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ABSTRACT 

The purpose of this study was to determine if using a multistage approach for the 

empirical selection of anchor items would lead to more accurate DIF detection rates than the 

anchor selection methods proposed by Kopf, Zeileis, & Strobl (2015b). A simulation study was 

conducted in which the sample size, percentage of DIF, and balance of DIF were manipulated. 

The outcomes of interest were true positive rates, false positive rates, familywise false positive 

rates, anchor contamination rates, and familywise anchor contamination rates. Results showed 

the proposed multistage methods produced lower anchor contamination rates than the non-

multistage methods under some conditions, but there were generally no meaningful differences 

in true positive and false positive rates. 
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CHAPTER ONE: 

INTRODUCTION 

The Standards for Education and Psychological Testing describes bias as “construct-

irrelevant components that result in systematically lower or higher scores for identifiable groups 

of examinees” (AERA, APA, & NCME, 1999, p. 76). One source of bias is when an item 

performs differently for two groups of test takers after controlling for the construct ability of the 

test takers. This source of bias is labeled differential item functioning (DIF). When a test 

contains items with DIF, the results from the test may be biased, resulting in inaccurate estimates 

of the test takers’ ability levels and compromising any conclusions that can be inferred from the 

results of the test (Hidalgo, Galindo-Garre, & Gómez-Benito, 2015; Li & Zumbo, 2009). 

Several techniques have been developed or used to detect DIF including Mantel-Haenszel 

(Holland & Thayer, 1986), logistic regression (Rogers & Swaminathan, 1993), structural 

equation modeling (Finch, 2005), and item response theory (Wang, 2004). One essential 

component of these techniques is controlling for the construct ability of the test taker. However, 

accurately estimating the construct ability can be difficult. Generally, the researcher does not 

have a priori knowledge of the test taker’s ability level and must use the same test being 

investigated for DIF to also estimate the construct ability of the test taker. This approach to 

investigating DIF creates a problem. The researcher cannot accurately estimate the construct 

ability of the examinees if the test contains items with DIF; however, the researcher cannot 
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accurately identify items with DIF without an accurate estimate of the examinees’ construct 

abilities. 

Several researchers have attempted to address this problem by developing techniques to 

locate DIF-free items to be used as anchor items when testing for DIF (González-Betanzos & 

Abad, 2012; Khalid & Glas, 2014; Kopf, Zeileis, & Strobl, 2015a; Kopf, Zeileis, & Strobl, 

2015b; Meade & Wright, 2012; Shih, Liu, & Wang, 2014; Shih & Wang, 2009; Wang & Shih, 

2010; Wang, Shih, & Sun, 2012; Wang, Shih, & Yang, 2009; Woods, 2009). Anchor items are 

items whose parameters are held constant between groups. Non-anchor items are items whose 

parameters are allowed to vary between groups. If an anchor is made up entirely of DIF-free 

items, that anchor can then be used to accurately test non-anchor items for DIF (Wang, 2004). 

However, locating DIF-free items to use in the anchor can be challenging, especially when there 

is a high percentage of items with DIF that all favor the same group. 

Recently, Kopf et al. (2015a, 2015b) conducted two extensive simulation studies 

examining different methods used to empirically select anchor items for the purpose of DIF 

analyses. These methods were evaluated based on the proportions of false positives and true 

positives. False positives are defined as the proportion of DIF-free items identified as having 

DIF. True positives are defined as the proportion of DIF items identified as having DIF. The two 

best performing methods examined by Kopf et al. can be abbreviated as C4-SA(MPT) and IF-

SA(MTT).  

C4-SA(MPT) uses each item as a single anchor (SA) to preliminarily test every other 

item for DIF resulting in k-1 test statistics for each item, where k is the number of items on the 

test. Items are then ranked by the number of times the p-value for the item is above the mean p-

value threshold (MPT). Items above MPT the greatest number of times are presumed to be the 
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most likely DIF-free items and ranked the highest. The four (C4) highest ranking items are then 

chosen to be the anchor for the DIF analysis. 

IF-SA(MTT) also uses SA to preliminarily test every other item for DIF; however, items 

are ranked by the number of times the absolute test statistic for the item is below the mean test 

statistic threshold (MTT). The items below MTT the greatest number of times are presumed to 

be the most likely to be DIF-free and ranked the highest. The highest ranking item is chosen to 

be the anchor, and all other items are tested for DIF. If the number of items presumed to be DIF-

free, defined as the number of items without a significant DIF test, is longer than the current 

anchor length, the next highest ranking item based on the original ranking is added to the anchor. 

The DIF test is iteratively repeated and new items added to the anchor until it is not shorter than 

the number of items presumed to be DIF-free. 

While both methods worked better than the other anchor selection methods they were 

compared to, in terms of false positive and true positive rates they generally did not perform as 

well as the DIF-free sets of anchor items they were compared to when the test contained 40% of 

items with DIF favoring a single group. Based on these results, there is a need to develop a 

method of empirically selecting anchor items that works well even in cases of extreme DIF 

contamination such as 40% of items with DIF favoring a single group. It is theorized that adding 

a multistage approach to the two methods Kopf et al. (2015b) found to be most effective will 

result in more accurate DIF detection in cases of extreme DIF contamination.  

The proposed multistage approach consists of the following stages and stopping criteria: 

(Stage 1) Use the anchor selection method to identify anchors and test all non-anchor items for 

DIF. During this stage all items are anchor item candidates. (Stage 2) Remove any items 

showing statistically significant DIF in the previous stage from the pool of anchor item 
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candidates, rerun the anchor selection method, and use the newly identified anchor to test all 

non-anchor items for DIF. (Stage i) Continue this procedure until the same set of anchor items 

are identified in two consecutive stages. Use that set of anchor items to conduct a final DIF test 

on all non-anchor items. 

The goal of the multistage approach is to create multiple iterative stages during which the 

percentage of DIF within the test was reduced in each successive stage. Because the 

effectiveness of C4-SA(MPT) and IF-SA(MTT) improves as the percentage of DIF decreases, it 

was hypothesized the final anchor items selected by the multistage approach should be more 

likely to be DIF-free, which should result in more accurate false positive and true positive rates 

during the final DIF test. 

A simulation study was conducted to compare the multistage approach to C4-SA(MPT) 

and IF-SA(MTT). The multistage approach in combination with the two prior methods was 

abbreviated as MS[C4-SA(MPT)] and MS[IF-SA(MTT)]. For comparison purposes, two sets of 

DIF-free anchor items were also implemented. These four anchor item selection methods and the 

two DIF-free anchor items were compared by applying them to datasets simulated using the 

following manipulated variables: three sample sizes for the reference/focal groups (500/500, 

750/750, 1000/1000), four percentages of DIF (0%, 10%, 20%, 40%), and two balances of DIF 

(one-sided, balanced). A 20-item test was generated under the Rasch model with a DIF 

magnitude of 0.4, mean group difference where the reference group is 1 standard deviation 

higher than the focal group, and item parameters identical to the parameters used by Kopf et al. 

(2015b). Note that balanced DIF means that half of the DIF items favor the reference group and 

half favor the focal group. In the one-sided balance all DIF items favor the reference group. This 

study was fully crossed, resulting in 21 conditions because the balance of DIF is not applicable 
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when the test contains zero percent DIF (3x3x2 DIF conditions and three 0% DIF conditions). 

Four hundred datasets were generated for each condition. All four anchor item selection methods 

were then applied to the 8,400 datasets, along with two types of DIF-free anchors. The outcomes 

of interest were the false positive rates, true positive rates, familywise false positive rates, anchor 

contamination, and familywise anchor contamination.  

Summary 

Problem 

Current methods for empirically selecting anchor items tend not to work well in 

conditions where a large percentage of DIF items all favor the same group (Kopf et al., 2015a; 

Kopf et al., 2015b). Under these conditions, items with DIF are sometimes selected as anchor 

items, which leads to inaccurate DIF detection in terms of increased false positive and decreased 

true positive rates.  

Purpose 

The purpose of this study was to determine if adding a multistage approach to the 

empirical selection of anchor items would lead to more accurate DIF detection. The proposed 

multistage approach expanded previously researched anchor methods by adding iterative steps to 

the procedure during which items primarily identified as having DIF are removed from the pool 

of potential anchor items. The goal was to reduce the percentage of DIF in the pool of potential 

anchor items which would theoretically lead to an improved rate of selecting DIF-free anchor 

items. Using only DIF-free items in the anchor has been shown to improve DIF detection 

accuracy rates when compared to a contaminated anchor (Wang, 2004).  
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Hypotheses 

1. The multistage anchor selection methods will have higher true positive rates, lower false 

positive rates, lower familywise false positive rates, lower anchor contamination, and 

lower familywise anchor contamination than the non-multistage methods. 

2. The anchor selection methods using IF will have higher true positive rates but also higher 

false positive rates than anchor selection methods using C4. 

3. Familywise false positive rates will be greater than .05 for most, or all, conditions. 

Questions 

1. Will any of the studied methods result in DIF detection rates equal to the DIF detection 

rates for the DIF-free anchors for all conditions? 

2. Will there be a difference in the anchor contamination rates between the IF and C4 

methods? 

Definitions of Frequently Used Terms 

 Definitions of terms frequently used throughout this paper are provided below in 

alphabetical order. 

 Anchor Class:  A component of the framework for classifying anchor item selection 

methods which defines the length of the anchor and the overall approach used when identifying 

anchor items (Kopf et al., 2015a; Kopf et al., 2015b). 

Anchor Contamination Rate: Outcome of interested which is calculated by diving the 

total number of DIF items within a set of anchor items by the total number of items in the 

anchor. 

Anchor Items:  Items whose parameters are constrained to be equal between groups when 

testing for DIF. 
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Anchor Method: A component of the framework for classifying anchor item selection 

methods which is defined as the combination of the anchor class and anchor selection strategy 

(Kopf et al., 2015a; Kopf et al., 2015b). 

Anchor Strategy: A component of the framework for classifying anchor item selection 

methods which determines how anchors are chosen for a particular anchor class (Kopf et al., 

2015a; Kopf et al., 2015b). 

Average Signed Area (ASAR): Represents the magnitude of DIF for the entire test. Is 

calculated by summing the signed area (SAR) for each item and dividing by the total number of 

items (Raju, 1988). 

Contaminated Anchor: A set of anchor items that contains one or more items with DIF. 

Differential Item Functioning (DIF): A test item performs differently for groups of test 

takers after controlling for the construct ability. 

False Positive Rate: Outcome of interest in the proposed simulation which is calculated 

by dividing the number of DIF-free items identified as having DIF by the total number of DIF-

free items. 

Familywise Anchor Contamination Rate: Outcome of interest which is calculated by 

dividing the number of sets of anchor items which contain one or more DIF items by the total 

number of sets of anchor items within a condition. 

Familywise False Positive Rate: Outcome of interest which is calculated by dividing the 

number of simulated tests in which at least one DIF-free item was identified as having DIF by 

the total number of simulated tests within a condition. 

Item Difficulty: Refers to how challenging a test item is for a test taker to provide a 

correct response. 
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Item Discrimination: Refers to how well an item separates test takers with high ability 

levels from test takers with low ability levels. 

Item Response Theory (IRT): Method for analyzing and calculating test results based on 

non-linear, latent trait modeling. 

Non-Uniform Differential Item Functioning: Type of DIF which occurs when the item 

discrimination is different between groups. 

Rasch Model: A type of IRT model where the item discrimination for each item is 

constrained to 1. 

Signed Area (SAR): Represents the magnitude of DIF for a single item and is equal to 

the area between the item characteristic curves for two groups (Raju, 1988). 

True Positive Rate: Outcome of interest which is calculated by dividing the number of 

DIF items identified as having DIF by the total number of DIF items 

Uniform Differential Item Functioning: Type of DIF which occurs when the item 

discrimination is the same for each group but the item difficulty is different. 
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CHAPTER TWO: 

LITERATURE REVIEW 

Overview 

This chapter explains DIF, some of the consequences of DIF in test score interpretations, 

common techniques used to identify DIF, the role of anchor items, the challenges associated with 

identifying DIF-free anchor items, methods developed to locate DIF-free anchor items, 

limitations of those methods, the need for further research, the methods for empirically selecting 

anchor items being investigated in this study, and selected components of the study designs of 

reviewed simulation studies focused on the empirical selection of anchor items.  

Differential Item Functioning (DIF) 

What is DIF? 

 Differential item functioning (DIF) occurs when a test item performs differently for 

subgroups of test takers, generally referred to as the reference and focal groups in a two-group 

DIF analysis, while holding the construct ability constant. The formula representing DIF for a 

dichotomously scored item, where one equals a correct response and zero equals an incorrect 

response, is shown in Equation 1 (Penfield & Camilli, 2006): 

𝑃(𝑌 = 1|𝜃, 𝐺 = 𝑅)  ≠  𝑃(𝑌 = 1|𝜃, 𝐺 = 𝐹)                                                               (1) 

 Where 

  𝑃(𝑌 = 1) 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 

  𝜃 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 
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  𝐺 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝, 

  𝑅 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑔𝑟𝑜𝑢𝑝, and 

  F 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑜𝑐𝑎𝑙 𝑔𝑟𝑜𝑢𝑝. 

