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Abstract 

 The discovery of epigenetic mechanisms has ignited speculation into their role in 

ecological and evolutionary processes. In particular, the contribution of epigenetic variation to 

adaptation or phenotypic plasticity that is distinct from genetic variation would be an important 

addition to existing evolutionary mechanisms. Although the research of epigenetic mechanisms 

from an ecological and evolutionary (or eco-evolutionary) perspective has been growing, it is 

still unclear how epigenetic variation might function in natural populations and settings and to 

what extent it might serve to mediate population response to changing environmental conditions 

over time. Over the course of my dissertation, I explored the importance of DNA methylation in 

population response to a variety of environmental conditions.  

 In the first chapter of my dissertation, I reviewed existing literature on the relationship 

between DNA methylation and environmental response. I argued that given the weight of current 

evidence, DNA methylation, in addition to other epigenetic mechanisms, needs to be included 

the evolutionary synthesis. Additionally, I identified a number of outstanding questions and 

outlined research directions that would help elucidate the role of epigenetic mechanisms in 

evolution. 

 In my second chapter, I studied the genetic and epigenetic composition of populations of 

Spartina alterniflora that were impacted by the Deepwater Horizon oil spill in 2010. Current 

evolutionary theory predicts that following a severe environmental stressor, populations may 
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experience a bottleneck effect, in which one or only a few genotypes survive to reproduce in 

subsequent generations. However, it is unclear whether these patterns are reflected in epigenetic 

variation as well, because novel environmental perturbations may serve to induce epigenetic 

variation rather than diminish it. We found a significant genetic signature of oil exposure in 

exposed populations, but did not see a similar effect in the epigenetic composition of exposed 

populations. These data suggest that epigenetic modifications, such as DNA methylation, may 

not always increase in number during stressful episodes, but may instead follow genetic 

variation. These results provide valuable information for the development of nascent population 

epigenetic theory, and may help parameterize expectations about conditions that provoke 

epigenetic variation, particularly when genetic variation may be limited. 

 In addition to strong, unpredictable stressors, populations also respond via phenotypic 

changes over time through developmental stages and life histories that coincide with seasonal, 

regular environmental cues. Epigenetic mechanisms influence these regulatory and 

developmental changes that occur within an individual over time. In my third chapter, I 

examined the epigenetic response to seasonality in multiple coastal plant species. We found a 

weak signature of single methylation polymorphisms that was associated with seasonal 

environmental change within the studied species, as well as global patterns of methylation that 

were consistent across species. The results of this study indicate the possibility of conservation 

of methylation patterns across phylogenetic histories. 

 In my fourth chapter, I explored in detail how the ability to maintain methylation might 

affect stress response. We compared individuals of the model plant Arabidopsis thaliana that 

were deficient in maintenance methylation machinery to control genotypes under both abiotic 
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and biotic stresses, and then studied the growth of their offspring in the absence of stress. We 

found inherited phenotypic signatures of parental stress in the offspring generation and 

interactive effects of parental stress and genotype. This study not only reinforces the correlations 

that we observed in our field studies, but adds to the growing body of literature highlighting the 

importance of DNA methylation both in immediate environmental response and as a mechanism 

for heritability. 

 Overall, this dissertation demonstrates that DNA methylation is highly abundant in 

natural populations and may be part of the response to various stressors at a number of time 

scales. The integration of DNA methylation in the evolutionary synthesis will aid in the 

explanation of phenomena such as phenotypic plasticity or adaptation, and will be an important 

contribution to the existing body of evolutionary mechanisms. 
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Chapter One: 
Non-genetic inheritance in evolutionary theory- the importance of plant studies  1

Authors 

 Marta Robertson, Christina Richards 

Abstract  

 Emerging evidence points to a causal role for epigenetic variation in evolution, but 

evolutionary biologists have been reluctant to incorporate epigenetics into modern evolutionary 

theory. Part of this ambivalence comes from the assumption that epigenetic inheritance is only 

relevant to the evolution of plants, which is perpetuated by a comparative lack of evolutionary 

studies in animals. However, although most of the evidence for epigenetic inheritance comes 

from plants, plants and animals share many homologous epigenetic mechanisms, and plants 

provide a more tractable system for investigating the causal role of epigenetic mechanisms 

underlying phenotypic variation and its relationship with fitness. The insights from studies of 

epigenetic inheritance in plants may be applicable across a broad range of taxa once we establish 

commonalities and differences in epigenetic machinery. In this paper we present evidence for a 

role of epigenetic mechanisms in the evolutionary process and discuss common objections to 

 This chapter has been previously published, open access, in Non-Genetic Inheritance (Robertson, M., 1

and Richards, C. “Non-genetic inheritance in evolutionary theory- the importance of plant studies” Non-
Genetic Inheritance (2015) 2: 3-11.) and is reproduced under the Creative Commons license.
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incorporating epigenetics into evolutionary theory. This review is not exhaustive, but is meant to 

demonstrate that epigenetic inheritance can be incorporated into current evolutionary theory 

without overhauling its foundations.  

Introduction 

 When Darwin described the mechanism of evolutionary change, effectively establishing 

the current dominant paradigm of evolutionary theory, he could not define the unit of heredity. 

For the next half-century, related discussions focused on various hypotheses of the unit of 

heredity, including inheritance of acquired characteristics. The topic was debated until 

Weismann’s doctrine was popularized in the late 1890s (Buss 1983, Weissman 2011). 

Weismann’s doctrine argued that only genes and the germline are responsible for heredity, 

dismissing an important role for the soma in evolutionary change. Later, this doctrine was 

incorporated into the Modern Synthesis and was central to the development of population 

genetics (Bonduriansky and Day 2009, Weissman 2011), which established a quantitative way to 

explain gradual phenotypic change in the context of Mendel’s laws of inheritance. In the Modern 

Synthesis (MS), evolutionary change is often equated with genetic divergence, and phenotypic 

variation is solely dependent on the emergence of random sequence mutations in the germ line 

(Jablonka and Lamb 2008). Under this framework, evolution is described as changing allele 

frequencies over time (Pigliucci 2007).  

 This is a convenient but limited definition of evolutionary change because it does not 

include current findings in development, plasticity, or non-genetic inheritance (Müller 2007), it 

neglects the creative roles of the environment and disease in adaptation, and it neglects to 
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consider taxa which do not have a clearly separated soma and germ line, such as bacteria, plants, 

and many animals (see Buss 1983 for a more complete list and discussion). With a focus on 

population genetics, the MS has become a “theory of genes” (Pigliucci 2007), but several 

evolutionary biologists are exposing the limitations of a gene-centric definition of evolution 

(Jablonka and Lamb 2008, Laland et al. 2014, Noble et al. 2014, Pigliucci 2007, Travisano and 

Shaw 2014), including its inability to fully describe morphological change and evolutionary 

process. For example, it is not possible to explain all of heritability using only genetic variation, 

and quantitative genetics models often fail to predict offspring phenotype from parental genotype 

and environmental experience alone (Greisemer 2011). Genetics also explains only a portion of 

complex traits, such as behavior and disease, despite recent advances in sequencing and 

genotype-to-phenotype mapping (Slatkin 2009). Additionally, in contrast to the expectations at 

the foundation of the MS, epigenetic phenomena, such as genomic imprinting, cause parent-of-

origin effects and violate Mendel’s laws of segregation and independent assortment. 

Furthermore, the definition of a gene itself has become unclear, as gene regulatory networks and 

alternative splicing have blurred the functional boundaries of a gene. New definitions 

acknowledge complex gene interactions, placing an emphasis on final functional products 

(Gerstein et al. 2007). These findings weaken the gene- centric association of changing allele 

frequencies with evolutionary change.  

 As gene frequencies become a dissatisfying and incomplete explanation of evolutionary 

change, more inclusive units of heredity must be identified and it is becoming clear that changes 

must be made to accommodate emerging evidence from developmental and molecular biology 

(Greisemer 2002). In particular, rapidly growing evidence makes a strong case that epigenetic 
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mechanisms contribute to complex, heritable traits, and thus evolution. Epigenetic mechanisms, 

such as DNA methylation, have been shown to be more variable than DNA base pair sequences, 

responsive to the environment, and heritable (Cortijo et al. 2014, Johannes et al. 2009, Latzel et 

al. 2012,  Schmitz et al. 2013, Verhoeven et al. 2010a). Importantly, epigenetic mechanisms can 

have a phenotypic effect independent of genotype (Cortijo et al. 2014, Cubas et al. 1999, Herrera 

and Bazaga 2013, Zhang et al. 2013). Epigenetic mechanisms also provide promising 

explanations for various aspects of human health and disease including cancers, infertility, 

obesity, diabetes, cardiovascular disease and several neurological disorders (e.g. Alzheimer’s, 

schizophrenia, autism; Liebers et al. 2014, Slatkin 2009). In this paper, we present evidence that 

epigenetic mechanisms can contribute to phenotype and inheritance, and discuss many of the 

objections evolutionary biologists have to incorporating epigenetic mechanisms into 

evolutionary theory. We focus on plants as tractable, easily- manipulated models of epigenetic 

evolutionary change. Plant systems can be used to experimentally explore the evolutionarily 

conserved epigenetic mechanisms, and insights can be applied more generally across taxa to 

describe how epigenetic mechanisms may be inherited with consequences for phenotype and 

evolution. However, clarification of the similarities and differences between plant and animal 

epigenetic processes is needed before we can use current plant epigenetics studies to develop a 

broad understanding of the implications for evolution.  

Evidence for Epigenetic Inheritance 

 Most of the current evidence for a role of epigenetic mechanisms in evolution comes 

from plants, with limited examples in animals. This is partly due to the fact that several resources 
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are available for plants that are not available for animals, such as epigenetic recombinant inbred 

lines (epiRILs), which can be used to measure effects of DNA methylation in constant genetic 

backgrounds (Cortijo et al. 2014, Johannes et al. 2009, Latzel et al. 2012, Zhang et al. 2013). 

Inheritance of induced epigenetic changes may also be easier to detect in plants than in animals, 

since plants do not sequester their germline and the environment may play a more obvious role in 

shaping their epigenomes. Additionally, some plant species harbor higher loads of transposable 

elements than animals (Fedoroff 2012) and hybridize more frequently, providing greater 

opportunity for epigenetic regulation to come into play, and increasing the likelihood of detecting 

epigenetic variation in plant systems rather than animal systems (reviewed in Richards et al. 

2012b). However, plants and animals share homologous epigenetic mechanisms, and many 

insights from studies of epigenetic inheritance in plants are applicable across diverse taxa 

(Fedoroff 2012, Feschotte 2008). Because experiments on humans and some animals are limited 

in number, the research community can benefit by using plant systems to explore the 

evolutionarily conserved epigenetic mechanisms that are involved in response to environment, 

and how those mechanisms may be inherited with consequences for phenotype and evolution.  

 For example, DNA methylation often suppresses the activity of transposable elements, 

and can spread to neighboring regions of the genome (Furner et al. 2011, Lippman et al. 2004, 

Schmitz et al. 2011). Most insertions of transposable elements (TEs) are thought to be neutral or 

deleterious (reviewed in Brookfield 2005, Slotkin et al. 2012), but in both plants and animals 

some TEs provide novel regulatory function, promote alternative splicing or develop into 

transcription factor binding sites (Feschotte 2008, Kidwell and Lisch 2000, Slotkin et al. 2012). 

In the human genome, transposable elements are often found in the promoter regions of genes, 
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affecting gene expression. The presence and control of transposable elements may have 

contributed to diversification of flowering plants (Joly-Lopez et al. 2012) and primates 

(Feschotte 2008).  

 Another commonality between plants and animals is that methylation of cytosines is 

controlled by methyltransferases, which either maintain DNA methylation at a specific locus or 

establish methylation de novo. Homologs of many methyltransferases are found in plants and 

animals; however, plants also use an RNA directed DNA methylation pathway (RdDM) that is 

not found in animals to methylate de novo. This pathway may contribute to environmentally 

induced and functional epigenetic variation in plants (Law and Jacobsen 2010, Schmitz et al. 

2011, 2013) that is not seen in animals. The functional patterns of DNA methylation that result 

from these mechanisms are still not well understood in either plants or animals, and this has led 

to disagreement about the possibility of epigenetic inheritance (Daxinger and Whitelaw 2012, 

Ptashne 2013). For example, some authors argue that most epigenetic mechanisms are non-

specific and unstable, minimizing the possibility of true independent epigenetic inheritance 

(Grossniklaus et al. 2013, Ptashne 2013). However, several studies, discussed above and below, 

provide empirical support for epigenetic inheritance. Detailed studies of the mechanistic basis of 

transgenerational methylation transmission in both plants and animals will be required to resolve 

the ongoing debates about the molecular mechanisms behind epigenetic inheritance.  

 Several studies in plant systems are building convincing evidence that epigenetic 

mechanisms can be environmentally induced and can affect ecologically relevant phenotypes 

(reviewed in Kilvitis et al. 2014, Richards et al. 2012b). Importantly, this epigenetic variation is 

not completely reducible to genetic variation; in many of these examples epigenetic variation is 
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at least partly independent of genetic variation. Although no single study has found the smoking 

gun, several independent studies have assembled compelling evidence in support of epigenetics 

in evolution and many of these studies demonstrate that epigenetic variation is present in 

populations, can cause phenotypic variation, and can be stably inherited (see below, also see 

(Jablonka and Raz 2009) for examples of epigenetic inheritance).  

Epigenetic mechanisms impact ecologically important traits 

 Several studies have demonstrated an epigenetic impact on functional traits (Alonso et al. 

