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ABSTRACT

Being in the era of Big data, the applicability and importance of data-driven models

like artificial neural network (ANN) in the modern statistics have increased substantially.

In this dissertation, our main goal is to contribute to the development and the expansion of

these ANN models by incorporating Bayesian learning techniques. We have demonstrated

the applicability of these Bayesian ANN models in interdisciplinary research including

health and cybersecurity.

Breast cancer is one of the leading causes of deaths among females. Early and accurate

diagnosis is a critical component which decides the survival of the patients. Including the

well known “Gail Model”, numerous efforts are being made to quantify the risk of diag-

nosing malignant breast cancer. However, these models impose some limitations on their

use of risk prediction. In this dissertation, we have developed a diagnosis model using

ANN to identify the potential breast cancer patients with their demographic factors and

the previous mammogram results. While developing the model, we applied the Bayesian

regularization techniques (evidence procedure), along with the automatic relevance de-

termination (ARD) prior, to minimize the network over-fitting. The optimal Bayesian

network has 81% overall accuracy in correctly classifying the actual status of breast cancer

patients, 59% sensitivity in accurately detecting the malignancy and 83% specificity in

correctly detecting non-malignancy. The area under the receiver operating characteristic

curve (0.7940) shows that this is a moderate classification model.

We then present a new Bayesian ANN model for developing a nonlinear Poisson regres-

sion model which can be used for count data modeling. Here, we have summarized all the

important steps involved in developing the ANN model, including the forward-propagation,

backward-propagation and the error gradient calculations of the newly developed network.

vi



As a part of this, we have introduced a new activation function into the output layer of

the ANN and error minimizing criterion, using count data. Moreover, we have expanded

our model to incorporate the Bayesian learning techniques. The performance our model is

tested using simulation data.

In addition to that, a piecewise constant hazard model is developed by extending the

above nonlinear Poisson regression model under the Bayesian setting. This model can be

utilized over the other conventional methods for accurate survival time prediction. With

this, we were able to significantly improve the prediction accuracies. We captured the

uncertainties of our predictions by incorporating the error bars which could not achieve

with a linear Poisson model due to the overdispersion in the data. We also have proposed

a new hybrid learning technique, and we evaluated the performance of those techniques

with a varying number of hidden nodes and data size.

Finally, we demonstrate the suitability of Bayesian ANN models for time series fore-

casting by using an online training algorithm. We have developed a vulnerability forecast

model for the Linux operating system by using this approach.
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CHAPTER 1

ARTIFICIAL NEURAL NETWORK MODELS AND FUNDAMENTAL
CONCEPTS

1.1 Introduction

The idea of learning from data has been around for long time [1]. Unlike in the past,

the world in thirst of finding advanced techniques which can convert just a bunch of data

into valuable information.

The modern artificial intelligence (AI) is originated as a result of that. AI attempts to

transfer the human thinking into a machine learning process; a way to induce new knowl-

edge through the experience. Most of these procedures are directly derived from or inspired

by the classical statistics. In fact, both AI and statistics are concerned in learning with

evidence and making decisions [2]. In general, probabilistic models in classical statistics

have proven to be the most effective way of formally structuring the knowledge for ma-

chine learning. Artificial neural networks combined with those probabilistic models provide

a promising approach to solve different types of regression and classification problems.

1.2 General Objectives

In this dissertation, our main objective is to broaden the horizons of advanced neural

networks models with the classical Bayesian learning. Bayesian learning provides several

advantages over regular maximum likelihood learning in neural networks. It captures the

uncertainties associated with the weight parameters and hence overcomes the problem of

network overfitting. This allows us to obtain accurate predictions. Next, we summerize

about the other objectives of our research.

1



The main goal in Chapter 2 is to develop an ANN based diagnostic model to classify

the malignant breast cancer patients from non-malignant. Despite the fact that the death

rates from breast cancer from all causes were the same in women who got mammograms

and those who did not [3], the American Cancer Society recommends for all women ages

over 40 to have annual mammograms. Our proposed model can be used as an alternative

way of identifying the potential risk in women by obtaining the posterior probabilities

associated with being malignant in the Bayesian setting.

In Chapter 3, we have developed a new nonlinear Poisson regression model using

Bayesian ANN. In this chapter, we also evaluated the performance of three different

Bayesian learning techniques called evidence procedure, Hybrid Monte Carlo sampling

procedure and a newly developed Hybrid Bayesian learning method based on the complex-

ity of the sample size and the weight space. We then tried to extend the above nonlinear

Poisson regression model to develop a piecewise constant hazard model. We demonstrate

that this model is useful in predicting the hazard and the survival times of the patients.

Unlike the existing models, this ANN model can efficiently handle a large amount of data

without suffering from data redundancy.

In Chapter 5, we have developed a nonlinear time series prediction model with a recur-

rent neural network using an online training algorithm. This is developed based on Hybrid

Monte Carlo sampling method. With the online training, we can minimize the effect from

autocorrelated data to the neural network system. This process is demonstrated by build-

ing a vulnerability prediction model for the Linux operating system. The identification of

the vulnerabilities in ahead of time provides many advantages for system administrators.

With that, they can allocate the necessary time and resources to avoid any major attacks

from different hackers. In the final Chapter, we discuss the ways to extend our current

research projects and our future research work.
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1.3 Artificial Neural Networks

An Artificial Neural Network (ANN) is an information processing archetype that is

inspired by the biological neural networks systems, such as the brain. They have been

successfully applied in almost every field including engineering, computer science, and

medicine [4–7]. The popularity of these models have increased mainly due to some inherent

features of ANN. They have the strength of making predictions based on both individual

attributable variables and possible complex interactions among them. Also, they serve as

a powerful tool for modeling nonlinear functions and non-additive effects.

However, they also bring their challenges. The main concern is that their final results

are less interpretable. Sometimes, this limitation can be overcome by building hybrid

models using both neural networks and other statistical models like multiple regression,

logistic regression, and multinomial logistic regression.

There are different types of neural networks depending on the network structure and the

learning process, such as feed-forward, radial basis, recurrent, and Kohonen self-organizing

maps. In this chapter, we discuss the implementation of feed-forward and recurrent neu-

ral networks. Under the feed-forward ANN, we specifically discuss about the multi-layer

perceptron neural network.

1.3.1 Multi-Layer Perceptron

Multi-layer perceptrons (MLP) are a popular class of feed-forward networks which

represent a multivariate nonlinear function mapping between a set of input vectors x =

{x1,x2, .....,xN} and target vectors D = {t1, t2, ...., tN} [8]. These networks are organized

as several interconnected layers. Each layer is a collection of artificial neurons (nodes)

where connections are made among the layers without any feedback loops. MLP follows a

supervised learning technique where both inputs and outputs are fed into the network for

the training process. Figure 1.1 represents the architecture of a MLP with 3 layers, namely

the input, hidden and output. Here we have assumed that it has d inputs, M hidden and

3
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Figure 1.1: A multi-layer perceptron neural network

K output nodes. The process of obtaining the analytical function of an ANN model can

be described as follows.

A weighted linear combination of d input values and the corresponding bias of the

hidden unit form the input for the jth hidden unit a
(1)
j , as in the Eq. (1.1).

a
(1)
j =

d∑
i=1

w
(1)
ji xi + b

(1)
j , (1.1)

here w
(1)
ji is the weight associated with the input i and the hidden unit j where as b

(1)
j is

the bias associated with hidden unit j. By applying a nonlinear differentiable activation

function h(.) on Eq. (1.1), we get the activation of hidden unit j.

zj = h(a
(1)
j ), j = 1, 2, ....,M. (1.2)
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The most commonly used activation functions are either logistic sigmoid or hyperbolic tan-

gent activations. In our analysis, we have used the hyperbolic tangent activation function

of the form Eq. (1.3) since it has a faster convergence than the logistic function.

h(a
(1)
j ) =

ea
(1)
j − e−a

(1)
j

ea
(1)
j + e−a

(1)
j

(1.3)

A weighted combination of zj and the corresponding bias associated with each output node

b
(2)
j form the input a

(2)
k to each output node

a
(2)
k =

M∑
j=1

w
(2)
kj zj + b

(2)
k , (1.4)

where k = 1, 2, ...,K. The final outcome is obtained by applying a nonlinear transformation

g(.) on Eq. (1.4)

yk(x,w) = yk = g(a
(2)
k ). (1.5)

The choice of the activation function g(.) depends on the nature of the data and the

distribution of target variables. For a linear regression model we assume g(.) to be the

identity function where as for a classification problem it is the logistic sigmoid function of

the form

yk(x,w) =
1

1 + exp
(
− a(2)

k

) . (1.6)

In the Bayesian context, the yk(x,w) can be interpreted as the probability of membership

in class C1 given the input vector x and the probability of membership of class C2 is given

by (1− yk(x,w)).

In Chapter 3, we will discuss the exponential activation function of the form in Eq.

(1.7) in detail.

yk(x,w) = exp
(
a

(2)
k

)
. (1.7)
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For any of the activation functions discussed above, the final analytical form of the

MLP for the kth output node can be written as,

yk(x,w) = g(a
(2)
k ) = g

( M∑
j=1

w
(2)
kj h

( d∑
i=1

wji
(1)xi + b

(1)
j

)
+ b

(2)
k

)
. (1.8)

This model is simply a nonlinear function from a set of input variables {xi} to a set of

output variables {yk} linked with adjustable weight parameters [9],

w = {w(1)
11 , w

(1)
12 , ..., w

(2)
21 , w

(2)
22 , .., w

(2)
KM}.

It is important to note that the complexity of a neural network is directly propor-

tional to the number of hidden nodes. It has been shown that a network with one hidden

layer accompanied by sufficient number of hidden nodes is capable of approximating any

continuous function [10].

1.3.2 Network Training and Error Function

Network training plays a major role when using a neural network to find solutions to

a given problem. By training, we refer to finding the optimal set of weight parameters

w using the training data. For that, we need to have an idea about the network error

function.

Let’s consider a set of independent training data {xn, tn} with a joint probability

density function p(xn, tn), we can write the likelihood function

p(D|w,x) =
∏
n

p(xn, tn) =
∏
n

p(tn|xn)p(xn), (1.9)

where p(tn|xn) is the conditional density t given x and p(xn) is the unconditional density

of x. We introduce an error function in the form Eq. (1.10) by taking the negative log-

likelihood of the data (it is more convenient to minimize the negative log likelihood function

6



than maximizing the likelihood).

E(w) = −ln (p(D|w,x)) = −
∑
n

ln p(tn|xn)−
∑
n

ln p(xn). (1.10)

Note that p(xn) in Eq. (1.10) does not depend on the network parameter. Therefore, we

can modify the error function,

E(w) = −ln (p(D|w,x)) = −
∑
n

ln p(tn|xn). (1.11)

This indicates that the choice of the error function depends entirely on the conditional

distribution. In the next section we discuss about these conditional distributions and error

functions related to both classification and linear regression. The conditional distribution

related to the newly developed nonlinear Poisson regression will be discussed in Chapter

3.

1.3.2.1 Linear Regression

If we have a single target variable tk, which follows a Gaussian distribution with a mean

y(xn,w) and precision (inverse variance) β then the conditional distribution of targets is

given by

p(tn|xn) =
K∏
k=1

( β
2π

)1/2
exp

(
− β

(
yk(x

n,w)− tnk
)2

2

)
. (1.12)

We get the corresponding error function by discarding the multiplcative and additive con-

stants,

E(w) =
1

2

N∑
n=1

K∑
k=1

{yk(xn,w)− tnk)2}. (1.13)

1.3.2.2 Classification

Let’s consider a case with K separate binary classification with logistic activation func-

tion and tk ∈ {0, 1} for k = 1, 2, ...,K where t = 1 denotes class C1 and t = 0 denotes class

7



C2. Then the conditional distribution of targets is given as

p(tn|xn) =
K∏
k=1

yk(x
n,w)t

n
k
[
1− yk(xn,w)1−tnk

]
. (1.14)

The corresponding cross entropy error [11] can be obtained from Eq. (1.15)

E(w) = −
N∑
n=1

K∑
k=1

{tnk ln ynk + (1− tnk) ln (1− ynk )} (1.15)

In each case, we then need to find the optimal weight vector (maximum likelihood

solution) wML which gives the minimum E(w). Due to the nonlinearity of the network

function, E(w) will be nonconvex and hence we only will be able to find the local minima

of the error function.

1.3.3 Parameter Optimization

Finding the optimal weight vector is equivalent to finding the stationary points (in this

case, local minima) in the weight space with ∇E(w) = 0. However, there exist multiple

points in the weight space at which the gradient vanishes due to the nonlinear dependence

on the weights and bias parameters of the error function. Therefore, we might need to

compare at least several local minima in order to find a sufficiently good solution for the

global minima.

Moreover, it is impossible to find an analytical solution for ∇E(w) = 0, and therefore

we need to rely on iterative numerical procedures. Most of these techniques start with

choosing an initial value w(0), for the weight vector and then move through the weight

space in successive steps like in Eq. (1.16).

w(τ+1) = w(τ) + ∆w(τ), (1.16)

where τ is the iteration step and ∆w(τ) is the weight vector update. The simplest approach

is to use gradient descent optimization [12]. In our analysis, we have used much robust

8



and faster algorithms like conjugate gradient and quasi-Newton [13] for this optimization

process. Many of them use the gradient information, and therefore need to evaluate∇E(w)

after each update. This will be discussed in the next section.

1.3.4 Error Back-propagation and Evaluation of Error Gradients

The back-propagation procedure allows the derivatives of an error function on the

network weights and biases to be evaluated efficiently. That is to find,

∂En

∂wji(1)
,
∂En

∂wkj(2)
,
∂En

∂bj
(1)

and
∂En

∂bk
(2)
.

This uses the chain rule of partial derivatives and leads to an algorithm in which error

derivatives are propagated backward through the network starting from the output units.

We discuss this process in detailed here.

Consider a three layer ANN system as given in Section 1.3.1 where the inputs of the jth

hidden node a
(1)
j is given as in Eq. (1.1) and the outputs of that hidden node zj is given

as in Eq. (1.2). The corresponding input to the kth output node is given in Eq. (1.4) and

the final output of the ANN for a regression problem is given in Eq. (1.5) where as the

final output of the binary classification problem is given in Eq. (1.6).

In either case, the first step in evaluating the error derivatives is to perform a forward

propagation through the network for the complete data set in order to evaluate the acti-

vations zj
n of the hidden units and the activations yk

n of the output units for each data

point n in the data set. We assume our training data are independently and identically

distributed and hence the total error function can be written as a sum of n individual error

functions as in Eq. (1.17).

E(w) =

N∑
n=1

En(w) (1.17)

Therefore, we now discuss the backpropagation technique for each individual error function

En(w). Note that this individual error function depends on the weight w
(1)
ji only via a

(1)
j .

9



Hence,

∂En

∂wji(1)
=

∂En

∂aj(1)

∂a
(1)
j

∂wji(1)
. (1.18)

From Eq. (1.1), we know that
∂a

(1)
j

∂wji
(1) = xni and

∂a
(1)
j

∂bj
(1) = 1. Further, using the notation,

δ
(1)n
j = ∂En

∂a
(1)
j

, we get

∂En

∂wji(1)
= δ

(1)n
j xni , (1.19)

and

∂En

∂bj
(1)

= δ
(1)n
j . (1.20)

Note that,

δ
(1)n
j =

∑
k

∂En

∂a
(2)
k

∂a
(2)
k

∂a
(1)
j

= h′(a
(2)
k )

K∑
k=1

wkj
(2)δ

(2)n
k , (1.21)

where ∂En

∂ak(2)n = δ
(2)n
k . This δ

(2)n
k can be calculated depending on the error function

used in the problem. For example, we can use the sum of square error function for a linear

regression problem where as the cross entropy error function is used for a classification

problem. As we have used the corresponding canonical error functions in either case we

have,

δ
(2)n
k = yk

n − tkn. (1.22)

The derivative of the total error E can then be obtained by repeating the above steps

for each data point in the training set and then summing over all data points.

