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Abstract

Time series analysis has been explored by the researchers in many areas such, as

statistical research, engineering applications, medical analysis, and finance study. To

represent the data more efficiently, the mining process is supported by time series seg-

mentation. Time series segmentation algorithm looks for the change points between

two different patterns and develops a suitable model, depending on the data observed

in such segment. Based on the issue of limited computing and storage capability, it

is necessary to consider an adaptive and incremental online segmentation method. In

this study, we propose an Online Empirical Bayesian Kernel Segmentation (OBKS),

which combines Online Multivariate Kernel Density Estimation (OMKDE) and On-

line Empirical Bayesian Segmentation (OBS) algorithm. This innovative method

considers Online Multivariate Kernel density as a predictive distribution derived by

Online Empirical Bayesian segmentation instead of using posterior predictive distri-

bution as a predictive distribution. The benefit of Online Multivariate Kernel Density

Estimation is that it does not require the assumption of a pre-defined prior function,

which makes the OMKDE more adaptive and adjustable than the posterior predictive

distribution.

Human Activity Recognition (HAR) by smartphones with embedded sensors
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is a modern time series application applied in many areas, such as therapeutic appli-

cations and sensors of cars. The important procedures related to the HAR problem

include classification, clustering, feature extraction, dimension reduction, and seg-

mentation. Segmentation as the first step of HAR analysis attempts to represent the

time interval more effectively and efficiently. The traditional segmentation method of

HAR is to partition the time series into short and fixed length segments. However,

these segments might not be long enough to capture the sufficient information for the

entire activity time interval. In this research, we segment the observations of a whole

activity as a whole interval using the Online Empirical Bayesian Kernel Segmentation

algorithm as the first step. The smartphone with built-in accelerometer generates

observations of these activities.

Based on the segmenting result, we introduce a two-layer random forest clas-

sification method. The first layer is used to identify the main group; the second

layer is designed to analyze the subgroup from each core group. We evaluate the

performance of our method based on six activities: sitting, standing, lying, walk-

ing, walking upstairs, and walking downstairs on 30 volunteers. If we want to create

a machine that can detect walking upstairs and walking downstairs automatically,

it requires more information and more detail that can generate more complicated

features, since these two activities are very similar. Continuously, considering the

real-time Activity Recognition application on the smartphones by the embedded ac-

celerometers, the first layer classifies the activities as static and dynamic activities,

the second layer classifies each main group into the sub-classes, depending on the first

vii



layer result. For the data collected, we get an overall accuracy of 91.4% based on

the six activities and an overall accuracy of 100% based only on the dynamic activ-

ity (walking, walking upstairs, walking downstairs) and the static activity (sitting,

standing, lying).
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1 Introduction

1.1 Motivation

Decades of development in technology have led to research and academic equipment

that can generate a significant amount of data with high speed and high dimensions.

The size of data is continuously growing without limitations. For example, the set-

down devices on the surface of the ocean are set every 150 square miles of ocean

to detect the temperature and the amplitude of a wave and keep sending the data

back at a rate of ten times per second, which result in 3.5 terabytes data per day

[47]. This equipment that is not a part of everyday life are not the only machines

that generate real-time data, but many common devices that are closely bound up in

our daily lives also automatically create data every second, such as smartphones and

computers. Generally, real-time data is continuous, large in data size, high speed,

and high dimensionality. It is more challenging to analyze this type of data, limited

by the computing speed and storage of the current computer. Furthermore, large

databases are involved in many fields, such as finance, biology, and engineering. A

flexible method that can apply to different areas needs to be developed. Considering

the specificities of big data and the intersection of different application areas, we
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come up with online data mining knowledge, which is a subfield of data mining. Data

mining is the computational process of discovering patterns in big data related to these

approaches at the intersection of statistics, machine learning, artificial intelligence,

and database systems [14].

The target values of many online data mining applications such as human

activity identification ([42],[51],[74]), voice recognition ([26],[27]) and sign language

([72],[73]) may change over time, such as the statistical properties of the probabil-

ity function or the fitting model. These studies led to a collection of approaches for

analyzing time series observation called time series mining. At this point, the aim

of time series mining is to extract information from the observations of a particular

period ([20],[59]), which considers all data points in an interval as a whole instead

of the individual point. These important problems of mining a time series scenario

are dimension reduction, time series classification, time series clustering, frequency

counting, and time series segmentation ([3], [23], [24]), which supports the empirical

analysis. For instance, time series mining can be used for weather prediction, stock

price prediction, fraud detection, and health protection. Given computer limitations

like computing time, memory size, and computing speed, representing the observa-

tions more effectively and more efficiently is the first step of mining time series data.

One of the mining methods, time series segmentation algorithm, is applied to the

input observations and returns a function representation, such as linear regression

model, probability density function, and wavelet representation. Motivated by Em-

pirical Bayesian Online Change Detection [2], which presents an online algorithm
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to detect the change points rather than using an off-line and retrospective segmen-

tation method. However, the Empirical Bayesian method requires the assumptions

of prior distribution and likelihood function, and it is not convenient to find a gen-

eral pre-defined prior distribution and a likelihood function for these unknown and

shifty observations. Online Multivariate Kernel Density Estimation method is more

flexible than a pre-defined density function, and it can be fit into any type of data.

Therefore, combining these two techniques yields Online Empirical Bayesian Kernel

Segmentation method.

It has been estimated that there would be 6.1 billion smartphone users by

2020, which is about 70% of the population worldwide [1]. The smartphone is not

just a communication device, it is also a powerful tool with a variety of software

features, such as photography, radio, calculator, games, and navigation. In addition,

the smartphone has internally installed hardware such as a camera, accelerometer,

microphone, magnetic compasses, and GPS sensors. The Human Activity Recogni-

tion (HAR) problem is about monitoring human activities continuously (i.e. sitting,

walking, running, etc.) using a smartphone with built-in sensors (i.e. GPS and ac-

celerometer). The user can carry a smartphone every day and everywhere as the

smartphone tracks their activities. For instance, some users are concerned about how

many calories are burned every day through exercise or detecting falls. Compared

with other types of wearable sensors, it is more convenient and the user is likely to

carry the smartphone every day due to its small size and multi-functionality.

The first experiment of HAR is discussed in [21] in the late ’90s. During

3



the past 27 years, there were several approaches to improve the recognition process

by placing several sensors set on multiple locations of a user’s body ([8],[15],[19]).

During Activity Recognition from the User-Annotated Acceleration data [8], Ling Bao

and Stephen Intille indicate that the multiple accelerometers distributed at different

locations on the body have more effective recognition ability. In addition, by applying

complicated methods such as statistical learning and machine learning, they also

improved the identification process ([6], [5], [13], [76]). An overview of the HAR

research using wearable sensors is discussed in [46], which compares the HAR system,

sensors, recognition method, and evaluation systems. The researchers claim that it

was difficult to define the best detecting procedure because of considering different

tasks, sampling rates, algorithms, computing speed, and the evaluation methods.

Nevertheless, wearing more sensors gave better results in general. However, it is

unreasonable for users to wear multiple pieces of equipment every day because of the

expense, complexity, and inconvenience. The smartphone is a much used electronic

product that has been widely applied for activity recognition with built-in sensors

(e.g. [5],[32],[44],[64], [70]). Therefore, the smartphone-based HAR became a very

important research field.

1.2 Online Empirical Bayesian Kernel Segmentation Algorithm

As we mentioned above, the time series segmentation is the first step of time series

mining, followed by a classification algorithm. In this study, we first propose an On-

line Empirical Bayesian Kernel Segmentation (OBKS) method that modified Online

4



Empirical Bayesian Change Point Detection (OBCD)[?], the OKBS regards Online

Kernel Density Estimation (OKDE) as a predictive function instead of the Empirical

Bayesian predictive function. One of the advantages of the Empirical Bayesian ap-

proach is it considers all uncertainty as a prior distribution. Another of the advantages

is that it does not require the asymptotic assumptions about test statistics that are

presented in the frequentist algorithms, which can be problematic in the situations

where the parametric models considered are restricted to a finite, possibly small time

interval [16]. However, it is challenging to choose a general prior function that can be

used for a multiple of cases. Also, it might cost more time to search the optimal pa-

rameters if the initial parameters are far away from the true parameters. In addition,

there are two “prior functions” in [?], which results in a higher demand to select the

correct prior distributions. The details will be given in Chapter 3. Meanwhile, the

multivariate kernel density function replaces the posterior predictive function that is

used to generate Empirical Bayesian predictive probability. There are a few articles

that discuss Online Multivariate Kernel Density Estimation algorithm ([41],[40],[45]).

1.3 Two-layer Classification and Human Pattern Recognition System

After the OBKS method detecting the change points on a time interval, we extract

the essential features (maximum, average, frequency, etc.) from each segment that are

supposed to represent the characteristics of a segment. The features of every segment

contain more information than the features of a short time interval that are generated

by a fixed length time interval (100 observations). For the training procedure, dif-

5



ferent classification layers consider using different features. The first layer can detect

the main groups; the second layer is to check these main groups further separately

through more complicated features that can evaluate the sub-groups. In this research,

we present a real-time Human Activity Recognition algorithm that combines Online

Empirical Bayesian Kernel Segmentation (OBKS) algorithm and two-layer Random

Forest classification. This algorithm can automatically identify the patterns at any

particular time without the user intervening, such that the user does not need to

mark the start time and the end time for every activity. For this application, the

aim of the first layer classification is to distinguish the dynamic activities (walking,

walking upstairs and walking downstairs) versus the static activities (sitting, stand-

ing, and lying). The main feature used in the first layer classifier is amplitude defined

as
√
x2
i,1 + x2

i,2 + ...+ x2
i,d, xi is ith point with d-dimension. During the second layer

classification processing, there are two separate classifiers: classifier A and classi-

fier B that classify the different sub-groups. If we get a static activity on the first

layer for a specified time interval, then we go through classifier A at the second layer

to further classify the observations into sitting, standing, or lying; otherwise, we go

through classifier B at the second layer to further identify the observations as walking,

walking upstairs or walking downstairs.

1.4 Structure of Dissertation

This dissertation is organized as follows. Chapter 1 summarizes the proposed method

and the experiments in this study. Chapter 2 discusses the previous work of using

6



the Hidden Markov Model to analyze the time series pattern. Briefly, all background

knowledge that relates to our task is introduced in the first subsection from Chapter

3 to Chapter 5. Chapter 3 proposes an Online Empirical Bayesian Kernel Segmenta-

tion method built on the Online Empirical Bayesian approach and Online Multivari-

ate Kernel Density, which can detect the time series change points. The experimental

analysis of this novel segmentation method is explained in Chapter 4, which compares

the experimental result with the result of the Sliding Window Bottom Up segmenta-

tion algorithm. Chapter 5 discusses classification features selection and the two-layer

classification that is applied in identifying human pattern application. Combining

the research from Chapter 3 to Chapter 5, the human pattern recognition system is

introduced in Chapter 6 and presents the final experiment result. Finally, conclusions

and future work are given in Chapter 7.

7



2 Previous Work Discussion

2.1 Hidden Markov Model

The Hidden Markov Models are known for their application in speech recognition,

handwriting identifying, gesture recognition, etc. A Hidden Markov Model (HMM)

is a Markov process with state unknown and observation known that is generated by

these unknown states. For example, a person gets a disease; what the disease really

was, the doctor is not sure, but the symptom truly can be observed. In this case, the

disease is regarded as a hidden state, and the symptoms are the observations. HMM

can estimate the states through these different types of symptoms.

In a Markov Chain, the states are directly observed, and the state transition

probabilities are the only parameters. In the HMM, the observation could be discrete

(such as the outcomes of a diced experiment, the characters from a finite alphabet,

symptom from a cold), or continuous (such as temperature, voice sample, sensor speed

from a car). Each state has a probability distribution providing the possible outcomes

at a given moment, which is an emission probability. Therefore, the sequence of

observed data generated by an HMM gives hidden information about the sequence of

states.

