various scenarios and should still be considered for

future standards.

4.3.2 FBMC

FBMC is one of the most well known multicarrier modulation methods in wireless commu-

nications literature whose basic transceiver block diagram is given in Fig. 4.4. It is also discussed as

a waveform candidate for 5G and beyond in [11]. Its main advantages stem from the shaping ability

of each subcarrier individually and the availability of many pulse shaping filters in the literature as
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drafted in [12]. There are filters fully orthogonal in both domains while being very sensitive against

impairments in one domain, e.g., rectangular, raised cosine, Mirabbasi-Martin etc. On the other

hand, non-orthogonal pulse shaping functions such as Gaussian and Prolate introduce some inter-

ference between neighboring symbols but confines the pulse energy well in both domains. Freedom

in selecting any of these filters facilitate a great flexibility in the utilization of spectral resources

along with meeting various user requirements such as robustness against channel dispersions. For

example, a rectangular filter is preferable for time dispersive channels while raised cosine filter is

more robust against frequency dispersion. Many other pulse shaping filters are investigated in the

literature to cope against channel dispersions and to provide a reliable system design based on

different scenarios [12].

Besides the filter selection flexibility of FBMC, filter specific parameters could be used

to enable more sensitive adjustments in filter characteristics and enhance the flexibility further.

Additionally, unlike OFDM, there is no CP or guard time requirement in FBMC. Therefore, spectral

efficiency is not degraded by such redundancies. Some of the important parameters providing

flexibility in FBMC waveforms can be given as follows.

• Filter Length: Especially for ideally infinite filters, this is an important parameter. Keep-

ing the filter length shorter reduces the effect of one symbol on other successive symbols.

Also, latency could be decreased by truncating filter tails for small size frames. However,

truncation corrupts the ideal structure of these filters and cause orthogonality loss in the

time domain and spectral growth in the frequency domain.

• Filter Localization in Time/Frequency: For a given filter length, time and frequency

domain localization of various filters could be adjusted in a trade off fashion by filter

specific parameters, e.g., the roll-off factor (α) of RRC and standard deviation (σ) for

Gaussian filters. This is a significant advantage for adapting the signal against varying

channel effects, i.e., dispersion in time and frequency domains. For example, making filters

more frequency localized increases the robustness of signal against Doppler spread. On the
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other hand, time localized filters are better for time dispersive channels and also prevent

the filter tails from being added on top of consecutive symbols which lowers the PAPR.

"Subcarrier spacing" and "number of subcarriers" have similar effects as explained for OFDM.

Therefore, they are not given for FBMC, separately.

Despite all the advantages offered by FBMC, implementation and equalization are not as

simple as OFDM for many scenarios and this constitutes its primary drawback [13]. Also, usage of

long filters introduces an excessive computational complexity for MIMO detection as the channel

coherence bandwidth would fall below the subcarrier bandwidth [80], which would cause a problem

in one of the most popular services in 5G. However, aforementioned advantages still keep its potential

for many of the future applications and scenarios.

4.4 Flexibility in Numerology Design

Providing the aforementioned flexibility requirements by utilizing the parameters of a single

waveform is not possible as each technology has its own advantages and drawbacks. If a novel

waveform technology addressing all the user requirements and channel conditions could be developed

and widely accepted by the academia and industry, a system design with a single waveform would

be possible. However, the existing technologies can only provide a different trade-off for a given

set of parameters. Therefore, the only option for a sufficiently flexible radio access is to enable the

coexistence of multiple numerologies as proposed in the 5G standardization. However, currently

proposed numerologies provide a limited flexibility due to the fix parameterization strategy. In this

section, we discuss how to apply more advanced waveform parameterization methods to achieve

further flexibility in numerology design.

Since OFDM is the dominant candidate as the base waveform of 5G technologies, current

numerology discussions are mostly done on OFDM parameters, e.g., CP rate, subcarrier spacing etc.

To the best of our knowledge, one of the first schemes proposing the usage of multiple numerologies

is presented in [81] for OFDM blocks divided in the time domain. Based on the user needs, these

blocks are generated with different CP sizes and subcarrier spacings, and successively aligned (i.e.,

consecutively transmitted) in the time domain. Since OFDM is a well-localized waveform in time
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Figure 4.4 FBMC transceiver block diagram.

domain, orthogonality between the consecutive blocks (subframes) is perfectly maintained as well.

However, limiting the placement of numerologies only to time domain prevents a fully flexible

utilization of time/frequency plane especially for the users requiring different numerologies at the

same time. Therefore, aligning different numerologies in the frequency domain is also included in

3GPP discussions even though there will be a non-orthogonality issue between the subframes.

A similar numerology design can also be considered for FBMC schemes in terms of FBMC

parameters. Prototype filters, filter specific parameters and subcarrier spacing values could be

selected based on the user groups to provide a proper service. In order to show how such a pa-

rameterization affects the time-frequency characteristics of FBMC numerologies, an illustration of
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Figure 4.5 Ambiguity functions (10log10(|=(τ, ν)|2)) generic root-raised cosine filters generated with
various design parameters, used for adapting signal characteristics in time and frequency domains.

RRC filters with different roll-off factors (αs) and filter lengths (Ks) is provided in Fig. 4.5 via

ambiguity functions (AFs). which is a two-dimensional correlation function in the time-frequency

plane, whose analytical expression is given as

=(τ, ν) =

∫ ∞
−∞

ptx(t+
τ

2
)p∗rx(t− τ

2
)e−j2πνtdt, (4.1)

where ptx(t) represents the transmitter filter and p∗rx(t) is the complex conjugate of receiver filter.

By taking the projection of the receiver filter on the transmitter filter, AFs not only show the distri-

bution of pulse energy in time and frequency domains but also visualize the required time/frequency

offset values for keeping the filters orthogonal. In another aspect, AFs illustrates the filter robustness

against ICI/ISI due to different effects, such as the dispersion of the wireless channel.

As seen in Fig. 4.5, α and K are very critical parameters for RRC shaped signals and

should be selected carefully considering the user requirements and channel conditions. Although

the examples are given over RRC pulses, aforementioned statements are also valid for different pulse

shaping functions. Considering their inherent advantages, alternative filters along with their design
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parameters should also be considered in FBMC numerology design for meeting the user requirements

more properly [82].

FBMC numerologies would be very convenient for different users sharing the frequency

resources at the same time. Since FBMC blocks can be designed as well localized in frequency

domain, orthogonality between the different numerologies will not be lost when they align in fre-

quency domain unlike the case with OFDM numerologies. From that perspective, OFDM and

FBMC numerologies are perfectly complementing each other.

