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Abstract

Development of Cybersecurity processes and strategies should take two main

approaches. One is to develop an efficient and effective set of methodologies to identify

software vulnerabilities and patch them before being exploited. Second is to develop

a set of methodologies to predict the behavior of attackers and execute defending

techniques based on attacking behavior. Managing of Vulnerabilities and analyzing

them is directly related to the first approach. Developing of methodologies and mod-

els to predict the behavior of attackers is related to the second approach. Both these

approaches are inseparably interconnected. Our effort in this study mainly focuses

on developing useful statistical models that can give us signals about the behavior of

cyber attackers.

Analytically understanding of vulnerabilities in statistical point of view helps

to develop a set of statistical models that works as a bridge between Cybersecurity

and Abstract Statistical and Mathematical knowledge. Any such effort should begin

with properly understanding the nature of Vulnerabilities in a computer network sys-

tem. We start this study with analyzing ”Vulnerability” based on inferences that can

be taken from National Vulnerability Database (NVD).

In Cybersecurity context, we apply Markov approach to develop suitable pre-

vi



dictive models to successfully estimate the minimum number of steps to compromise a

security goal that an attacker would take using the concept of Expected Path Length

(EPL).

We have further developed Non-Homogeneous Stochastic model by improving

EPL estimates in to a time dependent variable. This approach analytically applied

in a simple model of computer network with discovered vulnerabilities resulted in

several useful observations exemplifying the applicability in real world computer sys-

tems. The methodology indicated a measure of the ”Risk” associated with the model

network as a function of time indicating defending professionals on the threats they

are facing and should anticipate to face.

Further more, using a similar approach taken in well known Google page rank

algorithm, a new ranking algorithm of vulnerability ranks with respect to time for

computer network system is also presented in this study.

With better IT resources analytical models and methodologies presented in

this study can be developed into more generalized versions and apply in real world

computer network environments.
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1 Introduction

Present study is a series of Statistical and Mathematical applications that is proposed

as set of decision making tools in the filed of Cybersecurity. This dissertation consists

of five chapters where the first two chapters present the background of the research of

interest and other chapters present with the methodologies, applications and research

outcomes.

In this chapter, we discuss our research problems and their background, im-

portance of Statistical Approaches in the area of Cybersecurity, current trends in the

filed of Cybersecurity and basis of our strategies from Statistical perspective.

1.1 Research Problems and Their Background

Cyber-attacks are one of the most formidable security challenge faced by many gov-

ernments and large scale companies. Cyber criminals are increasingly using sophisti-

cated network and social engineering techniques to steal the crucial information which

directly affects the operational effects of the Government or Companys objectives.

According to the Secunia [1] report 2015 we can see how crucial the volume and mag-

nitude of increasing Cybersecurity threats. Thus, in understanding the performance,
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availability and reliability of computer networks, security measuring techniques plays

an important role in the subject area.

Quantitative measures are now commonly used to evaluate the security of

computer network systems. These measures help administrators to make important

decisions regarding their network security [3].

However, security of any computer system at last is about the weaknesses it

has and capability of defending the system from attackers who would try to use those

weaknesses to exploit the system. It is logical to compare, this situation to a war

fare, where an army of enemies would tries to break in to a security station using its

weaker points while defending forces are trying to track attackers, understand their

own weaknesses and deploy solutions to those weaknesses so that the ability of the

enemy forces to exploit those weaknesses are eliminated or minimized. This means

that Cybersecurity require a great deal of analysis in two main aspects. The first one

is the analysis of the weaknesses in computer systems. The second is the analysis of

the behavior of attackers and defenders. Indeed the analysis of the behavior of the

attacker is critical.

While we paid our attention to both the behavioral aspect analysis and system

susceptibility analysis this dissertation focus more into the behavioral aspect of the

analysis. In other words, we pay our specific attention to develop analytical models

to analyze ”attackers behavior”.

There are indeed a lots of efforts taken by Information Technology special-

ists and related professionals in this respect, developing models to track attackers.
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However, our mission here is to develop set of Statistical Models that can be used in

analyzing or predicting the attackers behavior.

Subil Abrahim and Suku Nair [3] in 2014 introduced a stochastic model for

cybersecurity quantification using absorbing Markov chain. In [3] they introduced

a non homogeneous Markov model for security quantification. Kijsanayothin Phong-

phun [4] in her/his thesis ”Network Security Modeling with Intelligent and Complexity

Analysis” discussed the need for generating automated preventive network security

systems and an approach to do it using ”host centric attack graphs”. This study

used both quantitative and qualitative approaches in security model analysis named

”exploit based analysis” and ”preference based analysis” respectively. All three of

these studies mentioned have used Markov Chain methods in their methodologies in

Cybersecurity analysis.

In 2006 Stefan Frei [10] and others, in their study titled ”Large-Scale Vulnera-

bility Analysis” presented with several important analytical outcomes. In this study,

an overall statistical analysis on the vulnerability data [2] uptodate was conducted

using over 80,000 vulnerabilities recorded from 1995.

Yashwant K. Malaiya and Alhazmi [5] also have conducted a series of very use-

ful and important studies analyzing the vulnerability data in several aspects. Malaiya

talks about vulnerability life cycle and CVSS Metrics in an analytical view point of

security risk and proposed a method for risk evaluation [8]. Malaiya discuss and

analyze different states of vulnerabilities and proposed some models to evaluate risk

associated with those states [6] & [7].
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Hiroyuki Okamura [36] in 2013 proposed a quantitative security evaluation

method using stochastic process for software systems using vulnerability data that

the discovery dates, patch dates and exploit publish dates are available. Leyla Bilge

and Tudor Dumitras in 2012 described a method to automatically identify ”zero-day”

vulnerabilities [9].

Considering these efforts in the subject area of Cybersecurity it is our un-

derstanding that the need for better and improved analytical tools for vulnerability

analysis and the likelihood to be exploited is at the highest importance. Therefore, we

raise our research problems from the defenders point of view to seek answers. First,

how to develop a set of successful statistical models to analyze the vulnerability status

of a computer network system. Second, could an analysis on vulnerability and their

likelihood to be exploited be observed and relate those observations in predicting the

attackers success. To answer those problems, we first need to take better statistical

and probabilistic approaches in analyzing the attacking process. Next few chapters

as summarized below discuss these problems in details with the methodologies used

and results obtained.

1.2 Vulnerability Data Base and Analysis of Vulnerability Types

In Chapter two, an overview about the nature of vulnerabilities and Common Vulner-

ability Scoring System (CVSS) [2],[14] is given. The methodology used in CVSS and

metric system used to arrive the CVSS are discussed. The concept of Vulnerability

Life Cycle and its stages are also introduced. Following this introduction and back-

4



ground is an analysis on various type of vulnerabilities. In this chapter, we take the

entire vulnerability data base [2],[19] into consideration and rank number of vulnera-

bilities of 13 different types as given in the National Vulnerability Database. Resulting

ranks of vulnerabilities important in terms of the frequency are presented graphically.

Further, a suitable forecasting models are arrived based on the shape of the scatter

plots where the number of different types of vulnerabilities are plotted with respect

to time.

Main objective of chapter two is to have the basic analysis and gain the overall

understanding about vulnerabilities and National Vulnerability Database which will

make the platform for our deeper analysis in chapters to follow.

1.3 A Statistical Predictive Model for the Expected Path Length

In Chapter three, the concept of Expected Path Length (EPL)[3],[4] as an applica-

tion in Cybersecurity filed is introduced. The main objective of the chapter is to

develop a successful Statistical Model to estimate the Expected Path Length. Using

a model computer network example, a methodology and an analysis on Attack Pre-

diction Method is discussed. Steps that were taken using the Markov Chain Process

[16] and the development of the Transition Probability Matrix are presented under

Methodology. Concept of Attack graph and developing of Attack Graphs are also

introduced. Finally, successful Statistical Models to predict the minimum number of

steps (Expected Path Length) that an Attacker would take to compromise a security

state presented. Developed Statistical Models are tested for the quality and accuracy.

5



1.4 NonHomogeneous Stochastic Model for Cyber Security Predictions

Objective of Chapter four is to develop and present a Non-Homogeneous Stochastic

Model for better Cybersecurity predictions. In this chapter Cyber Security Analysis

Method of Vulnerability Life Cycle is used as an index of Risk Factor[20],[21] asso-

ciated with a particular vulnerability. But, the chapter further develop this analysis

method and Risk Analysis to develop a time dependent analytical methodology. The

new methodology proposed is applied in a model network system which allows to

analyze the behavior of EPL as a function of time. This improvement is significant

because the Risk is now calculated for a set of vulnerabilities in a network system and

also observable with respect to time.

1.5 Nonhomogeneous Risk Rank Analysis Method for Security Network

System

Chapter five in this dissertation presents a new Risk Rank Algorithm [13],[27] were

the risk ranks of vulnerabilities exist in a computer network system can be obtained.

Development of this new algorithm is based on well-known Google Page Rank Al-

gorithm. New algorithm we propose in this chapter is significant since the Ranks of

vulnerabilities of a computer network system can be observed with respect to time as

well. Therefore, the results from this method can be used by network administrators

and defending professionals to understand the priorities and allocate resources based

on these priorities at the time of consideration.

6



2 Vulnerability Data Base and Analysis of Vulnerability Types

2.1 Introduction

In this chapter, an overview about the nature of vulnerabilities and Common Vul-

nerability Scoring System (CVSS)[14] is given. The methodology used in CVSS and

metric system used to arrive the CVSS are discussed. The concept of Vulnerability

Life Cycle and its stages are also introduced. Following this introduction and back-

ground is an analysis on various type of vulnerabilities. In this chapter, we take the

entire vulnerability data base into consideration and rank number of vulnerabilities

of 13 different types as given in the National Vulnerability Database [2]. Resulting

ranks of vulnerabilities important in terms of the frequency are presented graphically.

Further, a suitable forecasting models are arrived based on the shape of the scatter

plots where the number of different types of vulnerabilities [19] are plotted with re-

spect to time. .

However, it should be noticed that our study results in some new definitions

also. Applying of Mathematical and Statistical approaches into the field of Cyberse-

curity is relatively new compared to many such other fields that use Mathematical

and Statistical approaches. Therefore, in some cases we needed to define concepts our

7



own. In all such cases, we tried our best to maintain the integrity of Mathematical,

Statistical and Computer science practices.

2.2 Vulnerability

Properly understanding what is called ”vulnerability” [2] in the field of Cybersecurity

is of the core in our study. Therefore, in this chapter we discuss all the basic aspects

of vulnerability including vulnerability information, vulnerability data base and vul-

nerability life cycle [8].

In computer security, a vulnerability is a weakness which allows an attacker

to reduce a system’s information assurance. Vulnerability is the intersection of three

elements, which are, systems susceptibility to the flaw, attacker access to the flaw,

and attacker capability to exploit the flaw.

To exploit a vulnerability, an attacker must have at least one applicable tool

or technique that can connect to a system weakness. In this frame, vulnerability is

also known as the attack surface.

The attack surface of a software environment is the sum of the different points

(the ”attack vectors”) where an unauthorized user (the ”attacker”) can try to enter

data to or extract data from an environment.

8



2.3 Common Vulnerability Scoring System (CVSS)

Common Vulnerability Scoring System (CVSS)[14] is a free and open industry stan-

dard for assessing the severity of computer system security vulnerabilities. It is under

the custodianship of the Forum of Incident Response and Security Teams (FIRST).

