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for their extensive support and guidance in the development and completion of this thesis.

I would like to express my gratitude to Dr. Dmytro Savchuk for serving on the defense

committee and carefully reviewing this thesis. I also could not have completed this thesis

without the support of the other members of the USF Math-Bio Lab, including Jasper Braun,

Daniel Cruz, Jonathan Burns, Derek Covert, and Mustafa Hajij, as well as all of the faculty

of the Department of Mathematics and Statistics at the University of South Florida. I would

also like to thank all of my family and friends who made this journey possible, enjoyable, and

enriching. The work presented here has been supported in part by the National Institutes

of Health under Grant No. R01GM109459.



Table of Contents

List of Tables ii

List of Figures iii

Abstract iv

1 Introduction 1

1.1 Main Results and Thesis Organization . . . . . . . . . . . . . . . . . . . 3

1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Generalized Patterns 8

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Patterns in Double Occurrence Words 27

3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Complete Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Pattern Recurrence Index . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Nesting Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Highly Scrambled Genome Rearrangements in O. trifallax 51

5 Conclusion 54

References 56

i



List of Tables

4.1 Compared with an identically distributed random sample of 22 words, the 22
highly scrambled cases exhibit significantly lower averages on indices that in-
clude the tangled cord pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ii



List of Figures

2.1 Visual representations of the ten cases. Red intervals represent u1 and u′1, while
green intervals represent u2 and u′2. . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 A schematic depicting the process of removing insertions that precede deletions
in a path from u to v. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 A reduction tree for the reduction (T7, T2T4, T2T2T1, ε) of T7. . . . . . . . . . . 39

3.3 The chord diagram associated with the words 121323, 123213, and 123132. . . 46

3.4 The chord diagrams of the words 12321434 and 121323, respectively. . . . . . . 46

3.5 The chord diagram of v5 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10. . . . 49

4.1 DNA rearrangement in Oxytricha trifallax. The MDS sequence M1M2M3M5M4

with pointer sequence 11223434 (left) can be represented as a double occurrence
word and visualized using a chord diagram (right). . . . . . . . . . . . . . . . 51

iii



Abstract

Patterns, sequences of variables, have traditionally only been studied when morphic

images of them appear as factors in words. In this thesis, we initiate a study of patterns in

words that appear as subwords of words. We say that a pattern appears in a word if each

pattern variable can be morphically mapped to a factor in the word. To gain insight into

the complexity of, and similarities between, words, we define pattern indices and distances

between two words relative a given set of patterns. The distance is defined as the minimum

number of pattern insertions and/or removals that transform one word into another. The

pattern index is defined as the minimum number of pattern removals that transform a

given word into the empty word. We initially consider pattern distances between arbitrary

words. We conjecture that the word distance is computable relative the pattern αα and

prove a lemma in this direction. Motivated by patterns detected in certain scrambled ciliate

genomes, we focus on double occurrence words (words where every symbol appears twice)

and consider recursive patterns, a generalization of the notion of a pattern which includes

new types of words. We show that in double occurrence words the distance relative so-called

complete sets of recursive patterns is computable. In particular, the pattern distance relative

patterns αα (repeat words) and ααR (return words) is computable for double occurrence

words. We conclude by applying pattern indices and word distances towards the analysis of

highly scrambled genes in O. trifallax and discover a common pattern.

iv



1 Introduction

A word is a sequence, finite or countable, of elements from a finite or countable set Σ

known as an alphabet. For example, the word 102120102 is a sequence of symbols from the

alphabet {0, 1, 2}, while the word “electric” is a sequence of letters from the English alphabet

{a, b, . . . , y, z}. The study of words dates back to at least the work of Axel Thue [4, 5] in the

early 20th century on square-free words, those that do not contain any factor twice in a row,

and has numerous applications to a variety of fields, including automata theory, symbolic

dynamical systems, coding theory, natural language processing, bioinformatics, and many

more [3].

Patterns, sequences of variables from a set X, are primary objects of study in com-

binatorics on words. A pattern p is said to appear in a word u if there exists a morphism

f : X∗ → Σ∗ such that f(p) is a factor of u (see Section 1.2 for definitions of this notation).

Patterns in words have a long history. For example, the square uu ∈ Σ∗ corresponding to a

pattern αα ∈ X∗ is an archetypal pattern. In the study of such patterns, a classical result

due to Thue is that an infinite word without a square factor is only possible over alphabet

with at least three symbols. This result answers the question of when the pattern αα is

avoidable, that is, when there are infinitely many words in Σ∗ that do not contain an ap-

pearance of αα. In this language, Thue’s theorem says that αα is avoidable if and only if

|Σ| > 3.

The concept of avoidability of patterns was first introduced by Bean, Ehrenfeucht,

and McNulty [6] and studied by many authors, including Zimin [7, 8], Baker, McNulty, and

Taylor [9], Schmidt [10, 11], Cassaigne [12, 13], and others. Thue’s theorem can be stated

more precisely by introducing the concept of k-avoidability: a pattern p is k-avoidable if p

is avoidable on any alphabet of size k. This leads to the definition of the avoidability index

µ(p) of a pattern p, the smallest integer k such that p is k-avoidable. If p is unavoidable, then

µ(p) :=∞. Now Thue’s theorem becomes the simple assertion that µ(αα) = 3. Computing
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the avoidability index of a given pattern is a difficult problem of primary interest in the

study of patterns in words. Although the problem of determining whether a given pattern is

avoidable has been solved [6, 7], it remains an open problem to determine whether a given

pattern is k-avoidable and hence compute its avoidability index. In this direction, Schmidt

began to answer this question for binary patterns, patterns on two variables. This work was

completed by Cassaigne, who was able to completely classify binary patterns according to

their avoidability index (which in this case can be either 2, 3, or ∞). In 2006, building on

Cassaigne’s work, Ochem [14] completed the classification of ternary patterns. For arbitrary

patterns, only bounds on the avoidability index have been obtained; see e.g. [9, 2].

Other problems related to patterns and avoidability that have been studied include

bounding the length of patterns of a given avoidability index and studying the growth,

topological structure, and other properties of a set of words avoiding a given pattern. For

results in this direction, see Cassaigne and Roth [12, 13], Baker, McNulty, and Taylor [9], and

Currie [15], among others. Although avoidability is central to the study of patterns, there

are many other problems involving patterns that have been explored in the combinatorics

on words literature. Knuth, Morris, and Pratt [20], Abrahamson [16], Baker [19], Apostolico

and Galil [18], Amir, Aumann, Cole, Lewenstein, and Porat [17], Amir and Nor [21], and

others have studied the pattern matching problem, which seeks to find efficient algorithms

for finding all the occurrences of a given pattern in a word. An inverse problem, finding

patterns common to a set of words, has also been explored (see e.g. Angluin [22] and Ng

and Shinohara [23]), as has the NP-complete problem of determining whether a word is an

instance of a given pattern (see e.g. Reidenbach and Schmid [24], Fernau and Schmid [25],

and Fernau, Manea, Mercas, and Schmid [26]).

The problem of approximate string matching, which has applications to computa-

tional biology, signal processing, text retrieval, and many other fields, is also concerned with

locating a pattern in a given word (or string) [27]. In this context, a pattern is simply a

word from Σ and the goal is to find all factors of a given word that match a pattern with

up to k errors. Given a distance function d : Σ∗ × Σ∗ → R, we say that two words u and v

match up to k errors if d(u, v) 6 k. The distance function d is typically taken to be a type of

edit distance, where d(u, v) is defined as the minimal cost of a sequence of edit operations,

each with an associated cost, that transform u into v (and if no such sequence exists, then

2



d(u, v) :=∞). There are four primary edit operations considered in the literature: insertion

of a letter, deletion of a letter, substitution of one letter for another, and, less commonly,

transposition of two adjacent letters; the most widely studied edit distances are defined using

some subset of these four edit operations.

Perhaps the oldest edit distance, the Levenshtein distance, was defined by Vladimir

Levenshtein in 1965 [28] as the edit distance allowing insertions, deletions, and substitutions

with cost 1. Other commonly considered edit distances include the Hamming distance [29]

(substitution), longest common subsequence distance [30] (insertion and deletion), and the

Damerau-Levenshtein distance [31] (insertion, deletion, substitution, and transposition). See

the work of Ukkonen [32, 33, 34], Wagner and Fischer [35], Baeza-Yates and Navarro [36, 37],

Myers [38], and others for fast algorithms for approximate string matching and other results

on this problem.

In this thesis, we generalize the traditional notion of a pattern and consider the

problem of describing the complexity of the appearance of generalized patterns in words.

Along the lines of the literature on edit distances and approximate string matching, we also

study word distances defined via edit operations involving inserting and removing generalized

patterns, not just letters or subwords.

1.1 Main Results and Thesis Organization

In Section 1.2, we begin by describing the standard notation from the combinatorics on

words literature used throughout the thesis. The remainder of the thesis is separated into

three chapters.

In the first chapter, we study a generalization of the traditional notion of a pattern

which allows for subword appearances in a word. We begin by defining generalized patterns

in Section 2.1. We then introduce our primary tool in the study of appearances of generalized

patterns in words: reductions of a word, defined by the iterative removal of pattern instances

via so-called reduction operations1. In Section 2.2, we use reductions to define paths between

two words, essentially sequences of edit operations, that is, pattern instance removals and

insertions, transforming one word into another. Paths naturally induce a distance dP between

1Traditionally known as “edit operations”.
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words by defining dP (u, v) to be the minimum length of all paths between words u and v

relative a fixed set of patterns P . These word distances serve as a measure of the similarity of

two words relative a given set of patterns. In order for this to be practically useful, we need

to be able to compute the word distance. Although this problem appears largely infeasible

in the general case, for arbitrary words and arbitrary sets of patterns, we do make progress

on computing the word distance for a particularly simple and practically useful pattern,

the repeat word αα. In this direction, we prove the following theorem, which essentially

affirms that if we can remove and/or insert two pattern instances two transform u into v,

those pattern instances do not need to be “too large”; in particular, they are bounded by a

constant multiple of |u|+ |v|.

Theorem 2.2.8. Let P = {αα}, u and v be words, and suppose there exists a minimal

path ρ from u to v of the form ((u,w), (w, v)) for some word w. Then there exists such a w

satisfying

|w| 6 4(|u|+ |v|).

We then outline a possible proof of our main conjecture:

Conjecture 2.2.9. Let P = {αα}. For all words u and v, dP (u, v) is computable.

We are also interested in studying how well a set of patterns describes (or “generates”)

a given word. In Section 2.3, we introduce a measure of the complexity of such a description

by defining pattern indices IP (u), the minimum length of all reductions from u to the empty

word ε.

As Conjecture 2.2.9 indicates, in general it is very difficult to prove useful, nontrivial

statements about word distances and pattern indices for arbitrary words or arbitrary sets of

patterns. Without a means to make more progress in this direction, in Chapter 3 we focus

our efforts on analyzing biologically-motivated double occurrence words, words with exactly

two occurrences of each letter. We also further generalize our notion of a pattern to include

more interesting pattern languages by defining recursive patterns, essentially sequences of

patterns that can be recursively generated by iteratively adding two occurrences of a variable.

There exist particularly well-behaved sets of recursive patterns, so-called complete sets of

recursive patterns, for which we can make significant progress on a number of important
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problems. The repeat word αα and return word ααR are the two most notable examples of

complete recursive patterns. Our primary result is the following theorem:

Theorem 3.2.10. Let Π be a complete set of recursive patterns. For all double occurrence

words u and v in the same connected component, there exists a minimal path ρ between u

and v of the form (r1) or (r1, r
R
2 ), where r1 and r2 are reductions. In particular, dP (u, v) is

computable.

Not only does this imply that the word distance is computable for double occurrence

words and complete sets of recursive patterns, but it is essentially as easy to compute as the

pattern index by searching through all possible reductions of u and v. In Sections 3.3 and

3.4, we analyze two pattern indices associated with the repeat word and return word, the

pattern recurrence index PI and the nesting index NI. We prove a variety of results about

these indices, including a computation of the pattern recurrence index and nesting index of

the tangled cord, a complex recursive pattern or, equivalently, type of word with biological

applications.