8



Through the Hidden Markov Model, we estimate the features of six human

pattern activities, including sitting, standing, walking upstairs, walking downstairs,

walking, and jogging by the Expectation Maximization algorithm. This data source is

provided by Dr. Tu Yicheng’s Lab at University of South Florida, which is generated

by iPhone 6 built-in accelerometer with 50Hz. What we get is transmission probability

A = aij, prior probability π, mean and variance of observation from each state, µ and

σ2. Let qt represent the state at time t, t = 1, 2, ..., T , and ot represents the observation

at time t. si represents the possible state i, i = 1, 2, ..., k. k is the total number of

types of states. In our sensor data generated with the built-in accelerometer in the

smartphone (iPhone), the number of states is 6, S = s1, s2, ..., s6. The sensor data

is tri-dimensional: x-axis shows the acceleration rate on forth-back direction; y-axis

shows the acceleration rate on left-right direction; and z-axis shows the acceleration

rate on up-down direction.

2.1.1 Viterbi Algorithm

The traditional method to estimate state for every observation is called the Viterbi

algorithm, which testifies which state the observation comes from at time t. This algo-

rithm picks the state with respect to the highest conditional probability of observation

9



given a certain state at time t, that is:

P1 = maxP (o1|q)πq

q1 = argmaxq∈SP (o1|q)πq

Pt = maxP (ot|q)aqt−1qP (t− 1)

qt = argmaxq∈SP (ot|q)aqt−1qP (t− 1) (2.1.1)

2.1.2 Forward Probability

Since the Viterbi algorithm just considers one trial associated with the highest proba-

bility, it may miss some information for other routines. Also, it is very sensitive to the

prior probability. Forward probability is to pick the state with the highest probability

at time t given all previous observations, which considers all possible routines that

happened before. That is,

qt = argmaxq∈SP (q|o1:t) (2.1.2)

2.2 Estimation Result

To justify the methods mentioned above, the following is our result generated by

these two methods. In Figure 2.1, the states are estimated by the Viterbi algorithm.

Some points seem to belong to multiple states, but a point only comes from a state

in fact. In addition, the state jumped from state i to state j at time t − 1 to t; it is

10



unreasonable for a person to change his/her activity in very short time. For example,

the state is changed from walking to walking upstairs, followed by jogging and sitting.

Figure 2.1: State estimation by Viterbi algorithm

In Figure 2.2, the states are estimated by Forwarding probability. Around the

first 500 data, jogging and walking upstairs almost mix, meaning the points

generated from jogging contain the points generated by walking upstairs. The reason

could be both patterns have a similar acceleration rate on x-axis and z-axis.

11



Figure 2.2: State estimation by Forward probability

2.3 Reason of Deficiency

The estimated result is not as good as we expect. The reason could be explained

by following the density plot of these six patterns. The density of each state corre-

sponding to the x-axis, y-axis, and z-axis overlap greatly. It is hard to identify the

states for some specific points using these standard algorithms because the result of

the tri-dimensional data points are generated by the given emission probability for

each state.
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Figure 2.3: The probability function of six activities with respect to x-axis

Checking the probability density function corresponding to the x-axis of six

patterns (Figure 2.3), the emission probabilities associated with walking upstairs and

walking almost overlap. The emission probabilities associated with sitting and stand-

ing overlap by a half. The jogging varies in the three directions, so it has the largest

variance.
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Figure 2.4: The probability function of six activities with respect to y-axis

Apparently, the possible result generated from the emission probability asso-

ciated with walking pattern includes the data points of standing. The observations

whichcome from the emission probability of walking upstairs contains the sitting data

and the part of walking downstairs data.
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Figure 2.5: The probability function of six activities with respect to z-axis

In Figure 2.5, the outputs generated from the probability densities correspond-

ing to sitting and walking downstairs do not overlap. Based on the probability density

functions of six patterns with respect to three axes as shown in above figures, different

states overlap on the different axes, they also di not keep the same overlapping on

the different axes. Because it is not efficient to analyze such data individually, we

look for a method that could consider connective data, which regard these similar

observations generated from the same functions as a whole.
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3 Modified Online Empirical Bayesian Segmentation: Online Empirical

Bayesian Kernel Segmentation

3.1 Related Work

3.1.1 Online Segmentation

Time series segmentation is looking for the change point between two different pat-

terns and developing a suitable model which fits to the provided observations of every

segment, and these observations between two change points are regarded as a subset

of the entire time series. Furthermore, the segmentation algorithms can be divided

into two groups: offline algorithm and online algorithm. The most common offline

algorithms are top-down and bottom-up algorithms [36, 9, 10]. Many papers extend

the two offline methods to improve the accuracy on the basis of different technical

skills. [30] introduces a local iterative replacement method and a global iterative

replacement method that both require and are processed by dynamic programming

skill. The Empirical Bayesian method has been applied to discover change points by

posterior probability [48]. [17] uses the Fisher information as the cost function rather

than the error function (defined in Chapter 3). However, concerning the properties of
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continuously collecting the time series data, an adaptive and incremental algorithm is

more suitable for dealing with the time series. For another category of segmentation,

Sliding Window (SW) algorithm has been used for defining segments as an online

method. Nonetheless, Sliding Window gives us the undesirable experimental results

that are analyzed in [69]. We will discuss several online segmentation algorithms that

improve the performance of an online algorithm.

To reach the aim of segmenting the entire time series into finite subsets, the

aim usually is constructed in the following ways that are mentioned in [36]:

1. Consider a time series s, which generates m segments with optimal splitting, m is

known.

2. Consider a time series s, which generates m segments with optimal splitting such

that the maximum error of every segment is not larger than a pre-defined cut-off

boundary.

3. Consider a time series s, which generate m segments with optimal splitting such

that the total error for combining all segment errors is not larger than a pre-defined

cut-off boundary.

First of all, let us define the segmentation frame, a time series s containing N

samples x1, x2, ..., xN . Assume m segments as s1 = s(1 : c1), s2 = s(c1+1 : c2), ..., sk =

s(cm−1 + 1 : N), where si is ith segment and s(a, b) = {xa, xa+1, ..., xb}, a ≤ b, 0 <

c1 < c2 < ... < cm−1 < N , and c0 = 1, cm = N , then s = s1s2, ..., sm.

The goal of segmentation is to form the segments such that these observations

are homogeneous in a segment and heterogeneous in the different segments. This
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goal infers these observations that are generated by an individual function during this

specified period, such as a probability distribution or a regression model. Depending

on the construction process discussed above, the first step would be to define a cost

function Fi, i = 1, 2, ..,m for an individual segment, and the aim is to minimize the

overall cost function F . The cost function Fi can be an arbitrary function; the most

general cost function is the sum of variance of the components of a segment. The

number of data points of segment si is ni = ci − ci−1 + 1, assuming these data points

are d dimensional:

Fi = V (si) (3.1.1)

=
d∑
l=1

[ 1

ni

ci∑
j=ci−1+1

x2
jl −

( 1

ni

ci∑
j=ci−1+1

x2
jl

)2]

Thus, the cost function of combining all segmentations is:

F = V (s1s2...sm) =
1

N

m∑
[i=1]

niV (si)

=
1

N

m∑
[i=1]

ci∑
j=ci−1+1

‖xj − µi‖2 (3.1.2)

where N =
∑m

i=1 ni, which infers finding the boundaries ci of each segment by means

of minimizing the cost function.

The advantage and disadvantage of the online segmentation algorithms are

different according to the different requirements and the application purposes. It is

hard to decide which the best and suitable segmenting algorithm is. Usually, less time
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consuming of processing an online segmentation is associated with the higher error

and vice versa. The method selection should relate to the data type, the experiment

requirements, and the task. We expect to build an algorithm with the higher accuracy

that could immediately detect the change points in a time series. The two components

of time consuming and accuracy should be improved simultaneously.

Because the Sliding Window (SW) method is the first method supported for

the time series online segmentation, the first thought is that we could consider de-

veloping an online segmentation which extends from SW. SWAB algorithm in [36]

discusses associating the Sliding Window with the Bottom-up method. Ten types of

observations are used to analyze the performance of the SW, the Bottom-up and the

SWAB. The experiments in [36] show that SWAB is almost as effective as the Bottom-

up method. Meanwhile, the consuming time of the SWAB becomes an issue for a time

series. We can consider a less time invoking Bottom-up algorithm by remembering the

calculation of the previous innovations. Dima Alberg and Avner Ben-Yair [4] supply

the Interval Sliding Window (ISW) method by adding the confidence level parameters.

Different from the SWAB, the ISW method does not require a pre-defined threshold

and performs as well as SWAB. Sometimes, a different pre-defined maximum error

could result in different segmenting.

For Hidden Markov Model (HMM) based online segmentation, [38] introduces

a dynamic HMM algorithm, which improves the Viterbi algorithm without the fixed

number of states. It can automatically update the parameters and compare them

with the prototype distribution in order to label the type of patterns. [38] exper-
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iments with a dynamic switching process with 2 out of 15 incorrect segments at a

speed of 457 data points per second, a performance showing a fast online segmenting

algorithm. Different from [38], the advantaged dynamic HMM algorithm [57] can

label multiple patterns at the same time, and the applications of human motion have

been demonstrated that can stably detect the change point with a reduced delay rate.

Also, this system uses the SVM (Support Vector Machine) for classification rather

than an integrated squared error of probability density function. However, the emis-

sion probability of HMM could be 0 in the high-dimensional observations, which is

one of the biggest issues in HMM. The technical skill to solve this problem is the

feature reduction by the principle component analysis for reducing dimensions.

Another distribution-based online segmenting method is Online Empirical Bayesian

(OB) detecting algorithm. Unlike HMM, the pre-defined number of states is not nec-

essary. Instead of generating k posterior distributions from k classes at time t, Online

Empirical Bayesian Segmentation in [?] produces t posterior distributions from the

previous t−1 posterior distributions and a new posterior distribution of a new coming

observation at time t. It is more flexible than the HMM, but this procedure increases

computational time. To handle this complex problem, [62] and [58] fix a constant

number of particles at each time.

Piecewise Linear Approximation segmentation as an online segmentation method

constructs segments by approximating a line from the Feasible Space Window (FSW)

method and the Stepwise FSW (SFSW) method [49]. Because the SFSW algorithm

considers the past observations with an overview of the recent two segments generated
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by the FSW algorithm, the SFSW has a better overall performance than the FSW

method, the SWAB, and the SW. The overall performance includes the number of

segments and the value of cost function. Due to the higher number of segments, this

usually results in smaller margin of error. However, it is meaningless to create as

many as possible segments. The worst performance comes from the SW, followed by

the FSW. For online detecting process, the problem of time-consumption can not be

ignored. [49] also shows the FSW along with much less computing time, followed by

the SW. The experiments show that the SWAB costs the most time. Therefore, the

FSW and the SFSW improve the process speed and the performance. At the same

time, these two methods are only used for one-dimensional observation. However, a

multidimensional time series is more common in real life. On the other hand, [49] and

[80] only use a straight line for fitting time series, which is not a suitable method to

adapt to changeable observations. [81] extends the traditional piecewise linear model

to a polynomial function. It introduces the coefficient space based model instead

of the space window, which supplies more choices of a function (different order of

polynomial) and it is more practical to fit a nonlinear time series. The [81] proposed

method displays less error and better performance than the FSW and is almost able

to adapt to all types of time series data.

3.1.2 Kernel Density Estimation

Kernel Density Estimation (KDE) estimates the probability density function of a

random variable based on a non-parametric approach, which is a fundamental data
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smoothing approach which makes inferences about the population. This method is

used in many fields, such as engineering, economics, and biostatistics. Tradition-

ally,the KDE requires the random sample is independent and identically distributed

(i.i.d), and the time series observations are time dependent. However, if the observa-

tions used in the estimation are a stationary process within a specific interval, we can

extend the most techniques of KDE to time-dependent variables [28].

Figure 3.1: Univariate Kernel Density Estimation at µ = 1 and σ = 1

Let (x1, x2, ..., xn) be the independent and identically distribution samples

drawn from an unknown density f . The kernel density estimation in Figure 4.2

is defined as:

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K(
x− xi
h

) (3.1.3)
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where K(·) is called kernel and the kernel function satisfies following conditions:

1.K(x) > 0,

∫
R

K(x)dx = 1.

2.Meaniszero :

∫
R

xK(x)dx = 0.

3.F initesecondmonment :

∫
R

x2K(x)dx <∞ (3.1.4)

The most widely used kernel function is the Gaussian density distribution.

Following is listed a range of kernel functions in Table 3.1.