∂E

∂wji(1)
=

N∑
n=1

∂En

∂wji(1)
(1.23)

A well trained ANN is capable of making reasonable predictions to unseen data, which

is known as generalization. This is achieved by incorporating the regularization term, α,

10



to the error function as in Eq (1.24) which is known as a weight decay [8].

Ẽ(w) = E(w) +
α

2
wTw (1.24)

The value of α is usually determined by using cross validation techniques which involves

reserving a validation dataset to evaluate the error Ẽ(w) of models trained using a range

of different values of α and selecting the value of α with the smallest Ẽ(w).

1.4 Bayesian Neural Networks

Bayesian neural networks provide a more intuitive approach for network training. A

significant amount of research in this area was conducted by David Mackay in 1992 [14, 15].

In the maximum likelihood method, we find a single set of weight parameters by minimizing

the error function. In contrast to that, in the Bayesian approach, a probability distribution

is used to capture the uncertainties associated with the weight parameters [8].

Use of Bayesian learning in ANN provides several advantages. In fact, the use of

regularization parameters can be given a natural interpretation. Moreover, it allows of

using a relatively large number of regularization parameters while they can be optimized

during the training process. The automatic relevance determination [16–18] prior helps to

identify the relative importance of the input variables. Additionally, we can create error

bars to the regression problems when making the new predictions. We also can improve the

prediction accuracies by creating network committees after combining different networks.

In this method, we first introduce a prior distribution p(w) for the weights where

it represents our knowledge of the weight parameters before observing the data. Once

we observe the data, the Bayes’ theorem is used to update our beliefs and the posterior

probability density p(w|D,x) of the weight parameters is obtained.

p(w|D,x) =
p(D|w,x)p(w)

p(D|x)
(1.25)
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Here, p(D|w,x) is the likelihood function, and p(D|x) is the normalization factor which is

given by,

p(D|x) =

∫
p(D|w,x)p(w|x)dw. (1.26)

We then use this posterior distribution to make inferences. That is to make new predictions

based on

p(t|x∗,D) =

∫
p(t|x∗,w)p(w|D,x) dw (1.27)

1.4.1 Prior and Posterior Distribution of the Weight Parameters

In this section, we discuss the process of obtaining the posterior distribution for the

weight parameters. From Eq. (1.25), it is clear that we need to have a prior distribution

for the weights and the likelihood of the data in order to obtain the posterior distribution.

In our analysis, we consider a zero mean Gaussian prior of the form Eq. (1.28),

p(w|x) =
1

Zw(α)
exp(−αEp(w)) =

1

Zw(α)
exp(−α

2
wTw), (1.28)

where Zw = (2Π
α )w/2 and α is the inverse variance of the distribution, also known as

the hyperparameter of the prior distribution. As a part of Bayesian learning, we can

optimize this hyperparameter (This will be discussed in Section 1.4.2). The error term

Ep(w) is chosen to be 1
2w

Tw, as it penalizes the weights of large magnitudes for a better

generalization. This is same as having a weight decay regularizer as in Eq. (1.24).

The posterior probability distribution for weights can be determined according to the

Bayes’ theorem by incorporating the prior of Eq. (1.28) and the corresponding log likeli-

hood p(D|w,x) of the data.

P (w|D,x) =
1

Zs
exp[−(ln P (D|w,x) + αEp(w))] =

1

Zs
exp[−S(w)], (1.29)

where Zs is the normalization constant of the posterior distribution and S(w) is the reg-

ularized cost function. Due to the analytical difficulties in evaluating the above posterior,
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we introduce a Gaussian approximation to this posterior distribution. For that, we first

need to find the most probable weight vector wMAP , by minimizing the regularized cost

function S(w) using the standard nonlinear optimization algorithms such as conjugate

gradients (Here we have assumed that α is known).

Having found a mode wMAP , we then build a local Gaussian approximation by evalu-

ating the matrix of second derivatives of the negative log posterior distribution.

A = −∇∇ ln p(w|D,w). (1.30)

The corresponding Gaussian approximation to the posterior is then given by,

q(w|D,x) = N (w|wMAP ,A
−1). (1.31)

To make prediction at a new input vector x∗ for a regression problem, we need to calculate

the predictive distribution,

p(t|x∗,D) =

∫
p(t|x∗,w)q(w|D,x) dw. (1.32)

For a classification problem, the probability that a new input vector belongs to class

C1 as in Eq. (1.33). Though this prediction is not directly achievable, we can use the

marginalized predictions to obtain the results as suggested by MacKay [14].

p(C1|x∗,D) =

∫
(C1|x∗,w)q(w|D,x)dw =

∫
y(x,w)q(w|D,x)dw. (1.33)

1.4.2 The Evidence Procedure and the Automatic Relevance Determination

Prior

The evidence procedure is an iterative algorithm for determining the optimal weights

and hyperparameters. Instead of integrating over all unknown hyperparameters, this

searches for optimal hyperparameters. Evidence procedure has given good results on many
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applications [19] and less computationally costly compared to other Bayesian approaches.

This process is summarized here.

The posterior distribution of the weight parameters can be rewritten by highlighting

dependency of that on its hyperparameters,

p(w|D,x) =

∫ ∫
p(w, α, β|D,x) dα dβ =

∫ ∫
p(w, α, β,D,x)p(α, β|D,x) dα dβ. (1.34)

Under the evidence procedure, we assume that the posterior density of the hyperparam-

eters p(α, β|D) is sharply peaked around the most probable values of those hyperparameters

αMAP and βMAP . That is we use the Laplace approximation. With that we have,

p(w|D,x) ≈ p(w|αMAP , βMAP ,D,x)

∫ ∫
p(w, α, β|D,x) dα dβ. (1.35)

Therefore, the first step in the evidence procedure is to evaluate the posterior distribu-

tion of hyperparameters by approximating with the most probable values of hyperparam-

eters. Using Bayesian inference, the posterior distribution of the hyperparameters can be

obtained by

p(α, β|D,x) =
p(D|α, β,x)p(α, β|x)

p(D|x)
. (1.36)

For the rest of the analysis, we assume that p(α, β|x) to be uniform and p(D|x) is ignored

as we are only interested in the peaks of this density. Therefore, we only need to maximize

p(D|α, β,x),that is the evidence of the hyperparameters

p(D|α, β,x) =

∫
p(D|w, α, β,x)p(w|α, β,x) dw =

1

ZD(β)

1

ZW (α)

∫
exp(−S(w)) dw.

(1.37)

We then take the log of the evidence and optimize it with respect to α and β. This

procedure can be repeated for each local minimum, and α and β can be re-estimated using

the,
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αnew =
γ

2Ep(w)

and

βnew =
N − γ
2E(w)

.

(1.38)

where γ =
∑W

i=1
λi

λi+α
and λ1, ..., λW are the eigen values of the Hessain matrix of the

regularized cost function S(w).

Having found the αMAP and βMAP using the evidence procedure, we can approximate

the regularized cost function using the second-order Taylor series expansion around the

most probable weight vector wMAP ,

S(w) ≈ S(wMAP ) +
1

2
(w −wMAP )TA(w −wMAP ). (1.39)

This is used for the Gaussian approximation to the posterior distribution

q(w|D,x) =
1

Z∗s
exp(−S(wMAP )− 1

2
∆wTA∆w). (1.40)

In the Bayesian setting, we can associate a separate hyperparameter to each input

variable representing the inverse variance of the prior distribution of the weights fanning out

from that input [20]. Optimal values for these hyperparameters can then be obtained using

the evidence procedure. So the weights connected to the irrelevant inputs are automatically

set to small values. This is known as the automatic relevance determination (ARD) prior.

1.4.3 Hybrid Monte Carlo Method

In the evidence procedure, we have used several approximations to get the posterior

weight distribution and to optimize the hyperparameters. R. M. Neal in 1994 [18] proposed

a Bayesian learning method based on Hybrid Monte Carlo sampling. Here, he has suggested
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approximating the predictive distribution given in Eq. (1.32) by a finite sum of the form,

〈p(t)〉 = p(t|x,D) ' 1

M

M∑
m=1

p(t|x,wm), (1.41)

where {wm} represents a sample of weight vectors generated from the posterior distribu-

tion. We also can obtain a statistical error estimate for our predictions by considering the

variance of this statistic,

SE =

√
〈p(t)2〉 − (〈p(t)〉)2

N
, (1.42)

With this one can construct the confidence interval which represents one standard deviation

around the expected value of the statistic.

Hybrid Monte Carlo method of sampling uses the information of gradients which makes

it ideal for neural networks. Furthermore, the accuracy of the above estimator does not

depend on the dimensionality of w and therefore high accuracy can be achievable with a

relatively small number of samples.

However, in reality, samples {wm}, might not be independent and therefore we might

need relatively large samples. Most importantly, the posterior distribution depends on the

prior distribution of the weights as well as the selection of hyperparameter values. If we do

not choose an informative prior based on our data and different values of hyperparameters,

this method might require a huge number of samples to achieve a sufficient accuracy.

1.4.4 Network Committees

It is recommended in literature to train several networks with different random initial

weight configurations. This will avoid the cost function being stuck in a local minimum.

We can simply form a committee of networks by combining these networks. Suppose we

have a set of L trained network models where i = 1, 2, ...., L. These networks may have

different number of hidden units, or networks with the same architecture but trained to

different local minima of the cost function.
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The simplest form of a committee, which involves taking the average predictions of the

outputs of the L networks, is given by Eq. (1.43). This will improve the accuracy of the

predictions over an individual network output [20]. That is,

ycom(x,w) =
1

L

L∑
i=1

yi(x,w). (1.43)

1.5 Sparse Kernel Methods

The kernel concept was first introduced by the Aizerman et al. [21] into the field

of pattern recognition in 1964. A kernel function for a model with fixed feature space

mapping φ(x) is defined to be, k(x,x′) = Φ(x)TΦ(x′), and it is a symmetric function of

its arguments.

Usually, kernel methods use set of all training data to obtain either a point estimate of

the parameter vector or to determine a posterior distribution over the above vector during

the training phase. Therefore, it takes a significant amount of computational time to make

the predictions for unseen data, based on the learned parameter vector w.

In contrast to the above, sparse kernel methods use only a subset of the training data

[9] to make the predictions. Here, we discuss about two of such models support vector

machine and relevance vector machine.

1.5.1 Support Vector Machine

Support vector machine (SVM) [22, 23] have been widely used to solve classification

problems by constructing an optimal separating hyperplane in a feature space. They are

important mainly because of several reasons. One reason is being robust to very large

number of variables and small samples and another reason is they can build both simple

and highly complex classification models. However, unlike ANN and RVM, SVM does not

provide any posterior probabilities.
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Figure 1.2: Illustration of the margin, decision boundary and support vectors

For a two-class classification problem with a linear model of the form,

y(x) = wTΦ(x) + b, (1.44)

where Φ(x) is the feature space mapping introduced in the previous section. If the training

data set is linearly separable in Φ(x), then there exist at least one possible solution for w

and b such that y(xn) > 0 for the class with tn = +1 and y(xn) < 0 for the other class

with tn = −1, so that tny(xn) > 0 for all training data n = 1, 2, .., N .

If there are more than one solution, then we find a solution with the smallest general-

ization error. SVM handles this through a concept called “margin”. The margin is defined

as the perpendicular distance between the decision boundary and the closest of the data

points, as shown in the Fig. 1.2. Maximizing the margin leads to a particular choice of

decision boundary. The location of this boundary is determined by a subset of the data

points, known as support vectors, which are indicated by the circles. With this concept,

we can minimize an error function where it gives an infinite error when a data point is

misclassified and a zero error for correctly classified data.
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When the training data are not linearly separable, slack variables εn ≥ 0 are introduced.

For the data points which are on or inside the correct margin boundary, we have εn = 0

and for the other data points we have, εn = |tn − y(xn)|. Thus, a data point that is on

the decision boundary y(xn) = 0 has εn = 1. We can now define a new classification as

tny(xn) ≥ 1 − εn. Data points for which εn = 0 are correctly classified. Points for which

0 < εn ≤ 1 lie inside the margin, but on the correct side of the decision boundary, and

those data points for which εn > 1 lie on the wrong side of the decision boundary and

are misclassified as illustrated in Fig. 1.2. Hence, our goal is to maximize the margin

while softly penalizing the points that lie on the wrong side of the margin boundary by

minimizing,

C

N∑
n=1

εn +
1

2
wTw, (1.45)

where the parameter C controls the trade-off between the slack variable penalty and the

margin.

1.5.2 Relevance Vector Machine

Relevance vector machine is based on the Bayesian formulation [24] and provides pos-

terior probabilistic outputs by applying Bayesian treatment to Eq. (1.43). RVM provides

equivalent generalization performance like SVM, but they utilize dramatically fewer kernel

functions and hence provide much sparser solutions than SVM.

In RVM, a prior over the model weights, one associated with each weight governed

by a set of hyperparameters, is introduced and their most probable values are iteratively

estimated from the data. In practice when that the posterior distributions of many of the

weights are sharply peaked around zero, sparsity is achieved. Those training vectors asso-

ciated with the remaining non-zero weights are known as “relevance vectors”, in reference

to the principle of automatic relevance determination prior.
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CHAPTER 2

AN EFFECTIVE DIAGNOSTIC ARTIFICIAL NEURAL NETWORK
MODEL FOR BREAST CANCER

2.1 Introduction

Breast cancer is the second most fatal disease in women worldwide. Self-awareness

and evaluation of breast cancer risk play important roles in detecting cancer in its early

stages. Including the well-known “Gail model” [25], some other statistical models have

been proposed to assess the risk of being diagnosed with breast cancer [26–28]. However,

these models imposed some limitations on their use of risk prediction [29, 30]. Usually,

physicians advice women who are 40 years or older to do an annual mammogram screening

test for their benefits. However, in addition to their cost in thousand dollars, there is a

significant controversy about the usefulness of mammograms [3]. Typically, the sensitivity

of a mammogram (probability of correctly identifying a malignant lump) varies between

68% and 79% [31].

The primary objective of our study is to develop a better statistical model to correctly

classify the malignant breast cancer patients with their demographic factors and previous

mammogram results using a Bayesian artificial neural network (ANN) model. This allows

us to successfully evaluate the probability of diagnosing with malignant breast cancer

[32]. Moreover, we can find out the relevance importance of risk factors for the network

predictions. Hence, women can use our proposed model as a decision supportive system,

before proceeding to their next annual mammogram or at least along with that.

In addition to the proposed neural network model, we have built several other diagnosis

models with support vector machine (SVM), relevance vector machine (RVM), and some

hybrid models, combining several of them above. We present their discrimination capacities
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based on the accuracies, specificities, sensitivities and the area under the receiver operating

characteristic curve (AUC).

2.2 Literature Review

The statistical models which have been developed in the past on the breast cancer can

be classified into two main groups: diagnosis and prognostic models. Each type of model

serves for different purposes [33], a diagnosis model is used to identify the malignant and

nonmalignant cancerous patterns where a prognosis model is used for prediction of future

development of cancerous cell [31].

Detecting malignancy in breast cancer using a neural network with mammogram data

has experimented in several studies [4–7, 34]. The popularity of ANN in health related

problems has been increased rapidly over the past decades due to its capability of identifying

complicated patterns inherited in the patients’ data.

Janghel et al. [35] have used neural networks to develop a diagnosis model using a

back-propagation algorithm, with a 52% overall accuracy. Ayer et al. [4] have quantified

the breast cancer risk using an ANN model, and have obtained a significant improvement

in their model accuracy. Utomo et al. [34] have used extreme learning machine neural

network to develop a better generalization classifier model than the commonly used gradient

based ANN. Most of other studies have compared the accuracies between ANN and the

classical methods like logistic regression [36–38]. The majority of them have reported

similar performance between those two, while some have reported that one or the other

model performed better depending on their data.

Singh et al. [39] have used Bayesian regularization techniques in developing a breast

cancer diagnosis model using ANN. However, none of the existing studies have utilized the

evidence approach or the automatic relevance determination prior which lead to a minimum

network overfitting. Those approaches provide efficient solutions for the problems that

has with some medical statisticians including misuses of neural networks with significant

network overfitting [40–42] and identifying the importance of risk factors [43].
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Several other studies [44–46] have found that the support vector machines provide

higher prediction accuracies than any other data mining techniques including ANN and

Bayesian network. However, SVM does not provide class probabilities in classifications.

