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ABSTRACT 

Antibiotic resistance has been a developing problem for mankind in recent decades and multi-drug 

resistant bacteria are now encountered that are resistant to all treatment options available. In 2014, 

the World Health Organization announced that this problem is driving us towards a “post-antibiotic 

era” that will change the face of modern medicine as we know it. If lack of novel antibiotic 

development and FDA approval continues, by the year 2050, 10 million people will die each year 

to an antimicrobial resistant bacterial infection. With lack of pharmaceutical industry involvement 

in developing novel antibiotics, the responsibility now lies within the academic institutions to 

identify potential novel therapeutics to fuel the antibiotic drug discovery pipeline. Combinatorial 

chemistry is one technique used to expedite the discovery process by assessing a large chemical 

space in a relatively short time when compared to traditional screening approaches. Combinatorial 

libraries can be screened using multiple approaches and has shown successful application towards 

many disease states. We initially discovered broad spectrum antibacterial bis-cyclic guanidines 

using combinatorial libraries and expanded on the knowledge of the physiochemical attributes 

necessary to inhibit Gram negative bacterial pathogens. Following this success, we continued to 

assess the combinatorial libraries for adjunctive therapeutics that potentiate the activity of obsolete 

clinical antibiotics. The polyamine efflux pump inhibitors discovered in this subsequent study 

prove the benefits of using the large chemical space provided in the combinatorial libraries to 

identify a variety of therapeutics. Our studies always begin with identifying an active compound 

and active compounds undergo hit-to-lead optimization. This optimization studies are of utmost 

importance in developing a novel antibacterial agent for therapeutic applications. Our medicinal 
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chemistry work described here is proof of the success of careful structure activity analyses to 

optimize a hit scaffold to create a more effective antibacterial agent. Overall, our work described 

here reveals the potential role of academic institutions in fending off the impending “post-

antibiotic era”. 
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CHAPTER 1: INTRODUCTION 

 

Infectious Diseases. Infectious diseases have plagued mankind throughout our history.(1) 

Evidence of these epic battles can be deciphered when reading ancient texts and unearthing 

historical artifacts.(1) Ancient hieroglyphics have been translated to reveal antimicrobial treatment 

methods to cure infectious diseases.(2) The plagues of Yersinia pestis had devastating effects to 

Asia, Africa, and Europe beginning with the Justinian plague of 541 AD until the bubonic plague 

or “Great Plague” that began in 1334 and is said to have killed 60% of the European population.(3, 

4) As mankind developed throughout the years, the study of infectious diseases and transmission 

alleviated the mortality rate of many diseases.(5) For example, the paramount work of biologists 

such as John Snow and William Budd demonstrated the transmission of the respective diseases of 

cholera and typhoid fever in order to stop their relentless spread.(1, 6) Today, we are much more 

capable of treating and surviving infection diseases. However, bacterial pathogenesis and virulence 

factors have allowed for bacterial infections to persist and become problematic.(7) Bacterial 

infections are of particular interest because without all the complexity that multi-cellular species 

have, bacteria have found a unique way to survive.(8) As such, they are the most ancient organisms 

on our planet and continue to thrive today. The secret to their success is the extreme plasticity of 

their genome, which allows them to very quickly adapt.(9) Bacteria have the innate ability to 

spontaneously mutate their DNA while replicating in response to deleterious circumstances and 

therefore pass this survival instinct to their progeny to ensure survival.(8, 10) With this simplicity 
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and plasticity they are able to survive and continue to be problematic for a highly intelligent species 

such as ourselves. 

 

Bacterial pathogenesis. Bacterial infections have become a major health issue for mankind once 

again in the 21st century.(11) The bacteria that cause human infections are able to invade and 

persist because of the development of pathogenesis.(12) As humans, we have as many bacteria 

living commensally inside of us as we do our own cells.(13, 14) These commensal bacteria are 

referred to as our microbiome and do not cause infections as they do not have the developed 

pathogenesis that invading bacteria use to cause disease.(15) Furthermore, these pathogenic 

invading bacteria can be distinguished from non-pathogenic bacteria by their degree of 

virulence.(12) Virulence is the ability to evade the host immune system and cause infections in 

healthy human hosts.(16) These virulence determinants can be acquired horizontally or vertically 

to aid in survival of the bacteria.(17-19) One of the most important factors for invasion and 

persistence in the human host is immune evasion.(20, 21) Pathogenic bacteria are recognized as 

not part of the host microbiome and must hide or protect themselves from the human immune 

factors used to fight off invading bacteria.(15) The human host has innate and adaptive immune 

factors that normally identify and eradicate invading bacteria to avoid illness. These factors are 

why we have survived at all as bacterial species evolved before humans. However, when the 

balance between invading bacterium and the immune defense becomes unbalanced, infectious 

disease is the result.(22) 
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Virulence factors. Our innate immune system is designed to destroy invading bacteria to protect 

us from infectious disease, however bacterial pathogens have developed complex and efficient 

ways to evade our immune system.(16) The factors that make this invasion possible are referred 

to as virulence factors. These include, but are not limited to: i) adherence factors, ii) capsule 

formation, and iii) secretion of endotoxins, exotoxins, and siderophores.(23-28) These virulence 

factors allow the bacteria to invade the host, cause disease, and evade the host immune system.(12, 

29-31) The invading bacteria use a combination of these virulence factors to successfully survive 

and thrive within the host.(32, 33) For example, Escherichia coli has evolved the ability to resist 

the extreme acidic environment of the human stomach through the use of three inducible Acid 

Resistance Systems (AR): AR1, AR2, and AR3.(34) Once past the harsh acidic stomach 

environment into the alkaline intestinal environment, E. coli can then turn acid resistance off and 

use that conserved energy to activate the type III secretion system encoded on the locus of 

enterocyte effacement (LEE) pathogenicity island, which allows for intestinal cell invasion and 

colonization of an immune competent individual.(35) Of course one cannot discuss virulence 

without discussing the diverse repertoire of Staphylococcus aureus virulence factors.(36-38) S. 

aureus is one of the most common infectious agents afflicting the United States and this is largely 

because of its ability to cause disease in a healthy human host.(39, 40) S. aureus virulence factors 

include but are not limited to: Agr-mediated survival and escape from the macrophage 

environment,(41-43) proteases designed to deactivate host immune proteins,(44, 45) and robust 

biofilm formation to hide from the traditional immune recognition factors.(46-48) The virulence 

of S. aureus has become extremely problematic for isolates known as “Community acquired” 

Methicillin Resistant Staphylococcus aureus (CA-MRSA), which is extremely efficient at causing 

infection in young immune competent individuals.(49) CA-MRSA has become notorious as the 
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leading cause of bacterial infections and death in healthy adults in the United States.(50) With the 

efficiency of the virulence and pathogenesis of the bacterial species that cause human infections, 

it is paramount that we have a tool chest of therapeutics to aid in recovery when an infection 

occurs.(51, 52) 

 

Bacterial Infection Treatment. Antibiotic chemotherapy is the most common form of treatment 

for bacterial infections and has been very successful in the past at curing bacterial infections.(53) 

Antibiotics can be used to treat an already existent infection,(54) or be used prophylactically to 

prevent infections when having surgery or travelling abroad.(55) These therapeutics have given 

healthcare workers an opportunity to stop otherwise fatal infections by hypervirulent bacterial 

species found in our hospitals today.(56) Vaccine therapy for bacterial pathogens has focused on 

the antigenic protein expressed on the surface of the pathogenic species and has only shown 

success for a few bacterial species.(57) New approaches are being pursued that involve biological 

agents such as antibodies(58) and bacteriophages(59), however these new approaches have not 

shown enough promise to be implemented into clinical use in the United States.(60, 61) 

 

Antibiotic history. There is evidence of tetracycline found in skeletal remains dating back to 350-

550 CE revealing that natural products played an important role in the pre-antibiotic era.(62) 

Evidence found in the remains of the Sudanese Nubia population, which were relatively free of 

bacterial infections, suggests they were ingesting tetracycline from something in their diet, not 

necessarily taking a therapeutic agent.(54) Although the history of bacterial infections dates to the 

beginning of our time, it was not until 1940 with the discovery of penicillin that we began to use 
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chemotherapeutic agents to treat bacterial infections.(63) In the early 1900’s, Dr. Paul Ehrlich 

proclaimed that chemicals could be developed that would selectively kill invading pathogenic 

bacteria.(54) After this benchmark, Alexander Fleming serendipitously discovered on September 

3, 1928 that a Penicillium species he found growing on a petri dish could inhibit bacterial 

growth.(54, 63) Following through on this novel discovery, it took Dr. Fleming 12 years to find a 

chemist that would purify and create mass distribution in 1945.(54) The subsequent mass 

production of penicillin helped the allies win World War II, as previously many of the soldiers 

fighting lost their lives to bacterial infections after surviving their combat wounds.(64) However, 

the success of penicillin was short lived because resistance was first discovered in 1942, even 

before mass production for general population distribution was complete.(65) 

 

 