Table 3.1: The classical kernel functions

Kernel Kernel Function K(u)

Uniform K(u) = 1
2 I{|u|≤1}

Gaussian K(u) = 1√
2π
e−

1
2
u2

Epanechnikov K(u) = 3
4(1− u2) I{|u|≤1}

Triangular K(u) = (1− |u|) I{|u|≤1}

Triweight K(u) = 35
32(1− u2)3 I{|u|≤1}

Tricube K(u) = 70
81(1− |u|3)3 I{|u|≤1}

Biweight K(u) = 15
16(1− u2)2 I{|u|≤1}

Cosine K(u) = π
4 cos

(
π
2u
)
I{|u|≤1}

Silverman K(u) = 1
2e
− |u|√

2 · sin
(
|u|√

2
+ π

4

)

Here, h > 0 called bandwidth is a smoothing parameter. Based on the different

values of h, the estimated density curve could be over-smoothed or under-smoothed.

Therefore, what value of h we should choose becomes very important. A few papers
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already mentioned the techniques of bandwidth selection, such as [18],[29]. The most

used optimal bandwidth is extracted by minimizing the mean integrated squared error,

defined as:

MISE(h) = E

[∫
(f̂h(x)− f(x))2dx

]
(3.1.5)

The Asymptotic MISE (AMISE) is built on a weak assumption of f and K,

MISE(h) = AMISE(h) + o(1/nh+ h2), which generates the following terms:

AMISE(h) =
R(K)

nh
+

1

4
m2(K)2h4R(f ′′) (3.1.6)

where R(g) =
∫
g(x)2dx for a function g, m2(K) =

∫
x2K(x)dx and f ′′ is the second

derivation. The optimal h is derived from minimizing AMISE :

δ

δh
AMISE(h) = −R(K)

nh2
+m2(K)2h3R(f ′′) = 0 (3.1.7)

hAMISE =
R(K)1/5

m2(K)2/5R(f ′′)1/5n1/5

To face the problem of handling the multivariate data, in the 1990s and 2000s,

the Multivariate Kernel Density Estimation has achieved a stronger estimating capa-

bility compare to its univariate counterparts [71]. Let x1,x2, ....,xn be a d-dimensional

random sample that comes from a multivariate density function f . The multivariate

kernel density function is defined as:

f̂H(x) =
1

n

n∑
i=1

KH(x− xi) =
1

n|H|1/2
n∑
i=1

K(H−1/2(x− xi)) (3.1.8)
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Similar to the Univariate Kernel Density function, H is the bandwidth that

is d × d symmetric and positive definite matrix. The most common kernel function

used in the multivariate case is the standard multivariate normal kernel, and H is

a covariance matrix. At this point, matrix H is the most important factor since it

controls the amount and the orientation of smoothing [78]. To consider the AMISE:

AMISE(H) = n−1|H|−1/2R(K) +
1

4
m2(K)2(vecTH)Ψ4(vecH) (3.1.9)

where

R(K) =

∫
K(x)2dx

m2(K)Id =

∫
xxTK(x)dx with Id is the identity matrix

Ψ4 =

∫
(vecD2f)(vecD2f)Tdxis a d2 × d2matrix

D2f is thed× d Hessian matrix of second order partial derivative of f

vec is vector operator which (3.1.10)

There is a Plug-in method discussed in [78], a Smoothed Cross-validation

method discussed in [18] and a Rule of thumb method, which are different types

of methods used to select the optimal bandwidth matrix.
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3.1.3 Unscented Transformation

The Unscented Transformation (UT) estimates the results of applying a given non-

linear transformation to a probability distribution based on a mathematical function.

If the state transition and the observation models that are the predict function f

and the update function h respectively, which are highly non-linear with each other,

then the extended Kalman Filter can give very poor performance [35]. The reason

is due to the covariance which is propagated by the linearization of the underlying

non-linear model. The Unscented Kalman Filter (UKF) ([35],[34]) picks a minimal

amount of sample points known as sigma points, around the mean through using a

deterministic sampling technique called the unscented transform. The sigma points

are then produced through the non-linear functions, from which result in the mean

and covariance of the estimate. The result of the filter as shown in [35] can more

accurately capture the true mean and the true covariance.

For the prediction, UKF prediction can be used independently from the UKF

update. The estimated states and covariance are augmented with the mean and

covariance of the process noise.

xak−1|k−1 = [x̂T
k−1|k−1 E[wT

k ] ]T

Pa
k−1|k−1 =

 Pk−1|k−1 0

0 Qk

 (3.1.11)

The augmented state and covariance can derive a set of 2L + 1 sigma points,
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where L is the dimension of the augmented state.

χ0
k−1|k−1 = xak−1|k−1

χik−1|k−1 = xak−1|k−1 +
(√

(L+ λ)Pa
k−1|k−1

)
i
, i = 1, . . . , L

χik−1|k−1 = xak−1|k−1 −
(√

(L+ λ)Pa
k−1|k−1

)
i−L

, i = L+ 1, . . . , 2L (3.1.12)

where
(√

(L+ λ)Pa
k−1|k−1

)
i

is the ith column of the square root of matrix (L +

λ)Pa
k−1|k−1

The sigma points are generated through the transition function f . χik|k−1 =

f(χik−1|k−1) i = 0, . . . , 2L where f : RL → R|x|. The weighted sigma points are

recombined to produce the predicted state and covariance.

x̂k|k−1 =
2L∑
i=0

W i
sχ

i
k|k−1

Pk|k−1 =
2L∑
i=0

W i
c [χik|k−1 − x̂k|k−1][χik|k−1 − x̂k|k−1]T (3.1.13)

where the weights for the state and covariance are given by:

W 0
s =

λ

L+ λ

W 0
c =

λ

L+ λ
+ (1− α2 + β)

W i
s = W i

c =
λ

2(L+ λ)

λ = α2(L+ κ)− L (3.1.14)
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α and κ restrict the spread of the sigma points. β is correlated to the distri-

bution of x. Normal values are α = 10−3, κ = 0 and β = 2. If the true distribution of

x is a Gaussian distribution, β = 2 is the optimal choice[77].

The next phase is to update the step:

xak|k−1 = [x̂T
k|k−1 E[vT

k ] ]T

Pa
k|k−1 =

 Pk|k−1 0

0 Rk

 (3.1.15)

As mentioned before, the set of 2L + 1 sigma points is generated from the

augmented state and covariance where L is the dimension of the augmented state.

χ0
k|k−1 = xak|k−1

χik|k−1 = xak|k−1 +
(√

(L+ λ)Pa
k|k−1

)
i
, i = 1, . . . , L

χik|k−1 = xak|k−1 −
(√

(L+ λ)Pa
k|k−1

)
i−L

, i = L+ 1, . . . , 2L (3.1.16)

The sigma points are designed through the observation function h.

γik = h(χik|k−1) i = 0..2L (3.1.17)

Recombining the weighted sigma points produce the predicted measurement
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and the predicted measurement covariance, which are defined as follows:

ẑk =
2L∑
i=0

W i
sγ

i
k

Pzkzk =
2L∑
i=0

W i
c [γik − ẑk][γ

i
k − ẑk]

T (3.1.18)

The following state-measurement cross-covariance matrix is used to compute

the UKF Kalman gain.

Pxkzk =
2L∑
i=0

W i
c [χik|k−1 − x̂k|k−1][γik − ẑk]

T

Kk = PxkzkP
−1
zkzk

(3.1.19)

As with the Kalman filter, the updated state is the predicted state with the

innovation weighted by the Kalman gain,

x̂k|k = x̂k|k−1 +Kk(zk − ẑk) (3.1.20)

The updated covariance is the predicted covariance minus the predicted mea-

surement covariance and weighted by the Kalman gain.

Pk|k = Pk|k−1 −KkPzkzkK
T
k (3.1.21)
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3.2 Online Empirical Bayesian Kernel Segmentation

Considering many time series applications, such as speech recognition, stock price,

and pattern detection, the first step of time series analysis is to separate the en-

tire time series interval into disjoined smaller segments. This segmentation step is

to pre-process the time series, because the raw individual observations cannot be

applied directly in the classification methods. Usually, we partition the entire time

series into the equal length segments, the length of the segment could be 1.5s, 2s,

and 3s, etc. However, these type of intervals is so short that they do not capture

enough information of activities. In this research, we discuss the step based on On-

line Empirical Bayesian Kernel Segmentation (OBKS) method that is introduced in

section 2.2. This approach detects the change point between two different connected

patterns, and it defines the observations between two change points as a segment.

OBKS procedure results in different length time intervals rather than equal and small

length. For the next step, we need to extract the features from each segment. The

features widely used so far are categorized as time-domain features, frequency domain

features, wavelet features and heuristic features [7]. Here, we mainly use the time-

domain features and the frequency-domain features. The authors of [46] discusses the

current classification methods including k-nearest neighbors, decision tree, empirical

bayesian, neural network, support vector machines, Fuzzy logic, classifier ensembles,

regression methods and Markov models that are applied widely in many publications

and applications. Then, testing our method on the simulated data and the empirical

observations, we use the accuracy and confusion matrix as the evaluation index. The
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application of the time series segmentation, feature extraction, and classification is

shown in Figure 6.1, which displays the process of a real-time activity recognition.

3.2.1 Empirical Bayesian Online Segmentation

In this section, we consider d-dimensional data points x = (x1, x2, ..., xd). The task

of segmenting the time series is to group the homogeneous observations together and

separate the heterogeneous observations. These observations are listed on a time line,

and all observations between two change points construct a time series segment defined

as a pattern. The pattern during period t1, t2, ....ti is different than the pattern during

time period ti+1, ti+2, ..., tj. Those homogeneous observations are assumed to follow

a multivariate distribution, and the different patterns follow different multivariate

distributions. Therefore, to find the change point between two patterns becomes a

significant problem.

The Online Empirical Bayesian detecting method [2] can be used to prepare

these segments automatically for classification. First of all, we consider the concept

of “run length” rt that is the length of the current run at time t and it is linearly

increasing over time t. For example, if rt = 0 at t = 8, x8 is a change point; if rt 6= 0,

we run once more and repeat the process. x
(r)
t is defined as the set corresponding to

run length rt. If rt is zero, x(r) is an empty set. For example, t = 9, rt = 1, then

x
(r)
9 = {x8,x9}. To find the posterior distribution P (rt|x1:t), we need to generate a
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recursive joint distribution P (rt,x1:t),

P (rt|x1:t) =
P (rt,x1:t)

P (x1:t)
∝ P (rt,x1:t)

∝
∑
rt−1

P (rt, rt−1,xt,x1:t−1)

∝
∑
rt−1

P (rt,xt|rt−1,x1:t−1)P (rt−1,x1:t−1)

∝
∑
rt−1

P (rt|rt−1)P (xt|rt−1,x
(r)
t−1)P (rt−1,x1:t−1) (3.2.22)

Here, P (rt|rt−1) is a prior probability, the joint distribution P (rt,x1:t) is called growth

probability and P (xt|rt−1,x
(r)
t−1) is a predictive probability. At every recursion, we pick

the rt that is associated with the largest posterior probability, which is the rt that is

also associated with the largest joint distribution in recent data. Next, we need get

the prior distribution P (rt|rt−1) and the predictive distribution P (xt|rt−1,x
(r)
t ).

Figure 3.2: “Run length” rt path: Solid line represents rt+1 = rt+1, Dashed lines represent
rt+1 = 0 and xt+1 is change point
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The run length has two directions. One direction is that no change point

happens at time t and rt = rt−1 + 1, which means the new data still stays in the same

group with the previous observations and follows the same distribution. Another one

is that a change point occurs at time t, rt drops to 0 with probability H(rt) = 1/λ.