Aforementioned numerology design, based on user specific determination of the parameters

such as CP and subcarrier spacing in OFDM and prototype filters in FBMC, definitely provides

important flexibility features for an efficient sharing of the spectral resources. However, in order to

enable further flexibility and increase the overall efficiency, different parameters and more advanced

parameterization methods should be jointly considered. For example, in OFDM signals, there are

other critically important parameters such as windowing which can be utilized to develop much-

advanced OFDM numerologies. A good example of this claim is presented in [24] where the size of

windowing functions are gradually applied within a subframe. By keeping the total guard interval

the same, edge subcarriers are designed with more windowing while the inner subcarriers have lower

windowing. Since the OOB leakage mostly occurs due to the edge carriers, interference emission

of the OFDM block is well suppressed while the inner subcarriers conserve their robustness against

larger delay spreads. By performing an OFDM numerology design with this concept along with

a proper scheduling, a subgroup of the users could be served in the same numerology much more

properly. The users experiencing higher delay spreads could be assigned to the inner subcarriers

while the ones with low delay spread can utilize the edge subcarriers [83]. By doing so, no need

remains for a separate numerology design for the users with different CP requirements, which is

a great advantage compared to the classical numerology design strategies. An illustration of this

advanced parameterization is exampled in Fig. 4.6 which is referred to as edge-windowed OFDM

numerology. As seen in this example, usage of such parameters and parameterization methods can

enable much flexible numerology designs. Also, there is an obvious research gap in this direction

considering other various windowing and filtering techniques as presented in [84].
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A similar parameterization strategy is proposed in [85] for filtered multitone (FMT) mode

of FBMC schemes. Rather than using a prototype filter for all the users, user-specific filters are

dynamically utilized to control the effect of time and frequency dispersions, i.e., ISI and ICI. RRC

filters are deployed for this study and filter adaptation is done with α. This strategy is presented

for a specific scenario, however, it could be generalized for forming more flexible numerologies. For

example, if the interference between successive blocks in time is the main issue, edge symbols in

time can be shaped with sharper filters in time domain (designed with larger αs) as illustrated in

Fig. 4.6 which is referred to as edge-filtered FBMC numerology. For the same purpose, shorter

filter lengths can also be applied to the edges. One may note that such methods might introduce

some ICI for the edge symbols due to the expansion in frequency caused by either filter truncation

or larger α usage. However, by assigning those symbols to the users that are more computationally

capable and be able to perform interference cancellation, error performance can be maintained and

energy leakage from the FBMC block can easily be controlled in time domain.

In order to understand the effect of such techniques and compare with the classical ap-

proaches, power emission of OFDM subcarriers in frequency domain and FBMC filter tails in time

domain are given in Fig. 4.4 and Fig. 4.4. For OFDM, 64 edge subcarriers on the right side are

windowed with a raised cosine function where α = 0.1 and no windowing is applied for the 64

subcarriers on the left side (having negative indices). Then it is compared with no windowing and

regular windowing approaches. Similarly, 64 FBMC symbols on the right edge are shaped with an

RRC filter whose α is 0.1 while the symbols on the left side are shaped with an RRC having α = 0.

Then it is compared with regular prototype filtering for α = 0 and α = 0.1. As obviously seen, edge

operations are significantly suppressing the sidelobe/tail energies on a target region while providing

more flexible numerology structures.

It should be noted that these examples are only given to express how such concepts can

enable a flexible numerology design for a given waveform and to fix specific problems such as the

interference emitted by numerologies. Considering different problems, user needs, system require-

ments and waveform parameters many research opportunities can be created in flexible numerology

design context.
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Figure 4.6 Two samples of flexible numerology design: Edge-windowed OFDM and edge-filtered
FBMC numerologies.
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Figure 4.7 Power leakage of OFDM subcarriers (sidelobes) windowing techniques and conventional
approaches.

4.5 Flexibility in Frame Design

In order to provide a complete picture of our future vision, in this section, we raise the

question of how to form flexible frames in the light of our earlier discussions and proposals. We

firstly discuss how to improve the existing frame design paradigm where multiple numerologies

based on a single waveform coexist in one frame. Secondly, in order to provide further flexibility
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Figure 4.8 Power leakage of FBMC filters (tails) for edge filtering techniques and conventional
approaches.

and spectral efficiency for future radio access schemes, we propose and investigate the concept of

hybrid frames including multiple numerologies based on multiple waveform technologies.

4.5.1 Single Waveform Numerology-based Frame Design

In single waveform numerology based frame design procedure, frames are formed with mul-

tiple numerologies which differ in parameterization while the base waveform technology is the same.

61



fr
eq
u
en
cy

time

Frame − 1:Mixed OFDM Numerologies

Frame − 2: Hybrid OFDM/FBMC Numerologies

(𝑂11)

(𝑂12)

(𝑂14)

(𝑂21) (𝑂22)

(𝐹24)

(𝐹22)

{■, ■, ■, ■, ■} = OFDM Numerologies {■, ■, ■, ■} = FBMC Numerologies {■, ■, ■, ■} = CP ◨= Windowed CP

{  ,  } = Edge Filtered FBMC Subcarrier {◨,  } = Edge Filtered FBMC Symbol {  ,  } = Edge Filtered OFDM Subcarrier

◨

◨

(𝑂23)
(𝐹23)

◨

◨

◨

(𝐹21)

(𝑂15)(𝑂13)

Figure 4.9 Examples of proposed single waveform numerology based frame design (Frame-1) and
multiple waveform numerology based frame design (Frame-2) consisting of mixed OFDM and FBMC
numerologies (Frame-1 can be considered as an improvement over currently discussed frame designs
for achieving more flexibility while Frame-2 extends that flexibility to the usage of multiple wave-
forms based on the user needs, enabling the system to select the best waveform for each user).

The 5G frame design discussions can be considered in this category since the numerology discussions

are mostly conducted on the OFDM waveforms and parameters.

The main issue discussed for multiple numerology based frame design is inter-numerology

interference (INI). OFDM based numerologies are fully orthogonal in time domain, however, mis-

match in some parameters such as different subcarrier spacings leads to INI in frequency domain.
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Figure 4.10 AF of two OFDM subcarriers (∆F1 = F/2,∆F2 = F )

Therefore, coexistence of OFDM numerologies is addressed via OOB leakage suppression of each

numerology which is mostly done by applying classical windowing and filtering techniques. Thus,

the required guard bands between numerologies could be significantly reduced. However, classical

windowing and filtering techniques either require an extension in CP size or introduce ISI as men-

tioned earlier. Therefore, spectral degradation or signal distortion still remains as an issue to solve.

In order to overcome this problem, we propose to deploy aforementioned flexible numerology designs

such as the ones generated with edge-windowing. In Fig. 4.9, such a frame structure is exemplified

in Frame-1 and an edge-windowed numerology is illustrated (O14). When this structure is combined

with the proper user scheduling, spectral efficiency and the flexibility can jointly be provided for

satisfying a wide variety of user requirements [83]. Note that, edge windowing represents a con-
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Figure 4.11 AF of an OFDM subcarrier (∆F = F/2) and an FBMC subcarrier (RRC, α = 0)

cept here and can be generalized to different techniques with different parameters such as sharper

filtering (in frequency domain) of edge carriers as shown in Fig. 4.9 (O13).

FBMC numerology based frames should also be evaluated in this context for future stan-

dards. Due to the good frequency localization and subcarrier based filtering ability of FBMC

numerologies, inherent and complementary advantages can be provided for many scenarios over

OFDM based frames. For example, multiplexing different numerologies in frequency domain might

be highly preferred for designing a frame with the purpose of serving the users who need multiple

services simultaneously. Furthermore, FBMC can easily handle the high mobility scenarios that are

problematic for OFDM. All in all, FBMC based frames could close the gaps of OFDM-only based

frame deployments. In case of a time domain multiplexing scenario, which is the dual problem of
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Figure 4.12 AF of an OFDM subcarrier (∆F = F/2) and an FBMC subcarrier (RRC, α = 1)

FBMC analogous to the frequency domain multiplexing issue of OFDM numerologies, edge filtering

type of concepts can lower the required guard times and facilitate a spectrally efficient frame design.

4.5.2 Hybrid Waveform Numerology-based Frame Design

The agreement on usage of multiple numerologies in the same frame represents a critical

milestone and we provided our proposals to enhance this structure via using more advanced nu-

merologies. However, defining multiple numerologies in terms of the same base waveform technology

is still a limitation for the flexibility. Therefore, we propose a novel concept of hybrid frame design

via the inclusion of multiple waveform based numerologies as illustrated in Fig. 4.9 (Frame-2).