Though there exist a heuristic approach to map non-probabilistic SVM outputs to proba-

bilities via a logit function [47], it fails to provide much insight. Though RVM provides

posterior class probabilities and has better sparse property, generalization ability, and de-

cision speed [48, 49], it also has almost an equal training efficiency and a classification

accuracy as SVM.

2.3 Methodology

We have used a multi-layer perceptron neural network to develop the proposed breast

cancer diagnosis model. The model is trained based on demographic risk factors and

previous mammogram results from the white women. The corresponding posterior class

probabilities of malignancy for each woman is obtained as the outcome. The developed

ANN model with one hidden layer is represented in Fig. 2.1. The final analytical form of

the output is given by Eq. (2.1),

y(x,w) = g(a) = g

( M∑
j=0

w
(2)
1j h

( d∑
i=0

wji
(1)xi + b

(1)
j

)
+ b

(2)
1

)
. (2.1)

Here, x1, x2, ...., xd are the risk factors and y is the posterior class probability of falling into

malignant breast cancer class. The hyperbolic tangent and the logistic sigmoid activation

functions are selected as the h and g respectively. The network training is performed by

minimizing the cross entropy error [Eq. (1.15)] or the evidence function (Eq. [1.37)] which

we have discussed in detail in Chapter 1.

2.3.1 Study Population

The data for this study are taken from the breast cancer surveillance consortium [50] for

the period 1996 to 2002. For each white woman, information on her menopausal type, age,
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Figure 2.1: The proposed ANN model for breast cancer diagnosis

breast density, ethnicity (Hispanic), body mass index (BMI), age at first birth, personal or

family history of breast cancer, prior breast procedures, results of the last mammogram,

type of menopause and current hormone therapy are taken into consideration. Ages of the

women in this study vary from 35 to 84 years, and specific details are given in Table 2.1.

2.3.2 Implementation of the ANN Model

Training and testing data sets were created by partitioning the whole data set into two

parts each with 75% and 25% of the data. A random sample out of the non-malignant

group from the training set is selected and merged with the malignant group in order to

obtain a balanced training set as given in Table 2.2.

We trained different ANN models using both standard (maximum likelihood method)

and Bayesian approaches with a varying number of hidden nodes from 1 to 25. The scaled
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Table 2.1: Details of the study population

Malignant Malignant(%) Non Malignant Non Malignant (%) Total Total(%)

Total 1053 6.47 15218 93.53 16271 100

1 Menopausal Type ( X1)

Premenopausal 227 21.56 2882 18.94 3109 19.11
Postmenopausal 826 78.44 12336 81.06 13162 80.89

2 Age Group ( X2)

35-39 6 0.57 496 3.26 502 3.09
40-44 72 6.84 788 5.18 860 5.29
45-49 137 13.01 2355 15.48 2492 15.32
50-54 168 15.95 2695 17.71 2863 17.6
55-59 150 14.25 1872 12.3 2022 12.43
60-64 141 13.39 1663 10.93 1804 11.09
65-69 131 12.44 1533 10.07 1664 10.23
70-74 96 9.12 1477 9.71 1573 9.67
75-79 93 8.83 1343 8.83 1436 8.83
80-84 59 5.6 996 6.54 1055 6.48

3 Breast Density ( X3)

Almost entirely fat 31 2.94 2575 16.92 2606 16.02
Scattered fibroglandular densities 405 38.46 5319 34.95 5724 35.18
Heterogeneously dense 506 48.05 4993 32.81 5499 33.8
Extremely dense 111 10.54 2331 15.32 2442 15.01

4 Hispanic ( X4)

No 1026 97.44 12476 81.98 13502 82.98
Yes 27 2.56 2742 18.02 2769 17.02

5 Body Mass Index ( X5)

10-24.99 432 41.03 4969 32.65 5401 33.19
25-29.99 326 30.96 4404 28.94 4730 29.07
30-34.99 181 17.19 3304 21.71 3485 21.42
35 or more 114 10.83 2541 16.7 2655 16.32

6 Age at First Birth ( X6)

Age<30 692 65.72 7654 50.3 8346 51.29
Age 30 or greater 154 14.62 3412 22.42 3566 21.92
Nulliparous 207 19.66 4152 27.28 4359 26.79

7 Number of first degree relatives with breast cancer ( X7)

Zero 763 72.46 8515 55.95 9278 57.02
One 252 23.93 5077 33.36 5329 32.75
Two or more 38 3.61 1626 10.68 1664 10.23

8 Previous breast procedure ( X8)

No 716 68 8925 58.65 9641 59.25
Yes 337 32 6293 41.35 6630 40.75

9 Result of last mammogram before the index mammogram ( X9)

Negative 1032 98.01 13244 87.03 14276 87.74
False positive 21 1.99 1974 12.97 1995 12.26

10 Surgical menopause ( X10)

Natural 576 54.7 7000 46 7576 46.56
Surgical 250 23.74 5336 35.06 5586 34.33
Unknown 227 21.56 2882 18.94 3109 19.11

11 Current hormone therapy( X11)

No 400 37.99 6382 41.94 6782 41.68
Yes 426 40.46 5954 39.12 6380 39.21
Unknown or not menopausal 227 21.56 2882 18.94 3109 19.11
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Table 2.2: Summary of the training and testing data

Data Malignant Non-Malignant Total

Train 829 1658 2487
Test 224 3030 3254

Total 1053 4688 5741

conjugate gradient algorithm is used for network training as it automatically adjusts the

learning rate with a faster learning [51].

Neural networks in the standard setting are trained using a 10-fold cross validation

method, both with and without a weight regularization. In the 10-fold cross validation,

the training set is divided into ten distinct segments where 9 of them are used to train

the network, and the remaining segment is used for validation. This process is repeated

for each of the ten possible choices of the segments which are omitted from the training

process, and the validation errors (cross entropy error) are averaged over all ten segments.

The best network in this approach is the one with the smallest average cross entropy in

the validation data set [52].

Under the Bayesian approach, we trained another three types of networks with differ-

ent weight regularization techniques. The first two networks were trained using Bayesian

evidence procedure [8], one without and the other with automatic relevance determination

prior. For both of the above types, ten different networks were trained with ten different

random initializations to examine the effect of local minima on solutions, and these were

taken to construct the network committees. The optimal ANN model with the highest av-

erage log evidence from each committee is then selected to predict the posterior probability

of malignancy. In addition to above, another simple neural network with one hidden node

was built, and this is functionally equivalent to a logistic regression model.

The final Bayesian ANN model, along with the evidence process and ARD prior is

developed using a 10-fold cross validation method. Here also, we built several ANN models

by varying the number of hidden nodes and the best ANN is selected based on the minimum

regularized cost function.
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2.3.3 Model Evaluation

The optimal ANN models in each case are evaluated based on their accuracy, sensitiv-

ity, specificity values and AUC values for the testing data [53, 54]. The proportions of

correctly identified malignant and non-malignant women from the ANN models are known

as the model “accuracies”. The proportions of actual malignant patients who are cor-

rectly identified from the models are known as the “sensitivities, ” and the proportions

of non-malignant women who are correctly identified from the models are known as the

“specificities.” A perfect desirable predictor would be described as 100% sensitive (that

is predicting all people from the malignant group as malignant) and 100% specific (that

is predicting all non-malignant people as nonmalignant). However, for any test, there is

usually a trade-off between these two measures and this can be represented graphically by

the receiver operating characteristic curve.

A summary of our six optimal neural networks is given in Table 2.3. According to that,

the overall accuracy of the logistic neural network (6th MLP) is lower than all the other

models except for the ANN trained without the ARD prior. Moreover, it has the second

lowest sensitivity and specificity values with the highest error. However, these models are

not directly comparable with respect to their errors, as they have different settings and

different training samples.

Table 2.3: Classification summary of the ANN models

No ANN Model Error(Cross Entropy/Cost) Accuracy Sensitivity Specificity

MLP 1 Standard ANN without
a weight regularization 641.96(valid error 16.50) 78.43% 55.36% 80.13%

MLP 2 Standard ANN with a weight regularization 434.77(valid error 8.28) 74.09% 53.57% 75.61%
MLP 3 ANN with evidence, but without ARD prior 548.63 72.99% 60.71% 73.89%
MLP 4 ANN with both evidence and ARD prior 582.28 74.15% 59.82% 75.21%
MLP 5 ANN with evidence and

ARD prior along with cross validation 908.78 81.35% 59.38% 82.97%
MLP 6 ANN with one hidden node (logistic) 1123.1 73.11% 55.35% 74.42%

Out of these ANN models, the best network with respect to the highest accuracy

and specificity is found to be the ANN trained using the evidence procedure and ARD

26



prior along with a cross validation (5th MLP). As can be seen, use of evidence procedure

and the ARD prior have always resulted in better sensitivities. However, use of weight

regularization without any optimization (evidence process) does not provide any significant

improvement over the standard network training process.

After a careful investigation of our results, we can conclude that the use of weight

regularization techniques along with the evidence and the cross-validation processes provide

better results in Bayesian classification, for most of the time. Apart from that, use of

the ARD prior helps to identify the most contributing variables in the model. Also, by

forming committees, we were able to reduce the network training error. Therefore, we prefer

Bayesian learning methods over the standard method of training the neural networks. We

can see that the minimum and maximum prediction accuracies from these ANN models

are 73% and 81%, respectively. Sensitivity values are varying from a minimum of 54% up

to a maximum of 61% while specificity values are varying from 74% to 83%. The AUC

Figure 2.2: The receiver operating characteristic curves
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values of all the above ANN models are greater than the AUC values of all the above ANN

models are greater than 70%, which implies a moderate classification model. Figure 2.2

represents the receiver operating characteristic curves with the corresponding AUC values.

In the end, we obtained the posterior probabilities of malignancy from the best Bayesian

ANN model.

The relevance importance of the inputs identified by the ARD prior, depending on

their eventual hyperparameter values is presented in Table 2.4. Risk factors with smaller

hyperparameters correspond to a large variance prior and hence allow weights of large

magnitude. Such variables are highly contributing to the model outcome. As can be seen,

being in the age group 75-79 is the most critical factor in diagnosing with the malignant

breast cancer. Having a prior false-positive mammogram can be an indication of malignant

breast cancer. In accordance with the cancer literature [50], we found that the risk factors

like, having heterogeneously or extremely dense breast densities, and having a BMI of “35

or more” are significantly contributing to the model.

2.4 SVM, RVM and Ensemble Modeling

To evaluate our ANN model performance over the other classification techniques, we

implemented classification models with SVM and RVM methods. Further, some ensemble

classification models were constructed by combining the best Bayesian network with SVM

and RVM models.

Table 2.5 summarizes the classification details for each method. From that, we can

see that the SVM has outperformed our best ANN method in all three evaluation aspects.

Also, the ensemble method with ANN and SVM tends to give the second best accuracy

values where as ANN alone slightly inferior to both of them. We have used penalized

logistic regression to make the ensemble models. This matches with the general findings

that the SVM performs better for classification problems. However, the disadvantage of

using SVM is that it does not provide the actual posterior class probabilities like an ANN

model. The RVM model, which is the Bayesian version of SVM, did not outperform the
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Table 2.4: Relative importance of the risk factors based on the ARD prior

Rank Alpha (hyperparameter) Variable Risk Group

1 0.3841 agegrp9 Age group 75-79
2 0.555 lastmamm Result of last mammogram before the index mammogram - False positive
3 0.6489 density3 Density - Heterogeneously dense
4 0.6846 density4 Density - Extremely dense
5 0.8251 bmi4 35 or more
6 1.3072 agegrp2 Age group 40-44
7 1.3872 agegrp7 Age group 65-69
8 1.6989 hispanic Hispanic or not - Yes
9 1.7403 nrelbc2 Number of first degree relatives with breast cancer - 2 or more
10 1.951 hrtYes Current hormone therapy ? Yes
11 2.0528 agegrp10 Age group 80-84
12 2.0826 bmi2 25-29.99
13 2.198 agegrp8 Age group 70-74
14 2.2112 hrtNo Current hormone therapy - No
15 2.8161 agegrp6 Age group 65-69
16 2.9341 bmi3 30-34.99
17 3.2299 agegrp5 Age group 55-59
18 3.652 nrelbc1 Number of first degree relatives with breast cancer - One
19 3.7138 surgnatural Surgical menopause - Natural
20 4.2249 agegrp4 Age group 50-54
21 5.0616 surgsurgical Surgical menopause - Surgical
22 5.1547 brstproc Previous breast procedure - Yes
23 5.7224 density2 Density - Scattered fibroglandular densities
24 7.2989 menopaus Postmenopausal or age>=55
25 10.1388 agenulli Age at first birth - Nulliparous
26 10.5538 agegrp3 Age group - 45-49
27 11.4664 agegreater30 Age at first birth - Age 30 or greater

other models. Therefore, we stick to the best ANN model to preserve our original goal of

finding posterior class probabilities of malignancy.

Table 2.5: Summary of the classification methods

Method Accuracy Sensitivity Specificity

ANN 81.35% 59.38% 82.97%
SVM 85.46% 60.27% 87.33%
RVM 78.86% 54.02% 80.69%
ANN+SVM 82.67% 58.48% 84.46%
ANN+RVM 81.90% 52.68% 84.06%
ANN+SVM+RVM 81.32% 51.79% 83.50%
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2.5 Conclusions and Contributions

In the present research, we have created different ANN models using both standard and

Bayesian analytics. The Bayesian ANN models outperformed the standard ANN models.

Additionally, it provides the posterior probabilities for a classification, and that can be used

as a priori risk of diagnosing breast cancer. Moreover, we can use the evidence procedure

for network regularization along with the ARD prior. By applying those two analytics

along with cross-validation procedure, we were able to achieve a significant difference in

the accuracy of our neural network models. By using network committees, we were able to

significantly improve our prediction accuracies due to the lower variances.

The highest accuracy was obtained from one of the Bayesian ANN, and it is about 81%.

This is a significant improvement over the other methods which used for the same set of

real data with respect to the discriminative accuracy. ROC curve provides information

about a model’s classification efficiency. We were able to get a good classification model

with the third and the fifth ANN model where it gives an AUC, more than 75%. Relevance

importance of the risk factors were obtained with the aid of the ARD prior, which is very

useful information for any women with certain risk factors.

We have introduced a breast cancer diagnosis model using artificial neural network

analytics. This can be used as a decision supportive system in evaluating the potential risk

of diagnosing a woman with malignant breast cancer.

In this study, we were able to accomplish the following goals.

1. We have developed an effective diagnosis model for potential breast cancer patients

using ANN.

2. Unlike the existing diagnosis models, we were able to increase the validity of the

proposed ANN model by incorporating the Bayesian regularization analytics.

3. White women can use our model assess their preliminary risk of diagnosis with ma-

lignant breast cancer.
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4. The proposed analytic ANN model can identify the risk of breast cancer and proceed

for medical treatment if necessary.

5. The proposed model can also be used to determine if an individual should proceed

to have a mammogram.

6. The information obtained from the proposed model would improve the financial as-

pects of health by avoiding unnecessary treatments.

Finally, the present research confirms the fact that ANN have an important role in

improving the accuracy and consistency of medical diagnosis. We believe that we can

improve this model further by considering more relevant risk factors and more recent data.

Additionally, we would like to re-implement this model for different races since the race

is one of the significant risk factors which contributes to the malignancy of breast cancer

[55].
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CHAPTER 3

BAYESIAN MODELING OF NONLINEAR POISSON REGRESSION
WITH ARTIFICIAL NEURAL NETWORKS

3.1 Introduction

Poisson regression is a form of regression analysis which is used to model count data

[56]. This plays an important role in interdisciplinary research including health, finance,

social, etc. For example, Poisson regression can be used to model the number of mutations

on a strand of DNA per unit length, model number of claims occurring in a given period,

or to model the students drop out rates from schools.

When developing a Poisson regression model, we assume that its mean is related to

a function of covariates. More specifically, it assumes that log-transformed outcomes are

linearly related to the covariates. However, in reality, this assumption may or may not

be true. Another strong assumption which involves in Poisson regression is that its mean

is same as its variance. Any violation of this assumption might lead to significantly un-

derestimated standard errors. Eventually, this may incorrectly assess the significance of

individual regression parameters.