2014, Cortijo et al. 2014, Cubas et al. 1999). One of the earliest and best examples of epigenetic 

potential in evolution is in the pioneering study of the epi-allele at the L-CYC gene in Linaria 

vulgaris (Cubas et al. 1999). In this species, a peloric mutant exhibits radial symmetry in the 

flower, whereas the wild type exhibits bilateral symmetry in the flower. The L-CYC gene 

controls floral symmetry in L. vulgaris; however, both variants of L. vulgaris share the same 

genetic sequence at the Lcyc locus (Cubas et al. 1999). Radial symmetry is associated with 

hypermethylation and transcriptional silencing at the Lcyc locus. This epigenotype and the 

associated phenotype are stably heritable. This study shows that heritable DNA methylation can 

contribute to ecologically relevant traits, suggesting that it may play a substantial role in 

evolution.  

Epigenetic variation can be environmentally induced 

 Environmental influence on epigenetic variation has been demonstrated in a number of 

species, including Viola elatior (Schulz et al. 2014), Solanum lycopersicum (González et al. 
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2013) and A. thaliana (Dowen et al. 2012). In an apomictic dandelion, Taraxacum officinale 

(Verhoeven et al. 2010a, 2010b, and 2012), seeds are produced via parthenogenesis, resulting in 

clonal offspring and little genetic variation within populations. When exposed to salt stress, 

nutrient stress, salicylic acid and jasmonic acid, T. officinale showed no genetic polymorphism, 

but did show increased variation in DNA methylation. Furthermore, offspring of stressed parents 

that were raised in a common unstressed environment maintained DNA methylation changes that 

were induced in the parents. The environmentally induced changes in DNA methylation in this 

system were heritable from parent to offspring. This study supports the idea that epigenetic 

mechanisms are susceptible to environmental stressors and may facilitate rapid evolution.  

Epigenetic state is independent of genetic sequence 

 Though epigenetic variation can change independently from genetic variation, the 

correlation between epigenetic and genetic variation is graded and is difficult to tease apart 

(Richards 2006, Richards 2008). However, a few studies have taken advantage of systems with 

clonal reproduction or little genetic variation to demonstrate independent effects of epigenetic 

variation (Bossdorf et al. 2010, , Latzel et al. 2012, Verhoeven et al. 2014, Zhang et al. 2013). 

Richards et al. (2012a) showed that Japanese knotweed has little genetic variation in invasive 

populations along the east coast of the United States, but maintained differential epigenetic 

patterns in a broad range of habitats. By propagating individuals in a common garden, they were 

able to conclude that epigenetic state persisted through clonal reproduction rather than just being 

reset or necessarily induced by the environment. However, this study is not able to determine 
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local adaptation due to differential epigenetic state since they did not characterize the 

relationship between these patterns and fitness in situ.  

Objections to Evolutionary Epigenetics 

 Despite growing evidence of heritable epigenetic phenomena, many evolutionary 

biologists are reluctant to include the concept in evolutionary theory (see Laland et al. 2014). 

Many of the challenges evolutionary biologists raise against epigenetic inheritance focus on the 

relative importance of the phenomenon (Greisemer 2011). For example, is epigenetic inheritance 

relevant in many taxa, and can a theory that incorporates both genetic and epigenetic 

mechanisms of heredity explain more of the organismal phenotype than genetics alone? Below, 

we address some of the common objections evolutionary biologists make which are aimed at 

dismissing the relative importance of epigenetic inheritance.  

How should epigenetics be defined? 

 The Greek root “epi” means “upon, near to, or in addition,” and so epigenetics can be 

considered the study of mechanisms literally found on the DNA sequence (Greisemer 2011). 

Waddington (1942) first coined the term “epigenetics” during his studies to describe 

developmental effects not caused by genetic mutation (Jablonka and Lamb 2002). More recently, 

epigenetics has been used to describe developmental cellular processes and molecular controls 

that can be inherited across meiosis (Cubas et al. 1999, Herrera et al. 2013). The newest 

definitions of epigenetics include mechanisms that affect gene expression and are stable across 

meiotic and mitotic divisions (Kilvitis et al. 2014, Jablonka and Raz 2009), such as DNA 
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methylation, histone modifications, and small interfering RNA. However, these definitions and 

uses of the term ‘epigenetics’ have been met with some disagreement from authors who claim 

that a much more narrow definition of epigenetics is necessary to discriminate effects that are 

grounded in sequence-based changes (Bossdorf et al. 2008, Ptashne 2007, 2013). For example, 

although generally labeled ‘epigenetic’ and tightly associated with DNA methylation, histone 

modifications have not been shown to be heritable (Ptashne 2013). Furthermore, these broad 

definitions could theoretically include transcription factors and other regulatory elements that 

affect gene expression without change in DNA sequence, which are not usually considered 

epigenetic.  

 While there is some disagreement and ambiguity about what constitutes an epigenetic 

effect, for this review we will leave our definition of epigenetics intentionally broad (i.e. 

including mechanisms that affect gene expression and can be stable across meiotic and mitotic 

divisions), and define epigenetic inheritance as heritable modifications that can change gene 

expression without changes to the DNA sequence (Jablonka and Raz 2009, Kilvitis et al. 2014). 

Despite the debate on the definition of epigenetics, most research in epigenetic inheritance has 

focused on DNA methylation, and most authors agree that DNA methylation is both epigenetic 

and can be heritable (Feng et al. 2010, Grossniklaus et al. 2013, Ptashne 2013). We wish to 

emphasize the importance of a system of inheritance other than DNA sequence, and will focus on 

examples of DNA methylation here.  
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Soft inheritance 

 Similar to the disagreement about the definition of “epigenetics”, some evolutionary 

biologists object to the concept of “soft inheritance”. Epigenetic mechanisms are often discussed 

in concert with soft inheritance, traditionally defined as a mechanism by which the environment 

molds favorable alleles (in contrast to “hard  

inheritance,” in which genetic changes arise randomly and are stable regardless of environment; 

(Richards 2006)). During the formation of the Modern Synthesis, soft inheritance was used to 

describe many theories of inheritance, including evolution by inheritance of acquired 

characteristics and use and disuse of organs. At the time, there was little evidence to suggest that 

the environment had any effect on genotype or evolution, and the improbability of soft 

inheritance was used to solidify the Modern Synthesis, which depended on population genetic 

theory, and thus hard inheritance (Wilkins 2011).  

 Some critics argue that epigenetic inheritance is a revival of soft inheritance and 

Lamarckism. However, in its current usage, soft inheritance should not be equated with neo-

Lamarckism. Instead, the modern rendition of soft inheritance refers to environmentally induced 

epigenetic variation, both in somatic and germ lines (Richards 2006). When differentially 

methylated regions are passed to offspring in the absence of that same stimulus, they can be 

considered inherited epigenetic states (Jablonka and Raz 2009). Epigenetic variation is not 

necessarily adaptive, but if functional, it is subject to many of the same evolutionary processes as 

DNA sequence polymorphisms (i.e. natural selection, drift, and mutation; (Jablonka and Raz 

2009)). This places epigenetic inheritance well within Darwin’s paradigm, but epigenetic 

inheritance does not fit explicitly within the Modern Synthesis as it was constructed in the 1940s. 
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However, the extent by which epigenetic mechanisms serve to differentiate populations still 

needs to be determined.  

Stability of epigenetic variation 

 A common argument against a substantial role for epigenetic variation in evolutionary 

change is the supposed instability of epigenetic state. Because epigenetic state can be labile and 

DNA methylation mutation rates are higher than mutation rates in DNA sequence base pairs, 

many opponents to epigenetic inheritance claim that epigenetic variation cannot have lasting 

effects on organismal evolution. They also argue that natural selection cannot work if parent 

epigenotype is not correlated to offspring epigenotype. However, the stability of epigenetic 

marks is context dependent: some marks are more persistent than others and more work is 

needed to understand the importance of genomic context dependency in epigenetics (eg. 

Johannes et al. 2009, Verhoeven et al. 2010a). Further, even when the state is labile, extensive 

modeling and ample empirical evidence find that epigenetic variation can have substantial effects 

on the evolution of populations. For example, a study of the methylation variation in five species 

of Darwin’s finches found a greater number of differentially methylated regions than genetic 

mutations among the species. This study also found that the amount of epigenetic variation 

among species increases with phylogenetic difference whereas the amount of genetic variation 

does not (Skinner et al. 2014). Although these data were collected in the field and therefore 

cannot control for environmentally induced differences among the species, they indicate that 

epigenetic mechanisms reflect evolutionary relationships and may contribute to long- term 

changes in populations.  
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 Although epigenetic marks are often characterized as labile and transient, there are many 

examples across all taxa that show epigenetic variation is stable (Jablonka and Raz 2009). Strong 

evidence for the stability of epigenetic variation comes from several studies on Arabidopsis 

thaliana epigenetic recombinant inbred lines (epiRILs). EpiRILs are inbred lines that contain 

little genetic variation, but high epigenetic variation (Cortijo et al. 2014, Johannes et al. 2009, 

Latzel et al. 2012, Zhang et al. 2013). These lines show heritability of epigenetic differences over 

at least eight generations (Johannes et al. 2009). Furthermore, significant heritable phenotypic 

differences among epiRILs under stress highlight the potential importance of methylation 

variation in adaptation (Latzel et al. 2012, Zhang et al. 2013). Significant selection coefficients 

were found for biomass, root:shoot mass, and plant height in response to nutrient stress and 

drought (Zhang et al. 2013). Finally, further studies with these epiRILs have identified epigenetic 

quantitative trait loci (QTLepi), which account for 90% of the heritability of flowering time and 

60% of the heritability of primary root length (Cortijo et al. 2014). These findings offer strong 

support that epigenetic variation is stable, can affect phenotype independently of genotype, and is 

subject to natural selection.  

 Other proponents of epigenetic inheritance contend that even if epigenetic variation 

induced in one generation is prone to reversion in the next, evolutionary dynamics can still be 

affected in the long term. Importantly, when epigenetic variation is induced by environmental 

stressors, it is likely to be induced in many individuals in the population simultaneously (Rapp 

and Wendel 2005). This is in contrast to genetic mutations, which arise in single individuals and 

must be propagated throughout the population over generations. Even if epigenetic state is only 
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stable for very few generations, their population-level effect allows for stronger and more rapid 

influence on evolutionary trajectories than genetic mutations.  

Epigenetic reset 

 One of the biggest objections to epigenetic inheritance is evidence of the resetting of 

epigenetic variation during gametogenesis, which questions the validity of epigenetic  

mechanisms as a unit of heredity (see Ptashne 2013). Both plants and animals tend to reprogram 

at least some epigenetic variation during gametogenesis, although it is unclear to what extent or 

by which mechanisms this occurs (Badyaev 2014), and emerging evidence shows that many 

epigenetic states are not reprogrammed during fertilization (Wei et al. 2014). Objections to 

epigenetic inheritance claim that DNA methylation is erased and resulting DNA methylation in 

offspring is environmentally influenced. Any correlation between parent and offspring DNA 

methylation is due to a shared environment, and does not represent a transfer of information from 

the parent to offspring, but rather from environment to developing organism (Daxinger and 

Whitelaw 2012). However, evidence suggests that plants and animals, despite their divergent 

reproductive strategies, share mechanisms to copy DNA methylation information from parent to 

offspring (Feng et al. 2010). In plants, it has been demonstrated that the endosperm is widely 

demethylated, creating a feedback loop to reinforce methylation of transposable elements in the 

developing embryo. Small interfering RNA (siRNA) are produced as transposable elements are 

demethylated, and are passed from the endosperm to the egg cell, directing methylation in the 

developing zygote (see Feng et al. 2010).  
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 Mammals may similarly pass information about methylation states from parent to 

offspring (Daxinger and Whitelaw 2012, Feng et al. 2010). For example, in mice, expression of 

the Avy allele of the agouti locus is correlated with the amount of DNA methylation of a 

transposable element upstream of the genic region. Low methylation of the transposable element 

is correlated with the yellow-agouti phenotype; yellow coat color and diseases such as obesity, 

diabetes, and tumors. High methylation of the transposable element is associated with the 

pseudo-agouti phenotype; brown coat color and lessened disease risk (Daxinger and Whitelaw 

2012). Female mice with the yellow- agouti phenotype give birth to offspring with the yellow- 

agouti phenotype at a higher rate than pseudo-agouti females. This suggests that epigenetic state 

is maintained from parent to offspring at the agouti locus in pseudo- agouti mice. To rule out 

maternal effects, fertilized embryos from the yellow-agouti females were transferred to pseudo-

agouti females. The offspring maintained a high rate of yellow-agouti phenotype, suggesting that 

the (DNA methylation associated) pseudo-agouti phenotype normally seen in pseudo-agouti 

mothers is maintained via transmission of epigenetic state rather than maternal effects during 

fetal development (Morgan et al. 1999). Daxinger and Whitelaw (2012) have proposed that this 

is due to elements in the cytoplasm, such as siRNA. Other studies suggest that the mammalian 

placenta may mediate methylation states in a similar fashion to the endosperm of plants (see 

Feng et al. 2010 for a more detailed discussion).  

 As mentioned earlier, many studies have demonstrated transmission of DNA methylation 

changes from parent to offspring in plants. In T. officinale, 74%-92% of polymorphic DNA 

methylation induced in parents is transmitted faithfully to offspring (Verhoeven et al. 2010a). 