As mentioned in the previous subsection, the main concern in coexistence of multiple nu-

merologies is the INI, which might occur even if they are generated with the same waveform technol-

ogy. For example, in Fig. 4.5, AF of two OFDM subcarriers with different bandwidths (subcarrier
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spacing) is given where ∆F1 = F/2,∆F2 = F . As obviously seen, they are only orthogonal when

the narrower subcarrier is aligned with the null of broader subcarrier. That means, half of the sub-

carriers are interfered for the numerology with smaller subcarrier spacing while all the subcarriers

are interfered on the side of numerology with larger spacing. At this point, we raise our question:

Does this issue get worse when different waveforms are used in a hybrid fashion?

Let us consider two user groups where the group-1 suffers from high delay spread while the

group-2 is highly mobile. In the context of 5G discussions, both numerologies would be OFDM based

and subcarrier spacing for the group-2 would be determined as larger to increase robustness against

Doppler spread. On the other side, smaller subcarrier spacing is more preferable for the group-

1 in order to keep CP redundancy lower and to make subcarriers more robust against frequency

selectivity. At this point, let us extend this structure to a hybrid frame and allow the group-2 to

use an FBMC based numerology whose subcarriers are shaped with RRC filters. From the group

specific perspective, FBMC numerology is definitely a better option for the group-2’s scenario as the

subcarriers could be well-localized and robust against Doppler spread. The critical question here is

how an OFDM numerology and FBMC numerology can coexist. Intuitively, an FBMC numerology

causes lower interference to an OFDM based numerology on a neighboring frequency compared to

another OFDM based numerology with different subcarrier spacing. In Fig. 4.5, this is illustrated

via the AF of one OFDM (∆F = F/2) and one RRC shaped FBMC subcarriers (∆F = F/2, α = 0).

Obviously, periodic nulls exist on time and frequency axes for this example which means coexistence

of OFDM and FBMC pulses does not create more severe problems compared to the coexistence of

two differently parameterized OFDM subframes. One may point out the interference pattern in

time axis of Fig. 4.5, however, proper adjustments on filter parameters would provide a solution

as shown in Fig. 4.5 where the RRC filter is generated for α = 1. For instance, in Fig. 4.9, the

guard time requirement between (F23) and (O23) can be decreased via using sharp filters (in time

domain) for edge symbols of (F23). Additionally, adjusting OFDM and FBMC numerologies jointly

with aforementioned windowing/filtering methods could also enable a more peaceful coexistence.

For example, required guard band between the OFDM numerology, (O22), and FBMC numerology,

(F24), can be reduced via jointly applying edge windowing and edge filtering techniques.
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Considering such examples from a wider perspective including alternative waveform and

numerology design strategies, we strongly believe that extending the flexibility in frame design with

hybrid waveform numerologies would not only provide a more satisfactory experience to the users

with a wide variety of requirements, but also can lead to a more efficient usage of spectral resources.

4.6 Conclusion

In this chapter, considering the future growth in the quantity of wireless devices, applications

and heterogeneity of user requirements, we presented a framework for developing flexible RATs

aimed at standards beyond 5G. This framework is supported via proposing novel concepts for

forming advanced and flexible RAT elements. Pointing out the inefficiency of the fixed waveform

parameterization of 5G numerologies, advanced numerology design principles are explained over

flexible parameterization methods for a more efficient exploitation of existing waveform technologies.

Then, in order to achieve further flexibility, we proposed novel frame design strategies based on

the advanced numerologies. Thus, a comprehensive picture of our vision on future flexible RATs

is provided to facilitate supporting a wide variety of services and meeting highly diversified user

requirements.
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CHAPTER 5

CYCLIC FEATURE SUPPRESSION FOR PHYSICAL LAYER SECURITY1

Cyclic prefix (CP) is a very useful signal component in broadband wireless communication

techniques such as single-carrier frequency domain equalization (SC-FDE) and orthogonal frequency

division multiplexing (OFDM). In time dispersive channels, its usage offers a considerable advan-

tage in equalization complexity. For instance, when an OFDM symbol in time domain is cyclically

extended longer than the maximum excess delay of the multipath channel, linear convolution of

the transmitted signal and the channel impulse response (CIR) can be considered as a circular

convolution at the receiver. Therefore, transmitted symbol bins mixed up with the previous ones

due to the time dispersion effect of multipath channel can be recovered with a single-tap frequency

domain equalizer and equalization complexity decreases significantly. In addition to these advan-

tages, CP introduces cyclic features to the signal and they can be utilized for many useful receiver

operations such as signal parameter estimation [72, 86–88], synchronization [73, 89] and channel

estimation [74,90] without needing extra training signals.

Considering the aforementioned advantages, CP might be assumed as a very beneficial com-

ponent of the signal rather than a redundant extension. On the other hand, unauthorized users may

also attempt to exploit the cyclic features introduced by CP in order to extract the signal parame-

ters, achieve synchronization and decode the data for malicious purposes. In such a scenario, even

well-known secure communication techniques such as frequency hopping (FH) and direct sequence

spread spectrum (DSSS) may remain vulnerable, since the cyclic features exist anyways when the

CP is conventionally deployed [91]. Conventional encryption based techniques providing bit-level se-

curity have already been deployed at the application layer to secure the data against eavesdroppers.
1This chapter was published in Elsevier Physical Communication [75] as an extension of [97]. Permissions are

included in Appendix A.
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However, further secrecy precautions might still be essential for many applications especially for

the critical domains such as health care, public safety and military. Physical layer (PHY) security

offers a promising solution to meet this requirement by providing the security in the transmission

level. In this context, cyclic feature suppression is also very critical and should be achieved for a

covert signaling.

In the literature, various techniques are presented to achieve cyclic feature suppression es-

pecially for OFDM systems. One of the first studies in this direction is done in [92] where cyclic

features introduced by the preambles are highlighted. In order to facilitate time and frequency

synchronization pseudo-random sequences are used instead of conventional preambles and then,

a random frequency offset is added to each preamble to mask the spectral lines further. In [93],

embedding OFDM symbols into a notched ultra wide band (UWB) noise signal is proposed. The

goal here is to build a secure network among radars via making the system spectrally undetectable.

However, sharp filters are used for designing such a system, and bit error rate (BER) performance

is degraded due to the noise addition. Another technique for achieving a covert communication is

UWB-OFDM where the signal spreads over a very large band in frequency domain and the power

level of the signal becomes smaller than the noise level. However, UWB suffers from in-band in-

terference and has practical difficulties in hardware design. OFDM signals are generated with a

random frequency jitter in [91] to conceal cyclic signatures. Time jitter can also be used in FH-

OFDM signals for suppressing spectral lines at symbol and hopping periods. In [94], CP and pilot

tones are completely removed to suppress OFDM features, and inter-symbol interference (ISI) is

handled using a decision feedback equalizer (DFE). However, such an approach obviously increases

the receiver complexity and eliminates the advantage of OFDM in handling multipath by using CP.

As a practical solution, random data sequences with various sizes are inserted between OFDM sym-

bols in [95] to remove the periodicity of CP. Additionally, CP length is adaptively adjusted based

on the maximum excess delay of the channel as an extra precaution. An alternative approach for

slowly fading channels is proposed in [96] where CP length is pseudo-randomly changed. However,

both techniques lead to waste of spectral resources by either using the CP longer than required or

inserting irrelevant signals between the data symbols. If the CP size is determined shorter than
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Figure 5.1 Calculation of synchronization metric by exploiting cyclic prefix.

maximum excess delay of the channel for some of the symbols, not to degrade spectral efficiency,

then ISI would emerge as another issue. In [97], cyclic feature suppression is achieved without

introducing aforementioned spectral redundancies via a novel CP selection mechanism. Basically,

shifting the CP selection region towards the next OFDM symbol by a positive random variable is

proposed without changing CP size. By doing so, cyclic features will be suppressed without adding

any redundancy to the signal as the CPs will not be correlated with the last samples of the actual

data periodically. However, this technique requires a modified equalization with more complexity

and leads to a bit of degradation for the bit-error-rate (BER) performance of OFDM signals.