Here, H(rt) is a hazard function based on the geometric distribution with parameter

λ [75]. The prior distribution is:

P (rt|rt−1) =



H(rt−1) if rt = 0

1−H(rt−1) if rt = rt−1 + 1

0 otherwise

(3.2.23)

The predictive probability P (xt+1|rt,x(r)
t ) is the marginal distribution integral

over the parameter vectors θ corresponding to current run length rt, which only de-

pends on the recent data set x
(r)
t , since the assumption of the distribution stays the

same in recent data. We define it as following:

P (xt+1|rt,x(r)
t ) =

∫
P (xt+1|θ)P (θ

(r)
t = θ|rt,x(r)

t )dθ (3.2.24)

Here, θ
(r)
t is the parameter of the current run length. Assuming the tri-dimensional

data x = (x1, x2, x3)T follows a three-dimensional normal distribution with mean µ

and inverse-covariance matrix Ω = Σ−1 and dimension d = 3, the likelihood function
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of t data points X1:t = x1,x2, ...,xt is described as follows:

P (X1:t|µ,Ω) =
t∏
i=1

(2π)−d/2|Ω|1/2exp
(
− 1

2
(xi − µ)TΩ(xi − µ)

)
= (2π)−td/2|Ω|t/2exp

(
− 1

2

t∑
i=1

(xi − µ)TΩ(xi − µ)
)

∝ |Ω|t/2exp
(
− 1

2

t∑
i=1

(xi − µ)TΩ(xi − µ)
)

(3.2.25)

For the prior distribution P (µ,Ω) in Eq(3.2.25), we assume µ ∼ N (µ0, (κ0Ω)−1)

normal distribution and Ω ∼ Wid(T0, ν0) Wishart distribution. Under the assumption

that µ and Ω are independent of each other, we simply multiply these two probabilitity

functions as the prior distribution:

P (µ,Ω|µ0, κ0, ν0, T0)

= N (µ|µ0, κ0)Wid(Ω|ν0, T0)

= (2π)−d/2|κ0Ω|1/2exp
(
− 1

2
(µ− µ0)T (κΩ)(µ− µ0)

)
|

× Ω|(ν0−d−1)/2exp
(
− tr(TΩ)/2

)
2−ν0d/2|T |−ν0/2Γd(ν0/2)

∝ |Ω|1/2exp
(
− 1

2
(µ− µ0)T (κΩ)(µ− µ0)

)
|Ω|(ν0−d−1)/2exp

(
− tr(TΩ)/2

)
(3.2.26)
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Therefore, we can get the posterior distribution:

P (µ,Ω|X1:t) =
P (µ,Ω, X1:t)

P (X1:t)
=
P (X1:t|µ,Ω)P (µ,Ω)

P (X1:t)
∝ P (X1:t|µ,Ω)P (µ,Ω)

∝ |Ω|t/2exp
(
− 1

2

t∑
i=1

(xi − µ)TΩ(xi − µ)
)

× |Ω|1/2exp
(
− 1

2
(µ− µ0)T (κΩ)(µ− µ0)

)
|Ω|(ν0−d−1)/2exp

(
− tr(TΩ)/2

)
∝ |Ω|1/2|Ω|(ν0+t−d−1)/2exp

(
− 1

2
(µ− κ0ν0 + tX̄

κ0 + t
)T (κΩ)(µ− κ0ν0 + tX̄

κ0 + t
)
)

× |Ω|(ν0−d−1)/2exp
(
− tr(TΩ)/2

)
× exp

(
(T0 +

∑
(Xi − X̄)(Xi − X̄)T +

κ0t

κ0 + t
(µ0 − X̄)(µ0 − X̄)T )

)
∝ |Ω|1/2|exp(−1

2
(µ− µt)(κtΩ)(µ− µt)T )|Ω|(νt−d−1)/2exp

(
TtΩ
)

∝ N (µ|µt, κt)Wid(Ω|νt, Tt) (3.2.27)

where,

κt = κ0 + t

µt =
κ0µ0 + tX̄t

κ0 + t

νt = ν0 + t

Tt = T0 +
∑

(Xi − X̄t)(Xi − X̄t)
T +

κ0t

κ0 + t
(µ0 − X̄t)(µ0 − X̄t)

T (3.2.28)
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Therefore, the updated step for every new incoming data as shown in Eq(3.2.29).

κt+1 = κt + 1

µt+1 =
κtµt + Xt+1

κt + 1

νt+1 = νt + 1

Tt+1 =
κt(Xt+1 − µt)(Xt+1 − µt)

T

κt + 1
(3.2.29)

Finally, the posterior predictive probability is

P (Xt+1|Xr
t, rt) = tνt−d+1(µt,

Tt(κt + 1)

κt(νt − d + 1)
) (3.2.30)

When new data is observed, the algorithm updates the parameters and the joint

distribution P (rt,x1:t), which approximates the posterior distribution P (rt|x1:t). This

Empirical Bayesian method creates t posterior distributions {P (rt|xi:t)})}ti=1 at every

iteration time t, to pick up the rt associated with the highest posterior probability.

If rt changes to 0 that means a new segment is formed, with xt defined as a change

point.

3.2.2 Adjusted Online Empirical Bayesian Method

Time-consuming is one of the chief issues of the Online Empirical Bayesian algorithm

because the computing time is linear with the number of observations, which makes

the computing time linearly increase with time. Motivated by Sliding Window and
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Bottom-up (SWAB) [36] that combines the Sliding Window (SW) algorithm with the

Bottom-up algorithm, we introduce the SW method with a fixed window size N , and

N is so large that it includes at least a few pattern segments. In this experiment, we

take N = 10000 that is equivalent to 200s. The adjusted Online Empirical Bayesian

method re-initializes all parameters when starting a new sliding window. The al-

gorithm of an adjusted Online Empirical Bayesian Segmenting is shown in Figure

3.3.
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Figure 3.3: Online Empirical Bayesian Kernel Segmentation
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3.3 Online Multivariate Kernel Estimation

Figure 3.4: Sample distribution ps(x) with associated detail distributions qi(x)

We apply online kernel function as the predictive function to get rid of the assump-

tion of multi-normality rather than considering the posterior predictive function. At

this point, the normality of observations is not a strict requirement anymore. As a

nonparametric density estimation, the Multivariate Kernel Density estimation is more

flexible and more adaptive and is suitable to fit any distributions. [41] has proposed

an Online Multivariate Kernel Density estimation algorithm, which creates an online

bandwidth estimation method and designed a compression model that reduces the

KDE’s complexity. The compressed model of d-dimensional data as an N-component

Gaussian mixture model (Figure 3.4) is defined as:

ps(x) =
N∑
i=1

αiφΣsi
(x− xi) (3.3.31)
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where

φΣ(x− µ) = (2π)−d/2|Σ|−1/2e−
1
2

(x−µ)T Σ−1(x−µ) (3.3.32)

is a Gaussian kernel with the center µ and covariance matrix Σ. The Gaussian mixture

model is used the most widely for the the data come from one or more different

distribution[60, 54], it can be well estimated if all observations come from a same

distribution. The Kernel density estimation with a bandwidth H:

p̂KDE = φH ∗ ps(x) =
N∑
i=1

αiφΣsi+H(x− xi) (3.3.33)

In order to reduce the complexity of KDE as new data adding in, we need to compress

the sample distribution ps(x) with time by replacing the clusters of the components.

There is an additional model qi(x) for each component that is used for recovery from

these early over-compressions (Figure 3.4). The combined model is:

Smodel = {ps(x), {qi(x)}i=1:N} (3.3.34)

3.3.1 Bandwidth Selection

The traditional measure of the difference between p̂KDE and the unknown underlying

Probability Density Function (PDF) is “Asymptotic Mean Integrated Squared Error

(AMISE)”, which is defined in Eq(3.3.40). The construction of AMISE is given in the

following steps from Eq(3.3.35) to Eq(3.3.40). First, let us define the Multivariate

Taylor’s series as shown in [39]. Define f to be a d variate function, Df (x) to be
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the vector of first-order partial derivatives, and Hf (x) to be the Hessian matrix of f .

Assume all of the entries of H are continuous in a neighborhood of x. We have:

f(x + a) = f(x) + aTDf (x) +
1

2
aTHf (x)a+ o(aTa) (3.3.35)

The Mean Square Error of a function is defined as:

MISE(H) = E
[ ∫ (

(P̂KDE(x))− PKDE(x)
)2

dx
]

(3.3.36)

Under weak assumptions, MISE(H) = AMISE(H) + o(tr(|H|2) + n−1|H|−1/2).

Hence,

AMISE(H) =

∫ [
E
(
P̂KDE(x)

)
− PKDE(x)

]2

dx +

∫
V (P̂KDE(x))dx (3.3.37)

If we contain all the observations in the sample model without compression

and each observation associated with one kernel function, variance Σsi = 0 for all i
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and P̂KDE(x) =
∑N

i=1 αiφH(x− xi). Here,

E
(
P̂KDE(x)

)
=

∫
KH(x− y)PKDE(y)dy

=

∫
|H|−1/2K(H−1/2(x− y))PKDE(y)dy

=

∫
K(z)PKDE(x−H1/2z)dz

(Multivariate Taylor’s series)

=

∫
PKDE(x)K(z)dz−

∫
zTH1/2Df (x)K(z)dz +

1

2

∫
zTH1/2Hf (x)H1/2zK(z)dz + o(tr(H))

= PKDE(x) +
1

2
tr
{
H1/2Hf (x)H1/2

∫
zzTK(z)dz

}
+ o(tr(H))

= PKDE(x) +
1

2
tr(HHf (x)µ2(K)) + o(tr(H)) (3.3.38)

Therefore,

E
(
P̂KDE(x)

)
− PKDE(x) =

1

2
µ2(K)tr(HHf (x))
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V (P̂KDE(x))

= V (
N∑
i=1

αiφH(x− xi))

=
N∑
i=1

α2
iV (KH(x− y))

=
N∑
i=1

α2
i

[
E
(
K2
H(x− y)

)
− E2

(
KH(x− y)

)]
=

N∑
i=1

α2
i

[ ∫
PKDE(y)|H|−1K2(H1/2(x− y))dy −

(∫
PKDE(y)|H|−1/2K(H1/2(x− y))dy

)2]
=

N∑
i=1

α2
i

[ ∫
PKDE(x−H1/2z)|H|−1/2K2(z)dz−

(∫
PKDE(x−H1/2z)K(z)dz

)2]
=

N∑
i=1

α2
i

[ ∫
(PKDE(x) + zTH1/2Df (x) + o(|H|2))|H|−1/2K2(z)dz

−
(∫

(PKDE(x) + zTH1/2Df (x) + o(|H|2))K(z)dz
)2]

=
N∑
i=1

α2
i

[
PKDE(x)|H|−1/2R(K)− P 2

KDE(x) + o(|H|2)
]

=
N∑
i=1

α2
iPKDE(x)|H|−1/2R(K) + o(

N∑
i=1

α2
i ) (3.3.39)

For Gaussian kernel, µ2(K) = 1 and R(K) = (4π)d/2. Therefore,

AMISE = (4π)−d/2|H|−1/2N−1
α +

1

4
d2

∫
tr2{HHp(x)}dx (3.3.40)

where tr(·) is the trace operator, Hp(x) is a Hessian matrix of p(x) and Nα =

(
∑N

i=1 α
2
i )
−1. If we rewrite the bandwidth matrix in terms of scale β and a known

structure F, H = β2F. The optimal β is derived by minimizing AMISE with respect
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to the scale and the result is shown as follows:

βopt = [d(4π)d/2NαR(p,F)]−
1

d+4 (3.3.41)

where

R(p,F) =

∫
tr2{FHp(x)}dx (3.3.42)

Usually, this function is estimated by the plug-in method [79]. However, this

plug-in method requires all observed data points and it is offline method. First of all,

R(p,F) can be written as the expectation of the derivative ψr =
∫
p(r)(x)p(x)dx. We

can use the ps(x) to obtain the approximation:

p(x) ≈ ps(x), p(r)(x) = p
(r)
G (x) (3.3.43)

where we approximate p
(r)
G (x), the derivative of p(x) through the kernel density esti-

mation:

pG(x) = φG(x) ∗ ps(x) =
N∑
j=1

αjφΣsj+G(x− µj) (3.3.44)

The estimate pG(x) is called pilot distribution, G is pilot bandwidth. Com-

bined with the approximation in Eq(3.3.43), the estimation of R(p,F) is:

ˆR(p,F,G) =

∫
tr
(
FHpG(x)

)
tr
(
FHps(x)

)
(3.3.45)
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To get the functional result in Eq(3.3.45) using the matrix algebra,

ˆR(p,F,G)

=
N∑
i=1

N∑
j=1

αiαjφA−1
ij

(∆ij)× [2tr(F2A2
ij)(1− 2mij) + tr2(FAij)(1−mij)

2] (3.3.46)

where

Aij = (Σgi + Σsj)
−1,

∆ij = µi + µj,

mij = ∆T
ijAij∆ij (3.3.47)

We use the empirical covariance of the sample observations Σ̂smp to estimate

F , i.e F = Σ̂smp. We estimate the pilot bandwidth G by a multivariate normal-scale

rule:

G = Σ̂smp

( 4

(d+ 2)Nα

) 2
d+4

(3.3.48)
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3.3.2 Compression of the Sample Model

Figure 3.5: Compression of four-component sample distribution ps(x) (1) into three-
component sample distribution (2)

This part introduces how to compress the sample distribution (Figure 3.5) and refine

the original N -components sample distribution by a M -components model p̂s(x),

M ≤ N :

p̂s(x) =
M∑
j=1

ŵjφΣsj
(x− µ̂j) (3.3.49)
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Because of slow convergence for a finite number of dimensions, there is a clustering-

based approach to speed up convergence, which is to identify the clusters of compo-

nents in ps(x) and each cluster is associated with a single component. Let Ξ(M) =

{πj}j=1:M be a collection of disjointed sets of indexes. Therefore,

ps(x; πj) =
∑
i∈πj

wiφΣsi
(x− µi) (3.3.50)

The parameters of j − th component are defined as:

ŵj =
∑
i∈πj

wi, µ̂j = ŵ−1
j

∑
i∈πj

wiµ̂i

Σ̂j = ŵj
∑
i∈πj

wi(Σi + µiµ
T
i )− µ̂jµ̂Tj (3.3.51)

Hence, the compression is to identify a minimal number of M and the clustering

Ξ(M), which constructs the lowest clustering error.