Similarly, high transmission of epigenetic state from parents to pollen granules has also been 
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demonstrated in the field in Helleborus (Herrera et al. 2013). This study reported that 75% of the 

DNA methylation found in parents was found in the gamete, and that the parental epigenetic 

population structure persisted in the pollen. However, large variation in transmission of 

epigenetic state exists, suggesting that transmissibility itself is a variable trait. This is consistent 

with the idea that variations in gametic epigenotype are guided by traces of the parent 

epigenotype and different genotypes have different epigenetic potential.  

Population genetics models 

 A major hurdle for the study of epigenetic inheritance is incorporating epigenetic 

mechanisms into current population genetic and quantitative genetic theory (Richards et al. 

2010). Many models of epigenetic inheritance modify current population genetics models with 

added parameters for highly labile epigenetic states (Day and Bonduriansky 2011, Goeghegan 

and Spencer 2012, Klironomos et al. 2013). These models show that epigenetic inheritance is 

adaptive in quickly changing environments, which has also been demonstrated in several other 

modeling efforts (Lachmann and Jablonka 1996, Pál 1998, Pál and Miklos 1999, Tal et al. 2010). 

Although few of these models have been tested directly, the assumption of labile epigenetic state 

is confirmed by studies of epimutation rate, shown to be orders of magnitude higher than genetic 

mutation rate. In mutation accumulation lines of A. thaliana, the epimutation rate is 4.46x10-4 

DNA methylation polymorphisms (Becker et al. 2011, Schmitz et al. 2011) compared to a rate of 

7x10-9 in SNPs (Ossowski et al. 2010) in the same mutation accumulation lines. As a 

consequence, there is tremendous epigenetic variation within species (Schmitz et al. 2013, 
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Vaughn et al. 2007), and measures of epigenetic variation are often greater than genetic variation 

(Richards et al. 2012a, 2012b). Further, while some models make oversimplifying assumptions, 

Day and Bonduriansky (2011) present a model that allows for the fact that some genetic contexts 

are more likely to acquire methyl groups than others, and the change in the epigenetic component 

may be dependent on genotype.  

 Some authors argue that epigenetic state must be stable over at least 3 generations to 

discount parental and grandparental effects (Grossniklaus et al. 2013), and any modeling efforts 

must take this multi-generational approach (Furrow and Feldman 2014). Furrow (2014) models a 

multi-generational effect of epigenetic variation, and finds that as epimutation rates increase, the 

response to selection is slowed. However, this model fails to include the effect of changing 

environmental conditions, which theorists have identified as a likely scenario in which epigenetic 

variation will have a large effect on adaptation, and which will affect epimutation rate and the 

strength of selection (Lachmann and Jablonka 1996). Klironomos et al. (2013) show that 

epigenetic variation may be used to increase adaptive phenotypic variation before genetic 

variation is codified, and can decouple fitness effects from changes in the genome during 

selective events, increasing evolutionary potential. These effects may be mediated through 

environmentally induced epigenetic variation and unstable epigenetic variation. However, these 

findings have not been tested experimentally.  

Future Directions 

 Although a large body of evidence supports the possibility that epigenetic mechanisms 

are a unit of heredity, controversy still exists over the potential role for epigenetics in evolution 
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(Laland et al. 2014). Researchers interested in advocating for the importance of epigenetics 

should take precautions to design experiments that can address questions about long-term fitness 

effects due to epigenotype. Few studies have investigated adaptive and evolutionary potential for 

epigenetic variation by demonstrating effects on phenotype and fitness due to inherited 

epigenetic state. Many studies which show correlation of phenotypic variation and epigenetic 

patterns in different environments fail to discern whether these patterns are inherited or 

environmentally induced in each generation (Herrera and Bazaga 2011, Lira-Medeiros et al. 

2010). Future studies will need to measure phenotype and fitness in a reciprocal transplant or 

common garden design to draw stronger conclusions about adaptive epigenetic variation and 

avoid these conceptual pitfalls (Bossdorf et al. 2008). These manipulative approaches are much 

more feasible in plant systems and can provide information applicable to understanding 

epigenetic dynamics in a wide range of human health related phenomena.  

 Secondly, epigenetic experimental evolution studies will help evaluate the stability of 

epigenetic variation and its potential contribution to evolutionary divergence. Several studies 

show that epigenetic variation is re-patterned during plant hybridization and polyploidization 

events (Hegarty et al. 2011, Paun et al. 2010, Salmon et al. 2005, Verhoeven et al. 2010b; 

reviewed in Richards et al. 2012b), which suggests that epigenetic mechanisms can be important 

in long-term evolution. However, experimental studies have focused mainly on effects in a single 

generation, despite the fact that epigenetic stability has been demonstrated for 8 generations 

(Johannes et al. 2009). Characterizing long-term behavior of epigenetic variation through these 

processes, and in response to environmental challenges will lead to more robust models of its 

importance in an evolutionary context.  
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Abstract

Catastrophic events offer unique opportunities to study rapid population response to 

stress in natural settings. In concert with genetic variation, epigenetic mechanisms like DNA 

methylation may offer a mechanism of rapid response to organisms facing severe environmental 

challenges, and contribute to the high resilience of species like Spartina alterniflora, a 

foundation salt marsh grass which shows resilience to strong environmental disturbance. In 2010, 

the Deepwater Horizon oil spill devastated large portions of the coastline along the Gulf of 

Mexico. Following the spill, we simultaneously examined the genetic and epigenetic structure of 

recovering populations of S. alterniflora to oil exposure. We quantified genetic and DNA 

methylation variation using AFLP and MS-AFLP to test the hypothesis that response to oil 

exposure in S. alterniflora resulted in genetically and epigenetically based population 
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differentiation. We found high genetic and epigenetic variation within and among sites, and 

found significant genetic differentiation between contaminated and uncontaminated sites, which 

may reflect non-random mortality in response to oil exposure. Additionally, despite a lack of 

genome wide patterns in DNA methylation between contaminated and uncontaminated sites, we 

found five MS-AFLP loci (12% of polymorphic MS-AFLP loci) that were correlated with oil 

exposure. Overall, our findings support genetically based differentiation correlated to exposure to 

the oil spill in this system, but also suggest a potential role for epigenetic mechanisms in 

population differentiation.  

Introduction

Ecological theory predicts that adaptation to local conditions can result when populations 

harbor heritable phenotypic variation for traits that increase tolerance to local conditions. Classic 

population genetics studies demonstrate that natural selection in different microhabitats can 

result in associations of genotypes, or alleles of candidate genes, with habitat type (e.g., Hamrick 

& Allard 1972, Salzman 1985, Schmidt & Rand 1999, Schmidt et al. 2008). In concert with other 

evolutionary mechanisms, disturbance events may also create population genetic structure, by 

diminishing standing genetic diversity through mortality (Orr & Betancourt 2001, Hermisson & 

Pennings 2005). These classic predictions are intuitive and often supported empirically (e.g. 

Clausen et al. 1948). However, in some cases, data across a diversity of taxa show either no 

association of genetic differences with habitat (e.g. Richards et al. 2004, Foust et al. 2016; 

examples in Schmidt et al. 2008) or that low levels of molecular diversity are not associated with 

decreased phenotypic variation (Dlugosch & Parker 2008, Richards et al. 2008). The disconnect 
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between empirical findings and ecological theory suggests the possibility of additional, under-

explored molecular mechanisms, such as epigenetic modifications, that mediate the relationship 

between phenotype and environment.  

The recent application of molecular techniques to ecological questions has revealed that 

epigenetic regulatory mechanisms, such as DNA methylation, may respond dynamically and 

independently to sudden changes in the environment (e.g. Gugger et al. 2016, Trucchi et al. 

2016). Although there are several epigenetic mechanisms that can alter gene expression (e.g. 

chromatin remodeling, histone modifications, small interfering RNAs), DNA methylation of 

cytosines is the most widely studied (Schrey et al. 2013, Verhoeven et al. 2016) and can have 

important ecological effects. For example, studies in Taraxacum officinale show that when DNA 

methylation machinery is disrupted, flowering time differences among populations of these 

plants are removed (Wilschut et al. 2016). Additionally, natural populations typically harbor high 

amounts of epigenetic variation (Paun et al. 2010, Richards et al. 2012, Keller et al. 2016), which 

can be structured by local environmental conditions along with genetic variation. Variation in 

DNA methylation is correlated with habitat-type in mangroves (Lira-Medeiros et al. 2010) and 

knotweed (Richards et al. 2012), herbivory in viola (Herrera & Bazaga 2010), and climate in 

natural accessions of Arabidopsis thaliana (Keller et al. 2016). This association between DNA 

methylation and plant ecology may reflect the modulation of gene expression (Zilberman et al. 

2007, Bewick et al. 2012) or recombination rates (Mirouze et al. 2012), the release of 

transposable elements (Dowen et al. 2012), or other regulatory processes in response to 

environmental conditions in addition to covariance with genetic structure.  In some cases, 

epigenetic variation can be restructured during periods of environmental stress and these changes 

can persist after the stress is relieved (Verhoeven et al. 2010, Dowen et al. 2012 but see Wibowo 
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et al. 2016). These findings suggest that epigenetic mechanisms may allow for rapid modification 

of phenotype in response to immediate and acute stressors (Rapp & Wendel 2005). 

In this study, we simultaneously examined genetic and epigenetic patterns in populations 

of S. alterniflora along the Gulf coast that were exposed to heavy oiling following the Deepwater 

Horizon (DWH) oil spill ("heavy" sensu Lin et al. 2016, Nixon et al. 2016). In 2010, 4.9 million 

barrels of oil spilled into the Gulf of Mexico over a period of three months, with devastating 

effects on coastal ecology and salt marsh ecosystems (Lin & Mendelssohn 2012, Silliman et al. 

2012, Whitehead et al. 2012, Lin et al. 2016). As the dominant plant on the leading edge of salt 

marshes, many S. alterniflora populations across the northern Gulf of Mexico were negatively 

impacted by the DWH oil spill. Despite large die-off of above-ground biomass and reduced 

carbon-fixation and transpiration in heavily oiled populations, S. alterniflora showed high 

resilience to the hydrocarbon exposure (Lin & Mendelssohn 2012, Lin et al. 2016), and above-

ground biomass and live stem density levels recovered to the same level as uncontaminated 

reference marshes within 18 months (Lin et al. 2016). However, while these and other studies 

support that S. alterniflora is resilient to hydrocarbon stress, the extent of intraspecific variation 

in resilience is uncertain, and it remains unknown if there was differential mortality among S. 

alterniflora genotypes in natural populations exposed to the DWH oil spill. We measured genetic 

and epigenetic variation using AFLP and MS-AFLP to test the hypothesis that oil exposure in S. 

alterniflora resulted in genetic and epigenetic signatures of population differentiation. As in 

previous studies of S. alterniflora (Richards et al. 2004, Travis et al. 2004, Edwards et al. 2005, 

Hughes & Lotterhos 2014, Foust et al. 2016), we expected to see high levels of genetic and 

epigenetic variation. However, we anticipated that moderate, non-random differential mortality 

in response to oil exposure would result in genetic differentiation of oil-exposed populations 

!31



from unexposed populations. Further, we anticipated a concurrent but stronger epigenetic 

signature of oil exposure, given its reflection of gene expression and physiological response to 

environmental stimuli (Verhoeven et al. 2010, Dowen et al. 2012, Xie et al. 2015). 

Materials and Methods

Sample collection

Spartina alterniflora is a clonal halophyte, native to the east coast of the United States 

and invasive in coastlines around the world (Pennings & Bertness 2001, Ayres et al. 2004, 

Ainouche et al. 2009). Spartina alterniflora displays diverse phenotypes in response to the 

natural environmental gradients in marshes, producing less above-ground biomass in response to 

increasingly saline soil (Richards et al. 2005). Populations of S. alterniflora display high genetic 

diversity (Richards et al. 2004, Travis et al. 2004, Edwards et al. 2005, Hughes & Lotterhos 

2014, Foust et al. 2016) and substantial resilience to both natural variation in the salt marsh 

(Pennings & Bertness 2001) as well as anthropogenic stressors, such as crude oil (Lin & 

Mendelssohn 2012, Lin et al. 2016).

We collected leaf tissue from S. alterniflora stems at approximately ten-meter intervals 

along the shoreline from three oil-contaminated and four uncontaminated reference sites along 

the Gulf Coast in August 2010, while oil was still standing on the soil surface at contaminated 

sites (Table 2.1; Figure 2.1). Oil contamination was defined by visually-confirmed presence of 

crude oil in the sediment and complete above ground die-back of S. alterniflora in populations on 

the leading edge of the marsh. The only visible live tissue was the regrowth of stems from 

rhizomes through the wrack of dead above-ground S. alterniflora (Figure 2.2) from which we 

collected leaf tissue. Contamination levels were later confirmed through Natural Resource 
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Damage Assessment databases (2014; Figure 2.1). Shoreline Cleanup Assessment Technique 

categories delineate oil contamination into five categories from “no oil observed” to “heavy 

oiling” (Nixon et al. 2016, Zengel et al. 2016). Our three contaminated sites fit the description of 

heavily oiled marshes whereas the four uncontaminated sites had no visible oiling or impacted 

vegetation at the time samples were collected, and were not annotated as contaminated in the oil 

assessment databases. Samples were collected from the middle of the so-called "tall plant" zone 

near the leading edge of the marsh (sensu "low-salt habitat" in Foust et al. 2016). From each 

plant, we collected the 3rd fully expanded leaf to standardize age and minimize developmental 

bias in sampling. The contaminated sites were: Grand Isle, LA site 1 (GIO1) (n = 6), Grand Isle, 

LA site 2 (GIO2) (n = 7), and Bay St. Louis, MS (MSO) (n = 8). Nearby uncontaminated 

reference sites were: GIN1 (n=9), GIN2 (n=10), and MSN (n=8). Because the minimum number 

of populations required to detect differences between two groups at the level of alpha = 0.05 is 

suggested to be n = 7 (Fitzpatrick 2009), we also sampled one additional reference site, Aransas, 

TX (AR) (n = 10), which was not affected by the DWH oil spill (Table 2.1). Sites in Mississippi 

and Louisiana were separated by a minimum of 10 km and maximum of 35 km, and AR was 775 

km from Mississippi. Tissue samples were snap frozen in liquid nitrogen and stored at -80˚C.