We conclude the thesis in Chapter 4 with an analysis of twenty-two highly scrambled

DNA rearrangements that occur in Oxytricha trifallax during sexual reproduction in the

production of a protein-cording macronucleus from the nonfunctional micronucleus. Note

that this work of the author was first described in [43]. Every DNA rearrangement in O.

trifallax can be represented by a double occurrence word. Although it was previously dis-

covered that the vast majority of these genome rearrangements are nested concatenations of

repeat words and return words [41, 42], there are twenty-two rearrangements which retain

at least four letters after iterative removal of all repeat words and return words. Since the

repeat word and return word do not well-described these highly scrambled rearrangements,

we search for other recursive patterns hidden within these rearrangements. Using the word

distances and pattern indices studied in Chapters 2 and 3, we identify the tangled cord as

a commonly-occurring recursive pattern. Biologically, this indicates that during the rear-

rangement process DNA strands may often be folding into a “tangled cord” configuration in

order to produce new strands.
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1.2 Notation

An alphabet is a finite or a countable set Σ whose elements are called symbols or letters. A

word u over Σ is a finite sequence of symbols in Σ and Σ∗ denotes the set of all words. If we

write u = a1 · · · an for some ai ∈ Σ, then n is the length of u, denoted |u| = n. The empty

word is denoted by ε and has length 0. A subset L ⊆ Σ∗ is called a language. The set of all

words of length at least n is denoted by Σ>n; in particular, we write Σ+ for Σ>1, the set of all

words of positive length. Furthermore, for a word u over Σ we let Σ[u] denote the alphabet

composed of all symbols appearing in u. The reverse of u is denoted uR = an · · · a2a1 and

we write

uk = uu · · ·u︸ ︷︷ ︸
k copies

to denote the n-fold concatenation of u. The number of appearances of a symbol a in a word

u is denoted by |u|a.

A word v is a factor of u if there exist u1, u2 ∈ Σ∗ such that u = u1vu2. In this case,

we write v v u and u(v−1) = u1u2. Note that u(v−1) does not necessarily uniquely determine

u1u2. If u1 = ε, then we say that v is a prefix of u, while if u2 = ε, we say that v is a suffix

of u. We say that v = v1 · · · vk is a subword of u, written v � u, if u = u0v1u1 · · · vkuk for

some ui ∈ Σ∗. As one might expect, we write v ≺ u when v 6= u and use u � v to denote

u as a word that contains v as a subword. We point out the distinction between a subword

and a factor. In the literature, the term “subword” may often be used to denote a factor,

rather than a subsequence (as we use it here). Our notation follows several books from the

reference literature on combinatorics of words [1, 2].

Throughout this thesis, X will denote a set of variables such that for every variable

α ∈ X there is a variable αR ∈ X distinct from α satisfying (αR)R = α. The elements in X

are denoted by greek symbols α, β, etc. For a word p ∈ X∗, we setX[p] = {α ∈ X | |p|α > 1},

the set of variables that appear in p.

A function f : X → Σ∗ naturally extends to a morphism f : X∗ → Σ∗. We say that f

is reverse-preserving on X if f(α)R = f(αR) for all α ∈ X. In the rest of the text we assume

that all functions are reverse-preserving on X. We say that words u ∈ Σ∗1 and v ∈ Σ∗2 are

equivalent, and write u ≡ v, if there exists a bijection f : Σ1 → Σ2 such that f(u) = v for

6



the induced morphism f : Σ∗1 → Σ∗2.
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2 Generalized Patterns

2.1 Definitions

Traditionally, patterns have only been considered as factors in word. In this chapter, we

extend the notion of a pattern appearing in a word to include subwords.

Definition 2.1.1. Let X be a set of variables. A pattern p is an element of X∗. For a word

w ∈ Σ∗, p = α1 · · ·αn appears in w if there is a reverse-preserving map f : X[p]→ Σ+ and,

for 0 6 i 6 n, zi ∈ Σ∗ such that

w = z0f(α1)z1f(α2) · · · zn−1f(αn)zn.

The words z1, . . . , zn−1 are called gaps and the word f(α1) · · · f(αn) is an instance of p in w.

For clarity, a subword of a pattern is called a subpattern. If u = f(α1) · · · f(αn) is

an instance of a pattern p = α1 · · ·αn, and u′ = f ′(α1) · · · f ′(αn) is an instance of p in u

satisfying f ′(αi) v f(αi), then we call u′ a sub-instance of p in u. If u′ 6= u, then it is a

proper sub-instance. If all of z1, . . . , zn−1 are the empty word, then we say that p appears

strictly in w and that there are no gaps in the appearance of p. Note that if u ≡ v, then p

appears in u if and only if p appears in v. If p appears in w then f(p) = f(α1) · · · f(αn) is

a subword of w, and if it appears strictly in w then it is a factor of w. When a pattern p

appears in such a way that |f(p)| = |p|, that is, f maps variables to symbols, then we say

that p appears literally in w.

Example 2.1.2. The pattern p = αα appears in the word w = abcabd, where α 7→ ab.

When p appears strictly it is called a square. In the above example the appearance is not

strict because c is a gap. Another instance of p in w is bb; this is a literal appearance of p.

When p appears both strictly and literally as a single instance it is called a loop.1

1See Chapter 4 for the motivation behind using this term.
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Definition 2.1.3. An instance of the pattern αα is called a repeat word and an instance

of the pattern ααR is called a return word. We will often refer to the patterns αα and ααR

themselves as the repeat word and return word, respectively.

We note that an appearance of a pattern can be very different than the strict appear-

ance. For every finite alphabet Σ there is n such that a pattern αk appears in all words in

Σ>n,2 however, it is well known that this is not the case for strict appearance. If Σ contains

at least three symbols, then, for every n ∈ N, Σn contains words where α2 does not appear

strictly [2].

Example 2.1.4. The pattern ααR appears in the word abcbad, where α 7→ ab. This pattern

also appears literally as bb.

Lemma 2.1.5. For every pattern p there is a pattern qp such that for every word w ∈ Σ∗,

if qp appears strictly in w then p appears in w. Furthermore, if p appears with positive gaps

then qp appears strictly in w.

Proof. For p = α1 · · ·αk, we set qp = α1β1α2 · · · βk−1αk, where β1, . . . , βk are all distinct.

In the following, we define the usual set operations on patterns.

Definition 2.1.6. Let p1 and p2 be patterns. Then we write

p1 ∩ p2 = {p | p v p1 and p v p2} and p1 − p2 = {p1(p−1) | p ∈ p1 ∩ p2}.

We present some additional preliminary definitions and lemmas which use the nota-

tion from Definition 2.1.1.

Definition 2.1.7. Given a set of patterns P and a word w, we say that w′ is obtained from

w by reduction operation `p if

w = z0f(α1)z1f(α2) · · · zn−1f(αn)zn and w′ = z0z1 · · · zn

for some instance f(α1) · · · f(αn) of p = α1 · · ·αn in P . In this case, we write w `p w′ or

w′ = w − u.
2In particular, by the pigeonhole principle, n = (k − 1)|Σ|+ 1.

9



Definition 2.1.8. Given a set of patterns P , define a reduction of a word u to be a sequence

r = (w0, w1, . . . , wn) such that

1. w0 = u,

2. and for all 1 6 i 6 n, there exists p ∈ P such that wi−1 `p wi.

If such a reduction exists, we say that u can be reduced to wn in n steps and the reduction

has size or length n, written |r|. Furthermore, we say that the reduction is with P .

Example 2.1.9. The sequence (abcdabcece, abceab, ce) is a reduction of length 2 of the word

abcdabcece with P = {αα}.

If u can be reduced to the empty word ε, then we say that P reduces u. If u can be

reduced to v with a set of patterns P , then we say that v expands to u with P . In that case,

rR = (wn, . . . , w0) is the reverse of the reduction r and, naturally, we set |rR| = |r|.

Definition 2.1.10. A set of patterns P is confluent for a word u if for any reduction r =

(w0, w1, . . . , wn) of u, P reduces wn. Then P is confluent if it is confluent for all words u

that are reduced by P .

Example 2.1.11. Patterns p = αα and p′ = ααR are confluent since p (or p′) reduces a

word to ε if and only if every symbol in the word appears an even number of times. So every

reduction of a word with P = {p, p′} keeps the parity of the number of occurrences of any

symbol the same. However q = αβα is not confluent since ababba `q ε by setting α 7→ a and

β 7→ babb. On the other hand, ababba `q aa by setting α 7→ b and β 7→ ab, and aa cannot be

further reduced by q.

Lemma 2.1.12. For a pattern p with |p| > 2, if there exists β ∈ Xp such that |p|β = 1, then

p is not confluent.

Proof. Suppose p = p1βp2 where p1 and p2 are patterns that do not contain β and consider

the word w = a|p1|+1ba|p2|+1. Then by setting p1 7→ a|p1|, p2 7→ a|p2|, and β 7→ aba, we obtain

w `p ε. On the other hand, setting p1 7→ a|p1|, β 7→ ab, and p2 7→ a|p2|, we obtain w `p a,

and a cannot be reduced by p.

10



2.2 Distances

Reductions yield the notion of a path between two words.

Definition 2.2.1. Given a set of patterns P , define a path between words u and v to be a

sequence ρ = (r1, . . . , rk) such that

1. the first word in r1 is u,

2. the last word in rk is v,

3. for all 1 6 i 6 k, ri is a reduction or the reverse of a reduction and the last word in ri

is the first word in ri+1.

We call |ρ| := |r1|+ · · ·+ |rk| the length of ρ, and say that ρ is composed of k reductions.

Note that if a set of patterns P reduces words u and v, then there exists a path

between u and v and, in general, such a path is not unique. In light of the fact that we are

now looking at both reductions and the reverses of reductions, we write w ap w′ if w = w′−u

for an instance u of some pattern p ∈ P . In this case, we say that w is obtained from w′

by the removal of u and that w′ is obtained from w by the insertion of u. Paths naturally

induce a distance between words:

Definition 2.2.2. For a set of patterns P , define the word distance dP between u and v by

dP (u, v) =

min |ρ|, ρ is a path between u and v,

∞, there is no path from u to v.

Where P is understood, we simply use d to denote the word distance. A path ρ between u

and v is called minimal if |ρ| = dP (u, v).

Example 2.2.3. Consider the pattern p = αα. Then {p} reduces every word in which every

symbol appears an even number of times. However, if a word w contains a symbol an odd

number of times then {p} does not reduce w. In this case, there is no path from a word

reduced by {p} to w, so the distance between these words is ∞.

We observe that dP does indeed satisfy the axioms of a distance function:
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Lemma 2.2.4. For all sets of patterns P , dP is a distance.

Proof. Clearly dP is symmetric, non-negative, and dP (u, v) = 0 if and only if u = v. Let

w1, w2, w3 be words. If there does not exist a path between w1 and w2 or between w2 and w3

then the triangle inequality holds trivially. Suppose there do exist minimal paths (r1, . . . , rk)

and (r′1, . . . , r
′
k′) between w1 and w2 and w2 and w3, respectively. Then

(r1, . . . , rk, r
′
1, . . . , r

′
k′)

is a path between w1 and w3 of size

k∑
i=1

|ri|+
k′∑
i=1

|r′i| = dP (w1, w2) + dP (w2, w3),

implying that

dP (w1, w3) 6 dP (w1, w2) + dP (w2, w3)

and hence the triangle inequality holds, as desired.

We say that two words u and v belong to the same connected component in Σ∗ if

there is a path from u to v. Words within the same connected component are within finite

distance of each other. Each set of patterns P partitions Σ∗ into connected components

CP [w] for w ∈ Σ∗, where

CP [w] = {u | dP (w, u) <∞}.

If P reduces u, then u and ε are in the same connected component, that is,

{u | P reduces u} ⊆ CP [ε].

Example 2.2.5. For P = {αα, ααR} and Σ = {a, b}, the connected components are

CP [ε], CP [a], CP [b], and CP [ab] = CP [ba].

For arbitrary sets of patterns, bounding the word distance is largely infeasible. Yet

by restricting to P ⊆ {αα, ααR}, we can obtain a nice bound:
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Lemma 2.2.6. Let u and v be words and P ⊆ {αα, ααR}. If v ∈ CP [u], then

dP (u, v) 6 |u|+ |v|
2

+ 1.