In this Chapter, we discuss about a method of developing a nonlinear Poisson regres-

sion model using artificial neural networks (ANN). In fact, we introduce a new Bayesian

artificial neural network for developing a nonlinear Poisson regression. With our approach,

we can overcome the most serious issues of a conventional Poisson regression model of

overdispersion, by introducing error bars over the standard errors and using relevance de-

termination prior to assess the importance of each covariate into the model. Additionally,

we introduce a new Hybrid Bayesian learning method for neural networks based on the
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evidence procedure and Hybrid Monte Carlo (HMC) sampling. A real world application

of this new ANN model will be presented in the next Chapter.

3.2 Literature Review

Researchers have an ever increasing interest on modeling with nonlinear regression mod-

els, mainly due to the availability of Big data. These include nonlinear analysis methods

like as generalized additive models, classification and regression trees, multivariate adap-

tive regression splines and neural network models which exhibit their unique strengths and

weaknesses.

Among those, nonlinear modeling with artificial neural networks has gained an immense

attraction due to their flexibility and high predictive performances. Consequently, a signif-

icant amount of researchers has contributed in developing nonlinear versions of generalized

linear models with neural networks. Development of a nonlinear logistic regression model

with an ANN is one of the pioneering study [43] in this field. C. M. B. Bishop in 2006 [9],

then introduced a nonlinear multinomial logistic regression model using ANN and both of

these models have been extensively applied for solving various interdisciplinary research

problems [4, 57]. A nonlinear extension of ordinal logistic regression using ANN has been

introduced in financial engineering by Mathieson et al. [58].

A nonlinear Poisson regression model has first been developed using the maximum

likelihood (ML) method by Fallah et al. [59] in 2009. An application of that in predicting

the cause-specific hazard of the breast cancer patients can be found in [60]. As per our

knowledge, only these two studies have contributed in this research regime. In this study,

our goal is to significantly improve these existing models by introducing the Bayesian

learning techniques. Although the Bayesian learning approaches have been used for regular

regression [61], none of the existing studies have utilized it for count modeling.
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3.3 Methodology

3.3.1 Neural Network and Poisson Regression

Let D = (t1, ..., tn) be a vector of count responses with input vectors xn for n =

1, 2, ...N . Note that t1 = {t11, t12, ..., t1K}. Then, we can obtain the likelihood function

according to Eq. (1.9) in Chapter 1. The probability mass function of the Poisson distri-

bution, p(tn|xn), is given in Eq. (3.1).

p(tn|xn) =

K∏
k=1

e−λ
n
k (λnk)t

n
k

tnk !
, tnk = 0, 1, 2, ....... (3.1)

The average value, λnk can be modeled with a multi-layer perceptron artificial neural

network model of the form given in Eq. (3.2) with d inputs, M hidden nodes and K

outputs,

yk(x
n,w) = λ̂nk = g

( M∑
j=1

w
(2)
kj h

( d∑
i=1

w
(1)
ji x

n
i + b

(1)
j

)
+ b

(2)
k

)
, (3.2)

where h and g are the hyperbolic tangent and the exponential activation functions in the

hidden and output layers.

3.3.2 Training the ANN

The training phase of a neural network plays an important role to gain better predic-

tions. This can be achieved either using the maximum likelihood (ML) or the Bayesian

methods. With the ML approach, we can find an optimal set of weights by minimizing the

network error function. However, training with ML tends to provide poor predictions due

to its inherent problem of network overfitting which had lead to bias parameter estimations.

This can be minimized by introducing a regularization parameter.

Unlike the ML method, the Bayesian approach provides a more intuitive learning of

the weight parameters. Bayesian learning of ANN involves introducing a prior distribution

for the weights. In developing our proposed model, we used a zero mean Gaussian prior of

the form Eq. (1.28) given in Chapter 1.
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In either methods, ML or Bayesian, we need to minimize the canonical error function as

a part of the learning process. When developing a nonlinear Poisson regression model, this

error function is obtained by taking the negative log likelihood of the Poisson distribution

of the form Eq. (3.3),

E(w) = −
N∑
n=1

K∑
k=1

[
− yk(xn,w) + tnk log(yk(x

n,w))− ln(tnk)!

]
. (3.3)

This error function can be modified by eliminating the terms which are not involved in

model fitting and introducing a weight decay parameter α,

Ẽ(w) = −
N∑
n=1

K∑
k=1

[
− yk(xn,w) + tnk log(yk(x

n,w))

+
α

2

∑
weights

(
w

(1)
ij

2
+ w

(2)
kj

2
+ (b

(2)
j )2 + (b

(2)
k )2

)]
.

(3.4)

In the ML approach, we used a cross-validation method which involves reserving a

validation dataset to evaluate the error Ẽ(w) of models trained using a range of different

values of α from {0.01.0.025, 0.05, 0.075, 0.1} and selecting the value of α that gives the

smallest Ẽ(w). This is based on the fact that the weight decay values between 0.01 and

0.1 are sufficient for model regularization [43].

Under the Bayesian approach, we used the evidence procedure, Hybrid Monte Carlo

(HMC) method and a new Hybrid Bayesian learning method. As we have introduced the

first and second methods in Chapter 1, here, we discuss about the new Hybrid Bayesian

method.

3.4 New Bayesian Learning for Neural Networks

In the HMC method, we need to generate several samples out of the posterior distribu-

tion of the weights in order to approximate the integral Eq. (1.32) to make the predictions.

The generation of these samples highly depends on the initial hyperparameter value in the

weight posterior.
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Prior to HMC sampling, we can use the evidence procedure to optimize these hyperpa-

rameter value in the nonlinear Poisson regression model. This optimized hyperparameter

value along with the weight parameters can then be used to generate the samples from

the posterior distribution. This new approach, called the Hybrid Bayesian, provides rel-

atively high prediction accuracies, specially compared to HMC method. Additionally, we

can identify the relative importance of the inputs to the final ANN model. Moreover, we

can capture the uncertainties associated with our network predictions by constructing the

confidence intervals as discussed in Section 1.4.3. We have summarized the steps of this

new approach with respect to the nonlinear Poisson regression model in Fig. 3.1.

3.4.1 Convergence Diagnostic Statistics

When using the methods which utilized the Monte Carlo sampling, i.e., HMC and

Hybrid Bayesian, our goal is to generate samples out of the stationary distribution of

the Markov chain. Therefore, we need to check whether the chain has converged or not.

In order to assess this, we used a convergence diagnostic test statistic called, “estimated

potential scale reduction” (EPSR) which was introduced by Gelman and Rubin [62].

Here, they have assumed that if a chain has converged, then it has forgotten its start-

ing point. So, several sequences drawn from different starting points should be indistin-

guishable. EPSR assess this quantitatively by calculating the variance between different

sequences of a similar size and the variance within each of those sequence. Conventionally,

a group of sequence of samples can be accepted if their EPSR statistic falls below 1.10

for all statistic of interest including the regularized error function. Further details can be

found in [20].

3.5 Development of the Nonlinear Poisson ANN Model

3.5.1 Parameter Optimization

For an ANN model with fixed number of hidden units, we can minimize the regularized

error function Ẽ(w) to obtain the optimal weight vector w. That is to find a weight vector
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Step 1
Choose an initial value for the hyperparameter α. Initialize the weights and the bias parameters in
the network.

Step 2
Train the network with a suitable optimisation algorithm to minimize the reguralized cost function
S(w) given in the Eq. (3.4).

Step 3
When the network training has achieved a local minimum, use the Gaussian apprx. to compute the
evidence for the hyperparameter. α can be re-estimated using,

αnew =
γ

2Ep(w)

and obtain the optimal value αMAP

Step 4
Having found the αMAP , and the weights and bias parameters, use HMC to sample from the posterior
distribution of the weights to approximate the predictive distribution

p(t|x∗, D) =

∫
p(t|x∗,w)p(w|D)dw

by the finite sum

p(t|x∗, D) ' 1

M

M∑
m=1

p(t|x∗,wm)

Use Eq. (1.42) to calculate the standard errors.

Step 5
Repeat the steps 1 to 4 for random initial choices for the network weights in order to generate net-
work commitees.

Step 6
Make the predictions based on the network committees.

Figure 3.1: Steps of the new bayesian learning procedure
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w which gives the smallest Ẽ(w). However, There exist multiple points in the weight

space at which the gradient vanishes due to the nonlinear dependence on the weights and

bias parameters of the error function. Hence it may be necessary to compare several local

minima in order to find a sufficiently good solution. In order to find these points with

Ẽ(w) = 0, we need to rely on iterative numerical procedures.

Most techniques involve choosing some initial value w(0) for the weight vector and then

moving through weight space in a successive steps of the form,

w(τ+1) = w(τ) + ∆w(τ). (3.5)

where τ is the iteration step. Different algorithm involve different choices for the weight

vector update ∆w(τ). Many of them use the gradient information, and therefore need to

evaluate Ẽ(w) after each update. This will be discussed in the next section.

3.5.2 Error Back-Propagation and Evaluation of Error Gradients

The back-propagation procedure allows the derivatives of an error function with respect

to the network weights and biases to be evaluated efficiently. This uses the chain rule of

partial derivatives and leads to an algorithm in which error derivatives are propagated

backward through the network starting from the output units.

For the explanation purpose of the error back-propagation technique involved with

nonlinear Poisson regression, we introduce the following notations for an ANN. Let a
(1)
j

and zj be the inputs and outputs of the hidden layer as given in Eqns. (3.6) and (3.7).

a
(1)
j =

d∑
i=1

w
(1)
ji xi + b

(1)
j , (3.6)

and

zj = h(a
(1)
j ) = tanh(a

(1)
j ), j = 1, 2, ....,M. (3.7)
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Eq. (3.7) has the property

dzj

da
(1)
j

= (1− z2
j ). (3.8)

The corresponding input to the output layer is given in Eq. (3.9),

a
(2)
k =

M∑
j=1

w
(2)
kj zj + b

(2)
k , k = 1, 2, ...,K, (3.9)

where K is the total number of outputs. So the final output of the ANN for the Poisson

regression model is given by,

yk = yk(x,w) = exp(a
(2)
k ). (3.10)

The first step in evaluating the error derivatives is to perform a forward propagation for

the complete data set in order to evaluate the activations, zj
n of the hidden units and the

activations, yk(x
n,w) [or ynk ] of the output units for each pattern n in the data set. We

assume our training data are independently and identically distributed and hence the total

error function can be written as a sum of n individual error functions,

E(w) =

N∑
n=1

En(w). (3.11)

Because of the canonical choice of the error function and its corresponding activation

function, it can be seen that the partial derivative of the error with respect to ak
(2)n, is

given by,

∂En(w)

∂ak(2)n
= δ

(2)n
k = yk

n − tkn. (3.12)

This represents the ‘error’ of the output unit by the data pattern n. The derivatives of

E(w) with respect to the second layer weights and bias are given by,

∂En(w)

∂wkj(2)
=

N∑
n=1

δ
(2)n
k znj , (3.13)
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Step 1
Apply an input vector xn to the network and forward propagate through the network using Eqns.
(3.7) and (3.10) to find the activations of all the hidden and output units.

Step 2

Evaluate δ
(2)
k for all the output units using Eq. (3.12).

Step 3

Back propagate the δ
(2)
k ’s using Eq. (3.15) to obtain δ

(1)
j for each hidden unit in the network.

Step 4
Evaluate the required derivatives by using the Eqns. (3.13), (3.14), (3.16) and (3.17)

Figure 3.2: Error back-propagation procedure

and

∂En(w)

∂bk
(2)

=

N∑
n=1

δ
(2)n
k . (3.14)

The corresponding derivatives of the hidden layer parameters can then be obtained by back

propagating the ‘errors’, δ
(2)n
k through the output layer weights. Hence the ‘error’ signals

for the hidden nodes,

δ
(1)n
j = h′(a

(2)
k )

K∑
k=1

wkj
(2)δ

(2)n
k = (1− (znj )2)

K∑
k=1

wkj
(2)δ

(2)n
k . (3.15)

Hence,

∂En(w)

∂wji(1)
=

N∑
n=1

δ
(1)n
j xni , (3.16)

and

∂En(w)

∂bj
(1)

=
N∑
n=1

δ
(1)n
j . (3.17)

Therfore, we can summarize the above discussed process as given in Fig. 3.2.
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The derivative of the total error E(w) can then be obtained by repeating the above

steps for each data pattern in the training set and then summing over all patterns. i.e.,

∂E(w)

∂wji(1)
=

N∑
n=1

∂En(w)

∂wji(1)
. (3.18)

This error function is then used for batch optimizations.

3.5.3 The Fast Multiplication by the Hessian

The second derivatives of the error function which consist of ∂E(w)
∂wjiwkj

form the elements of

the Hessian matrix H. This plays an important role in many aspects of neural computing.

This has been used in several nonlinear optimization algorithms, as the network training

is based on the second-order properties of the error surface. Moreover, this provides a fast

procedure for re-training the network even after a small change in the training data.

However, for many applications of the Hessian, the quantity of interest is not the

Hessian matrix H, itself, but the product of H, with some vector ν. This product,

νTH, shows interesting properties with fewer calculations and also nearly same efficiency.

When developing our nonlinear Poisson ANN model we utilized this procedure using the

R-propagation algorithm proposed by Pearlmutter [81]. Further details can be found in

[9, 20].

We first need to note that,

νTH = νT∇(∇E(w)), (3.19)

where ∇ is the gradient operator in the weight space. ∇E(w) is evaluated using standard

forward-propagation and back-propagation equations given in the previous section. We

then apply Eq. (3.19) to these equations to obtain a set of forward-propagation and back-

propagation equations in order to evaluate νTH. This is similar to applying the differential

operator νT∇ on the original forward-propagation and back-propagation equations, and
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we denoted it by R{.} using Pearlmutter’s notation. Then we have,

R{w} = ν. (3.20)

Applying R{.} operator on forward-propagation equations given in Eqns. (3.6), (3.7),

(3.9) and (3.10) we get,

R{a(1)
j } =

∑
i

νjixi, (3.21)

R{zj} = h′(aj)R{aj}, (3.22)

R{a(2)
k } =

∑
j

w
(2)
kj R{zj}+

∑
j

νkjzj , (3.23)

R{yk} = ykR{a(2)
k }, (3.24)

where νji is the element of the vector ν that corresponds to the weight wji. Applying R{.}

operator on back propagation Eqns. (3.12) and (3.15) we get R-backward propagation

equations:

R{δ(2)
k } = R{yk}, (3.25)

and

R{δ(1)
j } = h′′(a

(1)
j )R{a(1)

j }
∑
k

wkj
(2)δ

(2)
k +

h′(a
(1)
j )

∑
k

νkjδ
(2)
k + h′(a

(1)
j )

∑
k

wkjR{δ(2)
k }

(3.26)

We also know that the gradients with respect to the output and the hidden layer weights

are given by Eqns. (3.13) and (3.16). Finally, applying R operator on those two equations,

we get the elements of νTH as follows.

∂E(w)

∂wkj
= R{δ(2)

k }zj + δ
(2)
k R{zj}, (3.27)
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and

∂E(w)

∂wji
= xiR{δ(1)

j }. (3.28)

3.5.4 Evaluations Measures

For the evaluation purposes, we have used several error measurement criteria. These

include the root mean square error (RMSE), mean absolute error (MAE), mean percentage

error (MPE) and relative squared error (RSE) as given in equations from Eqns. (3.29) to

(3.32).

RMSE =

[
1

N

N∑
n=1

(
y(xn,w)− tn

)2](1/2)

, (3.29)

MAE =
1

N

N∑
n=1

|y(xn,w)− tn|, (3.30)

MPE =
1

N

N∑
n=1

|y(xn,w)− tn
tn

|, (3.31)

and

RSE =

∑N
n=1

(
y(xn,w)− tn

)2∑N
n=1 (tn − t̄)2

. (3.32)

These error measurements help to provide an overall assessment of the predictions in dif-

ferent aspects. RMSE and MAE can be used to assess the prediction accuracies of the

models whereas MPE acts as a good measure of bias in the predictions. RSE gives the

relative error to what it would have been if a simple predictor (the average of the actual

values) had been used.