AFLP genotyping

We used AFLP to assess genetic variation between the field sites using a standard 

protocol described in Richards et al. (2012). Briefly, we isolated DNA in duplicate from leaf 

tissue with the Qiagen DNeasy Plant Mini kit according to the manufacturer’s recommended 

protocol (Qiagen, Valencia, CA), and conducted the entire protocol on duplicate reactions to 

ensure the consistent scoring of fragments, and control for the potential error rate of AFLP 
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markers. For selective PCR, we used fluorescently labeled primers EcoRI+AGC (6-FAM) and 

+ACG (HEX) and unlabeled MseI+CAC primers. We sent selective PCR products to the DNA 

Facility at Iowa State University, IA, USA, where they were electrophoresed on an ABI 3130XL. 

We scored resulting fragments in duplicate as “1” for present and “0” for absent using 

PeakScanner (ThermoFisher Scientific), and excluded markers that were not supported in 

duplicate. 

MS-AFLP epigenotyping

We used MS-AFLP to assess genome-wide DNA methylation on the same duplicate DNA 

extractions used in the AFLP protocol (Reyna-Lopez et al. 1997). We used MspI and HpaII 

restriction enzymes, which have different sensitivities to cytosine methylation of the same 

CCGG sequence (Reyna-Lopez et al. 1997, Salmon et al. 2008). DNA extracts were digested 

with both EcoRI/MspI and EcoRI/HpaII enzyme combinations independently for each individual, 

and selective PCR was run with fluorescently labeled primers EcoRI+AGC (6-FAM) and +ACG 

(HEX) and unlabeled primers HpaII/MspI +TCAC and HpaII/MspI+TCAT. We sent selective 

PCR products to the DNA Facility at Iowa State University, IA, USA, where they were analyzed 

on an ABI3130XL. We visualized the resulting electropherograms using PeakScanner and scored 

fragments as “1” when present and “0” when absent.

Together, MspI and HpaII produce four types of evaluative variation (Salmon et al. 

2008). MspI does not cut when the external cytosines are fully or hemi-methylated and HpaII 

does not cut when either the internal or external cytosines are methylated on both strands. 

Likewise, cleaving by both enzymes is blocked when both cytosines are methylated. The 

resulting fragments can be classified as either: Type I when the corresponding sequence 
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restriction site is non-methylated and fragments occur in both digests, Type II when fragments 

are absent in EcoRI + HpaII digests but present in MspI, Type III when fragments are absent in 

EcoRI + MspI digests only, or Type IV when no fragments occur in either digest. We treated 

Type IV variation as missing data, because the methylation state cannot be specified (Salmon et 

al. 2008). Although some advocate for discriminating between Type II and Type III methylation 

as these types are expected to capture methylation in CG versus CHG contexts (Medrano et al. 

2014, Schulz et al. 2014), Types II and III variation cannot simply be interpreted as CG versus 

CHG methylation since apparent CHG methylation can be caused by the nesting of internal 

restriction sites within MS-AFLP fragments that exhibit differential CG methylation (Fulnecek & 

Kovarik 2014). Therefore, we combined type II and III variation to represent the presence of 

DNA methylation in any context. Throughout this manuscript, we use “locus” to indicate a 

specific fragment size in the AFLP and MS-AFLP results. We use “haplotype” to indicate the 

binary variable positions (dominant genotypes) for each individual’s collection of AFLP loci, and 

“epigenotype” to indicate the collection of binary variable positions of MS-AFLP loci. 

Data analysis

To identify the number of different genetic groups represented in our collection 

independent of sampling location in our populations, we performed Bayesian clustering of the 

genetic data only using Structure v.2.3.4 (Pritchard et al. 2000, Falush et al. 2003, Falush et al. 

2007, Hubisz et al 2009). Our previous work has shown population structure within native S. 

alterniflora populations (Richards et al. 2004, Foust et al. 2016). Although we designed our 

sampling to avoid subpopulation structure in this study by only sampling near the leading edge 

of the marsh (i.e. the low-salt habitat, sensu Foust et al. 2016), we tested for the possibility of 
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finding more populations than expected. We tested ten populations (k=1 - 10) with ten 

independent runs at each k. We performed analyses with 50,000 burn-in sweeps and 1,000,000 

post burn-in sweeps, assuming admixture and without including sample location, or any 

geographic information as priors in the analysis. We estimated the number of clusters represented 

by the data using Evanno’s Delta K (Evanno et al. 2005).   

We used GenALex version 6.41 (Peakall & Smouse 2012) to estimate the haplotype and 

epigenotype diversity (h-AFLP and h-MS-AFLP). We also used GenALex to calculate estimates 

of genetic differentiation over all AFLP and MS-AFLP loci with a hierarchical AMOVA, nesting 

study sites within oil exposure to compare genetic variation among oil-contaminated and 

uncontaminated sites (ΦRT), among sites within contamination level (ΦPR), and within sites 

(ΦPT). We also used GenALex to conduct a locus-by-locus AMOVA to characterize genetic and 

epigenetic differentiation at each locus, using the same hierarchical design. Finally, we 

performed pairwise AMOVA comparisons to determine which populations were differentiated. 

For all AMOVA analyses, we used 9999 permutations to estimate statistical significance and 

adjusted for multiple comparisons using the sequential Bonferroni method whenever multiple 

tests were performed.

In addition to AMOVA, we tested for the effect of oil on AFLP and MS-AFLP multi-

locus marker profiles via permutational multivariate analysis of variance (perMANOVA), which 

allows for comparison of nested terms within hierarchical experimental design. Using the Adonis 

function within the Vegan package of R (Oksanen et al. 2007), we derived p-values based on 

9999 permutations within populations using the following formula: Adonis (AFLP genetic 

distance matrix~ oil exposure, strata = population, permutations= 10,000). In each analysis, 

variation in marker profiles was represented by the Euclidean distance matrices as calculated 
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from the binary AFLP and MS-AFLP methylation data (with interpolation of missing values) 

generated by GenALex 6.41. We also used the RDA function within the Vegan package of R 

(Oksanen et al. 2007) to conduct a partial redundancy analysis of the relationship between 

contamination level (presence or absence) and MS-AFLP, while removing the effects of AFLP. 

We used the following formula: RDA [x~y + z] where x = the Euclidean epigenetic distance 

matrix generated by GenALex, y = site condition (presence or absence of oil) and z = the 

Euclidean genetic distance matrix generated by GenALex. To create the site condition matrix, we 

used zero to indicate uncontaminated sites and one to indicate contaminated sites. This strategy 

makes the assumption that differences between contaminated and uncontaminated populations 

will be essentially the same magnitude regardless of individual population differences. 

Results

Genetic diversity and structure

A power analysis indicated that we could detect an effect of oil contamination among 

seven groups using our sample sizes (Fitzpatrick 2009), and previous work reports population 

differentiation in hierarchical analyses is detectable with as few as five individuals per population 

(Nelson & Anderson 2013). We found 71 polymorphic loci, which is well above the minimum of 

30 markers reported in previous work to be required to detect significant patterns of 

differentiation (Nelson & Anderson 2013). Of these loci, six were present or absent in only one 

sample. We ran these analyses with and without including these single-variable loci, and found 

no substantial differences in the results. The data presented here are based on the complete set of 

71 polymorphic loci. Although a modest data set, our markers identified that genetic diversity 

was high (h-AFLP ranged from 0.103 to 0.206), and 55 of 56 individuals displayed a unique 
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genotype. There was no difference in genotype diversity between contaminated and 

uncontaminated sites (P = 0.262). Bayesian clustering identified 2 genetic groups (ΔK= 

1517.81); however these groups did not clearly reflect either differentiation by oil-contamination 

or geographic separation (Figure 2.1).

Hierarchical AMOVA revealed significant variation between contaminated and unaffected 

populations (explaining 6% of the genetic variance), and among populations within site type 

(explaining 16% of the genetic variance; Table 2.3), as well as most (66%) pairwise comparisons 

between sites (Table 2.4), indicating the presence of population structure between contamination 

types and among populations. These results were supported by perMANOVA, which showed a 

significant effect of oil contamination on multi-locus genetic marker profiles (F = 0.092, P = 

0.017). Locus-by-locus AMOVA revealed 17 loci that varied significantly between oil-

contaminated and unaffected sites (Figure 2.3). 

Epigenetic diversity and structure

We found 39 polymorphic epigenetic loci from 71 observed. Of these loci, seven were 

present or absent in only one sample. We ran these analyses with and without including these 

single-variable loci, and found no substantial differences in the results. The data presented here 

are based on the complete set of 39 polymorphic loci. Epigenotype diversity was high (h-

MSAFLP ranged from 0.089 to 0.222), and each individual displayed a unique epigenotype. Like 

the estimates for genetic patterns, there was no difference in epigenotype diversity between 

affected and unaffected sites (P = 0.993), and as in our previous studies of Spartina alterniflora 

(Foust et al. 2016), h-MS-AFLP tended to be lower than h-AFLP (Table 2.2). 
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Hierarchical AMOVA failed to detect a significant effect of oil contamination on 

epigenetic differentiation, but among populations within site type explained 7% of the epigenetic 

variance (Table 2.3), and 38% of the pairwise comparisons between sites were significant (Table 

2.4). The lack of an effect of oil contamination on overall epigenetic variation was supported by 

perMANOVA (F = 0.373, P = 0.815) and redundancy analysis (F = 6.7269, P = 0.22). Locus-by-

locus AMOVA revealed five loci were significantly differentiated between oil-contaminated and 

unaffected sites (Figure 2.4).

Discussion

Following the Deepwater Horizon oil spill in 2010, we sampled contaminated and 

uncontaminated populations of S. alterniflora along the coast of the Gulf of Mexico in 

populations that had experienced heavy oiling and complete above ground die-back. Despite 

reports of full recovery of above ground biomass and stem density in heavily oiled populations 

after 18 months (Lin et al 2016), our hierarchical AMOVA returned evidence of genetic 

differentiation among oil- contaminated and non-contaminated populations. However, we did not 

find evidence of decreased genetic diversity in contaminated populations, as nearly all 

individuals displayed a unique genotype in both contaminated and non-contaminated sites. These 

findings are consistent with other genetic surveys of S. alterniflora (Richards et al. 2004, Hughes 

& Lotterhos 2014, Foust et al. 2016), which also show high levels of genetic variation. With our 

small sample size (n < 10 at most sites), it is possible that we were unable to capture a change in 

genetic diversity among populations if one occurred in response to the oil spill.

In addition, we found no evidence of epigenetic differentiation over all loci between oil-

contaminated and uncontaminated populations, but five loci showed epigenetic differentiation 
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due to oil exposure in the locus-by-locus analysis. Further study is required to determine if these 

loci are indicative of a regulatory response acting in concert with a few, but important epigenetic 

loci. However, redundancy analysis shows that overall patterns of methylation were not 

significantly correlated with oil exposure when controlling for the effects of genetic variation, 

which suggests that patterns of DNA methylation are explained almost entirely by genetic 

effects. Although we did expect to find epigenetic differentiation due to oil presence, it is 

possible that oil either did not induce any epigenetic changes between the population types, or 

that any existing epigenetic signature was too labile or too weak to be detected given the high 

epigenetic variation between individuals at our sites. Alternatively, our MS-AFLP may provide 

too few, anonymous markers to quantify epigenetic differentiation, and our small sample size 

may not have sufficient power to detect effects of rare epigenetic alleles or weak signatures of 

epigenetic change among the genetically differentiated populations. Many previous studies of 

epigenetic variation have taken advantage of low genetic diversity in natural systems to more 

clearly delineate population epigenetic effects (e.g. Gao et al. 2010, Richards et al. 2012). 

However, S. alterniflora is an out-crossing, wind-pollinated grass with extremely high genetic 

diversity (Richards et al 2004, Hughes & Lotterhos 2014, Foust et al. 2016). These high levels of 

genetic polymorphism make it more difficult to partition epigenetic structure due to increased 

statistical noise and genetic-dependent effects, particularly using anonymous genetic markers 

like AFLP (but see e.g. Foust et al. 2016). 

 

Genetic and epigenetic response to pollution

Human-mediated environmental impacts have been well-documented as potential 

evolutionary drivers of population differentiation. A classic example is the rapid phenotypic 
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change experienced by the peppered moth as a result of coal pollution (Kettlewell 1958), which 

was recently explained by the activity of transposable elements that alter its development (van’t 

Hof et al. 2016). Several studies also describe molecular differentiation in marine organisms 

across the eastern coast of the United States in response to aquatic pollution (Williams & 

Oleksiak 2008, Chapman et al. 2011, Whitehead et al. 2012). For example, populations of 

Atlantic killifish (Fundulus heteroclitus) in severely polluted habitats show broad genetic 

differentiation, including an allelic variant of cytochrome CYP1A (Williams & Oleksiak 2008, 

2011), which is correlated with changes in gill morphology. Populations of the related Gulf 

killifish (F. grandis) in the Gulf of Mexico also showed differential expression of CYP1A among 

affected and unaffected populations following the Deepwater Horizon oil spill (Whitehead et al. 