Figure 1. Structure of penicillin. Shown here is the chemical structure of penicillin that was 

discovered in 1928 by Alexander Fleming. This is the first of a class called beta-lactams, which is 

characterized by the fused ring structure. 
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Dr. Selman Waksman coined the term “antibiotic” and developed important screening techniques 

leading to the discovery of streptomycin found to cure Mycobacterium tuberculosis infections.(66) 

The screening approaches developed by Dr. Waksman led to a Nobel prize and the advent of the 

golden age of antibiotics, where many of our current antibiotics were discovered from screening 

of natural products.(67) Following this era of discovery, finding novel antibiotics became more 

difficult to identify from natural products as many discoveries had already been made.(67) Today, 

many natural product chemists are investigating unexploited areas and organisms or identifying 

novel screening or cultivating methods to probe the remaining hypothetical chemical space.(68, 

69) 

 

 

 

Figure 2. Structure of streptomycin. Shown here is the chemical structure of streptomycin that 

was discovered by Dr. Selman Waksman. It was isolated from Streptomyces griseus in 1943 and 

found to effectively treat Mycobacterium tuberculosis infections. 
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Mechanisms of action. Antibiotics work by disrupting an essential cellular function in 

bacteria.(70) Antibiotics are classified in several different ways: by the chemical structure; by the 

target or system they inhibit; or by whether the antibiotic action is bacteriostatic or 

bactericidal.(70) Antibiotics that inhibit bacterial replication are generally termed bacteriostatic 

antibiotics, as the bacteria are able to recover after the antibiotic has been washed away.(70) On 

the other hand, antibiotics that lyse the cell or induce cellular death are generally termed 

bactericidal antibiotics because the damage to the bacterial cell cannot be overcome following 

removal.(70) While both bactericidal and bacteriostatic antibiotics are effective, the bacteriostatic 

antibiotics are reliant on an active immune system, therefore bactericidal antibiotics are preserved 

for infections in an immunocompromised patients or extremely difficult to treat systemic 

infections.(71) Furthermore, the distinctions between bacteriostatic and bactericidal are not exactly 

clear cut. For example, chloramphenicol activity is bactericidal towards Streptococcus 

pneumoniae but bacteriostatic towards S. aureus.(71) Similarly, tetracycline is classified as a 

bacteriostatic antibiotic, however when the concentration is increased it becomes bactericidal.(72) 

Generally, bacteriostatic antibiotics target the metabolic pathways of replication and require the 

bacteria to be replicating in order to be effective.(73) On the other hand, bactericidal antibiotics 

that target the bacterial cell membrane integrity do not necessarily need the bacterium to be 

effective and are therefore can also be effective towards non-replicating bacteria.(73) Ultimately, 

both bactericidal and bacteriostatic antibiotics are slowly becoming obsolete as bacterial resistance 

is ever so steadily increasing in our world.(74-76) 

 

Mechanisms of drug resistance. The occurrence of antibiotic resistant nosocomial infections has 

been increasing steadily in recent decades.(76) The selective pressure that antibiotics place on 
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bacteria causes an increased occurrence of resistant species that cause nosocomial infections.(77) 

The consequence of this antibiotic resistance is increased length and complexity of treatment 

methods, which in turn favors more resistant isolates.(74) Mortality rates are on the rise due to 

multi-drug resistant (MDR) pathogens as there are few treatments left to eradicate these 

isolates.(11) With the increase in MDR pathogens the steady rise in mortality is becoming a global 

health crisis.(11) The World Health Organization (WHO) has declared that if measures are not 

taken to divert this increase in MDR infections we will enter a “post-antibiotic era” where bacterial 

infections will be the leading cause of death worldwide.(11) The most recent statistics reveal that 

if the spread of antibiotic resistance is not thwarted, antimicrobial resistant infections will be the 

leading cause of death by the year 2050.(78) Currently, clinicians are turning to last resort 

antibiotics that have been abandoned decades ago due to toxicity issues in order to treat MDR 

bacterial isolates.(79) The increased reliance on last resort antibiotics is creating bacterial 

resistance towards these last resort toxic antibiotics, therefore creating pan-drug resistant (PDR) 

isolates. There are no reliable treatment options for PDR bacterial isolates and an infection is an 

almost certain death sentence. Recently, resistance to the last resort antibiotic colistin has been 

discovered in the United States.(80) The resistance gene mcr-1 is encoded on a plasmid carried by 

Escherichia coli and has allowed resistance to colistin, which is the only antibiotic left that will 

eradicate some extreme Gram negative MDR infections. This marks a turning point towards the 

post-antibiotic era and will have devastating effects on modern medicine.(11) 

 

Resistance has developed for every antibiotic mechanism of action, consequently creating 

resistance towards all classes of antibiotics developed to date.(79) Twenty classes of antibiotics 

were discovered between 1940 and 1962 (Table 1),(81, 82) while only two new classes have been 
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discovered since 1962, creating a void in novel therapeutic development that has allowed MDR 

organisms to increase in numbers as the years continue.(83) Unfortunately, resistance to an 

antibiotic is usually identified before or just after its introduction to the public. Moreover, of the 

antibiotics discovered to date, there is a general lack of Gram negative therapeutic options. This is 

a compounding factor adding to the dangerous rise in resistance with these species.(84) For 

decades now, pharmaceutical companies have focused on discovery of analogues of antibiotic 

classes rather than novel classes because there is less toxicity issues with these compounds.(83) 

Multi-drug resistant bacteria are able to develop resistance very quickly to these analogs created 

from the existing antibiotic classes and therefore novel targets must be pursued in order to break 

the cycle of resistance development.(74, 77, 83) Most antibiotic classes inhibit actively replicating 

bacteria by disrupting DNA, RNA, protein, and cell wall synthesis, or by inhibiting an essential 

metabolic pathway.(70)  

Table 1. Antibiotic classes, their discovery, introduction, and resistance development 

 

Antibiotic	Class	 Example	 Discovery	 Introduction	 Resistance	 Activity	
ß-Lactams	 Penicillins	 1928	 1936	 1942	 Broad	spectrum	
Sulfadrugs	 Sulfamethoxazole	 1932	 1936	 1945	 Gram	positive	
Aminoglycosides	 Gentamicin	 1943	 1946	 1946	 Broad	spectrum	
Tetracycline	 Doxycycline	 1944	 1952	 1950	 Broad	spectrum	
Rifamycins	 Rifampicin	 1957	 1958	 1962	 Gram	positive	
Macrolides	 Erythromycin	 1948	 1951	 1955	 Broad	spectrum	
Lincosamides	 Lincomycin	 1962	 1964	 1956	 Gram	positive	
Glycopeptides	 Vancomycin	 1953	 1958	 1960	 Gram	positive	
Lipopeptides	 Daptomycin	 1986	 2003	 1987	 Gram	positive	
Streptogramins	 Streptogramin	B	 1963	 1998	 1964	 Gram	positive	
Oxazolidinones	 Linezolid	 1955	 2000	 2001	 Gram	positive	
Quinolones	 Levofloxacin	 1961	 1968	 1968	 Broad	spectrum	
Chloramphenicol	 Chloramphenicol	 1946	 1948	 1950	 Broad	spectrum	
Trimethoprim	 Trimethoprim	 1961	 1962	 1972	 Broad	spectrum	
Polymyxins	 Colistin	(polymyxin	E)	 1947	 1958	 2011	 Gram	negative	
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There are two general classifications of bacterial resistance development, endogenous and 

exogenous. Endogenous resistance occurs by mutation and selection, while exogenous resistance 

occurs through horizontal gene transfer.(82) Bacteria can spontaneously mutate to gain resistance 

towards antibiotics or acquire the genetic material through horizontal transfer methods (i.e. 

transduction, transformation, and transposon insertion).(85) The acquisition of genetic material 

has allowed for the greatest increase in resistance worldwide. Plasmid resistance can allow the 

bacterium to modify the antibiotic target, produce enzymes to inactivate the antibiotic, alter the 

cell wall composition, or efflux the antibiotic before it can interact with the target (Figure 1).(86) 

Once bacteria have developed resistance towards an antibiotic class, analogs developed thereafter 

become ineffective much more rapidly.(70) 

 

Figure 3. Mechanisms of antibacterial resistance. The four main mechanisms of antibacterial 

resistance acquired by plasmid acquisition and create MDR isolates. Bacterial isolates may have 

one or a combination of these mechanisms to persist following treatment. 
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Efflux resistance. Bacterial efflux pumps create the greatest resistance for MDR bacterial isolates. 