M̂ = argminME(Ξ(M)), s.t.E(Ξ(M̂)) ≤ Dth (3.3.52)

where Dth is pre-defined threshold, E(Ξ(M̂)) is the largest local clustering error. Here,

E(Ξ(M̂)) = maxπj∈Ξ(M)Ê(ps(x; πj), Hopt) (3.3.53)
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Local Clustering Error

We want to approximate the component in Eq(3.3.50) with a single Gaussian function

p0(x) using the method discussed in Eq(3.3.51). The local clustering error is defined

as:

Ê(p1(x), Hopt) = D(p1KDE(x), p0KDE(x)) (3.3.54)

where,

Hopt is current estimated bandwidth

p1(x) = ps(x; πj)

p1KDE(x) = p1(x) ∗ φHopt(x)

p0KDE(x) = p0(x) ∗ φHopt(x) (3.3.55)

In [41], the Hellinger distance in Eq(3.3.56) is used to measure the distance between

two probability distributions,

DH(p1KDE(x), p0KDE(x)) =
1

2

∫ (
(p1KDE(x)1/2 − p0KDE(x))1/2

)2
dx (3.3.56)

Instead of taking Hellinger distance as a distance measurement of two probability dis-

tributions, the KullbackLeibler divergence has been applied in this study. The Kull-

backLeibler divergence [43] is used to measure how two probabilities diverge from each
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other from a second expected probability distribution, and it is defined in Eq(3.3.57).

DKL(p1KDE(x), p0KDE(x)) =

∫
p0KDE(x)log

p1KDE(x)

p0KDE(x)
dx (3.3.57)

The relation between the Hellinger distance and the KullbackLeibler divergence is:

DKL(p1KDE(x), p0KDE(x)) ≥ 2D2
H(p1KDE(x), p0KDE(x)) (3.3.58)

As a sequence, DKL(p1KDE(x), p0KDE(x)) ≤ 1/n and we guaranteeDH(p1KDE(x), p0KDE(x)) ≤

1/
√
n. However, the KullbackLeibler divergence cannot be calculated analytically for

the mixture model, we use unscented transform to approximate it and check more

details from Eq(3.3.59) to Eq(3.3.61). Because of the nonlinearity of Eq(3.3.57),

the integral is calculated using unscented transformation that is discussed in sec-

tion 2.1.3. We look for a minimal set of sample points (called sigma points) around

the mean. Here, p0KDE(x) is a Gaussian mixture model in a form p0KDE(x) =∑N
i=1wiφΣi

(x− xi).Therefore, the KullbackLeibler divergence is:

DKL(p1KDE(x), p0KDE(x))

=

∫
p0KDE(x)log

p1KDE(x)

p0KDE(x)
dx

=
N∑
i=1

wi

∫
φΣi

(x− xi)log
p1KDE(x)

p0KDE(x)
dx (3.3.59)
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We let f(x) = log p1KDE(x)
p0KDE(x)

. Since distance is the only dimension of the augmented

state, L = 1.

W 0
i =

λ

1 + λ

W j
i =

λ

2(1 + λ)

χ0
i = xi

χji = xi +
√

1 + λ(
√
dΣi)j, j = 1, ..., d

χji = xi −
√

1 + λ(
√
dΣi)j, j = d+ 1, ..., 2d (3.3.60)

We have the transformed distance in [41]:

DKL(p1KDE(x), p0KDE(x)) =
N∑
i=1

wi

2d+1∑
j=0

W j
i f(χji )

j (3.3.61)

Here, λ = max(0,M − d) and (
√
dΣi)j is the jth column of the square root of matrix

Σi.

Compression by Hierarchical Error Minimization

A hierarchical approach can be applied to optimize Eq(3.3.52) with all possible clus-

ters Ξ(M) for the number of clusters M , which start by splitting the entire sample

distribution into two sub-mixtures Eq(3.3.50) using Goldberger’s K-means algorithm.

Each sub-mixture is to estimate a single Gaussian p0(x). The hierarchical process

recursively splits the tree until the largest local error is sufficiently small and satisfies

E(Ξ(M)) ≤ Dth.
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3.3.3 Online Kernel Density Estimation

The first step of OKDE is to update the sample by combining it with the previous

model and a new observation using weight w0 = N−1
t :

p̃s(t)(x) = (1− w0)ps(t−1)(x) + w0φ0(x− xt) (3.3.62)

Let q̃i(t)(x) = φ0(x− xt), we have the updated sample model,

S̃model(t) = {p̃s(t)(x), {q̃i(t)(x)}i=1:M̃t
}

{q̃i(t)(x)}i=1:M̃t
= {qi(x)}i=1:Mt (3.3.63)

Here, ·̃ denotes the update model before the compression.

The bandwidth in Eq(3.3.48) is updated in Nαt =
(
N−1
α(t−1)(1− w0)2 + w2

0

)−1
.

Therefore,

Ht = F[d(4π)d/2NαtR̂(p,F,G)]−
2

d+4

F = Σ̂smp

G = Σ̂smp

( 4

(d+ 2)Nαt

) 2
d+4

(3.3.64)

The Online Kernel Density Estimation is shown in the following Figure 3.6.
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The sample distribu-

tion is updated by

the new observation

New obser-

vation xt

Reestimate the bandwidth

Modify and com-

press the model
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Replace the sample model

with the N-component

revitalized model and

initialize the cluster set

Split the sub-mixture

ps(x;πj) that is associated
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set. Repeat this step until

Dth < maxπj (̂E)(Ps(x;πj))

Regroup the components

of ps(x) and construct the

compressed sample model

Figure 3.6: Online Multivariate Kernel Density Estimation
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Algorithm 1 Update the sample model

1: procedure Update the sample model

2: At time t, the sample is defined as:

3: Smodel(t) = {pst(x), {qit(x)}i=1:Mt}

4: Update the effective number of observed samples:

5: Nt+1 = Nt + 1 and w0 = 1/Nt+1

6: Update the sample distribution at time t+ 1:

7: p̃s(t+1)(x) = (1− w0)pst(x) + w0φ0(x− xt+1)

8: The sample model at time t+ 1 becomes:

9: S̃model(t+1) = {p̃s(t+1)(x), {q̃i(t+1)(x)}i=1:M̃t
}

10: where {q̃i(t+1)(x)}i=1:M̃t
= {{qit(x)}i=1:Mt , q̃M̃t

(x) = φ0(x− xt+1)}

11: end procedure

Algorithm 2 Update bandwidth

1: procedure bandwidth estimation

2: Update empirical covariance Σ̂smp using Eq(3.3.50) to approximate the covariance

from a single Gaussian

3: Update Nα(t+1) = (N−1
αt (1− w0)2 + w2

0)−1

4: Re-calculate R̂(p,F,G) using Eq(3.3.46) and Eq(3.3.64)

5: Estimate the optimal bandwidth at time t+ 1 by Eq(3.3.64)

6: end procedure
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Algorithm 3 Compress the sample model

1: procedure Compress the sample model

2: According to Algorithm 1 and Algorithm 2, S̃model(t+1) and Ht is estimated

3: Based on Section 2.3.2, re-calculate each i-th component in S̃model(t+1) when

Ê(q̃i(x),Ht+1) > Dth

4: Initialize the cluster set: M = 1,Ξ(M) = π1, π1 = {1, 2, ..., N}

5: Do until maxπj∈Ξ(M)Ê(ps(x;πj)) < Dth

6: Select the cluster j such that πj = argmaxπj∈Ξ(M)Ê(ps(x;πj))

7: Split πj into two sub sets πj1 and πj2using the Goldberger’s K-means

8: M=M+1, Ξ(M) = {{Ξ(M) πj}, πj1, πj2}

9: End loop

10: Construct each component in p̂s(x) and its detailed model q̂j(x) according to the

clustering Ξ(M)

11: end procedure
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3.4 Contribution

Figure 3.7: OBKS result with “run length” rt

In this chapter, we have proposed a new online segmentation method, Online Em-

pirical Bayesian Kernel Segmentation (OBKS), that defines the change points in a

time series, which generates non-overlapped segments automatically on the timeline,

as shown in Figure 3.7. Built on the Online Empirical Bayesian Segmentation algo-

rithm, the Empirical Bayesian method requires the assumption that the observation

of a segment comes from a particular multivariate distribution with a prior distribu-

tion and a likelihood function. Most of the time, the distribution is unknown. Using

the technique of Online Kernel Density Estimation, we can avoid this assumption,

resulting in a more flexible segmentation method. Furthermore, this new method im-

proves the segmentation accuracy. The experimental analysis is discussed in Chapter
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4. The time series segmentation is an important step for the feature selection of each

segment in the next stage of this study.
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4 Experiment Result of Online Empirical Bayesian Kernel Segmentation

4.1 Related Work

The Markov Chain Monte Carlo (MCMC) method is a technique for random sampling

from a distribution that is established on a Markov chain, which is the target function

and stationary distribution. The essential core of MCMC simulation is to generate a

Markov process that has a particular transition distribution. If the simulation process

is long enough, then the sample would represent the current stationary distribution.

4.1.1 Metropolis Hastings Algorithm

The Metropolis Hastings algorithm is one of Markov Chain Monte Carlo (MCMC)

methods that obtains a sequence of random samples from a probability distribution,

which is usually used for generating the random variables from a multi-dimensional

distribution. These sample values are generated iteratively, where the distribution

of the next sample would be only dependent on the current sample value. With the

probability of acceptance, the candidate is used in the next iteration; however, if the

candidate value is rejected, then the current value is reused in the next iteration. The
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probability of the candidate accepted is determined by comparing the current function

value f(x) and the candidate sample values with respect to the desired distribution

P (x).

1. Choose an arbitrary probability density g(x|y) = g(y|x), where x is a

new observation and y is a current sample value. Usually, we take the Gaussian

distribution with mean y as the function g(x|y).

2. To reach this, the algorithm uses a Markov process which asymptotically

creates a unique stationary distribution π(x) such that π(x) = P (x) [65]. Each

transition x→ y is reversible: for every pair of states x and y, the probability of state

x transitioning to state y must be equal to the probability of transitioning state y to

state x,

π(x)P (y|x) = π(y)P (x|y)

P (y|x)

P (x|y)
=
P (y)

P (x)
(4.1.1)

3. The acceptance distribution A(y|x) is a conditional probability to accept

the proposed state y. Therefore,

P (y|x) = g(y|x)A(y|x)

A(y|x)

A(x|y)
=
P (y)

P (x)

g(x|y)

g(y|x)
(4.1.2)
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4. Choose an acceptance (Metropolis choice):

A(y|x) = min

(
1,
P (y)

P (x)

g(x|y)

g(y|x)

)
(4.1.3)

We always accept the acceptance when it is greater than 1. Assume at current time

t, Xt = x, a random walk y1 is create from g1 and the acceptance probability is:

A1(y1|x) = min

(
1,
P (y1)

P (x)

g1(x|y1)

g1(y1|x)

)
(4.1.4)

The second stage not only considers the current position of the chain but also considers

what we just rejected: g2. The acceptance probability of the second stage is:

A(y2|x, y1) = min

(
1,
P (y2)g1(y1|y2)g2(x|y2, y1)[1− A1(y1|y2)]

P (x)g1(y1|x)g2(y2|y1, x)[1− A1(y1|x)]

)
(4.1.5)

The acceptance probability of iterating the delying rejection (DR) process at i-th

stage is [55]:

Ai(yi|x, y1, ..., yi1) = min

(
P (yi)g1(yi−1|yi)g2(yi−2|yi−1, yi)...gi(x|y1, ..., yi)

P (x)g1(y1|x)g2(y2|y1, x)...gi(yi|yi−1, ..., y1, x)
,

[1− A1(yi−1|yi)][1− A2(yi−2|yi−1, yi)]...[1− Ai−1(y1|y2, ..., yi−1)]

[1− A1(y1|x)][1− A2(y2|x, y1)]...[1− Ai−1(yi−1|x, y1, ..., yi−2)]

)
= min

(
1,
Ni

Di

)
(4.1.6)

If the i-th stage is reached, it means that Nj < Dj for j = 1, ..., i− 1. The recursive

formula is:

Di = gi(yi|x, y1, ..., yi−1)(Di−1 −Ni−1) (4.1.7)

59



which leads to the following equation:

Di = gi(yi|x, ..., yi−1)[gi−1(yi−1|x, ..., yi−2)[gi−2(yi−2|x, ..., yi−3)...