 A test item represented by the above formula is considered to have DIF because the 

conditional probability of a correct response is not the same for the reference and focal groups 

even when holding the construct ability constant between the two groups.  

 Taking into account the construct ability is an essential component of any DIF analysis. 

Often there are mean group differences in test scores between subgroups, and these differences 

may show up at the item level if only the overall probability of a correct response is examined. 

However, a difference in the overall probability of a correct response is not considered bias as 

long as that difference is not present once the construct ability is taken into account (Warne, 

Yoon, & Price, 2014).  

 DIF is often described as being uniform or non-uniform, depending on whether or not the 

difference between groups is identified in the item’s difficulty or the item’s discrimination. Item 

difficulty refers to how challenging the item is for a test taker to provide a correct response. In 

general, a test taker has a lower probability, which is dependent on the test taker’s ability level, 

of providing a correct response on a more difficult item than a less difficult item. Item 

discrimination refers to how well an item separates test takers with high ability levels from test 

takers with low ability levels.   

Uniform DIF, shown in Figure 1, occurs when the item discrimination is the same for the 

reference and focal groups but the item difficulty is different. In the figure below, the item 

difficulty can be measured by identifying the ability level at which the test taker has a 50% 

probability of answering the item correctly. The reference group needs an ability level of 0 to 



11 

 

have a 50% probability of answering the item correctly. The focal group needs an ability level of 

0.5 to have a 50% probability of answering the item correctly. This difference in ability levels 

between groups needed to have the same probability of a correct response is labeled as DIF. 

Although the item difficulty differs between groups in this example, the item discrimination, 

represented by the slope of the line, is the same, meaning this item displays uniform DIF. 

 
Figure 1. Uniform differential item functioning for a dichotomously scored item. 

 

Non-uniform DIF, shown in Figure 2, occurs when the item discrimination is different 

between the two groups. The difference in item discrimination is represented by the difference in 

the slope of the lines for the two groups. Additionally, although the ability level needed to have a 

50% probability of a correct response is the same in this example, under non-uniform DIF the 

difficulty level may also differ between groups. 
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Figure 2. Non-uniform differential item functioning for a dichotomously scored item.  

 

DIF can also occur in ordinal response items such as a Likert scale. Uniform DIF for a 

four-level ordinal response item is displayed in Figure 3. In this example, the slopes for each 

level of the response are the same between groups, but the difficulty level differs.  

 
Figure 3. Uniform differential item functioning for a four-level ordinal response item. 

Note. 𝛳 represents the ability level, G=R represents reference group membership, G=F 

represents focal group membership. 
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Why is DIF important? 

 The presence of DIF is a concern across a variety of subgroups including gender 

(Murray, Booth, & McKenzie, 2015; Steinmayr, Bergold, Margraf-Stiksrud, & Freund, 2015), 

race (Roth, Dilworth-Anderson, Jin Huang, Gross, & Gitlin, 2015), English language learner 

status (Fidalgo, Alavi, & Amirian, 2014), and cognitive status (Fieo et al., 2015). Additionally, 

the widespread and high stakes use of tests, which include employment decisions (Lievens & 

Patterson, 2011), college admissions (Shaffer & McCabe, 2013), psychological measurement 

(Ready & Veague, 2014), teacher and school evaluation (Croft, Roberts, & Stenhouse, 2016), 

and professional licensure (Jarl, Heinemann, Linder, & Hermansson, 2015), cause DIF to be a 

major concern for all stakeholders concerned with the results of the test. Because of these 

concerns, it is imperative that the test accurately measure the target construct; however, when 

DIF is present on a test, it can impact the results, which may lead to erroneous conclusions 

(Hidalgo et al., 2015).  

 Several simulation studies have examined the impact of DIF on overall test results. Li & 

Zumbo (2009) examined how Type 1 error rates and effect sizes were impacted under a variety 

of conditions. They found that when all DIF items favored the same group, the Type 1 error rates 

and the effect sizes between groups were inflated. The inflation got worse as the magnitude of 

DIF increased. When DIF was balanced between groups or when there were very few items with 

DIF on test and those items only had small DIF, that Type 1 error rates and effect sizes were 

close to or within acceptable levels.   

Hidalgo et al. (2015) conducted a simulation study in which they examined how the 

presence of DIF impacts test score interpretations based on cut scores. They simulated a 20-item 

test using the Rasch model, a constant DIF magnitude of 0.8, and equal mean ability scores 
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between groups. They varied the sample size, the percentage of items with DIF on the test, and 

the cut scores. The researchers determined that as the percentage of DIF on the test increased 

there was greater misclassification on test score interpretations made based on cut scores, and 

there were greater differences in mean scores between groups.  

 The negative impact of DIF on test score interpretations has been found in empirical 

studies as well. Steinmayr et al. (2015) examined gender differences on a general knowledge test 

given to German high school students. The researchers found that although males scored higher 

on the test than females, many items contained DIF that favored males. When those items were 

removed, the overall mean difference in scores between males and females was reduced. Another 

study examined a random selection of 15,000 Korean test takers. This study determined that 

regardless of whether an item displaying DIF favors the reference or focal group, the overall 

score may be impacted (Pae & Park, 2006). An analysis of SAT results showed that removing an 

item displaying DIF had the largest impact on the total score of the subgroup that was most 

disadvantaged by the item (Zhang, Dorans, & Matthews-López, 2005). The common findings in 

all of these studies is that the presence of DIF has a negative impact in the overall score of test 

takers, which can impact inferences made based on those scores. 

When is DIF important?  

 Another important aspect of DIF is the magnitude of the effect. Like all tests of statistical 

significance, the statistical tests used to detect DIF are influenced by sample size, which may 

lead to a situation where although an item displays statistically significant DIF, the magnitude of 

the DIF is not large enough to be practically significant. Examining the area between the item 

response functions, like the ones shown in Figures 1 and 2, is one method of determining the 

effect size. For an item displaying DIF, the signed area (SAR) between the item characteristic 
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curves for the reference and focal groups can be represented using Equation 2 for the 3-PL IRT 

model (Raju, 1988): 

𝑆𝐴𝑅 =  (1 − 𝑐)(𝑏𝐹 − 𝑏𝑅)                                                                                                 (2)                                                                   

 Where 

  𝑐 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑠𝑢𝑒𝑑𝑜 𝑔𝑢𝑒𝑠𝑠𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 

  𝑏𝑅 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑔𝑟𝑜𝑢𝑝, and 

  𝑏𝐹 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑜𝑐𝑎𝑙 𝑔𝑟𝑜𝑢𝑝. 

 Although SAR for an individual item can have an impact on the overall test score, an 

even more important consideration is the average signed area (ASAR) shown in Equation 3 

(Wang & Su, 2004).  

𝐴𝑆𝐴𝑅 =  𝛴𝑖=1
𝑘 𝑆𝐴𝑅𝑖

𝑘
                                                                                                                 (3)                                                              

 Where 

  𝑆𝐴𝑅𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑒𝑑 𝑎𝑟𝑒𝑎 𝑓𝑜𝑟 𝑖𝑡𝑒𝑚 𝑖, 𝑎𝑛𝑑 

  𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡. 

 When ASAR is 0, either the test contains no DIF items, or there are items with DIF but 

those items cancel each other out. For example, if one item has an SAR of -1 and a second item 

has an SAR of 1, those items will cancel each other out so that the overall score of the test is 

neither biased against the reference or the focal group even though individual items display DIF. 

However, in empirical studies of DIF most items usually favor the reference group, and the 

further away ASAR is from zero, the greater the impact DIF will have on the overall score 

(Wang & Su, 2004).  
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DIF from a Test Developer’s Prospective 

While the presence of DIF items is a concern due to the negative impact DIF can have on 

the interpretation of test scores, there is also a danger in the over-identification of DIF items, 

especially from the perspective of a test developer working in K-12 public education.   

When an item has DIF, one of the most common methods of dealing with that item is to 

remove the item from the assessment (Cho, Sun, & Lee, 2016). In some situations an item may 

be revised so that it no longer has DIF; unfortunately, it is often difficult to determine the cause 

of DIF within an item. Recent research has begun to focus on identifying the causes of DIF 

(Balluerka, Plewis, Gorostiaga, & Padilla, 2013; Benitez, Padilla, Montesinos, & Sireci 2016; 

Huang, & Sheeran, 2011). However, there is not any established consensus as to the causes of 

DIF for different subgroups, and efforts to revise items are not guaranteed to be successful. 

Allalouf (2003) used a team of experts to revise items identified as having DIF. After 

administering the revised items, only 32% of the items had a significant decrease in the amount 

of DIF, and 24% of the items had an increase in DIF. These results may not be acceptable to 

many test developers, and their best option may be to remove the item from the test as well as 

future use. However, throwing out test items is not desirable given the time and cost of 

developing items.  

Item development procedures include creating test item specifications, recruiting and 

training qualified item writers, writing the items, review of the items for alignment, bias, and 

content, field testing, and psychometric analysis (Florida Department of Education, 2016). This 

process is time consuming and expensive. Over the four years from 2010-2014, the Florida 

Department of Education distributed nearly 20 million dollars of federal grant money for the 

development of test items for 145 courses, which equals nearly $140,000 for item development 
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per course. These 145 represent only a small portion of the nearly 2,000 courses that exist in 

Florida’s K-12 education system (Florida Department of Education, 2014; U.S. Department of 

Education, 2011). Per-item-cost development estimates range from range $1,500 to $2,500 

(Rudner, 2007). These costs for item development are staggering compared to the budgets 

allotted for public school students. According to Darling-Hammond and Adamson (2013) states 

spend an average of $10,000 per student, but only 20 dollars of that amount is budgeted for 

assessment. Much of that 20 dollars is spent on assessment procedures such as administration 

and scoring, leaving less for item development. For test developers, especially those working in 

public school districts, it is very costly to remove an item from an item bank; therefore, it is 

important to minimize the items that are incorrectly identified as having DIF. 

 Detecting DIF 

 Many techniques have been developed to detect DIF. These techniques can be divided 

into two broad categories: observed score methods and latent ability methods. Observed score 

methods rely on a measure such as the number of items answered correctly to estimate the 

construct ability of the test taker and include Mantel Haenszel and logistic regression. In 

contrast, latent ability methods use a latent variable to estimate the construct ability of the test 

taker and include structural equation modeling techniques such as the multiple indicators, 

multiple causes model as well as item response theory-based techniques.  

Mantel-Haenszel 

 Mantel-Haenszel (MH) is one of the most common methods used in DIF analyses 

(Rogers & Swaminathan, 1993). As shown in Table 1, MH for dichotomous items is calculated 

by creating k 2 x 2 contingency tables for each studied item, where k is the number of levels of 

the construct ability (Holland & Thayer, 1986). The construct ability is usually defined by total 
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score and k is usually equal to the total number of items on the test. A weighted average of the 

odds ratios for each of the contingency tables is then calculated to detect DIF. When the 

reference group equals 0 and the focal group equals 1, an odds ratio greater than 1 indicates that 

the item favors the focal group, and an odds ratio less than 1 indicates that the item favors the 

reference group.  

Table 1    

Contingency table for detecting differential item 

functioning in a dichotomous item using Mantel-Haenszel 

 Item Response Level  

Group 𝑦 = 1 𝑦 = 0 Total 

Reference 𝑛𝑅1𝑘 𝑛𝑅0𝑘 𝑛𝑅+𝑘 

Focal 𝑛𝐹1𝑘 𝑛𝐹0𝑘 𝑛𝐹+𝑘 

Total 𝑛+1𝑘 𝑛+0𝑘 𝑛++𝑘 

Note. k equals the level of the construct ability. 

 

 MH can be extended to test for DIF in polytomously scored items by using the 

generalized Mantel-Haenszel (GMH) procedure. As shown in Table 2, GMH is calculated by 

creating k 2 x T contingency tables for each studied item, where k is the number of levels of the 

construct ability and T is the number of response options for the studied item (Michaelides, 2008; 

Zwick, Donoghue, & Grima, 1993).  

Table 2       

Contingency table for detecting differential item functioning in a polytomous item using 

generalized Mantel-Haenszel 

 Item Response Level  

Group 𝑦1 𝑦2 𝑦3  𝑦𝑇 Total 

Reference 𝑛𝑅1𝑘 𝑛𝑅2𝑘 𝑛𝑅3𝑘 … 𝑛𝑅𝑇𝑘 𝑛𝑅+𝑘 

Focal 𝑛𝐹1𝑘 𝑛𝐹2𝑘 𝑛𝐹3𝑘 … 𝑛𝐹𝑇𝑘 𝑛𝐹+𝑘 

Total 𝑛+1𝑘 𝑛+2𝑘 𝑛+3𝑘 … 𝑛+𝑇𝑘 𝑛++𝑘 

Note. k equals the level of the construct ability. 
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 To test the null hypothesis that there is no association between group membership and 

responses, Mantel’s chi-square statistic is calculated as shown in Equation 4 (Michaelides, 

2008): 

 𝑀𝑎𝑛𝑡𝑒𝑙′𝑠 𝜒2 = 
(∑ ∑ 𝑛𝐹𝑇𝑘𝑦𝑇𝑇𝐽 −∑

𝑛𝐹+𝑘
𝑛++𝑘

∑ 𝑛+𝑇𝑘𝑦𝑇𝑇𝐽 )2

∑ 𝑉𝐴𝑅(∑ 𝑛𝐹𝑇𝑘𝑇𝐽 𝑦𝑇)
                                                             (4) 

 MH has been shown to work well in detecting uniform DIF when the sample size was 

greater than 500, the percent of items with DIF was fewer than 20%, the data fit the Rasch 

model, and when a scale purification procedure was incorporated (Guilera, Gomez-Benito, 

Hidalgo, & Sanchez-Meca, 2013). However, MH is not sensitive to non-uniform DIF, and a 

method such as logistic regression is better for detecting non-uniform DIF (Rogers & 

Swaminathan, 1993). 