These pumps create resistance towards multiple classes of antibiotics, in addition to general toxins 

such as ethidium bromide and dyes.(87, 88) Bacteria have intrinsic constitutively expressed efflux 

pumps and acquire genetic material that allows for increased efflux pump expression.(89) The 

ability to extrude a large variety of chemically diverse agents makes efflux pumps an attractive 

drug target to increase the availability of clinically effective antibacterial agents. Efflux pumps are 

found in both Gram positive and negative pathogens creating broad spectrum resistance towards 

multiple classes of antibiotics across many species.(90)  

 

There are five main classes of efflux pump types; Small multidrug resistance (SMR), major 

facilitator (MF), resistance nodulation division (RND), multidrug and toxic compound extrusion 

(MATE), and ATP-binding cassette (ABC).(91) MDR bacterial species use multiple efflux pumps 

from more than one class. In addition, the substrates extruded from each efflux pump ranges 

widely, therefore creating multidrug resistance in each isolate that produces these pumps. Many 

efflux pumps use the proton gradient of the bacterial membrane to gain energy for extrusion of 

their substrates. The efflux pumps that use the proton gradient to extrude their substrate include: 

SMR, RND, and MF families.(91) On the other hand, the MATE efflux pumps are driven by 

coupling sodium import to export toxins and the ABC pumps use ATP to drive efflux.(91) 

Substrate extrusion using efflux pumps always begins with the substrate binding to the recognition 

region of the efflux protein. This binding causes a conformation change in the efflux pump 

structure consequently allowing the toxin to be released into the extracellular environment.(91) 

The diversity of efflux pumps that respond to similar substrates is advantageous for the 

development of novel inhibitors that mimic the efflux substrates, but have more efficient binding 
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affinity. This opens the possibility for broad spectrum inhibition of multiple efflux pumps across 

many bacterial species with one efflux pump inhibitor. With the diversity of substrates extruded 

by efflux pumps, inhibition by a novel efflux pump inhibiting compound would allow the return 

of many obsolete antibiotics and help battle the difficult to treat MDR pathogens. 

 

The importance of efflux pumps in MDR bacterial species extends beyond antibiotic extrusion and 

this must not be overlooked. In addition to extruding many toxins, efflux pumps of many species 

are also involved in extrusion of quorum sensing molecules.(92) In particular, it was found that P. 

aeruginosa has additional purposes for the MexAB-OprM efflux system, including quorum 

sensing molecule extrusion. Specifically, MexAB-OprM exports 3-OC12-HSL molecules to 

communicate and coordinate cells in a community to begin biofilm formation.(93) Efflux 

inhibition of the MexAB-OprM efflux pump therefore decreases the robust formation of biofilms 

of P. aeruginosa.(94) It has also been revealed that E. coli uses efflux pumps while establishing 

catheter biofilms, and it is these infections that are most difficult to treat.(95) This reveals efflux 

pumps play an important role in the formation of biofilms, which allow for the bacterium to protect 

itself from the immune system as well as antibiotic treatment.(93) 

 

Biofilm formation. Biofilm development during a bacterial infection is the leading cause of 

chronic reoccurring infections, creating high medical costs and elevated mortality rates in hospitals 

today.(96) It has been determined that most chronic infections are from bacteria embedded in a 

biofilm formation during a bacterial infection.(96) Biofilms are bacterial aggregates that are 

physically fused together by excreting a collection of biomolecules called extracellular polymeric 
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substances (EPS) to protect themselves from identification from the host immune and eradication 

with antibiotics. In fact, it has been reported that around 90% of biofilm mass is the EPS, not the 

bacteria themselves.(97) Biofilm formation occurs in a series of steps: attachment, cell to cell 

adherence, exopolymer production, maturation, and dispersal (Figure 2).(98) During the 

attachment phase, a single bacterium begin to attach to a solid surface, while the second phase is 

cell to cell attachment to bind the bacteria together as a community.(98) Once cells are in close 

proximity and attached to each other, they begin to excrete EPS, such as polysaccharides and 

extracellular DNA.(99) The final steps are maturation and dispersal during which the biofilm has 

become a complex community of cooperative bacteria that are resistant to both antibiotics and the 

human immune responses.(100) 

 

Figure 4. Steps of biofilm formation. The figure above shows the 5 main steps leading to complex 

biofilm formation. The grey arrow emerging from step 5 indicated biofilm dispersal of planktonic 

cells. 
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The role of biofilm formation on drug resistance and chronic infections is paramount. These 

biofilm communities are found on implanted devices such as catheters, implants, and heart valves, 

as well as being found on non-implanted surfaces of the lungs of cystic fibrosis patients.(96) As 

of today, there are no clinical antibiotics that are able to effectively penetrate and eradicate bacteria 

living within a mature biofilm.(96, 101) Furthermore, with advances in medical technology more 

implanted devices are being used resulting in more biofilm infections. Biofilms slow the rate of 

diffusion of antibiotics to the cells within the matrix and allow for only a fraction of the treatment 

to reach the cells, which is key to their survival.(100) In addition, the biofilms have a diverse 

heterogeneity that includes persister cells within the biofilm that grow at a decreased rate creating 

an intrinsic resistance to antibiotics targeting the mechanisms of replication.(102) The 

heterogeneous biofilm community has diverse roles for each bacterium. Although efflux pumps 

play a major role in drug resistance of planktonic cells, they are also very important for biofilm 

development and drug resistance.(93) As the biofilm is forming, the cells communicate through 

quorum sensing to sense that they are in a high population of cells, begin to attach and excrete 

EPS.(103) Once the biofilm is formed, the persisters remain deep within the biofilm while the 

metabolically active cells found on the surface layers overexpress efflux pumps to aid in inhibition 

of antibiotic penetration into the biofilm matrix.(93)  

 

ESKAPE pathogens. Nosocomial infections are caused by bacteria that infect immune 

compromised patients in hospitals and experience increased exposure to the available antibiotics 

used in clinical settings.(104) Therefore, antibiotic resistance is most prominent in these 

nosocomial infections. These bacteria have developed the most resistance and they are therefore 

the most difficult to eradicate, in turn causing the highest mortality within the population.(104, 
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105) A group of six pathogens have been identified to cause the majority of nosocomial infections 

and resist the actions of clinical antibiotics.(76) These pathogens are collectively termed the 

ESKAPE pathogens: E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa and E. 

cloacae.(106) The ESKAPE acronym is based on the first initial of their genus names. All of these 

bacterial species cause fatal infections because their growth cannot be inhibited by the common 

clinical antibiotics.(76) 

 

The first two bacterial species of the ESKAPE pathogens are Gram positive organisms that have a 

thick peptidoglycan cell wall but no outer membrane.(76, 106) Specifically, E. faecium has been 

reported to cause 40% of catheter infections and the majority of MDR strains are resistant to 

vancomycin, ampicillin, and aminoglycosides.(107) This species is significantly more resistant 

than its sister species Enterococcus faecalis.(107, 108) Furthermore, in U.S. hospitals today, S. 

aureus bacteremia has a 20 – 40% mortality rate despite treatment using the available 

antibiotics.(109) This pathogen is of particular concern because it can cause a variety of life-

threatening infections, is highly virulent, and can adapt to environmental changes easily.(109) 

 

The Gram negative species included in the ESKAPE pathogens have a thin cell wall and an outer 

membrane that causes decreased penetration by antibiotics. These species have become so resistant 

that the last resort antibiotic colistin is often prescribed because nothing else will eradicate the 

infection.(76) K. pneumoniae is the origin of Klebsiella pneumoniae carbapenemases (KPC), 

which is carried on a mobile transposon, and has been successfully transferred to many other Gram 

negative bacteria. The K. pneumoniae isolates that produce KPCs cause infections are resistant to 
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carbapenems.(75) These are one of the last classes of antibiotics effective against this species and 

therefore KPC producing K. pneumoniae isolates have a much higher mortality rate. Furthermore, 

multidrug resistant (MDR) and Pan-drug resistant (PDR) isolates of A. baumannii have increased 

in occurrence and accompanied by 30-75% mortality rates.(110) This pathogen is of importance 

because of the devastating infections that occur in U.S. soldiers with combat related injuries.(111) 

Soldiers fighting in Iraq become infected while recovering from traumatic injuries and acquire 

deep wound infections, respiratory infections, osteomyelitis and bacteremia.(111, 112) A. 

baumannii is a genetically diverse species due to its natural competence and ability to integrate 

exogenous DNA.(113, 114) In addition, P. aeruginosa is referred to as the “holy grail” target for 

antimicrobial testing because of its extreme resistance.(106) This pathogen has gained multi-drug 

resistance quickly because it has inherent biofilm mediated resistance and a developed ability to 

acquire resistant determinants.(115) For A. baumannii and P. aeruginosa, there are isolates 

identified that are already resistant to every antibiotic with the exception of colistin.(106) Lastly, 

E. cloacae is the most common Enterobacter species, and is the cause of the majority of 

nosocomial bloodstream infections. This species has multiple resistance determinants, including 

extended β-lactamases and carbapenemases, which render the majority of the antibiotic classes 

ineffective.(116, 117) 

 

The search for effective treatment options for the multi-drug resistant ESKAPE pathogens 

continues as the occurrence of PDR isolates rises.(106) These pathogens all have high levels of 

intrinsic resistance and the ability to accumulate individual resistance determinants. However, the 

absence of novel drugs to combat the ESKAPE pathogens in combination with the increasing 

resistance rates has created a nightmare scenario.(106) The problem is so severe that the measures 
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of targeting these pathogens must be shifted from discovering novel antibiotics to preserving the 

antibiotic arsenal we are rapidly losing.(106) 

 