CVSS is composed of three metric groups, Base, Temporal, and Environmental, each

consisting of a set of metrics. It attempts to establish a measure of how much concern

a vulnerability warrants, compared to other vulnerabilities, so efforts can be prior-

itized. The scores are based on a series of measurements (called metrics) based on

expert assessment. The scores range from 0 to 10 [2]. Vulnerabilities with a base

score in the range 7.0-10.0 are High, those in the range 4.0-6.9 as Medium, and 0-3.9

as Low. Figure 2.1, 2.2 and 2.3 below give a schematic presentation of the Com-

mon Vulnerability Scoring System (CVSS) which is the basis of the metric calculation

model and the temporal and environmental matrices calculation model, respectively.

Calculation methodology for the CVSS is given in Appendix A.

9



Figure 2.1: Common Vulnerability Scoring System

2.3.1 Base Metric

Base Metric [2] is derive from two sub metrics,Exploitability metric and Impact metric.

Calculation methodology is given in Appendix B.

BaseScore = (0.6 ∗ Impact+ 0.4 ∗ e(v)− 1.5) ∗ f(Impact),

e(v) = 20 ∗ AV ∗ AC ∗ AU, Impact(v) = 10.41(1− (1− C)(1− I)(1− A)),

f(Impact) =


0, if Impact(v) = 0

1.176, Otherwise

Access Vector (AV)

This measures whether a vulnerability is exploitable locally or remotely. Local: The

vulnerability is only exploitable locally Remote: The vulnerability is exploitable

10



Figure 2.2: Common Vulnerability Scoring System- Base Metric Calculation Model

remotely (and possibly locally as well)

Access Complexity (AC)

This measures the complexity of attack required to exploit the vulnerability once

an attacker has access to the target system. High: Specialized access conditions

exist such as specific window of time (a race condition), specific circumstance (non-

default configurations) or victim interaction such as tainted e-mail attachment. Low:

Specialized access conditions or extenuating circumstances do not exist. In other

words, it is always exploitable. This is the most common case

11



Authentication (AW)

This measures whether or not an attacker needs to be authenticated to the target

system in order to exploit the vulnerability. Required: Authentication is required to

access and exploit the vulnerability. Not Required: Authentication is not required

to access or exploit the vulnerability.

Confidentiality Impact (C)

Confidentiality Impact measures the impact on Confidentiality of a successful exploit

of the vulnerability on the target system. None: No impact on confidentiality. Par-

tial: There is consider able informational disclosure. Complete: A total compromise

of critical system information.

Integrity Impact (I)

Integrity Impact measures the impact on Integrity of a successful exploit of the vul-

nerability on the target system. None: No impact on integrity. Partial: Considerable

breach in integrity. Complete: A total compromise of system integrity.

Availability Impact (A)

Availability Impact measures the impact on Availability of a successful exploit of

the vulnerability on the target system. None: No impact on availability Partial:

Considerable lag in or in eruptions in resource availability Complete: Total shutdown

of the affected resource
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2.3.2 Temporal Metric

The Temporal metrics [2] measure the current state of exploit techniques or code

availability, the existence of any patches or workarounds, or the confidence that one

has in the description of a vulnerability.

Figure 2.3: Common Vulnerability Scoring System- Temporal Metric Calculation Model

2.3.3 Environmental Metric

These metrics enable the analyst to customize the CVSS score depending on the

importance of the affected IT asset to a users organization, measured in terms of

complementary/alternative security controls in place, Confidentiality, Integrity, and

Availability. The metrics are the modified equivalent of base metrics and are assigned

metrics value based on the component placement in organization infrastructure.
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Collateral Damage Potential (CDP)

This metric measures the potential for loss of life or physical assets through damage

or theft of property or equipment. The metric may also measure economic loss of

productivity or revenue. The possible values for this metric are listed in Appendix A.

Naturally, the greater the damage potential, the higher the vulnerability score.

Target Distribution (TD)

This metric measures the proportion of vulnerable systems. It is meant as an environment-

specific indicator in order to approximate the percentage of systems that could be af-

fected by the vulnerability. The possible values for this metric are listed in Appendix

A. The greater the proportion of vulnerable systems, the higher the score.

2.4 Vulnerabilities Life Cycle

The Life Cycle of a Vulnerability [10] can be introduced with different stages that

a vulnerability passes through. We shall discuss specific stages that are commonly

identified in a given situation. Commonly identified stages are involved with the

events such as the Birth (Pre-discovery Stage), Discovery, Disclosure, Availability for

Patching and Availability for Exploiting.
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2.4.1 Birth (Pre-Discovery)

The birth of a vulnerability occurs at the development of a software, mostly due to a

weakness or a mistake in coding of the software. At this stage the vulnerability is not

yet discovered or exploited. In a well-developed software package where its reliability

has been identified, one can identify the probability of the birth of the problem.

2.4.2 Discovery

Vulnerability is said to be discovered once someone identifies the flaw in the software.

It is possible that the vulnerability is discovered by the system developers themselves,

skilled legitimate users or by the attackers also. If the vulnerability is discovered

internally or by white hackers, (who are making breaking attempts on a system to

identify the flaws and vulnerabilities with good intentions of helping them to be

patched so that the system security is strengthened) it will be notified to be fixed as

soon as possible. But, if a black hacker [40] discovers a vulnerability it is possible

that he or she will try to exploit it, or sell in the black market or distribute it among

hackers to be exploited.

It should be noted here that while vulnerabilities could actually exist prior to

the discovery, until it is discovered, it is not a potential security risk. ”Time of the

discovery” is the earliest time that a vulnerability is identified. In a vulnerability life

cycle the ”time of discovery” is an important and critical event. Exact discovery time

might not be published or disclosed to the public due to the other risks that could
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be associated with a vulnerability. However, in general after the ”disclosure” of a

vulnerability, public may know the time of discovery subject to security risk review.

We would like to mention here that in developing our statistical model, we

consider only pre-exploit discovery. There are rare chances that a discovery of a

vulnerability could occur after it is actually exploited. As an example, an attacker

could run an exploit attempt aiming to exploit a particular vulnerability. But, the

exploit actually breaks into the system through another unidentified or undiscovered

vulnerability instead of expected vulnerability at that time. Such rare occurrences

are not taken into account in our our present study.

2.4.3 Disclosure

Once a vulnerability is discovered, it is subject to be disclosed. Disclosure could take

place in different ways based on the system design, authentication and who discovered

it. However, ”disclosure” in widely accepted form in the information security means

the event that a particular vulnerability is made known to public through relevant

and appropriate channels. Definition for the disclosure of vulnerability is however

presented differently by different individuals.

In general, public disclosure of a vulnerability is based on several principles.

The availability of access to the vulnerability information for the public is one such

important principle. Another such important principle is validity of information.

Validity of information principle is to ensure the users ability to use those information,

assess the risk and take security measures. Also, the independence of information
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channels is also considered to be important to avoid any bias and interferences from

organizational bodies including the vendor.

2.4.4 Scripting (Exploiting) and Exploit Availability

A Vulnerability enters to the stage of exploit availability [22],[23] from the earliest

time that an exploit program of code is available. Once the exploits are available

even low skilled crackers (or in other words a black hat hacker) could be capable

of exploiting the vulnerability. As we mentioned earlier, there are some occurrences

that the exploit could happen even before the vulnerability is discovered. However in

the present study we consider the modeling of Vulnerability Life Cycles with exploit

availability occurs only after the discovery.

2.4.5 Patch Availability and Death: (Patched)

Patch is a software solution that the vendor or developer release to provide necessary

protection from possible exploits of the vulnerability. Patch will act against possible

exploit codes or attacking attempts for a vulnerability and protect the system and

ensure the integrity. The vulnerability dies when one applies a security patch to all

the vulnerable systems.

When a White Hat Researcher discovers a vulnerability, the next transition is

likely to be the internal disclosure leading to patch development. On the other hand,

if a Black Hat Hacker discovers a vulnerability, the next transition could be an exploit
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or internal disclosure to his underground community. Some active black hats might

develop scripts that exploit the vulnerability.

2.5 Categorizing and Ranking Different Types of Vulnerabilities

There are 13 types of vulnerabilities [19] identified and recorded in the National Vul-

nerability database. These different types are defined and identified based on the

nature of the vulnerability in its execution and effect. In this section we look into

these vulnerability types and try to identify them based on their vulnerability level.

We also rank these different types of vulnerabilities based on the number of discovered

vulnerabilities recorded in the National Vulnerability Database. All 75705 recorded

vulnerabilities [19],[15] in the National Vulnerability Database from 1999 to 2016 are

considered here.

To observe the Ranks and then to see if we can develop suitable models to

predict the number of vulnerabilities in yearly basis for vulnerabilities that are crucial

in numbers, we needed to obtain number of discovered and reported vulnerabilities

in each level Low, Medium and High. However, CVE details website provides us

with only the total number of vulnerabilities in each year for different categories with

respect to 10 different levels of vulnerability scores from 0 to 10. To obtain the infor-

mation we needed, it was required to manually calculate numbers in each category in

each year data and then add them up to get the sum of number of vulnerabilities for

different levels. To obtain the information needed for our preliminary analysis on the

data base, there were no other easier information source available. Therefore, it was
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necessary to go through this manual process. Following schematic network presents

the steps we used in the calculation process.

Total Number of Vulnerabilities from 1999-2015 (75705)

Calculate the yearly basis,

number of vulnerabilities in

each type in 10 different levels

Calculate the yearly basis number

of Vulnerabilities in 10 different lev-

els for 13 different vulnerability types.

Calculate the total number of vul-

nerabilities for 17 years for 10 dif-

ferent levels (for 13 categories)

Categorize number of vulnerabilities into Low risk (0-3.9), Medium risk (4-6.9) and High risk (7.10)

Order (descending) the number of vul-

nerabilities in each type for three differ-

ent levels to observe the Ranks based

on most frequent type of vulnerabilities.

Figure 2.4: Key Steps of the Rank Vulnerability Types.
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2.5.1 Rank and Distribution of Vulnerability Types in Low level (CVSS

score 0-3.9)

Figure 2.5: Distribution of vulnerability Types in Low Category

The most common type of vulnerability that is in lower level category is XSS

(Cross-site scripting Vulnerabilities). According to the number of vulnerabilities in

each type, the second and third in the lower level are DOS (Denial of service) and

Gain Information respectively. Table below illustrates the rank of vulnerability types,

based on number of discovered vulnerabilities in the lower level category.

2.5.2 Rank and Distribution of Vulnerability Types in Medium Level

(CVSS score 4-6.9)

In the Medium level, DOS (Denial of service) vulnerabilities have the highest fre-

quency in the database. Types XSS and code executions are the other most frequent

vulnerabilities. Table 2.2 below illustrates ranks based on the number of different
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Table 2.1: Rank of Vulnerability Types in Low Category

Vulnerability Type Rank Vulnerability Type Rank

XSS 1 Directory Traversal 8

DOS 2 Memory Corruption 9

Gain Infor 3 Sql Injection 10

Bypass 4 CSRF 11

overflow 5 Http Response Splitting 12

Code Execution 6 File Inclusion 13

Gain Privileges 7 - -

types of vulnerabilities in the medium level.

Table 2.2: Rank of Vulnerability Types in Medium Category

Vulnerability Type Rank Vulnerability Type Rank

DOS 1 Gain Privileges 8

XSS 2 CSRF 9

Code Execution 3 Sql Injection 10

Gain Infor 4 Memory Corruption 11

overflow 5 File Inclusion 12

Bypass something 6 Http Response Splitting 13

Directory Traversal 7 - -
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Figure 2.6: Distribution of vulnerability Types in Medium Category

2.5.3 Rank and Distribution of Vulnerability Types in High Level (CVSS

score 7-10)

Figure 2.7: Distribution of vulnerability Types in High Category

For the high level CVSS score category Code Executions dominates in numbers.

The second most common type is Over flow. Type DOS is the third most frequent
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type as shown in Table 2.3 below.