[g2(y2|x, y1)[g1(y1|x)P (x)−N1]−N2]−N3]...−Ni−1] (4.1.8)

4.1.2 Adaptive MCMC

The proposal distribution g(·|x1, ..., xt) is a Gaussian distribution with mean at the

current point xt and covariance Ct = Ct(x1, ..., xt). We select an index t0 > 0 for the

length of an initial period and define it as:

Ct =


C0, t ≤ t0

sdcov(x1, ..., xt−1) + sdεId, t > t0

(4.1.9)

Here, C0 is a initial covariance based on the prior experience. sd is a parameter only

dependent on the dimension d, ε is a constant, and Id is d dimensional identity matrix.

As we know, the empirical covariance matrix is determined by

cov(x1, ..., xt) =
1

t

(
t∑
i=1

xix
T
i − (t+ 1)x̄tx̄

T
t

)
(4.1.10)

where x̄t = (1/t)
∑t

i=1 x1. Combining the above two functions, we get:

Ct+1 =
t− 1

t
Ct +

sd
t

(
tx̄t−1x̄

T
t−1 − (t+ 1)x̄tx̄

T
t + xtx

T
t + εId

)
(4.1.11)
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As suggested in [25], the scaling parameter sd = (2.4)2/d. It shows, in a certain sense,

that this choice optimizes the mixing properties of the Metropolis searched in the case

of the Gaussian targets and the Gaussian proposals.

4.1.3 Combining Delying Rejection (DR) and Adaptive MCMC

The proposal of the first stage of DR is adapted just as in AM: the covariance for AM

is computed from the points of the sampled chain, no matter at which stage these

points in the sample path have been accepted. The proposal for the higher stages is

always computed directly as a scaled version of the proposal of the first stage. The

scale factor can be freely chosen: the proposals of the higher stages can have a smaller

or larger variance than the proposal at the earlier stages. The simulation results in

[25] suggest that it is more beneficial in terms of asymptotic variance reduction of the

resulting MCMC estimators, which have a larger variance at the earlier stages and

then reduce the variance upon rejection.

It sometimes may be difficult to start the adaptive MCMC adaptation. This

process happens if the initial guess for the proposal distribution is far off from the

true distribution. This situation occurs if the variance of the proposal distribution

is too large, or the covariance for the proposal distribution is nearly singular. Now

the DR framework provides a natural remedy for these situations: by scaling down

the size of the proposals at the higher DR stages, we ensure that some points will be

accepted.
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4.2 Simulated Experiment Result

To compare with Online Empirical Bayesian Change Point Detection, instead of us-

ing the posterior predictive model, we apply the Online Multivariate Kernel Density

Estimation to update the current model for prediction when the new data comes in.

The purpose of choosing MCMC method to simulate the observations is the MCMC

algorithm can sample from a probability density function within a Markov chain based

desired distribution with time-related. These processes demonstrate the performance

of Online Empirical Bayesian Kernel Segmentation (OBKS). Firstly, let us compare

the segmentation accuracy on four different types of bi-normal variables: low covari-

ance with low correlation, low covariance with high correlation, high covariance with

low correlation and high covariance with high correlation. We want to test how covari-

ance and correlation of the bivariate variables affect on the accuracy. Accuracy is the

percentage of the correctly segmented data points. Here, OB represents the Online

Empirical Bayesian detecting method, and OBKS represents the Online Empirical

Bayesian Kernel Segmentation. Each combination includes three types of bi-normal
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variables Eq(3.2.29).

Combination 1: low covariance with low correlation

µ1 = (0, 0),Σ1 =

 1.6 −0.2

−0.2 1



µ2 = (2, 2),Σ2 =

1 0

0 0.5



µ3 = (−1, 1),Σ2 =

 1 0.3

0.3 1


(4.2.12)

Combination 2: low covariance with high correlation

µ1 = (0, 0),Σ1 =

 1 0.7

0.7 1



µ2 = (−1, 1),Σ2 =

 1 0.7

0.7 1



µ3 = (2,−2),Σ2 =

 1 0.9

0.9 1.5


(4.2.13)
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Combination 3: high covariance with low correlation

µ1 = (0, 0),Σ1 =

 4 −0.4

−0.4 4



µ2 = (−1, 1),Σ2 =

 3 0.3

0.3 5



µ3 = (2,−2),Σ2 =

 5 −0.4

−0.4 4


(4.2.14)

Combination 4: high covariance with low correlation

µ1 = (0, 0),Σ1 =

 5 4.5

4.5 5



µ2 = (−1, 1),Σ2 =

 5 3.6

3.6 4



µ3 = (2,−2),Σ2 =

 3 2.3

2.3 3

 (4.2.15)

Based on the segmentation accuracy result shown in Table 4.1, OBKS has higher

accuracy and OBKS is the better choice as an online segmentation algorithm. Even if

the observation has a relatively large variance and the time series fluctuates heavily,

OBKS can still adapt and fit the model properly. Especially when these bivariate
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Table 4.1: Detection accuracy of OB and OBKS on four different simulated data

low cov low corr low cov high corr high cov low corr high cov high corr

OB 0.9414 0.9002 0.9147 0.8839

OBKS 0.9552 0.9995 0.9238 0.9861

variables have a stronger correlation, OBKS still clearly generates a better-segmenting

result. For example, by checking the binormal distribution with the lower covariance

and higher correlation combination shown below in Figure 4.2, the OB method has

more sensitivity for updating the “run length”, and therefore the estimated “run

length” using this method is more unstable. The OBKS method already includes

the adaptive Online Multivariate Kernel approach, which results in a steadier and

stronger capability for updating “run length”.

,

Figure 4.1: Detection accuracy of OB and OKDE on low covariance and low correlation
bi-normal simulation data
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,

Figure 4.2: Detection accuracy of OB and OKDE on low covariance and low correlation
bi-normal simulation data

,

Figure 4.3: Detection accuracy of OB and OKDE on high covariance and low correlation
bi-normal simulation data

,

Figure 4.4: Detection accuracy of OB and OKDE on high covariance and high correlation
bi-normal simulation data

In addition, if we only consider the capability of estimating the probability

density by using the OB method and the OBKE method, we train on four different

types of observations: one-dimension skew, mix gaussian, sine wave, and bi norm

simulation data regarding four different sizes of samples: N=100, N=500, N=1500
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and N=3000. The testing criterion is the negative maximum likelihood estimation

and mean square error (MSE).

Table 4.2: MLE and MSE of OB and OKDE on four different simulated data

N=100 N=200 N=1000 N=3000

MLE MSE MLE MSE MLE MSE MLE MSE

skew
oB 4.4435 - 4.4545 - 4.3456 - 4.384 -

oKDE 2.6386 - 2.4764 - 2.3821 - 2.3818 -

sin wave
oB 2.8741 9.1706 2.9233 134.789 2.9406 76.2118 2.9139 43.7261

oKDE 0.8989 8.6324 0.8676 133.5121 0.7056 74.2366 0.7917 42.5037

bi normal
oB 3.6527 0.0044 3.559 0.0045 3.665 0.0036 3.6781 0.0037

oKDE 2.8446 0.0016 2.6854 0.0004 2.7959 0.0005 2.878 0.0005

mix gau
oB 3.9226 0.0018 4.0485 0.0022 4.063 0.002 4.0431 0.0018

oKDE 3.0911 0.0004 3.2065 0.0003 3.2109 0.0002 3.1349 0.0002

In Figure 4.2, the OBKE algorithm has a smaller negative maximum likelihood

estimation, and a smaller MSE on four different simulations, which implies the OBKE

algorithm has more power to estimate a density than the OB method.

4.3 Empirical Observation Experiment Result

[52] and [46] provide an overview of the human activity recognition process and dis-

cussion of the segmenting methods. The data source is provided by [63], where the

experiments were carried out with a group of 30 volunteers. They performed a pro-
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tocol of six basic activities: three static patterns (standing, sitting, lying) and three

dynamic patterns (walking, walking downstairs, walking upstairs). All of the partici-

pants were wearing a smartphone (Samsung Galaxy S II) on the waist while executing

the experiment. The embedded accelerometer in a smartphone generated the captured

3-axial linear acceleration at a constant rate of 50Hz. Randomly chosen 200s worth

of observations of a few volunteers show the tri-axial observations of the six activ-

ities in Figure 4.5. It is relatively easy to distinguish the dynamic activities and

the static activities because the dynamic activities have a stronger fluctuation than

the static activities. However, it is a challenge to identify walking, walking upstairs

and walking downstairs in the dynamic group, as well as identifying sitting, standing

and lying in the static group. Also, these volunteers generated their particular wave

stream so that the time series observations are quite different with each other even

when they performed the same action. For instance, in Figure 4.5 walking, the z-axial

data around the first 80s is less fluctuating than the z-axial data from 80s to 120s.

On the other hand, the observations of different activities exhibited from different

individuals could be same. Therefore, the combination of the sensor data from all of

these volunteers is difficult to detect due to the differences of the pattern. The reason

of training on the combined data is that the prototype created by such a training set

can be applied so that the user is not required to record the start and stop time for

the particular activities.

First of all, let us check the confusion matrix result of automatically segmenting

the observations using the Online Empirical Bayesian Kernel Segmentation algorithm.
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Figure 4.5: Acceleration plot of six activities

The result is shown in Table 4.3. Those errors are caused by the segmenting bias and

delays with the real boundaries. Here, we use the majority vote to label the class of

each segment.

Table 4.3: Online Empirical Bayesian Kernel Segmentation Confusion Matrix

Walking Walking
Upstairs

Walking
Downstairs

Sitting Standing lying

Walking 1 0 0 0 0 0

Walking
Upstairs

0 0.9601 0.0399 0 0 0

Walking
Downstairs

0 0.0451 0.9549 0 0 0

Sitting 0 0 0 0.9533 0.0265 0.0087

Standing 0 0 0 0.0477 0.9415 0

lying 0 0 0 0.0078 0.0058 0.9749

The average error rate of bias and delay in Table 4.3 is 3.55%, which equates to

1 minus the overall accuracy. This result shows that this algorithm can automatically

and efficiently detect the change points and find activity in the time interval. To
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compare with the Online Empirical Bayesian Kernel Segmentation method, we use

the Sliding Window and Bottom-up (SWAB) online segmentation algorithm [37] as

an optional choice. The SWAB is to process the the Bottom-up algorithm during

a large enough sliding window that includes a few segments. Unlike a Empirical

Bayesian method, the SWAB requires defining original minimal segmentation length

and a final merged number of segments. In Table 4.4, we display the overall accuracy

based on the different scales of minimal length and the number of segments. The

accuracy increases as long as we increase the number of segments and the minimum

length. However, increasing both criteria will result in a meaningless segmentation.

Therefore, it is uncertain which is the best option. Compared with that, OBKS has

a less pre-defined requirement, and hence it is more desirable to fit the observations.