Post antibiotic era. With the high level of resistance development in bacteria today, many of the 

antibiotics we have discovered in the golden age of antibiotics are no longer effective to treat MDR 

species.(118) The steady rise in antibiotic resistance can be attributed to many factors such as: the 

overprescribing of antibiotics in the clinical setting, lack of public knowledge about the 

overprescribing, increased use in the agricultural industry, and innate resistance development that 

would occur even before human interaction.(118) In addition to the increased resistance, the 

simultaneous decrease in pharmaceutical development of antibiotics has created a catastrophic 

problem that will threaten mankind in the 21st century.(79) For example, in 2004 a mere 1.2% of 

drugs in clinical development in the top 15 pharmaceutical companies were antibiotics.(118) The 

combination of increased resistance and lack of therapeutic development has created an 

apocalyptic scenario for our future, coined the post-antibiotic era. This is the point where we will 

no longer have treatments for bacterial infections and minor infections will become lethal 

again.(11) This will effectively change the face of modern medicine as we know it because much 

of our medical surgical advances are dependent on prophylactic antibiotic treatment.(55, 76) 

Recent statistical analyses have estimated that 10 million people will die each year due to MDR 

infections by 2050 if we do not find more effective therapeutic options.(119) Unfortunately, for 

certain isolates of the Gram negative species K. pneumoniae, A. baumannii, and P. aeruginosa this 

“post-antibiotic era” has already become a reality.(75, 120) For these species, polymyxins have 

been the last line of therapeutics to treat the extremely resistant infections.(121) However, the mcr-

1 gene encoded on a plasmid has allowed for mobilized efficient transfer of polymyxin resistance 
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across between species and genus.(122) The mcr-1 gene was first identified in China in 2015, and 

has since been rapidly spreading across the world leading to the spread to at least 18 countries as 

of 2016.(121, 123) 

 

Antimicrobial Agents. The golden age of antibiotic drug discovery began when Selman Waksman 

developed methods for screening Streptomyces species for antibacterial activity after Alexander 

Fleming accidentally discovered penicillin.(81) Resistance toward these natural products began to 

appear rapidly. Consequently, chemists began creating modified versions of the original antibiotic 

and these new analogs were more effective than the parent compounds.(81) During the 1960’s the 

discovery rate was keeping up with the resistance development, but discovery of novel classes of 

antibiotics have been on the decline ever since. The discovery of the lipopeptide daptomycin in 

1986 was the last new class of antibiotic to be discovered even though it was not approved for 

clinical use until 2003.(81) The effects of the lack of discovery began to take hold in the 1990’s 

when challenges with in vitro cell free target screening methods translating to activity in cell based 

assays became problematic. Additionally, the pharmaceutical industry’s adoption of Lipinski’s 

rule of five created a major challenge to identify novel antibacterials because in order to inhibit 

bacteria effectively the compound physiochemical properties must fall outside the rule of five.(81) 

(124) Furthermore, the toxicity of antibiotics is problematic with the high doses needed to eradicate 

infections and the income earned from these discoveries was modest with the high rate of 

resistance development and short term treatment.(81) 
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Synthetic small molecules. Synthetic small molecules are organic compounds with a molecular 

weight of no more than 500 daltons that are designed to aid in a biological process.(125) This 

allows for rapid diffusion across cellular membranes and more effective oral bioavailability.(126) 

Most pharmaceutical drugs are small molecules due to these excellent physiological properties. 

Many natural products are small molecules, for example polyketides, terpenes, and 

phenazines.(127) The first therapeutics used to chemically treat illnesses were small molecule 

natural products.(125) One would assume that synthetic small molecules would be better at 

fending off bacterial resistance, however bacterial efflux pumps are ubiquitous and promiscuous 

and small molecules fare no better than the natural products.(128) This is a major challenge with 

small molecule development, and it is difficult to achieve biological relevance, a trait inherent to 

natural products.(129) To address this issue, chemists are using the diverse chemical space found 

with bioactive natural products to develop Diversity-Oriented Synthesis (DOS) techniques to 

increase the molecular diversity of small molecules and increase the antimicrobial properties.(129) 

 

Natural products. The exploration of natural products for the discovery of novel antibacterials 

agents has historically been a remarkably productive approach.(130) Nature is replete with a large 

number of pharmacophores and high degree of stereochemistry, which leads to a greater number 

of hits in screening libraries. In addition to being biologically active, natural products typically 

have drug-like properties, which allows for successful entrance into clinical trials.(130) Indeed, 

natural products extracted from fungal or bacterial species have been the primary source of 

antibiotics since the discovery of penicillin in the 1940s. During the golden age of antibiotic 

development (1940-1960) a wealth of new antibiotics, with outstanding properties and efficacies 

were discovered, many of which are still in use today. Following this time, synthetic chemistry 
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began to find a foothold in antimicrobial drug development, but largely based on chemical 

scaffolds isolated from nature.(131) Despite this, even up to the 1990s, it was still the case that 

>80% of antibiotics being discovered were from natural products or analogs designed from 

them.(68) More recently, in the last 20 years, there have been 12 new natural product antibiotics, 

from five different structure classes, launched into clinical trials; while 10 new synthetic 

compounds were developed, but from only two structure classes (and with quinolones accounting 

for 9 of these 10).(132) Collectively, however, regardless of the source, a void now exists in the 

antibacterial drug discovery space, with only three new antibacterial classes having been identified 

since 1970: mupirocin, linezolid, and daptomycin. Ultimately, without new strategies, and new 

approaches for the discovery of novel therapeutics targeting drug resistant pathogens, the prospect 

of a post-antibiotic era is close at hand. 

 

A major explanation for the current lack of available antimicrobial therapeutics stems from the 

observation that natural product drug discovery campaigns require increasing numbers of samples 

to be screened in order to find novel compounds using traditional methods.(133, 134) This has 

resulted from the relative exhaustion of obvious natural product reservoirs, leading to the 

continued re-identification of known chemistry. Encouragingly, it is predicted that only 10% of 

the world’s biodiversity has been assessed to date, leaving many potential therapeutics waiting to 

be discovered.(134) 

 

Antimicrobial peptides. Like natural products, antimicrobial peptides evolved within all living 

organisms to combat infections.(135) The primary mechanism of these small cationic molecules 
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is to rapidly disrupt the bacterial cell membrane.(135) Human antimicrobial peptides including 

defensins and cathelicidin (LL-37) have roles in not only antimicrobial killing, but also 

inflammation, immune activation, and wound healing.(135) Therefore, antimicrobial peptide 

development can be targeted towards: anti-infectives, synergistic therapeutics with conventional 

antibiotics, immunostimulatory agents, and endo-toxin neutralizers to decrease septic shock.(135) 

However, our understanding of antimicrobial peptides needs to be further developed in order to 

fully exploit this chemical class.(135) Peptide antibiotics have two subsets: non-ribosomally 

synthesized peptides and ribosomally synthesized peptides.(136) The ribosomally synthesized 

peptides are host defense molecules that organisms produce to protect themselves from invading 

bacteria.(136) On the other hand, non-ribosomally synthesized peptides such as gramicidin, 

polymyxins, bacitracin, and glycopeptides are mainly produced by bacteria to eradicate 

surrounding bacteria in order to compete for survival.(136) These peptides contain two or more 

amino acid moieties within their structures and are synthesized on multi-enzyme complexes rather 

than ribosomes.(136) Although not all are broad spectrum, these antibiotics inhibit Gram positive 

and negative species by disrupting the cell membrane.(136) Problems inherent with antimicrobial 

peptides have made it difficult to progress through clinical trials. These problems include but are 

not exclusive to: toxicity problems, pharmacokinetic issues, and decreased activity in vivo because 

of proteolysis and pH changes.(135) 

 

Combinatorial chemistry. Solid phase synthesis was developed in 1963 by Merrifield and 

colleges to allow for the synthesis of libraries of small organic molecules.(137) Twenty years later 

this approach was utilized to synthesize combinatorial libraries.(138) In 1990, Dr. Richard 

Houghten developed the tea bag solid phase synthesis method to create combinatorial peptide 
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libraries and since then this approach has been broadly utilized to assess large chemical space 

relatively quickly.(139, 140) The purpose of this approach is to allow for the synthesis of 

structurally diverse chemical libraries to be screened at once in a high throughput therapeutic 

screening.(138) This effectively allows for the synthesis of millions of compounds in the same 

amount of time it takes to synthesize one compound. Therefore, this increases the speed of the 

discovery process of generating a lead or optimizing a previous lead compared to traditional 

approaches that screen one compound at a time.(138) In general, there are two approaches to 

synthesize combinatorial libraries: the biological approach and the spatially addressable parallel 

solid phase approach.(138) Solid phase combinatorial libraries are synthesized on a monolithic 

support to allow the chemist to identify the composition of the molecule from its position.(141) 

There are four types of spatially addressable parallel solid phase synthesis methodologies: multi-

pin, tea bag, SPOTS membrane, and light directed peptide synthesis on resin support.(138) Even 

though these approaches were developed and initially used to screen peptide antigens for 

recognition by monoclonal antibodies, it was quickly realized that these approaches could be 

utilized to synthesize different compounds, including heterocycles.(142) Additionally, Houghten 

and colleges were able to develop positional scanning libraries to allow for extensive structure 

activity relationship (SAR) analysis.(142) This allows for information about the activity created 

from each functionality for each position of the library. 