From these three tables, we can easily observe that the importance in terms of the

Table 2.3: Rank of Vulnerability Types in High Category

Vulnerability Type Rank Vulnerability Type Rank

Code Execution 1 File Inclusion 8

overflow 2 Directory Traversal 9

DOS 3 Gain Infor 10

Sql Injection 4 XSS 11

Memory Corruption 5 CSRF 12

Gain Privileges 6 Http Response Splitting 13

Bypass something 7 - -

frequency in 3 different levels of vulnerabilities are different. However, it is clear that

some categories of vulnerabilities are most common than the others in each level. As

examples, types Code execution, Overflow and DOS are more frequent in all three

categories. Therefore, in this section, it would be important that we look into these

major types (in terms of numbers discovered) of vulnerabilities and see if there is a

noticeable pattern for discovering them. We would start with a very basic regression

models. Such analysis, even though very simple will certainly give us a main picture

of number of vulnerabilities in each type to be expected in the future.
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2.5.4 Behavior of DOS Vulnerability Type with Respect to Time

Scatter plot in the Figure 2.8 illustrates the behavior of number of vulnerabilities in

type DoS over time. It looks reasonable to assume a linear relation as a function of

time. Therefore we propose a linear regression model to predict the behavior of this

vulnerability type. The predicted model is given below,

Figure 2.8: Distribution of DOS vulnerability types with time

Y (t) = 94.292t− 188323.85. (2.5.1)

For this model, the Coefficient of Determination, R2 is obtained to be 0.96488

and R2
adj is obtained to be 0.96254. Both these results indicates the model accuracy

to be higher as they are closer to 1.
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2.5.5 Behavior of Memory Corruption Vulnerability Type with Respect

to Time

Scatter plot in the Figure 2.9 illustrates the behavior of number of vulnerabilities in

type Memory Corruption over time. It looks reasonable to assume a linear relation

as a function of time. Therefore we propose a linear regression model to predict the

behavior of this vulnerability type. The predicted model is given below,

Figure 2.9: Distribution of Memory Corruption vulnerability types with time

Y (t) = 52.9945t− 106221.73. (2.5.2)

For this model, the Coefficient of Determination, R2 is obtained to be 0.8835

and R2
adj is obtained to be 0.8729. Since Memory Corruption has rapid increased after

2005 we proposed exponential model to predict the behavior of this vulnerability type
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and the predicted model is given below,

Y (t) = 1.381E−05 ∗ e(t) + 29.586t− 110.4284. (2.5.3)

For exponential model, the Coefficient of Determination, R2 is obtained to

be 0.9221 and R2
adj is obtained to be 0.9109. Both these results indicates the model

accuracy to be higher as they are closer to 1. Since R2
adj for second model is much

higher than linear regression model, we proposed exponential model to predict the

behavior of Memory Corruption.

2.6 Contribution

In this chapter, we discussed the vulnerability data base in several aspects including

the computational methodology used in the calculation of ”Common Vulnerability

Scoring System (CVSS)[39]. We observed thirteen different vulnerability types in

the vulnerability database for over 75000 different software vulnerabilities. In this

chapter, we conducted the basic analysis of number of vulnerabilities for the use of

following chapters.

To further understand different types of vulnerabilities and their role in the

cyber world we observed the data available in the vulnerability data base with respect

to different types of vulnerabilities and rank them based on the number of vulnera-

bilities. Once the number of different types of vulnerabilities are calculated for three

different levels of vulnerabilities recorded in each year from 1996 to 2015, we ranked
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the vulnerability types based on number of vulnerabilities discovered or recorded in

each of the three levels. This analysis is important since different types of vulnera-

bilities have different effects on the security and solutions to be implemented are also

different based on these different types.

Finally, taking the ranks based on number of vulnerabilities into consideration,

we observed the vulnerability type DOS constitute a major role in all three different

levels based on the number of vulnerabilities. Therefore, to have a general predictive

model for DOS we have developed a Linear Regression Model with higher degree of

the Coefficient of Determination (R2).

We also developed a non linear predictive model where we observed an expo-

nential type of behavior for the vulnerability type ”Memory Corruption” with very

good prediction accuracy.
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3 A Statistical Predictive Model for the Expected Path Length

3.1 Introduction

Cyber-attacks are the most formidable security challenge faced by most governments

and large scale companies. Cyber criminals are increasingly using sophisticated net-

work and social engineering techniques to steal the crucial information which directly

affects the operational effects of the Government or Companys objectives. According

to the Secunia report 2015 [1] one can see how crucial the volume and magnitude of

increasing cybersecurity threaten. Thus, in understanding the performance, availabil-

ity and reliability of computer networks, measuring techniques plays an important

role in the subject area.

Quantitative measures are now commonly used to evaluate the security of

computer network systems [35],[36]. These measures help administrators to make im-

portant decisions regarding their network security.

In the present study we have first proposed a stochastic model for security

evaluation [17] based on vulnerability exploitability scores and attack path behav-

ior. Here, we consider small case scenarios which include three vulnerabilities (high,

medium and small) as a base model to understand the behavior of network topology.
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We structure the attack graph which includes all possibilities that the attacker reach

the goal state and used probabilistic analysis to measure the security of the network

[30]. In addition we propose a statistical model that is driven by the mentioned

vulnerabilities along with the significant interactions that is highly accurate. This

statistical model will allow us to estimate the Expected Path Length and Minimum

number of steps to reach the target with probability one. Having these important

estimates we can take counter steps and acquire relevant resources to protect the se-

curity system from the attacker. In addition, utilizing this model we have identified

the significant interaction of the key attributable variables. Also we can rank the at-

tributable variables (vulnerabilities) to identify the percentage of contribution to the

response (Expected path length and Minimum number of steps to reach the target)

and furthermore one can perform surface response analysis to identify the acceptable

values that will minimize the Expected Path Length among others.

3.2 Background and Related Methodologies

The background of the inherent problems with the Markov property [16],[44] that we

are going to use in our new model are discussed in the following subsections.

3.2.1 Markov Chain and Transition Probability

A discrete type stochastic process X = {XN , N ≥ 0} is called a Markov chain if for

any sequence {X0, X1, ..., XN} of states, the next state depends only on the current
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state and not on the sequence of events that preceded it, which is called the Markov

property. Mathematically we can write this as follows.

P (XN = j|X0 = i0, X1 = i1, ..., XN−2 = iN−2, XN−1 = i) = P (XN = j|XN−1 = i).

(3.2.1)

We will also make the assumption that the transition probabilities P (XN = j|X0 =

i0, X1 = i1, ..., XN−2 = iN−2, XN−1 = i) do not depend on time. This is called time

homogeneity. The transition probabilities (Pi,j) for Markov chain can be defined as

follows.

(Pi,j) = P (XN = j|XN−1 = i). (3.2.2)

The transition matrix P of the Markov chain is the NxN matrix whose (i, j) entry

Pi,j satisfied the following properties.

0 ≤ Pi,j ≤ 1, 1 ≤ i, j ≤ N, (3.2.3)

N∑
j=1

Pi,j = 1, 1 ≤ i, j ≤ N. (3.2.4)

Any matrix satisfying the above two equations is the transition matrix for a Markov

chain. To simulate a Markov chain, we need its stochastic matrix P and an initial

probability distribution π0.
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3.2.2 Transient States

Let P be the transition matrix [16],[4] for Markov chain Xn. A state i is called

transient state if with probability 1 the chain visits i only a finite number of times.

Let Q be the sub matrix of P which includes only the rows and columns for the

transient states. The transition matrix for an absorbing Markov chain [16] has the

following canonical form.

P =

Q R

0 I

 . (3.2.5)

Here P is the transition matrix, Q is the matrix of transient states, R is the

matrix of absorbing states and I is the identity matrix.

The matrix P represents the transition probability matrix of the absorbing

Markov chain. In an absorbing Markov chain the probability that the chain will be

absorbed is always 1. Hence, we have,

Qn →∞, n→∞.

Thus, is it implies that all the eigenvalues of Q have absolute values strictly

less than 1. Hence, I-Q is an invertible matrix and there is no problem in defining the

matrix

M = (I −Q)−1 = I +Q+Q2 +Q3 + ....
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This matrix is called the fundamental matrix of P. Let i be a transient state

and consider Yi, the total number of visits to i. Then we can show that the expected

number of visits to i starting at j is given by Mij, the (i, j) entry of the matrix M.

Therefore, if we want to compute the expected number of steps until the chain enters

a recurrent class, assuming starting at state j, we need only sum Mij over all transient

states i.

3.3 Cybersecurity Analysis Method

The core component of this method is the attack graph [11],[12],[13]. When we draw

an attack graph for a cybersecurity system it has several nodes which represent the

vulnerabilities that the system has and the attackers state [11]. We consider that it

is possible to go to a goal state starting from any other state in the attack graph.

Also an attack graph has at least one absorbing state or goal state. Therefore we will

model the attack graph as an absorbing Markov chain.

Absorbing state or goal state is the security node which is exploited by the

attacker. When the attacker has reached this goal state, attack path [18] is completed.

Thus, the entire attack graph consists of these type of attack paths.

Given the CVSS score for each of the vulnerabilities in the attack Graph [43],

we can estimate the transition probabilities of the absorbing Markov chain by normal-

izing the CVSS scores over all the edges starting from the attackers source state.We

define,

pij = probability that an attacker is currently in state j and exploits a
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vulnerability in state i.

n = number of outgoing edges from state i in the attack model.

vj = CVSS score for the vulnerability in state j.

Then formally we can define the transition probability below,

Pij =
vj∑n
k=1 vk

. (3.3.6)

By using these transition probabilities we can derive the absorbing transition

probability matrix P, which follows the properties defined under Markov chain prob-

ability method.

3.3.1 Attack Prediction

Under the Attack prediction, we consider two methods to predict the attackers be-

havior.

Multi Step Attack Prediction

The absorbing transition probability matrix shows the presence of each edge in a

network attack graph [29]. This matrix shows every possible single-step attack. In

other words, the absorbing transition probability matrix shows attacker reachability

within one attack step. We can navigate the absorbing transition probability matrix

by iteratively matching rows and columns to follow multiple attack steps, and also
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raise the absorbing transition probability matrix to higher powers, which shows multi-

step attacker reachability at a glance.

For a square (n × n) adjacency matrix P and a positive integer k, then Pk is

P raised to the power k: Since P is an absorbing transition probability matrix with

time, this matrix goes to some stationary matrix Π, where the rows of this matrix are

identical. That is,

lim
k→∞

PK = Π. (3.3.7)

At the goal state column of this matrix Π has ones, so we can find the minimum

number of steps that the attacker should try to reach to the goal state with probability

1.

Prediction of Expected Path Length (EPL)

The Expected Path Length (EPL)[3],[26] measures the expected number of steps the

attacker will take starting from the initial state to reach the goal state (the attackers

objective). As we discussed earlier P has the following canonical form.

P =

Q R

0 I

 . (3.3.8)

Here, P is the transition matrix, Q is the matrix of transient states, R is the matrix of

absorbing states and I is the identity matrix. The matrix P represents the transition

probability matrix of the absorbing Markov chain. In an absorbing Markov chain the
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probability that the chain will be absorbed is always 1. Thus, we have

Qn →∞, n→∞.

Thus, is it implies that all the eigenvalues of Q have absolute values strictly

less than 1. Hence, I-Q is an invertible matrix and there is no problem in defining the

matrix

M = (I −Q)−1 = I +Q+Q2 +Q3 + ....

Using this fundamental matrix M of the absorbing Markov chain we can compute the

expected total number of steps to reach the goal state until absorption.

Taking the summation of first row elements of matrix M gives the expected

total number of steps to reach the goal state until absorption and the probability

value relates to the goal state gives the expected number of visits to that state before

absorption.