In this chapter, along with our technique presented in [97], we propose a novel cyclic feature

suppression technique by randomizing actual data transmission time for each OFDM symbol. Unlike

the conventional procedure, symbol time is varied in a random manner by changing the number of

quadrature amplitude modulation (QAM) symbols carried by an OFDM signal while CP duration is

kept the same. In this way, periodicity of CPs will be removed and cyclic features will be suppressed

without introducing any extra resource usage. Note that, this operation corresponds to changing

IFFT/FFT size in generation of OFDM symbols and this change is directly related to the symbol
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duration. Then, bandwidth of each subcarrier will change inversely, i.e., if the symbol duration

is increased for an OFDM symbol, more subcarriers will be fit into the total given bandwidth.

Therefore, more time duration means more data transmission for one OFDM symbol, and vice

versa. By doing so, the spectral efficiency is kept constant for each symbol. In addition, the

number of QAM symbols is determined considering PAPR mitigation and out-of-band leakage, i.e.,

sidelobe, suppression. Thus, a further improvement is obtained at the expense of an extra signaling

and complexity in signal generation.

In both techniques a random variable should be shared by the legitimate users. In order

to carry that out securely without any extra signaling, we exploit the channel state information

(CSI), which is always required for equalization, to generate a seed number. Then random variables

for each symbol are identically generated in a pseudo-random manner by both users, and seed can

be updated based on the variations in CSI. However, CSI based random number cannot be used

for PAPR or sidelobe suppression purposes due to the dependency on data for each symbol. The

proposed techniques are presented for OFDM and SC-FDE schemes, and their performances are

investigated in terms of error probability and complexity as well as cyclic feature suppression.

The rest of the chapter is organized as follows. Section II provides an overview of blind

parameter estimation and synchronization algorithms based on cyclostationary introduced by CP.

The CP selection method is presented in Section III while the symbol time randomization technique

is described in Section IV. Numerical results are given in Section V, and Section VI concludes the

chapter with a final discussion.

5.1 Blind Parameter Estimation, Synchronization and Equalization with CP

Blind receiver design is a very important topic especially for military communications and

public safety domain and well investigated in the literature. In this regard, the proposed algorithms

targeting to achieve parameter estimation [72, 86–88] and channel identification [90, 98] are mostly

utilizing cyclic features (or cyclostationarity) introduced by the CP. If the transmission parameters

such as OFDM symbol duration (frame duration for SC-FDE) and CP size, are somehow estimated,

blind synchronization in time and frequency can be performed by exploiting the CP. A simple
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illustration of the maximum-likelihood (ML) based synchronization is given in Figure 5.1. The

synchronization metric providing the sample index where OFDM symbol starts, can be calculated

as

R(l) =

NCP−1∑
n=0

s[l − n]s∗[l − n+NS ], (5.1)

where s[n] is the received signal, NCP is the length of CP and NS is the length of the useful portion.

Then, the synchronization parameters including the timing position of the symbol, τ̂0, and the

frequency offset caused by the mismatch between local oscillators of the transmitter and receiver,

f0, can be extracted as

τ̂0 = arg max
l
{|R(l)|}, (5.2)

f0 =
1

2π
6 R(τ̂0). (5.3)

One may note that, the received signal is distorted after passing through the multipath

channel and due to the additive noise. Thus, obtaining synchronization parameters with one sym-

bol is not practical by just performing this method. Moreover, frequency offset causes an extra

degradation in the correlation of the repetitive components. Therefore, the metrics given in (2) and

(3) should be calculated for a number of symbols and their averaging should be done to achieve a

reliable synchronization. After carrying out synchronization and parameter estimation, the effect

of multipath channel can easily be fixed with a single tap frequency domain equalization and the

data can be decoded.

5.2 Cyclic Feature Concealing CP Selection

In Figure 5.2, we illustrate cyclic features for a conventional OFDM signal via the cyclic

autocorrelation function (CAF) (likewise possessed by classical SC-FDE signals). As discussed in

earlier sections, such features introduced by CP can be exploited for blind signal demodulation and

this can enable unauthorized users to eavesdrop the communication by obtaining the transmitted
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data. Therefore, suppressing the these features is very critical for protecting data against potential

eavesdropping attacks. In this section, we present our CP selection method (firstly proposed in [97])

that conceals the CP based cyclic features without degrading spectral efficiency while maintaining

the low complexity frequency domain equalization in general. Unlike the classical procedure in CP

selection, i.e., picking the last NCP samples of the time domain symbol (or frame for SC-FDE), we

shift the CP selection region towards the next symbol by a positive random variable as shown in

Fig. 5.3. Since, the time duration between CP and its selection region varies for each symbol, cyclic

features are suppressed and blind decoding of the data becomes much more difficult. Note that, the

shifting information of each symbol should also be known by the receiver. For improving security

further, guard time between frames, i.e., packets, can also be randomized. Thus, each frame is

required to be synchronized individually and the suppressed cyclic features remain useless for the

limited number of symbols in a frame.

In order to represent the proposed method analytically, let us define the ith time domain

symbol vector as

x̂xx(i) = [ΓΓΓ(i) xxx(i)], (5.4)

where ΓΓΓ(i) is the CP whose selection region is shifted by N (i)
α towards the (i+ 1)th data block, and

xxx(i) = [x
(i)
1 , x

(i)
2 , ... , x

(i)
N ] is the useful data part. Assuming N (i)

α takes value between zero and NCP ,

ΓΓΓ(i) is defined as

ΓΓΓ(i) = [x
(i)

N−NCP+N
(i)
α

, x
(i)

N−NCP+N
(i)
α +1

, ...

x
(i)
N , x̂

(i+1)
1 , x̂

(i+1)
2 , ..., x̂

(i+1)

N
(i)
α

]. (5.5)

In equalization stage, the proposed CP selection mechanism has to be taken into account for

maintaining low complexity and zero ISI advantages at the receiver side. Therefore, each symbol

is considered with an additional extension of N (i)
α samples from the next time domain symbol as
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illustrated in Fig. 5.4. Let us define the extension including time domain samples of the lth

symbol copied from the received signal as yyy(l) = [y
(l)
1 , y

(l)
2 , ... , y

(l)

N+NCP+N
(l)
α

]. After CP removal, i.e.,

removing the first NCP elements of yyy(l), frequency domain equalization is performed to estimate

the data including the aforementioned extension in frequency domain as

Ŷ
(l)
k =

Y
(l)
k H∗kl
|Hkl|2

, (5.6)
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Figure 5.2 Cyclic autocorrelation function (CAF) of a conventional CP-OFDM signal (same as
conventional SC-FDE).
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Figure 5.3 Illustration of cyclic feature concealing CP selection.

where Hkl is the frequency response for the lth symbol, assumed to be known by the receiver, that

corresponds to kth bin in frequency domain, and

Y
(l)
k =

N+N
(l)
α∑

n=0

y(l)n e
−j2πkn/(N+N

(l)
α ). (5.7)

CP selection
region

Useful Data

Equalized Portion

CP

Time Symbol

Figure 5.4 Illustration of the equalization part for an OFDM symbol designed with the proposed
method.
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Since the convolution of yyy(l) with the channel is circular, one-tap frequency domain equal-

ization, given in (6), compensates the multipath channel effect. However, the N (l)
α − point extension

in the lth symbol still exists and should be removed to obtain the pure data.

The remaining operations including equalization and N
(l)
α − point extension removal are

separately given for OFDM and SC-FDE schemes in the following subsections. Then, the effect of

proposed structure on their error performance could also be discussed in a clear way.