 

Screening Approaches and Methods. High throughput discovery of hit molecules that could lead 

to antibiotic candidates mainly occurs in academic setting and not by the pharmaceutical 

industry.(82) Conversely, drug development to ensure efficacy and safety is performed mainly in 

a clinical setting by the pharmaceutical industry in order to bring an Investigational New Drug 
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(IND) to the market.(82) From the decrease in both discovery and development, we are now slowly 

reaching a post antibiotic era where clinical antibiotics used today will no longer be effective and 

the mortality rates due to resistant infections will reach astronomical heights.(11, 76, 143) In recent 

years there has been a shift in drug discovery to increase innovation using genomics, and this is 

where academic based drug discovery groups are beginning to make their mark.(144, 145) It is 

now accepted that industry has not realized the potential of academic discovery in the past and 

there is great promise in linking industry with academia to fully exploit the strengths of both 

sides.(144) There are two general approaches to screening chemicals for antimicrobial activity: 

bioactive guided screening and target-oriented screening.(146) 

 

Bioactive-guided screening. Most antibiotics to date have been discovered using bioactive guided 

screening of natural products.(130) This approach is also called classical pharmacology, forward 

pharmacology, or phenotypic drug discovery.(146) Bioactive-guided screening involves testing 

crude natural extracts or purified chemicals for bacterial inhibition using whole cell-assays. Using 

this approach, the target of the chemical is not known as the minimal inhibitory concentration is 

used to identify the most active chemicals.(146) The benefits of bioactive-guided screening is that 

the activity can be effectively translated into therapeutic treatments for bacterial infections.(147) 

A fallback of this approach is that it is difficult to determine the molecular mechanism of action 

of these therapeutics once a lead agent is discovered.(147) This approach is optimal for natural 

product screening, however recent advances in drug discovery platforms have been introduced to 

apply a more hypothesis driven approach to natural product screening to decrease the occurrence 

of re-discovery that comes with bioactive-guided screening.(148) 
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Target-based screening. Target-based antibiotic screening has been widely used since the advent 

of genomic analyses in the 1990’s.(147) The goal of this approach is to identify purified chemicals 

that inhibit the activity of a known target in an in vitro cell free assay. This approach is not optimal 

for screening crude natural product extracts but has been used with combinatorial chemistry 

screening.(146) The difficulty in using target-based screening is the identified hit compounds often 

do not translate into therapeutically relevant compounds that inhibit the bacteria in whole cell 

assays.(147) Furthermore, the pharmaceutical industry has been successful in finding effective 

therapeutics using bioassay-guided screening in the past and therefore it has been suggested that 

the target-based screening methods are contributing to the decrease in success of research and 

discovery (R&D).(147) 

 

Project Aim. In recent decades, the decrease in effective treatments for drug resistant bacterial 

infections has created a catastrophic problem for the future of mankind. In the 21st century we will 

reach a point where the antibiotics that were used in the 20th century will no longer be effective 

towards treating pan-drug resistant bacterial species. With this information at hand, the 

pharmaceutical companies are still not investing the time and finances needed to revert this 

situation. Therefore, the innovative screening necessary to discover novel therapeutics for drug 

resistant bacteria is in the hands of academic institutions. Combinatorial chemistry is one approach 

used by academic institutions to increase the rate of discovery of novel therapeutics by assessing 

a large diversity of chemical space in a short amount of time when compared to traditional 

approaches. Furthermore, collaborative efforts of medicinal chemists and microbiologists are 

needed to facilitate the progression of novel therapeutics into clinical trials. Accordingly, the aim 

of this project is to reveal the power of combinatorial chemistry in expediting the discovery of 
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novel therapeutics in the form of antibacterial agents and anti-resistance agents. In addition, the 

project will highlight the importance of collaborative efforts with medicinal chemists to increase 

the spectrum of activity of novel therapeutics. Together, these efforts show the necessary 

approaches for academia to successfully bring new antibiotics to replace the obsolete 20th century 

alternatives. 
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CHAPTER 2: GUANIDINE ANTIBACTERIALS 

 

Note to Reader. This chapter has been previously published (149) and has been reprinted with 
permission from Journal of Medicinal Chemistry, vol 58 no 8, pp 3340-3355, DOI: 
10.1021/jm501628s. Copyright © 2015 American Chemical Society. The published manuscript 
can be found in Appendix 1. 
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CHAPTER 3: POLYAMINE ANTI-RESISTANCE AGENTS 

 

Note to Reader. This chapter has been submitted to PLoS ONE journal and is currently in review 
(Fleeman et al., 2017). The submitted manuscript can be found in Appendix 2. 
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CHAPTER 4: QUINAZOLINE ANTIBACTERIALS 

 

Note to Reader. This chapter has been previously published (150) and has been reprinted with 
permission from Antimicrobial Agents and Chemotherapy, volume 61 no 6, 2017, e00059-17. 
DOI: 10.1128/AAC.00059-17. Copyright © American Society for Microbiology. The published 
manuscript can be found in Appendix 3. 
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CHAPTER 5: FINAL DISCUSSION 

 

Final Discussion. In this work, we have shown the wide applicability of combinatorial chemistry 

when discovering both antibacterial agents and anti-resistance agents. The strength of this 

approach lies within the positional scanning library utilized by Torrey Pines to create structure 

activity relationship profiling assessing the active components of combinatorial libraries.(139) 

This important step in combinatorial chemistry creates advantages above previous iterations of 

deconvolution methods designed to progress from complex libraries to individual 

compounds.(151, 152) Our initial analysis of the Torrey Pines combinatorial libraries revealed the 

bis-cyclic guanidine scaffold as the most broad spectrum antibacterial library that inhibited all six 

ESKAPE pathogens at low concentrations. Continuing assessment of the combinatorial libraries 

led us to discover that the same set of libraries can be used to develop a completely different type 

of therapeutic agent, therefore revealing the benefits of using combinatorial libraries to assess a 

large chemical space.(153) Finally, our medicinal chemistry approaches proved successful to 

increase the spectrum of novel quinazolines from Gram positive S. aureus inhibitors to Gram 

negative A. baumannii inhibitors. This is a great success in medicinal chemistry considering the 

difficulties with penetration and retention into the Gram negative intracellular space.(154-156) 

 

In our initial study of the Torrey Pines combinatorial libraries we utilized bioassay-guided or 

phenotypic assays to determine bacterial growth inhibition. This revealed that of the 37 

combinatorial libraries assessed, the bis-cyclic guanidine scaffold had the best broad spectrum 
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inhibition of the ESKAPE pathogens.(149) This was very intriguing because of the vast utilization 

of guanidine molecules in biological systems stemming from a rich chemodiversity, allowing for 

a wide range of therapeutic applications.(157) The biological functions of natural guanidio 

compounds discovered to date include: convulsivant activity; hypoglycaemic activity; 

antihypertensive activity; and most relevant to our study, antibacterial and antitumor 

activities.(158) Heterocyclic guanidine compounds, including derivatives of imidazoles, pyrroles, 

pyrimidines, and purines, have displayed the best antibacterial and antitumor activities.(158) 

Furthermore, it is the lysine and arginine substituents on natural occurring antimicrobial peptides 

that allows them to target bacterial cells, specifically the highly negative charged Gram negative 

bacterial outer membrane.(159) The most common therapeutic guanidines are 

Polyhexamethyleneguanidine (PHMG) derivatives that are widely used as antiseptics. PHMG can 

be detoxified to create polyhexamethylene biguanide hydrochloride (PHMB-H) and incorporation 

of this scaffold with anions increases water solubility.(160) PHMB-H clinical studies have 

revealed this agent consistently inhibits oral bacterial counts and subsequent dental plaque 

regrowth.(161) 

 

 

Figure 5. Structure of PHMG. The figure above shows the structure of 

polyhexamethyleneguanidine (PHMG). There are many derivatives of this compound with varying 

chain length, indicated by [ ]n. These derivatives are used as antiseptics. 
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The most interesting clinical guanidine with great similarity to our bis-cyclic guanidines from this 

work is pentamidine, a derivative of synthalin, used to treat African sleeping sickness.(162) 

Synthalin was used in 1926 as an antidiabetic drug and its structure consists of two non-cyclic 

diguanines groups separated by an polymethylene chain.(163) Further synthalin research in 1937, 

lead to the discovery of trypanocidal properties towards Trypanosoma brucei.(164) Modifications 

by the English chemist Arthur James Ewins, lead to less toxic cyclic synthalin derivatives and the 

most promising of these diamidines was found to be pentamidine.(165) Pentamidine Isethionate 

(NebuPent) is used today in Africa to treat Trypanosoma brucei gambiense and Pneumocystis 

jirovecii in Aids patients.(166, 167) In addition, NebuPent is approved by the FDA for an oral 

inhalant treatment of fungal lung infections caused by Pneumocystis jirovecii.(167) With the 

similarities to the approved NebuPent, we decided the bis-cyclic guanidine would be the best 

combinatorial scaffold to develop as broad spectrum antibacterial agents. 