Table 4.4: SWAB overall accuracy

min len = 2 min len = 5 min len = 10 min len = 20 min len = 30

num seg= 25 0.8417 0.8444 0.8494 0.8793 0.8991

num seg= 50 0.8854 0.8914 0.9022 0.9329 0.9534

num seg= 100 0.9227 0.9386 0.9514 0.9688 0.9931

num seg= 200 0.9658 0.9663 0.9739 0.9992 0.9981

Finally, we use the proposed OBKS method on the human pattern dataset to

demonstrate the segmenting capability and Table 4.5 records the confusion matrix

result.

The result of detection delay is shown in Table 4.6, which calculates the time

gap (time difference) between the true change points and the experimental change
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Table 4.5: Online Empirical Bayesian Kernel Segmentation Confusion Matrix

Walking Walking
Upstairs

Walking
Downstairs

Sitting Standing lying

Walking 1 0 0 0 0 0

Walking
Upstairs

0 0.9713 0.0287 0 0 0

Walking
Downstairs

0 0.0449 0.9551 0 0 0

Sitting 0 0 0 0.9645 0.0112 0.0243

Standing 0 0 0 0.0583 0.9417 0

lying 0 0 0 0.0146 0.0043 0.9811

point generated by the OBKS method. The average detection delay is computed as

taking an average of all time gaps that are 65 observations, which means the detecting

delay is 1.3s.

Table 4.6: Detection delay using OBKS method

Average detection
delay

Minimum detec-
tion delay

Maximum detec-
tion delay

Observations 65 0 685

Time 1.3s 0s 68.5s

4.4 Comparing OBKS with HMM

Recall the previous work discussed in Chapter 2, and the data source is provided

by Dr.Tu’s lab. It is a tri-dimensional sensor data with a 50Hz sampling rate. The
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sensor data include sitting, standing, walking upstairs, walking downstairs, walking

and jogging six activities. However, the label of each activity is unknown. Comparing

the change point detecting result by OBKS method in Figure 4.6 with HMM state

estimation result mentioned in Chapter 2, the OBKS algorithm does an excellent

performance.

Figure 4.6: Acceleration plot of six activities

4.5 Contribution

In the previous chapter, we described a new online segmentation method, Online

Empirical Bayesian Kernel Segmentation (OBKS). In this chapter, we tested the seg-

menting performance of OBKS on the MCMC simulated observations and the em-

pirical data set, which showed a better result compared with the Bottom-Up Sliding
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Window and Online Empirical Bayesian Detecting method. Accuracy is used as the

criterion of testing the performance that is the proportion of the correctly segmented

data point. In addition, we evaluated the performance of density estimation through

comparing the Online Kernel Density Estimation (OKDE) and the Online Empirical

Bayesian Estimation (OBE). The OKDE resulted in lower negative MLE values and

lower MSE values, which implies that the OKDE method has a better performance

of density estimation. Hence, these experiments verify our proposed method.
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5 Two-layer Classification and Experiment Result

5.1 Classification Algorithm

5.1.1 k-Nearest Neighbor

K-nearest neighbor classification is a style of instance-based learning or lazy learning,

which is one of the simplest marching learning algorithms. This method is used widely

in pattern recognition as a non-parametric estimation approach. This process classifes

an object by majority voting locally among the k most close training samples, so that

learning is not implemented until classification occurs. The closeness is measured by

a distance, such as Euclidean distance, Manhattan distance, and Minkowski distance.

Here, x is d-dimensional observation, i 6= j.

Euclidean

√√√√ d∑
k=1

(xik − xjk)2

Manhattan
d∑

k=1

|xik − xjk|

Minkowski

(
d∑

k=1

(|xik − xjk|)q
)1/q

(5.1.1)
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k is a pre-defined constant, and different k values result in different classification

targets. The cross-validation is used to identify the optimal k value.

5.1.2 Decision Tree

A decision tree displayed in Figure 5.1 builds a tree which recursively partitions the

features into a set of rectangles by a particular splitting rule. In this structure,

the leaves represent the class targets, and the branches represent the conjunctions of

features that lead to those class labels. The splitting criteria that searches for the best

tree construction minimizes the impurity-based criteria, such as the misclassification

error rate, the Gini index, and the information gain. Let P̂k represent the proportion

of the observations belonging to a class k, k = 1, ..., K.

Classification error rate: E = 1−maxk(P̂k)

Gini index: G = 1−
K∑
k=1

P̂ 2
k

Information gain D = −
K∑
k=1

P̂ 2
k log2(P̂ 2

k ) (5.1.2)
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Figure 5.1: Decision tree partition

Many researchers discuss this algorithm, such as ID3 [61], C4.5 [67], and CART

[50]. One single tree usually leads to a high variance based on different learning

models; ensemble learning is motivated by the idea of including multiple decision

trees. There are two directions to create the multiple trees: parallel tree (Bagging

[11], Random Forrest [31, 12]) and serial tree (Boosting [68, 22]). Bagging is also

known as a bootstrap aggregation, which was introduced by Breiman in 1994 in an

early version of [11]. Parallel method displayed in Figure 5.2 generates n decision

trees at the same time and generates n target values based on the different trees. The

final class of an individual is defined by taking the majority vote over all trees in the

forest. The difference between Bagging and Random Forest is the Bagging method

trains on all of the features and Random Forest only considers the randomly selected
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sub-features, which avoids the correlations between these features. Directly training

multiple trees on a single training set would give the most strongly correlated trees.

Random Forest improved a decision tree with reduced over-fitting.

Figure 5.2: Structure of Bagging

Unlike the Bagging tree, the parallel tree is designed to improve the stability

and accuracy of a decision tree. The Boosting method, as shown in Figure 5.3, is

the serial tree. It also has reduced variance and avoids the over-fitting issue. The

reason of reducing variance is it adaptively updates its weight instantly to correct the

previous mis-classifier. The goal is to generate a set of weak learners that create a

single strong learner.
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Figure 5.3: Structure of Boosting

5.1.3 Naive Bayes

The Naive Bayes classifier [66] is a probability model based on applying Bayes theorem

with the naive assumption of independence between every pair of features. A naive

Bayes classifier considers these features independently of each other as they contribute

to probability. The advantage of the Naive Bayes classifier is that it only requires a

small amount of training data to estimate the means and variances of the variables

necessary for classification. Let training examples x with attributes {a1, a2, ..., ap},

and assuming the attributes are conditionally independent, the Naives Bayes classifier

is defined as:

yNB = argmaxyj∈Y P (yj|a1, a2...., ap)

= argmaxyj∈Y
P (a1, a2...., ap|yj)P (yj)

P (a1, a2...., ap)
(Bayes rule)

= argmaxyj∈Y P (a1, a2...., ap|yj)P (yj) (P (a1, a2...., ap) is constant)

= argmaxyj∈Y P (yj)

p∏
i=1

P (ai|yj) Independent assumption (5.1.3)
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where the estimated target is given by the target associated with maximum probabil-

ity.

5.1.4 Neural Network

Artificial Neural Network (ANN) is a computation process that depends on an in-

terconnected group of nodes which calculates in a way similar to that of a biological

brain. This approach is first introduced by Warren McCulloch and Walter Pitts in

[53] and combines mathematics and threshold logic algorithm. Due to the complexity

and flexibility of ANN, it is broadly applied to a variety of topics, such as pattern

recognition and writing recognition.

The ANN system shown in Figure 5.4 includes at least three layers, one is

for input node, at least one is for hidden node, and the last one is for output node.

Different nodes correspond to different weights and associate with a transfer function.

The task is to minimize the mean square error by searching for an optimal set of

weights.
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Figure 5.4: Structure of ANN

5.2 Feature Extraction and Feature Selection

In machine learning and statistics, the feature extraction starts from an initial set

of measured data and builds derived values (features), which aim to extract more

information and key features. The types of features widely used so far are categorized

as following four types of features [7].

Time Domain Features: mean, variance, mode, maximum, minimum, etc.;

Frequency Domain Features: spectral energy, spectral entropy, Fourier transforms

coefficients, etc.;

Time-Frequency Domain Features: Wavelet coefficients;

Heuristic Features: Signal Magnitude-Area, Signal Vector Magnitude, Inter-axis

Correlation, etc.

When the input data is too large to be processed by an algorithm or some
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of the variables are highly related to each other, a process called feature selection

is considered that transforms the entitled features (input data) into a reduced set

of features for classifying. This procedure can reduce the over-fitting issue and the

irrelevant results that produce more efficient classification training and testing.

5.3 Feature Selection for Human Pattern Observation

In this experiment, instead of extracting features from those segments with fixed

length, such as 100 observations and 1000 observations, we consider extracting the

features from the entire time series segment constructed automatically by the Online

Empirical Bayesian Kernel Estimation (OBKE) algorithm. One of the reasons for

considering the features on a whole segment is less computation time for each feature.

Another reason is to classify the whole sequence rather than classifying the subse-

quence because the subsequences contain less information of a pattern. Recall the

human pattern recognition experiment mentioned in Chapter 4, there is an important

measurement for the feature selections of the three-dimensional data (xi, yi, zi): the

distance of a observation to the original point (0, 0, 0) called magnitude, which is de-

fined as di =
√
x2
i + y2

i + z2
i . The features we use here follow the eight criteria. We

consider the time frame ti, ti+1, ..., tj of certain segment, the length is j − i+ 1:

1. Average of (xi, yi, zi, di), such as x̄ = 1
j−i+1

∑t=j
t=i xt;

2. Standard deviation of (xi, yi, zi, di), such as σx =
√∑t=j

t=i
(xt−x̄)2

j−i+1
;

3. Average of local maximum of (xi, yi, zi, di), such as, assume there are k local

maximums for x-axis, x̄max = 1
k

∑
xkmax;
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4. Average of time difference between two consecutive local maximums of

(xi, yi, zi, di), such as diffxmax = 1
k−1

∑
xkimax − x

kj
max;

5. Skewness of (xi, yi, zi, di), such as Skewx =
1

j−i+1

∑
(xt−x̄)2

[ 1
j−i

∑
(xt−x̄)2]3/2

6. Kurtosis of (xi, yi, zi, di), such as Kurtx =
1

j−i+1

∑
(xt−x̄)4

[ 1
j−i+1

∑
(xt−x̄)2]2−3

7. Pearson Correlation Coefficient among x-axis, y-axis and z-axis, such as

ρxy = cov(x,y)
σxσy

8. Inter Quantile Range of (xi, yi, zi, di), such as iqrx = Qx3 − Qx1,Qx1 is the first

quantile of x-axis and Qx3 is the third quantile of x-axis.

The observations can be approximated as a periodic wave, and the repetitive

peak can be regarded as one of the characteristics that are applied to distinguish

different axes of different activities [44]. Since the wave of the dynamic activities

repeats more quickly than the static activities, the time gap between two consecutive

peaks of the dynamic activities is shorter than the static activities. The time gap is

also used as the index to distinguish the activities.

The criterion used to select the features is the variable importance. There are

two types of variable importance measure methods: out-of-bag error rate and Gini

index. In Table 5.1, it shows the variable contributions by the Gini index. A variable

is not significant if the Gini index is close to 0; a variable gives remarkable contribution

for classification if the Gini index is much higher compared to other variables, such

as the importance of the average of the x-axis is 30.0708. That is the reason why we

choose this feature.
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5.4 Classification Comparison

Considering the experimental dataset, after processing the time series segmentation

algorithm, and we train the two-layer classification. The first layer classifies the

activities into two key categories: the dynamic activities (walking, walking upstairs,

walking downstairs) and the static activity (standing, sitting, lying). The features

used for the first layer classification only include the first four criteria of di: average,

standard deviation, the average of local maximum and the average of the time gap

between two consecutive local peaks. These criteria of di are the main factors to

distinguish a dynamic pattern and a static pattern. For the second layer classification,

there are two separated classification processes. One classifier trains and tests only

on the dynamic activities resulting in three classes: walking, walking upstairs, and

walking downstairs. Another classifier trains and tests on the static activities that

also lead to three classes: sitting, standing, and lying. Here, we apply Random Forest

as the classification method, which is the most widely used classifier and it is suitable

for different types of data [70]. The two-layer classification algorithm is displayed in

Figure 5.5.
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Figure 5.5: Two-layer Classification

The human pattern dataset was randomly split into two sets, where 70% of
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the data was collected as the training data, and the other 30 % are the test data.