5.2.1 OFDM

Removal of extension after equalization requires symbols to be transformed back to the time

domain in OFDM. After doing so and removing the extension, fast Fourier transformation (FFT)

of the actual time domain symbol is taken to obtain the estimated elements of the useful data set,

SSS(l) as

S
(l)
k =

N∑
n=0

s(l)n e
−j2πkn/N , (5.8)

where the data set of s(l)n selected from the first N element of the equalized yyy(l) can be defined as

sss(l) = [ŷ
(l)
1 , ŷ

(l)
2 , ... , ŷ

(l)
N ] and

ŷ(l)n =
1

N +N
(l)
α

N+N
(l)
α∑

k=0

Ŷ
(l)
k ej2πnk/(N+N

(l)
α ). (5.9)

Even though, the time dispersion effect of the channel can easily be compensated and the

actual data can be obtained at the expense of a reasonable complexity introduced by an extra

FFT/IFFT operation, the proposed technique may result in a degraded BER performance for

OFDM. In conventional OFDM, subcarriers are independent of each other. Therefore, in case

of a deep fading in a part of the transmission frequency, only the data assigned to the deep faded

subcarriers are severely affected from the noise. However, in the proposed method, the number of

samples changes through the extension removal process after equalization. In this case, the fading

effect cannot be kept only in the corresponding frequencies, inevitably and the enhanced noise af-
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Figure 5.5 Illustration of cyclic feature suppressing symbol time randomization and resulting ran-
domized correlation peaks.

ter equalization contaminates the neighboring subcarriers which would lead a degradation in BER

performance.

5.2.2 SC-FDE

In SC-FDE schemes, IFFT is applied to the signal for obtaining the transmission data after

equalization as

ŷ(l)n =

N+N
(l)
α∑

n=0

Ŷ
(l)
k e−j2πkn/(N+N

(l)
α ). (5.10)

Since the random extension exist in the time domain, it can be directly removed from the lth

signal and the useful data can be obtained as ỹ(l)n = [ŷ
(l)
1 , ŷ

(l)
2 , ... , ŷ

(l)
N ]. Note that, unlike OFDM,

removal of the redundant part does not require an extra FFT/IFFT and therefore, the proposed

technique introduces no additional complexity for SC-FDE. Also, there is nothing to degrade BER

performance unless the channel changes through the extension duration.

5.3 Cyclic Feature Suppressing Symbol Time Randomization

In order to suppress the cyclic features stemming from periodicity of CPs, we propose a

symbol time randomization in this section as illustrated in Fig 5.5. Unlike our first technique, we

keep the general structure of CP selection and equalization part the same as the conventional OFDM
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and SC-FDE. On the other hand we change the symbol time by a random index for by varying the

number of QAM-symbols carried by each symbol. Let us represent ith time domain symbol as done

in Eq. 5.4,

x̄xx(i) = [Γ̃̃Γ̃Γ
(i)

x̃̃x̃x(i)], (5.11)

where x̃̃x̃x(i) = [x
(i)
1 , x

(i)
2 , ... , x

(i)

N+N
(i)
γ

] is the actual data vector with a varying size specified by the

discrete random variable N (i)
γ and Γ̃̃Γ̃Γ

(i)
is the CP selected from the last NCP bins of x̃̃x̃x(i). Note

that, changing the symbol time is done by changing the number of subcarriers for each symbol. For

example, if the symbol time is extended by a positive number assigned as N (i)
γ , more subcarriers

are allocated on the given band, i.e., more QAM-symbols are transmitted in parallel during the

symbol duration. Therefore, the ratio between the symbol time and number of symbols carried for

each symbol remain the same, and this corresponds to have the same spectral efficiency for each

symbol. One may note that the ratio between the CP duration and symbol duration is also effective

on spectral efficiency. Although, we change this ratio for each symbol in this technique, it will not

be affecting the spectral efficiency as long as the mean of N (i)
γ is zero. Note that, the equations

of the remaining processes in the transmission and reception are not given for this technique since

they are not different than the regular implementation of plain OFDM and SC-FDE.

An important issue to be considered from practical point of view for both techniques is the

implementation of FFT/IFFT algorithm. In both methods, the number of FFT/IFFT points are

changed, and it will not be a power of two unless the extension amount is as much as the length

of one whole symbol. In order to meet the requirement of having a power of two bins for the

implementation of FFT algorithm, we perform interpolation and complete the number of bins to

the next closest power of two, e.g., if the number of bins in the symbol is 268 after implementing

any of two techniques, it is interpolated and up-sampled to have 512 bins. This complementing

operation can easily be done by zero padding before taking IFFT and by adjusting the sampling

rate at the transmitter and receiver sides, respectively. Therefore FFT/IFFT sizes are doubled for

both techniques and implementation complexity becomes O(2N log(2N)) while it was O(N log(N))
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in classical design. As an exception, implementation of OFDM in CP selection technique requires

two extra N -point FFT/IFFT operations and therefore, a little more complex than the others.

5.3.1 PAPR Mitigation for OFDM

Symbol randomization can also be used to obtain various benefits along with the security.

Here, we use this technique for PAPR mitigation which is one of the most serious issues in OFDM

signals and can be given for ith symbol as

PAPR =
max{|x̄xx(i)|2}
E{|x̄xx(i)|2}

. (5.12)

In order to achieve that, rather than using arbitrary numbers generated in a pseudo-random fashion

for symbol time randomization, N (i)
γ is selected in such a way that combination of the symbols, for

the given search range of N (i)
γ , exhibits the minimum PAPR. The objective function for this can

be analytically expressed as

N̄ (i)
γ = arg min

N
(i)
γ

{PAPR} (5.13)

subject to N (i)
γ ≤ Np,

where Np is the search range for N (i)
γ and N̄ (i)

γ is the optimum variable minimizing the PAPR within

the given search range. In this way, we can obtain an extra advantage besides the security at the

expense of a searching complexity.

5.3.2 Sidelobe Suppression for OFDM

Frequency domain representation of the ith OFDM signal can be given as

S(i)(f) =

k=0∑
N

x
(i)
k ak(f), (5.14)
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while

ak(f) =

∫ T/2

−T/2
e
j2πk
Ts ej2πftdt = sinc(Tf − T k

Ts
) (5.15)

where Ts is the duration for the actual symbol and T is the symbol time whole OFDM symbol

including CP.

In order to represent the out-of-band radiation caused by the sidelobes, we sample the out-

of-band region and assign it to the vector S(i)
o = [S

(i,0)
o , S

(i,1)
o , ..., S

(i,M−1)
o ]. Then we can give the

objective function for sidelobe suppression of ith OFDM signal as

N̄ (i)
γ = arg min

N
(i)
γ

{
M−1∑
m=0

|S(i,m)
o |2} (5.16)

subject to N (i)
γ ≤ Np.

Then out-of-band radiation can also be suppressed along with PAPR mitigation, either

jointly or independently, based on the system requirements.

We should note that the randomization index will be a specific number for each symbol

if the given operations for PAPR mitigation and sidelobe suppression are performed. While the

transmitter and the receiver could share only one seed number exploiting the CSI and can generate

all the other random variables in a pseudo-random manner for regular CP selection and symbol time

randomization algorithms, it is not possible when the PAPR mitigation and sidelobe suppression

are also taken into account. Therefore, a PAPR mitigating or sidelobe suppressing randomization

index should be shared with the receiver for each symbol via a secure channel and this introduces

an extra signaling to the system as a trade off.