Logistic Regression 

Logistic Regression (LR), like MH, generally uses a measure such as the total number of 

items answered correctly to define the construct ability (Rogers & Swaminathan, 1993). For 

items with a dichotomous outcome, three separate binary logistic regression models, as shown in 

Equations 5, 6, and 7, are created for each item. The change in the -2 log likelihood (-2LL) 

statistic between models is then calculated to determine statistical significance. The outcome 

statistic follows a chi-square distribution with one degree of freedom. A change in -2LL between 

Equations 5 and 6 greater than 3.84 indicates statistically significant uniform DIF. A change in  

-2LL between Equations 6 and 7 greater than 3.84 indicates statistically significant non-uniform 

DIF.     

ln[
𝑃(𝑌𝑖 = 1|𝐺, 𝑋)

1 − 𝑃(𝑌𝑖 = 1|𝐺, 𝑋)
] =  𝛽0 + 𝛽1𝑋                                                                              (5) 
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ln[
𝑃(𝑌𝑖 = 1|𝐺, 𝑋)

1 − 𝑃(𝑌𝑖 = 1|𝐺, 𝑋)
] =  𝛽0 + 𝛽1𝑋 + 𝛽2𝐺                                                                (6) 

ln[
𝑃(𝑌𝑖 = 1|𝐺, 𝑋)

1 − 𝑃(𝑌𝑖 = 1|𝐺, 𝑋)
] =   𝛽0 + 𝛽1𝑋 + 𝛽2𝐺 + 𝛽3𝑋𝐺                                             (7) 

 Where 

𝑃(𝑌𝑖 = 1) 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑓𝑜𝑟 𝑖𝑡𝑒𝑚 𝑖,    

𝑋 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑎𝑏𝑖𝑙𝑖𝑡𝑦, and 

𝐺 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝.  

 Logistic regression (LR) has been shown to be as powerful as MH in detecting uniform 

DIF but can also be used to detect non-uniform DIF (Rogers & Swaminathan, 1993). 

Additionally, the model can be extended to test for DIF in polytomously scored items 

(Apinyapibal, Lawthong, & Kanjanawasee, 2015). Ordinal logistic regression can be used to test 

for polytomously scored items using Equations 8, 9, and 10 (Jafari, 2014): 

ln[
𝑃(𝑌𝑖 ≤ 𝑘|𝐺, 𝑋)

1 − 𝑃(𝑌𝑖 > 𝑘|𝐺, 𝑋)
] =  𝛽0 + 𝛽1𝑋                                                                            (8) 

ln[
𝑃(𝑌𝑖 ≤ 𝑘|𝐺, 𝑋)

1 − 𝑃(𝑌𝑖 > 𝑘|𝐺, 𝑋)
] =  𝛽0 + 𝛽1𝑋 + 𝛽2𝐺                                                               (9) 

ln[
𝑃(𝑌𝑖 ≤ 𝑘|𝐺, 𝑋)

1 − 𝑃(𝑌𝑖 > 𝑘|𝐺, 𝑋)
]  =  𝛽0 + 𝛽1𝑋 + 𝛽2𝐺 + 𝛽3𝑋𝐺                                         (10) 

 Where 

𝑃(𝑌𝑖 ≤ 𝑘) 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑘 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑓𝑜𝑟 𝑖𝑡𝑒𝑚 𝑖, 

𝑋 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑎𝑛𝑑 

𝐺 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝. 

 However LR, like MH, is criticized because it utilizes the observed score of the test taker 

to estimate the construct ability rather than the latent score (Millsap & Everson, 1993). Structural 
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equation modeling and item response theory both make use of the latent ability estimate for DIF 

analysis.  

Multiple Indicators, Multiple Causes Models 

 Structural equation modeling (SEM) techniques rely on a latent variable to estimate the 

construct ability. SEM includes confirmatory factor analysis (CFA) and multiple indicators 

multiple causes (MIMIC) models. CFA models have been shown to be equivalent to two 

parameter item response theory models (Takane & Leeuw, 1987). Similarly, MIMIC models 

have been shown to be effective at detecting DIF when the data fit two parameter item response 

theory models (Finch, 2005). 

 The MIMIC model is a type of structural equation model that can be divided into a 

measurement and structural component (Joreskog & Goldberger, 1975). The measurement 

component can be represented by Equation 11 which models the continuous latent response, y𝑖
∗ , 

for item i (Wang et al., 2009). Because y𝑖
∗ cannot be directly measured, it is estimated by the 

observed response for item i, y𝑖
 , using Equation 12, when y𝑖

  is dichotomous. 

 y𝑖
∗ = 𝜆𝑖𝜃 + 𝛽𝑖𝐺 + 𝜀𝑖                                                                                                      (11) 

 Where 

   𝑦𝑖
∗ is the continuous latent response for item i, 

  θ is the latent ability variable,  

  G is the grouping variable, 

  𝜆𝑖 is the factor loading, 

  𝛽𝑖 is the effect of the grouping variable on 𝑦𝑖
∗, and 

  𝜀𝑖 is the error with a standard normal distribution.  
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             y𝑖
 = {

1, 𝑖𝑓 y𝑖
∗ > 𝜏𝑖    

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                                     (12)                                                                                            

 Where 

   𝜏𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑖𝑡𝑒𝑚 𝑖.  

 The structural component is represented by Equation 13: 

𝜃 =  𝛾𝐺 +  𝜁                                                                                                                     (13) 

 Where 

  𝛾 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝐺 𝑜𝑛 𝜃, 𝑎𝑛𝑑 

  𝜁 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙. 

 The variable 𝛽𝑖 is used to detect DIF. If 𝛽𝑖 = 0 there is no uniform DIF in item i. If 𝛽𝑖 ≠

0, then uniform DIF is present in item i.   

MIMIC models are easily expanded to test for polytomous response outcomes such as a 

Likert scale by making the following adjustment to y𝑖
  shown in Equation 14 (Wang & Shih, 

2010): 

y𝑖
 = 

{
 
 

 
 
0,                    𝑖𝑓 y𝑖

∗ ≤ 𝜏𝑖1
 1, 𝑖𝑓 𝜏𝑖1  < y𝑖

∗ ≤ 𝜏𝑖2
.                                          .
.                                          .
.                                          .
𝐽,                      𝑖𝑓 y𝑖

∗ > 𝜏𝑖𝐽

                                                                               (14) 

 Where 

  𝜏𝑖𝐽 𝑖𝑠 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑒𝑛𝑑𝑜𝑟𝑠𝑖𝑛𝑔 𝑖𝑡𝑒𝑚 𝑖 𝑎𝑡 𝑙𝑒𝑣𝑒𝑙 𝐽. 

Item Response Theory 

 Like SEM, item response theory (IRT) uses a latent variable to estimate the construct 

ability rather than an observed score. Three of the most common IRT modes are the one 



23 

 

parameter (1PL), two parameter (2PL), and three parameter (3PL) which are represented using 

Equation 15 (Özdemir, 2015): 

𝑝(𝑌𝑖 = 1|𝜃) = 𝑐𝑖 + (1 − 𝑐𝑖)
exp [𝑎𝑖(𝜃𝑖−𝑏𝑖)]

1+exp [𝑎𝑖(𝜃𝑖−𝑏𝑖)]
                                                       (15) 

 where 

  𝑝(𝑌𝑖 = 1|𝜃) 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑜𝑛 𝑖𝑡𝑒𝑚 𝑖 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑒𝑡𝑎, 

  𝜃 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑡𝑒𝑛𝑡 𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 

  𝑐𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑠𝑢𝑒𝑑𝑜 𝑔𝑢𝑒𝑠𝑠𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 

  𝑎𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛, and 

  𝑏𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦. 

 For a 1PL model 𝑎𝑖 is held constant for all items, 𝑐𝑖 is set to zero, and only 𝑏𝑖 is 

estimated. For a 2PL model 𝑐𝑖 is set to zero and both 𝑎𝑖 and 𝑏𝑖 are estimated. 

 To test for DIF in polytomous items, a graded response model (GRM) may be used 

(Cohen, Kim, & Baker, 1993). The GRM estimates the cumulative probability of endorsing an 

item at or above a given threshold as shown in Equation 16: 

𝑝(𝑌𝑖 ≥ 𝑗|𝜃) =
exp [𝑎𝑖(𝜃𝑖 − 𝑏𝑖𝑗)]

1 + exp [𝑎𝑖(𝜃𝑖 − 𝑏𝑖𝑗)]
                                                                       (16) 

 Where 

  𝑝(𝑌𝑖 ≥ 𝑗|𝜃) 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑠𝑝𝑜𝑛𝑠𝑒 𝑜𝑛 𝑖𝑡𝑒𝑚 𝑖 𝑎𝑡 𝑜𝑟 𝑎𝑏𝑜𝑣𝑒 𝑗  

                           𝑔𝑖𝑣𝑒𝑛 𝜃, 

  𝜃 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑡𝑒𝑛𝑡 𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 

  𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 𝑓𝑜𝑟 𝑖𝑡𝑒𝑚 𝑖,  

  𝑎𝑖𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛, and 

  𝑏𝑖𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 𝑎𝑡 𝑙𝑒𝑣𝑒𝑙 𝑗. 
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 There are multiple approaches for using IRT to test for DIF including Lord’s chi-square, 

differential functioning of items and tests, and the likelihood ratio test (Tay, Meade, & Cao, 

2015). Several studies have confirmed the effectiveness of using the IRT likelihood ratio (IRT-

LR) approach for the detection of DIF (Atar & Kamata, 2011; Kabasakal, Arsan, Gök, & 

Kelecioğlu, 2014; Pei & Li, 2010). IRT-LR examines the differences in model fit between the 

constrained and less constrained model using Equation 17: 

𝐺2 = 2 ln (
𝐿𝑐

𝐿𝑓
)                                                                                                     (17) 

 Where 

  𝐺2𝑖𝑠 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑐ℎ𝑖 𝑠𝑞𝑢𝑎𝑟𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,  

  𝐿 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 

  𝑐 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑚𝑜𝑑𝑒𝑙, and 

  𝑓 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑠𝑠 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑚𝑜𝑑𝑒𝑙.  

In the constrained model, the item parameters for the studied item are constrained equal 

between groups. In the less constrained model, the item parameters for the studied item are 

allowed to vary between groups. However, IRT-LR is computationally intensive since it requires 

two models to test an item for DIF. The Wald test can also be used to test an item for DIF but 

only requires one model in which the item parameters for the studied item are allowed to vary. 

The Wald test for uniform DIF within the IRT framework is shown in Equation 18 (Kopf et al., 

2015b): 

 𝑊𝑖 =
𝑏𝑖𝐺=𝑅−𝑏𝑖𝐺=𝐹

√𝑉𝑎𝑟(𝑏𝑖𝐺=𝑅)+𝑉𝑎𝑟(𝑏𝑖𝐺=𝐹)
                                                                                         (18) 

Where 

  𝑊𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑊𝑎𝑙𝑑 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐, 
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  𝑏𝑖𝐺 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 𝑓𝑜𝑟 𝑖𝑡𝑒𝑚 𝑖 𝑎𝑛𝑑 𝑔𝑟𝑜𝑢𝑝 𝐺, and 

  𝑉𝑎𝑟(𝑏𝑖𝐺) 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 𝑓𝑜𝑟 𝑖𝑡𝑒𝑚 𝑖 𝑎𝑛𝑑 𝑔𝑟𝑜𝑢𝑝 𝐺. 

Anchor Items 

For the purpose of this study, anchor items are defined as items whose parameters are 

constrained to be equal between groups, while the parameters for non-anchor items are allowed 

to vary between groups. The functioning of anchor items can be shown using the formula for the 

Rasch model, shown in Equation 19, which is a special case of the 1PL model where the a 

parameter is constrained to be 1 for all items and all groups (Kopf et al., 2015b). 

𝑝(𝑌𝑖𝐺 = 1|𝜃𝐺) =
exp [(𝜃𝑖−𝑏𝑖𝐺)]

1+exp [(𝜃𝑖−𝑏𝑖𝐺)]
                                                                         (19) 

 Where 

  𝑝(𝑌𝑖𝐺 = 1|𝜃𝐺) 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑜𝑛 𝑖𝑡𝑒𝑚 𝑖  

𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑒𝑡𝑎 𝑓𝑜𝑟 𝑔𝑟𝑜𝑢𝑝 𝐺,                                                                         

  𝜃 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑡𝑒𝑛𝑡 𝑎𝑏𝑖𝑙𝑖𝑡𝑦, and 

  𝑏𝑖𝐺 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 𝑓𝑜𝑟 𝑖𝑡𝑒𝑚 𝑖 𝑎𝑛𝑑 𝑔𝑟𝑜𝑢𝑝 𝐺. 