3.3.2 Illustration: The Attacker

To illustrate the proposed approach model that we discussed in section 3.3.1, we con-

sidered a Network Topology given in Figure 3.1, below. The network consists of two

service hosts IP 1, IP 2 and an attackers workstation, Attacker connecting to each of

the servers via a central router.
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Figure 3.1: Network Topology

In the server IP 1 the vulnerability is labeled as CVE 2006-5794 and lets con-

sider this as V1. In the server IP 2 there are two recognized vulnerabilities, which

are labeled CVE 2004-0148 and CVE 2006-5051. Lets consider this as V2 and V3,

respectively. We proceed to use the CVSS score of the above vulnerabilities. And

the exploitability score (e(v) in Figure 3.1) of each vulnerabilities as given in Table 3.1.

Table 3.1: Vulnerability Scores

Vulnerability Exploitability score

V1(CVE 2006-5794) 6

V2(CVE 2006-5051) 5

V3 (CVE 2004-0148) 1
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Host Centric Attack graph

The host centric attack graph [25],[34] is shown by Figure 3.2, below. Here, we con-

sider that the attacker can reach the goal state only by exploiting V2 vulnerability.

The graph shows all the possible paths that the attacker can follow to reach the goal

state.

Note that IP1,1 state represents V1 vulnerability and IP2,1 and IP2,2 states

Figure 3.2: Host Centric Attack Graph

represent V2 and V3 vulnerabilities, respectively. Also, the notation 10 represents the

maximum vulnerability score and this provides attacker the maximum chance to ex-

ploit this state. Attacker can reach each state by exploiting the relevant Vulnerability.
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3.3.3 Adjacency Matrix for the Attack Graph

Let s1, s2, s3, s4, represent the attack states for Attacker, (IP1,1), (IP2,1) and (IP2,2),

respectively. To find the weighted value of exploiting each vulnerability from one

state to another state, we divide the vulnerability score by summation of all out

going vulnerability values from that state. For our attack graph the weighted value

of exploiting each vulnerability is given below.

1st row probabilities:

Weighted value of exploiting V1 from s1 to s2 is V1/(V1 + V2)

Weighted value of exploiting V2 from s1 to s3 is V2/(V1 + V2)

2nd row probabilities:

Weighted value of exploiting V2 from s2 to s3 is V2/(10 + V2)

3rd row probabilities:

Weighted value of exploiting V1 from s3 to s2 is V1/(V1 + V3 + 10)

Weighted value of exploiting V3 from s3 to s4 is V3/(V1 + V3 + 10)

4th row probabilities:

Weighted value of exploiting V3 from s4 to s4 is 1.

For the Host Centric Attack graph we can have the Adjacency Matrix as follows.

A =



0
(V1+V2)

V1

(V1+V2)
V2

(V1+V2)
0

(V1+V2)

0
(10+V2)

10
(10+V2)

V2

(10+V2)
0

(10+V2)

0
(V1+V3+10)

V1

(V1+V3+10)
10

(V1+V3+10)
V3

(V1+V3+10)

0 0 0 1


. (3.3.9)
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Utilizing the information given in Table 3.1, the matrix A is given by

A =



0 0.5455 0.4545 0

0 0.6667 0.3333 0

0 0.3529 0.5882 0.0588

0 0 0 1


. (3.3.10)

Here, 0.5455 is the probability that attacker exploit V1 vulnerability in first

step, from s1 to s2. We can explain 0.0588 as the probability that once in state

IP2,1 can exploit V3 vulnerability and reach to IP2,2 in first attempt. Similarly each

probability represent the chance to exploit relevant vulnerability from one state in

the first attempt.

We want to use this matrix to answer the important question in cyber security

analysis. We want to find the minimum number of steps to reach the goal state (final

destination) with probability one and the expected path length metric.

3.4 Finding Stationary Distribution and Minimum Number of Steps

By using the above matrix A, we can find the probabilities with two, three and several

attempt by the attacker to reach the goal state using A2, A3, A4,..., Ap matrices. From

these matrices we can find all possible probabilities from one state to another that

the attacker can reach by two steps A2, three steps A3 and four steps A4 and up to p

steps Ap respectively. We continuous this process until we reach the absorbing matrix

and that p value gives the minimum number of steps that the attacker is required to
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reach the goal state with probability one.

We proceed by changing the CVSS score and calculate for each combination

of V1, V2 and V3 the minimum number of steps that the attacker will reach the goal

state with probability one. These calculations are given in Table 3.4.

For example, it will take minimum 68 steps with vulnerability configuration of

V1 = 10, V2 = 9, V3 = 8 for the attacker to reach the final goal with probability one.

The largest number of steps for the attacker to achieve his goal is 844 steps by using

the vulnerabilities, V1 = 10, V2 = 2 and V3 = 1, with probability one.

3.5 Expected Path Length (EPL) Analysis

As described under Section 3.3.1 we measure the expected number of steps the attacker

will take starting from the initial state to compromise the security goal. In Table 3.5,

we present the calculations of the Expected Path Length of the attacker for various

combinations of the vulnerabilities V1, V2 and V3.

For example, it will take 8.25 EPL with vulnerability configuration of V1 = 10,

V2 = 9, V3 = 8 for the attacker to compromise the security goal. The largest Expected

Path Length of the attacker is 72.8 using V1 = 8, V2 = 2 and V3 = 1.

3.6 Development of the Statistical Models

The primary objective here is to utilize the information that we have calculated to

develop a statistical model [32],[33], [46] to predict the minimum number of steps
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to reach the stationary matrix and EPL of the attacker. We used the application

software package R [41] for required calculations in developing these models.

3.6.1 Developing a Statistical Model to Predict the Minimum Number of

Steps

By using the information in Table 3.4, we developed a statistical model that esti-

mates the minimum number of steps the attacker takes to reach the goal state with

probability one.

Table 3.2: Parametric Model: R2 and adjusted R2 values

Model R2 AjustedR2

Y 1 = 344.167 + 35.284V1 − 34.115V2 − 67.803V3 0.7244 0.7173

Y 2 = 446.865 + 67.645V1 − 81.662V2 − 149.982V3

−1.24V1V2 − 13.7V1V3 + 29.354V2V3 0.8835 0.8773

Y 3 = 689.84 + 51.177V1 − 138.815V2 − 328.093V3

−0.3626V1V2 + 9.29V1V3 + 39.114V2V3

−0.084V 2
1 + 8.479V 2

2 + 17.96V 2
3 3.47V1V2V3 0.9428 0.9376

The quality of the model is measured by R2 and adjusted R2 values as defined

below. The first model in Table 3.2 does not include interactions of the three Vulner-

abilities, V1, V2 and V3 and R2 and R2
adj reflect its quality of 0.7244 and 0.7173. The

second model shows that there is a significant binary interaction of the each factors

and the statistical model shows a significant improvement with R2 and R2
adj of 0.8835
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and 0.8773 respectively. However, the best statistical model is obtained when we

consider in addition to individual contributions of V1, V2 and V3, two way and three

way significant interactions. Thus, from the above table the third model with R2 and

R2
adj of 0.9428 and 0.9376 respectively attest to the fact that this statistical model is

excellent in estimating the minimum number of steps that an attacker will need to

achieve his goal.

Not only an individual could do the predictions but also he could perform

surface response analysis. For example using the third model Y 3 one could maximize

the number of steps for an attacker to reach his goal state by taking defending steps

to ensure to maintain their systems with the minimum vulnerability scores. Similarly

one could estimates confidence intervals for vulnerability scores so that the necessary

steps can be taken to maintain the expected security level.

3.6.2 Developing a Statistical Model to Predict the Minimum Number of

Steps

By using Table 3.5 results we developed a model to find the Expected Path Length

[46] that the attacker will take starting from the initial state to reach the security

goal. To utilize the quality of the model we use R2 concept and by comparing the

values in Table 3.3, the third model gives the highest R2 = 0.943 and R2
adj = 0.9378

value. Therefore we can conclude that the third model gives the best prediction of

EPL. Not only an individual could predict the EPL but also he could perform

surface response analysis. For example using the third model ”Y 3” one could max-
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Table 3.3: Parametric model (EPL): R2 and R2
adj values

Model R2 R2
adj

Y 1 = 35.975 + 3.622V13.497V26.845V3 0.7253 0.7181

Y 2 = 46.301 + 6.904V1 − 8.28V215.178V3

−0.128V1V2 − 1.384V1V3 + 2.97V2V3 0.8839 0.8778

Y 3 = 70.62 + 5.338V114.108V233.144V3

−0.041V1V2 + 0.942V1V3 + +3.943V2V3

−0.015V 2
1 + 0.864V 2

2 + 1.814V 2
3 0.35V1V2V3 0.943 0.9378

imize the EPL for an attacker to reach his goal state by taking defending steps to

ensure to maintain their systems with the minimum vulnerability scores. Similarly

one could estimates confidence intervals for vulnerability scores so that the necessary

steps can be taken to maintain the expected security level.

We proceed by changing the CVSS score and calculate for each combination

of V1, V2 and V3 the minimum number of steps that the attacker will reach the goal

state with probability one. These calculations are given in Table 3.4.

For example, it will take minimum 68 steps with vulnerability configuration of

V1 = 10, V2 = 9, V3 = 8 for the attacker to reach the final goal with probability one.

The largest number of steps for the attacker to achieve his goal is 844 steps by using

the vulnerabilities, V1 = 10, V2 = 2 and V3 = 1, with probability one.

In Table 3.5, we present the calculations of the Expected Path Length of the
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attacker for various combinations of the vulnerabilities V1, V2 and V3.

For example, it will take 8.25 EPL with vulnerability configuration of V1 = 10,

V2 = 9, V3 = 8 for the attacker to compromise the security goal. The largest Expected

Path Length of the attacker is 72.8 using V1 = 8, V2 = 2 and V3 = 1.

3.7 Contribution

We have developed a very accurate statistical model that can be utilized to predict

the minimum steps to reach the goal state and predict the expected path length. This

developed model can be used to identify the interaction among the vulnerabilities and

individual variables that drive the EPL.

We ranked the attributable variables and their contribution in estimating the subject

length. By using these rankings security administrators can have a better knowledge

about priorities. This will help them to take the necessary actions regarding their

security system.

Here we develop a model for three vulnerabilities and we can expand this model to any

Large Network System. Thus, the proposed methods will assist in making appropriate

security decisions in advance.

44



Table 3.4: Number of Steps for Absorbing Matrix

Steps V1 V2 V3 Steps V1 V2 V3 Steps V1 V2 V3 Steps V1 V2 V3
68 10 9 8 407 9 8 1 92 7 6 5 75 10 9 7
87 9 7 6 109 7 6 4 85 10 9 6 100 9 7 5
138 7 6 3 99 10 9 5 121 9 7 4 197 7 6 2
119 10 9 4 154 9 7 3 374 7 6 1 153 10 9 3
222 9 7 2 118 7 5 4 221 10 9 2 424 9 7 1
149 7 5 3 424 10 9 1 107 9 6 5 212 7 5 2
78 107 8 7 128 9 6 4 400 7 5 1 88 10 8 6
163 9 6 3 165 7 4 3 102 10 8 5 234 9 6 2
233 7 4 2 124 10 8 4 447 9 6 1 439 7 4 1
159 10 8 3 138 9 5 4 269 7 3 2 229 10 8 2
176 9 5 3 504 7 3 1 439 10 8 1 252 9 5 2
634 7 2 1 93 10 7 6 480 9 5 1 107 6 5 4
107 10 7 5 195 9 4 3 135 6 5 3 129 10 7 4
279 9 4 2 191 6 5 2 166 10 7 3 529 9 4 1
359 6 5 1 239 10 7 2 323 9 3 2 149 6 4 3
458 10 7 1 610 9 3 1 210 6 4 2 114 10 6 5
774 9 2 1 393 6 4 1 137 10 6 4 81 8 7 6
242 6 3 2 176 10 6 3 93 8 7 5 450 6 3 1
253 10 6 2 112 8 7 4 564 6 2 1 484 10 6 1
143 8 7 3 134 5 4 3 148 10 5 4 205 8 7 2
187 5 4 2 190 10 5 3 390 8 7 1 348 5 4 1
272 10 5 2 99 8 6 5 215 5 3 2 520 10 5 1
119 8 6 4 396 5 3 1 211 10 4 3 151 8 6 3
493 5 2 1 301 10 4 2 216 8 6 2 187 4 3 2
574 10 4 1 411 8 6 1 342 4 3 1 350 10 3 2
128 8 5 4 423 4 2 1 664 10 3 1 163 8 5 3
351 3 2 1 844 10 2 1 232 8 5 2 74 9 8 7
440 8 5 1 83 9 8 6 180 8 4 3 96 9 8 5
256 8 4 2 115 9 8 4 484 8 4 1 148 9 8 3
296 8 3 2 212 9 8 2 557 8 3 1 - - - -
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Table 3.5: Expected Path Length for several Vulnerabilities.