5.4 Numerical Results

We referred to IEEE 802.11 standard for OFDM simulation parameters, and determined

the number of subcarriers as 64 in 20 MHz of transmission bandwidth [99]. The modulation type is
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Figure 5.6 CAF for the CP selection and symbol time randomization methods.

chosen as M -QAM where M = 64 for our simulations. The number of transmitted QAM symbols

in an SC-FDE frame is similarly specified as 64, and the transmission bandwidth and modulation

are the same as the OFDM signal.

In order to show the performance of both proposed techniques, i.e., CP selection and symbol

time randomization, in cyclic feature suppression, CAF of an OFDM signal is given in Figure 5.6

for 100 symbols with 1/4 CP rate in a channel and noise free scenario. Since the same result is valid

for SC-FDE, it is not given with an extra figure. It is clearly seen that all the peaks except the

one at zero index in time and frequency are suppressed with the proposed techniques even without

noise and channel effects. Therefore, an adversary cannot perform blind synchronization and other

receiver algorithms by exploiting cyclostationary.
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Figure 5.7 BER performance of OFDM with regular CP (Reg-CP) and proposed CP (Sel-CP)
selection for different number of channel taps (M = 64).

For BER analysis of our CP selection method, we consider multi-path Rayleigh channel

with different number of taps. In order to see the effect of ISI in this technique, we also performed

simulations for symbols with insufficient CP sizes where the number of channel taps is larger than

CP size. On the legitimate receiver side, the multi-path dispersion in the signal can trivially be

removed by taking the advantage of CP, as long as the time shifting information in the CP selection

is known and the CP size is not smaller than the number of channel taps. However, due to the

previously mentioned noise expansion in OFDM, BER performance is a little bit degraded compared

to conventional OFDM as seen in Figure 5.7. As expected, this effect is more apparent for low signal-

to-noise ratio (SNR) values. On the other hand, when the proposed technique is implemented for

SC-FDE, no negative effect is observed on BER performance as given in Figure 5.8. This is because,

there is no need of extra FFT/IFFT in redundancy removal for SC-FDE.
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Figure 5.8 BER performance of SC-FDE with regular CP (Reg-CP) and proposed CP (Sel-CP)
selection for different number of channel taps (M = 64).

Another interesting advantage of the proposed CP selection method is to decrease the effect

of ISI in the case of insufficient CP usage. By selecting CP at least partially from the next symbol,

symbol duration that we have during the equalization is actually extended. As the effect of ISI

due to insufficient CP is depending on the ratio of the interference power and symbol duration,

our technique exhibits a better performance than the conventional approach via spreading the

interference over a symbol having longer duration.

BER performance of symbol randomization technique is also investigated for ISI-free and

ISI introduced, i.e., sufficient and insufficient CP, cases via Monte-Carlo simulations. The signal

parameters are specified the same as done for CP selection. The mean of the randomization in-

dex, N (i)
γ , is also kept as zero, i.e., the expected value of the symbol times generated with symbol

randomization technique is the same as the aforementioned regular symbol time. When the tech-
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nique is implemented on OFDM signals, BER performances are obtained as given in Figure 5.9.

Obviously, BER performances are maintained and the same signal quality is achieved as the regular

implementation. This is obviously an expected result since symbol time randomization does not

hurt orthogonality at all. Also, since the mean of the randomization index is zero, average ratio

between the interference power and symbol power exhibits the same values for insufficient CP cases.

The BER results for the SC-FDE signals are also given in Figure 5.10. Similar to OFDM case, the

same performances are obtained as the regular SC-FDE signals for both, sufficient and insufficient

CP cases.

The simulations are also performed for investigating PAPR mitigation and sidelobe sup-

pression with symbol time randomization technique. In Figure 5.11, complementary cumulative

distribution function (CCDF) of PAPR values for different search ranges, Np, are given. As clearly

seen, even for a very small search range, e.g., when Np is 2, our technique achieves around 1 dB

mitigation. At the expense of more searching by increasing Np, PAPR mitigation performance can

be enhanced further. Note that, while searching the optimum randomization index, N̄ (i)
γ , symbol

size also changes (even if we up-sample it to have a bin number as power of two for implementing

FFT algorithm). Therefore, even small values of randomization indexes might make a significant

difference in PAPR. In Figure 5.12, out-of-band emissions of OFDM symbols are shown for different

Np’s. As the edge subcarriers are quite effective on the sidelobes, especially for the close band

regions, we see up to 10 dB power reduction for Np=16. This much suppression may not be satis-

factory to meet the requirements of many systems. However, it will help to reduce the redundancy

or disadvantages caused by other sidelobe suppression techniques such as windowing and precoding.

5.5 Conclusion

In this chapter, we presented two cyclic feature suppression techniques to provide a covert

communication and to improve PHY security against eavesdropping attacks by carrying out cyclic

feature suppression for CP based waveforms, OFDM and SC-FDE. The first technique achieves

that by pseudo-randomly changing the CP selection region symbol-by-symbol, while the second one

randomizes the time of actual symbols and keeps CP size the same for each symbol. The seeds
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Figure 5.9 BER performance of OFDM with regular symbol generation (Reg-Sym) and time-
randomized symbol (Rand-Sym) for different number of channel taps (M = 64).

for generating pseudo-random indexes are obtained from the CSI by legitimate users. In this way,

cyclic features are securely concealed for a covert communication without any degradation in spectral

efficiency. Although, no disadvantage appears for SC-FDE in the first technique in terms of BER,

its implementation for OFDM is done at the expense of a little degradation in BER performance

due to a modification in equalization. In the second technique, conventional procedure is followed

for CP selection and equalization. Thus, the disadvantages of the first technique are removed in

terms of performance degradation in OFDM. Also, symbol time randomization is used for PAPR

mitigation and sidelobe suppression for OFDM signals as an additional advantage of this technique.

Both techniques require doubling the FFT/IFFT sizes and therefore, introducing some complexity

in implementation. Only OFDM in CP selection technique needs an extra N -point FFT/IFFT pair

because of the aforementioned modifications and becomes a bit more complex than the others.
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Figure 5.10 BER performance of SC-FDE with regular symbol generation (Reg-Sym) and time-
randomized symbol (Rand-Sym) for different number of channel taps (M = 64).

Considering the maintenance of conventional equalization, BER performance and complex-

ity, symbol time randomization looks better than CP selection especially for OFDM. Additionally,

symbol time randomization offers an extra advantage in PAPR reduction and sidelobe suppression.

However, such extra advantages lead to more complexity due to the searching operation for the

optimum random index of each symbol. Also, we need to share randomization index for PAPR

reduction and sidelobe suppression as it will not be an arbitrary number anymore and cannot be

generated in a pseudo-random manner. Another important advantage of "CP selection" upon "sym-

bol time randomization" is that, it reduces the effect of ISI in case of insufficient CP. These are the

trade offs of our two methods and should be considered based on the primary requirements of the

desired system.
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CHAPTER 6

PHYSICAL LAYER SECURITY FOR WIRELESS IMPLANTABLE MEDICAL

DEVICES1

6.1 Introduction

In our vision of pervasive healthcare, implantable medical devices (IMDs), e.g., pacemakers,

implantable cardiac defibrillators (ICDs), drug delivery systems and neurostimulators, have a vital

importance. They provide a substantial advantage by enabling physicians to manage many diseases

[101] with the identification, monitoring, and treatment of patients in anywhere, at anytime [102]

and save innumerable lives [103]. Such IMDs have already been deployed in many patients, and

their usage is expected to expand in the near future. For example, the number of insulin pump

users in 2005 was about 245,000, and the expected growth rate for the insulin pump market is 9%

from 2009 to 2016 as reported in [104].