 

 

Figure 6. Structure of pentamidine. The figure above shows the structure of pentamidine. This 

compound is the active agent of the FDA approved NebuPent used to treat fungal lung infections. 

The compound is a derivative of synthalin, an antidiabetic drug used in 1926. The structure of 

pentamidine is similar to the bis-cyclic guanidines discussed in Chapter 2. The ends of the 

compounds have amines and aromatic rings, which are separated by an alkyne linker. 

 



	

	 32	

To ensure our identification of broad spectrum activity was not limited to a few bacterial isolates, 

we tested and found our lead agents to be equally effective towards ten clinical isolates of each 

ESKAPE pathogen.(149) This is particularly important for the Gram negative species A. 

baumannii and P. aeruginosa, where clinical isolates are found to vary greatly in their clinical 

antibiotic susceptibility.(168) The inconsistent therapeutic treatment outcomes of these organisms 

with penicillins, cephalosporins, and carbapenems are said to be because of the site of action 

location within the impenetrable periplasmic space.(169) The bis-cyclic guanidine antibacterials 

were not only effective at low concentrations, but were extremely bactericidal towards all 6 

ESKAPE pathogens at concentrations just above their respective MICs. This is a beneficial 

attribute because bacteriostatic antibiotics are known to have little efficacy treating endocarditis, 

therefore creating a need for bactericidal antibiotics.(170) It is for this reason that the most recent 

bactericidal antibiotics approved by the FDA, ceftolozane/tazobactam (Zerbaxa) and 

ceftazidime/avibactam (Avycaz), are referred to as the superheroes of Gram negative 

bacteria.(171)  

 

The positional scanning libraries were the key to understanding how to increase the antibacterial 

activity of the guanidine scaffold towards Gram negative species.(142) Using Canvas 

cheminformatics techniques to generate physiochemical properties necessary for broad spectrum 

activity, we were successful in determining the broad spectrum activity of the bis-cyclic guanidines 

was linked to increased molecular weight, AlogP (lipophilicity) values, and rotatable bonds.(172) 

This was a crucial finding to link the superiority of our guanidines over the approved pentamidine. 

Pentamidine has been shown to permeabilize Gram negative cells with its cationic nature but does 

not have the lipophilicity that is necessary for growth inhibition.(173) Specifically, pentamidine 
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has a molecular weight of 340 Da, an AlogP of 2.66, and 10 rotatable bonds;(174) while our work 

revealed the physiochemical properties for Gram negative activity are molecular weights above 

600 Da, AlogP values higher than 8, and more than 16 rotatable bonds. Our findings are in line 

with recent work revealing that amines and hydrophobicity are necessary physiochemical 

attributes for antibiotic penetration and retention into the Gram negative intracellular 

environment.(175) The most famous example of a clinical antibiotic that adheres to these 

physiochemical rules is colistin, the last resort polypeptide that attaches to the Gram negative outer 

membrane utilizing a positive charge and penetrates the inner membrane with its lipophilic 

tail.(176) Investigation of colistin led to the finding that both chemical properties are necessary for 

antimicrobial activity towards Gram negative species.(176) This hydrophobicity dependency is 

also observed with cationic antimicrobial peptides, where increased activity towards E. coli was 

found to be a direct effect of the hydrophobic properties of the peptides.(135, 177) Recently, the 

interest in antimicrobial peptides has grown because of their strong Gram negative antibacterial 

activity.(136) However, the toxicity and instability of cationic peptides is currently inhibiting 

progression of this class of antibiotics through clinical trials.(178) Perhaps our bis-cyclic guanidine 

can offer a less toxic small molecule counterpart to such cationic antimicrobial peptides. 

 

The ESKAPE pathogens had a low propensity for resistance development towards the bis-cyclic 

guanidines compared to clinical antibiotics.(82) This is perhaps suggestive that multiple 

spontaneous mutations are necessary to overcome their antimicrobial actions.(82, 179) This is of 

interest for new therapeutic development and compounds with more than one mechanism of action 

are now actively pursued.(82, 179, 180) This multi-targeting was first shown with cationic 

antimicrobial peptides that have similar physiochemical properties to our guanidine lead 
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agents.(181) Cationic antimicrobial peptides have been found to disrupt the membrane and inhibit 

intracellular synthesis of biomolecules.(182-184) In fact, it is the amphipathic nature of cationic 

antimicrobial peptides that allows for these two mechanisms of action.(185) This would explain 

the lack of bis-cyclic guanidine spontaneous mutations and the low propensity for resistance 

accumulation. With our knowledge of bacterial resistance development towards antibacterials 

having more than one mechanism of action, we hypothesize the bis-cyclic guanidine antibacterials 

have more than one molecular mechanism of action. In addition to low resistance development, 

we revealed the bis-cyclic guanidines had great specificity towards bacterial cells resulting in a 

lack of toxicity towards eukaryotic cells. This is another similarity to antimicrobial peptides, which 

are more attracted to the negatively charged bacterial cell than the neutral charged eukaryotic 

cell.(183) Furthermore, it has been shown that this specificity can be increased by systematically 

modifying the cationic and hydrophobic properties.(178)  

 

Our in vivo efficacy studies with the bis-cyclic guanidine antibacterial agents were successful in 

rescuing mice from an otherwise lethal dose of S. aureus.(149) This is the ultimate success of the 

bis-cyclic guanidine over cationic antimicrobial peptides because there are many problems 

associated with translating in vitro activity of amphipathic peptides into in vivo efficacy.(186) 

Overall, this work reveals the potential therapeutic applications of the bis-cyclic guanidines. They 

have similar attributes to the already approved NebuPent, however the bis-cyclic guanidines 

physiochemical attributes create potential for Gram negative lung infection applications, opposed 

to the fungal lung infections for which NebuPent is prescribed. 
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Next, to fully exploit the utilization of combinatorial chemistry, we screened the same set of 

combinatorial libraries in a modified bioassay to identify anti-resistance agents towards P. 

aeruginosa, a species that attains much resistance because of efflux pumps.(187, 188) The 

modified bioassay used was a checkerboard assay that allows for the identification of adjuvant 

compounds with no antibacterial properties alone but potentiate the activity of ineffective 

antibiotics.(189) The checkerboard bioassay is widely used to define synergy between two 

inhibitory agents and has been successful for identifying synergistic antibiotics.(190-192) 

However, we modified the readout of the checkerboard assay by utilizing a potentiation 

calculation, not the fractional inhibitory calculation (FIC) that traditional checkerboards use to 

quantify synergy because we were interested in adjuvant compounds.(193) This was important 

because efflux inhibition does not lead to antibacterial activity alone, therefore any antibacterial 

properties would be the result of off-target effects.(194) Of the three classes of antibiotic adjuvants, 

efflux pump inhibitors belong to class 1.A, which are compounds that inhibit mechanisms of 

resistance.(195) However, the only adjuvants that have successfully progressed into clinic 

therapeutics are ß-lactamase inhibitors and aminoglycoside kinase inhibitors.(195) Currently there 

are few clinical studies on efflux pump inhibitors and these are limited to the adjuvant activity of 

omeprazole to activate amoxicillin towards Helicobacter pylori.(196)  

 

Our checkerboard bioassay of the combinatorial libraries lead to the discovery of potential 

adjuvant polyamine library. Polyamines are cationic and aliphatic small molecules that have been 

found to have many therapeutic benefits.(197) Naturally occurring polyamines are essential for 

many biosynthetic pathways and play a role in fighting off infections in host organisms, however 

the catabolism of these molecules are toxic and therefore tight regulation is necessary.(198, 199) 
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In fact, targeting polyamine biosynthesis of spermine and spermidine in cancer cells has shown 

promise in cancer therapeutics.(200) More relevant to our study, the search for potentiators of 

antibacterial activity has revealed the natural polyamines, spermidine and putrescine were able to 

potentiate antimicrobial activity of chloramphenicol, nalidixic acid, and trimethoprim towards P. 

aeruginosa without having membrane deleterious effects.(201) This, in combination with the 

finding that natural polyamines are extruded from cells through efflux pumps, suggest polyamines 

inhibit efflux through competitive inhibition, not membrane depolarization.(202) It is important to 

note that some polyamines have been shown to permeabilize membranes, however this function is 

largely dependent on the acyl chain length of the polyamine.(203) The potential membrane 

activities of exogenous polyamine treatment lead us to be meticulous in our secondary assay 

screening of the polyamine efflux pump inhibitors.(203) Taking note of potential toxicity issues 

and keeping in mind the many therapeutic benefits of polyamines, we were confident the pursuit 

of this library could be beneficial, and that the application of medicinal chemistry during the hit-

to-lead process could reduce toxicity issues by protecting the molecules from degradation that 

creates reactive aldehydes.(199, 204)  

 

Lead polyamines were chosen with the information learned from the positional scanning library 

and when tested they revealed a dose dependent potentiation of tetracycline activity towards P. 