EPL V1 V2 V3 EPL V1 V2 V3 EPL V1 V2 V3 EPL V1 V2 V3
8.25 10 9 8 34.25 9 3 2 8.98 10 9 7 63.25 9 3 1
9.96 10 9 6 79.91 9 2 1 11.33 10 9 5 9.53 8 7 6
13.39 10 9 4 10.78 8 7 5 16.81 10 9 3 12.65 8 7 4
23.67 10 9 2 15.77 8 7 3 44.22 10 9 1 22.01 8 7 2
9.32 10 8 7 40.72 8 7 1 10.33 10 8 6 11.39 8 6 5
11.75 10 8 5 13.36 8 6 4 13.87 10 8 4 16.64 8 6 3
17.42 10 8 3 23.19 8 6 2 24.5 10 8 2 42.86 8 6 1
45.75 10 8 1 14.35 8 5 4 10.81 10 7 6 17.85 8 5 3
12.29 10 7 5 24.85 8 5 2 14.5 10 7 4 45.85 8 5 1
18.19 10 7 3 19.67 8 4 3 25.57 10 7 2 27.33 8 4 2
47.71 10 7 1 50.33 8 4 1 13 10 6 5 31.48 8 3 2
15.33 10 6 4 57.82 8 3 1 19.22 10 6 3 72.8 8 2 1

27 10 6 2 10.57 7 6 5 50.33 10 6 1 12.35 7 6 4
16.5 10 5 4 15.32 7 6 3 20.67 10 5 3 21.27 7 6 2
29 10 5 2 39.1 7 6 1 54 10 5 1 13.25 7 5 4

22.83 10 4 3 16.42 7 5 3 32 10 4 2 22.75 7 5 2
59.5 10 4 1 41.75 7 5 1 37 10 3 2 18.06 7 4 3
68.67 10 3 1 24.98 7 4 2 87 10 2 1 45.73 7 4 1
8.798 9 8 7 28.7 7 3 2 9.73 9 8 6 52.37 7 3 1
11.04 9 8 5 65.67 7 2 1 13 9 8 4 12.14 6 5 4
16.27 9 8 3 14.97 6 5 3 22.82 9 8 2 20.64 6 5 2
42.44 9 8 1 37.64 6 5 1 10.18 9 7 6 16.43 6 4 3
11.54 9 7 5 22.6 6 4 2 13.58 9 7 4 41.1 6 4 1
16.99 9 7 3 25.89 6 3 2 23.79 9 7 2 46.89 6 3 1
44.22 9 7 1 58.5 6 2 1 12.2 9 6 5 14.78 5 4 3
14.35 9 6 4 20.19 5 4 2 17.93 9 6 3 36.44 5 4 1
25.1 9 6 2 23.04 5 3 2 46.6 9 6 1 41.38 5 3 1
15.43 9 5 4 51.29 5 2 1 19.26 9 5 3 20.14 4 3 2
26.93 9 5 2 35.81 4 3 1 49.93 9 5 1 44 4 2 1
21.26 9 4 3 36.6 3 2 1 29.67 9 4 2 54.92 9 4 1
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4 NonHomogeneous Stochastic Model for Cyber Security Predictions

4.1 Introduction

In this study, we continue our research efforts in integrating Mathematical and Sta-

tistical theories into better understanding the complex behavior of computer network

systems in the perspective of Cybersecurity. Thus, we propose a new method to esti-

mate the EPL as a function of time t. The EPL is a major factor in determining the

risk level of a given computer system and lesser the EPL, the network system is more

vulnerable and probable to be exploited.

In our recent studies [20],[21] and [46] we introduced several stochastic models

to better understand the behavior of vulnerabilities, network systems with respect

to cybersecurity. Initially, we introduced a stochastic model that can estimate the

Expected Path Length of a system with any three vulnerabilities and two machines.

Then, we introduced a new approach of estimating the probability of a given vul-

nerability being exploited at a time t, using Markovian approach with respect to the

Vulnerability life cycle. We have further introduced a set of three stochastic time

dependent models for each categories of vulnerabilities with Low, Medium and High

exploitability scores that can estimate the probability of a given vulnerability getting
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exploited without going through the Markovian process each time. Additionally, the

concept of Risk Factor that we introduced and its analytical formulation allowed us

to present a more sophisticated way of estimating the risk associated with a specific

vulnerability of a computer network system. In the present study, we introduce a

Non Homogeneous Stochastic Model that allows the computer system administrators

to predict the time, that the system is most vulnerable for an attack in terms of the

EPL. This estimate is based on the assumption that a system is more susceptible to

be exploited when the EPL is at a minimum at a particular time t. In developing this

model we have used a network system of two IPs with three vulnerabilities as a base

model.

With the introduction of this new approach we will be re-defending the ca-

pability to estimate the probability of getting exploited as a function of time for a

computer network system with given set of vulnerabilities. Even though we have al-

ready developed a successful statistical model to find the EPL of a possible attack,

it is more important to estimate the EPL as a function of time. Thus, for a system

with a given set of vulnerabilities, estimating of most probable exploit times can be

modelled on the logical assumption that a system is more susceptible to be exploited

at a time where the Expected Path Length (number of steps that an attacker needs

to pass before achieving the goal state) is at its minimum.

48



4.2 Background and Related Methodologies

4.2.1 Cybersecurity Analysis Method

The core component of this method is the attack graph [11]. When we draw an

attack graph for a cybersecurity system it has several nodes which represent the

vulnerabilities that the system has and the attackers state [12]. We consider that it

is possible to go to a goal state starting from any other state in the attack graph.

Also an attack graph has at least one absorbing state or goal state. Therefore we will

model the attack graph as an absorbing Markov chain [12].

Absorbing state or goal state is the security node which is exploited by the

attacker. When the attacker has reached this goal state, attack path is completed.

Thus, the entire attack graph consists of these type of attack paths.

Given the CVSS score for each of the vulnerabilities in the attack Graph, we

can estimate the transition probabilities of the absorbing Markov chain by normalizing

the CVSS scores over all the edges starting from the attackers source state.We define,

pij = probability that an attacker is currently in state j and exploits a

vulnerability in state i.

n = number of outgoing edges from state i in the attack model.

vj = CVSS score for the vulnerability in state j.

Then formally we can define the transition probability below,
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Pij =
vj∑n
k=1 vk

. (4.2.1)

By using these transition probabilities we can derive the absorbing transition

probability matrix P, which follows the properties defined under Markov chain prob-

ability method.

4.2.2 Risk Factor Model

pij , the transition probabilities for each state in an attack graph, that is, it represents

the risk of a particular state (with a given vulnerability) of being exploited. There-

fore, it is logical to consider it the same as a risk variable. In our previous studies

we have introduced a more convenient and powerful tool named Risk Factor [21] that

can estimate the risk associated with a particular state of a given vulnerability.

It is important that, when we consider a given vulnerability its exploitability

factor should vary with time. But the exploitability factor calculated under the CVSS

score is discrete and is not suitable for inclusion in a non-homogenous model. How-

ever, our Risk Factor model is based on the Vulnerability Life Cycle and it is time

dependent. This allows us to develop a non-homogeneous model which is our objec-

tive in this study. Therefore, in this study we will extend the Transition Probability

Matrix Model, replacing vulnerability with the CVSS score, v by its Risk Factor r.

The probability of an exploitation for a given vulnerability can be obtained

using the three stochastic models given in Table 4.1 below. These time dependent
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stochastic models were developed in our previous study [20],[21], and we used the

general classification of vulnerability risks based on the CVSS score identified as Low,

Medium and High. Details of the process and methodology in developing the subject

models along with their validation accuracy are given in our previous study [21].

Table 4.1: Model Equations of Risk Factors for three different categories of vulnerabilities.

Category Model Equation R2 R2
adj

Low (0-4) Y (t) = 0.1354410.308532(1/t)− 0.002030 ln(ln t) 0.9576 0.9566

Medium (4-7) Y (t) = 0.169518− 0.356821(1/t)− 0.007011 ln(ln t) 0.962 0.961

High (7-10) Y (t) = 0.1917010.383521(1/t)− 0.00358 ln(ln t) 0.9588 0.9577

In each of the equations, t is the age of vulnerability and is calculated by taking

the difference between the dates that the vulnerability was first discovered and the

attacking attempt started. Thus, for a given vulnerability and time we can obtain the

probability of being exploited. We can now define the transition probability as follows.

Pij =
R(vj(t))∑n
k=1R(vk(t))

, (4.2.2)

where

R(vj(t)) = Risk Factor of a given vulnerability in state j at time t,

e(vj) = Exploitability sub score that is related to the CVSS score for the given vul-

nerability in state j,
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R(vj(t)) = Y (t) ∗ e(vj). (4.2.3)

Above equation gives the analytic form of the risk factor as a function of Y (t)

and e(vj) where Y(t) is the exploitability probability factor as a function of time and

e(vj) is the exploitability score taken from the CVSS.

4.3 Attack Prediction

Under the Attack Prediction, we consider two methods to predict the attackers be-

havior.

4.3.1 Multi Step Attack Prediction

The absorbing transition probability matrix shows the presence of each edge in a

network attack graph. This matrix shows every possible single-step attack. In other

words, the absorbing transition probability matrix shows attacker reachability within

one attack step. We can navigate the absorbing transition probability matrix by

iteratively matching rows and columns to follow multiple attack steps, and also raise

the absorbing transition probability matrix to higher powers, which shows multi-step

attacker reachability at a glance.

For a square (n × n) adjacency matrix P and a positive integer k, then Pk is

P raised to the power k: Since P is an absorbing transition probability matrix with
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time, this matrix goes to some stationary matrix Π, where the rows of this matrix are

identical. That is,

lim
k→∞

PK = Π. (4.3.4)

At the goal state column of this matrix Π has ones, so we can find the minimum

number of steps that the attacker should try to reach to the goal state with probability

1.

4.3.2 Prediction of Expected Path Length (EPL)

The Expected Path Length (EPL) measures the expected number of steps the attacker

will take starting from the initial state to reach the goal state (the attackers objective).

As we discussed earlier P has the following canonical form.

P =

Q R

0 I

 . (4.3.5)

Here, P is the transition matrix, Q is the matrix of transient states, R is the matrix of

absorbing states and I is the identity matrix. The matrix P represents the transition

probability matrix of the absorbing Markov chain. In an absorbing Markov chain the

probability that the chain will be absorbed is always 1. Thus, we have

Qn →∞, n→∞.
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Thus, is it implies that all the eigenvalues of Q have absolute values strictly

less than 1. Hence, I-Q is an invertible matrix and there is no problem in defining the

matrix

M = (I −Q)−1 = I +Q+Q2 +Q3 + ....