 For anchor items, the b parameter estimate for item i for the focal group is equal to the b 

parameter estimate for item i for the reference group, 𝑏𝑖𝐺=𝐹 = 𝑏𝑖𝐺=𝑅. Conversely, for non-anchor 

items, 𝑏𝑖𝐺=𝐹 ≠ 𝑏𝑖𝐺=𝑅. 

 A commonly used technique for identifying DIF is to use all other items (AO), other than 

the item being studied for DIF, as the anchor. AO has been shown to work adequately when few 

items have DIF or when the overall DIF on the test is balanced between the reference and the 

focal group. However, when the percentage of DIF is large or the direction of DIF is not 

balanced, AO has been shown to have suboptimal false positive and true positive rates (Wang et 

al., 2009; Woods, 2009).  
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The reason for these suboptimal rates in certain conditions is that AO will include items 

with DIF in the anchor any time any item other than the studied item contains DIF. When items 

with DIF are included in the anchor, labeled as a contaminated anchor, the ability level estimates 

are biased, which leads to inaccurate parameter estimates (Wang, 2004). Ultimately, 

contaminated anchors used in a DIF analysis lead to higher false positive and lower true positive 

rates (Wang et al., 2009). As a result of this problem, many researchers have begun exploring 

methods to empirically identify DIF-free items that can be used as anchor items for DIF analysis. 

Framework 

 A framework for classifying the numerous methods examined in published literature for 

empirically selecting anchor items was proposed by Kopf et al. (2015a, 2015b) and slightly 

adapted for this study. This framework consists of the anchor class, anchor selection strategy, 

and anchor method.  

Anchor class 

The anchor class defines the length of the anchor and the overall approach used when 

identifying anchor items. Generally, the anchor class can be categorized as either a constant 

anchor length or an iterative scale purification. In the reviewed literature, the constant anchor 

methods seek to identify a predetermined number of anchor items such as one, four, or 20% of 

the total number of items (Woods, 2009; Shih & Wang, 2009). The iterative scale purification 

classes seek to identify anchors without assuming a predefined length but rather relying on a 

stopping criterion to determine when the desired number of anchors have been identified. 

Examples of the iterative class include the scale purification procedure examined by Wang et al. 

(2009) in which an iterative procedure is used to identify anchor items.  This procedure stops 

when all non-anchor items display statistically significant DIF and all anchor items do not 
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display statistically significant DIF. A complete list of anchor classes examined in the current 

literature is included in Table 3. 

Table 3 

Anchor class abbreviations and descriptions 

Abbreviation  Anchor Class  Description 

Ci  Constant  
 

The anchor is a predefined, constant length equal to 

i. 

I  Iterative 
 

Items are iteratively added and removed from the 

anchor based on the anchor selection strategy. 

IB  Iterative Backward 
 

Items are iteratively removed from the anchor 

based on the anchor selection strategy. 

IF   Iterative Forward 
  

Items are iteratively added to the anchor based on 

the anchor selection strategy. 

 

Anchor selection strategy 

The anchor selection strategy determines how anchors are chosen for a particular anchor 

class. Anchor selection strategies used in the reviewed literature are shown in Table 4. These 

strategies may rank candidate anchor items using statistics such as the number of statistically 

significant DIF tests (Kopf et al., 2015a) or the mean absolute DIF index (Shih & Wang, 2009). 

Alternatively, the anchor selection strategy may add and remove items to and from the anchor 

using a statistic such as a significant DIF test (Wang et al., 2009). The calculation of these test 

statistics can occur either using all other items (AO) as the anchor or using each item as a single 

anchor (SA), respectively labeled as Type (I) and Type (II) by Kopf et al. (2015a, 2015b). 

However, as Type (I) and Type (II) are less intuitively descriptive than AO and SA, the latter 

two labels are used to describe these two approaches. Procedures using AO obtain one test 

statistic per studied item, while procedures using SA obtain k – 1 test statistics per studied item, 

where k is the number of items on the test.  
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Table 4 

Anchor selection strategies and descriptions 

Anchor Selection Strategy  Description 

               AO(LAT)  lowest absolute test statistic 

               AO(LES)  lowest effect size 

               AO(LM)  Lagrange multiplier test statistic  

               AO(MaxA)  largest difficulty (a) parameter 

               AO(SIBL)  simultaneous linear item bias test 

               AO(SIBN)  simultaneous non-linear item bias test 

               AO(ST)  significant DIF test 

               SA(MADI)  mean absolute DIF index 

               SA(MP)  mean p-value 

               SA(MPT)  number of times above the mean p-value threshold 

               SA(MT)  mean test statistic 

               SA(MTT)  number of times below mean test statistic threshold 

               SA(NST)   number of significant tests 

Note. AO uses all other items as anchors. SA uses each item as a single anchor resulting in k-1 tests for 

each item, where k is the number of items on the test. Candidate anchor items are added or removed from 

the anchor based on the anchor selection strategy. 

 

Anchor method 

The anchor method is defined as the combination of the anchor class and anchor selection 

strategy. For example, the constant four anchor class (C4) can be combined with an AO selection 

strategy based on the lowest absolute test statistic (LAT) to create the C4-AO(LAT) method. 

Alternatively, C4 can be combined with a SA selection strategy also based on LAT to create the 

C4-SA(LAT) method. The choice of test statistic can also be changed. Instead of using LAT, a 

researcher may wish to base anchor selection on the number of significant tests (NST) and create 

the C4-SA(NST) method.  
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Previously Studied Methods 

Iterative scale purification class 

 Among the iterative scale purification class, I-AO(ST) has been included in the greatest 

number of studies (Gonzalez-Betanzos & Abad, 2011; Shih et al., 2014; Wang et al., 2009; 

Wang et al., 2012; Wang & Shih, 2010). I-AO(ST) is conducted using the following iterations: 

(1) Use AO to test every item for DIF. (2) Retest every item for DIF using AO but exclude from 

the anchor items any item showing a statistically significant DIF test (ST) in the first iteration.  

(3) Retest every item for DIF using AO but exclude from the anchor items any item showing a 

statistically significant DIF test (ST) in the second iteration. Any items not showing statistically 

significant DIF in this step that showed statistically significant DIF in the previous step are 

added back to the anchor. (4) This procedure stops when the same items are displaying 

statistically significant DIF in two consecutive iterations (Wang et al., 2009). 

 The iterative scale purification class also includes methods that are either strictly 

backward (IB) or forward (IF) which were explored by Kopf et al. (2015a, 2015b) in two 

published articles. An example of an IB method is IB-AO(ST) which removed items from the 

anchor based on ST when using AO. IB-AO(ST) differed from I-AO(ST) because IB-AO(ST) 

only removed items from the anchor while I-AO(ST) both removed from and added items to the 

anchor.  

The IF methods studied used both AO and SA in the selection strategy. For example, IF-

AO(LAT) ranked items based on the lowest absolute test (LAT) statistic calculated using AO, 

where the highest ranked item had the smallest absolute test statistic and presumably was the 

most likely item to be DIF-free. After each new item was added to the anchor, the remaining 

non-anchor items were tested for DIF using the current anchor. If the number of items not 
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showing statistically significant DIF was greater than the number of items in the current anchor, 

the next highest ranked item based on the original ranking was added to the anchor. IF-SA(NST) 

was similar to the previously described method except that items were ranked based on the 

number of statistically significant DIF tests (NST) when using SA. Items with the fewest number 

of statistically significant DIF tests were ranked the highest. 

 In terms of false positive and true positive rates, the IF anchor class was shown to work 

better than the IB anchor class, and the SA anchor selection strategy was shown to work better 

than the AO anchor selection strategy when the test had a large percentage of DIF items favoring 

the same group (Kopf et al., 2015a). The reason for these findings was likely due to the fact that 

both IB and AO began by using all other items as anchors, which produced biased results when 

there was a high percentage of DIF items favoring the same group. However, the authors did find 

that the performance of IF-SA(NST) was largely influenced by sample size, which was attributed 

to the fact that statistical significance is also influenced by sample size.  

 Kopf et al. (2015b) further explored the IF anchor class by researching IF-SA(MP), IF-

SA(MPT), IF-SA(MT), IF-SA(MTT), and IF-SA(NST), which incorporated the mean p-value 

(MP), number of times an item was above the mean p-value threshold (MPT), mean absolute test 

statistic (MT), number of times an item was below the mean test statistic threshold (MTT), and 

the number of significant tests (NST) into the anchor selection strategy. The authors were 

attempting to find an anchor selection strategy that would not be impacted by sample size the 

way NST was. The new methods worked better than NST, with IF-SA(MTT) working the best in 

terms of low false positive and high true positive rates. However, IF-SA(MTT) still had false 

positive rates greater than .05 when the percentage of DIF was 40% and all DIF items favored 

the reference group.  
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Constant anchor length class 

 Many studies have explored different methods within the constant anchor length class 

(Gonzalez-Betanzos & Abad, 2011; Kopf et al., 2015a; Kopf et al., 2015b; Meade & Wright, 

2012; Shih et al., 2014; Shih & Wang, 2009; Wang et al., 2012; Wang & Shih, 2010; Woods, 

2009). All of the methods within this class rely on ranking items using the anchor selection 

strategy and then selecting i items to use as the final anchors, where i is defined by the anchor 

class. The variations of these methods have explored the number of items in the anchor, the use 

of AO and SA to rank items, and the test statistic used to rank these items.  

Anchor length 

 Generally, longer anchors lead to higher true positive and lower false positive rates when 

the anchor is pure (Shih & Wang, 2009). In their study that examined anchor lengths of one, two, 

four, and ten items, Shih and Wang (2009) concluded that an anchor length of four is long 

enough to ensure adequate true positive and false positive rates. Similarly, Meade and Wright 

(2012) examined anchor lengths of one, three, and five items and concluded that an anchor 

length of five produced acceptable results. However, both sets of researchers used very liberal 

criteria for defining acceptable false positive rates. Shih and Wang (2009) reported false positive 

rates in the range of .03 to .08 with a standard deviation of .01 to .04. Meade and Wright (2012) 

reported false positive rates with a five item anchor of .074, .075, and .061.  

AO vs. SA 

When ranking items to select the desired number of anchors within the constant anchor 

class, some studies have exclusively used AO (Woods, 2009; Wang et al., 2012; Meade & 

Wright, 2012; Shih et al., 2014). Other studies have exclusively used SA (Shih & Wang, 2009; 

Wang & Shih, 2010). In the currently published literature on the empirical selection of anchor 
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items, only Kopf et al. (2015a, 2015b) has examined both SA and AO in the same study, 

allowing for a direct comparison of the two selection strategies. The researchers concluded that 

when DIF was balanced, AO outperformed SA, although SA was generally acceptable. In 

conditions with unbalanced DIF, SA outperformed AO. This finding is likely due to the fact that 

AO produces biased results when a test contains many DIF items favoring a single group (Wang, 

2004). 

Test statistic used 

 Several test statistics used to rank items within the constant anchor length class have also 

been explored in the published research. However, few studies have directly compared these 

methods, which is necessary in order to determine which test statistic produces the most 

desirable results. Meade and Wright (2012) compared rankings based on the lowest absolute test 

statistic (LAT), lowest effect size (LES), and largest discrimination parameter (MaxA). The 

choice of MaxA was based on the work of Rivas, Stark, and Chernyshenko (2009), who 

concluded that higher discriminating items in the anchor produced more optimal true positive 

and false positive rates than did lower discriminating anchor items. Meade and Wright (2012) 

determined that the MaxA method outperformed the other methods in their study. However, as 

Woods (2009) noted, there is no known relationship between DIF and item discrimination. If the 

goal of empirically selecting anchor items is to ensure a pure anchor, there is not a clear 

theoretical reason to believe that selecting items based on discrimination would help to ensure 

that a pure anchor is found. However, Meade and Wright’s (2009) results indicate that there may 

be an advantage to using item discrimination in the anchor selection process. Unfortunately, the 

authors do not give a theoretical reason to explain their results, nor do they clearly define certain 

aspects of their study, such as how the items simulated with DIF were chosen. It may be the case 
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that their study design was responsible for MaxA outperforming the other methods, or it may be 

that there is a valid reason why MaxA is more likely to choose non-DIF items as anchors. 

Further research into this issue is needed, although it is beyond the scope of this study. 

 Kopf et al. (2015b) also directly compared different test statistics to rank potential anchor 

items. They examined the largest absolute test statistic (LAT), mean p-value (MP), mean test 

statistic (MT), number of significant tests (NST), number of times the item was above the mean 

p-value threshold (MPT), and the number of times the item was below the mean test statistic 

threshold (MTT). Within the constant anchor length class, Kopf et al. (2015b) determined that 

MPT performed best, although false positive rates were above .05 when tests contained 40% DIF 

items favoring the reference group. 

Need for Further Research 

 Although much progress has been made in research focused on the empirical selection of 

anchor items, a method that works well when there is a high percentage of items with DIF 

favoring a single group has not been found. Generally, as the percentage of DIF increases, the 

false positive rate increases and the true positive rate decreases (Kopf et al., 2015a; Kopf et al., 

2015b; Meade & Wright, 2012; Shih et al., 2014; Shih & Wang, 2009; Wang et al., 2012; Wang 

& Shih, 2010; Woods, 2009). When testing an empirical dataset for DIF, there is no a priori 

knowledge about what percentage of items have DIF and which group those items favor. 