Proof. Since v ∈ CP [u], for all a ∈ Σ[u]∩Σ[v], |u|a ≡ |v|a mod 2, and for all b ∈ Σ[u]4Σ[v],

the symmetric difference of Σ[u] and Σ[v], |u|b and |v|b must be even. We proceed to construct

a path ρ from u to v. For each a ∈ Σ[u], remove b|u|a/2c pairs of a from u. This results in a

reduction r from u to u′, where each letter in u′ appears exactly once. Similarly, we construct

a reduction r′ from v to v′, where v′ is a permutation of u′ since all letters in Σ[u]4Σ[v] are

removed from u and v during the reduction process. Hence u′v′ can be reduced to ε with

P . Observe that |r| ≤ |u|/2 and |r′| ≤ |v|/2. Then a path ρ′ from u′ to v′ is obtained with

the following: insert v′v′ as a prefix to u′ and obtain v′v′u′. Then perform a reduction on

v′u′ to ε by removing each pair of symbols one at a time. The length of ρ′ is |u′|+ 1. Since

|u′| = |u| − 2|r| = |v| − 2|r′|, we conclude that ρ = (r, ρ′, r′) is a path from u to v of length

at most

|r|+ |r′|+ |u′|+ 1 = |r|+ |r′|+ |u| − 2|r|+ 1

= |u| − |r|+ |r′|+ 1

6 |u|+ |v|
2

+ 1.

Ideally, we would like to go significantly further and actually be able to compute

the distance between arbitrary words. Although this seems completely infeasible for ar-

bitrary sets of patterns (being a substantially harder problem than merely obtaining an

upper bound), we make some progress in the direction of computing the word distance with

P = {αα}. First, we require a key lemma.

Lemma 2.2.7. Let u, v, and w be words satisfying

wu = vw. (2.2.1)
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Then there exists a prefix w′ of w such that

w′u = vw′ and |w′| 6 |u|, |v|.

Proof. Suppose |w| > |u| = |v|, that is, there exists a word u1 such that, by (2.2.1), w = u1u.

Then substituting this expression into (2.2.1), we infer that

u1uu = vu1u,

or u1u = vu1. If |u1| > |u| = |v|, we set w = u1 and repeat the above procedure, obtaining

a smaller word u2. Otherwise, if |u1| 6 |u| = |v|, then u1 is the desired prefix w′. Since w,

u, and v are finite words and this procedure reduces the size of w each step, eventually this

process will end in a finite number of steps. Hence the result holds.

Theorem 2.2.8. Let P = {αα}, u and v be words, and suppose there exists a minimal

path ρ from u to v of the form ((u,w), (w, v)) for some word w. Then there exists such a w

satisfying

|w| 6 4(|u|+ |v|).

Proof. Let ρ = ((u,w), (w, v)) be of the desired form. Then there exist words u1 and u2,

not necessarily distinct, such that u1u
′
1 and u2u

′
2 are instances of αα in w such that

w `αα u and w `αα v,

respectively. Although u1 = u′1 (and u2 = u′2), we use different notations for the two words

to distinguish the two appearances of α in w. Writing w = w1u2w2u
′
2w3 and v = w1w2w3,

there are 10 cases up to symmetry:
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(1)

x1
y1

x2
y2

z1
y3

z2
y4

x3

(2)

x1
y1

z1
y2

z2
y3

z3
y4

x2

(3)

x1
y1

z1
y2

z2
y3

z3
y4

x2

(4)

x1
y1

z1
y2

x2
y3

z2
y4

x3

(5)

x1
y1

z1
y2

x2
y3

z2
y4

x3

(6)

x1
y1

z1
y2

x2
y3

z2
y4

x3

(7)

x1
y1

z1
y2

x2
y3

z2
y4

x3

(8)

x1
y1

z1
y2

z2
y3

z3
y4

x2

(9)

x1
y1

z1
y2

x2
y3

z2
y4

x3

(10)

x1
y1

z1
y2

x2
y3

z2
y4

x3

Figure 2.1: Visual representations of the ten cases. Red intervals represent u1 and u′1, while green
intervals represent u2 and u′2.

(1) u1 v w1w2w3;

(2) u1 v w1u2 and u′1 v u2w2u
′
2;

(3) u1 v w1u2 and u′1 v u2w2u
′
2w3;

(4) u1 v w1u2 and u′1 v w2u
′
2;

(5) u1 v w1u2 and u′1 v w2u
′
2w3;

(6) u1 v w1u2 and u′1 v u′2;

(7) u1 v w1u2 and u′1 v u′2w3;

(8) u1 v u2 and u′1 v u2w2u
′
2w3;

(9) u1 v u2 and u′1 v w2u
′
2w3;

(10) u1 v u2 and u′1 v u′2.

We proceed to verify the bound for all 10 cases. To facilitate our analysis, we let xi denote

factors of wj’s, yi’s denote factors of uk’s or u′k’s and wj’s, and zi denote factors of u1 or u′1

and u2 or u′2 (see Figure 2.1). The idea is to show that the common factors, the zi’s, that

are inserted in u to produce w and removed from w to produce v can be chosen sufficiently

small such that |w| is bounded by the length of u and v.
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(1) Since u1 v v, |u1| 6 |v|, implying that |u1u
′
1| 6 2|v|. Hence w 6 2|v|+ |u|, as desired.

Henceforth we may assume that u1 ∩ u2u
′
2 6= ε and u′1 ∩ u2u

′
2 6= ε, as otherwise the bound

follows by (1).

(2) Write

w = x1y1z1y2z2y3z3y4x2,

where x1 = w1 − u1, y1 = u1 − u2, z1 = u1 ∩ u2, y2 = (u2 − u1) − u′1, z2 = u′1 ∩ u2,

y3 = w2, z3 = u′1 ∩ u′2, y4 = u′2 − u′1, and x2 = w3. Then either |z3| 6 |z1| or |z1| 6 |z3|.

Suppose the former holds. Then there exists factors y′3 v y3 and y′4 v y4 such that

z1 = y′3z3 = z3y
′
4.

By Lemma 2.2.7, we may assume that |z3| 6 |y′3|, |y′4|. Then since |y′3| 6 |y3|, we infer

that |z1| = |z3|+ |y′3| 6 2|y3|. Since

|z2| 6 |u2| − |z1| 6 |u2| − |z3| = |y4|,

we conclude that

|w| = |x1|+ |x2|+ |y1|+ |z1|+ |y2|+ |z2|+ |y3|+ |z3|+ |y4|

6 |u|+ |y1|+ 2|y3|+ |y2|+ |y4|+ |y3|+ |y3|+ |y4|

6 |u|+ |v|+ |v|+ |v|+ |v|+ |u|+ |u|

6 3|u|+ 4|v|.

(3) Write

w = x1y1z1y2z2y3z3y4x2,

where x1 = w1 − u1, y1 = u1 − u2, z1 = u1 ∩ u2, y2 = (u2 − u1) − u′1, z2 = u′1 ∩ u2,

y3 = w2, z3 = u′2, y4 = w3 − x2, and x2 = w3 − u′1. Then we have

y1z1 = z2y3z3y4 and z1y2z2 = z3, (2.2.2)
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implying that

y1z1 = z2y3z1y2z2y4. (2.2.3)

Then z2y3 is a prefix of y1, so we can write y1 = z2y3y
′
3 for some word y′3. Applying

(2.2.3), we infer that

z2y3y
′
3z1 = z2y3z1y2z2y4 =⇒ y′3z1 = z1y2z2y4.

Thus by Lemma 2.2.7, there exists z′1 such that |z′1| 6 |y′3|, |y2z2y4| and y′3z
′
1 = z′1y2z2y4.

Writing z′3 = z′1y2z2, we see that left multiplying both sides of the equation by z2y3 and

reapplying the expression for y1 yields (2.2.2) with z1 and z3 replaced by z′1 and z′3,

respectively. Hence we may assume that |z1| 6 |y2z2y4| and |z3| = |z1y2z2| 6 |y′3y2z2|,

where (2.2.3) gives the equality 2|z2| = |y1| − |y3| − |y2| − |y4|. Therefore

|w| = |u|+ |y1|+ |y3|+ |y4|+ |z1|+ |z2|+ |z3|

6 |u|+ |y1|+ |y3|+ |y4|+ |y2z2y4|+ (|y1| − |y3| − |y2| − |y4|)/2 + |y′3y2z2|

6 |u|+ |y1|+ |y3|+ |y4|+ |y2|+ 3(|y1| − |y3| − |y2| − |y4|)/2 + |y4|+ |y1|+ |y2|

6 |u|+ 7|y1|/2− |y3|/2 + |y4|/2 + |y2|/2

6 3|u|/2 + 7|v|/2.

(4) Write

w = x1y1z1y2x2y3z2y4x3,

where x1 = w1−u1, y1 = u1−u2, z1 = u1∩u2, y2 = u2−u1, x2 = w2−u′1, y3 = u′1−u′2,

z2 = u′1 ∩ u′2, y4 = u′2 − u′1, and x3 = w3. Then we have

y1z1 = y3z2 and z1y2 = z2y4, (2.2.4)

implying that either y3 is a prefix of y1 or y1 is a prefix of y3. Suppose first that the

former holds. Then y4 is a suffix of y2, implying that we may write y1 = y3y
′
3 and
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y2 = y′4y4 for some words y′3 and y′4. Then substitution into (2.2.4) gives

y3y
′
3z1 = y3z2 =⇒ y′3z1 = z2 (2.2.5)

and

z1y
′
4y4 = z2y4 =⇒ z1y

′
4 = z2. (2.2.6)

Combining these equalities, we infer that

y′3z1 = z1y
′
4.

By Lemma 2.2.7, there exists a prefix z′1 of z1 such that |z′1| 6 |y′3|, |y′4| and y′3z
′
1 = z′1y

′
4.

Writing z1 = z′1z
′′
1 , by (2.2.5), z2 = y′3z

′
1z
′′
1 . Then setting z′2 = y′3z

′
1 = z′1y

′
4, we have

y3y
′
3z
′
1 = y3z

′
2 =⇒ y1z

′
1 = y3z

′
2

and

z′1y
′
4y4 = z′2y4 =⇒ z′1y2 = z′2y4,

which are simply (2.2.4) with z′1 replacing z1 and z′2 replacing z2. Thus we may assume

that

|z1| 6 |y′3| 6 |y1| and |z1| 6 |y′4| 6 |y2|,

and similarly |z2| 6 2|y1|, 2|y2|. Hence

|w| = |u|+ |y1|+ |y3|+ |z1|+ |z2|

6 |u|+ 4|y1|+ |y3|

6 |u|+ 4|v|,

and

|w| = |v|+ |y2|+ |y4|+ |z1|+ |z2|

6 |v|+ 4|y2|+ |y4|
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6 |v|+ 4|u|,

implying that

|w| 6 |u|+ |v|+ 3 min{|u|, |v|},

as desired. The analysis for the second case, where y1 is a prefix of y3 and thus z1 and

z2 swap positions in (2.2.5) and (2.2.6), proceeds similarly, also giving the same bound.

(5) Write

w = x1y1z1y2x2y3z2y4x3,

where x1 = w1−u1, y1 = u1−u2, z1 = u1∩u2, y2 = u2−u1, x2 = w2−u′1, y3 = u′1−u′2,

z2 = u′2, y4 = w3 − x3, and x3 = w3 − u′1. Then we have

y1z1 = y3z2y4 and z1y2 = z2, (2.2.7)

implying that

y1z1 = y3z1y2y4. (2.2.8)

Thus y3 is a prefix of y1, so we can write y1 = y3y
′
3 for some word y′3. Then applying

(2.2.8), we infer that

y3y
′
3z1 = y3z1y2y4 =⇒ y′3z1 = z1y2y4.

Then by Lemma 2.2.7 there exists a prefix z′1 of z1 such that y′3z
′
1 = z′1y2y4 and |z′1| 6

|y′3|, |y2y4|. Writing z′2 = z′1y2, we have y′3z
′
1 = z′2y4. Then concatenating y3 onto both

sides, we infer that

y1z
′
1 = y3z

′
2y4,

yielding (2.2.7) with z1 and z2 replaced by z′1 and z′2. Hence we may assume that

|z1| 6 |y1|, |y2y4| and |z2| = |z1y2| 6 |y1y2|, |y2y4y2|, implying that

|w| = |v|+ |y2|+ |z1|+ |z2|

6 |v|+ |y2|+ |y1|+ |y1y2|
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6 3|v|+ 2|u|.

(6) Write

w = x1y1z1y2x2y3z2y4x3,

where x1 = w1 − u1, y1 = u1 − u2, z1 = u1 ∩ u2, y2 = u2 − u1, x2 = w2, y3 = s1,

z2 = u′1 ∩ u′2, y4 = s2, x3 = w3, and u′2 = s1u
′
1s2. Then we have

y1z1 = z2 and z1y2 = y3z2y4, (2.2.9)

implying that

z1y2 = y3y1z1y4. (2.2.10)

Hence y4 is a suffix of y2, so we can write y2 = y′4y4 for some word y′4. Substituting this

back into (2.2.10), we infer that

z1y
′
4y4 = y3y1z1y4 =⇒ z1y

′
4 = y3y1z1.