2012). Together, these studies highlight the role of anthropogenic stress in selection, adaptation, 

and divergence (Lande 1998, Hoffman & Sgro 2011). Despite previous literature suggesting that 

S. alterniflora is robust to heavy oil exposure, we found a signature of genetic differentiation 

between oil-exposed and unexposed populations. These results suggest at least some mortality in 

oil-exposed populations, consistent with findings of initial losses in live belowground biomass 

(Lin et al 2016). By examining the genetic and epigenetic composition of marshes after the DWH 

oil spill, our study adds to the growing number of ecological and evolutionary genomics studies 

describing population-level response to pollution.

Populations in coastal habitats, and salt marshes in particular, have long been models for 

phenotypic differentiation across natural environmental gradients (Schmidt & Rand 1999, 

Schmidt et al. 2008), and we expected to detect population level differentiation of DNA 

methylation in response to oil contamination as well (Richards et al. 2012, Foust et al. 2016). 

The idea that epigenetic mechanisms can contribute to population differentiation as a source of 
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heritable phenotypic variation has been challenged in recent literature (Laland et al. 2014, 

Wibowo et al. 2016). However, DNA methylation has been posited as a mechanism of 

phenotypic plasticity as well as a marker of stress response, and a number of studies have found 

a relationship between epigenetic variation and environment in support of this hypothesis 

(Jablonka & Raz 2009, Herman & Sultan 2016, Verhoeven et al. 2016). Environmental stressors 

can induce variation in DNA methylation and in some cases, these environmentally-induced 

methylation patterns can be inherited (Herrera & Bazaga 2010, Verhoeven et al. 2010, Herrera & 

Bazaga 2011), suggesting the potential for a signature of environmental response that is partially 

distinct from genetic variation.

Although we found high levels of epigenetic variation among individuals within and 

among populations, we failed to detect epigenetic differentiation in response to oil 

contamination. Our previous work showed a weak correlation between environmental conditions 

and epigenetic variation in S. alterniflora in a Georgia salt marsh (Foust et al. 2016). However, 

these data were collected from relatively protected habitat, and populations from this area are 

unlikely to have been exposed to a stress as severe as the DWH oil spill, which resulted in total 

above-ground die back, and reduction by approximately 84-95% of belowground biomass of the 

leading 5-10 meters of S. alterniflora in heavily oiled Gulf of Mexico marshes (Silliman et al. 

2012, Lin et al. 2016). This impact may be far beyond what is normally experienced by S. 

alterniflora including natural disturbance events (Pennings & Bertness 2001). 

Epigenetic mechanisms of response, such as DNA methylation, are expected to be 

evolutionarily favorable when the periodicity of a stressor is short (Lachmann & Jablonka 1996), 

such as cyclic patterns of rainfall, nutrient flows, and salinity that cause the zonation patterns 

observed among salt marsh plants (Pennings & Bertness 2001). In contrast, the Deepwater 
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Horizon oil spill may have acted as a single, discrete event that changed the make-up of the 

extensive genetic variation present in S. alterniflora rather than inducing a plastic or regulatory 

response that could be captured by assaying DNA methylation.

As studies of epigenetic variation in natural populations move away from quantifying the 

amount of standing genetic and epigenetic variation in natural populations to describing the role 

of that variation and the relative contribution of genetic and epigenetic variation to population 

differentiation, more precise sampling techniques and analyses will be needed. In future studies, 

a reduced-representation bisulphite sequencing approach would allow the direct comparison of 

genetic and epigenetic data sets, and at a much finer scale, with substantially increased statistical 

power to detect epigenetic differences between populations (Schrey et al. 2013, Robertson & 

Richards 2015, Trucchi et al. 2016, van Gurp et al. 2016). In addition, sequencing-based methods 

provide an increased ability to disentangle the relationship of methylation variation and gene 

function when fragments overlap with the promoters or coding regions of genes. By increasing 

the number of loci surveyed, future studies may better identify the environmental conditions 

under which genetic or epigenetic variation is associated with environmental cues (Robertson & 

Richards 2015).
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Tables and Figures

Table 2.1. GPS coordinates of seven study sites. 

   Coordinates

Population  N Longitude Latitude

Oil Contaminated:

GIO 1 6 29°26'42.8"N 89°55'45.7"W

GIO 2 7 29°26'11.2"N  89°54'35.9"W

MSO 8 30°15'29.1"N  89°24'45.6"W

Unaffected:

GIN 1 9 29°10'09.2"N  90°09'05.7"W

GIN 2 8 29°10'49.4"N  90°06'31.6"W

MSN 8 30°20'21.1"N  89°21'15.3"W

 AR  10 28°13'00.3"N  96°59'16.8"W
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Table 2.2. Mean AFLP haplotype and MS-AFLP epigenotype diversity (h) and percent 
polymorphic loci by site (%P), based on 71 AFLP and 39 MS-AFLP loci. 

   AFLP  MS-AFLP

Population h- (SE) % P h- (SE) % P

Oil Contaminated:

GIO 1 0.216 (0.031) 40.85% 0.179 (0.037) 41.03%

GIO 2 0.246 (0.035) 42.25% 0.185 (0.037) 43.59%

MSO 0.216 (0.028) 50.70% 0.161 (0.030) 41.03%

Unaffected:

GIN 1 0.246 (0.027) 57.75% 0.226 (0.031) 66.67%

GIN 2 0.190 (0.022) 57.75% 0.152 (0.031) 46.15%

MSN 0.138 (0.020) 50.70% 0.204 (0.037) 48.72%

AR 0.103 (0.021) 28.17% 0.132 (0.033) 33.33%
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Table 2.3. Summary of hierarchical AMOVA for AFLP and MS-AFLP data sets among site type 
(ΦRT), among populations within site type (ΦPR) and within populations (ΦPT). Φ-statistics were 
calculated using 9999 permutations. d.f., degrees of freedom; *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 
0.001, NS = non-significant following sequential Bonferroni correction. 

Genetic Epigenetic

Φ-statistics % variation d.f. Φ-statistics % variation d.f.

Among site type 0.056 * 6 1 0.017 NS 1 1

Among populations 
within site type 0.168 *** 16 5 0.076 *** 7 5

Within 
subpopulations

0.215 *** 78 49 0.071 *** 92 49
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Table 2.4. Pairwise ΦPT comparisons of variation among study sites. Epigenetic comparisons are 
shown above the diagonal, genetic below. Statistical significance after sequential Bonferroni 
correction denoted by bolded numbers.

Unaffected Sites Oil-Contaminated Sites

GIN1 GIN2 MSN AR GIO1 GIO2 MSO

GIN1 0.017 0.033 0.100 0.000 0.057 0.052

GIN2 0.179 0.018 0.182 0.000 0.000 0.111

MSN 0.201 0.144 0.133 0.011 0.032 0.054

AR 0.189 0.082 0.161 0.139 0.149 0.165

GIO1 0.029 0.195 0.165 0.215 0.000 0.077

GIO2 0.123 0.388 0.410 0.472 0.163 0.115

MSO 0.045 0.202 0.199 0.235 0.068 0.125
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Figure 2.1. Map of seven study sites and their relative locations in the Gulf coast, with site 
specific oil intensity following the DWH oil spill, according to NRDA databases, and the results 
of Bayesian clustering. Population assignment to two groups is indicated by the shaded portion 
of the circle for each species. Group 1 = dark grey, group 2 = light grey. 
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Figure 2.2. Examples of (a) non-contaminated (GIN1) and (b) contaminated sites (GIO1) in the 
Gulf Coast following the DWH oil spill. Oil was present on the soil surface at the time of 
sampling, and plants experienced substantial die-back. New growth sampled for this study 
(arrow) can be seen emerging from ramets under the soil surface through the dead wrack above 
ground. 
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Figure 2.3. Frequencies of genetic loci significantly correlated to oil contamination across seven 
populations in locus-by-locus analysis. Contaminated sites are shown in open shapes and 
uncontaminated sites in closed shapes.
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Figure 2.4. Frequencies of epigenetic loci significantly correlated to oil contamination across 
seven sites in locus-by-locus analysis. Contaminated sites are shown in open shapes and 
uncontaminated sites in closed shapes.
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Chapter Three:  
Conservation of methylation response to seasonal variation 

Authors 

 Marta Robertson, Niccy Aitken, Adrienne Nicotra, Christina Richards 

Abstract 

 Coastal ecosystems are subject to varied and periodic environmental stressors, reflecting 

environmental heterogeneity at several time scales. For example, daily tides or seasonal changes 

in rain and temperature may affect the prevalence and severity of ecological stressors, such as the 

abundance of herbivores, pathogens, or salt content in the soil. Organisms in these kinds of 

ecosystems employ several mechanisms to tolerate and adapt to the these conditions. Epigenetic 

mechanisms, such as DNA methylation, are potentially responsive to these dynamic changes in 

environmental stressors, and may provide a mechanism of plasticity under environmental 

change. We sampled eight individuals from three dominant species in different coastal 

ecosystems in the spring and fall over two years and found weak but significant variation in 

methylation between time points within individuals. Importantly, all three species showed similar 

patterns of temporal variation, suggesting conserved responses of DNA methylation across plant 

lineages.  
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Introduction 

 In the wild, organisms must regularly respond to dynamic environmental cues that are 

generated not only by spatial heterogeneity, but also by temporal variation in biotic and abiotic 

factors. These cues may manifest as stochastic cues or cyclical diurnal or seasonal cues, which 

can affect water and nutrient availability, pathogen abundance, light availability, and competitive 

interactions, among others (Nicotra et al. 2010). Additionally, plants also respond to internal 

developmental cues as they age and move between life history stages (Feng et al. 2010, 

Gutierrez-Marcos and Dickinson 2012). These exogenous and endogenous temporal cycles 

require dynamic regulation of biological processes by organisms in order to maintain 

homeostasis and persist across environments that are heterogenous in space and time. This is 

especially true in perennial plants, which respond to stochastic environmental variation and 

cyclical environmental variation as they control their own development from vegetative and 

reproductive growth to senescence (Rios et al. 2014, Shim et al. 2014).  

 Temporal variation affects a number of molecular processes, including gene expression, 

protein abundance, and regulatory variation. In particular, emerging work suggests that DNA 

methylation patterns may be highly variable across an organism’s lifetime, varying both with 

environmental inputs (Dubin et al. 2105) and developmental stage (Rios et al. 2014). DNA 

methylation tends to occur on cytosines in specific motifs of the genome and is usually found in 

CG (in plants and animals), CHG, or CHH (in plants) contexts, where H is C, T or A. DNA 

methylation can regulate the movement of transposable elements and gene expression (Bewick et 

al. 2016), and may act as a link between environmental cues and organism phenotype (Herman et 

al. 2014). There have been several studies examining the response of DNA methylation to 
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seasonality in plants, but they have primarily been limited to model systems or controlled 

settings (e.g. Shen et al. 2014, Bratzel and Turck 2015, Keller et al. 2016). For example, the 

response of flowering time to seasonality is well-studied in the model system Arabidopsis 

thaliana. In this species, flowering is induced by the down-regulation of FLC in response to a 

cold period, and the expression of FLC is controlled by methylation (Shindo et al. 2005, Simpson 

and Dean 2002, Burn et al. 1993). Genome-wide CHH methylation can also increase with 

increasing temperature (Dubin et al. 2015) and patterns of methylation are variable with longer-

term climatic variables (Keller at al. 2016). However, despite the evidence that methylation 

variation over time may be both extensive and correlated with seasonal variation, little work has 

been done to catalog epigenetic change over time in natural populations.   

 Coastal ecosystems are ideal systems in which to study temporal effects on epigenetic 

variation. Coastal systems are productive and dynamic environments that are subject to severe salt 

and nutrient gradients, periodic disturbance events, and dramatic fluctuations in seasonal cues. For 

example, tidal and rainfall influences create wide salinity and nutrient gradients across the salt 

marsh, which structures variation within and between species (Callaway et al. 1990, Pennings and 

Bertness 2001). Additionally, seasonal variation in biotic stressors, such as herbivory and pathogen 

prevalence, may interact with existing abiotic stressors to exacerbate stressful conditions (Silliman 

and Newell 2003, Mordecai 2011, Wieski and Pennings 2014). These predictable natural 

fluctuations create a useful model to disentangle natural standing variation from seasonal variation 

over time. 

 Although species have evolved different strategies to cope with this environmental 

heterogeneity, they may share some common mechanisms of response, like common DNA 
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methylation machinery, to maintain homeostasis in dynamic environments. For example, the 

foundation grass species Spartina alterniflora displays phenotypic variation along natural 

environmental gradients in the salt marsh, which is partially correlated with DNA methylation 

variation (Foust et al. 2016). Much of the enzymatic DNA methylation machinery is conserved 

across plant species (Feng and Jacobsen 2011), such as maintenance methyltransferases (CMT3, 

DRM2) and de novo methyltransferases (CMT2). Although different species vary greatly in 

genome-wide methylation pattern and the extent of methylation present (Niederhuth et al. 2016), 

they may share common patterns of response to environmental stimuli, such as an increase of CHH 

methylation mediated by CMT2 in response to heat (Shen et al. 2014, Dubin et al. 2015). Thus, 

variation in global methylation or variation in the relative proportions of context-specific 

methylation across the genome may be broadly indicative of regulatory shifts across plant species. 