3.6 Simulation Study

After constructing the nonlinear Poisson regression model, we evaluated its performance

using six simulation studies. We have chosen these simulation schemes in a way that the

Poisson expected value depends both linearly and nonlinearly on the covariates.
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• Simulation 1

The response variable is generated with a single covariate x ∼ Uni(0, 1),

Yi ∼ Poi (exp(x)). (3.33)

• Simulation 2

The response variable is generated with a single covariate x ∼ Uni(0, 1),

Yi ∼ Poi (exp(1 + 1.5exp(x+ 0.2))). (3.34)

• Simulation 3

The response variable is generated with two covariates, x1 ∼ Uni(0, 1) and x2 ∼

Uni(0, 2),

Yi ∼ Poi (exp(1 + 1.2x
1/2
1 + 0.25x

1/4
2 )). (3.35)

• Simulation 4

The response variable is generated with two covariates, x1, x2 ∼ Uni(0, 1),

Yi ∼ Poi
(
exp
(0.5exp(1 + 2x1)

1 + exp(x2 + 1)

))
. (3.36)

• Simulation 5

The response variable is generated with three covariates, x1 ∼ Uni(0, 1), x2 ∼ Uni(1, 2), x3 ∼

Uni(0, 1),

Yi ∼ Poi
(
exp
( (0.5x2

1 + x2
2)

1 + 0.2exp(x3 + 0.2)

))
. (3.37)

• Simulation 6

The response variable is generated with three covariates, x1 ∼ Uni(1, 4), x2 ∼ Uni(0, 1), x3 ∼

Uni(0, 0.2),

Yi ∼ Poi
(
exp
(
1 + 1.25 log(x1) + 0.5x2 + 0.25x2

3

))
(3.38)
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With each of the above simulation schemes, we generated samples of different sizes, 500,

5,000 and 50,000 and each of them are partitioned into a training set (80%) and a testing

set (20%). Nonlinear Poisson regression models are then created with ANN following

both ML and Bayesian approaches (evidence, HMC and Hybrid Bayesian). A 5-fold cross

validation technique is used with ML approach to minimize the network overfitting. We

repeat the same process for different weight decay values α = {0.01, 0.025, 0.05, 0.075, 0.1}

and for different hidden nodes from 3 to 13. The final predictions are based on network

committees created with ten different random initializations.

In the Bayesian approach, we utilized a zero mean Gaussian prior to initialize the

weight parameters. Moreover, an automatic relevance determination prior was used in the

evidence setting where it assumes different distributions for each of the input variables.

When using the HMC method, we discard some initial samples to avoid the susceptibility

of sampling from any non-stationary distribution. The same procedure is followed with

the proposed Hybrid Bayesian method. We also constructed the error bars within one

standard deviation of our predictions. When evaluating the models, we have used the

actual λ instead of y(xn,w) for the previously discussed error measurements.

Tables 3.1 and 3.2 summarize these measurements for ANN models with 5 and 10

hidden nodes, which are initiated with a hyperparameter value of 0.075. As can be seen,

for Simulation 1, linear Poisson regression model has outperformed ANN models regardless

of the amount of data. This confirms the fact that, a linear model is superior when there

exist a simple linear relationship between the response and the covariates.

In contrast to that, when there exist nonlinear dependencies on the covariates, ANN

models have outperformed the linear Poisson regression model. More specifically, Bayesian

ANN models have given the smallest prediction errors compared to the ANN models con-

structed with the ML method. For relatively smaller sample sizes, both evidence and

Hybrid Bayesian perform well interchangebly. However, for extremly large sample sizes

(N=50,000), the prediction accuracies of the proposed Hybrid Bayesian method shows a

significant improvement over the other two Bayesian methods. Moreover, except for few

45



Table 3.1: Model evaluation using ANN with 5 hidden nodes with testing data

ANN with 5 Hidden Nodes and Alpha 0.075

N = 500 N = 5,000 N = 50,000

RMSE MAE MPE RSE RMSE MAE MPE RSE RMSE MAE MPE RSE

Simulation 1
Linear Poisson Reg 0.09200 0.07020 0.03670 0.04670 0.00300 0.00270 0.00190 0.00003 0.01250 0.01030 0.00610 0.00065
ML 0.20540 0.15410 0.09560 0.23280 0.18310 0.16040 0.10600 0.13420 0.12470 0.06560 0.03210 0.06500
HMC 0.09360 0.06880 0.03660 0.04830 0.05620 0.04620 0.02690 0.01280 0.04260 0.03510 0.02560 0.00740
Evidence 0.09460 0.06180 0.02950 0.04940 0.03430 0.02730 0.01520 0.00480 0.01640 0.01080 0.00540 0.00110
Hybrid Bayesian 0.09240 0.05980 0.02840 0.04710 0.03280 0.02660 0.01500 0.00440 0.01690 0.01110 0.00560 0.00120

Simulation 2
Linear Poisson Reg 9.86790 7.63730 0.11460 0.01220 10.67720 7.55080 0.11300 0.11380 10.70620 7.65760 0.11150 0.01392
ML 2.36640 2.07470 0.04000 0.00060 1.06750 0.80440 0.01290 0.00010 0.94980 0.59080 0.00900 0.00011
HMC 0.99040 0.68660 0.00790 0.00012 0.70100 0.43470 0.00480 0.00006 0.42230 0.25150 0.00460 0.00002
Evidence 1.13740 0.81470 0.00970 0.00016 0.50140 0.30150 0.00300 0.00003 0.26580 0.21220 0.00320 0.00000
Hybrid Bayesian 1.01510 0.72400 0.00950 0.00013 0.66290 0.41950 0.00480 0.00005 0.20910 0.16130 0.00310 0.00000

Simulation 3
Linear Poisson Reg 0.32240 0.22260 0.04370 0.03650 0.27680 0.22830 0.03890 0.02500 0.29680 0.24610 0.04280 0.02800
ML 1.01190 0.76610 0.14030 0.26580 0.24160 0.19570 0.03190 0.02120 0.09880 0.08230 0.01250 0.00310
HMC 0.23120 0.18680 0.03310 0.01870 0.12670 0.09710 0.01670 0.00520 0.07040 0.04660 0.00900 0.00160
Evidence 0.19100 0.14580 0.02800 0.01280 0.11210 0.08740 0.01460 0.00410 0.04470 0.02810 0.00530 0.00064
Hybrid Bayesian 0.18980 0.15510 0.02750 0.01270 0.09970 0.07670 0.01240 0.00330 0.03880 0.02330 0.00450 0.00048

Simulation 4
Linear Poisson Reg 7.02420 5.40880 0.13180 0.01360 10.42930 5.94110 0.12410 0.02350 13.91590 7.27130 0.12570 0.02850
ML 5.32640 3.90830 0.08170 0.00790 1.45810 1.12320 0.02460 0.00045 1.39260 1.00040 0.02020 0.00028
HMC 1.28920 0.93750 0.01770 0.00046 1.33320 0.57800 0.00960 0.00038 0.83480 0.49440 0.00820 0.00010
Evidence 1.69010 1.20570 0.02080 0.00079 0.54110 0.40540 0.00850 0.00004 0.53470 0.40010 0.00840 0.00004
Hybrid Bayesian 1.48750 1.07050 0.02030 0.00041 0.91030 0.45580 0.00960 0.00018 0.44120 0.31900 0.00630 0.00006

Simulation 5
Linear Poisson Reg 0.73730 0.49270 0.08760 0.01990 0.71300 0.43370 0.06460 0.01900 0.58500 0.42360 0.07200 0.01450
ML 0.68970 0.41050 0.06740 0.01810 0.78440 0.48810 0.08080 0.02550 0.30900 0.20530 0.02890 0.00400
HMC 0.58940 0.35400 0.05650 0.01270 0.42720 0.23370 0.03070 0.00680 0.24040 0.16050 0.02380 0.00250
Evidence 0.60430 0.44130 0.08440 0.01340 0.40880 0.22680 0.03000 0.00620 0.24770 0.17230 0.02380 0.00260
Hybrid Bayesian 0.58730 0.43340 0.08320 0.01260 0.32640 0.19000 0.02530 0.00400 0.19650 0.13450 0.02010 0.00170

Simulation 6
Linear Poisson Reg 0.69150 0.54970 0.06170 0.02140 0.74220 0.64700 0.07370 0.02200 0.74150 0.62940 0.06930 0.02160
ML 1.08560 0.92540 0.09680 0.04480 0.48050 0.39280 0.04240 0.00910 0.10380 0.07560 0.00680 0.00042
HMC 0.39770 0.33120 0.03780 0.00710 0.15660 0.10260 0.00930 0.00098 0.05080 0.03150 0.00320 0.00010
Evidence 0.37690 0.32250 0.03550 0.00640 0.18280 0.14050 0.01430 0.00130 0.04730 0.03280 0.00320 0.00009
Hybrid Bayesian 0.36120 0.28760 0.03480 0.00580 0.18280 0.14060 0.01440 0.00130 0.04540 0.03140 0.00320 0.00008

cases, we were able to obtain better results with the new Hybrid Bayesian model compared

with the HMC sampling method. We observe the same pattern for other α values as well.

Our findings are consistent with the study [61] which was done for ordinary regression.

We also interested in analyzing the impact associated with the expansion of the weight

parameter space. For that, we analyze the model performances with a varying number of

hidden nodes from 3 to 13. However, we did not notice any significant improvement in the

prediction accuracies when increasing the number of hidden nodes. In fact, we found that

the optimal number of hidden nodes depend on the amount of the data and the complexity

of the problem. Therefore, prior to finding an ANN model, it is important to consider

several ANN models with different hidden nodes.
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Table 3.2: Model evaluation using ANN with 10 hidden nodes with testing data

ANN with 10 Hidden Nodes and Alpha 0.075

N = 500 N = 5,000 N = 50,000

RMSE MAE MPE RSE RMSE MAE MPE RSE RMSE MAE MPE RSE

Simulation 1
Linear Poisson Reg 0.08960 0.06050 0.03130 0.04420 0.00300 0.00270 0.00190 0.00003 0.01250 0.01030 0.00610 0.00065
ML 0.20550 0.15410 0.09560 0.23280 0.20540 0.15410 0.09560 0.23270 0.10310 0.09400 0.06280 0.04320
HMC 0.09200 0.07020 0.03670 0.04670 0.02610 0.01970 0.01070 0.00280 0.03860 0.03390 0.02450 0.02160
Evidence 0.09950 0.07380 0.03700 0.05460 0.02600 0.02010 0.01110 0.00270 0.01660 0.01080 0.00530 0.00120
Hybrid Bayesian 0.09990 0.07450 0.03750 0.05510 0.02530 0.01960 0.01080 0.00260 0.01680 0.01080 0.00530 0.00120

Simulation 2
Linear Poisson Reg 9.86790 7.63730 0.11460 0.01220 10.67720 7.55080 0.11300 0.11380 10.70620 7.65760 0.11150 0.01392
ML 2.25310 1.95060 0.03700 0.00062 0.60900 0.34150 0.00450 0.00003 0.49100 0.39910 0.00590 0.00003
HMC 1.01910 0.69160 0.00760 0.00013 0.82840 0.43890 0.00360 0.00008 0.26350 0.18880 0.00300 0.00001
Evidence 1.06220 0.77390 0.00990 0.00014 0.54380 0.32230 0.00320 0.00004 0.25730 0.20540 0.00310 0.00001
Hybrid Bayesian 1.14410 0.80680 0.00980 0.00016 0.57020 0.33170 0.00310 0.00004 0.24020 0.18850 31.00000 0.00001

Simulation 3
Linear Poisson Reg 0.32240 0.22260 0.04370 0.03650 0.27680 0.22830 0.03890 0.02500 0.29680 0.24610 0.04280 0.02800
ML 0.90550 0.70130 0.13740 0.21350 0.32400 0.25800 0.04190 0.03780 0.11180 0.08740 0.01410 0.00400
HMC 0.21200 0.54400 0.02880 0.01580 0.13460 0.09800 0.01680 0.00590 0.05180 0.33900 0.00650 0.00085
Evidence 0.21610 0.15990 0.03080 0.01640 0.11220 0.08710 0.01460 0.00410 0.07040 0.05240 0.00890 0.00160
Hybrid Bayesian 0.20810 0.15310 0.03000 0.01520 0.11960 0.09010 0.01490 0.00470 0.04510 0.02880 0.00550 0.00065

Simulation 4
Linear Poisson Reg 7.02420 5.40880 0.13180 0.01360 10.42930 5.94110 0.12410 0.02350 13.91590 7.27130 0.12570 0.02850
ML 4.96230 3.68190 0.07670 0.00690 2.05150 1.46700 0.03430 0.00090 1.74740 1.08240 0.02200 0.00045
HMC 1.60200 1.15380 0.02470 0.00071 0.90310 0.38980 0.00640 0.00018 0.65950 0.42660 0.00792 0.00013
Evidence 1.55850 1.08310 0.01820 0.00067 0.83010 0.43270 0.00930 0.00015 0.51690 0.39800 0.02020 0.00004
Hybrid Bayesian 1.41490 0.98090 0.01830 0.00055 0.55400 0.39900 0.00780 0.00005 0.46690 0.33868 0.00665 0.00003

Simulation 5
Linear Poisson Reg 0.73730 0.49270 0.08760 0.01990 0.71300 0.43370 0.06460 0.01900 0.58500 0.42360 0.07200 0.01450
ML 1.74850 1.10990 0.20880 0.08540 1.19630 0.66130 0.10120 0.05900 0.82000 0.46150 0.07220 0.02920
HMC 0.63740 0.43010 0.08430 0.01490 0.43800 0.20020 0.02550 0.00720 0.19650 0.13446 0.02010 0.00168
Evidence 0.59420 0.42900 0.08190 0.01290 0.43780 0.16820 0.02020 0.00710 0.19210 0.13760 0.02200 0.00160
Hybrid Bayesian 0.68430 0.50320 0.09700 0.01710 0.38320 0.15190 0.01830 0.00550 0.18150 0.11490 0.01780 0.00140

Simulation 6
Linear Poisson Reg 0.69150 0.54970 0.06170 0.02140 0.74220 0.64700 0.07370 0.02200 0.74150 0.62940 0.06930 0.02160
ML 1.26540 1.04940 0.10470 0.06050 0.48210 0.39150 0.44000 0.00920 0.11380 0.08510 0.00810 0.00051
HMC 0.43610 0.37250 0.03960 0.00850 0.18260 0.11470 0.01020 0.00130 0.05770 0.03630 0.00350 0.00013
Evidence 0.37020 0.31420 0.03530 0.00610 0.13430 0.08810 0.00830 0.00072 0.04570 0.03160 0.00310 0.00008
Hybrid Bayesian 0.36580 0.31080 0.03490 0.00600 0.13660 0.08680 0.00780 0.00074 0.04670 0.03320 0.00330 0.00009

As we mentioned in Section 3.5, when using hybrid Monte Carlo methods, we need to

be careful about sampling from the stationary distribution. In order to check that, we first

used a visualization technique where we overlaid a 5 sequence samples.

