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Figure 29 Expression of S1P4 and S1P5 on Different Types of Endothelial Cells 

A. Immunoblotting showing that S1P4 and S1P5 receptors are expressed in all three 

cell types tested (HUVEC, HCMEC and HDMEC). B. Confocal immunofluorescence 

microscopy pictures showing S1P4 and S1P5 expression in HUVEC, HCMEC and 

HDMEC.  

 �
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Chapter Six 

Overall Conclusions 
 

6a. Overall Objectives of The Dissertation 

The semi-permeable endothelial barrier in tissue capillaries and post-capillary 

venules are critical for normal tissue viability. A compromised endothelial monolayer can 

result in excessive and uncontrolled microvascular leakage, which is a hallmark of many 

inflammatory diseases. The excessive fluid accumulated within the interstitium results in 

tissue edema and impairs homeostasis. S1P is a bioactive lipid that has endothelial 

barrier protective effect and has the therapeutic potential towards controlling endothelial 

barrier dysfunction and hyperpermeability seen in different pathological processes. It 

was described that S1P enhances endothelial barrier function independently of VE-

cadherin, but requires cell spreading [129], an actin polymerization dependent structure 

also termed as lamellipodia. In the microcirculation field, it is well known that stable 

junctions are critical for endothelial barrier integrity. It is also well known that 

cytoskeleton rearrangements can alter junctional stability and regulate endothelial 

barrier function. However, it is yet unclear how the dynamic changes in cytoskeleton 

after S1P affect junctional integrity in real time, as well as endothelial barrier function.  

Most of the existing lamellipodia studies focused on wound healing and cancer 

metastasis, very little is known on how the lamellipodia activities affect endothelial 
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barrier function. Of those that studied the involvement of lamellipodia, most came from 

fixed cells and provided little information on spatial–temporal dynamics [201-203]. To 

our knowledge, no groups yet have systemically analyzed the lamellipodia and 

endothelial barrier function change at the same time. A couple of impressive studies 

demonstrated that lamellipodia is important for structural integrity of VE-cadherins 

[144,145], however, they mainly focused on VE-Cadherin structure changes and did not 

provide insight on how the dynamic change in lamellipodia affect endothelial barrier 

function. The lamellipodia protrusions have also been shown to close leukocyte 

transmigration pores, and micro-wounds between endothelial cells [204,205]. Further, 

different studies have demonstrated that lamellipodia protrusions contribute to the S1P-

mediated barrier enhancement [52,158,206]. Despite the strong evidence, most of the 

observations were from fixed cells that only represent a snapshot, and do not reflect the 

dynamic relationships between lamellipodia activity and endothelial barrier function.  

To fully take the therapeutic advantages of S1P, we must fill in the gap of 

knowledge and first determine if the dynamic changes in lamellipodia activities caused 

by S1P play a role in endothelial barrier function. We also have to elucidate how 

lamellipodia contribute to S1P’s endothelial barrier protective effect. This dissertation 

focused on the gap in knowledge mentioned above and proposed the overall hypothesis 

that “S1P-induced lamellipodia protrusions protect endothelial barrier function”. We also 

investigated the signaling mechanisms that are responsible for S1P-mediated 

endothelial barrier enhancement. Finally, we examined the receptors that are 

responsible for S1P-mediated endothelial barrier enhancement. We expect the 
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foundational knowledge gained in this dissertation can be utilized for the development of 

future therapeutic strategies.i 

6b. Overall Findings in The Dissertation 

We presented that increased lamellipodia protrusions after S1P correlate with 

increased endothelial barrier function. Out of all the parameters, changes in lamellipodia 

protrusion frequencies correlate with endothelial barrier function changes the best, 

suggesting lamellipodia protrusion frequencies is a good indicator of endothelial barrier 

function. S1P is also effective in rescuing thrombin caused hyperpermeability, indicating 

that S1P and its downstream effectors may have their therapeutic uses in the 

proinflammatory conditions triggered by thrombin. 

The mechanisms that underline S1P’s endothelial barrier enhancement are likely 

to involve lamellipodia and VE-cadherin. Unlike thrombin, which decreases lamellipodia 

protrusions, leads to VE-cadherin belt breakdown and paracellular gaps formation, S1P 

does the exact opposite. It increases the lamellipodia protrusions, which helps to 

redistribute the cytosolic VE-cadherin to the cell-cell contacts. The end result is stronger 

cell-cell adhesion and enhanced endothelial barrier function.  

It is worth noting that while Rac1 and its downstream effectors are important for 

the baseline lamellipodia protrusions and endothelial barrier function, they appear 

dispensable in S1P-mediated endothelial barrier enhancement. On the other hand, 

increased RhoA activity, mainly at the periphery, appears to play an important role in 

S1P-mediated endothelial barrier enhancement. The exact mechanisms are currently 

unknown, but are likely to involve RhoA-MLC-2 dependent lamellipodia activities and 

nascent focal adhesions. 
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There appears to be an autocrine mechanism of S1P in endothelial cells because 

antagonism of S1P1 significantly impaired baseline endothelial barrier function. It is very 

likely that the optimal S1P’s endothelial barrier enhancement effect depend on multiple 

receptors, as none of the S1P receptors alone is sufficient to abrogate its endothelial 

barrier enhancement effect.  It is also possible that S1P acts on multiple receptors to 

achieve its maximum endothelial barrier enhancement effect, or there could be an 

unidentified receptor-independent mechanism. Future studies are needed to elucidate 

the underlining mechanism. 