Using this fundamental matrix M of the absorbing Markov chain we can compute the

expected total number of steps to reach the goal state until absorption.

Taking the summation of the first row elements of matrix M gives us the

expected total number of steps to reach the goal state which is defined as the Expected

Path Length. Given below is an application that illustrate a computer network system

of our proposed analytic process to estimate the EPL of a hacker.

4.4 Attack Graph and Attack Risk Evaluation

In this section we present an example illustrating the application of the usefulness

of our method. We combine the application of methodology with an attack graph

relevant to a typical network exemplified with three different recorded vulnerabilities.

4.4.1 Application: The Attacker

To illustrate the proposed analytical approach model that we have developed as dis-

cussed above, we considered a Network Topology [4],[37], given by Figure 4.1, below.
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Figure 4.1: Network Topology

The computer network consists of two service hosts IP 1, IP 2 and an attackers

workstation, Attacker connecting to each of the servers via a central router.

In the server IP 1 the vulnerability is labeled as CVE 2016-3230 and shall denote as

V1. In the server IP 2 there are two recognized vulnerabilities, which are labeled CVE

2016-2832 and CVE 2016-0911. Lets denote them as V2 and V3, respectively.

We proceed to use the CVSS score of the above vulnerabilities in our analysis. The

exploitability score (e (v) in Figure 4.1) of each vulnerabilities as given in Table 4.2,

below.

Published date is in general considered as the date that a vulnerability is made known

to the public. CVSS score is the score given to the vulnerability based on exploitability

factors by the Forum of Incident Response and Security Teams, (FIRST). Calculation

of this score is established and updated time to time and the relevant details are

available in the CVE detail and other relevant official websites.
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Calculating Risk factor

For example, lets consider the vulnerability V1 (CVE 2016-3230). The CVSS score

has given the exploitability score for this vulnerability as 8. Taking the difference

between the published date (June 15th) and the attack date (June 24th), the age of

this vulnerability is calculated as 9 days. Since this is a vulnerability of the category

High, we can now use our model given in the Table 4.1 and calculate the Risk Factor

as follows.

R(vj(t)) = Y (t)× e(vj),

R(v1(t)) = [0.1917010.383521(1/t)− 0.00358 ln(ln(t))]× 8,

and

R(v1(9)) = 1.702.

Similarly, Risk factors for two other vulnerabilities are also calculated and presented

in the Table 4.2 below.

Table 4.2: Vulnerability Scores.

Vulnerability Published date CVSS score e(vj) (tj) R(vj(t))

V1(CVE 2016-3230) 6/15/2016 9 (High) 8 9 1.702

V2(CVE 2016-2832) 6/13/2016 4.3 (medium) 2.8 11 0.3667

V3(CVE 2016-0911) 6/19/2016 1.9 (Low) 3.4 5 0.2474
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4.4.2 Host Centric Attack graph

The host centric attack graph is shown by Figure 4.2, below. Here, we consider

that the attacker can reach the goal state only by exploiting V3 vulnerability. The

graph shows all the possible paths that the attacker can follow to reach the goal state.

Figure 4.2: Host Centric Attack Graph

Note that IP1,1 state represents V1 vulnerability and IP2,1 and IP2,2 states

represent vulnerabilities V2 and V3 respectively. Attacker can reach each state by

exploiting the relevant Vulnerability.

4.5 Adjacency Matrix for the Attack Graph

Let s1, s2, s3, s4, represent the attack states for Attacker, (IP1,1), (IP2,1) and (IP2,2),

respectively. To find the weighted value of exploiting each vulnerability from one

state to another state, we divide the vulnerability score by summation of all out
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going vulnerability values from that state. For our attack graph the weighted value

of exploiting each vulnerability is given below.

1st row probabilities:

Weighted value of exploiting V1 from s1 to s2 is R1/(R1 +R2)

Weighted value of exploiting V2 from s1 to s3 is R2/(R1 +R2)

2nd row probabilities:

Weighted value of exploiting V2 from s2 to s3 is R2/(R2)

3rd row probabilities:

Weighted value of exploiting V1 from s3 to s2 is R1/(R1 +R3)

Weighted value of exploiting V3 from s3 to s4 is R3/(R1 +R3)

4th row probabilities:

Weighted value of exploiting V3 from s4 to s4 is 1.

For the Host Centric Attack graph we can have the Adjacency Matrix as follows.

A =



0
(R1+R2)

R1

(R1+R2)
R2

(R1+R2)
0

(R1+R2)

0
(R2)

0
(R2)

R2

(R2)
0

(R2)

0
(R1+R3)

R1

(R1+R3)
10

(R1+R3)
R3

(R1+R3)

0 0 0 1


. (4.5.6)

Applying the information given in Table 4.2, the matrix A can be obtained as

follows.
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A =



0 0.7614 0.2386 0

0 0 1 0

0 0.8255 0 0.1745

0 0 0 1


. (4.5.7)

Here, 0.7614 is the probability that attacker exploits vulnerability V1 in the first step,

the step from s1 to s2. Similarly, we can explain 0.1745 as the probability that attacker

exploits the vulnerability V3 in the step s2 to s3 in his first attempt. Similarly, each

probability represents the likelihood to exploit relevant vulnerability from one state

to another state in the first attempt.

We can use this matrix to answer several important questions in cyber security

analysis. First, using the Adjacency Matrix we expect to find the Expected Path

Length. Then, we can analyze the behavior of Expected Path Length over the time.

To calculate the EPL over the time we follow the steps given below.

Step 01:

Calculate the Risk Factor of each vulnerability on the date of the first attack assumed

(June 24th in our example). That is, calculate the age of each vulnerability by taking

the difference between the published date and the June 24th. And, substitute this

value of t in relevant model equation given in the Table 4.1.

Step 02:

Using those Risk Factors, develop the transition matrix A and calculate the EPL.
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Step 03:

Repeat the same process for all the following dates that we need to calculate the

Expected Path Length.

4.5.1 Expected Path length

The Table 4.3 below show us the EPL for this computer system for 100 days starting

from 24th of June.

From the Table 4.3 above, we can identify that the number of days a hacker will

take to reach his goal of exploitability for the given computer network system we have

structured.

For example, lets consider 20th day. Under step 1, we calculate Risk factors for

V1, V2 and V3. For 20th day age of three vulnerabilities V1, V2 and V3 are, t1 = 9 + 20,

t2 = 11 + 20 and t3 = 5 + 20 respectively. Then, by substituting these ages in the

respective model equation from the Table 4.1 and multiplying the answers by respec-

tive exploitability score, we calculate three risk factors.

V1 is a vulnerability of category High. Therefore we use the 3rd model equation

from Table 4.3 and obtain the Risk factor.

Substituting t1 = 29 to the Risk factor model we obtain, R1 = 1.393. Simi-

larly for V2 and V3 we obtain following Risk factors calculated using relevant model

equations. For V2 substitute t2 = 31 and obtained R2 = 0.4182 and similarly for V3,

t3 = 25 and R3 = 0.4105.
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Table 4.3: Expected Path Length relative to number of days after first attack

Days EPL Days EPL Days EPL Days EPL

1 12.2205398 26 9.5175367 51 9.4453151 76 9.4239414

2 11.3052188 27 9.5116554 52 9.4440137 77 9.4234008

3 10.7998722 28 9.5062477 53 9.4427673 78 9.4228753

4 10.4850373 29 9.5012611 54 9.4415727 79 9.4223643

5 10.2729754 30 9.4966504 55 9.4404267 80 9.4218672

6 10.1220591 31 9.4923761 56 9.4393265 81 9.4213834

7 10.0101501 32 9.4884044 57 9.4382695 82 9.4209123

8 9.9244658 33 9.4847053 58 9.4372532 83 9.4204536

9 9.8571518 34 9.4812528 59 9.4362752 84 9.4200067

10 9.8031388 35 9.478024 60 9.4353336 85 9.4195711

11 9.7590231 36 9.4749985 61 9.4344263 86 9.4191465

12 9.7224429 37 9.4721584 62 9.4335516 87 9.4187324

13 9.6917134 38 9.4694878 63 9.4327076 88 9.4183284

14 9.6656039 39 9.4669724 64 9.4318929 89 9.4179342

15 9.643197 40 9.4645994 65 9.431106 90 9.4175493

16 9.6237964 41 9.4623576 66 9.4303454 91 9.4171736

17 9.606865 42 9.4602366 67 9.4296099 92 9.4168066

18 9.5919829 43 9.4582272 68 9.4288983 93 9.416448

19 9.5788176 44 9.4563211 69 9.4282094 94 9.4160975

20 9.5671025 45 9.4545107 70 9.4275421 95 9.415755

21 9.5566222 46 9.4527892 71 9.4268956 96 9.41542

22 9.5472004 47 9.4511503 72 9.4262687 97 9.4150924

23 9.5386921 48 9.4495884 73 9.4256606 98 9.4147719

24 9.5309766 49 9.4480984 74 9.4250706 99 9.4144583

25 9.5239531 50 9.4466754 75 9.4244978 100 9.4141513

Once we have calculated the Risk Factors for all the vulnerabilities in the net-

work system, the second step is to develop the Transition Matrix A as given in the

Equation 4.5.7.

Step 3 is to calculate the EPL. Applying the methodology we explained in the

section 4.3 we can calculate the EPL using the transition matrix A by obtaining the

matrix M. The sum of the first row of matrix M is the EPL of this computer network

system at the 20th day (from June 24th) from the first attack attempt assumed. We

have obtained, EPL=9.567 for 20th days after the first attack created as given in the
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Table 4.3.

Behavior of Expected Path Length over the time

Figure 4.3 below illustrates the results shown in the Table 4.3, graphically.

By examining the distribution of Expected Path Length of the attacker over

Figure 4.3: Behavior of Expected Path Length over the time

100 days, it will take fewer steps for an attacker to compromise the security goal as

the age of vulnerabilities increases. Security practitioners in a typical organization

can establish a threshold score for the system and the security teams can planned in

advance and mark the critical points to establish a strategy to defend the security

of the computer system and introduce relevant patches before such critical stages

approach.

In this system, it is clear that the threshold score of the EPL is approximately

9.5 steps and the defending professionals can conclude that the system in their network

is relatively safe from exploits only for the next 21 days as EPL score is above the
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threshold value.

It is clear that, any vulnerability that exists creates a threat to the computer

system and the risk of probable exploitation will increase over the time of its existence

without being patched. In other words, for a particular network system a higher

Expected Path Length for an attacker to reach a goal state represents more difficulty

for the hacker and would be reasonable to assume that the attacker has to face many

defending measure with a higher expected path length compared a lower Expected

Path Length. Now using the probabilistic models that we have developed in our

previous studies, using the Vulnerability Life Cycle approach enables us to develop a

time dependent stochastic models so that we could extend their application to develop

a relevant and well defined process of monitoring the behavior of threats. Thus, our

proposed analytic process illustrates its capability of estimating a Risk Index as a

function of attacking time for a given computer system with known vulnerabilities.

4.6 Contributions

In the present study, we have developed a nonhomogeneous stochastic model for pre-

dicting the Expected Path Length (EPL) of a computer network system with a given

set of vulnerabilities at time t.