Figure 3.3, depicits the cost function values for the HMC and the proposed Hybrid

Bayesian methods after a burn-in period of 5,000 samples for the Simulation 6. As can

be seen, the 5 different sequences drawn from different starting points of the two chains

(two methods) are indistinguishable, which confirms the fact that samples are drawn from

a stationary distribution of the Markov chain. Nevertheless, the Hybrid Bayesian shows

both a lesser variation and an error (cost function) than in the HMC method.
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Figure 3.3: Cost functions for 5 sequences drawn from the HMC and Hybrid Bayesian
methods after a 5000 burn-in period for Simulation 6 using ANN with 5 hidden nodes

As to quantify the effect of convergence, we calculate the EPSR, conergence diagnostic

test statistic values which was introduced in the Section 3.4.1 for each simulation. Table

3.3 summerizes the EPSR values of each weight parameter obtained using the ANN model
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Table 3.3: Covergence diagnostics test statistic EPSR values for HMC and Hybrid Bayesian
methods: Simulation 6

Weights HMC Hybrid Bayesian

w(1) 11 3.0594 1.0380
w(1) 21 1.7617 1.0893
w(1) 31 1.9997 1.1391
w(1) 41 6.5150 1.0164
w(1) 51 1.9991 1.0407
w(1) 12 2.5444 1.0406
w(1) 22 2.0649 1.0076
w(1) 32 3.2607 1.0679
w(1) 42 2.8220 1.0306
w(1) 52 3.1978 1.0326
w(1) 13 4.2560 1.1904
w(1) 23 2.3057 1.0430
w(1) 33 3.2699 1.0292
w(1) 43 3.9502 1.1431
w(1) 53 3.9652 1.0431
b(1) 1 4.2990 2.0730
b(1) 2 4.7093 1.9725
b(1) 3 2.7830 1.3010
b(1) 4 4.2292 1.0527
b(1) 5 3.1815 1.2040
w(2) 11 3.0967 2.5771
w(2) 21 4.5723 1.9710
w(2) 31 3.6035 1.4738
w(2) 41 2.0472 1.3179
w(2) 51 3.5783 2.1786
b(2) 1 2.3792 1.0397

Cost Function 1.2373 1.0418

with 5 hidden nodes for the Simulation 6. In contrast to the EPSR values associated

with HMC weight parameters and the cost function, most of the EPSR values associated

with the Hybrid Bayesian method are less than the cut-off 1.10. This indicates that 5,000

samples are not nearly enough for the chain to converge with the HMC method for this

data set. However, we can see that our new proposed hybrid Bayesian method converge

relatively faster than the HMC method as EPSR for that is less than 1.10. We observe

similar results for other simulations.

Figure 3.4 is a visualization of the histogram of the actual mean values and their actual

vs predicted values for the Simualtion 6. The green lines represent the error bars within
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Figure 3.4: Simulation 6: Actual vs predicted lambda

one standard deviation from the predicted mean, which creates a confidence interval for our

predictions. This enhances the reliability of our predictions compared to the too precise

predictions given by an incorrect model due to the overdispersion.

3.7 Conclusions and Contributions

In this Chapter, we have constructed a new Bayesian nonlinear Poisson regression

model. This has a significant potential to be used in interdisciplinary research, in addressing

timely important problems related to count modeling. Our contribution to this Chapter

can be summarized as follows.

1. We have developed a new nonlinear Poisson regression model using Bayesian artificial

neural network.
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2. As a part of that, we have developed “exponential” activation function for ANN

models.

3. We have introduced a new Hybrid Bayesian learning method which incorporates

the core properties of evidence procedure and the Hybrid Monte Carlo Sampling.

This new learning method tends to provide accurate results over the other existing

methods, specifically for larger samples.

4. With this new model, one can create the error bars for the predictions without having

a concern on model overdispersion.

5. ARD prior can be used to identify the relative importance of the covariates, without

being misled by false significant results caused by overdispersion.

This proposed nonlinear Poisson regression model can be very useful when handling

the Big data. This is because ANN is capable of implicitly detecting all the significant

interactions among the predictor variables which we can not achieve with the regular

Poisson regression model. Our future goal is to utilize this new model in several real world

applications and obtain better predictions. In the next chapter, we discuss a way to extend

this nonlinear Poisson model to build a piecewise constant hazard model.
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CHAPTER 4

PIECEWISE CONSTANT HAZARD MODEL WITH BAYESIAN
ARTIFICIAL NEURAL NETWORK

4.1 Introduction

Accurate prediction of the survival is a challenging, yet substantial task which depends

on the underlying the hazard function. These hazard functions can often be complex

and might not follow a particular distribution. Moreover, its behavior can significantly

be affected by the risk factors which drives the function. Even with decades of research

dedicated to survival analysis (and hence in hazard modeling), medical practitioners still

search for exclusive predictive models which can handle the modern biomedical data.

In this Chapter, we develop a piecewise constant hazard model using Bayesian neu-

ral networks with the intention of introducing a flexible survival prediction model. This

was achieved assuming a piecewise constant hazard within smaller time intervals over a

certain period. This model provides better survival predictions compared with the conven-

tional methods like linear Poisson regression and generalized estimating equations (GEE).

This has been demonstrated with lung cancer patient data taken from Surveillance, Epi-

demiology and End Results (SEER) program. Just like in the previous Chapter, we have

evaluated the model performances using several error measurements criteria.

4.2 Literature Review

Survival or hazard analysis is one of the oldest statistical disciplines which has its

roots in demography and actuarial science. A distinguishing feature of survival data is the

inevitable presence of incomplete observations, particularly when the terminal event for

some individuals is not observed.
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Starting from the seventeenth century, a variety of survival analysis models have been

developed. The development of renowned Cox proportional hazard model [63] is one of the

milestones in survival analysis history. However, this method needs several assumptions

to be satisfied, For example, it assumes that the hazard of two or more individuals is

proportional to each other, which is an unrealistic assumption. These factors significantly

limit its applications.

Parametric modeling is a powerful technique which is used in a wide variety of research

for hazard modeling. Nevertheless, they assume specific shapes for the hazard function and

hence restrict its flexibility [64]. The generalized linear model with a Poisson error has also

been used for survival analysis [65]. An another intuitive approach is to assume that the

hazard function is constant within a shorter period, creating a piecewise constant hazard

model. This has been advocated as a flexible and parsimonious tool in the literature [66].

This assumption is particularly useful for interpreting cancer survival and to facilitate the

treatments and diagnoses [67].

Flexible modeling of survival analysis has become popular during the past decades.

We can find studies which have utilized techniques like kernel density [72], artificial neural

networks [68–70] and cubic splines [71]. ANN based survival analysis models are widely

used mainly due to the capability of handling complex nonlinear relationships among the

predictor variables and also due to the fewer assumptions involved with the modeling.

Faraggi and Simon have used ANN as a basis for a non-linear proportional hazard model

[68]. Another method based on popular multi-layer perceptron: partial logistic regression

is developed by [69]. Ravdin and Clark [70] have shown that ANN can be used to predict

a patient outcome with censored survival data including time as a covariate.

The development of piecewise exponential model using ANN has been proposed by

Fornili et al. [60]. This method accommodates a greater flexibility in modeling the complex

hazard functions. Here, in this Chapter, we present a new method for developing a piecewise

constant hazard model using Bayesian ANN by extending the Fornili’s work.
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4.3 Methodology

Let T be the survival or the follow-up time for subjects i = 1, 2, ...., N where T = min

{Survival Time, Censoring Time}, and x be the covariates. Let’s consider R number of

competing risks, which causes the subject to observe the same event of interest [73]. Then

Eq. (4.1) defines the hazard function for the rth risk,

λ(r, t,x) = lim
∆t→0+

P (t < T ≤ t+ ∆t, R = r|T ≥ t,X)

∆t
. (4.1)

Then the corresponding survival function and the probability density function can be ob-

tained by Eqns. (4.2) and (4.3) as given below.

S(t,x) = exp

(
−

t∫
0

λ(., u,x)du

)
, (4.2)

and

f(t|x) = λ(., u,x), S(t,x), (4.3)

where λ(., u,xi) =
∑Ri

r=1 λ(r, u,xi) for each individual with R possible competing risks.

Thus, for independent observations, assuming non-informative censoring, the likelihood

function L can be written as in Eq. (4.4),

L =
N∏
i=1

f(ti|xi)δiS(ti,xi)
1−δi =

N∏
i=1

λ(., ti,xi)

exp

(∫ ti
0 λ(., u,xi)du

) , (4.4)

where δi is equal to 0 if the subject i is censored and 1 otherwise.

Under the piecewise constant hazard model, the follow up time T is divided into several

disjoint time intervals, a0, a1, ...., aJ where a0 = 0 and aJ = ∞ and the hazard function

for rth risk is assumed to be constant during the jth time period [aj−1, aj). Hence, we

have, λ(., t,xi) = λ(., j,xi) where λ(., j,xi) =
∑Ri

r=1 λ(r, j,xi) for each subject. Then, the

modified likelihood function can be written as in Eq. (4.5),
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L =
N∏
i=1

∏Ji
j=1

(
λ(., j,xi)

δij

)
exp

(∑Ji
j=1

(
λ(., j,xi

)
τij

)

=
1∏N

i=1

∏Ji
j=1 τ

δij
ij

N∏
i=1

Ji∏
j=1

(
λ(., j, xi)τij

)δij
δij !exp

(
λ(., j,xi)τij

) ,
(4.5)

where

δij =


1, if the ith subject is deceased during the jth interval

0, otherwise,

Ji is the last interval that the subject i is observed and τij is the corresponding exposure

time which is defined by,

τij =


aj − aj−1, if ti ≥ aj

ti − aj−1, if aj−1 < ti ≤ aj

0, if ti ≤ aj−1

The kernel given in Eq. (4.5) corresponds to the likelihood of a Poisson random variable

δij with mean µij = λ(., j,xi)τij . By applying the logarithm on both sides of this, we get,

log(µij) = log(λ(., j,xi)) + log(τij). (4.6)

We can model, λ(., j,xi) in Eq. (4.6) with a Poisson log-linear model of the form log(λ(., j,xi)) =

αj+xi
,β as given in [74, 75]. However, modeling with this approach become difficult, some-

times impractical, when there is a large number of δij observations, due to a large amount

of subject data or longer follow up.
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4.4 The Proposed Bayesian ANN Model

In this section, we introduce an efficient method for modeling of the hazard function

with Bayesian artificial neural networks. Our goal is to predict λ(r, j,xi) in Eq. (4.1) using

three of the Bayesian methods which we discussed in Chapter 3. This new ANN model has

several output nodes, each of which corresponds to a different time interval. This structure

is similar to the ANN model used by Mani et al. [76].

4.4.1 Data Preprocessing

Prior to using the proposed ANN model, data need to be preprocessed. This process

can be explained using a simple example. Consider three subjects, called A, B and C who

have been observed for J number of years. Suppose, we have information about their risk

factors x1 and x2, survival time and whether they are being censored or not, as given in

Table 4.1. We have considered two competing risk types, R1 or R2, for each subject, where

they can decease due to one of that reason. The “censor” variable indicates whether a

subject has lost follow up somewhere during the study period or has been alive until the

end of a study. Hence, for all deceased subjects during the study period, it is set to zero.

As can be seen, subject A and B have deceased due to risk types, R1 and R2 after 3 and

4 years respectively. According to Table 4.1, subject C has lost follow-up after 2 years.

Table 4.1: Sample data

Subject x1 x2 Survival Time Risk Type Censored

A 1 0 3 R1 0
B 1 1 4 R2 0
C 1 1 2 R1 or R2 1

Table 4.2: Preprocessed data

Subject x1 x2 R1 R2 h1 h2 h3 h4 h5 ... hJ
A 1 0 1 0 0 0 1 1 1 ... 1
B 1 1 0 1 0 0 0 1 1 ... 1
C 1 1 1 0 0 0 0 0 0 ... 0
C 1 1 0 1 0 0 0 0 0 ... 0
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In order to use the new ANN model, this information needs to be preprocessed as given

in Table 4.2. Since, there are four inputs, covariates x1 and x2 and two indicator variables

R1 and R2, we need to create an ANN with 4 inputs. Censored subjects like C, can be

exposed to any of the competing risks and hence, his information is presented twice into

the model as given in Table 4.2. If we assume a constant hazard for each year, then there

are J number of output nodes in the ANN. i.e., if a subject is alive or censored, then hj=0,

if a subject is deceased, then hj=1 as in,

hj =


0, subject is alive or censored

1, subject is decreased in the jth time interval due to the rth risk .

4.4.2 Network Training

In developing the proposed ANN model, we used the hyperbolic tangent and the ex-

ponential activation functions in the hidden and the output layers. The proposed ANN

structure is represented in Fig. 4.1. The network output, y(j|r,x), gives the hazard for

each time interval j, as in Eq. (4.7),

y(j|r,x) = λ(r, j,x) = exp

(
b
(2)
jh +

K∑
h=1

w
(2)
jh tanh

(
b
(1)
hl +

d∑
l=1

w
(1)
hl xl

))
. (4.7)

where j = 1, 2..., J . Moreover, x1, ...., xd are the inputs, and w
(1)
hl and w

(2)
jh are the hidden

and output layer weights.

In order to train the network, we used both ML and Bayesian methods which we

discussed in Chapter 1 and 3. For the Bayesian methods, we used a zero mean Gaus-

sian prior for the weight distribution. During the training, we minimized the regularized

canonical error function given by Eq. (4.8), where α is the non-negative weight decay

parameter. As per [43], we trained several ANN models with weight decay values with

57



.  
  .

   
 . 

  .

 . 
  .

   
.  

  .
   

.

.  
  .

  

x1

x2

x3

R1

R2

h1

hj

h3

h2

w11
(1)

w12
(1)

w13
(1)

w1i
(1)

w31
(1)

w3i
(1)

w11
(2)

wij
(2)

wi3
(2)

wi1
(2)

w3j
(2)

w33
(2)

w12
(2)

w1j
(2)

w31
(2)

Co
m

pe
tin

g 
ha

za
rd

 fo
r e

ac
h 

tim
e 

pe
rio

d

Ri
sk

 F
ac

to
rs

Co
m

pe
tin

g
 R

is
ks

Figure 4.1: The proposed ANN model

{0.01, 0.025, 0.5, 0.075, 0.1}.

E = −
N∑
i=1

J∑
j=1

(
hj log

(
y(j|r,xi)

)
− y(j, r,xi)

)
τij

+
α

2

( K∑
h=1

d∑
l=1

(
w

(1)
hl

)2
+
(
b
(2)
h

)2
+

J∑
j=1

K∑
h=1

(
w

(2)
jh

)2
+
(
b
(2)
j

)2) (4.8)

In the ML approach, we used a 5-fold cross validation technique to find the optimal

number of hidden nodes in each network. The optimal network for each decay value

is chosen based on the minimum average validation error, and that is used for hazard

predictions using the testing data. Automatic relevance determination prior is used to

determine the relative importance of the risk factors. When using the HMC and Hybrid

Bayesian methods, we used a 5000 burn-in period, prior to sampling.

Si(j) = exp

(
−
( J∑
j=1

y(j|r,xi)
))

(4.9)
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The corresponding survival probabilities are obtained using Eq. (4.9). We evaluated

the models using several error measurements calculated based on the predicted median

survival time and the actual survival time of the non-censored subjects in the testing data.

4.4.3 The Lung Cancer Data

Table 4.3: Lung cancer patient information

Male Female

Cause of Death
Lung 13029(64%) 10303(58%)
Other 2724(13%) 1928(11%)

Censored 4767(23%) 5511(31%)

Age at Diagnosis
45-49 years 635(3%) 705(4%)
50-54 years 1320(6%) 1161(7%)
55-59 years 2206(11%) 1747(10%)
60-64 years 3208(16%) 2515(14%)
65-69 years 3757(18%) 3127(18%)
70-74 years 3723(18%) 3086(17%)
75-79 years 3187(16%) 2837(16%)
80-84 years 1793(9%) 1826(10%)
85+ years 691(3%) 738(4%)

Stage of the Cancer
Localized 5536(27%) 5525(31%)
Regional 7028(34%) 5816(33%)
Distant 7956(39%) 6401(36%)

Histology Type
Adeno 9162(45%) 10056(57%)

Squamous 8492(41%) 5054(28%)
Large Cell 917(4%) 691(4%)
Small-cell 1949(10%) 1941(11%)

Total 20520 17742

The data for our study are selected from the Surveillance, Epidemiology and End

Results (SEER) program [77], and it contains details of 38,262 white lung cancer patients

data who have been diagnosed from 2004 to 2009. Among these, 23,332 subjects were

deceased due to lung cancer and 4,652 were deceased due to some other causes. The rest

were considered as censored due to missing information or lost in the follow-up.
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In our analysis, four risk factors were used: age at diagnosis, tumor size, histology and

the stage of cancer. As can be seen from Table 4.3, a higher amount of patients were

between the ages of 65-75 and most of them had distant metastasis. The majority of

the patients were diagnosed with adeno or squamous cell carcinoma. The overall median

follow-up time for males was 1.33 years and 2 years for females, while median tumor size

is about 38 mm and 32 mm for the two groups respectively.