In this study, we examined the methylation variation present in a dominant plant species from each 

of three coastal ecosystem types. We used a reduced representation bisulfite sequencing approach, 

epigenotyping-by-sequencing (epiGBS), to measure cytosine methylation in the spring and fall 

over the course of two years in eight replicates of each species. We expected that methylation 

patterns and targets would correlate with season, and that broad-scale patterns would be detectable 

across all species, despite different habitat types. 

  

Materials and Methods 

Study sites and species 

 Our sampling scheme allows for the broad study of DNA methylation changes over time, 

as we have repeatedly sampled eight individuals from three perennial plant species in the spring 
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and autumn over two years (N=96). In the spring, plants were beginning to establish new growth 

and in the fall had begun to senesce. Our sampling design allows us to decipher DNA 

methylation associated with the development of a plant over seasons and the aging of a perennial 

plant from year to year. We sampled a dominant plant species in each of three coastal ecosystem 

types: a clonal grass, S. alterniflora (Poaceae) from the salt marsh (Chassahowitzka National 

Wildlife Refuge, FL, USA) and two asters, Iva imbricata (Asteraceae) from the beach (Ft. 

Desoto State Park, FL, USA), and Olearia axillaris (Asteraceae) from the coastal foredune ridge 

(Jervis Bay National Park, Australia). All three species have been recognized as key components 

in shoreline stabilization and coastal restoration efforts (Colosi and McCormick 1978, Hinchliffe 

and Conran 2004, Lin et al. 2016), and all three species have a rich ecological history. Spartina 

alterniflora is salt tolerant and spreads vegetatively via rhizomes, although it does produce seed. 

It is a native foundation salt marsh grass species on the east coast of the United States, but is also 

highly invasive worldwide. Iva imbricata is also salt tolerant and has a woody stem and a thick 

cuticle (Colosi and McCormick 1978). Its seeds are wind and water dispersed and it is native to 

southeastern United States. Olearia axillaris is woody and salt tolerant. Its seeds are wind 

dispersed and it is native to the southern coast of Australia and Tasmania (Hinchliffe and Conran 

2004). We controlled for genetic variation over time by repeatedly sampling the same 

individuals, with the exception of S. alterniflora, in which the aboveground biomass dies back 

regularly. In this case, we used a 0.25 m2 quadrat to find a ramet from approximately the same 

location at each sampling point.   
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DNA extractions and library prep 

 We isolated DNA from eight samples across four time points for each species using the 

Qiagen DNeasy plant mini kit according to the manufacturer’s protocol. We prepared epiGBS 

libraries sensu VanGurp et al. (2016). Briefly, isolated DNA was fragmented with PstI, which is 

sensitive to CHG methylation and biases resulting libraries toward coding regions (van Gurp et 

al. 2016). Adapters with variable barcodes were ligated to either end of the resulting fragments 

(Table 3.1), which were then treated with sodium bisulfite to detect cytosine methylation. 

Adapters had methylated cytosines to ensure their sequence fidelity through the subsequent 

bisulfite treatment. We used the Zymo EZ Lightning methylation kit to bisulfite treat and clean 

the DNA. Libraries were then amplified with the KAPA Uracil Hotstart Ready Mix with the 

following PCR conditions: an initial denaturation step at 98C for 1 min followed by 24 cycles of 

98C for 30s, 60C for 45s, and 72C for 45s, with a final extension of 72C for 5 min. We 

sequenced paired-end reads on Illumina HiSeq 5000 at the Australian National University. 

Data pre-processing and epigenetic analysis 

 We used the pipeline published by VanGurp et al. (2016) to assemble the de novo 

reference sequence, trim adapter sequences, and call SNP variation and methylation (https://

github.com/thomasvangurp/epiGBS). We estimated the genetic variation (SNP) and epigenetic 

variation (percent methylation per locus) among our samples that could be explained by season 

and year with a perMANOVA using the vegan package in R (Oksanen et al. 2016).  

 We used the command line tool MACAU (Lea et al. 2015) to identify differentially 

methylated positions (DMPs) between season and year, and then applied a 1% FDR correction 
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using the R package qvalue (Storey et al. 2015). MACAU tests for locus-by-locus associations 

with predictors of interest using a binomial mixed model, which is appropriate for count data 

generated by bisulfite sequencing, and controls for effects of population structure on DNA 

methylation variation with a genetic relatedness matrix (Lea et al. 2015). Thus, we were able to 

assess changes in DNA methylation after controlling for the effects of genotype and relatedness 

of our samples. 

 Although population level epigenetic sequencing is growing in popularity, statistical 

analyses are still being developed for these data, particularly for complex, ecologically relevant 

designs. We modeled the main effects of season and year as well as the interaction between the 

two, and assessed significance for the two main effects. However, we were unable to test the 

significance of the interaction effect specifically due to constraints in the implementation of 

MACAU. Additionally, although a repeated measures test would be appropriate for our data, the 

MACAU framework does not allow for the inclusion of random effects, and instead models the 

effect of individual through the genetic relatedness matrix. 

 To prepare our data for use in MACAU, we restricted our dataset to common loci, 

defined as loci with reads in more than 90% of samples of our dataset. We then imputed over 

remaining missing data using the R package Amelia (Honaker et al. 2011). We generated a 

genetic relatedness matrix using GEMMA (Zhou and Stevens 2012) to control for population 

structure and we identified differentially methylated regions (DMRs) using the jackknife 

function from the Bootstrap package in R (Leisch 2007). Other methods for DMR identification 

rely on a sliding window approach, in which a DMR is defined as a cluster of DMPs, usually 

occurring within 200 basepairs (Schmitz et al. 2013, Keller et al. 2016). However, most of our 
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fragments are 100-200 basepairs long and we do not have reference genomes, so the sliding 

window approach is not feasible for our dataset. Alternatively, a jackknife approach allows us to 

identify fragments that have more DMPs than expected by chance.  

 Finally, we explored the change in methylation pattern over time by calculating the 

proportion of methylation in each context over time per sample and the measured methylation 

rate of each context per sample. We defined proportion of methylation as the fraction of 

methylated positions present in each context out of the total methylation measured over all 

contexts. We defined methylation rate as the percentage of methylated positions present in each 

context out of the total number of loci of each context. 

Results 

 We analyzed 62,806 fragments from S. alterniflora, 31,384 from I. imbricata, and 75,828 

from O. axillaris. Due to stochasticity in the sequencing process, four samples of S. alterniflora 

had few reads and little overlap with other samples, and were omitted from the subsequent 

analysis. 

 As expected, our perMANOVA showed high amounts of genetic variation between 

individuals in I. imbricata and O. axillaris (Table 3.2). However, we did not find significant 

effect of individual in S. alterniflora, indicating that there is a much variation within as between 

our purported individuals. However, individual still explained a high amount of variance in the 

perMANOVA (R2, Table 3.2), suggesting genetic variation is still the most important driver of 

epigenetic variation. In locus-by-locus-modeling (MACAU), genetic variance is controlled 

through a genetic relatedness matrix. Epigenetic variation was high between individuals in all 
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three species (Table 3.3) and was also partially structured by year in S. alterniflora and season in 

O. axillaris, although these effects explained little of the variance in each case (Table 3.3, R2). 

 After filtering reads with little overlap between samples and imputing missing data, we 

identified 31,641 common loci in S. alterniflora (Figure 3.1), 55,597 common loci in I. imbricata 

(Figure 3.2), and 55,285 common loci in O. axillaris (Figure 3.3). MACAU identified 8 DMPs 

(0.025%) between spring and fall for S. alterniflora, 50 (0.09%) for I. imbricata, and 124 

(0.22%) for O. axillaris. MACAU also identified 4 DMPs (0.013%) between 2012 and 2013 for 

S. alterniflora, 81 (0.15%) for I. imbricata, and 24 (0.043%) for O. axillaris. Of the identified 

DMPs, 2 were CG, 2 were CHG, and 8 were CHH contexts in S. alterniflora; 88 were CG, 11 

were CHG, and 32 were CHH in I. imbricata; and 100 were CG, 14 were CHG, and 34 were 

CHH in O. axillaris. We were unable to detect any DMRs between seasons or years in any of the 

specie 

 All species showed a higher rate of CG methylation compared to non-CG methylation 

across all collection points (Figure 3.4-6), but no significant effect of season or year on 

methylation rates (P > 0.05). Although CG sites were most consistently methylated, CHH 

methylation accounted for a larger portion of measured methylation across all species (Figure 

3.7). However, again, these proportions did not change significantly over time. 

  

Discussion 

 Natural plant populations harbor high amounts of epigenetic variation, and organisms 

may use epigenetic mechanisms to modulate phenotype in response to seasonal change (Herman 

and Sultan 2016). Although stressors such as herbivory (Herrera and Bazaga 2011), salinity (Lira-
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Medeiros et al. 2010, Verhoeven et al. 2010), pathogen attack (Dowen et al. 2012), and nutrient 

availability (Lira-Medeiros et al. 2010, Verhoeven et al. 2010) have all been shown to affect DNA 

methylation patterns in plants, the effect of natural environmental fluctuations on epigenetic 

variation is not well characterized. In this study, we measured standing DNA methylation 

variation in three coastal plant species at four time points over two years. 

 We used a novel reduced representation sequencing technique, epiGBS, to examine DNA 

methylation variation in natural populations of non model species. EpiGBS is particularly 

advantageous because it biases library construction to coding regions (VanGurp et al. 2016), 

increasing the likelihood of finding methylation variation with phenotypic effects. EpiGBS also 

uses a double-barcoded, paired end read system to multiplex a large number of individuals in a 

single sequencing lane, reducing the cost of sequencing and allowing the study of sample sizes 

appropriate for ecological studies. Finally, bisulfite sequencing approaches are typically 

prohibitively expensive for non model species because they require the use of a non-bisulfite 

treated control sequence to parse methylation information (Robertson and Richards 2015). 

Instead, epiGBS employs a bioinformatic approach, using the double barcodes and Watson and 

Crick strands, to create a reference sequence from the bisulfite treated DNA (VanGurp et al. 

2016), which is then assembled de novo and used to identify methylation and genetic 

polymorphisms. The use of epiGBS in this study provided a rich dataset to study the temporal 

epigenomic variation of three species over two years. 

 Despite the large dataset provided by the use of epiGBS, we did not find a genome-wide 

effect of season on methylation rate or methylation proportion by context. However, we did 

identify DMPs between measured seasons and years. In the coastal environments where these 
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plants are found, water availability, temperature, and salinity vary with season, and these 

differentially methylated loci may reflect specific regulation in response to these cues. The lack 

of genome-wide methylation pattern suggests that these plants are not using broad-scale 

repatterning of methylation to maintain homeostasis in response to seasonal environmental cues. 

However, they may be using methylation as part of a targeted response. Interestingly, we found 

the fewest DMPs in S. alterniflora, which also had the fewest common loci among samples. 

Constructed libraries may be more inconsistent among samples of S. alterniflora than for the 

other species because S. alterniflora has a large genome (1763.9 Mbp; Bedre et al. 2016) and 

amplified fragments may have less likelihood of matching across all samples. 

 Our use of three species also allows for comparative studies of DNA methylation in 

response to seasonal variation. Early studies in comparative epigenomics of plant species have 

identified methylation machinery that has been conserved across taxa, and have identified types 

of methylation that are associated with that machinery (Bewick et al. 2016). For example, DNA 

methylation can be found in three contexts: CG, CHG, and CHH, where H is any nucleotide 

except G. When present, CG and CHG methylation are both maintained by methyltranferases 

during DNA replication, whereas CHH methylation is placed de novo, suggesting a role in 

response to external perturbation. Global patterns of methylation context are consistent across 

many species. For example, a pattern of decreased CG methylation at start and stop sites, with 

enriched CG methylation in the gene body, is associated with increased gene expression 

(Niederhuth and Schmitz 2017), whereas non-CG methylation is associated with the suppression 

of transposable element activity and is typically enriched in the pericentromere (Mirouze et al. 

2012).  
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 However, these comparative studies have also found a high degree of variation in the 

extent of methylation present within and among species studied so far. The methylation rates we 

have measured in this study are consistent with those reported by Niederhuth et al. (2016) in a 

study of whole genome bisulfite sequences for 34 angiosperm species. They report methylation 

rates of approximately 60% CG, 30% CHG, and 5% CHH methylation in Oryza sativa, the 

closest relative to S. alterniflora in their study. Although our methylation rates are generally 

lower than those reported by Niederhuth et al. (2016), the relative pattern of methylation rates 

that we measured are consistent, where CG sites show the highest methylation rate and CHG and 

CHH methylation are similarly low. The discrepancy between our data set and Niederhuth et al. 

(2016) may be explained by the use of PstI in epiGBS. This enzyme is sensitive to CHG 

methylation, and biases toward coding regions (VanGurp et al. 2016), so the resulting libraries 

are biased samples of the genome. However, at a broad scale, our data is consistent with data 

reported by Niederhuth et al. (2016) and our use of multiple individuals measured at multiple 

time points accounts for some of the variation that may otherwise be introduced by a biased 

sampling of the genome. 