In summary, there is a strong correlation relationship between lamellipodia 

protrusions and endothelial barrier function. Based on our finding, we proposed that 

lamellipodia protrusions help to strengthen cell-cell adhesions and increase paracellular 

diffusion distance, both of which help to enhance endothelial barrier function. The 

endothelial barrier enhancement effect of S1P depends on RhoA activation but not 

Rac1 activation. Finally, S1P1 is important for the maintenance of baseline barrier 

integrity, but the detailed receptor signaling that mediates S1P’s endothelial barrier 

protective effect still require further investigation. 

6c. Limitations & Future Directions 

In the dissertation, we utilized live cell imaging to study lamellipodia dynamics. 

One limitation with our study is that there are currently no pharmacological inhibitors 

that specifically inhibit the lamellipodia activities as the exact mechanisms underlining 

initiation, protrusion and retraction of lamellipodia are still elusive [207]. We utilized a 

workaround method, which is to analyze lamellipodia parameters. This is not a direct 

measurement of how lamellipodia influence endothelial barrier, but provides insights 
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into how lamellipodia activities correlate with endothelial barrier function. Combined with 

our studies on the baseline and thrombin treated groups [134], we think it is safe to 

draw the conclusion that lamellipodia protrusions contribute to endothelial barrier 

integrity. 

To date, the detailed mechanisms that control lamellipodia protrusion, halt, and 

retraction are still elusive. Investigations focusing on the topic are also restrained with 

methods that could be used. Some studies have demonstrated that Rac1 activation is 

required for lamellipodia protrusions [151,208,209], while others have shown that RhoA 

activation is sufficient to induce the protrusion [93,95,210]. In our own studies, high 

RhoA activities were observed at the site of protrusions. Interestingly, RhoA and Rac1 

were shown to inhibit each other’s activity by competing for the GEFs [211]. In the future, 

one way that may help to elucidate the mechanism regulating lamellipodia activities is to 

utilize endothelial cells expressing both Rac1 and RhoA FRET proteins. This would 

enable us to analyze how the spatial activation of Rac1 and RhoA regulate protrusions 

and advance the field. In addition, it would also be interesting to compare and contrast 

how Rac1 effector Arp2/3 and RhoA effector mDia differentially regulate lamellipodia 

activities afterwards, because both proteins have been implicated in lamellipodia 

protrusions as well as endothelial barrier function. Another prospective that is 

supplemental to the aforementioned is to determine the role of RhoA in Rac1 

knockdown endothelial cells. This would enable us to determine if a certain amount of 

interplay between Rac1 and RhoA is required for S1P-mediated endothelial barrier 

enhancement.  
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Our studies also demonstrated that Rac1 is dispensable in S1P-mediated 

endothelial barrier enhancement in vitro by coupling Rac1 pharmacological inhibitors, 

overexpression and siRNA knockdown techniques. Although we tried our best to 

minimize the impact of Rac1 overexpression and knockdown on baseline endothelial 

barrier function, one common pitfall with the overexpression and knockdown techniques 

is that they tend to alter the natural physiology of cell behaviors. An alternative method 

would be to deliver Rac1 inhibitory peptide W56 into both endothelial cells and isolated 

intact mesenteric venules with the methods previously described by our lab [212]. 

Another way to overcome this limitation would be to employ Rac1 genetic deletion 

animals in the future. We can couple both ex vivo isolated mesenteric venules 

permeability assay and in vivo intravital microscopy for permeability studies to 

determine if Rac1 activation is essential in S1P induced endothelial barrier 

enhancement. Due to the fact that RhoA inhibition only attenuated S1P’s effects on the 

macrovascular cell type HUVEC, but not HDMEC, it is also important to test if our in 

vitro findings also occur in ex vivo and in vivo setting in the microvasculature.  

Our results suggest that there is some autocrine mechanism of S1P maintaining 

baseline endothelial barrier function. Endothelial cells are the major origin of S1P, 

knockout of the exporter spns2, which is responsible for exporting S1P to the blood 

stream, severely affected blood S1P levels [213]. It is therefore interesting to compare 

and contrast the effect of spns2 knockdown on both baseline endothelial barrier function 

and in inflammatory condition. Our results also suggest that none of the S1P1-S1P3 

receptors alone are responsible for the endothelial barrier enhancement effect of S1P. 

In the future, we will test if multiple receptors are responsible for the effect by combining 
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multiple S1P receptor inhibitors. We will also apply S1P receptor agonists and 

antagonists on the S1P1 knockout mice to test the involvement of different receptors in 

regulating endothelial barrier function.  

In summary, although there are some technical difficulties and limitations with 

this dissertation, overall our results suggest that 1) endothelial barrier function changes 

strongly correlate with lamellipodia protrusion changes seen after S1P; 2) We propose 

lamellipodia protrusions help to enhance endothelial barrier function by increasing 

paracellular diffusion distance and junctional stability; 3) S1P-mediated endothelial 

barrier enhancement occurs in a Rac1 independent, RhoA dependent mechanism; 4) 

S1P1 is critical for maintaining baseline endothelial barrier function, and further 

investigation is still needed to elucidate which receptors mediate the endothelial barrier 

enhancement effect of S1P. 
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