Then applying Lemma 2.2.7 yields a prefix z′1 of z1 such that z′1y
′
4 = y3y1z

′
1 and |z′1| 6

|y′4|, |y3y1|. Writing z′2 = y1z
′
1, we have z′1y

′
4 = y3z

′
2. Then concatenating y4 to both

sides of the equation gives

z′1y2 = y3z
′
2y4,

yielding (2.2.9) with z′1 and z′2 replacing z1 and z2, respectively. Thus we may assume

that

|z1| 6 |y′4| 6 |y2| and |z2| 6 |y1y2|,

implying that

|w| = |u|+ |y1|+ |z1|+ |z2|

6 |u|+ 2|y2|+ 2|y1|

6 3|u|+ 2|v|.
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(7) Write

w = x1y1z1y2x2y3z2y4x3,

where x1 = w1 − u1, y1 = u1 − u2, z1 = u1 ∩ u2, y2 = u2 − u1, x2 = w2, y3 = u′2 − u′1,

z2 = u′1 ∩ u′2, y4 = w3 − x3, and x3 = w3 − u′1. Then we have

y1z1 = z2y4 and z1y2 = y3z2, (2.2.11)

implying that either y1 is a prefix of z2 or z2 is a prefix of y1; suppose the former holds.

Then y4 is a suffix of z1, implying that we can write z2 = y1y
′
1 and z1 = y′4y4 for some

words y′1 and y′4, giving

y1z1 = y1y
′
1y4 =⇒ z1 = y′1y4.

Hence y′1 = y′4. Substituting the resulting expressions for z1 and z2 into the second

equation of (2.2.11), we see that

y′1y4y2 = y3y1y
′
1.

Thus by Lemma 2.2.7, there exists a prefix y′′1 of y′1 such that |y′′1 | 6 |y4y2|, |y3y1| and

y′′1y4y2 = y3y1y
′′
1 . Setting z′1 = y′′1y4 and z′2 = y1y

′′
1 , we recover (2.2.11) with z1 and

z2 replaced by z′1 and z′2, respectively. Hence we may assume that |z1| = |y′′1y4| 6

|y4y2y4|, |y3y1y4| and |z2| = |y1y
′′
1 | 6 |y1y4y2|, |y1y3y1|. It follows then that

|w| = |v|+ |y2|+ |z1|+ |z2|+ |y3|

6 |v|+ |y2|+ |y3y1y4|+ |y1y4y2|+ |y3|

6 3|v|+ 2|u|,

as desired. Suppose then that the second case holds, that is, z2 is a prefix of y1. Then

|z2| 6 |y1| and thus |z1| 6 |z2y4| 6 |y1|+ |y4|. Hence

|w| = |v|+ |y2|+ |z1|+ |z2|+ |y3|

6 |v|+ |u|+ |y1|+ |y1|+ |y4|
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6 3|v|+ |u|.

(8,9) Neither of these cases can occur since |u1| 6 |u2|, yet

|u1| = |u′1| > |u′2| = |u2|,

a contradiction.

(10) Write

w = x1y1z1y2x2y3z2y4x3,

where x1 = w1, y1 = s1, z1 = u1 ∩ u2, y2 = s2, u2 = s1z1s2, x2 = w2, y3 = s′1,

z2 = u′1 ∩ u′2, y4 = s′2, u′2 = s′1z2s
′
2, and x3 = w3. Then we have

z1 = z2 and y1z1y2 = y3z2y4, (2.2.12)

implying that

y1z1y2 = y3z1y4

and either y1 is a prefix of y3 or y3 is a prefix of y1. Suppose the former holds. Then

y4 is a suffix of y2 and thus we can write y3 = y1y
′
1 and y2 = y′4y4 for words y′1 and y′4.

Then substituting these back into the above equation implies that

y1z1y
′
4y4 = y1y

′
1z1y4 =⇒ z1y

′
4 = y′1z1.

By Lemma 2.2.7, there exists a prefix z′1 of z1 such that |z′1| 6 |y′1|, |y′4| and z′1y
′
4 = y′1z

′
1.

Then by reversing the above implications, we recover (2.2.12) with z1 and z2 replaced

by z′1 and z′2, where z′1 = z′2. Hence we may assume that |z1| = |z2| 6 |y′1|, |y′4|, implying

that

|w| = |u|+ |z1|+ |z2|

6 |u|+ |y′1|+ |y′1|

6 |u|+ 2|y3|
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6 3|u|,

as desired. The second case, where y3 is a prefix of y1, yields the same bound via a

similar argument.

For P = {αα} and words u and v with arbitrary minimal paths between them,

we hypothesize that this result can be generalized to yield a bound on the maximum word

found in some minimal path as a function of |u|, |v|, and dP (u, v). This leads to the following

conjecture.

Conjecture 2.2.9. Let P = {αα}. For all words u and v, dP (u, v) is computable.

We sketch an outline of a possible proof of the conjecture. Suppose there exists a

minimal path ρ between words u and v of the form (rR1 , r2) for reductions r1 and r2. Then a

given repeat word uiui removed (inserted) at the ith step in ρ appears in w, the word at the

end of rR1 and start of r2, partitioned by some repeat words removed (inserted) before (after)

the ith step. It is not difficult to see then that we may further partition uiui into a number

of smaller repeat words bijbij , each of which appears in w, and that each partitioning repeat

word forces the addition of at most 2 repeat words to this partition of uiui in w. Letting

b1b1, . . . , bnbn and c1c1, . . . , cmcm be the resulting inserted and removed repeat words which

appear in w, it follows that n,m = O(dP (u, v)2). At this point we can apply Theorem

2.2.8 (or, more specifically, a variant of this lemma based on its proof) to bound the size of

the intersection zij of each inserted repeat word bibi and each removed repeat word cjcj if

bibi intersects at most one cjcj, and vice versa. But this can likely be achieved by further

partitioning the bibi’s and cjcj’s into smaller repeat words.3 Assuming as much, combining

the bound on each intersection zij results in a bound on w of the form O(dP (u, v)N(|u|+ |v|))

for some N > 1.

To extend this argument to arbitrary minimal paths ρ between words u and v, we

convert ρ into a minimal path of the form (r2
1, r2) and thereby conclude the bound for

3Note that this is the difficult part in converting this outline into a rigorous proof.
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arbitrary u and v in the same connected component. We prove that such a conversion is

possible by induction; most of the work is done in the base case where ρ is of the form (r1, r
R
2 ).

Yet it is not difficult to see that we can reverse the order of ρ, first inserting the repeat words

to u that were added in rR2 and then removing the repeat words that were removed in r1—this

yields the base case. For the inductive step, suppose ρ = (r1, r2, . . . , rk). Then the induction

hypothesis says that we can convert the minimal subpath (r1, r2, . . . , rk−1) into a minimal

path (r, r′) such that rR and r′ are reductions. If rk−1 is a reduction, then (r, r′rk−1) is the

desired path. Otherwise, we can also “flip” the minimal path (r′, rk−1) into a minimal path

(r′′, r′′′) such that (r′′)R and r′′′ are reductions. In this case, (r′r′′, r′′′) is the desired path.

Note that in Chapter 3, we use a similar path flipping argument to prove a stronger form of

Conjecture 2.2.9 in the case where u and v are so-called double occurrence words.

With a general bound in terms of dp(u, v), |u|, and |v| on the size of words appearing

in some minimal path between u and v the conjecture follows by applying Lemma 2.2.6 and

subsequently observing that there are only a finite computable number of candidate minimal

paths. Consequently, a brute force search yields a minimal path, giving dP (u, v).

2.3 Indices

We are interested in investigating whether a word is “generated” by a given set of patterns.

In this case, pattern indices define a measure of the complexity of that generation:

Definition 2.3.1. Given a set of patterns P that reduces w, define the pattern index of a

word w by

IP (w) := min{n | (w0, w1, . . . , wn = ε) is a reduction of w}.

Where P is clearly understood, we simply use I to denote the pattern index.

In the sequel, whenever we write IP (w) for a word w we assume that P reduces w.

If P = {p}, then we may write Ip instead of IP . A pattern p is trivial if for all w ∈ Σ∗ with

|w| > |p|, Ip(w) = 1. Note that if |p|α 6 1 for all α ∈ X, then p is trivial. Hence a nontrivial

pattern must contain at least one symbol appearing twice.

Example 2.3.2. It is not difficult to check that (abacddabca, acddca, ε) is a minimal reduc-

tion of the word w = abacddabca to the empty word, implying that IP (w) = 2.
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Definition 2.3.3. For a set of patterns P , the P -language LP is the set of all words w such

that Ip(w) = 1.

Note that words in the P -language are at distance at most two from each other and

are at distance 1 from ε. In the following lemma, we record some basic properties of pattern

indices.

Lemma 2.3.4. Let w1 and w2 be words on alphabets Σ1 and Σ2, respectively, and P1 and

P2 be sets of patterns that reduce w1 and w2, respectively. Then the following hold:

(1) IP1(w1) > 0, and IP1(w1) = 0 if and only if w1 = ε,

(2) IP1(w1) 6 |w1|,

(3) if w1 = w2, then IP1(w1) = IP1(w2),

(4) if P1 ⊆ P2, then P2 reduces w1 and IP1(w1) > IP2(w1),

(5) if w2 `p w1 for some p ∈ P1 ∪ P2, then IP1∪P2(w2) 6 IP1∪P2(w1) + 1,

(6) IP1∪P2(w1w2) 6 IP1(w1) + IP2(w2).

Proof. Set P := P1 ∪ P2. Note that (1), (2), and (3) follow immediately by definition.

Result (5) follows by noting that combining any minimal reduction of w1 with P with an

initial application of reduction operation `p on w2 yields a reduction of w2 with P of size

IP (w1) + 1, implying that

IP (w2) 6 IP (w1) + 1,

as desired. Result (4) follows by observing that with the given conditions, any reduction of

w1 with P1 is also a reduction of w1 with P2. For (6), note that combining any two minimal

reductions of w1 and w2 with P1 and P2, respectively, generates a reduction of w1w2 of size

IP1(w1) + IP2(w2) with P . Hence the inequality follows.

We record the following straightforward results.
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Lemma 2.3.5. Given a set of patterns P , and words u and v such that u can be reduced to

v, for all reductions r from u to v,

|r| > IP (u)− IP (v).

Proof. If there exists a reduction r from u to v such that |r| < IP (u) − IP (v), then there

exists a reduction r′ from v to ε such that |rr′| 6 IP (v) + |r| < IP (u). But rr′ is a reduction

from u to ε, so this contradicts the definition of IP (u). Hence the inequality holds.

Proposition 2.3.6. For all words u and v and sets of patterns P that reduce u and v,

dP (u, v) 6 IP (u) + IP (v).

Proof. The inequality follows immediately by observing that there exists a path of the form

((w0 = u,w1, . . . , wIP (u) = ε), (wIP (u) = ε, . . . , wIP (u)+IP (v) = v))

for all u and v.
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3 Patterns in Double Occurrence Words

3.1 Definitions

For brevity, in the sequel we will often assume that Σ = N and, if u ≡ v, abuse notation by

regarding the two words as identical, writing u = v. As such, many of the following definitions

and theorems assume a labeling of words, that is, a choice of alphabet, but generalize to words

over any alphabet.

Definition 3.1.1. A word w ∈ Σ∗ is a double occurrence word if for all a ∈ Σ, |w|a = 2.

We call |w|/2 the size of w.

Example 3.1.2. The word 1213424355 is a double occurrence word, while the word w =

113234324 is not because there are three occurrences of the letter 3 in w.

Unless otherwise stated, we now assume all words are double occurrence words.

Definition 3.1.3. A double occurrence word w is irreducible if w cannot be written as a

product uv of two non-empty double occurrence words u and v. If w has no double occurrence

factors,1 then w is strongly irreducible.

Remark 3.1.4. Patterns may or may not appear in double occurrence words as double

occurrence subwords. When working with double occurrence words, we say that a pattern p

is a double occurrence pattern if all instances of p in any given word are themselves double

occurrence words or, equivalently, if |p|α + |p|αR = 2 for all α ∈ X[p]. Similarly, we extend

the notions of irreducible and strongly irreducible to patterns.