We found that the survival time between males and females to be significantly different

from each other, which was already a known fact [78], and hence, two separate analyses

were conducted. In order to develop the piecewise constant hazard model, we partitioned

the total follow-up time into six disjoint intervals, each with a 12-month period. For our

analysis with GEE and ANN models we have used SAS and MATLAB.

4.5 Results

For both males and females, we created a training data set (70%) and a testing data

set (30%). The training set was used to train the models while the testing dataset was

used to evaluate the prediction accuracies of the proposed models.

We started our analysis by developing Poisson regression models. However, according to

the deviance and the Pearson chi-square statistics, none of those models showed adequate

results [79] as they are susceptible to correlated observations. Trying several other models,

i.e., a Poisson model with an overdispersion parameter and a negative binomial model

resulted with the same conclusion. Therefore, we chose an alternative method, generalized

estimating equations (GEE).

Using GEE, we created two different statistical models for males and females, which

are given in Tables 4.4 and 4.5. We can see that, for each 10 mm increase in the tumor size,

the hazard rate for males increases by 4% and by 2% for females. In general, as patients

get older, their lung cancer hazard rates get increased. Furthermore, we can see that the

patients diagnosed with small cell carcinoma have the highest hazard compared to other

histology types. For males, their hazard is 48% higher than the patients with adeno cell
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carcinoma. For females, it is about 41%. Over time, the hazard rates seem to increase

rapidly for males than females. Applying these two models, we were able to predict the

hazard and to obtain the corresponding survival probabilities for our lung cancer testing

data.

Table 4.4: Analysis of GEE parameter estimates : males

Risk Factor Parameter Estimate Standard Error 95% Confidence Limits Z Pr > |Z|
Intercept -2.4794 0.0571 -2.5913 -2.3676 -43.45 < 0.0001
tumorsize 0.0044 0.0002 0.0040 0.0049 18.8 < 0.0001
Age 50-54 0.0266 0.0625 -0.0960 0.1491 0.43 0.6707
Age 55-59 0.0545 0.0584 -0.0599 0.1690 0.93 0.3503
Age 60-64 0.1274 0.0556 0.0185 0.2363 2.29 0.0219
Age 65-69 0.1309 0.0546 0.0239 0.2379 2.4 0.0165
Age 70-74 0.3099 0.0542 0.2037 0.4161 5.72 < 0.0001
Age 75-79 0.3622 0.0545 0.2554 0.4689 6.65 < 0.0001
Age 80-84 0.5036 0.0565 0.3929 0.6144 8.91 < 0.0001
Age 85+ 0.7313 0.0643 0.6053 0.8573 11.38 < 0.0001

Histology Large-cell 0.3149 0.0469 0.2230 0.4067 6.72 < 0.0001
Histology Small-cell 0.3908 0.0289 0.3341 0.4475 13.5 < 0.0001
Histology Squamous 0.1832 0.0222 0.1397 0.2267 8.25 < 0.0001

Stage Distant 1.3825 0.0268 1.3299 1.4351 51.54 < 0.0001
Stage Regional 0.5644 0.0272 0.5111 0.6177 20.74 < 0.0001

t 0.1436 0.007 0.1298 0.1574 20.39 < 0.0001

Table 4.5: Analysis of GEE parameter estimates : females

Risk Factor Parameter Estimate Standard Error 95% Confidence Limits Z Pr > |Z|
Intercept -2.1196 0.0571 -2.2315 -2.0076 -37.1 < 0.0001
tumorsize 0.0028 0.0002 0.0024 0.0032 15.21 < 0.0001
Age 50-54 0.0410 0.0614 -0.0793 0.1613 0.67 0.5041
Age 55-59 0.0396 0.0576 -0.0732 0.1525 0.69 0.4915
Age 60-64 0.0868 0.0553 -0.0216 0.1952 1.57 0.1164
Age 65-69 0.0903 0.0548 -0.0171 0.1977 1.65 0.0995
Age 70-74 0.2664 0.0545 0.1597 0.3732 4.89 < 0.0001
Age 75-79 0.3601 0.0551 0.2521 0.468 6.54 < 0.0001
Age 80-84 0.4971 0.0579 0.3836 0.6107 8.58 < 0.0001
Age 85+ 0.6319 0.068 0.4985 0.7653 9.29 < 0.0001

Histology Large-cell 0.2131 0.0419 0.1311 0.2952 5.09 < 0.0001
Histology Small-cell 0.3452 0.0304 0.2856 0.4048 11.35 < 0.0001
Histology Squamous 0.1293 0.0192 0.0915 0.167 6.72 < 0.0001

Stage Distant 1.2672 0.0251 1.218 1.3165 50.41 < 0.0001
Stage Regional 0.4875 0.025 0.4384 0.5365 19.49 < 0.0001

t 0.1023 0.0072 0.0882 0.1164 14.25 < 0.0001
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Next, we created the ANN models with different learning techniques, ML and Bayesian.

In each situation, we created several ANN models by varying the number of hidden nodes

from 3 to 13 and also used different weight decay values. As mentioned earlier, the optimal

networks in the ML method are selected based on the minimum average validation error. In

the Bayesian approach, we used the minimum of regularized cost function to find the best

set of models. By using each optimal network, we predicted the hazard and corresponding

survival probabilities for the testing data. In order to evaluate the prediction accuracies

of different ANNs and GEE, we used the actual survival times and their predicted median

survival times of non-censored subjects in the same data set. For a better comparison, we

calculate several prediction errors, including the root mean square error (RMSE), mean

absolute error (MAE), mean percentage error (MPE), and relative squared error (RSE) as

given in Tables 4.6 and 4.7.

Table 4.6: Model evaluation for males

Male RMSE MAE RSE MPE Data Count

GEE 4.0986 3.5155 8.4539 -2.5349 4659

Alpha 0.01 ML 2.3253 1.6900 2.7210 -0.6645 4659
Evidence 1.5001 1.1147 1.1325 -0.1407 4659
HMC 1.4942 1.1106 1.1237 -0.1423 4659
Hybrid 1.4658 1.0922 1.0813 -0.1480 4659

Alpha 0.05 ML 2.2693 1.6412 2.5916 -0.6125 4659
Evidence 1.5004 1.1164 1.1330 -0.139 4659
HMC 1.4943 1.1106 1.1237 -0.1423 4659
Hybrid 1.4655 1.0918 1.0809 -0.1483 4659

Alpha 0.075 ML 2.2144 1.6174 2.4676 -0.5819 4659
Evidence 1.4898 1.1046 1.117 -0.1524 4659
HMC 1.4813 1.1008 1.1042 -0.1378 4659
Hybrid 1.4659 1.0913 1.0813 -0.1530 4659

As per above tables, we can see that the Bayesian approach tends to provide better

predictions compared to both GEE and ML methods, for both genders. Although the pre-

dictions from Bayesian ANN show negative MPE values, which indicates underestimations

of the survival, that is significantly less than of other models. The smallest error values

were found with the Hybrid Bayesian approach which was trained using a weight decay
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Table 4.7: Model evaluation for females

Female RMSE MAE RSE MPE Data Count

GEE 4.3146 3.8683 8.6342 -2.9081 3568

Alpha 0.01 ML 2.5209 1.8927 2.9475 -0.8038 3568
Evidence 1.6075 1.1881 1.1985 -0.3199 3568
HMC 1.5926 1.1752 1.1764 -0.3352 3568
Hybrid 1.5899 1.1725 1.1734 -0.3465 3568

Alpha 0.05 ML 2.4737 1.8529 2.8383 -0.7844 3568
Evidence 1.6027 1.1836 1.1915 -0.3220 3568
HMC 1.5933 1.1799 1.1775 -0.325 3568
Hybrid 1.5894 1.1718 1.1718 -0.3615 3568

Alpha 0.075 ML 2.4969 1.8700 2.8916 -0.7757 3568
Evidence 1.6193 1.2023 1.2162 -0.3228 3568
HMC 1.5930 1.1780 1.1770 -0.3234 3568
Hybrid 1.5896 1.1760 1.1720 -0.3255 3568

Figure 4.2: Tumor size vs survival probabilities for females and males

value of 0.05, for both genders. Further analysis on patients’ hazard and survival was

carried out using those two models.

Figure 4.2 depicts the variation in the survival probabilities among males and females

patients according to different tumor sizes while keeping the other categorical risk factors

in their mode categories. We can see that, as the tumor size increases men tend to have a

lesser survival probability compared to females.

It is a known fact there is a significant variations between the hazard rates among

the different histology types for different genders. Figure 4.3 represents the variation

63



0.5

0.6

0.7

0.8

0.9

1

1.1

0.5

0.6

0.7

0.8

0.9

1

1.1

0.5

0.6

0.7

0.8

0.9

1

1.1

0.5

0.6

0.7

0.8

0.9

1

1.1

45-49
50-54
55-59
60-64
65-69
70-74
75-79
80-84
85+

45-49
50-54
55-59
60-64
65-69
70-74
75-79
80-84
85+

45-49
50-54
55-59
60-64
65-69
70-74
75-79
80-84
85+

45-49
50-54
55-59
60-64
65-69
70-74
75-79
80-84
85+

0.5

0.6

0.7

0.8

0.9

1

1.1

0.5

0.6

0.7

0.8

0.9

1

1.1

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 5 6 7

0.5

0.6

0.7

0.8

0.9

1

1.1

0 1 2 3 4 5 6 70

Follow-up Time (years) Follow-up Time (years)

H
az

ar
d

H
az

ar
d

H
az

ar
d

H
az

ar
d

H
az

ar
d

H
az

ar
d

H
az

ar
d

H
az

ar
d

(a) (b)

(c) (d)

(e) (f )

(g) (h)

Male Female

Figure 4.3: Hazard variation for males and females for different histology types (a) Male-
Adeno (b) Female-Adeno (c) Male-Large cell (d) Female-Large cell (e) Male-Small cell (f)
Female-Small cell (g) Male-Squamous cell (h) Female-Squamous cell

64



Figure 4.4: Survival probabilities of females with different histology types

in the hazard rates we obtained from our models according to the patients’ age group

and histology types, for both males and females. The left panel of Figure 4.3 shows the

hazard for males with their histology types, adeno, large cell, small cell and squamous

cell carcinoma, respectively. The right panel shows the hazard for females for the same

histology types. Error bars were created to represent one standard deviation from our

mean hazard predictions. Unlike in the GEE approach, these error bars do not effected

by the underestimated standard errors of parameter estimates. For all the histology types,

males have a higher hazard than females. Moreover, a higher hazard can be seen for the

patients who diagnosed with small cell carcinoma. In fact, this is the most dangerous lung

cancer out of the four we have considered in our analysis. Older patients show a relatively

higher hazard in both genders.

Figure 4.4 manifests the variation in the survival for different age groups, for the patients

who diagnosed with small cell carcinoma and adeno cell carcinoma. It further confirms the

fact that patients with small cell carcinoma have a significantly lower survival probability

compared to the other group. This pattern remains the same for all the age groups.

Figure 4.5 represents the variation in the survival probabilities of males according to

the age group and the same histology types, adeno and small cell carcinoma. Similary to
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Figure 4.5: Survival probabilities of males with different histology types

females, we can see the same survival patterns as for males. However, in overall, men tend

to have lower survival probabilities compared to females [80].

We used ARD prior to identify the relevant importance of the risk factors into the

network. Table 4.8 summarizes the rankings of those risk factors based on these hyper-

parameter values. Risk factors with smaller hyperparameters are highly contributing to

the model outcome. Tumor size and distant metastasis are the top two key factors which

highly contribute to the Male ANN model. For females, the most contributing key factors

include the distant metastasis and being in the age group of 65. These rankings confirm

the fact that our findings have a faithful agreement between the true nature of the lung

cancer survival.

4.6 Conclusions and Contributions

We introduce a new neural network model with Bayesian learning to develop the piece-

wise constant hazard model. In developing the proposed ANN model, we used the nonlinear

Poisson regression model which we presented in Chapter 3. With our new model, we were

able to improve the prediction accuracies over conventional methods.
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Table 4.8: Relative importance of risk factors for hazard prediction

Males Females

Rank Alpha Risk Factor Alpha Risk Factor

1 0.4892 Tumor Size 0.2179 Distant
2 0.9462 Distant 0.5864 AgeGroup 65
3 1.9458 Age Group 50 1.0550 Age Group 55
4 2.4891 Regional 1.1020 Squamous
5 4.8110 Age Group 55 1.6206 Large cell
6 5.7267 Age Group 80 2.1013 Age Group 85
7 6.7499 Large cell 2.3808 Small cell
8 7.5830 Age Group 75 2.5596 Tumor Size
9 11.1670 Age Group 70 3.2416 Age Group 50
10 13.8046 Squamous 3.8491 Age Group 60
11 16.9652 Age Group 85 4.6063 Age Group 80
12 18.9110 Small cell 6.2623 Age Group 75
13 550.3511 Age Group 65 6.3303 Regional
14 1097.8433 Age Group 60 8.9294 Age Group 70

During the training, network parameters were trained using the back propagation algo-

rithm. In order to compute the Hessian matrix, we have used a special algorithm developed

by Pearlmutter [81], using a similar approach like in Nabney [20].

Our contributions to this Chapter can be summarized as follows.

1. A new piecewise constat hazard model is developed with a Bayesian ANN model.

2. With the new ANN model, we have obtained better survival predictions over the

other conventional methods.

3. Uncertainties in the hazard predictions can be captured with error bars.

4. The relative importance of the risk factors in predicting the patients’ survival can be

identified with the automatic relevance determination prior.
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CHAPTER 5

BAYESIAN ARTIFICIAL NEURAL NETWORK FOR VULNERABILITY
PREDICTION

5.1 Introduction

Operating system vulnerabilities are constant threats to software developing companies

and their customers. In past few years, severe security vulnerabilities had lead to disclose

sensitive information of general public to unauthorized personnel and had reported a wide

impact on their daily lives. We know that almost all the software organizations are in-

terested in developing secure operating systems (OS). Nevertheless, it is impractical to

develop an OS without any vulnerabilities [82].

Accurate prediction of future vulnerabilities can help OS companies to make necessary

strategic and operational plans. This includes maintenance scheduling, assessing current

security risks, estimating the necessary resources needed for handling potential security

breaches and secure deployment of operating systems.

Here in this chapter, our goal is to develop a vulnerability prediction model using a

special type of artificial neural network called, recurrent neural network (RNN). This model

is trained using an online training algorithm based on Hybrid Monte Carlo sampling. In

order to develop the proposed model, we have used the vulnerabilities recorded in the Linux

operating system.

5.2 Literature Review

Despite the effort given by the software developers in developing secure systems, vul-

nerabilities are found in each software. The discovering process of these vulnerabilities is a

hard and a costly procedure [83]. As a solution, vulnerability prediction models have been
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introduced to assist the vulnerability identification process. However, most of these mod-

els are based on the source codes of the software and hence require knowledge in specific

software languages. Due to this, those models have limited usage [84].

For the first time in 2015, Roumani et al. have developed a vulnerability prediction

model using a linear time series approach, ARIMA [85]. However, they do not have utilized

the nonlinear approaches like artificial neural networks (ANN) and support vector regres-

sion (SVR). As per our knowledge, there is no any other study which has utilized a time

series approach to predict the future vulnerabilities. Though one may not anticipate, there

can be a timely variations in vulnerability identification process. Therefore, we utilized a

time series approach to study the vulnerability identification patterns.

Just like for ordinary regression, artificial neural networks are widely used for time series

predictions. A wide variety of applications of these can be found in market predictions,

meteorological and network traffic forecasting [86–88]. Most of these studies have used

feed-forward ANN models in a sliding window format over the input sequence. Time series

prediction with SVR spans over many practical application areas from financial market to

electric utility load forecasting [89]. SVR models can be easily implemented due to the

convex optimization process associated in determining its model parameters.

We have developed a vulnerability forecast model for the Linux operating system. It is

one of the oldest open source OS in the market. The popularity of the Linux OS has been

significantly increased mainly because it has a zero maintenance cost and relatively high

reliability with fewer security risks.