aeruginosa. This was interesting because our polyamines resemble the known efflux pump 

inhibitor phenylalanine arginine ß-naphthylamide (PAßN) more than the other well-known control 

efflux pump inhibitor 1-(1-naphthylmethyl)-piperazine (NMP), which has been shown to be 

ineffective towards P. aeruginosa.(205) In fact, ligand binding of MexAB and AcrB in co-crystal 

structures suggest that there are potential mechanistic differences between these two RND family 
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efflux pumps.(206) This would explain the findings by Sjuts and colleges, who identified a 

pyranopyridine inhibitor, MBX2319 with potent activity towards Enterobacteriaceae, but no 

activity towards P. aeruginosa.(207) However, in a different study recently published in Nature, 

pyridopyrimidine derivatives were shown to bind the distal pocket of both MexAB and AcrB.(208) 

This suggests that pyridopyrimidine efflux inhibitors have broader applications than 

pyranopyridine inhibitors.(207) Further investigation revealed our lead polyamines have broad 

spectrum activity similar to pyridopyrimidines that have been found to not only potentiate 

tetracycline but also chloramphenicol and norofloxacin, whereas the pyranopyridine MBX2319 

was shown to only inhibit ciprofloxacin, levofloxacin, and piperacillin.(209) 

 

Our initial secondary validation began with a widely-used direct measure of efflux inhibition 

following ethidium bromide florescence with and without the efflux pump inhibitors.(197, 210-

214) Our polyamine efflux pump inhibitors were successful to increase accumulation of ethidium 

bromide, similar to the positive control PAßN. Another important factor in using this assay is that 

is has wide applicability in both Gram positive and negative bacterial species.(215) We found a 

similar increase in fluorescence across both Gram negative and positive species. This is exciting 

because only a few adjuvants, namely antipsychotic phenothiazines (promazine and 

chloropromazine), have shown broad spectrum anti-resistance properties.(216-218) 

 

Membrane depolarization assays validated our polyamines are not disturbing the P. aeruginosa 

cell membrane like PAßN that behaved similar to the positive depolarizing agent nisin.(219) This 

is an extremely important to revealing the specificity of our polyamines towards efflux pumps 
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because many efflux pump inhibitors identified depolarize the membrane gradient that efflux 

pumps use to function.(220-224) In line with our findings, PAßN has been shown to disrupt the 

bacterial cell membrane, which in addition to toxicity issues, stopped further development of this 

agent into clinical development.(222, 225, 226) Furthermore, a 2017 study by Machado and 

colleges identified a phenylquinoline efflux pump inhibitor PQQ4R that inhibits efflux through 

depolarization of the bacterial cell membrane similar to PAßN.(224) In addition to secondary 

effects on bacterial membranes, many identified efflux pump inhibitors, such as verapamil, 

thioridazine, and reserpine have activity towards both prokaryotic efflux and eukaryotic 

channels.(227) Calcium channel inhibitors can be extremely toxic, as increased dosages can cause 

cardiac arrest, making them problematic as therapeutic agents.(228) Therefore, we were pleased 

to see that our polyamine efflux pump inhibitors still allowed for calcium channel activity in a 

eukaryotic cell line when probed with a calcium channel stimulator. In addition to lack of inhibition 

of calcium channels, the polyamines had little general toxicity towards both HepG2 and Hek293T 

cell lines. This was very important to show the polyamines are not creating reactive aldehydes, 

which leads to general eukaryotic cellular death.(199) The work shown here will help guide the 

future hit-to-lead optimization of polyamine adjuvants in order to reactivate obsolete 

therapeutics.(90, 102) 

 

Following the initial discovery of hit compounds that inhibit multi-drug resistant bacteria, it is 

necessary to maintain an iterative collaboration with medicinal chemists for hit-to-lead 

optimization. For this approach, the medicinal chemist modifies the scaffold of the original hit in 

a systematic manner to obtain a well-developed SAR. This can be done through target-based assays 

using known binding pocket physiochemical properties or by following bio-assay results of the 
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modified compounds.(229) Chapter 4 is an example of a bio-assay guided hit-to-lead endeavor. 

Quinazolines have been known to have a wide range of therapeutic applications towards both 

eukaryotic and prokaryotic organisms.(230-238) This can lead to problems because this wide range 

activity can cause significant off-target effects and toxicity in humans.(239, 240) It is therefore 

necessary to have a strong medicinal chemistry approach to optimize the scaffold for antibacterial 

activity. This study was based on the utilization of bio-assay guided SAR to expand the activity of 

our original MRSA active quinazolines to include Gram negative species inhibition.(241). Recent 

efforts in synthesis of benzoxazolyl, benzothiazolyl, and benzimidazolyl quinazoline derivatives 

found benzothiazolyl derivatives were active towards S. aureus and benzimidazolyl derivatives 

were active towards Aspergillus niger, however none of these analogs inhibited the Gram negative 

species tested.(242) 

 

Our N2,N4-disubstituted quinazoline-2,4-diamines are unique from other quinazoline DHFR 

inhibitors because the 2- and 4-amino groups are alkylated causing steric hindrance and prevents 

deep insert into the mammalian DHFR enzyme pocket.(243) Another study probed benzenoid ring 

of the sterically hindered quinazoline scaffold, which is hypothesized to be the bacterial 

dihyrofolate reductase (DHFR) binding region, and successfully identified 5-substituted 2,4-

diaminoquinzaolines with activity towards E. coli. (244) However, the acquired activity towards 

E. coli did not exceed that of the clinical DHFR inhibitor trimethoprim. Perhaps this is because of 

lack of penetration into the Gram negative intracellular space as it has been found that quinazolines 

acting as DNA gyrase inhibitors are more active when adding 6-position substituted allowing for 

better cell penetration.(245, 246) Therefore, our analysis began by systematic probing of the 6- 

and 7- positions instead of the 5-position of the benzenoid ring of the N2, N4-disubstituted 
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quinazoline-2,4-diamine scaffold to optimize coverage the hypothesized DHFR binding region 

while simultaneously increasing Gram negative inhibition. Our collaborative efforts were 

successful to create activity towards A. baumannii, revealing the promise for continuing efforts to 

identify effective therapeutics towards additional Gram negative pathogens 

 

Our initial SAR revealed placement of any substituent at the 6-position of the benzenoid ring when 

compared to placement at the 7-position resulted in increased antimicrobial activity towards 

clinical isolates A. baumannii. Similar studies with antibacterial 2,4-diaminoquinazolines with 

steric hindrance by Lam and colleges in 2014, focused on 7-substituted 2,4-diaminoquinazolines 

based on the success of iclaprim (ICL).(247) However, their SAR was guided by molecular 

docking specifically avoided the 6-position substituents to increase specificity to the bacterial 

enzyme and therefore these efforts only succeeded in increased activity towards the Gram positive 

species S. aureus.(247) However, this 7-position may not lead to the specificity mentioned above 

because in an anti-parasitology study, Van Horn and colleges found antileishmanial activity with 

7-position substituents of the N2,N4-disubstituted quinazoline-2,4-diamine scaffold.(150, 235, 248-

250) 

 

With confidence that the 6-position would increase the Gram negative activity, we continued to 

optimize the 6-position by first adding lipophilic modifications to further probe the chemical space 

necessary to create a significant increase in antibacterial activity. These lipophilic groups would 

probe the potential hydrophobic pocket of the bacterial DHFR target that has led to trimethoprim 

specificity in the past.(251-253) We were successful with these modifications to increase activity 
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towards the most resistant A. baumannii clinical isolate #1403. Specifically, we found that large 

lipophilic groups, n-pentyl, n-cyclohexyl, and cyclohexenyl at the 6-position were more effective 

than the vinyl and ethyl groups, revealing a bulkier group at this position is more effective towards 

the extremely resistant A. baumannii isolates. This was in line with the 7-substitued 2,4-

diaminoquinazolines discovered using molecular docking that focused on the hydrophobic region 

of this pocket to increase bacterial DHFR enzyme binding.(247) Furthermore, a discovery by 

Bourne and colleges, found that a large hydrophobic moiety substituted on phthalazine scaffold 

allowed for specificity to Bacillus anthracis DHFR.(252) With this information, we felt confident 

to choose lead agents and continue forward assessing the additional antibacterial characteristics of 

our quinazolines towards A. baumannii. 