Because of this issue, it is ideal for researchers to have an anchor selection method that works 

well in the most extreme circumstances, such as a large percentage of items with DIF favoring a 

single group, and also works well when DIF is balanced or nonexistent. 

 To date, Kopf et al. (2015a, 2015b) have conducted the most extensive studies on the 

empirical selection of anchor items. Based on their work, the two most promising methods in 
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terms of acceptable false positive and true positive rates are IF-SA(MTT) and C4-SA(MPT). 

While these methods perform well when DIF is balanced or the DIF is unbalanced but the 

percentage of DIF is 20% or less, they still have suboptimal false positive and true positive rates 

when 40% of items have DIF and favor the reference group. However, it seems that this process 

can be addressed by adding a multistage (MS) approach to the current methods: MS[IF-

SA(MTT)] and MS[C4-SA(MPT)]. 

Proposed Methods 

 The MS approach is conducted using successive stages. In the first stage the anchor 

method is used to select anchor items and then test all non-anchor items for DIF using the 

selected anchor. In this stage all items are anchor item candidates and are used as an SA. In the 

second stage the anchor method is conducted again to select new anchor items and test all non-

anchor items for DIF using the newly selected anchor. In this stage only items without a 

statistically significant DIF test in the previous stage are anchor item candidates and used as an 

SA. This process is continued until the same set of anchor items are selected in two consecutive 

stages. That set of anchor items is then used to test all non-anchor items for DIF. 

 In theory, the percentage of DIF within the candidate anchor items will be reduced in 

each successive stage, which should improve the accuracy of the anchor selection method. For 

example, a particular anchor item selection method may have a true positive rate of .50 and a 

false positive rate of .10 when a test contains 40% DIF items. On a fifty-item test with 40% DIF, 

a researcher could expect that 3 out of 30 DIF-free items and 10 out of 20 DIF items would be 

identified as having DIF, leaving 37 items not identified as having DIF. Ten, or 27%, of those 37 

remaining items can be expected to have DIF. If the anchor item selection method is conducted 

on the remaining 37 items, the true positive and false positive rates should improve, since the 
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percentage of DIF is now less. The newly selected anchor items are now less likely to have DIF 

and can be used to test all non-anchor items for DIF. The items that are then expected to be DIF-

free can be reevaluated as potential anchor items. This process can be continued until the same 

set of anchor items is identified in two consecutive rounds of testing. Once the final set of anchor 

items is identified, all non-anchor items can then be tested for DIF. 

 Conceptually, the MS method is similar to the DIF-Free-then-DIF method proposed by 

Wang et al. (2012). Within the current framework for classifying anchor item selection methods, 

the DIF-Free-then-DIF approach can be labeled as C4-(I-AO(ST))(LAT). This method uses the 

lowest absolute test statistic (LAT) to select four anchor items similar to C4-AO(LAT). 

However, where C4-AO(LAT) simply ranks items based on LAT obtained by using AO, C4-(I-

AO(ST))(LAT) uses I-AO(ST) to first remove items displaying DIF from the pool of candidate 

anchor items and then calculates and ranks items based on LAT using only the current pool of 

candidate anchor items. Wang et al. (2012) compared this technique to C4-AO(LAT) and found 

that C4-(I-AO(ST))(LAT) had better false positive and true positive rates. Theoretically, the 

reason for the improved performance can be attributed to the fact that using I-AO(ST) prior to 

calculating and ranking items based on LAT lowered the percentage of DIF in the test, which 

resulted in more accurate estimates of LAT and rankings. Using the same logic, it can then be 

expected that the two newly proposed methods will outperform the methods previously proposed 

by Kopf et al. (2015b). 

Methodological Details of Prior Studies 

Eleven articles examining the empirical selection of anchor items were located and 

reviewed (González-Betanzos & Abad, 2012; Khalid & Glas, 2014; Kopf et al., 2015a; Kopf et 

al., 2015a; Meade & Wright, 2012; Shih et al., 2014; Shih & Wang, 2009; Wang & Shih, 2010; 
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Wang et al,, 2012; Wang et al., 2009; Woods, 2009). The most commonly manipulated variables 

were sample size, mean group difference between the reference and focal groups, number of 

items on the test, percentage of DIF on the test, magnitude of DIF, type of DIF, balance of DIF, 

and the models used to generate the data. The levels for each of these variables used in the 

reviewed studies are presented in Table 5, in addition to the number of replications. A brief 

discussion of each of these variables and their relationship with detection of DIF is presented 

below. 

Sample Size 

 Sample size has been explored both in terms of overall sample size as well as equal or 

unequal sample sizes between the reference and focal groups. Equal sample sizes examined 

ranged from 100 each for the reference and focal groups (Khalid & Glas, 2014; Meade & 

Wright, 2012) to 1,500 for each group (Kopf et al., 2015a; Kopf et al., 2015b; Woods, 2009). All 

reviewed studies which examined unequal sample sizes simulated the reference group larger than 

the focal group (González-Betanzos & Abad, 2012; Kopf et al., 2015a; Meade & Wright, 2012; 

Shih et al., 2014; Wang et al., 2009; Woods, 2009;). These unequal sample sizes ranged from 

500/100 to 5,000/2,000 for the reference/focal groups, respectively.  

In general, in terms of detecting items with DIF, false positive rates decrease and true 

positive rates increase as sample sizes increase. The impact of unequal sample sizes is less clear 

because the studies that examined unequal sample sizes did not also simulate equal sample sizes 

that had the same overall sample size as the unequal sample size conditions. For example, Kopf 

et al. (2015a) simulated six equal sample size conditions and five unequal sample size 

conditions. However, none of the total sample sizes, determined by adding the sample size for 

the reference group to the sample size for the focal group, for the unequal condition were equal 
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to the total sample size for the equal condition. Without holding the total sample size constant for 

these two conditions, it is difficult to determine the impact, if any, of equal vs. unequal sample 

sizes between the reference and focal groups.  

Mean Group Difference 

 The simulated mean group differences, often labeled as impact, in the reviewed studies 

ranged from 0.0 to 1.0 standard deviations. The majority of studies simulated a mean group 

difference, versus no mean group difference. Only two studies varied the magnitude of the mean 

group difference, both of which used 0.0 and 1.0 standard deviations (Shih et al. 2014; Wang et 

al., 2012). In both of these studies the false positive rates were generally higher and the true 

positive rates were generally lower when there was a mean group difference present indicating 

that the presence of a mean group difference has a negative impact on DIF detection rates.   

Number of Items on the Test 

 The number of items on the test examined in the reviewed studies ranged from 10 (Wang 

& Shih, 2010; Woods, 2009) to 80 (Kopf et al., 2015a). Only three studies did not vary the 

number of items on the test (Woods, 2009; Meade & Wright 2012; Kopf at al., 2015b). The 

impact the number of items on the test has on DIF detection is unclear. In some studies a larger 

number of items on the test was generally positively correlated with improved false positive and 

true positive DIF detection rates (Shih et al., 2014). However, other studies found opposite or 

mixed results. For example, the results of Wang et al. (2009) showed that both false positive 

rates and true positive rates generally were lower for shorter tests; however, the results from 

Wang and Shih (2010) usually showed the same pattern but had many conditions in which this 

pattern did not hold. These mixed results may indicate that the impact the number of items on the 

test has on DIF detection rates is dependent on other study conditions.  
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Table 5    

Study design for selected variables in reviewed studies    

 Sample Sizea 
Mean 

Group 

Differenceb 

Number 

of Items 

Percentage of 

DIF 

Type 

of 

DIF 

Balance 

of DIF 

Data 

Generation 

Model 

Absolute 

Magnitude of DIF  

Study Equal Unequal a b Replications 

González-

Betanzos & 

Abad, 2012 

500, 1000 1000/500 0.0 15 27 
U, 

NU 
O 2PL 

.15, 

.40 
.25, .50 100 

Khalid & 

Glas, 2014 

100, 400, 

1000 
-- 0.0 

10, 20, 

40 

0, 10, 20, 

30, 40 

U, 

NU 
O 

1PL, 2PL, 

3PL 
.5 .5, 1.0 100 

Kopf et al., 

2015a 

250, 500, 

750, 1000, 

1250, 1500 

500/250, 

750/500, 

1000/750, 

1250/1000, 

1500/1250 

1.0 
20, 40, 

60, 80 
15, 30, 45 U B, O 1PL -- .6 2000 

Kopf et al., 

2015b 

250, 500, 

750, 1000, 

1250, 1500 

-- 1.0 40 0, 10, 25, 40 U B, O 1PL -- .4 1000 

Meade & 

Wright, 2012 
100, 250, 500 

500/250, 

5000/2000 
0.5 20 

5, 10, 20, 

40, 75 

U, 

NU 
O GR .5 .4, .8 300, 100 

Shih, et al., 

2014 
250, 500 

500/250, 

1000/500 

0.0, 

1.0 
20, 60 

0, 10, 20, 

30, 40 
U O 

2PL, 

3PL 
-- N(.4,.01) 100 

Shih & 

Wang, 2009 

500, 1000, 

1500 
-- 0.5 

20, 30, 

40 

0, 10, 20, 

30, 40 
U B, O, D 

1PL, 2PL, 

3PL 
-- .4 100 

Wang et al., 

2009 
500 

500/100, 

1000/500 
1.0 20, 50 

0, 10, 20, 

30, 40 
U B, O 

2PL, 

3PL 
-- .6 100 

Wang, et al., 

2012 

250, 500, 

1000 
-- 

0.0, 

1.0 
20, 40 

10, 20, 

30, 40 
U B, O 2PL -- N(.6,.01) 100 

Wang & 

Shih, 2010 
500  1.0 

10, 20, 

30 

0, 10, 20, 

30, 40 
U O 

PC, 

GPC 
-- .25 100 

Woods, 2009 -- 1500/500 0.4 
10, 20, 

40 

0, 20,  

50, 80 

U, 

NU 
R GR 

.3,.4,.

5,.6,.7 
≤ 1.52 100 

Note. aEqual sample sizes are per group. Unequal sample sizes are for the reference/focal groups. bDifferences are in standard deviations. U=uniform, N=non-

uniform, B=balanced, O=one-sided, D=dominant, R=random, PC=partial credit, GPC=generalized partial credit, GR=graded response. 
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Percentage of DIF on the Test 

 The percentage of DIF on the test is calculated by dividing the number of items with DIF 

by the total number of items on the test. For example, a 40-item test with four DIF items would 

have 10% DIF. Only one of the reviewed studies did not vary the percentage of DIF (González-

Betanzos & Abad, 2012). The impact of the percentage of DIF is largely influenced by the 

balance of DIF. On tests where there is the same number of DIF items favoring the reference 

groups as the focal group, assuming the magnitude of DIF is equal, the percentage of DIF has 

little impact on the detection of DIF. However, when all items with DIF favor a single group, a 

larger percentage of DIF leads to higher false positive and lower true positive rates when 

detecting items with DIF.  

 Wang & Su (2004) attributed these observations to the average signed area (ASAR). 

When ASAR is equal to zero the items with DIF have little impact on DIF detection. However, 

greater magnitudes of ASAR lead to higher false positive and lower true positive rates when 

detecting items with DIF. Assuming the item level magnitude of DIF is constant, balanced DIF 

conditions will have an ASAR of zero, and in unbalanced DIF conditions ASAR will be 

positively correlated with the percentage of items with DIF. 

Magnitude of DIF 

 The magnitude of DIF refers to the difference in the item parameters between the 

reference and focal groups. Most of the reviewed studies which explored the empirical selection 

of anchor items did not vary the magnitude of DIF but simply specified a constant magnitude for 

each item parameter being simulated with DIF. Three studies did vary the magnitude of DIF, all 

of which showed true positive rates were generally higher in conditions in which DIF items had a 

larger magnitude of DIF than conditions with a smaller magnitude of DIF (González-Betanzos & 
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Abad, 2012; Khalid & Glas, 2014; Meade & Wright, 2012). The relationship between DIF 

magnitude and false positive rates was less clear. Meade and Wright (2012) did not report their 

false positive rates in a way that allows any inference in the relationship between DIF magnitude 

and false positive rates to be made. Khalid and Glas’s (2014) results showed no clear relationship 

between the magnitude of DIF and false positive rates. González-Betanzos and Abad’s (2012) 

results showed that relationship between the magnitude of DIF and false positive rates was 

dependent on the anchor item method. When all other items were used as an anchor, conditions 

with a large magnitude of DIF had a higher false positive rate than conditions with a smaller 

magnitude of DIF. However, once an anchor method was applied, conditions with a larger 

magnitude of DIF had a smaller false positive rate than conditions with a smaller magnitude of 

DIF. 

Type of DIF 

The type of DIF examined in the reviewed studies was either uniform or non-uniform. 