The training set is applied to train the two-layer Random Forest to get the prototype

model. Subsequently, the model is applied to classify the patterns (segments) gen-

erated by the Online Empirical Bayesian Kernel Segmentation discussed in Chapter

3, and produces a class label as the output. Comparing the one layer and two-layer

classification method: SVM, kNN, Boosting, and Random Forest in Table 5.2, there

is a significant difference between the one layer and two-layer associated with kNN

and Random Forest on this experimental data. For example, the overall accuracy by

the one layer Random Forest is 0.8484, and the overall accuracy using the two-layer

Random Forest is 0.9239.

We compare the accuracy results of kNN, SVM, and Boosting with Random

Forest, as shown in Table 5.2 and Figure 5.6. The overall accuracy of Boosting

and Random Forest are very close and both are higher than the other two algo-

rithms. Checking the accuracy for each activity in Figure 5.6, the results generated

by Boosting and Random are better than the others, except for walking upstairs.

SVM performs the best classification result on the walking upstairs pattern. Taken

as a whole, Boosting and Random Forest are the best choices. Nonetheless, the time

complexity of Boosting O(ndKlog(n)) is higher than the time complexity of Random

Forest O(ndlog(n)). Here, n is the number of the observations, d is the number of

the features, and K is the depth. We have displayed the actual running time for

each classification method in Table 5.3 after extracting out the meaningful features.

The SVM cost the least of process time, the time consumption of boosting is almost
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six times of the random forest’s. Consider the task of human pattern detecting, not

only accuracy is important, but less computation time is also a prominent criterion.

Therefore, the Random Forest is the better way to handle our data.

Figure 5.6: Accuracy of six activities using four classification methods

5.5 Contribution

In this section, a two-layer Random Forest classification method has been proposed,

which considers using different features for different layers. After developing this new

segmentation method discussed in Chapter 3, the procedure of feature selection is

performed, followed by classification. In [63], Jorge-L Reyes-Ortiz and Luca Oneto

proposed 561 features for the human pattern recognition application in the classifica-

tion step. However, not all features are necessary; some of them are redundant. We

use fewer features than other researchers to reduce time complexity in the classifica-

86



tion step. In order to choose the most appropriate classification method for certain

human activity sensor data, we have analyzed Random Forest, Boosting, SVM, and

kNN experimental results for the case of defining the best fitting classification algo-

rithm.
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Table 5.1: Variable importance

Variable Gini Variable Gini Variable Gini

Avgdiff d 17.3045 Avgdiff z 2.6665 Entropy z 11.566012

avgmax d 19.5482 avgmax z 7.8080 Corr xy 7.6513

avg d 17.6678 skew d 6.0167 Corr xz 5.1707

std d 28.2118 skew x 5.4729 Corr yz 4.5131

avg x 30.0708 skew y 5.8925 iqr d 15.9902

avg y 20.4652 skew z 4.6519 iqr x 7.4886

avg z 8.0008 kurt d 8.7959 iqr y 5.8003

std x 14.7185 kurt x 4.3166 iqr z 5.2102

std y 2.6321 kurt y 5.3447 energy d 35.8213

std z 2.3531 kurt z 6.5595 energy x 33.1778

Avgdiff x 8.5406 Entropy d 35.2387 energy y 12.8090

avgmax x 19.8906 Entropy x 18.0300 energy z 6.2494

Avgdiff y 3.5887 Entropy y 30.9861 - -

avgmax y 9.5369 - - - -

Table 5.2: Overall accuracy of six activities using four classification within one layer and
two-layer approach

SVM kNN Boosting Random Forest

One layer 0.8237 0.5922 0.8594 0.8484

Two-layer 0.8237 0.6116 0.8585 0.9238
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Table 5.3: Experimental time consuming for each classification method

SVM kNN Boosting Random Forest

Time consuming 4.7s 6.3s 1317.31s 20.69s

89



6 Human Pattern Recognition System

6.1 Human Pattern Recognition System

In this section, combining the knowledge from Chapter 3 to Chapter 5, we present a

Human Activity Recognition (HAR) system in Figure 6.1 using the sensor data gener-

ated from the tri-axial accelerometer that was built into the smartphone [64]. The six

daily life activities conducted here are: walking, walking upstairs, walking downstairs,

sitting, standing, and lying. To deal with the HAR problem, first of all, we must split

the entire time series interval into disjointed segments because the raw data cannot be

directly applied to the classification algorithm. Next, we extract the essential features

(mean, standard deviation, peaks, etc.) from each segment, and use these features

for the classification algorithm, such as decision tree. Finally, we train and test the

identifying process. Because of the limitation of a cell phone’s battery and CPU, we

cannot process the training step on a mobile phone. Generally, the training process is

either already learned on a computer or happening on cloud computing through the

Internet. However, since technology is improving with time, more and more types of

cell phones are allowed to run the training algorithm [70]. Therefore, the user can col-

lect the data and identify the activities on their phone. Training classification on a cell
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phone is more convenient for a user when a user wants to adjust the activity training

model to fit his/her activities or when the Internet is not available. In addition, it is

also desirable to build more efficient and less complex learning algorithms so that the

training procedure can be developed on a cell phone. For the classification methods,

there are two types of the algorithms: online learning and offline learning ([33],[56]).

Compared with the offline learning methods, the online learning algorithms can be

applied to real-time training data because it is able to adapt the model as new data

being collected.
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6.2 Empirical Experiment

Table 6.1 shows the testing accuracy of the two-layer Random Forest followed by

Online Empirical Bayesian Kernel Segmentation. The overall accuracy is 91.4% for

combining the six patterns. The accuracy of the static postures and the dynamic

activities is 100 %. Based on the overall accuracy of the two groups, we can 100%

detect whether a person moves or not. From the estimated change points, we can

estimate the time length for a person being active or sedentary.

Table 6.1: Online two-layer Classification Confusion Matrix

Walking Walking
Upstairs

Walking
Downstairs

Sitting Standing lying

Walking 26 3 0 0 0 0

Walking
Upstairs

3 50 1 0 0 0

Walking
Downstairs

0 3 51 0 0 0

Sitting 0 0 0 34 2 0

Standing 0 0 0 5 30 1

lying 0 0 0 0 0 36

6.3 Contribution

In the presented research, we develop a human pattern recognition system using a

cell phone accelerometer that generates the tri-dimensional time series observation,
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which combines Online Empirical Bayesian Kernel Segmentation, feature extraction,

feature selection, and two-layer Random Forest. We create these class prototypes

using training data. By considering the properties of cell phones, such as the battery

limitation, we decide the training step would not happen on a smartphone. The

performance is illustrated by testing on the smartphone accelerometer sensor data,

which is generated from the smartphone with a built-in accelerometer when the 31

volunteers carried it on their waist to act the six states: sitting, standing, lying,

walking, walking upstairs, and walking downstairs. This process shows the overall

accuracy is 91.4%. In addition, it can detect lying 100%.
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7 Conclusion and Future Work

We present a real-time human pattern activity recognition algorithm used on the

smartphone platform for human activity identification. We introduce Online Em-

pirical Bayesian Kernel Segmentation and two-layer Random Forest classifier. The

multivariate normality assumption for the likelihood function of the variable is bit re-

strictive; we consider the Online Multivariate Kernel Density estimation to avoid this

assumption. Furthermore, rather than extracting the features from each small and

fixed length segment, this method computes the features based on the entire activity

time interval. Different classification layers use different features in order to avoid

using the meaningless features, to save the running time. The aim of the first layer is

to distinguish the dynamic activities (walking, walking upstairs, walking downstairs)

and the static activities (sitting, standing and lying) using the amplitude as the key

feature. The process of the second layer is to distinguish the three sub-groups in

different categories. However, it is still a big challenge to differentiate walking and

walking upstairs based only on the accelerometer sensor data. We could get better

results with regarding the GPS data in later work. In this work, the performance has

reached an overall accuracy of 91.4% for the six states, and the overall accuracy for
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the two categories dynamic activities and static activities is 100%. In the future, a

real-time detecting activity system can be designed on a smartphone. Since it has

been trained and it can automatically detect behavior change, it is easier to handle

this process for a user without the user’s knowledge of machine learning and the mul-

tiple inputs of a smartphone when the user changes his/her behaviors. Also, we can

extend the set of activities with a low frequency and a high frequency, such as fast

walking, slow walking, fast running, and jogging.

The main future work is to create an App based on this human pattern recog-

nition system that is used on a cell phone, and any user can operate it directly after

downloading it. First of all, we need to process the training step and generate the

prototype. There are two approaches to developing this step. One of them is to col-

lect the training sensor data from the multiple volunteers, then train the classification

algorithm with these data on a computer, and store this prototype on the cell phone.

This prototype is more flexible and suitable for different types of users. The other one

is a user can collect data and train on a computer or Cloud computing. For example,

push “start” and “end” option to store Walking data when a user performs walking on

the first try. The prototype created this way is more suitable for this user and not af-

fected by other users’ time series data. Next, this App detects the pattern segmenting

with the Online Empirical Bayesian Kernel Segmentation method. Finally, to classify

each segment (pattern), compare it with each activity prototype using classification

algorithm. By following all above steps, it would automatically trace a user’s pattern

once the user turns on the accelerometer signal.
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For the statistical part, we need to compare the segmenting result of OBKS

method by using different kernel functions mentioned in Table 3.1. It could define

an optimal kernel function used for segmenting the human activities time series data.

Also, the different types of time series data might require different types of kernel

functions. Because properties of a computer and a smartphone are different, incre-

mental updating of the Online Kernel Density function that is a part of the online

segmentation method, which requires a more efficient algorithm when it is running

on a cell phone compared with running on a computer. Looking for the best band-

width matrix is the primary and challenging step in Online Kernel Estimation. In

addition, we can consider the possible and meaningful features and select the relevant

features. As an important step before classification, the appropriate features make

the classification more efficient, since these features are given the characteristic of

each class.

97



References

[1] Ericsson mobility report: 70 percent of world’s population using smartphones by

2020. https://www.ericsson.com/news/1925907, June 2015.

[2] Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint de-

tection. arXiv preprint arXiv:0710.3742, 2007.

[3] Charu C Aggarwal. A survey of stream classification algorithms., 2014.

[4] Dima Alberg and Avner Ben-Yair. Online hoeffding bound algorithm for segment-

ing time series stream data. Journal of Applied Quantitative Methods, 5(3):446–

453, 2010.

[5] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge L Reyes-

Ortiz. Human activity recognition on smartphones using a multiclass hardware-

friendly support vector machine. In International Workshop on Ambient Assisted

Living, pages 216–223. Springer, 2012.

[6] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis

Reyes-Ortiz. Energy efficient smartphone-based activity recognition using fixed-

point arithmetic. J. UCS, 19(9):1295–1314, 2013.

98



[7] Akin Avci, Stephan Bosch, Mihai Marin-Perianu, Raluca Marin-Perianu, and

Paul Havinga. Activity recognition using inertial sensing for healthcare, wellbeing

and sports applications: A survey. In Architecture of computing systems (ARCS),

2010 23rd international conference on, pages 1–10. VDE, 2010.

[8] Ling Bao and Stephen S Intille. Activity recognition from user-annotated accel-

eration data. In International Conference on Pervasive Computing, pages 1–17.

Springer, 2004.

[9] Eran Borenstein and Shimon Ullman. Class-specific, top-down segmentation. In

European conference on computer vision, pages 109–122. Springer, 2002.

[10] Eran Borenstein and Shimon Ullman. Combined top-down/bottom-up seg-

mentation. IEEE Transactions on pattern analysis and machine intelligence,

30(12):2109–2125, 2008.

[11] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[12] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[13] Pierluigi Casale, Oriol Pujol, and Petia Radeva. Human activity recognition from

accelerometer data using a wearable device. In Iberian Conference on Pattern

Recognition and Image Analysis, pages 289–296. Springer, 2011.

[14] Soumen Chakrabarti, Martin Ester, Usama Fayyad, Johannes Gehrke, Jiawei

Han, Shinichi Morishita, Gregory Piatetsky-Shapiro, and Wei Wang. Data mining

curriculum: A proposal (version 1.0). Intensive Working Group of ACM SIGKDD

Curriculum Committee, page 140, 2006.

99



[15] Jingyuan Cheng, Oliver Amft, and Paul Lukowicz. Active capacitive sensing: Ex-

ploring a new wearable sensing modality for activity recognition. In International

Conference on Pervasive Computing, pages 319–336. Springer, 2010.

[16] Nicolas Chopin. Dynamic detection of change points in long time series. Annals

of the Institute of Statistical Mathematics, 59(2):349–366, 2007.
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