While many IMDs are able to perform complex analyses and sophisticated decision-making

algorithms in addition to storing detailed personal medical data, wireless signals conveying critical

information need protection from a variety of attacks [105]. Considering the growing utilization

of IMDs and increasing security risks, comprehensive techniques against wireless adversaries have

emerged as an important requirement to ensure that the patients can use IMDs confidently and

without harm. Authentication is critically important, since an adversary may wirelessly change

various IMD parameters and cause a dangerous mistreatment of a patient. For example, an insulin

pump user might face an overdose attack that may even result in death. In the literature, proposed

protection techniques against such attacks can be classified into three main categories; cryptography,

anomaly detection, and "friendly" jamming. A review of the literature on these approaches, along
1This chapter was patented [100] and published in IEEE Computer Aided Modelling and Design of Communication

Links and Networks (CAMAD) Conference [75]. Permission is included in Appendix A.
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with their comparison is done in [106]. A brief description of these approaches can be given as

follows:

• Cryptography: Relies on a secret key shared between IMD and the external device. How-

ever, cryptography may not be properly deployed if the limitations of IMDs are considered

as mentioned in [107]. For example, cryptography-based techniques conflict with the ac-

cessibility requirement of IMDs in the case of any emergency, since the closest physician

may not have the secret key. Then, required urgent modifications on IMD cannot be done

and patients may experience serious problems.

• Anomaly detection: Relies on identifying the legitimacy of received commands based on

the variance of IMD parameter values that are observed over the time. However, such

a mechanism is not agile in adapting new conditions of patients as it requires long time

monitoring and data analyzing to achieve a reasonable performance.

• Friendly Jamming: This technique attempts to sense the existence of a malicious attack

and prevents the reception of illegitimate commands by jamming the IMD with the help

of an external device. Although it does not have a direct conflict with IMD requirements,

energy efficiency of the external device is a drawback as it performs very complex and

power consuming operations, i.e., continuous spectrum sensing and jamming, and may

preclude normal IMD operation.

A popular approach in IMD communications and in aforementioned security techniques is

the usage of a wearable external device (WED) attached to the patient body. These devices act

as a relay between the IMD and the central external node, and provide a substantial advantage in

terms of the IMD’s energy consumption for signal transmission and processing. In this study, we

propose a pre-equalization based wireless communication system between the IMD and the WED

in order to improve performance in terms of channel estimation, decrease the processing burden

on the IMD and importantly provide authentication at the physical layer. An illustration of the

proposed scenario is given in Fig.1. Considering the small distance between the IMD and the WED,

the resulting path loss lower than that experienced by the nodes located relatively far away from the
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patient. These more distant nodes may be adversaries and our goal is to prevent any adversary (AD)

from controlling the IMD. Basically, the IMD sends pilot signals to enable the WED to estimate

the channel. By using this estimation, the WED pre-equalizes the data signal that is transmitted to

the IMD. Assuming that an adversary cannot be closer to the IMD than the WED, the pilot signals

will reach the adversary with much less power and greater dispersion and lead to erroneous channel

estimation. Since pre-equalization with such an estimation leads to a significant distortion in the

AD’s signal, an adversary’s attempt to communicate with IMD will fail even if the transmitted signal

is extremely powerful. In this way, adversaries trying to control or mislead IMDs from relatively

distant locations can be prevented from achieving impersonation attacks.

However, these aforementioned techniques may not ensure security if ADs deploy highly

advanced signal processing algorithms or hardware having a very small noise floor. Then, they

might still be able to estimate the channel, properly. In case of such scenarios, we also introduce

a friendly jamming mechanism to our system. In order to achieve this, we design the pilot signal

transmitted by IMD as a "wake-up" signal for WED. If the pilot signal is transmitted upon the

request of an unauthorized user, the WED is activated and sends a jammer signal to IMD for

preventing it from decoding any AD’s signal. This capability is extremely important for the IMDs

to retain the ability to treat the patient and resist the AD attack. Any wrong treatment, e.g., high

voltage injection for a pacemaker and overdosing of an insulin pump, may result in serious problems

including death. Also, since equalization is performed in the WED, the proposed technique works in

a power efficient way in terms of processing. Also, since more advanced components can be deployed

on WEDs because of its size flexibility as compared to IMD, channel estimation performance can

be considerably enhanced.

The chapter is organized as follows. Section II provides the system model for the proposed

technique. In Section III, channel effects for WED and AD are presented. Finally, numerical results

are given in Section IV, and Section V concludes the chapter.
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Figure 6.1 Wireless adversaries may perform various malicious attacks and compromise the safety
of IMD using patients.

6.2 System Model

Channel estimation performed by a WED can be much better than that performed by an

IMD because of the greater capabilities of the external device. For example, more advanced device

components with a lower noise floor can be used in the design of WEDs and the channel estimation

error can be reduced. In this regard, pre-equalization might be a very useful method for IMD

communications. As illustrated in Fig. 1, wireless adversaries (AD) may perform various malicious

attacks and compromise the safety of IMDs. In our proposed scenario, the IMD transmits a pilot

signal, p(t), that is used to enable the WED to estimate the channel. Then channel estimation is
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performed as

hε(t) = h(t) + w(t)p−1(t) (6.1)

where w(t) is the additive noise. Note that, hε is defined as a scalar value, i.e, a one-tap channel

estimation is performed for pre-equalization considering the non-dispersive medium between IMD

and wearable external device (WED). Then, we can give the analytical expression of the baseband

signal, transmitted from WED as

x(t) = h−1ε

∞∑
n=−∞

Xng(t− nτ0), (6.2)

where n, g(t) and τ0 indicate the index of QAM symbol, pulse shaping filter and time spacing

between the symbols, respectively. After passing through the linear time-variant channel, h(t),

received signal including the additive noise can be written as

y(t) =

∞∫
−∞

h(τ)x(t− τ)dτ. (6.3)

Assuming the channel is a one-tap channel due to the small distance between communicating nodes,

the received signal can be shown as

r(t) = h(t)x(t) + w(t) (6.4)

where h(t) denotes the channel gain as a function of time, w(t) is the additive noise.

In channel estimation, received pilot symbols are also subject to the channel impairments.

Therefore, the estimated channel response can be given as

ĥ = h+ w(t)/P︸ ︷︷ ︸
ε

, (6.5)
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Table 6.1 Path loss model parameters [1].

Parameter Parameter Value

n 1.48
d0 0.01 m
P0dB 39.37 dB

where P indicates the pilot symbol and ε stands for the error in channel estimation. Its effect

on bit-error-rate (BER) performance should be investigated to identify the secure region around

the patient’s body. Considering more sophisticated attacks where ADs are equipped with highly

advanced devices, we propose an additional mechanism to ensure authentication. Here, the pilot

signal sent by IMD is regarded as a "wake-up" message for the WED. If an AD requests a pilot

transmission before sending an unauthorized command to the IMD, the WED activates as soon as

IMD sends the pilot signal. Since the WED can easily understand that an unauthorized user made

this request, it sends a jamming signal and blocks reception by the IMD. However, the AD may

send its signal at the same time with WED and may dominate WED’s command with a very high

power. In order to overcome this issue, IMD applies a power threshold criteria not to decode a

received message exceeding a certain power level. If the WED sends its jamming signal close to this

power level, additional AD signals will likely result in exceeding the pre-determined power threshold

and the IMD’s reception will be blocked. In this way, the AD will be disabled from maliciously

controlling the IMD.

6.3 Channel Models for WED and Adversary

The major effect on a narrow band wireless signal is path loss for in body communications

as dispersion in time is generally small compared to the data symbol duration. Also, considering a

stationary environment, the frequency dispersion effect of the channel may not need to be taken into

account. Note that accounting for dispersion gives us more degrees of freedom to provide security.