All the reviewed studies examined uniform DIF. Three studies also examined non-uniform DIF 

(González-Betanzos & Abad, 2012, Meade & Wright, 2012; Woods, 2009). The impact of type 

of DIF on false positive and true positive DIF detection rates is unclear. González-Betanzos & 

Abad (2012) found that uniform DIF generally had a higher true positive DIF detection rate but 

also a larger false positive DIF detection rates than non-uniform. Conversely, both Woods (2009) 

and Meade and Wright (2012) found non-uniform DIF generally had higher true positive rates 

than uniform DIF. In regards to false positive rates, Woods’s (2009) results showed no clear 

difference between uniform and non-uniform DIF, while Meade and Wright (2012) did not 

report their false positive rates in a way which allows the reader to determine if there is any 

impact due to type of DIF. There were major differences in the designs of these studies which 
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may impact the results and make comparisons between studies difficult. For example, González-

Betanzos & Abad (2012) used a two-parameter IRT model to generate their data, while both 

Woods (2009) and Meade and Wright (2012) used graded response models.  

Balance of DIF 

 The balance of DIF refers to whether items with DIF favor the reference or focal group. 

There were two commonly used balances of DIF used in the reviewed simulation studies: 

balanced and one-sided. Balanced DIF occurs when half of the items with DIF favor the 

reference group and the other half favor the focal group. One-sided DIF refers to conditions 

where all the DIF items favor a single group. With the exception of Woods (2009), all of the 

reviewed studies included a one-sided condition in their simulation. Five studies also included a 

balanced condition.  

 The impact of the balance of DIF can be explained by ASAR. When DIF is balanced, 

ASAR is zero which leads to lower false positive rates and higher true positive rates when 

detecting DIF. However, when DIF is one-sided, ASAR is not zero which leads to higher false 

positive rates and lower true positive rates (Wang & Su, 2004).  

Models Used to Generate Data 

 The models used to generate the data in the reviewed studies were either the one-

parameter, two-parameter, three-parameter, graded response, partial credit, or generalized partial 

credit IRT models. Only five studies used more than one model to generate data. The most 

obvious impact the model used to generate had on DIF detection was dependent on the model 

used to detect DIF. True and false positive DIF detection rates were improved when the model 

used to detect DIF was the same or equivalent to the model used to generate the data as opposed 
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to when the model used to detect DIF was not equivalent or the same (Shih & Wang, 2009; 

Wang et al, 2009). 

Number of Replications 

 Eight of the reviewed studies only used 100 replications for each of their study 

conditions. Meade and Wright (2012) used 300 replications for their primary simulation and 100 

replications for a secondary simulation. Kopf et al. (2015a) used 2000 replications in their first 

study and then used 1000 replications in their second study (Kopf et al., 2015b). There were no 

justifications provided for these numbers of replications. 
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CHAPTER 3: 

STUDY DESIGN 

The purpose of this study was to determine if two newly proposed methods used for the 

empirical selection of anchor items for DIF analyses outperform two currently established 

methods proposed by Kopf et al. (2015b). Two sets of DIF-free anchor items were also used for 

comparison purposes. Slight changes were made to the stopping criteria in the methods proposed 

by Kopf et al. (2015b) due to differences in the specification of anchor items. These changes are 

discussed in detail later in this chapter.  

The goal of the study was to support or refute three hypotheses: (1) The multistage 

anchor selection methods will have higher true positive rates, lower false positive rates, lower 

familywise false positive rates, lower anchor contamination, and lower familywise anchor 

contamination than the non-multistage methods. (2) The anchor selection methods using IF will 

have higher true positive rates but also higher false positive rates than anchor selection methods 

using C4. (3) Familywise false positive rates will be greater than .05 for most, or all, conditions. 

Additionally, this study addressed two study questions: (1) Will any of the studied 

methods result in DIF detection rates equal to the DIF detection rates for the DIF-free anchors 

for all conditions? (2) Will there be a difference in the anchor contamination rates between the IF 

and C4 methods? 

A simulation study was conducted to address these hypotheses and question. The Rasch 

model was used for data generation. The sample size, percentage of DIF, and direction of DIF 
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were manipulated. The Rasch model and the Wald test were used for the selection of anchor 

items and DIF analysis, which were applied using PROC IRT with the marginal likelihood 

estimator in SAS 9.4 TS1M4. A detailed description of mean p-value threshold (MPT), mean test 

statistic threshold (MTT), all four anchor items selection methods, two DIF-free anchors, data 

generation, manipulated variables, and outcome variables are provided below. Also, two key 

changes made to the anchor items specification and the stopping criteria used by Kopf et al. 

(2015b) are discussed. 

Determining MPT and MTT 

 To determine MPT, each item was first preliminarily tested for DIF using SA resulting in 

k-1 DIF tests for each item, where k was the number of items on the test. Then the item-level 

mean p-values were ranked from large to small and the ([0.5 ∙ k])-th ranked mean p-value (Kopf 

et al, 2015b, p. 35) was identified. For example, on the twenty-item test, there were 20 item-level 

mean p-values. Each of these mean p-values was the mean of the 19 DIF tests for each individual 

item. Those item-level mean p-values were ranked from large to small, and the 10th ranked item-

level mean p-value was identified as the MPT. 

 Similar to MPT, MTT was determined by ranking the item-level mean test statistics from 

large to small and identifying the ([0.5 ∙ k])-th ranked mean test statistic. The absolute value of 

each test statistic was used to calculate the item-level mean.  

Anchor Selection Methods 

C4-SA(MPT) 

One of the two methods proposed by Kopf et al. (2015b) used a constant anchor length of 

four items (C4) which were selected by using each item as a single anchor (SA) and ranked items 

based on the number of times the items were above the mean p-value threshold (MPT). This 
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anchor selection method was abbreviated as C4-SA(MPT), and a detailed description of this 

method is provided below.  

1. Use each item as a single anchor (SA) and test every other item for DIF resulting in k-1 

DIF tests for each item, where k is the number of items on the test. These DIF tests are 

conducted using the Wald test. 

2. Calculate the number of times the k-1 p-values for each item is above the MPT.  

3. Rank items based on the number of times the p-value for each item is above the MPT. 

Items above MPT the greatest number of times are theorized to be the items most likely 

to be DIF-free and are ranked the highest. 

4. Choose the four highest ranked items (C4) to serve as the anchor and test all non-anchor 

items for DIF using the Wald test. 

IF-SA(MTT) 

The second method proposed by Kopf et al. (2015b) used an iterative forward scale 

purification (IF) class approach to select anchor items. Candidate anchor items were ranked by 

using each item as a single anchor (SA) and ranking items based on the number of times the 

items were below the mean test statistic threshold (MTT). Items were then added to the anchor 

one at a time based on this ranking as long as the number of non-anchor items not displaying 

statistically significant DIF was longer than the current anchor. This anchor selection method 

was abbreviated as IF-SA(MTT), and a detailed description of this method is provided below. 

1. Use each item as a single anchor (SA) and test every other item for DIF resulting in k-1 

DIF tests for each item, where k is the number of items on the test. These DIF tests are 

conducted using the Wald test. 
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2. Calculate the number of times the k-1 absolute Wald test statistic for each item is below 

the MTT.  

3. Rank items based on the number of times the test statistic for each item is below the 

MTT. Items below MTT the greatest number of times are theorized to be the items most 

likely to be DIF-free and are ranked the highest. 

4. Choose the highest ranked item to serve as the anchor and test all non-anchor items for 

DIF using the Wald test. 

5. If the number of non-anchor items not displaying statistically significant DIF is longer 

than the current anchor, add the next highest ranked item based on the rankings in step 3 

to the anchor and retest all non-anchor items for DIF. 

6. Repeat step 5 until all the number of non-anchor items not displaying statistically 

significant DIF is not longer than the current anchor. 

7. Use the final set of anchor items to test all non-anchor items for DIF. 

The two newly proposed methods extended the methods proposed by Kopf et al. (2015b) 

by adding multiple iterative stages to each method. The newly proposed multistage (MS) 

methods were abbreviated as MS[C4-SA(MPT)] and MS[IF-SA(MTT)]. Detailed procedures for 

conducting each of these methods are provided below. The maximum number of stages per 

replication was limited to 10 in order to deal with the possibility of encountering infinite loops in 

the simulation. 
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MS[C4-SA(MPT)] 

Stage 1 

1. Use each item as a single anchor (SA) and test every other item for DIF resulting in k-1 

DIF tests for each item, where k is the number of items on the test. These DIF tests are 

conducted using the Wald test. 

2. Calculate the number of times the k-1 p-values for each item is above the MPT.  

3. Rank items based on the number of times the p-value for each item is above the MPT. 

Items above MPT the greatest number of times are theorized to be the items most likely 

to be DIF-free and are ranked the highest. 

4. Choose the four highest ranked items (C4) to serve as the anchor and test all non-anchor 

items for DIF using the Wald test. 

Stage 2 

5. Repeat steps 1-4, but items displaying statistically significant DIF in step 4 are not 

included as an SA, tested for DIF by any other SA, or included in the ranking based on 

MPT. However, these items, along with all other non-anchor items, are tested for DIF 

when step 4 is repeated during stage 2. In other words, stage 2 identifies four new items 

to serve as an anchor, and all non-anchor items are tested for DIF using that anchor. 

Stage i 

6. Repeat step 5, i times, until the same set of anchor items are identified in two consecutive 

stages. Use the final set of anchor items to test all non-anchor items for DIF. 
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MS[IF-SA(MTT)] 

Stage 1 

1. Use each item as a single anchor (SA) and test every other item for DIF resulting in k-1 

DIF tests for each item, where k is the number of items on the test. These DIF tests are 

conducted using the Wald test. 

2. Calculate the number of times the k-1 absolute Wald test statistics for each item is below 

the MTT.  

3. Rank items based on the number of times the test statistic for each item is below the 

MTT. Items below MTT the greatest number of times are theorized to be the items most 

likely to be DIF-free and are ranked the highest. 

4. Choose the highest ranked item to serve as the anchor and test all non-anchor items for 

DIF using the Wald test. 

5. If the number of non-anchor items not displaying statistically significant DIF is longer 

than the current anchor, add the next highest ranked item based on the rankings in step 3 

to the anchor and retest all non-anchor items for DIF. 

6. Repeat step 5 until the number of non-anchor items not displaying statistically significant 

DIF is not longer than the current anchor. 

7. Use the final set of anchor items to test all non-anchor items for DIF. 

Stage 2 

8. Repeat steps 1-7, but items displaying statistically significant DIF in step 7 are not 

included as an SA, tested for DIF by any other SA, or included in the ranking based on 

MTT. However, these items, along with all other non-anchor items, are tested for DIF 
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when step 7 is repeated during stage 2. In other words, stage 2 identifies new items to 

serve as an anchor, and all non-anchor items are tested for DIF using that anchor. 

Stage i 

9. Repeat step 8, i times, until the same set of anchor items are identified in two consecutive 

stages. Use the final set of anchor items to test all non-anchor items for DIF. 

DIF-free Anchors 

 Two sets of DIF-free anchors, designed to mirror the anchor length of the C4 and IF 

anchor classes, were used to identify DIF items in each study condition. The C4-DIF-free anchor 

consisted of four items for all percentages of DIF. The anchor length for the IF-DIF-free anchor 

was dependent on the percentage of DIF as shown in the table below. These anchor lengths were 

based on the stopping criteria used for the IF anchor class applied in this study. If the IF anchor 

class accurately identified every DIF item, the anchor length would be half the length of the 

number of non-DIF items. The items within each DIF-free anchor were randomly chosen 

separately for each replication from the set of simulated DIF-free items. 

Table 6 

Anchor Lengths for IF-DIF-free Anchor by 

Percentage of DIF 

Percentage of DIF Anchor Length 

0 10 

10 9 

20 8 

40 6 

 

Data Generation 

Statistical Software 

 SAS 9.4 TS1M4 was used to generate the datasets, apply the anchor method, and perform 

the final DIF test. 
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Model Used to Generate Data 

 All data were generated under the Rasch model. Although there were numerous models 

that could have been used to generate the data, Kopf et al. (2015b) used the Rasch model for 

their study. Since this study was a direct extension of their study, using the Rasch model allowed 

for a more direct comparison between study results. 

Mean Group Difference 

 Ability levels for the reference and focal groups were randomly generated from a normal 

distribution with a mean of 0 and -1, respectively. Both groups had a standard deviation of 1. 

This design simulated real life situations where often the mean ability level of the reference 

group is greater than the focal group (Wang, 2004). Additionally, when there is a difference in 

the mean ability between groups, accurate DIF detection tends to be more challenging than when 

there is no mean ability difference (Shih et al., 2014; Wang et al., 2012;). Using these ability 

level distributions allows this study to examine the performance of the proposed methods in 

conditions that both simulate real life and are more challenging than a condition without mean 

ability differences. 

Test Length 

The test length was 20 items. This length was chosen because it has often been used in 

similar simulation studies (Khalid & Glas, 2014; Kopf et al., 2015a; Shih et al., 2014; Shih & 

Wang, 2009; Wang et al., 2009; Wang et al., 2012; Wang & Shih, 2010; Woods, 2009). 