5.3 Vulnerability Data for Linux Operating System

The vulnerability data for the Linux OS are extracted from the National vulnerability

database. This is the US government repository that integrates publicly available vulner-

ability information (refer Appendix A for the calculation procedure of CVSS vulnerability

scores). For our analysis, we have used the monthly vulnerability data recorded from

January 2001 to December 2016.
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Figure 5.1: Vulnerability patterns for Linux OS from 2001 to 2016

Figure 5.1 shows the pattern of the vulnerabilities associated with the Linux OS. It

does not depict any specific seasonal pattern. However, we can see a significant increment

in the recorded number of vulnerabilities over time, especially a peak can be seen for the

recent years 2014 to 2016. This was due to some severe vulnerabilities detected in Linux

OS, which is known as “Heartbleed”.

5.4 Methodology

Our target here is to develop a nonlinear time series prediction model with Bayesian

neural networks. For the comparison purposes, we have also created time series prediction
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models with ARIMA and SVR. Here, we present the details about those methods using a

time series {xt, xt−1, ..., x1}.

5.4.1 Auto-Regressive Integrated Moving Average (ARIMA) Model

ARIMA model is the most general class of time series prediction model which was

developed by Box and Jenkins in 1970 [90]. In order to use this method, we need to

make any non-stationary time series “stationary” by differencing. If necessary, a nonlinear

transformation can be applied to make data stationary.

In order to identify whether a time series is stationary, we can use a partial autocor-

relation function (PACF) and an autocorrelation function (ACF). The idea is to identify

the presence of auto regressive (AR) and moving average (MA) components in the resid-

uals. If there are enough spikes outside the insignificant zone of the ACF or PACF, we

can conclude that the residuals are not random. This implies that there is information

available in residuals to be extracted by AR and MA models. The analytical form of the

ARIMA(p,d,q) model is given by,

Φp(B)(1−B)dxt = a+ Θq(B)εt, (5.1)

where B is the backshift operator,

Φp(B) = 1− Φ1B − Φ2B
2 − ....− ΦpB

p, (5.2)

is the AR operator with order p and,

Θq(B) = 1−Θ1B −Θ2B
2 − ....−ΘqB

q, (5.3)

is the MA oprator with order q. εt is the error term and it is distributed as N (0, σ2).
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Figure 5.2: A feed-forward ANN model for time series prediction

5.4.2 Artificial Neural Network

On our study, we have considered two types of neural networks. Feed-forward neural

networks and recurrent neural networks. Figure 5.2 represents the operational structure of

a three layer feed-forward ANN model for a time series model with one output node.

The analytical form of the time series prediction model is given by,

xt = g(b
(2)
1 + w

(2)
k

M∑
k=1

h(b
(1)
k +

d∑
l=1

w
(1)
kl xt−l)). (5.4)

where xt is the total number of vulnerabilities reported in month t, d is the number of

lags (number of vulnerabilities reported in the past d months) and the M is the number

of hidden nodes, h and g are the activation functions associated with the hidden and the

output nodes.

Recurrent neural networks (RNN) are another widely used neural network models where

their outputs act as inputs by looping around. The architecture of an RNN is given in Fig
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Figure 5.3: A recurrent neural network model for time series prediction

5.3. Unlike in feed-forward neural network, recurrent neural network passes the prediction

error as an input to the network which makes them significantly better for time series

predictions, specially when we need to add any moving average (MA) terms.

When using neural networks for time series prediction, a major challenging problem

is that to find the appropriate number of inputs. There is no specific method to address

this problem. Therefore, we had to rely on empirical methods. For our analysis, we tried

a different number of inputs (lags) varying from 2 to 6 and a different number of hidden

nodes from 3 to 13.

5.4.3 Support Vector Regression

Traditionally, support vector machines are used for classification. These learning algo-

rithms have also been applied to general regression analysis to estimate a function. The

application of support vector machines to general regression analysis case is called sup-

port vector regression (SVR) and is commonly used for many of the time series prediction

applications.

The objective of a time series prediction is to find a function f(x) such that, the

predicted value of the time series at a future point in time is unbiased and consistent.
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f(x) = wTφ(x) + bf(x) (5.5)

If the data are not linear in its “input” space, the goal is to map the data x, to a higher

dimension “feature” space via a kernel function φ(x), then perform a linear regression in the

higher dimensional feature space [89]. The goal is to find “optimal” weights and threshold

by minimizing,

1

2
wTw + C

L∑
i=1

(εi + ε∗i ), (5.6)

with respect to the constraints,

y(xi)− f(xi) ≤ ε+ εi

f(xi)− y(xi) ≤ ε+ ε∗i

ε∗i , εi ≥ 0,

(5.7)

where y(xi) is the actual targets, ε is the highest deviation from y(xi), C is the regulariza-

tion parameter and εi, ε
∗
i are the slack variables. More details about SVR can be found in

[89].

In our analysis, we have implemented above discussed time series models using ARIMA,

feed-forward neural networks and recurrent neural networks. For the evaluation purpose

we have used the error measurements, mean absolute percentage error (MAPE), root mean

square error (RMSE) and mean absolute error (MAE).

5.5 Results

In our data, there were several months with zero vulnerabilities. This may have hap-

pened due to some unrecorded vulnerabilities within the database. Therefore we first,

followed liner imputation method to replace those zero vulnerabilities. Then we started

our analysis by creating ARIMA models.

74



Time: 2001 to 2016
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Figure 5.4: First differenced series after log transformation

Prior to the model building process, we first had to stabilize the variance of the nonsta-

tionary time series by applying a log transformation. We next applied the first differenced

operator to the log transformed series, and it is given in Fig. 5.4.

The corresponding ACF and PACF plots of first differenced series are given in Fig. 5.5.

These can be used to tentatively identify the possible AR and MA terms that are needed.

After a careful evaluation, we found the best ARIMA model for the log transformed series

is having 2 AR terms and 1 MA term with a drift. i.e., ARIMA(2,1,1). The estimated

parameters and their standard errors are given in Table 5.1.

Table 5.1: ARIMA model estimates for Linux OS vulnerabilities

AR(1) AR(2) MA(1) drift

Estimate 0.1846 -0.0141 -0.94076 0.0076

Std. Error 0.0838 0.0822 0.0406 0.0047

AICc=430.77 RMSE=0.7768 MAPE=0.6057 Sample Avg. Res=0.0074

75



-0
.4

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

Lag

A
C
F

Series  firstdiffAll

6 12 18 24

-0
.4

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

Lag

P
ar

tia
l A

C
F

Series  firstdiffAll

6 12 18 24

Figure 5.5: First differenced series after log transformation

As per the residual analysis, the sample average residual (SAR) for the training data

is 0.0074 which indicates an underprediction from our model. Though we re-trained the

model by subtracting SAR from the original data, it did not show a better improvement.

Moreover, residuals seem to be randomly scattered, and a higher p-value in L-jung box

test confirms the hypothesis that residual autocorrelation is zero. All these facts indicate

that the fitted model is adequate.

After creating an ARIMA model, we then proceeded with support vector regression

models and neural network models. As discussed earlier, we created both, feed-forward

neural networks and recurrent neural networks. Each of these networks was trained using

an online training method based on Hybrid Monte Carlo sampling. We have trained ANN

models with 3,4 and 5 lags respectively. When we consider 3 lags for ANN-HMC, it means

that we have used the last 3 months observations to trained the data. Where as for an

RNN model, it means that we have considered last 2 months observations and 1 error term.
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Table 5.2: Model evaluations

Model SMAPE RMSE MAPE MAE

ARIMA(2,1,1) 0.8234 19.1857 0.7529 14.5379

Lag 3 SVR 0.7716 18.9116 0.7347 13.8508
ANN-HMC(3 AR) 0.8136 18.9917 0.7735 14.4190

RNN-HMC(2 AR, 1MA) 0.7032 12.8586 0.8816 10.6879

Lag 4 SVR 0.7227 18.9869 0.7626 14.1552
ANN-HMC(4 AR) 1.2445 20.0234 0.7798 16.0022

RNN-HMC(3 AR, 1MA) 0.8032 18.8967 0.8832 14.7632

Lag 5 SVR 0.7805 18.7927 0.7944 14.0540
ANN-HMC (5 AR) 1.3001 20.9987 0.7853 16.1156

RNN-HMC(4 AR, 1MA) 0.8122 18.9010 0.8901 14.7734

Table 5.3: RNN Parameter Estimations for the Model with 3 Lags

w
(1)
kl b

(1)
k w

(1)
k b

(2)
1

-4.14 13.73 5.11 10.29
-12.67 -17.96 14.85
-25.93 20.44 -4.08
-0.44 7.21 11.22
-3.10 -3.39 19.87
-1.36
-14.18
4.17
8.75
-12.75
4.46
0.64
4.50
14.36
8.26

This error term is calculated using,

ε = x̂t−1 + xt−1 lnx̂t−1. (5.8)

Table 5.2 summarizes the model evaluations performed using testing data set for each

method. From that, we can see that Bayesian RNN model based on HMC sampling has

given the minimum SMAPE and RMSE values for the model predictions. Table 5.3 provides

the estimated weight and bias values for the RNN model with 3 lags.
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Figure 5.6: Forecasts of the vulnerability prediction model with the best recurrent neural
network model

Table 5.4: Actual and predicted vulnerabilities for Linux OS for 2016

2016 Actual ARIMA(2,1,1) (log scale) ARIMA(2,1,1) SVM ANN RNN ARIMA Pred. Diff SVR Pred. Diff ANN Pred. Diff RNN Pred. Diff

Jan 10.5 2.13 8.43 7.38 8.01 8.91 2.07 3.12 2.49 1.59
Feb 12 2.12 8.35 8.10 8.99 10.92 3.65 3.90 3.01 1.08
Mar 2 2.13 8.39 8.68 8.99 12.49 -6.39 -6.68 -6.99 -10.49
Apr 29 2.13 8.46 7.46 8.99 2.19 20.54 21.54 20.01 26.81
May 56 2.14 8.52 7.83 8.99 41.02 47.48 48.17 47.01 14.98
Jun 16 2.15 8.59 11.17 8.99 1.33 7.41 4.83 7.01 14.67
Jul 8 2.16 8.65 9.29 8.99 16.59 -0.65 -1.29 -0.99 -8.59
Aug 28 2.17 8.72 10.36 8.99 7.88 19.28 17.64 19.01 20.12
Sep 23.5 2.17 8.78 9.45 8.99 29.33 14.72 14.05 14.51 -5.83
Oct 19 2.18 8.85 15.48 8.99 26.32 10.15 3.52 10.01 -7.32
Nov 25 2.19 8.92 8.25 8.99 18.21 16.08 16.75 16.01 6.79
Dec 35 2.20 8.99 10.28 8.99 25.02 26.01 24.72 26.01 9.98

Figure 5.6 gives the model prediction over the time. It can be seen that predictions

obtained from RNN follow the actual vulnerbility pattern as close as possible. Table 5.4

provides the actual and predicted vulnerabilities from all the methods, for the year 2016.
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5.6 Conclusion and Contributions

In this chapter, we have implemented a vulnerability prediction model for Linux OS

using artificial neural networks. The best prediction model was given by the recurrent

neural network with 2 lags and 1 error term with online HMC learning technique.

It is clear that with the new vulnerability prediction model we can forecast the future

vulnerabilities for the Linux OS with a high degree of accuracy. Our model findings can

be helpful for the system administrators in arranging future software resources. Here, we

summerize our contributions to this chapter.

1. We were able to develop an accurate vulnerability prediction model for the Linux

OS.

2. We demonstrate the applicability of an online training algorithm for time series fore-

casts with neural network models.

3. We have successfully evaluated the performance of feed-forward neural networks and

recurrent neural networks in the Bayesian setting.

4. The final predicted value on monthly basis are important to the information tech-

nology director in developing his strategic plans for the Linux OS. Based on the

predicted value he can decide to redesign or leave it as in the OS.

5. The predicted value can be used to monitor the competitors OS for marketing pur-

poses.
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CHAPTER 6

OUTLOOK AND FUTURE RESEARCH WORK

Due to their flexibility in modeling, neural networks serve at the forefront of modern

statistical learning. Incorporation of the Bayesian learning into neural networks has led

to provide more appealing results. In this work, we have successfully demonstrated the

applicability of those techniques in interdisciplinary research. More specifically, in the fields

of health and computer science.

The proposed breast cancer diagnosis model is substantially important in assessing the

potential risk of diagnosing with malignant breast cancer with a minimal cost. We would

certainly be able to improve our predictions by adding more learning data, which is one of

our targets to be achieved in the future.

The development of the nonlinear Poisson regression model with Bayesian neural net-

works opens a new era of hope for modeling count data as well as for survival modeling.

More importantly, it provides a method to obtain the standard errors without being affected

by the issue of overdispersion associated with the Poisson distribution. Unlike in the max-

imum likelihood method, the inclusion of automatic relevance prior in the Bayesian setting

helps to identify the relative importance of the covariates in an ANN model. Moreover, the

proposed method has been extended to develop a piecewise constant hazard model. This

significantly improves the accurate evaluation of patients’ survival times and potentially

can be used by the medical practitioners to make important clinical decisions. We also have

explored the possibility of applying the Bayesian neural networks in time series prediction.

During our research, we also have identified several other problems which might lead

to future research work. One of that is to explore the possibility of developing a zero-

inflated Poisson regression model with the Bayesian ANN to be served in a wide variety
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of problems. Another interesting problem that we are planning to do in future is that to

use ANN to estimate the commercial real estate appraisals. With such a model, we will be

able to save a significant amount of time involved with the appraisal procedure. With that,

we may be able to provide an accurate estimate by considering all the important effects

which drive prices of the current market.

As we all know, applications of ANN are not just limited to one or two disciplines. It is

likely that the Bayesian neural networks be one of the pioneering techniques in the modern

era of Big data. We are happy to be a part of that, even with this small piece of work.
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Appendix A Draft CVSS v2.10 Equations (last revised 3-20-07)

1. Base Score = (0.6× Impact+ 0.4× Exploitability − 1.5)× f(Impact)

2. Impact = 10.41× (1− (1−ConfImpact)× (1− IntegImpact)× (1−AvailImpact))

3. Exploitability = 20×AccessComplexity ×Authentication×AccessV ector

f(Impact) =


0, if Impact 0

1.176, otherwise

Access Complexity =


0.35, if high

0.61, if medium

0.71, if low

Authentication =


0.704,Requires no authentication

0.56, Requires single instance of authentication

0.45,Requires multiple instances of authentication

AccessV ector =


0.395,Requires local access

0.646,Local Network accessible

1,Network accessible

ConfImpact =


0,none

0.275,partial

0.660, complete
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Appendix A (Continued)

IntegImpact =


0,none

0.275,partial

0.660, complete

AvailImpact =


0, none

0.275, partial

0.660, complete

A.1 CVSS Temporal Equation

TemporalScore = BaseScore

1. Exploitability

2. RemediationLevel

3. ReportConfidence

Exploitability =



0.85, unproven

0.90, proof-of-concept

0.95, functional

1,high

1,not defined
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Appendix A (Continued)

RemediationLevel =



0.87, official-fix

0.90, temporary-fix

0.95,workaround

1,unavailable

1,not defined

ReportConfidence =



0.90,unconfirmed

0.95,uncorroborated

1, confirmed

1,not defined

A.2 CVSS Environmental Equation

Environmental Score = (Adjusted Temporal + (10−AdjustedTemporal)

×Collateral Damage Potential)× TargetDistribution

AdjustedTemporal = TemporalScore recomputed with the Impact sub-equation re-

placed with the following AdjustedImpact equation.

AdjustedImpact = Min(10, 10.41× (1− (1− ConfImpact× ConfReq)

×(1− IntegImpact× IntegReq)× (1−AvailImpact ∗AvailReq)))
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Appendix A (Continued)

CollateralDamagePotential =



0,none

0.1, low

0.3, low-medium

0.4,medium-high

0.5,high

0,not defined

TargetDistribution =



0,none

0.25, low

0.75,medium

1.00, high

1.00, not defined

ConfReq =



0.5, low

1,medium

1.51,high

1,not defined

IntegReq =



0.5, low

1,medium

1.51, high

1,not defined
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AvailReq =



0.5, low

1,medium

1.51, high

1,not defined
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