As the terms suggest, it is clear that a strongly irreducible word is also irreducible.

Pattern indices are particularly well-behaved on double occurrence words:

1that is, factors that are double occurrence words.
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Lemma 3.1.5. Let w1 and w2 be double occurrence words on alphabets Σ1 and Σ2, respec-

tively, and P1 and P2 be sets of double occurrence patterns that reduce w1 and w2, respectively.

Then the following hold:

(a) If Σ1∩Σ2 = ∅ and all p ∈ P1∪P2 are irreducible, then IP1∪P2(w1w2) = IP1(w1)+IP2(w2),

(b) if w1 v w2 and all p ∈ P1 ∪ P2 are strongly irreducible, then IP1∪P2(w1) 6 IP1∪P2(w2).

Proof. Set P = P1 ∪ P2. Suppose there exist double occurrence words w1 and w2 satisfying

the conditions for (b) for which the inequality does not hold. Then, writing w2 = uw1v,

without loss of generality there exists p ∈ P such that an instance u′ of p intersects w1 and

either u or v (or both). Otherwise, we may iteratively remove pattern instances from w1 until

either (1) there exists a pattern with an instance of the desired properties (with w1 replaced

by the reduced word w′1), or (2) we reach the empty word. In the former case, we set w1 = w′1

and w2 = uw′1v, while in the latter case all reductions of w2 contain as a subsequence some

reduction of w1, so the inequality follows. Thus either the subword of u′ intersecting w1 is

a double occurrence word, in which case u′ is not strongly irreducible, or it is not, in which

case u′ is not a double occurrence word. Since both cases yield contradictions, we conclude

that

IP (w1) 6 IP (w2),

as desired. If Σ1 ∩ Σ2 = ∅ and all p ∈ P1 ∪ P2 are irreducible, then

IP (w1w2) = IP1(w1) + IP2(w2)

follows by observing, as in the case of (b), that if not then there must exist an irreducible

double occurrence pattern instance u which intersects both w1 and w2. Then neither u∩w1

and u ∩ w2 are double occurrence words, contradicting the assumption that w1 and w2 are

double occurrence words with disjoint alphabets. Hence we conclude (a).

Recall that instances of the patterns αα and ααR are called repeat words and return

words, respectively. In the sequel, we also refer to the patterns themselves by these names.

We now further generalize our notion of a pattern to include more interesting languages.
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Definition 3.1.6. Let X be a set of variables. A recursive pattern π = {p1, p2, . . .} is a

subset of X∗ such that there exists f, g : N → N and a symbol αi ∈ X, with αi /∈ Σ[pi],

satisfying

pi = siriti ∈ X+ and pi+1 = siαiriαiti

for all i > 1, where f(i) = |ri| and g(i) = |ti|. We say that a recursive pattern π appears

in a word w if there exists p ∈ π appearing in w. If p1 = αα, f ≡ 1, and g ≡ 0, we call π

the tangled cord, written πT , while if p1 = αα and f = g ≡ 0, we call π the loop pattern,

written πL.

It is straightforward to show that neither the tangled cord nor the loop pattern can

be defined as single patterns. In the sequel, we only consider the tangled cord and loop

pattern as appearing strictly and literally. Note that, in double occurrence words, the repeat

word and return word can be equivalently viewed as the patterns αα and ααR or as literally-

appearing recursive patterns πR and π′R with p1 = αα, f(i) = i, and g(i) = 0 and p1 = αα,

f(i) = 0, and g(i) = i, respectively, which appear strictly save for a single gap allowed in

the “center” of the pattern. When using the latter definition, we call each factor α1α2 · · ·αn
(which is equivalent to α from the pattern definition) a half of the repeat or return word.

We now define reductions under this new notion of a pattern.

Definition 3.1.7. Given a set of recursive patterns Π, define a reduction of a word u to be

a sequence r = (w0, w1, . . . , wn) such that

1. w0 = u,

2. and for all 1 6 i 6 n, there exists π ∈ Π and p ∈ π such that wi−1 ` wi.

With this notion of a reduction with a set of recursive patterns, the definitions of

indices and distances with Π follow straightforwardly; in particular, we now write IΠ and dΠ

instead of IP and dP , respectively. All other notation similarly extends to the new conception

of a pattern.
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3.2 Complete Patterns

We introduce several important properties of the repeat word and return word patterns

which partially explain their “well-behaved” nature.

Definition 3.2.1. Let p = α1 · · ·αn be a pattern and let w be a word containing an instance

f(α1) · · · f(αn) of p, where f : Xp → Σ+. Suppose that for all maps f ′ : Xp → Σ+ with

Σ[f ′(αi)] ⊆ Σ[f(αi)] for all 1 6 i 6 n, f ′(α1) · · · f ′(αn) is a sub-instance of p in w and

removing f ′(α1) · · · f ′(αn) from f(α1) · · · f(αn) yields another instance of p. If this holds for

all w, then p is called instance-closed.

Definition 3.2.2. A recursive pattern π = {p1, p2, . . .} is called instance-closed if for all

words w and 1 6 j 6 i, pj ⊆ pi, that is, an instance ui of pi in w contains a sub-instance

uj of pj, and pi − pj ∈ π, that is, removing the instance uj from ui yields another instance

of some p ∈ π.

Definition 3.2.3. Two patterns p and p′ are compatible in a word w if for any two instances

of p and p′, respectively, such that

w = z0f(α1)z1 · · · f(αn)zn = z′0g(β1)z′1 · · · g(βk)z
′
k,

either

1. g(β1) · · · g(βk) is a subword of z0z1 · · · zn and f(α1) · · · f(αn) is a subword of z′0z
′
1 · · · z′k,

or

2. n = k and, for all i, f(αi) and g(βi) have a common factor xi such that x1 · · ·xn is an

instance of both p and p′ in w.

We say that p and p′ are compatible if they are compatible for every word w. Recursive

patterns π and π′ are compatible if for all p ∈ π and p′ ∈ π′, p and p′ are compatible.

Definition 3.2.4. We call a set of recursive patterns Π complete if

1. for all π ∈ Π, π is instance-closed, and

2. for all π, π′ ∈ Π, π and π′ are compatible.
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A recursive pattern π is said to be complete if {π} is complete.

It is straightforward to show that the repeat word πR, return word π′R, and loop

pattern πL are complete. For example, the repeat word w = 1234512345 contains the repeat

word 3434 which, when removed from w, yields the repeat word 125125. In fact, any subset of

{πR, π′R, πL} is complete. This list turns out to be exhaustive (in double occurrence words):

Proposition 3.2.5. In double occurrence words, any literally-appearing complete recursive

pattern π with p1 = αα is either the repeat word, return word, or loop pattern.

Proof. We proceed via induction on n to show that either pn ∈ πR, pn ∈ π′R, or pn ∈ πL for

all n ∈ N. By assumption, p1 is either the repeat word, return word, or loop pattern of size

1, as desired. Now suppose pi is equivalent to the repeat word, return word, or loop pattern

for all 1 6 i 6 n. Then either

pi = α1α2 · · ·αiα1α2 · · ·αi, or (3.2.1)

pi = α1α2 · · ·αiαiαi−1 · · ·α1, or (3.2.2)

pi = α1α1α2α2 · · ·αiαi (3.2.3)

for all 1 6 i 6 n, where we note that in the third case pi appears strictly, while in the first two

cases pi appears strictly except it may have a gap between each occurrence of αi. Suppose

(3.2.1) holds for all 1 6 i 6 n. Then pn+1 is constructed by inserting two occurrences of a

new variable αn+1. These occurrences cannot “asymmetrically interrupt” both halves of pn,

in the sense that if pn+1 is of the form

pn+1 = s1αjαn+1αj+1s2,

then

s1 = s3αjαn+1αj+1s4 or s2 = s3αjαn+1αj+1s4

for some subpatterns s3 and s4; otherwise, pn * pn+1. Then, after relabeling, there are 9

remaining cases:

pn+1 = αn+1αn+1α1α2 · · ·αnZα1α2 · · ·αn, (3.2.4)
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pn+1 = αn+1α1α2 · · ·αnαn+1Zα1α2 · · ·αn, (3.2.5)

pn+1 = αn+1α1α2 · · ·αnZα1α2 · · ·αnαn+1, (3.2.6)

pn+1 = α1α2 · · ·αnαn+1αn+1Zα1α2 · · ·αn, (3.2.7)

pn+1 = α1α2 · · ·αnαn+1Zαn+1α1α2 · · ·αn, (3.2.8)

pn+1 = α1α2 · · ·αnαn+1Zα1α2 · · ·αnαn+1, (3.2.9)

pn+1 = α1α2 · · ·αnZαn+1αn+1α1α2 · · ·αn, (3.2.10)

pn+1 = α1α2 · · ·αnZαn+1α1α2 · · ·αnαn+1, (3.2.11)

pn+1 = α1α2 · · ·αnZα1α2 · · ·αnαn+1αn+1, (3.2.12)

where we use Z to make it clear where the gap carried over from pn is located. Removing

the repeat word subpattern α1 · · ·αnα1 · · ·αn from (3.2.4), (3.2.5), (3.2.7), (3.2.10), (3.2.11),

and (3.2.12) yields a strictly-appearing subpattern of the form αα, which is not equivalent

to the repeat word of size 1. Hence, by completeness, we may exclude these cases. Suppose

(3.2.6) holds. Then, by applying a similar argument, we infer that

pn+2 = αn+2αn+1α1α2 · · ·αnZα1α2 · · ·αnαn+1αn+2,

pn+2 = αn+1α1α2 · · ·αnαn+2Zαn+2α1α2 · · ·αnαn+1,

pn+2 = αn+1α1α2 · · ·αnαn+2Zα1α2 · · ·αnαn+1αn+2, or

pn+2 = αn+2αn+1α1α2 · · ·αnZαn+2α1α2 · · ·αnαn+1,

as otherwise pn+1 * pn+2. Yet in first two cases, removing α1 · · ·αnα1 · · ·αn results in a word

of the form αβZβα, which is not equivalent to p2, and in the latter two cases, removing both

occurrences of αn+1 (an instance of p1) gives the repeat word of size n + 1, which is not

equivalent to pn+1. Thus, we exclude (3.2.6) and, similarly, (3.2.8). This leaves only (3.2.9),

the repeat word of size n + 1, as desired. Now suppose (3.2.2) holds for all 1 6 i 6 n. As

before, completeness implies that pn+1 can be constructed by inserting two occurrences of

a variable into pn that do not asymmetrically interrupt both halves of pn. This leaves 9

remaining cases:

pn+1 = an+1αn+1α1α2 · · ·αnZαnαn−1 · · ·α1, (3.2.13)
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pn+1 = αn+1α1α2 · · ·αnαn+1Zαnαn−1 · · ·α1, (3.2.14)

pn+1 = αn+1α1α2 · · ·αnZαn+1αnαn−1 · · ·α1, (3.2.15)

pn+1 = α1α2 · · ·αnαn+1αn+1Zαnαn−1 · · ·α1, (3.2.16)

pn+1 = α1α2 · · ·αnαn+1Zαn+1αnαn−1 · · ·α1, (3.2.17)

pn+1 = α1α2 · · ·αnαn+1Zαnαn−1 · · ·α1αn+1, (3.2.18)

pn+1 = α1α2 · · ·αnZαn+1αn+1αnαn−1 · · ·α1, (3.2.19)

pn+1 = α1α2 · · ·αnZαn+1αnαn−1 · · ·α1αn+1, (3.2.20)

pn+1 = α1α2 · · ·αnZαnαn−1 · · ·α1αn+1αn+1. (3.2.21)

As before, removing the return word subpattern α1 · · ·αnαn · · ·α1 from (3.2.13), (3.2.14),

(3.2.16), (3.2.19), (3.2.20), and (3.2.21) gives a strictly-appearing subpattern of the form

αα, which is not equivalent to p1. Therefore, by completeness, we exclude these cases.

Suppose then that (3.2.15) holds. Applying a similar argument, we infer that

pn+2 = an+1α1α2 · · ·αnαn+2Zαn+1αnαn−1 · · ·α1αn+2,

pn+2 = αn+2αn+1α1α2 · · ·αnZαn+2αn+1αnαn−1 · · ·α1,

pn+2 = αn+1α1α2 · · ·αnαn+2Zαn+2αn+1αnαn−1 · · ·α1, or

pn+2 = αn+2αn+1α1α2 · · ·αnZαn+1αnαn−1 · · ·α1αn+2,

as otherwise pn+1 * pn+2. In the first two cases, removing α1 · · ·αnαn · · ·α1 results in a

word of the form αβZαβ, which is not equivalent to p2. On the other hand, in the latter

two cases, removing both occurrences of αn+1 yields a word which is not equivalent to pn+1.