Additionally, actual cognitive instruments often use a similar number of items (Morris, Lee & 

Barnes, 2008; Parslow, Christensen, Griffiths & Groves, 2006; Sekercioglu, Bayat & Bakir, 

2014). 
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Item Parameters 

 The difficulty parameters for the items used in this simulation, displayed in Table 7, are 

identical to the parameters used by Kopf et al. (2015b) and Wang et al. (2012). In both of those 

studies, the researchers simulated the first X% percentage of items with DIF, where X is the 

percentage of items with DIF. However, this design ensured that under many values of X only 

items with a low difficulty parameter are simulated with DIF. In the current study, the same 

difficulty parameters were used and the first X% percentage of items were simulated with DIF; 

however, the order of the difficulty parameters was randomized so that all difficulty parameters 

have an equal probability of being simulated with DIF. Additionally, 20 of the 40 items were 

randomly chosen for each replication in the study.  

Table 7             
Difficulty parameters used by Kopf et al. (2015b) and Wang et al. (2012) 

Item  

b-

parameter  Item  

b-

parameter  Item  

b-

parameter  Item  

b-

parameter 

1  -2.522  11  0.295  21  -2.198  31  0.116 

2  -1.902  12  0.778  22  -1.621  32  0.273 

3  -1.351  13  1.514  23  -0.761  33  0.840 

4  -1.092  14  1.744  24  -1.179  34  0.745 

5  -0.234  15  1.951  25  -0.610  35  1.485 

6  -0.317  16  -1.152  26  -0.291  36  -1.208 

7  0.037  17  -0.526  27  0.067  37  0.189 

8  0.268  18  1.104  28  0.706  38  0.345 

9  -0.571  19  0.961  29  -2.713  39  0.962 

10   0.317   20   1.314   30   0.213   40   1.592 

 

DIF Magnitude 

 For items with DIF, the difference between the difficulty parameters for reference and 

focal groups was 0.4. When items favored the reference group, 0.4 was added to the difficulty 

parameter for the focal group. When items favored the focal group, 0.4 was subtracted from the 
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difficulty parameter for the focal group. This magnitude was used in previous simulation studies 

(Kopf et al., 2015b; Rogers & Swaminathan, 1993). 

Manipulated Variables 

Sample Size 

 Three sample sizes were included in this study for the reference/focal groups: 500/500, 

750/750, and 1000/1000. In general, larger sample sizes lead to lower false positive and higher 

true positive rates during DIF detection (González-Betanzos & Abad, 2012; Khalid & Glas, 

2014; Kopf et al., 2015a; Kopf et al., 2015b; Shih et al., 2014; Shih & Wang, 2009; Wang et al., 

2010). However, as real life testing situations may include small and large sample sizes, it was 

useful to include a variety of sample sizes in this simulation. 

Percentage of DIF 

 Four percentages of DIF were included in this study: 0%, 10%, 20%, and 40%. In 

previous simulation studies higher percentages of DIF have led to higher false positive and lower 

true positive rates, especially when all DIF items favor the same group (Khalid & Glas, 2014; 

Kopf et al., 2015a; Kopf et al., 2015b; Meade & Wright, 2012; Shih et al., 2014; Shih & Wang, 

2009; Wang et al., 2009; Wang et al., 2012; Wang & Shih, 2010; Woods, 2009). The 40% DIF 

condition is of particular interest because that is the condition under which the methods proposed 

by Kopf et al. (2015b) performed the worst. 

Balance of DIF 

 This study included a balanced and a one-sided DIF condition. In the balanced condition 

half the DIF items favored the reference group, and half favored the focal group. In the one-sided 

condition all DIF items favored the reference group. Typically, most anchor selection methods 

work well under the balanced condition. Under the one sided condition, many of the previously 
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proposed methods for the empirical selection of anchor items have not performed as well, 

especially when the test contains higher percentages of DIF (González-Betanzos & Abad, 2012; 

Khalid & Glas, 2014; Kopf et al., 2015a; Kopf et al., 2015b; Meade & Wright, 2012; Shih et al., 

2014; Shih & Wang, 2009; Wang et al., 2009; Wang et al., 2012; Wang & Shih, 2010). 

Number of Replications 

 The number of replications for this study was determined using Bradley’s (1978) criteria 

for liberal robustness which he defined as 0.5α, where α is the nominal Type 1 error rate. Using a 

common α of .05, the formula for the standard error of a binomial distribution, shown in 

Equation 20, was used to determine the number of replications needed to obtain estimates of the 

outcome variables ±.025 of the true value. Under a binomial distribution, the greatest amount of 

variance will occur when the observed value is equal to .5; therefore, .5 was used to determine 

that 400 replications were needed to obtain acceptable estimates of the outcome variables.  

𝑆𝐸 =  √
𝑝(1 − 𝑝)

𝑛
                                                                                                              (20) 

 Where 

𝑆𝐸 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑎 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 

𝑝 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑜𝑢𝑡𝑐𝑜𝑚𝑒, 𝑎𝑛𝑑 

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠. 

Outcomes 

 The performance of the anchor selection methods were evaluated using false positive 

rates, true positive rates, familywise false positive rates, anchor contamination rates, and 

familywise anchor contamination rates. With the exception of familywise false positive rates, 

these outcomes have been used in other simulations studies examining the empirical selection of 
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anchor items (Gonzalez-Betanzos & Abad, 2011; Kopf et al., 2015a; Kopf et al., 2015b; Meade 

& Wright, 2012; Shih et al., 2014; Shih & Wang, 2009; Wang et al., 2012; Wang & Shih, 2010; 

Woods, 2009 ). Familywise false positive rates were included because testing multiple items for 

DIF within the same item test may result in inflated false positive rates.  

False Positive Rate 

 The false positive rate was defined as the proportion of DIF-free items showing 

statistically significant DIF during the final DIF test. 

True Positive Rate 

 The true positive rate was defined as the proportion of DIF items showing statistically 

significant DIF during the final DIF test. 

Familywise False Positive Rate 

 The familywise false positive rate was defined as the proportion of replication with at 

least one DIF-free item within the 20-item test shows statistically significant DIF during the final 

DIF test. 

Anchor Contamination Rate 

 The anchor contamination rate was defined as the proportion of DIF items in the final 

anchor. 

Familywise Anchor Contamination Rate 

 The familywise anchor contamination rate was defined as the proportion of replications 

with a final anchor that contained at least one DIF item. 
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Changes to Kopf et al.’s (2015b) Anchor Methods 

 Two changes were made to the methods used by Kopf et al. (2015b) due to differences in 

the software used in each study. These differences were the specification of anchor items and the 

stopping criteria for the IF anchor class.  

Kopf et al. (2015b) constrained the mean difficulty parameter for all anchor items to 0. 

The b-parameter of one of the anchor items was constrained to 0 to identify the model. This 

allowed the b-parameters for other anchor items within the anchor to vary between groups. These 

parameter estimates could then be tested for DIF along with the non-anchor items. In this current 

study, the b-parameters for anchor items were constrained to be equal between groups. This 

meant that none of the anchor items could be tested for DIF; therefore, these items were treated 

as having been identified as DIF-free for the calculation of outcome variables. This change to the 

specification of anchor items led to the need to change the stopping criteria for the IF anchor 

class. 

 When applying the IF anchor class, Kopf et al. (2015b) stopped adding items to the 

anchor when the length of the anchor was equal to or greater than the number of items not being 

identified as having DIF. For a 20-item test with 40% DIF, if the IF anchor class worked 

perfectly then all 12 non-DIF items would be included in the anchor. This anchor class could 

only work perfectly if the 12 non-DIF items were the 12 highest ranked items using SA(MTT). 

This was rarely the case, and items with DIF were often included in the anchor. However, 

because the specification of anchor items used by Kopf et al. (2015b) allowed all but one anchor 

item to be tested for DIF, even DIF items included in the anchor could be identified as having 

DIF. 
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 When the same stopping criteria was combined with the specification of anchor items 

used in this study, there were two adverse effects. The true positive rate decreased, and the 

anchor contamination rate increased. These adverse effects were directly attributable to the fact 

that all items in the anchor were treated as DIF-free items. Table 8 shows the anchor lengths 

resulting from different combinations of the stopping criteria and anchor item specifications used 

in Kopf et al.’s (2015b) study and this current study.  

Table 8       

Anchor lengths from applying different stopping criteria and anchor item specifications on a 

five item test with 40% differential item functioning 

Item Rank 

Using 

SA(MTT) 

 
Simulated 

DIF 

 Anchor Length 

  1 2 3 4 5 

1  No  Anchor Anchor Anchor Anchor Anchor 

2  No   Anchor Anchor Anchor Anchor 

3  Yes    Anchor Anchor Anchor 

4  Yes     Anchor Anchor 

5   No           Anchor 

Stopping 

Criteria  

Anchor Item 

Specification  Test of Stopping Criteria for Each Anchor Length 

Kopf et al.¹   Kopf et al.²   

1 ≥ 3 

False 

2 ≥ 3 

False 

3 ≥ 3 

True 
-- -- 

Kopf et al.¹   

Current 

Study³   

1 ≥ 3 

False 

2 ≥ 3 

False 

3 ≥ 4 

False 

4 ≥ 5 

False 

5 ≥ 5 

True 

Current 

Study⁴   

Current 

Study³   

1 ≥ 2 

False 

2 ≥ 1 

True 
-- -- -- 

Note. The results in this table assume that any item tested for DIF was correctly identified as either a 

DIF or non-DIF item. ¹The number of items in the anchor is greater than or equal to the number of DIF-

free items. ²The mean b-parameters of the anchor items was constrained to 0, which allowed all but 1 

anchor item to be tested for DIF. ³The b-parameters of the anchor items were constrained equal 

between groups which did not allow the anchor items to be tested for DIF. ⁴The number of items in the 

anchor is greater than or equal to the number of DIF-free non-anchor items. 

         
 This table shows that the item ranking using SA(MTT) has an item without DIF ranked 

after two items with DIF. Applying the stopping criteria and anchor item specification used by 

Kopf et al. (2015b) results in a three-item anchor since item three can still be identified as having 
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DIF when it is in the anchor. However, combining the stopping criteria used by Kopf et al. 

(2015b) with the anchor item specification used in this study results in a five-item anchor, which 

would mean that no items would be identified as DIF since the anchor item specification used in 

this study does not allow anchor items to be tested for DIF. By changing the stopping criteria in 

this study so that the number of items in the anchor is compared to the number of non-anchor 

items identified as DIF-free and combining that stopping criteria with the anchor item 

specification used in this study, a two-item anchor is identified. Preliminary analysis showed that 

this combination of stopping criteria and anchor item selection resulted in higher true positive 

rates and lower anchor contamination rates than combining Kopf et al.’s (2015b) stopping 

criteria with the current anchor item specification.  

 It should also be noted that the stopping criteria used in this study limited the length of 

the anchor to half the number of DIF-free items, assuming the presence of DIF was accurately 

identified. The stopping criteria used by Kopf et al. (2015b) could result in an anchor length 

equal to the number of items in the test. For example, on a 20-item test with 0% DIF, the 

stopping criteria used in this study could result in an anchor no longer than 10 items since an 

anchor length of 10 would be as long as the remaining 10 items being identified as 10 DIF-free 

items. However, Kopf et al.’s (2015b) stopping criteria would result in a 20-item anchor since 

the items in the anchor are included in the count of DIF-free items, and the stopping criteria 

would not be met until there was a 20-item anchor.   
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CHAPTER 4: 

RESULTS 

 The main outcomes of interest for this study were true positive rates, false positive rates, 

familywise false positive rates, anchor contamination rates, and familywise anchor 

contamination rates. The results for each of those outcomes are presented in this chapter in five 

separate tables. Major trends or findings within each of those outcomes are noted in the text that 

follows. Additionally, the mean, minimum, and maximum observed anchor lengths for the IF 

anchor selection methods are reported. A discussion of these results, including the ways in which 

the findings support or refute the hypotheses and research questions for this study, are presented 

in Chapter 5. 

True Positive Rates 

Table 9 shows the true positive DIF detection rates for all conditions in the simulation. 