Future directions 

 We know of two other studies that use bisulfite sequencing to measure epigenetic 

variation in natural plant populations (Platt et al. 2015, Gugger et al. 2016), but those studies 

employed RRBS at a great cost to sample size. The techniques presented here are an important 

first step in deciphering the role of epigenetic variation in natural systems. Our findings suggest 

that seasonal variation has some effect on DNA methylation, but does not shape methylation 
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patterns across the genome. Plants may be responding to environmental cues in a targeted way, 

but further work in additional species will need to be done to determine the consistency of the 

patterns found here. 
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Tables and Figures 

Table 3.1. Adapter and primer sequences used in library preparation. xxxx  and yyyy indicate 
location of variable nucleotide sequences, used to identify individuals multiplexed in one 
sequencing lane. We used twelve barcodes in the forward adapter and eight barcodes in the 
reverse adapter, for a total of 96 uniquely barcoded individuals per sequencing lane. Cytosines in 
the adapter sequences are methylated to maintain binding fidelity after bisulfite treatment. 

Sequence

Forward 
adapter

5’ - ACACTCTTTCCCTACACGACGCTCTTCCGATCTxxxxTGCA - 3’

3’ - TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGAyyyy - 5’

Reverse 
adapter

5’ - xxxxAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG - 3’

3’ - ACGTyyyyTCTAGCCTTCTCGCCAAGTCGTCCTTACGGCTC - 5’

Primer A 5’ - AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA 
CGCTCTTCCGATCT - 3’

Primer B 5’ - CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTG 
AACCGCTCTTCCGATCT - 3’
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Table 3.2. Structure of genetic variation in each species explained by individual, season, and 
year. Adjusted R2 and F statistics are reported from a perMANOVA using the adonis function in 
the vegan package for R; * P < 0.05, ** P < 0.01, *** P < 0.001 

Species Source df R2 F

S. alterniflora Individual 7 0.2433 1.098

Season 1 0.0427 1.350

Year 1 0.0155 0.490

I. imbricata Individual 7 0.3889 2.165 ***

Season 1 0.0231 0.899

Year 1 0.0234 0.913

O. axillaris Individual 7 0.2381 1.069 ***

Season 1 0.0316 0.994

Year 1 0.0307 0.966
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Table 3.3. Structure of epigenetic variation in each species explained by individual, season, and 
year. Adjusted R2 and F statistics are reported from a perMANOVA using the adonis function in 
the vegan package for R;* P < 0.05, ** P < 0.01, *** P < 0.001.

Species Source df R2 F

S. alterniflora Individual 7 0.3257 1.412 **

Season 1 0.0407 1.236

Year 1 0.0436 1.323 *

I. imbricata Individual 7 0.6964 8.025 ***

Season 1 0.0151 1.214

Year 1 0.0164 1.321

O. axillaris Individual 7 0.6916 8.003 ***

Season 1 0.0216 1.750 *

Year 1 0.0146 1.187
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Figure 3.1. Number of sequenced cytosines per sample for S. alterniflora shown in dark grey. 
The number of common loci for locus-by-locus analysis is indicated by the blue line. Four 
samples with poor read coverage were excluded from analysis, shown in black. 
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Figure 3.2. Number of sequenced cytosines per sample for I. imbricata shown in dark grey. 
Imputed data shown in light grey. The number of common loci for locus-by-locus analysis is 
indicated by the blue line.  
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Figure 3.3. Number of sequenced cytosines per sample for O. axillaris shown in dark grey. The 
number of common loci for locus-by-locus analysis is indicated by the blue line.  
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Figure 3.4. Methylation rate by context for S. alterniflora by season. Individual measures are 
shown in the background and species means ± s.e. are represented by the sold lines. 
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Figure 3.5. Methylation rate by context for I. imbricata by season. Individual measures are 
shown in the background and species means ± s.e. are represented by the sold lines. CG 
methylation is shown in purple, CHG in green, and CHH in orange. 
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Figure 3.6. Methylation rate by context for O. axillaris by season. Individual measures are 
shown in the background and species means ± s.e. are represented by the sold lines. CG 
methylation is shown in purple, CHG in green, and CHH in orange. 
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Figure 3.7. Proportion of methylation by context for S. alterniflora, I. imbricata, and O. axillaris 
by season. CG methylation is shown in purple, CHG in green, and CHH in orange. 
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Chapter Four:  
Effects of CMT3 expression on phenotype under stress 

Authors 

 Marta Robertson, Angela Roles, Josh Banta, Christina Richards 

Abstract 

 Genome activity can be modulated in response to stressful conditions through dynamic 

regulatory and structural changes. DNA methylation is a well-studied epigenetic mark which 

may be environmentally responsive and may alter organismal phenotype both within and 

between generations. We studied the effects of environmental stress on the growth and survival 

of three genotypes of Arabidopsis thaliana which differed in their ability to maintain existing 

DNA methylation patterns. We compared phenotypes of CMT3 over expression lines and CMT3 

knockouts to the wild type, Col-0, under two ecologically-relevant stresses, NaCl and salicylic 

acid, and then grew their offspring in a common unstressed environment. We found significant 

effects of one of the ecological stressors, NaCl, on growth and survival of the maternal plants, 

but no effect of salicylic acid. Additionally, we found that the offspring, although not exposed to 

stressors themselves, showed effects of parental stress in their growth and survival, regardless of 

stressor type. Furthermore, offspring from CMT3 over expression lines and CMT knockouts 

showed different effects of maternal stress than the wild type genotype.  In concert with a 
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growing body of literature, these results suggest that DNA methylation may mediate 

transgenerational effects of stress in A. thaliana. 

Introduction 

 Plants have evolved multiple strategies to cope with environmental heterogeneity, including 

phenotypically plastic responses to environmental fluctuations. In variable environments, it may 

be advantageous to pass information about phenotypic response to offspring (Herman and Sultan 

2011), particularly when parental environments are accurate predictors of offspring environment 

(Lachmann and Jablonka 1996). Trans-generational priming or induced responses to ecological 

interactions have been documented in model and natural systems (Zas et al. 2013, Alsdurf et al. 

2016, Herman and Sultan 2016). These responses manifest as inherited changes in gene expression 

and maternal effects (Holeski et al. 2012), where change in the phenotype of progeny depends on 

signals from the previous generation or in the inheritance of a phenotype induced in the previous 

generation. 

 Although the molecular mechanisms by which organisms regulate their responses to 

environmental cues remain poorly understood, DNA methylation has recently emerged as one 

possible mechanism for the regulation of phenotype in response to environmental heterogeneity 

(Foust et al. 2016, Herman and Sultan 2016). DNA methylation is the most commonly studied 

epigenetic mechanism (Schrey et al. 2013) and can affect gene expression (Saze 2008, Dowen et 

al. 2012, Nätt et al. 2012). DNA methylation tends to occur on cytosines in specific motifs of the 

genome and is usually found in CG (in plants and animals), CHG, or CHH (in plants) contexts, 

where H is C, T or A. Methylation of cytosines is controlled by methyltransferases such as 
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MET1 and CMT3, which either maintain DNA methylation at specific loci (MET1, CMT3) or 

establish methylation de novo (DRM2, CMT2; Niederhuth and Schmitz 2017). Importantly, 

DNA methylation is responsive to environmental stimuli (reviewed in Quadrana and Colot 

2016). Biotic stimuli, such as herbivory (Herrera and Bazaga 2011) and pathogen attack (Dowen 

et al. 2012), as well as abiotic stressors such as salinity (Lira-Medeiros et al. 2010, Verhoeven et al. 

2010), seasonal cues (Bastow et al. 2004), and nutrient availability (Bossdorf et al. 2010, Lira-

Medeiros et al. 2010, Verhoeven et al. 2010) have all been shown to affect DNA methylation 

patterns in plants. In some cases, DNA methylation has been shown to be stably inherited across 

both mitotic and meiotic division (Verhoeven et al. 2010, Zhang et al. 2012), with consequences 

for environmental response. For example, Deficient in DNA Methylation 1 (DDM1) maintains 

DNA methylation across the genome. Epigenetic recombinant inbred lines (epiRILs) result from 

the crossing of DDM1 mutants with the wild type, Col-0. After several generations of inbreeding, 

the epiRILs are nearly genetically identical to Col-0, but have extensive DNA methylation 

variation among lines (Johannes et al. 2009).  When subjected to drought and nutrient stress, these 

lines show heritable phenotypic effects mediated by differences in DNA methylation (Zhang et al. 

2012), making DNA methylation a potential mechanism of transgenerational plasticity in isogenic 

lines. However, the mechanisms by which DNA methylation patterns interact with and respond 

to environment, both within and across generations, are still not well understood.  

 One potentially important maintenance methyltransferase in plants is 

chromomethyltransferase3 (CMT3). Phylogenetic evidence suggests that CMT3 function is 

central to the shaping of the epigenome over evolutionary history and has conserved methylation 

patterns in plants over evolutionary time (Bewick et al. 2016). CMT3 maintains cytosine 
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methylation by copying methylation from one strand to another in hemi-methylated contexts and 

preferentially in CHG sequences (Stroud et al. 2014), which tends to silence the expression of 

transposable elements (Kato et al. 2003). However, CMT3 also maintains gene body methylation 

in CG contexts through a positive feedback loop with methylation of H3K9 (Bewick et al. 2016). 

The pattern of gene body methylation, where CG methylation is depleted at transcriptional start 

and stop sites and enriched in the gene body, tends to be associated with gene expression 

(Bewick et al. 2016, Zilberman 2007, Nordborg et al. 2016), and plants with defective CMT3 

have shown widespread DNA demethylation in addition to broad transcriptional changes under 

stress (Dowen et al. 2012). However, it is unclear whether natural variation in expression of 

CMT3 affects the distribution and lability of DNA methylation across the genome, and whether 

its effects on methylation distribution are dependent on environmental context. 

 As a major methyltransferase, CMT3 plays a crucial role in regulating the distribution of 

methylation across CG and CHG contexts in the genome. As such, variation in the expression of 

CMT3 may generate variation in phenotype, either through the downstream modulation of gene 

expression or through the release of transposable elements. Because plants modulate 

environmental response through the regulation of gene expression, variation in the expression of 

DNA methyltransferases may interfere with this response. Furthermore, since DNA methylation 

can be heritable (Zhang et al. 2012), the interaction of the expression of methyltransferases and 

environmental context in parental generations may alter the degree to which downstream 

phenotypic variation persists across generations. In this study, we used CMT mutant and over-

expression lines to examine the effect of CMT3 on phenotype under stress in maternal plants and 

their progeny. We hypothesized that individuals deficient in CMT3 would be less capable of tuning 
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transcriptional response and therefore would be less tolerant of stressful conditions, show 

decreased fitness, and have less fit progeny. Conversely, we hypothesized that individuals with 

high expression of CMT3 would be more capable of modulating transcriptional response and 

therefore robust to environmental challenge. 

Materials and Methods 

Plant material  

 To study the effect of CMT3 on phenotype, we compared a mutation accumulation line 

with increased expression of CMT3 (identified and confirmed via qPCR and microarray, Roles 

unpublished) and a homozygous T-DNA CMT3 knockout (CS16392; Alonso et al. 2003) to the 

parent line, Col-0. Both CMT3 mutants have a background genotype of Col-0 and should show 

little genetic divergence from the parent line. We exposed these genotypes of A. thaliana to 

hyperosmotic (NaCl) and salicylic acid (SA) stress. SA is a plant hormone involved in the 

pathogen defense pathway, and its experimental application mimics the effect of infection and 

stimulates the defense response (Verhoeven et al. 2010). Both NaCl and SA have heritable effects 

on plant phenotype (Jiang et al. 2014, Latzel et al. 2012) and DNA methylation patterns (Jiang et 

al. 2014, Latzel et al. 2012), but the effects have not been tested on genotypes with upregulated 

and down regulated expression of CMT3.   

Experimental conditions: maternal generation 

 After dark stratification at 4ºC for four days, we sewed seeds in MetroMix 360 potting 

soil (SunGro) and grew them in a Percival environmental chamber on a 16/8H light/dark cycle at 
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22ºC during the day and 18ºC at night. We exposed 20 replicates of each genotype to one of four 

treatments: 0.5 mM salicylic acid (SA), 150 mM NaCl, both SA and NaCl, and a non-treatment 

control (N=240). We started SA and NaCl treatments four weeks after planting and administered 

treatments every other day. We applied SA by spraying rosettes with solution until the leaves 

were wet and applied NaCl solution to the soil in lieu of water. We recorded time to germination, 

time to bolting, and time to flowering. We also measured leaves in the rosette at bolting time as 

an indicator of resource allocation and rosette diameter five weeks after planting. Ten weeks after 

planting, we measured plant height and counted the number of branches, fruits, and flowers as a 

measure of reproduction and collected seeds. Collected seeds were stored at 4ºC.  

Experimental conditions: progeny 

 To study the effect of maternal genotype and environment on offspring phenotype, we 

grew twelve replicate offspring from two randomly selected mothers of each genotype from each 

treatment (N=288). Growing conditions were the same for offspring as parents, but offspring 

were grown in a common environment without NaCl or SA treatments. Again, we recorded time 

to germination, time to bolting, and time to flowering. We also counted leaves in the rosette at 

bolting time and measured the diameter of the rosette five weeks after planting.  

Analyses 

 We analyzed the effect of genotype on time to germination and the interactive effect of 

genotype and treatment on time to bolting and time to flowering in a Kaplan Meier survival 

model with right censored data points. We chose to analyze germination time, bolting time, and 
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flowering time with a survival function because these are time-to-event data, where we have 

followed the progress of individuals over time. Because some individuals died or did not 

progress past a certain developmental stage, our data are also right censored. We also explored 

the risk of occurrence of an event (germination, bolting, or flowering) by genotype and treatment 

with a Cox proportional hazards test. We used the coxph function in the survival package in R 

(Therneau 2015) with main effects of genotype and treatment. Finally, we explored the timing of 

those events with an accelerated failure time model using the survreg function in the survival 

package of R (Therneau 2015) with main effects of genotype and treatment and a log logistic 

distribution.  