Thus, by completeness, we exclude (3.2.15) and, similarly, (3.2.18). This leaves only (3.2.17),

the return word of size n + 1, as desired. Finally, suppose (3.2.3) holds for all 1 6 i 6 n.

Then clearly

pn+1 = α1α1α2α2 · · ·αnαnαn+1αn+1,

as otherwise pn * pn+1. Since this is the loop pattern of size n + 1, we conclude that p is

the repeat word, return word, or loop pattern, as desired.

Example 3.2.6. The tangled cord πT is not complete—no smaller tangled cord appears in
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12132434, a tangled cord of size 4.

Working with double occurrence words and complete sets of recursive patterns makes

it feasible to obtain a wealth of results that remain out of reach for arbitrary words and

arbitrary sets of recursive patterns. We proceed to prove that the distance is computable for

this class of words with these types of recursive patterns. In the following, we assume that

all reductions and paths are relative a complete set of recursive patterns Π.

Lemma 3.2.7. Let u and v be words and ρ be a path from u to v that consists of two steps,

a single insertion and a single deletion. Then there exists a path ρ′ from u to v that consists

of one deletion, or one deletion and one insertion.

Proof. Without loss of generality, assume that |u| > |v|. Let x and y be the instances

of recursive patterns in Π inserted and removed in ρ, respectively; that is, u = w − x and

v = w−y for some w. If x and y are disjoint, then they are contained in v and u, respectively.

Hence w′ = u−y = v−x defines a path ρ′ consisting of a single deletion followed by a single

insertion. If x and y are not disjoint we set z ∈ x ∩ y to be of maximal length. Then by

completeness, each of x− z and y− z is either ε or an instance of a recursive pattern in Π. If

one of them is the empty word then, since |u| > |v|, we have x−z = ε. Then v = u− (y−z),

implying that ρ′ = (u, v) is a path of a single deletion. In the other case, if neither x − z

nor y − z is the empty word, then since x − z and y − z are disjoint by the choice of z, we

conclude that w′ = u − (y − z) = v − (x − z) defines a path consisting of a single deletion

and a single insertion.

Lemma 3.2.8. Let u and v be words such that there exists a path between u and v of the

form (rR1 , r2), where r1 and r2 are reductions. Then there exists a path of the form (r′1, r
′
2
R)

such that |r1|+ |r2| 6 |r′1|+ |r′2|.

Proof. Let ρ = (rR1 , r2) be a path from u to v. Then we iteratively replace each consecutive

insertion-deletion of instances of patterns in P with a deletion-insertion (or just deletion)

as described in Lemma 3.2.7. In this way, the path ρ from u to v can be replaced with

a sequence of deletions of instances of patterns followed with a sequence of insertions of
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instances of patterns in P . Such a path is of form (r′1, r
′
2
R) for some reductions r′1 and r′2

and its length is at least as long as ρ.

With this, we obtain our main general result.

Theorem 3.2.9. For all words u and v, there exists a minimal path ρ between u and v of

the form (r1) or (r1, r
R
2 ), where r1 and r2 are reductions.

Proof. Let ρ = (r1, . . . , rk) be a path between u and v. We may assume that for each i in ρ

it is either rir
R
i+1 or rRi ri+1. The theorem follows by induction on k. If k 6 2, then the result

follows by Lemma 3.2.8. Suppose the result holds for 1 6 l 6 k − 1. By hypothesis there

exists a minimal path ρ′ = (r′, rR) from u to wk−2, the last word in rk−2, such that r′ and r

are reductions. Similarly, by Lemma 3.2.8 we may take that the last two reductions forming

a path from wk−2 to v (note wk−2 is also the first word in rk−1) in ρ are of form (rk−1, r
R
k )

without increasing the length of ρ.

Then we have a new path ρ′ = (r′, rR, rk−1, r
R
k ). Another application of Lemma 3.2.8

flips the subpath (rR, rk−1) to (r′′, r′′′R) without increasing the length of the path and yields

a path ρ′′ = (r′r′′, r′′′RrRk ) where the reduction r′r′′ is a sequence of deletions and r′′′RrRk is a

sequence of insertions. (see Figure 3.1).

u

w2 w4
w6

v ρ

ρ1

ρ2

ρ3

Figure 3.1: A schematic depicting the process of removing insertions that precede deletions in a
path from u to v.

In addition to giving a straightforward procedure for computing the distance between
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two double occurrence words, an upper and lower bound on the distance dP follows from

this result.

Corollary 3.2.10. For words u, v ∈ LP ,

|IP (u)− IP (v)| 6 dP (u, v) 6 IP (u) + IP (v).

Proof. It follows immediately from the triangle inequality of the distance dP , that is,

IP (u) = dp(u, ε) ≤ dP (u, v) + dP (v, ε) = dP (u, v) + IP (v). The other inequality follows

similarly.

Example 3.2.11. The distance between words 121323 and 123321 relative the set P =

{αα, ααR} achieves the bound in Corollary 3.2.10 because there is no path with a single

insertion and a single deletion that reduces 121323 to 123321. Therefore

dP (121323, 123321) = 3 = 2 + 1 = IP (121323) + IP (123321).

3.3 Pattern Recurrence Index

We now turn to the study of particular pattern indices. A natural and (as we will see in

Chapter 4) highly applicable choice is the index generated by two of the simplest and most

well-behaved patterns we have encountered thus far, the repeat word and return word.

Definition 3.3.1. Define the pattern recurrence index to be the pattern index PI := IΠ,

where Π contains the repeat word and return word.

Example 3.3.2. A straightforward calculation shows that PI(12134234) = 2.

For the rest of this section, we assume that all reductions and reduction operations

are defined with Π, that is, with the repeat word and return word. Furthermore, unless

otherwise specified, the last word in any reduction is the empty word ε. Note that Lemma

3.1.5 implies that PI(uv) = PI(u) + PI(v) for all (double occurrence) words u and v on

disjoint alphabets since the repeat word and return word are irreducible. We are interested

in considering the tangled cord as both a recursive pattern and as words of a given type:
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Definition 3.3.3. For all n ∈ N, the tangled cord Tn is defined by setting Tn = f(tn),

where τ = {t1, t2, . . .} is the tangled cord recursive pattern and f : Xtn → {1, 2, . . . , n}.

Equivalently, we set T0 = ε, T1 = 11, and

Tn = 12132 · · · (n− 1)(n− 2)n(n− 1)n

for all n > 2.

Unless otherwise specified, ‘tangled cord’ will now refer to words of the above type.

It has been speculated that the tangled cord may maximize certain pattern indices defined

by the removal of the repeat word and return word, including the pattern recurrence index

and the nesting index (considered in the following section). The central focus of this section

and the following section is exploring this claim. We begin our analysis by considering the

pattern recurrence index of the tangled cord (as a word). The following lemmas will aid in

our calculation.

Lemma 3.3.4. Let w be a word, r = (u0, u1, u2, . . . , un−1, un) be a reduction of w of size n,

and r1, r2, . . . , rn be the sequence of removed repeat words and return words corresponding to

r. For all 1 6 j < i 6 n, if ri is contained in uj, then

r′ = (u0, u1, u2, . . . , uj, uj − ri, uj+1 − ri, . . . , ui−1 − ri, ui+1, . . . , un−1, un)

is a reduction of w of size n.

Proof. The result follows by noting that rj+1, rj+2, . . . , ri−1 are contained in uj − ri, uj+1 −

ri, . . . , ui−2 − ri, respectively.

Lemma 3.3.5. Suppose w = u1u2 · · ·un for double occurrence words u1, u2, . . . , un ∈ Σ+

and let σ be a permutation of {1, . . . , n}. Then any reduction of w is also a reduction of

w′ = uσ(1)uσ(2) · · ·uσ(n).

Proof. For a reduction r = (w0, w1, . . . , wm) of w, 1 6 i 6 m, and 1 6 j 6 n, suppose

wi = wi−1−vi for some vi contained in uj. Then we can construct a corresponding reduction

r′ = (w′0, w
′
1, . . . , w

′
m) of w′ with w′i = w′i−1 − vi, where vi is contained in uσ(j).
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Lemma 3.3.6. For all n > 3, applying a reduction operation to Tn yields TiTn−i−1 for some

0 6 i 6 n− 1.

Proof. Note that any reduction of Tn necessarily begins with the removal of a literal repeat

word since there are no non-literal repeat words in Tn. Hence, the result is a straightforward

consequence of the definition of Tn—in particular, it follows by removing both occurrences

of i+ 1 and relabeling appropriately.

Lemma 3.3.7. For m > 1, let Ti1 , Ti2 , . . . , Tim be tangled cords of sizes i1, . . . , im, re-

spectively, such that ik > 3 for some 1 6 k 6 m. Then some minimal reductions of

Tm = Ti1Ti2 · · ·Tim begin with the removal of both occurrences of a letter (i.e. a literal

appearance of the repeat word).

Proof. We proceed via induction on m. Note that all tangled cords of size 3 or greater

contain no non-literal repeat words or return words. It follows that the result holds for

m = 1. Now assume that the result holds for m = n ∈ N. Let T n+1 = Ti1Ti2 · · ·TinTin+1 and

observe that we may assume without loss of generality that i1, . . . , ik > 3 and ik+1, . . . , in 6 2

for some 1 6 k 6 n by Lemma 3.3.5. Then by Lemma 3.3.4, there exists a minimal reduction

r of T n+1 that begins with a reduction r′ of Ti1 . Since r is minimal, r′ is minimal, so by the

induction hypothesis we may assume that the first step in r′ is the removal of a literal repeat

word. But then that is also the first step in r, as desired. Therefore, we conclude the result

by induction.

We can now calculate the pattern recurrence index of the tangled cord.

Theorem 3.3.8. For all n > 1,⌈
2n

3

⌉
− 1 6 PI(Tn) 6 2

⌊n
3

⌋
+

⌈
n mod 3

3

⌉
.

In particular, this gives PI(T3i−1) = 2i− 1 for all i > 1.

Proof. Note that Lemma 3.3.7 implies that there exists a minimal reduction r of Tn in

which literal repeat words are removed until we are left with a conjunction of tangled cords
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of size at most 2. Since Lemma 3.3.6 shows that any removal of a literal repeat word from

Tn produces TiTn−i−1 (after removing both occurrences of letter i + 1), we can view the

initial sequence of literal repeat word removals as edges in a “reduction tree” with vertices

of tangled cord subwords. For definition purposes, suppose we have reduced Tn to Ti1 · · ·Tik
for some k > 1 and assume there exists 1 6 j 6 k such that ij > 3. Then a removal of the

literal repeat word (i1 + · · ·+ ij − 2)(i1 + · · ·+ ij − 2) results in two new vertices, Tij−3 and

T2, connected to Tij in the reduction tree. Figure 3.2 shows an example reduction tree.

Figure 3.2: A reduction tree for the reduction (T7, T2T4, T2T2T1, ε) of T7.

Each removal of a literal repeat word in a reduction of Tn corresponds to two unique

edges in the reduction tree, unless the literal repeat word includes the first or last letter from

a tangled cord subword; in that case, only one edge is added to the reduction tree. Hence

we infer that

R = T + L,

where R = |r|, T is the number of tangled cord subwords of size 1 or 2 remaining after the

initial sequence of literal repeat word removals 2, and L is the number of literal repeat word

removals in the initial sequence of reduction operations 3. Letting m be the size of word

remaining after the initial sequence of literal repeat word removals, observe also that the

following relations hold:

L = T + E − 1, T >
⌈m

2

⌉
, m = n− L, E > 0,

2That is, the number of leaves in the reduction tree associated with r.
3That is, one half of the number of edges in the reduction tree of r.
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where E is the number of literal repeat word removals that involve deleting the first or last

letter in a tangled cord subword in the reduction tree. Combining these, we see that

R = 2T + E − 1 and m = n− T − E + 1, (3.3.22)

from which we infer that

T >

⌈
n− T − E + 1

2

⌉
>

⌊
n− E

2

⌋
−
⌈
T

2

⌉
+ 1,

or ⌈
3T

2

⌉
>

⌊
n− E

2

⌋
+ 1.

Multiplying across by 2/3 yields the inequality

T >
n− E

3
.