Therefore, the one-tap technique may be viewed as a worst-case scenario. In order to investigate

the channel effect on legitimate and malicious nodes, a path loss channel model obtained as the
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function of distance for body-centric communication environment should be used [108, 109]. The

general expression for such a model is given as

PdB = P0dB + n

(
d

d0

)
(6.6)

where d is the distance, d0 is the reference distance and P0dB is the path loss for reference distance.

These parameters for a body model is given in [1] as shown in Table 1. Measurement-based results

are also reported in [110, 111]In order to investigate the performance of the users located far away,

different channel models might be superposed with the given model. However, we only consider the

users nearby the patient. Therefore, only given model will be taken into account.

6.4 Numerical Results

Performance of the proposed technique is presented using MATLAB simulations. Firstly, we

investigate the effect of distance between the IMD and other devices on the BER performance. As

we mentioned before, a greater distance corresponds to a further path loss. As a device is moving

away from the IMD, the power of the received pilot signal become weaker and this will lead to error

in channel estimation. A command signal pre-equalized with an erroneous channel estimation will

naturally cause a distortion in the signal independent of the signal’s SNR. In Fig.2, BER results of

a command signal sent from different distances is given, where the SNR of the transmitted signal

is specified as 100 dB in order to see the effect of channel estimation error only. As shown in

Fig.2, increasing distance of the AD from the IMD and resulting increased channel estimation error

dramatically degrade BER performance. For example, if an adversary is located 90 cm away from

the IMD, more than 1% error probability is experienced for 0 dBm transmission power and -120

dBm noise floor (NF) at the AD.

Considering some scenarios where the AD performs a strong signal processing and uses

more advanced hardware having very low noise floors, we also deployed our self-jamming approach

to ensure authentication. As mentioned earlier, IMD applies a power-limitation criterion in order to

prevent the AD from dominating WED’s jamming signal. While determining the WED’s jamming
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Figure 6.2 BER performance versus distance for different noise floors (NFs).

signal power, PWED, we used a power threshold Ptr as a metric, i.e., PWED is specified in terms

of Ptr. Command signals are designed as packets consisting of 150 QPSK symbols and the outage

probability of these packets will be used as the performance measure. In Fig. 3, outage probabilities

for different jamming powers indicated as PWED/Ptr are given for the AD along with the bit-error

probabilities. Note that we assumed that AD has perfect channel estimation and its signal has a 20

dB SNR for this case. Even in such an extreme case, the AD’s packets are all distorted when PWED

is 30% of Ptr. Then, we can ensure proper authentication, i.e., blockage of AD, once PWED/Ptr is

0.3 or more.

We also investigate the effect of the proposed technique on the desired communication

between the IMD and the WED. The power of the WED’s signal is very critical here since IMD stops

reception based on the received power. If WED’s signal power exceeds Ptr after being combined with
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Figure 6.3 Adversary outage probabilities for different jammer signal powers.

noise, legitimate commands will be eliminated as well. In Fig.4, outage probabilities are given as

Poutage1 and Poutage2 for the WED’s command with and without proposed technique, respectively.

For small power values, outage probability for both cases are almost equal to each other. Here,

PWED is given as 0 dBm and if the PWED/Ptr ratio is 1, the SNR of the received signal is specified

as 20 dB, i.e., noise floor of IMD is adjusted for having 20 dB SNR. Then, if PWED/Ptr ratio is 0.1,

the SNR becomes 10 dB and the outage probability approaches unity. The proposed technique does

not degrade the successful transmission performance of WED unless PWED/Ptr is greater than 0.7.

After that level, the probability of blocking the WED packets increases since transmission power

gets close to the threshold. Therefore, jamming power of WED PWED should carefully be selected

considering WED’s performance and authentication requirements.
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Figure 6.4 Outage probabilities of WED’s command with and without proposed technique repre-
sented by Poutage1 and Poutage2, respectively.

6.5 Conclusions

In this study, a physical layer authentication technique based on pre-equalization is proposed

for IMDs. Besides authentication, our approach can enhance channel estimation performance by

utilizing more advanced hardware and signal processing complexity in the WED because of its

external location and not being limited in size as IMDs. Since only path loss was considered for the

in vivo channel estimation, including other channel effects, e.g., dispersion in time and frequency

will likely enable increase reliability. This will be investigated in our future studies.
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CHAPTER 7

CONCLUSION AND OPEN ISSUES

In this dissertation, we presented PHY algorithms in waveform design and security for en-

hancing spectral efficiency and reliability of wireless systems which will be potentially deployed in

the near future. Considering different limitations and goals, two algorithms that enhance the char-

acteristics of OFDM-based waveforms in terms of out-of-band emission and peak to average power

ratio are provided. The generalization of the proposed schemes along with additional operations

such as adjacent channel interference rejection is an open issue and left for the future studies. Con-

sidering the increasing heterogeneity of the user requirements we investigated the flexibility aspects

of the radio access technologies and provide our proposals for achieving more flexible frames with

multiple waveforms and designing advanced numerologies with the novel approaches in the litera-

ture. Solid analysis of the proposed methods for future generation scenarios and developing novel

approaches beyond the mentioned ones for advanced numerology design are the open issues here.

Practical PHY security methods are also presented for a confidential deployment of wire-

less technologies. We addressed the eavesdropping problem for OFDM/SC-FDE based broadband

systems and impersonation attacks for wireless IMDs. Other security issues for various scenarios

should also be investigated while taking the practical limitations into account.
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The copyright notice for the use of material in Chapter 2 is below.
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Appendix B: List of Acronyms

3GPP Third generation partnership project

AD Adversary

AF Ambiguity function

AMC Adaptive modulation and coding

AS Alignment Signal

AWGN Additive white Gaussian noise

BER Bit-error rate

BS Base station

CAF Cyclic autocorrelation function

CCDF Complementary cumulative distribution function

CCI Canceling carrier insertion

CFO Carrier frequency offset

CIR Channel impulse response

CP Cyclic Prefix

CPA CP Alignment

CSI Channel state information

DL Downlink

DoF Degrees-of-freedom

DSSS Direct sequence spread spectrum

eMBB Enhanced mobile broadband

FBMC Filter bank multicarrier

FFT Fast Fourier transform

FH Frequency hopping

FMT Filtered multitone

GF Gaussian filter
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Appendix B (Continued)

ICI Inter carrier interference

IFFT Inverse fast Fourier transform

IMD Implantable medical device

INI Inter numerology interference

IoT Internet of things

ISI Inter symbol interference

JTFA Joint time/frequency alignment

LTE Long Term Evolution

MIMO Multiple-input multiple-output

ML Maximum likelihood

mmWave Millimeter wave

mMTC Massive machine type communications

MSE Mean square error

NF Noise floor

NR New Radio

NSF National science foundation

OFDMA Orthogonal frequency-division multiple access

OFDM Orthogonal frequency-division multiplexing

OOBE Out-of-band emission

PA Power amplifier

PAPR Peak-to-average power ratio

PDP Power delay profile

PHY Physical Layer

PTS Partial transmit sequence

QAM Quadrature amplitude modulation
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Appendix B (Continued)

GFDM Generalized frequency division multiplexing

ICD Implantable cardiac defibrillator

RAT Radio access technology

RAN Radio access network

RB Resource block

RC Raised cosine

RRC Root raised cosine

RSS Received signal strength

s-CPA Static CP alignment

SC-FDE Single carrier-frequency domain equalization

SC-FDMA Single carrier-frequency division multiple accessing

SIR Signal-to-interference ratio

SISO Single-input single-output

SLM Selective mapping

SNR Signal-to-noise ratio

TDD Time division duplexing

TUBITAK Scientific and technological research council of Turkey

UE User equipment

UFMC Universal filtered multi tone

UL Uplink

URLLC Ultra reliable and low latency communications

UWB Ultra wide band

WED Wireless external device

WBAN Wireless body area network
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