 We modeled both the main and interactive effects of genotype and treatment on the 

remaining phenotypic traits using a linear model with a negative binomial distribution for count 

data and a gaussian distribution for rosette diameter and height. 

 Finally, we analyzed the interactive effect of maternal genotype and environment on 

progeny survival and phenotype. Models were the same as in the parent generation, except 

offspring traits were modeled by genotype and maternal environment. 

Results 

Main effect of CMT3 on maternal survival and fitness 

 In the first generation, of 240 seeds planted, seven did not germinate, an additional seven 

did not bolt, and one more did not flower. We found no differences in survival curves or event 

timing for germination, bolting, or flowering among genotypes (P > 0.05 in all cases; Figure 

4.1a). We also found no differences in phenotype among genotypes (Table 4.1). 

!97



Effect of biotic and abiotic stress on maternal survival and fitness 

 After controlling for germination date, we found that individuals exposed to NaCl, but 

not SA, were less likely to bolt (χ2 = 16.3048, P < 0.001) and less likely to flower (χ 2 = 4.9538, 

P = 0.026). Similarly, our accelerated failure time model found that NaCl treatment, but not SA, 

tends to decrease time to bolting (χ 2 = 13.5726, P < 0.001) and time to flowering (χ 2 = 7.7706, P 

< 0.01) after germination (Figure 4.1b-c). Replicates under NaCl treatment had stunted growth, 

which was reflected in fewer fruits (χ 2 = 18.8348, P < 0.001), fewer flowers (χ 2 = 30.3100, P < 

0.001), fewer branches (χ 2 = 38.823, P < 0.001), shorter height (F = 14.6262, P < 0.001), and 

fewer leaves in the rosette at bolting (χ 2 = 11.2196, P < 0.001) than replicates in control 

treatment (Figure 4.2). However, we found no effect of SA treatment on these same traits. 

Additionally, we found no differences in the interaction effect of NaCl or SA treatment with 

genotype. 

Effect of maternal environment on progeny survival and growth 

 In the second generation, of 288 seeds planted, 17 did not germinate and two more did 

not bolt. Of the seeds that did not germinate, 12 were of the same maternal line, a CMT3 

knockout subjected to NaCl treatments. We found a strong effect of genotype and maternal 

environment on survival curves for germination time (χ 2 = 35.5, P < 0.001; Figure 4.3), bolting 

time (χ 2 = 19.5, P = 0.05; Figure 4.4) and flowering time (χ 2 = 21.2, P = 0.03; Figure 4.5). After 

controlling for germination date, our Cox proportional hazard model found an effect of maternal 

genotype on chance of germination (χ 2 = 12.3332, P < 0.01), chance of bolting (χ 2 = 9.5597, P < 

!98



0.01), and chance of flowering (χ 2 = 10.3363, P < 0.01). In these cases, the CMT3 knockout was 

less likely to germinate (χ 2 = 6.77 P < 0.01) or flower (χ 2 = 4.41, P < 0.05). Progeny from 

maternal lines subject to NaCl treatment were less likely to germinate (χ 2 = 10.1686, P < 0.01) 

or bolt (χ 2 = 3.9280, P < 0.05). We also found interactive effects of genotype and maternal NaCl 

treatment (χ 2 = 16.4354, P < 0.001), interactive effects of maternal SA treatment and maternal 

NaCl treatment (χ 2 = 15.6126, P < 0.001), and a three way interaction of genotype, maternal SA 

treatment, and maternal NaCl treatment (χ 2 = 20.0501, P < 0.001) on chance of germination. 

Similarly, our accelerated failure time model found that CMT3 knockout lines were slow to bolt 

(χ 2 = 11.3519, P < 0.01) and slow to flower (χ 2 = 12.2614, P < 0.01) and found an interactive 

effect of maternal NaCl treatment and genotype on time to bolting (χ 2 = 7.3273, P < 0.05) and 

time to flowering (χ 2 = 7.3288, P < 0.05) in the offspring. Additionally, we found an effect of 

maternal genotype (χ 2 = 13.9443, P < 0.001) and maternal NaCl treatment (χ 2 = 3.8817, P < 

0.05) on the number of leaves at bolting and maternal NaCl treatment on rosette diameter (F = 

24.6849, P < 0.001; Table 4.2). Post-hoc analysis revealed both CMT3 over expression lines and 

CMT3 knockout lines had fewer leaves in the rosette at bolting than Col-0 when the maternal 

plants were exposed to NaCl (Figure 4.6). 

  

Discussion 

 We grew three lines of A. thaliana with differing expression of CMT3, but the same 

background genotype, under a biotic and an abiotic stress. Although we did not observe 

significant effects of CMT3 expression on phenotype in the parent generation, we did observe 

strong effects of NaCl stress. We observed strong effects of NaCl stress, but not CMT3 
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expression, on survival and growth of A. thaliana. However, we found strong effects of parent 

environment on progeny survival and growth, which differed by genotype. Our findings suggest 

that CMT3 contributes to heritable methylation variation under environmental stress with 

important effects on fitness.  

Effects of stress but not genotype 

 As expected, we found significant phenotypic differentiation in response to NaCl 

treatment in the parental generation. Plants were plastic in response to NaCl treatment in leaves 

on rosette at bolting, final height, and numbers of fruits, flowers, and branches. The control 

genotype, Col-0, was less plastic in response to NaCl treatment than either of the CMT3 

expression lines, although this effect was not statistically significant (Figure 4.2). However, we 

did not find an effect of our biotic stress, salicylic acid, on phenotype in the parent generation. 

Although other studies have found that A. thaliana is more resistant to disease when global 

methylation is depressed (Dowen et al. 2012), we found no effect of SA on plant phenotype.  

 Previous studies also indicate that lines exposed to NaCl accumulate DNA methylation 

polymorphisms at a higher rate than lines in control conditions (Jiang et al. 2015). We expected 

that CMT3 knockout lines would be less able to buffer against this kind of mutagenesis and that 

this response would be exaggerated in our cmt3 knockout lines. However, we did not observe a 

phenotypic effect due to CMT3 alone or a CMT3 expression by environment interaction, 

indicating that CMT3 neither affects phenotype nor mediates the observed phenotypic plasticity 

in the parental generation. This may be due to redundancy in methylation targets by other 

maintenance methyltransferases, such as MET1, which may have buffered against the loss of 
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methylation at CMT3 target sites. Alternatively, CMT3 may affect phenotype through the release 

of transposons rather than the modulation of gene expression, which may not manifest until 

subsequent generations. 

Transgenerational interactions between parent environment and CMT3 expression 

 Evidence is gathering that plants have a generational stress memory, mediated by DNA 

methylation (Wibowo et al. 2016, Herman and Sultan 2016). Hyperosmotic stress in particular 

has been shown to induce changes in methylation patterns that persist over generations (Jiang et 

al. 2015, Wibowo et al. 2016). CMT3 is responsible for the maintenance of most CHG 

methylation in pollen (Hsieh et al. 2016), suggesting potential for a strong effect of CMT3 

expression on offspring phenotype and methylation pattern. We expected that progeny from lines 

subject to stress would show inhibited survival and growth in comparison to progeny from 

unstressed parents, and that CMT3 expression and stress might interact to govern progeny 

phenotypes. Our results are consistent with these hypotheses, as we found that progeny from 

maternal lines subject to NaCl treatment were late to bolt and flower, and that this effect was 

exaggerated by the loss of CMT3. Furthermore, although we found no effect of SA in the parent 

generation, we found that progeny from CMT3 knockout lines exposed to SA were also inhibited 

in germination. In addition, we found that progeny from maternal lines subject to NaCl treatment 

produced fewer leaves in their rosette, although this effect was less extreme in individuals 

without CMT3. These results suggest that offspring from CMT3 mutant lines subject to NaCl 

stress may have difficulty transitioning from vegetative growth to reproductive growth, as 

bolting is delayed and rosette production continues. This may be due to variation in gene 
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expression resulting from changes in CMT3 expression during development, or from the release 

of transposons in the parental generation that generate random but potentially deleterious 

phenotypic responses to environmental cues in offspring generations. 

 In addition, we found that one of the CMT3 knockout maternal lines subject to NaCl 

failed to produce viable seed. McClintock suggested that environmental stress can cause 

“genomic shocks” that result large mutations in genome sequence and activate transposons 

(McClintock 1983). Since CMT3 is responsible for silencing transposons, it is possible that the 

maternal line that produced non-viable seed may have developed a lethal mutation in the germ 

line due to increased transposon movement. This may suggest that maintenance of DNA 

methylation machinery in stressful environments can increase inclusive fitness by buffering 

against deleterious mutations. However, changes in DNA methylation can be heritable for at least 

eight generations (Johannes et al. 2009), and our experiment has only examined the effects of 

stress and maternal genotype on the next generation. Further studies would be beneficial to 

examine the longevity of stress memory in these plants, as well as the rate of transposon-induced 

mutation.  

 Our study adds to the growing literature on epigenetically mediated environmental 

response by examining the role of the methyltransferase, CMT3, in stress response and the 

effects on progeny. In nature, plants are often phenotypically plastic in response to changing 

environmental cues. One of the ways plants might incorporate cues from their environment and 

alter regulation of gene expression is through epigenetic mechanisms, which are environmentally 

labile (Herman et al. 2014) and may be heritable in some cases (Verhoeven et al. 2010, Wibowo 

et al. 2016). The loss of epigenetic mechanisms may inhibit an organism’s ability to respond to 
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its environment, leading to a decrease in fitness. Further work will need to be done to determine 

the evolutionary effects of methylation under environmental challenge, particularly in natural 

populations. 
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Figures and Tables 

Table 4.1. Results of linear model for growth traits in A. thaliana maternal plants. Height and 
rosette diameter were tested with a Gaussian distribution and report F statistics and significance. 
The remaining traits were tested with a negative binomial distribution and report χ 2 statistics and 
significance; * P < 0.05, ** P < 0.01, *** P < 0.001. 

Source df Fruits Flowers Branches Height
Rosette 
diameter

Leaves in 
rosette

Genotype 2 1.903 1.098 5.705 2.293 0.640 5.828

NaCl 1 18.835 *** 30.310 *** 38.823 *** 14.626 *** 0.983 11.220 ***

SA 1 0.080 0.039 0.745 1.380 0.063 0.908

Genotype*
NaCl

2 0.692 0.403 1.386 0.026 0.107 3.035

Genotype*
SA

2 0.364 0.450 1.243 0.263 1.534 2.900

NaCl*SA 1 0.306 1.109 6.284 0.026 0.388 0.001

Genotype*
NaCl*SA 2 1.596 9.654 ** 2.955 0.253 0.131 2.945
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Table 4.2. Results of linear model for growth traits in A. thaliana, second generation. We tested 
rosette diameter with a Gaussian distribution and report F statistics and significance. We tested 
the number of leaves in the rosette with a negative binomial distribution and report χ 2 statistics 
and significance; * P < 0.05, ** P < 0.01, *** P < 0.001. 

Source df
Rosette 
diameter

Leaves in 
rosette

Genotype 2 0.6509 13.9443 ***

NaCl 1 24.6849 *** 3.8817 *

SA 1 0.0775 0.2867

Genotype*NaCl 2 1.1505 2.9995

Genotype*SA 2 0.2989 0.7584

NaCl*SA 1 0.0586 0.5185

Genotype*NaCl*SA 2 0.5274 0.3499
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a) 

b) 

c) 

 

Figure 4.1. Time to a) germination and bolting b) without treatment and c) under salt stress. 
CMT3 over expression lines shown in blue, wild-type (Col-0) shown in green, and CMT3 
knockout shown in yellow.  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d) 

e) 

f) 

Figure 4.2. Reaction norms for a) number of fruits, b) flowers, c) branches and d) leaves in the 
rosette at bolting; e) final height; and f) rosette diameter at five weeks (means ± s.e.) averaged 
over each genotype of A. thaliana in each treatment in the maternal generation. CMT3 over 
expression lines shown in blue, wild-type (Col-0) shown in green, and CMT3 knockout shown in 
yellow. 
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a) 

 

b) 

Figure 4.3. Time to germination in seeds from a) maternal lines without treatment and b) 
maternal lines under salt stress. CMT3 over expression lines shown in blue, wild-type (Col-0) 
shown in green, and CMT3 knockout shown in yellow. 
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a) 

 

b) 

Figure 4.4. Time to bolting in seeds from a) maternal lines without treatment and b) maternal 
lines under salt stress. CMT3 over expression lines shown in blue, wild-type (Col-0) shown in 
green, and CMT3 knockout shown in yellow.  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a) 

 

b) 

Figure 4.5. Time to flowering in seeds from a) maternal lines without treatment and b) maternal 
lines under salt stress. CMT3 over expression lines shown in blue, wild-type (Col-0) shown in 
green, and CMT3 knockout shown in yellow.  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a) 

b)

Figure 4.6. Reaction norms for a) number of leaves in the rosette at bolting and b) rosette 
diameter at five weeks (means ± s.e.) averaged over each genotype of A. thaliana in each 
treatment in the second generation. CMT3 over expression lines shown in blue, wild-type 
(Col-0) shown in green, and CMT3 knockout shown in yellow. 
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