Applying this to (3.3.22), we have

R >

⌈
2

(
n− E

3

)
+ E − 1

⌉
>

⌈
2n+ E

3

⌉
− 1

>

⌈
2n

3

⌉
− 1

since R is an integer. Thus it suffices to show that for all Tn there exists a reduction

r = (Tn = T 1, T 2, . . . , TL−1, TL, uL+1, . . . , uR−1, ε)

of size 2bn/3c + d(n mod 3)/3e. In that direction, suppose, for all 2 6 i 6 L, T i is

obtained from T i−1 by removing the repeat word 334 Then we show by induction on n that

R = 2bn/3c + d(n mod 3)/3e. Manual calculation confirms that the base cases n = 1, 2, 3

satisfy the equality. Suppose, for k > 2, the result holds for n < k. Then by construction of

4Assuming relabeling into ascending order after each literal repeat word removal.
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the reduction tree of r, we have

R(k) = R(k − 3) +R(2) + 1

= 2

⌊
k − 3

3

⌋
+

⌈
(k − 3) mod 3

3

⌉
+ 1 + 1

= 2

⌊
k

3
− 1

⌋
+

⌈
k mod 3

3

⌉
+ 1 + 1

= 2

⌊
k

3

⌋
+

⌈
k mod 3

3

⌉
.

Thus the desired equality holds by induction and we conclude the result.

Using this result, we have the following.

Corollary 3.3.9. For all n > 1, there exists a loopless double occurrence word w with

PI(w) = n.

Proof. Let n > 1 be given. Then by Theorem 3.3.8 there exists i > 1 such that either

PI(T2i) = n or PI(T2i) = n− 1, from which it follows that

PI(T2i) = n or PI(T2iT2) = n.

Thus, w = T2i or w = T2iT2 is the desired loopless word.

Remark 3.3.10. More straightforwardly, we can also simply demonstrate that there exists

a double occurrence word w with PI(w) = n for all n > 1 by considering w = 1122 · · ·nn,

an instance of the loop pattern of size n.

Using Theorem 3.3.8, we now show that in general the tangled cord does not maximize

the pattern recurrence index, even if we allow at most one loop. This may be surprising

considering that in some ways tangled cords are the antithesis of repeat words and return

words.5

5See Chapter 4 for details on this point.
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Theorem 3.3.11. For all n > 8, there exists a word w of size n with at most one loop such

that PI(w) > PI(Tn). Furthermore, there exists k ∈ R+ such that

PI(w) > PI(Tn) + kn

for sufficiently large n.

Proof. For the double occurrence word v = 1231435425, observe that PI(v) = 4. Then by

additivity, we infer that

PI(viTj) = PI(vi) + PI(Tj) =



4i+ 1, j = 1,

4i+ 1, j = 2,

4i+ 2, j = 3,

4i+ 3, j = 4,

while |viTj| = 5i+ j for i > 1 and 1 6 j 6 4. Note also that viTj has at most one loop. On

the other hand,

PI(T5i+j) 6 2

⌊
5i+ j

3

⌋
+ 1 6 2

⌊
5i

3

⌋
+ 5 6

10i

3
+ 5,

giving

PI(viTj)− PI(T5i+j) >



4i+ 1− 10i
3
− 5, j = 1,

4i+ 1− 10i
3
− 5, j = 2,

4i+ 2− 10i
3
− 5, j = 3,

4i+ 3− 10i
3
− 5, j = 4,

=



2i−12
3
, j = 1,

2i−12
3
, j = 2,

2i−9
3
, j = 3,

2i−6
3
, j = 4,

(3.3.23)

for i > 1 and 1 6 j 6 4. Hence PI(viTj) − PI(T5i+j) is greater than 0 for i > 8 and

0 6 j 6 4. For i, j such that 8 6 |viTj| 6 40, it can be checked by hand that the result

holds. This yields the first part of the result. The second part with k ≈ 2/15 follows from

(3.3.23).
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Note that in the above proof, for most n, w does not have any loops. We now present

a strengthening of Corollary 3.3.9 based on the observation that for a word w, adding a loop

to w such that the loop does not become “part” of a larger return word in w necessarily

increases the pattern recurrence index of w by 1.

Proposition 3.3.12. For all n ∈ N and 1 6 i 6 n, there exists a word w of size n such that

PI(w) = i.

Proof. Let n be given and let j = i− 1. For

w = 1122 · · · jj(j + 1)(j + 2) · · · (n)(j + 1) · · · (n),

we have

PI(w) = PI(1122 · · · jj) + PI((j + 1)(j + 2) · · · (n)(j + 1) · · · (n)) = j + 1 = i

by additivity. This gives the result for all cases except i = 1; in that case, we let w be a

repeat word of size n.

3.4 Nesting Index

We analyze the nesting index of the tangled cord, defined below [40].

Definition 3.4.1. For a set of recursive patterns Π, let RΠ denote the set of all instances

of all recursive patterns π ∈ Π and let w be a double occurrence word. Then a word u is said

to be a maximal pattern instance in w if u � w, u ∈ RΠ, and u � v and v � w implies that

v /∈ RΠ or u = v.

Definition 3.4.2. For a set of recursive patterns Π and a word w, we say w′ is obtained

from w by a maximal reduction operation if

w′ = w − {u | u is a maximal pattern instance in w}.

We say w′ is obtained from w by a letter removal if for some a ∈ Σ, w′ = w − a.
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Definition 3.4.3. Given a set of recursive patterns Π, a reduction of a word w is a sequence

of words (w0, w1, . . . , wn) in which

1. w0 = w,

2. for all 0 6 k < n, wk+1 is obtained from wk by applying a maximal reduction operation

or a letter removal.

Definition 3.4.4. Letting Π contain the strictly-appearing repeat word and strictly-appearing

return word,

NI(w) := min{n | (u0, u1, . . . , un = ε) is a reduction of w}

is the nesting index of the double occurrence word w.

Example 3.4.5. Since (12132345676754, 121245676754, 4554, ε) is a minimal reduction of

the word 12132345676754, NI(12132345676754) = 3.

It is not difficult to see that Lemmas 3.3.4, 3.3.5, 3.3.6, and 3.3.7 all still hold for this

modified notion of a reduction, where reduction operation now refers to either a maximal

reduction operation or a letter removal. As in the case of the pattern recurrence index, we

can similarly use these results to calculate the nesting index of the tangled cord.

Proposition 3.4.6. For all n > 1,

bn/3c 6 NI(Tn) 6 bn/3c+ 1.

Proof. Modulo small modifications, the proof mirrors the argument used to determine

the pattern recurrence index of the tangled cord. Lemma 3.3.7 implies that there exists

minimal reduction(s) of Tn that begin with a sequence of letter removals until we are left

with a conjunction of tangled cords of size at most 2. Thus, we can similarly associate each

reduction r (prior to applying maximal reduction operations) with a reduction tree. Note

that

R := |r| = T + E, (3.4.24)
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where E is the number of removals of the first or last letter in a tangled cord subword in the

reduction tree corresponding to r. It follows that (3.3) becomes

T >
⌈m

2

⌉
, m = n−R + 1, E > 0,

where m is similarly defined as the size of the word after all letter removals. Combining

these relations and (3.4.24), we have

R > T >
⌈m

2

⌉
>

⌈
n−R + 1

2

⌉
>
⌊n

2

⌋
−
⌈
R

2

⌉
,

implying that ⌈
3R

2

⌉
>
⌊n

2

⌋
.

Multiplying across by 2/3 yields the inequality R > bn/3c. Thus it suffices to show that for

all Tn there exists a reduction r = (Tn, u1, . . . , uR−1, ε) of size bn/3c + 1. In that direction,

suppose, for all 1 6 i 6 R − 1, ui is attained from ui−1 by removing 3 (assuming relabeling

to ascending order after each application of reduction operation 2). Then after bn/3c letter

removals, what remains is a concatenation of tangled cords of size 1 or 2. Since these are

repeat words on disjoint alphabets, they are all removed in one maximal reduction operation.

Hence |r| = bn/3c+ 1, as desired.

In 2013, Ryan Arredondo conjectured that for all n ∈ N, there exists a word of size

n + b
√
n− 1c with nesting index n [40]. By contrast, the tangled cord with nesting index

n is approximately of size 3n. Although we do not make any headway on this stronger

conjecture, Proposition 3.4.10 presents a counterexample to the conjecture that the tangled

cord maximizes the nesting index.

Arredondo defined a double occurrence word w as being 1-reducible if there exists

a reduction (u0, u1, . . . , un) of w such that for all i, ui+1 is obtained from ui by applying

a maximal reduction operation. We can visualize double occurrence words using chord

diagrams, pictorial representations of a word w obtained by arranging the letters of w around

the circumference of a circle and joining the two occurrences of each letter of w by a chord
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of the circle (see Figure 3.4). We use a line placed perpendicular to the circle to indicate the

start of the word. A chord diagram C ′ is called a sub-chord diagram of a chord diagram C if

the chords of C ′ make up a subset of the chords of C. Arrendondo discovered the following

forbidden sub-chord diagram characterization of 1-reducible words:

Theorem 3.4.7. [40] A word w is 1-reducible if and only if the chord diagram of w does

not contain the chord diagram in Figure 3.3 as a sub-chord diagram.

Figure 3.3: The chord diagram associated with the words 121323, 123213, and 123132.

Remark 3.4.8. Unlike the nesting index, there is no forbidden sub-chord diagram char-

acterization of a 1-reducible word w. This follows from considering the chord diagrams in

Figure 3.4—even when taking into account the starts/ends of the words, the chord diagram

of 12321434 contains all of the sub-chord diagrams of the chord diagram of 121323, yet the

former is 1-reducible while the latter is not.

Figure 3.4: The chord diagrams of the words 12321434 and 121323, respectively.

We now present a result demonstrating the independence of the nesting index and

the pattern recurrence index.
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Proposition 3.4.9. For all (m,n) ∈ {1, 2, 3, . . .} × {2, 3, 4, . . .}, there exists a word w with

NI(w) = m and PI(w) = n.

Proof. We separate the proof into three cases.

Case 1. Suppose first that 2 6 n 6 m/2 and let

w = (1,mn)

(⌊
m− 1

n− 1

⌋
, 1

)(
2

⌊
m− 1

n− 1

⌋
,

⌊
m− 1

n− 1

⌋
+ 1

)
· · ·
(

(n− 2)

⌊
m− 1

n− 1

⌋
, (n− 3)

⌊
m− 1

n− 1

⌋
+ 1

)
(
m− 1, (n− 2)

⌊
m− 1

n− 1

⌋
+ 1

)
(mn,m),

where we use (i, j) to denote the word (i)(i−1) · · · (j+1)(j) or the word (i)(i+1) · · · (j−1)(j)

for i > j or i 6 j, respectively. We proceed to show that w attains the desired values of

the nesting and pattern recurrence indices. Note that w is indeed a (double occurrence)

word and that it has no contiguous repeat or return words, although it is a composition of

n non-contiguous return words of size at least 2 since⌊
m− 1

n− 1

⌋
> 2.

Thus to calculate the nesting index, it suffices to calculate the number of letter removals

required to reduce w to a contiguous repeat or return word. For a contiguous return word,

it is clear that we must remove all the letters between the two instances of some letter of the

desired contiguous return; consequently, by inspection, we see that the minimum number of

letter removals is m− 1, obtained by deleting the letters 1, 2, . . . ,m− 1. This leaves a single

contiguous return word, implying that NI(w) 6 m. On the other hand, to reduce w to a

contiguous repeat word, note that we can include at most one letter from each return word

of w in the desired contiguous repeat word. Hence we must remove all the other letters of w.

Since there are n return words in w, this gives a reduction of size at least mn− n+ 1 > m.

Hence we conclude that NI(w) = m, as desired. For the pattern recurrence index of w, it

suffices to show that

PI((1, in)(i1, 1)(i2, i1 + 1) · · · (in, in−1 + 1)) = n
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for i1, . . . , in > 2 such that ik − ik−1 > 2 for all 2 6 k 6 n since w is a word of this form. In

that direction, we induct on n. The base case with n = 2 is clear:

PI((1)(2) · · · (i2)(i1)(i1 − 1) · · · (1)(i2)(i2 − 1)(· · · )(i1 + 1)) = 2

since there is no reduction of size 1, yet deleting the return word 12 · · · i1i1 · · · 21 followed

by the return word (i1 + 1)(i1 + 2) · · · (i2)(i2) · · · (i1 + 2)(i1 + 1) yields a reduction of size 2.