Knowing EPL as a function of time is extremely important in developing defending

strategies. Such strategy will reduce the likelihood of the computer network system

being hacked. As we observe the behavior of the EPL over the time, it is possible

to identify the time ranges where EPL reached a minimum. Low EPL implies higher
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chance for hacker to be successful. In other words, a computer network system is

more vulnerable to be exploited on the days where the EPL is at lowest. On such

time t, vulnerabilities and the system hence are more susceptible to be hacked. The

same scenario from an attackers point of view can be explained. That is, on the

days where EPL is at its lowest, likelihood of making a successful attack attempt is

higher. Therefore, an attacker (hacker), who identifies the set of vulnerabilities in a

given computer system would put more attempt on exploiting the system on such date

where the EPL is at its lowest. This means, we can use this method as a prediction

method of attacking (hacking) time.

By knowing this time for any computer network system, security engineers or IT archi-

tectures can take the necessary actions in advance to protect their computer system.

Finally, we have developed over methodology based on a typical computer network

system that exists in a real world situation with given vulnerabilities that identifies

the EPL and actual time that the subject computer system could be exploited. Thus,

industry can apply developed methodology in their own computer network system

with given (known) vulnerabilities to predict the EPL and most probable time of

being exploited.
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5 Nonhomogeneous Risk Rank Analysis Method for Security Network

System

5.1 Introduction

This chapter describes our approach to rank a set of vulnerabilities based on the

risk, called ”nonhomogeneous risk rank analysis” that identifies the rank of vulner-

abilities for each attack state in a network security model. We study and use the

approach taken in wellknown Google Page Rank Algorithm. Here section 5.2 presents

the method of Google page rank algorithm [24],[27],[28]. Section 5.3 presents our pro-

posed Risk Rank algorithm, which provides the core of the ranking analysis approach

along with an illustration in Section 5.4. Section 5.5 discusses the generality and

theoretical implications of the approach.

A Network systems could have numerous vulnerabilities. We understand the

process of generating vulnerabilities is highly stochastic and outcomes are hard to

predict. Similarly the behavior of attacks and attackers also have higher level unpre-

dictability. When considering a particular system based on the discovered vulnerabil-

ities the analysis must consider the dynamic nature of the effect of vulnerabilities over

time. As we observed in the previous chapters, effect of the vulnerabilities vary with
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the time over their life cycle. Therefore, for a particular system, the most threatening

vulnerability at time t1 might not be the same at time t2. Hence, it would be very

useful to have analytical models to observe the behavior of the rank of vulnerabilities

based on the magnitude of the threat with respect to time for a given network system.

Such ranking distribution over time would empower the defenders by giving

the priority directions to attend on fixing vulnerabilities. In this chapter we attempt

to address this need.

5.2 Google Page Rank Algorithm

This section provides a background for our quantitative analysis of risk rank algorithm

method. Ranking web pages is an important function of an internet search engine

[27],[4]. Google Page Rank Algorithm is one of the most accurate and efficient page

ranking methods in use. Methodology behind this algorithm will be briefly discussed

below.

Output of this algorithm gives a probability distribution which is used to repre-

sent the likelihood that a person randomly clicking on links will arrive at any particular

page. Using this method we can rank the likelihood of clicking on any web link. This

can be calculated for any number of web links. In this algorithm, the sum of the page

rank values of all the considered web links is equal to be one and it is assumed that

the probability of selecting a web page initially is equal for any available option.

Google page rank algorithm simulates the clicking behavior of a web link in

two ways. First is to visit a web link via an incoming link to the current web page and
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second way is to pick a web page randomly. Google page rank theory holds that an

any surfer who is randomly clicking on web links will eventually stop clicking. At any

of these stages, a damping factor d is the probability that the web surfer will continue

surfing. Many researches have tested various damping factors but in generally it is

assumed that the damping factor will be set around 0.85.

Let pt(v) be the probability of visiting web page v at time t and V be a set of

all web pages under consideration. Here out(v) represents the set of web pages in V

with an outgoing link from v, and in(v) represents the set of incoming link to v. The

page rank computation can be viewed as a Markov process whose states are pages

and the links between pages represent state transitions. This computation is given in

the Equation (5.2.1) below.

Pt+1(v) = (1− d) ∗
∑
∀u∈V

Pt(u)

|V |
+ d ∗

∑
∀u∈in(v)

Pt(u)

|out(u)|
. (5.2.1)

Let, |V | be the number of pages considered. Surfer will stop clicking on any link with

probability 1 − d. Since there are |V | number of pages and probability of visiting v

from any page is equally likely, the probability for each case is equal to 1
|V | .

Here d ∗
∑
∀u∈in(v)

Pt(u)
|out(u)| represents the case when the surfer continues clicking

links with probability d and goes to page v at time t + 1 from page u that has an

incoming link to v.

Initially at t = 0, each page has the same ranking value probability which is

equal to 1
|V | . Then iterations are executed over time until the stability is achieved.

Once the probability distribution for each page becomes stable, considering high to
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low probabilities ranks are assigned.

5.3 Risk Rank Algorithm

By developing the concept applied in Google Page Rank Algorithm here we introduce

a ranking method for risk [31] of vulnerabilities in a network system.

To estimate the probabilities in Risk Rank Algorithm Markov model tech-

niques can be applied similarly as in Google Page Rank Algorithm. However there

is a difference between web surfing behavior and Cyber security attacking behavior.

A web surfing user can randomly select a web page but in cyberattacks an attacker

doesn’t have the same freedom. In web surfing user can arrive at any web page in one

single step by using it’s URL. But attacker has many restrictions. In computer net-

work system an attacker doesn’t have the access to all vulnerabilities in the network

system. To achieve attacker’s target state he must exploits several vulnerabilities in

a particular order and enters in to the target system.

In the attacking process an attacker has two options. He can either continue

or quit from his current path. If it is too difficult for him to achieve his goal state he

can quit on the current path and try an alternative path by starting over from one

of the set of initial states. Base on these assumptions here we propose our model to

calculate the probability distribution of a given security attack model.

To obtain the risk rank we used the risk factor R(v(t)) of each vulnerability

at each state and calculated normalized risk factor matrix A(V,R) for the attack net-

work system by using ψ(u, v) transition probabilities from state u to v. Thus, we can
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calculate transition probabilities using the equation ψ(u, v) = R(v(t))∑
∀w∈out(u) R(w(t))

Let Pk(v) be the probability of exploiting state v at time k and V be a set of

all states under consideration. Here out(v) represents the set of states in V with an

outgoing link from v, and in(v) represents the set of incoming link to v. The Risk

rank computation can be viewed as a Markov process whose state are vulnerabilities

and the links between vulnerabilities represent state transitions. This computation is

given in the Equation (5.3.2) below.

Pk+1(v) =


(1−d)
|I| + d ∗

∑
∀u∈in(v) Pk(u).ψ(u, v), if v is an initial state

d ∗
∑
∀u∈in(v) Pk(u).ψ(u, v), if v is not an initial state

(5.3.2)

Let |I| be the number of initial states and attacker will stop his current path

with probability 1 − d. Since there are |V | number of states and probability of ex-

ploiting v from any other state is equally likely, the probability for each case is 1
|V | .

Here in equation 5.3.2,

d ∗
∑

∀u∈in(v)

Pk(u).ψ(u, v)

represents the case when the attacker continues his current path with probability d

and attack to state v at time t+ 1 from state u that has an incoming link to vulner-

ability v.

Initially at t = 0 each state has the same ranking value which is equal to 1
|V | .

Then computing iterations over time once the stability achieved. Once the probability

distribution for each state become stable, assigning rank to each vulnerability.
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Algorithm 1 Risk Rank Algorithm

1: procedure Risk Rank Algorithm(Input)

2: Determine the input values.

3: A(V,R)= Probability transition matrix, V - Set of states in the attack graph,

R(v(t))-Risk factor of vulnerability v at time t, ψ(u, v)- transition probability from

state u to v, I - Set of initial states. out(v) - Set of all states out going from state v,

|V |- Number of states.

4: begin each v ∈ V

5: set P0(v) = 1
|V |

6: for ∀u ∈ out(v) do

7: ψ(u, v) = R(v(t))∑
∀w∈out(u) R(w(t))

8: end

9: for k = k + 1

10: Pk+1(v) = d
∑
∀u∈in(v) Pk(u).ψ(u, v)

11: if v ∈ I then

12: Pk+1(v) = Pk+1(v) + (1−d)
|I|

13: end if

14: end for

15: break if Pk+1(v) = Pk(v), ∀v ∈ V

16: end procedure

This procedure is illustrated by the following schematic network.
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Create Attack graph and determine A(V,R) and set P0(v) = 1
|V |

Generate transition probability

ψ(u, v) = R(v(t))∑
∀w∈out(u) R(w(t))

Calculate, for k = k + 1

Pk+1(v) = d
∑
∀u∈in(v) Pk(u).ψ(u, v)

if v ∈ I then

Pk+1(v) = Pk+1(v) + (1−d)
|I|

Break if Pk+1(v) = Pk(v), ∀v ∈ V

Determine risk of each node

Prioritize the node based

on the risk probability

Figure 5.1: Key Steps of the Risk Rank Algorithm.

5.4 Illustration of Applying of the Risk Rank Algorithm

In this section we use the same attack graph we discussed in Chapter 4 and apply

the Risk rank algorithm to this attack graph. Then we calculate the risk rank of each
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vulnerability in the network system [21].

To illustrate the proposed analytical approach model that we have developed

as discussed above, we considered a Network Topology, given by Figure 5.2, below.

Figure 5.2: Network Topology

The computer network consists of two service hosts IP 1, IP 2 and an attackers

workstation. Attacker is connecting to each of the servers via a central router. In

the server IP 1 the vulnerability is labeled as CVE 2016-3230 and shall denote as V1.

In the server IP 2 there are two recognized vulnerabilities, which are labeled as CVE

2016-2832 and CVE 2016-0911. Lets denote them as V2 and V3, respectively.

We proceed to use the CVSS score of the above vulnerabilities in our analysis.

The exploitability score (e(v) in Figure 5.2) and Risk Factor R(vj(t)) of each vulner-

abilities as given in Table 5.1, below.
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Table 5.1: Vulnerability Scores.

Vulnerability Published date CVSS score e(vj) (tj) R(vj(t))

V1(CVE 2016-3230) 6/15/2016 9 (High) 8 9 1.702

V2(CVE 2016-2832) 6/13/2016 4.3 (medium) 2.8 11 0.3667

V3(CVE 2016-0911) 6/19/2016 1.9 (Low) 3.4 5 0.2474

For example we can calculate the Risk Factor of V1 as follows.

R(vj(t)) = Y (t)× e(vj),

R(v1(t)) = [0.1917010.383521(1/t)− 0.00358 ln(ln(t))]× 8,

and

R(v1(9)) = 1.702.

Although our proposed algorithm can be applied to any form of network sys-

tem, for simplicity we will use our host centric attack graph model introduced in

chapter 4 to illustrate the process.

The host centric attack graph is shown by Figure 5.3, below. Here, we consider

that the attacker can reach the goal state only by exploiting V3 vulnerability. The

graph shows all the possible paths that is available for the attacker to reach the goal

state.

Note that IP1,1 state represents vulnerability V1 and states IP2,1 and IP2,2

represent vulnerabilities V2 and V3 respectively. Attacker can reach each state by

exploiting the relevant Vulnerability.

In this methodology for the Host Centric Attack graph we can have the Ad-
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Figure 5.3: Host Centric Attack Graph

jacency Matrix as follows. Applying the information given in Table 5.1, the matrix

A(V,R) can be obtained as follows. Where we can find the transition probabilities

from one state to another state.

A =



0 0.7614 0.2386 0

0 0 1 0

0 0.8255 0 0.1745

0 0 0 1


. (5.4.3)

Applying this normalized risk matrix into Algorithm 1, we can obtain steady

state probabilities for each state in the network which represent risk of being exploited.

Results we obtained for each state are shown in the Table 5.2.

Table 5.2 results are in the order of being exploited by attacker at time t.