 

When testing the lead quinazolines for bactericidal effects on A. baumannii, we found it interesting 

that compounds 4 and 5, substituted with 6-bromo and 6-methyl group respectively, had the 

greatest bactericidal effects. These two electron donating chemical substituents when added as 

ortho or para directing groups, effectively create a more reactive compound.(254) These electron 

donating groups are nucleophilic and are known to form hydrogen or covalent bonds with 

biological targets.(255) In addition, it has been determined that electron donating groups allows 

for better DHFR inhibitors and this would explain the increased effectiveness of these lead 

agents.(256, 257) Similar to our findings, Shaikh and colleges discovered when targeting P. 

falciparum DHFR, increased bioactivity when substituting electron donating groups to the 6-

position on the phenyl ring of a pyrimethamine scaffold. They found that although the bulky 

hydrophobic groups are favored, the most beneficial substituents are electron donating 

groups.(258) Furthermore, because electron withdrawing groups allowed for increased inhibition 
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of the mammalian DHFR enzymes, those substituents were avoided in our study to avoid off target 

inhibition of the mammalian DHFR counterpart.(256, 257) 

 

We next tested the quinazolines for the ability to eradicate a pre-formed biofilm of our clinical A. 

baumannii isolate collection and found lead quinazoline 5 was the most effective This was 

particularly exciting for us because it has previously been shown that 2, 4 quinazoline analogs 

inhibited biofilm formation of another Gram negative species, Vibrio cholerae.(259, 260) 

Therefore, although not common, our quinazolines appear to be able to disrupt the biofilm matrix 

and perhaps this is in part because of the electron donating group on lead quinazoline 5. In fact, it 

has recently been explained that electron donating groups can create singlet state oxygen, a very 

reactive state, leading to oxidation of biomolecules (DNA, protein, polysaccharide), which are the 

main components of a biofilm.(261) 

 

Further testing revealed the lead quinazoline 4 and 5 were the most effective to fend off resistance 

development than trimethoprim. Trimethoprim resistant comes from a F99Y mutation leading to 

a tyrosine hydrogen bond in the binding pocket of the DHFR enzymes and this cannot be disrupted 

with a hydrophobic substituent.(247) Therefore hydrophobic substituted quinazolines are more 

efficient towards inhibition of wild type S. aureus DHFR than the enzymes carrying this mutation, 

whereas if the substituent is able to hydrogen bond it could disrupt this tyrosine bond.(247) This 

is a promising finding warranting further development of these two analogs as DHFR inhibitors 

because trimethoprim resistance is widespread.(262, 263) We also revealed the lead quinazolines 

displayed low toxicity towards a human HepG2 human liver cell line. Based on the cytotoxicity 
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LD50 values, it was determined that the largest therapeutic windows belonged to quinazoline lead 

agents 4 and 5. This was a great success for our SAR analyses because the 6-position substitution 

was previously said to create greater eukaryotic cytotoxicity.(247) 

 

Figure 7. Structure of trimethoprim. The figure above shows the structure of trimethoprim. This 

compound has been revealed to specifically bind and inhibit bacterial dihydrofolate reductase 

(DHFR). This is an essential enzyme to produce folic acid and facilitate bacterial replication. 

 

This in addition to the low hemolytic ability of the quinazolines lead us to move forward and test 

the efficacy of one of our lead agents for treating in vivo murine peritonitis infection. We were 

pleased to observe that a limited dose of compound 5 (2 mg kg -1) successfully rescued the mice 

from an otherwise lethal dose of A. baumannii. This reveals the benefit of probing the 6-position 

of the N2,N4-disubstituted quinazoline-2,4-diamine benzenoid ring for Gram negative inhibition 

because the recent in vivo success of 4(3H) Quinazolines was limited to S. aureus.(264) This is 

possibly because of limited probing of the benzenoid ring as they only tested two analogs with 6-

position substituents because they were basing SAR on molecular modeling for PBP inhibitors, 

not bioassay-guided DHFR inhibitors.(264) This was a very strong conclusion to our initial study 

to increase the spectrum of quinazoline antibacterials by probing the 6-position of the benzenoid 

ring of the N2,N4-disubstituted quinazoline-2,4-diamine scaffold to inhibit Gram negative species.  
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Figure 8. Structure of N2,N4-disubstituted quinazoline-2,4-diamine scaffold. The figure above 

shows the structure of N2,N4-disubstituted quinazoline-2,4-diamine scaffold with the variant 6-

position displayed as R. This variant position is hypothesized to probe the binding pocket of DHFR 

bacterial enzyme and inhibit folic acid synthesis. 

 

Future Directions. The success of the studies described in this work are a direct result of 

collaborating efforts of biologist and chemists. The studies outlined in this work are part of a 

continuing effort to fuel the drug discovery pipeline and each will continue to develop through the 

upcoming years. Once the initial discovery and hit-to-lead optimization is complete, 

pharmacokinetic analyses must be performed to create a target product profile (TPP) for the IND 

application, stating how the compound can safely be administered once accepted into phase I 

clinical trials.(265) The TPP covers not only the target population intended to be treated by the 

novel therapeutic, but also the route of administration, dose range, frequency, and duration of 

treatment.(265) This is a huge endeavor for any therapeutic agent as it is necessary to know all 

mechanisms of antibacterial activity before the FDA will approve an IND application.(266) To 

avoid unnecessary expenses, this must be performed in the initial stages of discovery to identify 

problems before the investment increases.(267)  
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The guanidine antibacterials are currently being studied using molecular analyses to determine 

their primary mechanism of action as well as any off-target mechanisms. Our hypothesis is that 

the bis-cyclic guanidine is inhibiting protein synthesis after penetration of the bacterial outer 

membrane. Previous work with guanidine anti-infective agents has shown the guanidine moiety is 

important for ribosomal binding.(268-270) Biaryl guanidines have been shown to inhibit viral 

translation by blocking the internal ribosome entry site (IRES) and this activity is specifically 

attributed to the protonated guanidinium groups because activity was lost when a methyl, urea, or 

thiourea substituent replaced the guanidine core.(268) In an effort to target bacterial translation 

proteins with little eukaryotic homology, a high throughput screening of chemical scaffolds for 

inhibition of the essential elongation factors of S. aureus was successful to discover N-substituted 

guanidines, benzimidazole amidines, and Indole dipeptides inhibit activity of S. aureus EF-Tu and 

EF-Ts.(270) Furthermore, in a 2017 study by Komarova and colleges identified guanidylated 

quinazolines inhibited activity of bacterial ribosome translation.(269) Their SAR analyses 

revealed modifications to the quinazoline core had small effects on activity while modifications to 

the guanidine moiety lead to decreased antibacterial activity.(269) Our preliminary data suggests 

that protein synthesis may be inhibited with our guanidines, both bis-guanidine and mono-

guanidine analogs. (Fleeman et al. Unpublished) To validate our initial investigations we plan to 

use a global proteome cellular thermal shift assay (CETSA).(271-273) This experiment was 

developed to determine direct and indirect effects of cancer therapeutics in eukaryotic cells. We 

have optimized this assay for bacterial cells and hope to identify the intracellular binding proteins 

of the guanidine antibacterials. In addition to this specific in depth analysis, we hope to 

complement this experiment with cytological profiling to determine the general bacterial response 

following treatment with both the bis-guanidine and mono-guanidine analogs. Florescence 
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microscopy has been used for years to investigate cellular responses to inhibitory agents.(274-277) 

However, in 2013 Pogliano and colleges found they could identify cellular pathways inhibited by 

the different classes of antibiotics using principal component analyses that and further use the 

knowledge gained to identify potential pathways inhibited by a novel therapeutic.(278) Following 

analysis of the guanidine analogs using these approaches, continuing SAR analyses will be 

performed in order to develop novel guanidine bacterial protein synthesis inhibitors. 

 

For our polyamine efflux pump inhibitors, we plan on screening individual compounds synthesized 

based on the polyamine positional scanning library. Once we have confidently identified lead 

agents, we plan on assessing the lead efflux inhibitor polyamines for potentiation of multiple 

classes of antibiotics towards multiple bacterial isolates to increase the knowledge gained in this 

work.(279) Continued secondary validation efforts will include all of the experiments utilized in 

this work, in addition to mass spectrometry accumulation assessment for the best direct method of 

assessing compound accumulation, and a hERG potassium channel assessment said to be more 

sensitive than the calcium channel assay.(280) With this increased knowledge, we hope to progress 

the individual compounds into in vivo efficacy studies for utilization for combination therapy with 

an obsolete antibiotic towards a P. aeruginosa isolate. 

 

The quinazoline antibacterials discussed in this work are currently being optimized for specificity 

towards bacterial DHFR enzymes and elimination of the toxicity for developing a TPP. For 

continuing SAR analogs are being synthesized to eliminate the reactive furfuryl group and replace 

it with more benign groups in hopes to reduce the toxicity associated with singlet oxygen 
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production.(281) Molecular docking analyses will be performed to increase the specificity of the 

quinazolines to the bacterial DHFR enzyme and decrease the affinity to the mammalian DHFR 

counterpart. There have been differences identified in the pocket dimensions of the human versus 

bacterial DHFR and we hope to exploit these differences in future quinazolines analogs to increase 

the specificity of our agents. As we have already identified inhibition of both S. aureus and A. 

baumannii clinical isolates, we are approaching formulation for TPP to begin to move past the hit-

to-lead stage into pre-clinical investigations. The development of this profile will include multi-

parameter optimization (MPO) algorithm application and ADMET analyses to ensure optimal 

physiochemical properties. This MPO will focus specifically on partition coefficient clogP (≤ 3.0) 

and distribution coefficient clogD7.4 (≤ 0.2), total polar surface area (100-200 Å2), number of 

hydrogen bond donors (6-11), hydrogen bond acceptors (2-6), and pKa (6.1-8.7). ADMET 

properties for the TPP will include stability using mouse microsomes, absorption testing a caco-2 

cell line, and toxicity using human cytochrome P450 inhibition. 
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