Now suppose the result holds for n = k and consider the word

vk+1 = (1, ik+1)(i1, 1)(i2, i1 + 1) · · · (ik+1, ik + 1).

As previously, observe that we can choose at most one letter from each return word to

construct a repeat word, so a reduction using such a strategy has size at least k + 1. A

reduction r which proceeds by removing a return word from vk either yields a word w′ in the

form of vk+1 or vk. In the former case, we let vk+1 = w and start over. In the latter case, we

have |r| > PI(vk) + 1 > k+ 1, as desired. By induction, we conclude that PI(vn) = n. This

yields the result for 2 6 n 6 m/2.

Case 2. Now suppose that m/2 < n 6 m and let

wm,n = (1,m+ n− 1)(2, 1)(4, 3) · · · (2n− 2, 2n− 3)(m+ n− 1, 2n− 1).

It is clear that a straightforward replication of the arguments in Case 1 also shows that

NI(wm,n) = m and NI(wm,n) = n, since wm,n as defined here is also a conjunction of

non-contiguous return words of size at least 2.

Case 3. Now suppose that 1 6 m 6 n and let w = ln−mwm,m, where l0 = ε,

li = 1122 · · · ii, and wm,m is as defined in Case 2. By additivity of the pattern recurrence

index, it suffices to show that NI(wm,m) = PI(wm,m) = m since

PI(w) = PI(ln−m) + PI(wm,m) = n−m+ PI(wm,m).

Yet Case 2 shows that NI(wm,m) = PI(wm,m) = m, so we conclude the result for this case

as well.
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The fact that the tangled cord does not necessarily maximize the nesting index, even

amongst strongly irreducible words, is somewhat easier to recognize than for the pattern

recurrence index. This should not be surprising given that the proof of Theorem 3.4.6

essentially shows that “half” of the tangled cord is disjoint repeat words, which can all be

removed in a single reduction operation.

Proposition 3.4.10. For all m > 2, there exists a strongly irreducible word w of size 2m

such that NI(w) > NI(T2m).

Proof. For m > 2, let

vm = (1, 2m)(2m− 1)(2m− 3) · · · (3)(1)(2)(4) · · · (2m) (3.4.25)

(see Figure 3.5). We proceed via induction on m to show that NI(vm) = m, which by

Figure 3.5: The chord diagram of v5 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10.

Proposition 3.4.6 gives the desired result. The base case with m = 2 is trivial, v2 is simply

the repeat word 1212. Assume then that NI(vm) = m for all 1 6 m < n, where n > 2.

Suppose we are given a reduction r = (v, u1, u2, . . . , up−1, ε) of vn. Without loss of generality,

we may assume that there exists 1 6 i 6 p− 1 such that ui contains a contiguous repeat or

return word i1i2 · · · i2k−1i2k of size 1 6 k 6 n + 1. Furthermore, we may take ui to be the

first word in r to contain such a contiguous repeat or return word. Suppose it is a repeat

word, that is, ij = ik+j for 1 6 j 6 k. Then clearly i2, . . . , ik are even and ui contains only
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one contiguous repeat word, so counting implies that we need have removed 2n − k letters

beforehand, that is, ui = i1i2 · · · i2k−1i2k. Since n+ 1 > k, we see that |r| > 2n− k + 1 > n.

Then suppose instead that i1i2 · · · i2k−1i2k is a return word, or ij = i2k−j+1. Then we similarly

see that unless k = 1 and i1 = 2n, i1, . . . , ik−1 are odd and ui contains only one contiguous

return word. If k = 1 and i1 = 2n, then we need to have removed 2n− 1 letters beforehand

and thus |r| = 2n. Otherwise, there are two cases, namely where ik is odd and where

ik is even. If ik is even, then counting implies that we need have removed 2n − k letters

beforehand, and thus |r| > n, as before. If instead ik is odd, then note that we need have

removed all letters greater than i1, save i2, . . . , ik; hence

i >

⌈
2n− i1

2

⌉
and we may assume without loss of generality that

ui = (1, i1)(i2)(i3) · · · (ik)(ik)(ik−1) · · · (i1)(i1 − 2)(i1 − 4) · · · (1)(2)(4) · · · (i1 − 1)

since if r involves removing any letters among 1, 2, . . . , i1 − 1 prior to ui, then it is easy to

see that there exists a reduction r′ of equivalent size with those removals occurring after the

ith step. Either the reduction from ui to ui+1 involves an application of a maximal reduction

operation or a letter removal. Note that there can be at most one contiguous repeat or

return word in uj for all j, so it follows that there exist minimal reductions r which proceed

via a maximal reduction operation at the (i+ 1)th step. This gives

ui+1 = (1, i1 − 1)(i1 − 2)(i1 − 4) · · · (1)(2)(4) · · · (i1 − 1)

which by the induction hypothesis has nesting index (i1 − 1)/2. Thus

|r| >
⌈

2n− i1
2

⌉
+
i1 − 1

2
+ 1 >

2n− i1
2

+
i1 + 1

2
> n,

so we conclude that NI(vn) > n. Finally, note that removing all odd letters except 1 leaves

a single contiguous repeat word, implying that there exists a reduction of size n and thus

NI(vn) = n, as desired. Consequently, by induction, we infer that NI(vm) = m.
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4 Highly Scrambled Genome Rearrangements in O. trifallax

Genome rearrangement processes are observed in many species, on both evolutionary and

developmental scale. Oxytricha trifallax, a species of ciliate, undergoes massive genome

rearrangements during the development of a somatic macronucleus (MAC) from a germline

micronucleus (MIC) and is used as a model organism to study DNA rearrangements [41].

During the macronuclear development, thousands of genetic segments are rearranged to

form gene-sized chromosomes. Pairs of short homologous (1−20 bps) DNA sequences called

pointers are present at the ends of consecutive segments in the MIC and are considered to

play a significant role in the recombination process. By representing pointer loci by symbols,

we represent the scrambled genes by double occurrence words (DOW), words with each letter

appearing exactly twice.

Figure 4.1: DNA rearrangement in Oxytricha trifallax. The MDS sequence M1M2M3M5M4 with
pointer sequence 11223434 (left) can be represented as a double occurrence word and visualized
using a chord diagram (right).

These situations are schematically depicted in Figure 4.1. In the figure, the segments

are located in a longer band representing a MIC contig in the order M1M2M3M5M4 with

interruption by other segment. The ends of the segments destined to assemble in a nano
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chromosome are labeled by integers representing the pointers, corresponding to a double

occurrence word 11223434.

In [42], it was observed that repeat and return patterns of double occurrence words

are present very often, and it was shown that words with pattern indices at most 5 explain

scrambling of over 95% of the genes. Out of 2021 scrambled sequences studied in O. trifallax,

1948 reduced to the empty word with reductions by the set of patterns P = {αα, ααR} and

only with maximal reduction operations, implying that they are compositions of nested

repeat and return words. In these reductions we considered only pattern instances that

are not literal (the instances had at least two distinct symbols). Twenty-two scrambled

sequences were identified which retained at least four letters at the end of the reduction

operations indicating that the repeat and return patterns do not describe well these highly

scrambled rearrangements.

An analysis of the resulting reduced 22 double occurrence words was performed in an

attempt to find new common patterns. Upon inspection of the 22 words, the existence of an

embedded pattern called the tangled cord was identified as a common pattern. A majority

of these embedded tangled cords are cyclically equivalent to tangled cords which we also call

tangled cords. Two of the words are themselves tangled cords, while 7 of them are realized

as a combination of tangled cords after a single letter removal. Additionally, 7 words are a

combination of tangled cords after inserting 1 letter, 2 are a combination of tangled cords

after swapping two adjacent letters, and 3 are a combination of tangled cords after removing

or inserting 2 letters. The largest reduced word in the set (with 17 symbols) is the only one

that does not appear to be close to a combination of tangled cords.

To more systematically determine whether the tangled cord commonly appears in

the 22 highly scrambled rearrangements, we computed by brute force search three pattern

indices P = {αα, ααR}, P ′ = {αα, ααR, Tn}, and P ′′ = {Tn, aa} (for literally-appearing

αα 7→ aa), respectively, for each of the 22 words. We then compared these computations to

the average of these indices on three random samples of 22 words with the same distribution

of word sizes as 22 highly scrambled cases; that is, if there are n words of size k among the 22

highly scrambled rearrangements, we uniformly sample n words of size k at random from the

set of all double occurrence words of size k. Table 4.1 gives a summary of the computations.
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Average
IP IP ′ IP ′′

Highly scrambled cases 3.91 3.59 3.91
Random sample 3.50 3.29 4.36

Table 4.1: Compared with an identically distributed random sample of 22 words, the 22 highly
scrambled cases exhibit significantly lower averages on indices that include the tangled cord pattern.

Given that all maximal repeat words and return words have been removed from the

22 reduced words, the the repeat-return pattern index is on average significantly greater on

the 22 words than on a random sample. After adding the tangled cord into the pattern

set, the difference between the average pattern index on the two sets of words reduces from

0.41 to 0.3, indicating that the tangled cord is encountered more often in a reduction of the

22 highly scrambled cases than in a reduction of a random sample. This is confirmed by

the average index IP ′′ , which is significantly greater for the random samples than for the 22

reduced words. Overall, the pattern index computations indicate that the tangled cord may

be another commonly appearing pattern in scrambled genomes.
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5 Conclusion

We developed a generalization of the notion of a pattern that allows a pattern to appear as

a subword, rather than only as a factor as has traditionally been studied in the literature.

We then introduced the notions of reductions and paths between words using reduction

operations involving the removal of a (generalized) pattern. These reductions and paths

were used to define word distance and pattern indices, measures of the similarity of two

words and the complexity of a word with respect to a given set of patterns, respectively.

Despite the fact that we made progress in computing the word distance with the repeat

word αα, and conjecture that this is indeed possible for any two words, this problem is likely

to be infeasible for arbitrary patterns; that is, it seems that there may not be a general

algorithm for computing the word distance between two words relative an arbitrary set of

patterns. The proof of Lemma 2.2.6, which seems likely to be a necessary first step towards

proving Conjecture 2.2.9, points in this direction since it heavily relies upon the exceptional

properties of the repeat word.

The situation became more tractable when we restricted to biologically-motivated

double occurrence words, even after further generalizing our notion of a pattern with the

introduction of recursive patterns, which essentially take into account similarities between

patterns (under our definition, allowing them to be considered together as a single (recur-

sive) pattern). In this case, for certain relevant sets of recursive patterns that satisfy the

completeness property, we proved that computing the word distance is indeed feasible since

there exists a minimal path from u to v of the form (r) or (r1, r
R
2 ) for reduction r, r1, and r2.

This result allowed us to apply the word distance with the repeat word and return word in

analyzing 22 highly scrambled DNA rearrangements in Oxytricha trifallax. Continuing work

started by Ryan Arredondo in 2013 [40], we also studied several pattern indices, the pattern

recurrence index and the nesting index, and used them to identify a new common pattern,

the tangled cord, in the 22 highly scrambled rearrangements.
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Many open questions remain. For example, Arredondo’s conjecture that

min{|w| | NI(w) = n} = 2(n+ b
√
n− 1c)

remains unresolved, although we did confirm that the tangled cord does not maximize the

nesting index or pattern recurrence index, even among strongly irreducible words. A proof

of the computability of the word distance relative the pattern αα could be straightforwardly

modified to demonstrate the computability of the distance with the return word, or perhaps

any subset of {πR, π′R}. It may be of interest to determine which sets of patterns admit

computable word distances and which do not. It would also be of interest to determine if there

are other classes of words, besides double occurrence words, that admit computable distances,

or have fast algorithms for computing distances. It is also unclear how restricting patterns

(or recursive patterns) to appearing strictly and/or literally affects the computability of

word distances. We also did not consider the problem of determining, for arbitrary sets of

patterns, when two words belong to the same connected component and, in particular, when

a given word belongs to the same connected component as the empty word ε. It could be the

case that these two problems are also intractable in general, but have interesting answers for

certain types of patterns or classes of words.

Paths between words naturally define a global graph of words, where vertices are

words and edges connect two words that differ by a single pattern instance. Studies of

the structures of these graphs may reveal other relationships between classes of words. For

example, it may be of interest to see if these graphs have a finite number of connected

components; we conjecture that this is true for patterns that are confluent.
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[4] A. Thue, Über unendliche Zeichenreihen, Norske Vid. Skrifter I Mat.-Nat. Kl., Chris-

tiania 7 (1906) 1–22.
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