Order of vulnerabilities based on the rank we obtained is s1, s2, s3, s0. This result
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Table 5.2: Ranking results in attack states

States Rank probability Rank

s0 0.15 4

s1 0.293669 1

s2 0.279731 2

s3 0.2766 3

suggest that s1 has the highest likelihood of being attacked. This means at time t,

s1 is the most vulnerable state. However according to Table 5.1 risk factor values for

vulnerability v1 is 1.702 which is higher than the risk factor values of vulnerabilities

v2 and v3. Therefore it is reasonable to assume that reaching state s1 from initial

state s0 (attacker’s state) by exploiting v1 vulnerability is easier than reaching states

s2 and s3. Therefore, the risk rank of the state s1 is higher than other states.

5.4.1 Behavior of Risk Ranks Over Time

In this section we extend our methodology to obtain the risk ranks of each attack state

over time. Since our risk factor is a function of time, with the age of vulnerabilities

the transition probability matrix with respect to the attack graph also varies. In our

attack graph we consider dates according to the Table 5.1 and therefore after each

day, transition probabilities in the matrix vary.

Table 5.3 illustrates risk ranks obtained for the next 10 days using the new

algorithm we proposed. As these results indicate ”risk ranks” for vulnerabilities varies
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Table 5.3: Ranking results for each state with time

Time S0 S1 S2 S3 rank state by highest risk

1 0.15 0.293669 0.279731 0.2766 S1, S2, S3, S0

2 0.15 0.2926 0.2723 0.2851 S1, S3, S2, S0

3 0.15 0.2799 0.2678 0.3023 S3, S1, S2, S0

4 0.15 0.2766 0.2648 0.3086 S3, S1, S2, S0

5 0.15 0.2742 0.2628 0.313 S3, S1, S2, S0

6 0.15 0.2725 0.2612 0.3163 S3, S1, S2, S0

7 0.15 0.2712 0.2601 0.3187 S3, S1, S2, S0

8 0.15 0.2702 0.2592 0.3206 S3, S1, S2, S0

9 0.15 0.2694 0.2585 0.3221 S3, S1, S2, S0

10 0.15 0.2688 0.2579 0.3233 S3, S1, S2, S0

over time. For example at time t = 5 risk probabilities are 0.15, 0.2742, 0.2628 and

0.313 for each state s0, s1, s2 and s3 respectively. As the Table 5.3 exemplifies with

initial ranks state one (vulnerability, V1) was most risky or vulnerable. But, after two

days state s3 (Vulnerability, V3) becomes the most vulnerable, hence the most risky

state and continue to be so afterwards. It should be noted that ”State 0” is not a

vulnerability but represents the attacker. Therefore it is at the last of the order of

ranks always. It is interesting to see that s3 (Vulnerability, V3) initially was at the

least risk level so in the last position of the risk levels among vulnerabilities, and then

just after one day becomes more risky and reach the second in the rank and after two

dates become the dominating risk factor in this particular computer network model.
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So, application of this algorithm in more a generalized real life network model would

give us with the similar observations with respect to time. According to this model

example, network administrators and defending resources must be allocated to resolve

s3 (Vulnerability, V3) at priority.

5.5 Contributions

In this chapter a new Ranking Algorithm was introduced to rank the vulnerabilities

in a particular computer network system. The methodology of well-known Google

Page Rank Algorithm was used and we further developed it to fit a computer network

environment. General assumptions used in Google Page Rank Algorithm with respect

to the probability of selecting a particular web link were changed according to the

probability distributions we obtained by normalized vulnerability scores in subject

computer network system. Ranks were obtained for each vulnerability based on the

likelihood of those vulnerabilities getting exploited.

We have further developed the algorithm so that the Distribution of Ranks

of Vulnerabilities in the subject computer network system is given as a function of

time. That is, using our new algorithm, a user (a network system administrator or a

researcher) would be able to observe the behavior of the ranks of vulnerabilities with

respect to time. This new methodology will greatly help relevant parties to make

better decisions to protect network systems because at a particular time t, the algo-

rithm will indicate which vulnerabilities are most vulnerable and needed immediate

attention or priority.
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6 Future Research

Our main objective in subject research area is to develop successful Statistical Mod-

els and Analytical tools to be effectively applied in the area of Cybersecurity. With

respect to our analytical approaches on vulnerability data we have, two main re-

search focuses are to apply Power Law process [38] and Non-Homogeneous Poison

Process. Having identified the intensity function of the power-law process on exist-

ing vulnerabilities of a particular computer network system or a software, we will be

able to analytically obtain a measure of successfulness of a network modification or a

defending attempt such as network re-design, patching vulnerabilities, disclosing vul-

nerabilities, replacing or updating software etc. If we can acquire relevant data, such

an analytical model with a highest degree of accuracy will be able to indicate whether

the modification on the computer network system of a software resulted in decreasing,

increasing or made no significant change of the likelihood of being exploited, increased

or remained the same.

It is also possible to analytically model the hacking times using Non-Homogeneous

Poison Process. If we can obtain relevant data with respect to times and time inter-

vals for hacking attempts related to vulnerabilities, we would be able to make new
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approaches in developing models to further predict the behavior of attackers.

Further, from a subjective and analytical point of view, a vulnerability is a

resource or an opportunity for the attacker. But, for defenders the software is the

resource and the vulnerability is a threat that question the survival of the software. If

we track the vulnerabilities and the exploitation data and simulate hacking approaches

it is possible to execute a survival analysis on the relevant software. We would be able

to define and estimate parameters indicating the behavior of the survival functions

for different categories of vulnerabilities, software and computer network systems,

In this dissertation, we presented several important analytical tools and statis-

tical models with respect to vulnerability analysis [42],[45]. In the future, we would

develop these models further and apply software resources to improve the models to

fit and apply in Large-Scale real world computer network systems with any number

of computers and network nodes with variety of discovered vulnerabilities.

Another important research objective we have for the near future is to ana-

lyze the CVSS model. As it was discussed in the previous chapters, we have CVS

scores given for each vulnerability in the CVE detail website [19] and presented in the

National Vulnerability Database [2]. Calculation of these scores are based on several

factors represented by several metrics and equations. However, at this point we do

not know any methodology to measure the accuracy or the degree of confidence in

these methodologies and calculations. We also do not know the relevant assumptions

which these calculations are based on. Therefore, we expect to coordinate with the

administration of the National Vulnerability Data base and other relevant government
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organizations to test and improve these scoring system further.
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Appendix A - Common Vulnerability Scoring System (CVSS)Version 2.0

Calculations

Scoring equations and algorithms for the base, temporal and environmental metric

groups are described below. Further discussion of the origin and testing of these

equations is available at www.first.org/cvss.

The Base equation is the foundation of CVSS scoring. The base equation is:

BaseScore = (((0.6*Impact)+(0.4*Exploitability)1.5)*f(Impact))

Impact = 10.41*(1-(1-ConfImpact)*(1-IntegImpact)*(1-AvailImpact))

Exploitability = 20* AccessVector*AccessComplexity*Authentication

f(impact)= 0 if Impact=0, 1.176 otherwise

AccessVector (AV) = case AccessVector of

requires local access: 0.395

adjacent network accessible: 0.646

network accessible: 1.0

AccessComplexity (AC) = case AccessComplexity of

high: 0.35

medium: 0.61

low: 0.71
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Authentication (AU) = case Authentication of

requires multiple instances of authentication: 0.45

requires single instance of authentication: 0.56

requires no authentication: 0.704

ConfImpact (C)= case ConfidentialityImpact of

none: 0.0

partial: 0.275

complete: 0.660

IntegImpact (I) = case IntegrityImpact of

none: 0.0

partial: 0.275

complete: 0.660

AvailImpact (A)= case AvailabilityImpact of

none: 0.0

partial: 0.275

complete: 0.660
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Appendix A (Continued)

Temporal Equation

If employed, the temporal equation will combine the temporal metrics with the

base score to produce a temporal score ranging from 0 to 10. Further, the temporal

score will produce a temporal score no higher than the base score, and no less than

0.33 lower than the base score. The temporal equation is:.

TemporalScore = (BaseScore*Exploitability*RemediationLevel*ReportConfidence)

Exploitability = case Exploitability of

unproven: 0.85

proof-of-concept: 0.9

functional: 0.95

high: 1.00

not defined: 1.00

RemediationLevel = case RemediationLevel of

official-fix: 0.87

temporary-fix: 0.90

workaround: 0.95

unavailable: 1.00

not defined: 1.00
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ReportConfidence = case ReportConfidence of

unconfirmed: 0.90

uncorroborated: 0.95

confirmed: 1.00

not defined: 1.00

92



Appendix A (Continued)

Environmental Equation If employed, the environmental equation will combine

the environmental metrics with the temporal score to produce an environmental score

ranging from 0 to 10. Further, this equation will produce a score no higher than the

temporal score. The environmental equation is:

EnvironmentalScore =(AdjustedTemporal+(10-AdjustedTemporal) *CDP) *TD)

AdjustedTemporal = TemporalScore recomputed with the

BaseScores Impact sub- equation replaced with the AdjustedImpact equation

AdjustedImpact = min(10,10.41*(1-(1-ConfImpact*ConfReq)*(1-IntegImpact*IntegReq)

*(1-AvailImpact*AvailReq)))

CollateralDamagePotential (CDP) = case CollateralDamagePotential of

none: 0

low: 0.1

low-medium: 0.3

medium-high: 0.4

high: 0.5

not defined: 0

TargetDistribution (TD)= case TargetDistribution of

93



none: 0

low: 0.25

medium: 0.75

high: 1.00

not defined: 1.00

ConfReq = case ConfReq of

low: 0.5

medium: 1.0

high: 1.51

not defined: 1.0

IntegReq = case IntegReq of

low:0.5

medium: 1.0

high: 1.51

not defined: 1.0

AvailReq = case AvailReq of

low:0.5

medium: 1.0

high: 1.51
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not defined: 1.0
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Appendix B

Example-CVE-2002-0392

Below, we provide steps of how CVSS is used for three different metric.

----------------------------------------------------

BASE METRIC EVALUATION SCORE

----------------------------------------------------

Access Vector [Network] (1.00)

Access Complexity [Low] (0.71)

Authentication [None] (0.704)

Confidentiality Impact [None] (0.00)

Integrity Impact [None] (0.00)

Availability Impact [Complete] (0.66)

Impact = 10.41*(1-(1)*(1)*(0.34)) == 6.9

Exploitability = 20*0.71*0.704*1 == 10.0 f(Impact) = 1.176

BaseScore = (0.6*6.9 + 0.4*10.0 1.5)*1.176 =7.8

----------------------------------------------------

TEMPORAL METRIC EVALUATION SCORE

----------------------------------------------------

Exploitability [Functional] (0.95)
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Remediation Level [Official-Fix] (0.87)

Report Confidence [Confirmed] (1.00)

TEMPORAL SCORE=round(7.8 * 0.95 * 0.87 * 1.00) == (6.4)

----------------------------------------------------

ENVIRONMENTAL METRIC EVALUATION SCORE

----------------------------------------------------

Collateral Damage Potential [None - High] {0 - 0.5}

Target Distribution [None - High] {0 - 1.0}

Confidentiality Req. [Medium] (1.0)

Integrity Req. [Medium] (1.0)

Availability Req. [High] (1.51)

AdjustedImpact = min(10,10.41*(1-(1-0*1)*(1-0*1)*(1-0.66*1.51))= (10.0)

AdjustedBase =((0.6*10)+(0.4*10.0)1.5)*1.176 = (10.0)

AdjustedTemporal = (10*0.95*0.87*1.0) = (8.3)

EnvScore = round((8.3+(10-8.3)*{0-0.5})*{0-1})= (0.00 - 9.2)
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