As expected, true positive rates were higher for larger sample sizes, IF anchor selection methods 

versus C4 anchor selection methods, and the balanced DIF conditions versus the unbalanced DIF 

conditions. The difference in true positive rates was negligible between the DIF-free, multistage, 

and non-multistage methods under most conditions. There was a difference in true positive rates 

between anchor methods under the one-sided 40% percent DIF condition. Under this condition, 

the DIF-free methods had higher true positive rates than both the non-multistage and multistage 

methods. Additionally, the multistage methods had slightly higher true positive rates than the 

non-multistage methods, especially with larger sample sizes. 
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Table 9 

True positive rates by sample size, percentage of DIF, balance of DIF, and anchor method 

      Balanced DIF  One-Sided DIF 

      Sample Size Per Group 

   Anchor Method  500  750  1000  500  750  1000 

P
er

ce
n
ta

g
e 

o
f 

D
IF

 

10 

  C4-DIF-free  .46  .69  .80  .41  .66  .78 
  C4-SA(MPT)  .46  .70  .83  .41  .67  .80 
  MS[C4-SA(MPT)] .46  .68  .82  .40  .66  .80 
  IF-DIF-free  .49  .72  .84  .43  .69  .82 
  IF-SA(MTT)  .51  .74  .84  .44  .70  .82 
  MS[IF-SA(MTT)] .50  .72  .84  .44  .68  .82 

                

20 

  C4-DIF-free  .49  .66  .81  .47  .67  .78 
  C4-SA(MPT)  .49  .68  .83  .43  .65  .79 
  MS[C4-SA(MPT)] .48  .68  .82  .43  .63  .79 
  IF-DIF-free  .50  .69  .85  .49  .69  .82 
  IF-SA(MTT)  .52  .70  .85  .45  .66  .80 
  MS[IF-SA(MTT)] .51  .70  .84  .46  .66  .81 

                

40 

  C4-DIF-free  .49  .67  .82  .47  .66  .79 
  C4-SA(MPT)  .49  .67  .80  .28  .51  .68 
  MS[C4-SA(MPT)] .48  .68  .81  .31  .54  .73 
  IF-DIF-free  .50  .70  .83  .49  .68  .81 
  IF-SA(MTT)  .51  .68  .81  .28  .47  .63 

    MS[IF-SA(MTT)] .51   .69   .83   .32   .55   .74 

 

False Positive Rates 

False positive rates, shown in Table 10, were well controlled under all conditions, and 

arguably even slightly conservative under most conditions since the majority of the false positive 

rates were .01 and .02. Note that Kopf et al. (2015b) also found false positive rates to be under 

.05 for many of the methods used in their simulation, so the results in this simulation study were 

not out of line with the results of other similar studies. 
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Table 10 

False positive rates by sample size, percentage of DIF, balance of DIF, and anchor method 

      Balanced DIF  One-Sided DIF 

      Sample Size Per Group 

   Anchor Method  500  750  1000  500  750  1000 

P
er

ce
n
ta

g
e 

o
f 

D
IF

 

0 

  C4-DIF-free  .02  .02  .02  --  --  -- 
  C4-SA(MPT)  .02  .02  .02  --  --  -- 
  MS[C4-SA(MPT)] .02  .02  .01  --  --  -- 
  IF-DIF-free  .01  .01  .01  --  --  -- 
  IF-SA(MTT)  .02  .02  .02  --  --  -- 
  MS[IF-SA(MTT)] .02  .02  .02  --  --  -- 

                

10 

  C4-DIF-free  .02  .02  .02  .02  .02  .02 
  C4-SA(MPT)  .02  .02  .02  .02  .02  .02 
  MS[C4-SA(MPT)] .02  .02  .02  .02  .02  .02 
  

IF-DIF-free  .01  .01  .01  .01  .01  .01 
  IF-SA(MTT)  .02  .02  .02  .02  .02  .02 
  MS[IF-SA(MTT)] .02  .02  .02  .02  .02  .02 

                

20 

  C4-DIF-free  .02  .02  .02  .02  .02  .02 
  C4-SA(MPT)  .02  .02  .01  .02  .02  .02 
  MS[C4-SA(MPT)] .02  .02  .02  .02  .02  .02 
  IF-DIF-free  .01  .01  .01  .01  .01  .01 
  IF-SA(MTT)  .02  .02  .02  .02  .02  .02 
  MS[IF-SA(MTT)] .03  .02  .02  .03  .02  .02 

                

40 

  C4-DIF-free  .02  .02  .01  .02  .02  .01 
  C4-SA(MPT)  .03  .02  .02  .06  .05  .05 
  MS[C4-SA(MPT)] .03  .02  .02  .07  .05  .05 
  IF-DIF-free  .01  .01  .01  .01  .01  .01 
  IF-SA(MTT)  .02  .02  .02  .06  .06  .05 

    MS[IF-SA(MTT)] .03   .02   .02   .07   .06   .05 

 

There were no clear differences in false positive rates between anchor methods or with 

the DIF-free anchors except under the one-sided 40% DIF condition. Under that condition, there 

was a noticeable difference in false positive rates between all four anchor selection methods and 
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the DIF-free anchors. However, even with this difference the false positive rates for all anchor 

methods were well controlled. 

Table 11 

Familywise false positive rates by sample size, percentage of DIF, balance of DIF, and anchor 

method 

      Balanced DIF  One-Sided DIF 

      Sample Size Per Group 

   Anchor Method  500  750  1000  500  750  1000 

P
er

ce
n
ta

g
e 

o
f 

D
IF

 

 

  C4-SA(MPT)  .32  .27  .25  --  --  -- 
  MS[C4-SA(MPT)] .29  .25  .22  --  --  -- 
  IF-DIF-free  .18  .18  .16  --  --  -- 
  IF-SA(MTT)  .37  .32  .30  --  --  -- 
  MS[IF-SA(MTT)] .35  .30  .29  --  --  -- 

                

10 

  C4-DIF-free  .29  .28  .26  .30  .29  .26 
  C4-SA(MPT)  .32  .26  .25  .34  .26  .23 
  MS[C4-SA(MPT)] .33  .27  .26  .34  .26  .25 
  IF-DIF-free  .16  .18  .15  .16  .17  .15 
  IF-SA(MTT)  .36  .29  .27  .36  .29  .28 
  MS[IF-SA(MTT)] .36  .29  .29  .36  .29  .28 

                

20 

  C4-DIF-free  .27  .25  .22  .28  .26  .22 
  C4-SA(MPT)  .31  .23  .20  .29  .25  .22 
  MS[C4-SA(MPT)] .32  .25  .23  .31  .25  .21 
  IF-DIF-free  .15  .17  .14  .15  .17  .14 
  IF-SA(MTT)  .34  .25  .23  .33  .26  .24 
  MS[IF-SA(MTT)] .33  .28  .27  .32  .27  .28 

                

40 

  C4-DIF-free  .20  .17  .15  .20  .17  .15 
  C4-SA(MPT)  .27  .19  .18  .36  .29  .28 
  MS[C4-SA(MPT)] .30  .20  .20  .35  .27  .24 
  IF-DIF-free  .12  .11  .11  .12  .11  .12 
  IF-SA(MTT)  .25  .20  .19  .43  .37  .36 

    MS[IF-SA(MTT)] .28   .23   .22   .42   .30   .29 
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Familywise False Positive Rates 

Familywise false positive rates, shown in Table 11, ranged from .11 to .43 across all 

conditions. Familywise false positive rates were generally lower as the percentage of DIF 

increased, lower for IF-DIF-free compared to all other anchor methods, and lower as sample size 

increased. There were no clear differences in familywise false positive rates between the 

multistage and non-multistage methods. Familywise false positive rates were highest under the 

40% one-sided DIF condition. 

Table 12 

Anchor contamination by sample size, percentage of DIF, balance of DIF, and anchor method 

      Balanced DIF  One-Sided DIF 

      Sample Size Per Group 

   Anchor Method  500  750  1000  500  750  1000 

P
er

ce
n
ta

g
e 

o
f 

D
IF

 

10 

  C4-SA(MPT)  .016  .007  .003  .019  .006  .001 
  MS[C4-SA(MPT)] .016  .008  .003  .017  .008  .001 
  IF-SA(MTT)  .016  .005  .002  .017  .006  .002 
  MS[IF-SA(MTT)] .016  .006  .002  .017  .006  .002 

                

20 

  C4-SA(MPT)  .031  .016  .003  .041  .016  .006 
  MS[C4-SA(MPT)] .031  .014  .002  .042  .018  .006 
  IF-SA(MTT)  .030  .010  .005  .043  .014  .009 
  MS[IF-SA(MTT)] .032  .012  .004  .040  .018  .006 

                

40 

  C4-SA(MPT)  .087  .041  .014  .244  .132  .082 
  MS[C4-SA(MPT)] .093  .039  .013  .230  .115  .069 
  IF-SA(MTT)  .099  .047  .029  .251  .179  .128 

    MS[IF-SA(MTT)] .102   .041   .015   .224   .128   .062 

 

Anchor Contamination Rates 

The percentage of contaminated anchors, shown in Table 12, ranged from .001 to .251, 

decreased as sample size increased, and was highest under the one-sided 40% DIF condition. 

There was generally not a difference in anchor contamination between anchor selection methods, 
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except when DIF was set to 40%. With 40% DIF and sample sizes of 750 or 1000 per group, the 

multistage IF method performed better than the non-multistage IF method. Under the one-sided, 

40% DIF condition, all multistage methods performed better than the non-multistage methods. 

Familywise Anchor Contamination Rates 

Familywise anchor contamination rates ranged from .005 to .945. Contamination 

decreased with increased sample size, was higher for larger percentages of DIF, and was 

generally higher for the one-sided DIF condition compared to the balanced DIF condition. 

Familywise anchor contamination was largest under the one-sided, 40% DIF condition. Under 

that condition, the multistage methods produced lower familywise anchor contamination than the 

non-multistage methods. Under all conditions, the C4 methods had lower familywise anchor 

contamination rates than the IF methods.  

Table 13 

Familywise anchor contamination by sample size, percentage of DIF, balance of DIF, and 

anchor method 

      Balanced DIF  One-Sided DIF 

      Sample Size Per Group 

     Anchor Method  500  750  1000  500  750  1000 

P
er

ce
n
ta

g
e 

o
f 

D
IF

 

10 

  C4-SA(MPT)  .063  .028  .010  .075  .025  .005 
  MS[C4-SA(MPT)] .063  .033  .010  .065  .030  .005 
  IF-SA(MTT)  .150  .045  .018  .160  .060  .018 
  MS[IF-SA(MTT)] .158  .055  .020  .158  .055  .015 

                

20 

  C4-SA(MPT)  .120  .063  .010  .158  .063  .020 
  MS[C4-SA(MPT)] .123  .053  .008  .165  .073  .025 
  IF-SA(MTT)  .258  .093  .048  .358  .123  .075 
  MS[IF-SA(MTT)] .263  .103  .033  .323  .153  .053 

                

40 

  C4-SA(MPT)  .320  .160  .053  .663  .400  .245 
  MS[C4-SA(MPT)] .320  .153  .048  .568  .300  .158 
  IF-SA(MTT)  .630  .330  .198  .945  .810  .650 

    MS[IF-SA(MTT)] .608   .275   .100   .778   .465   .215 
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Observed Anchor Lengths for IF Selection Methods 

 The mean anchor lengths for the IF anchor selection methods are reported in Table 14 

and the minimum anchor lengths are reported in Table 15. The maximum anchor length was 10 

under all conditions. The mean anchor lengths were close to the anchor lengths used for the IF-

DIF-free anchors and the minimum anchor lengths were within two items of the IF-DIF-free 

anchor lengths. The consistent maximum anchor length of 10 for all conditions was expected 

because the stopping criteria used in this study limited the maximum number of items to half of 

the number of items not displaying statistically significant DIF, rounded up the nearest whole 

number. Therefore, any replications identifying zero or one item with statistically significant 

DIF, leaving 20 or 19 items without statistically DIF, would have had a 10-item anchor. 

Table 14 

Mean anchor length by sample size, percentage of DIF, balance of DIF, and anchor method 

      Balanced DIF  One-Sided DIF 

      Sample Size Per Group 

      500  750  1000  500  750  1000 

   Anchor Method             

P
er

ce
n
ta

g
e 

o
f 

D
IF

 

0 
  IF-SA(MTT)  9.95  9.96  9.95  --  --  -- 
  MS[IF-SA(MTT)]  9.94  9.94  9.93  --  --  -- 

                

10 
  IF-SA(MTT)  9.56  9.34  9.22  9.63  9.38  9.21 
  MS[IF-SA(MTT)]  9.50  9.32  9.16  9.58  9.34  9.17 

                

20 
  IF-SA(MTT)  9.04  8.72  8.44  9.18  8.79  8.50 
  MS[IF-SA(MTT)]  9.00  8.63  8.36  9.09  8.71  8.39 

                

40 
  IF-SA(MTT)  8.14  7.50  6.98  8.83  8.14  7.53 
  MS[IF-SA(MTT)]  7.96  7.27  6.77  8.47  7.66  6.95 
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Table 15 

Minimum anchor length by sample size, percentage of DIF, balance of DIF, and anchor method 

      Balanced DIF  One-Sided DIF 

      Sample Size Per Group 

      500  750  1000  500  750  1000 

   Anchor Method             

P
er

ce
n
ta

g
e 

o
f 

D
IF

 

0 
  IF-SA(MTT)  8  9  9  --  --  -- 
  MS[IF-SA(MTT)]  9  9  8  --  --  -- 

                

10 
  IF-SA(MTT)  8  8  8  8  8  8 
  MS[IF-SA(MTT)]  8  8  7  8  8  7 

                

20 
  IF-SA(MTT)  7  7  7  7  7  7 
  MS[IF-SA(MTT)]  7  7  6  7  7  6 

                

40 
  IF-SA(MTT)  6  6  5  6  6  6 
  MS[IF-SA(MTT)]  6  5  5  5  6  5 
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CHAPTER 5: 

DISCUSSION AND CONCLUSIONS 

Discussion 

The purpose of this study was to determine if the proposed multistage methods would 

perform better than the methods proposed by Kopf et al. (2015b) in terms of true positive rates, 

false positive rates, familywise false positive rates, anchor contamination, and familywise anchor 

contamination. In total, four anchor selection methods were tested: C4-SA(MPT), MS[C4-

SA(MPT)], IF-SA(MTT), and MS[IF-SA(MTT)]. For comparison purposes C4-DIF-free and IF-

DIF-free anchors were also used. The study’s hypotheses and research questions are displayed 

below and are followed by a discussion for each hypothesis and question. 

Hypotheses 

1. The multistage anchor selection methods will have higher true positive rates, lower false 

positive rates, lower familywise false positive rates, lower anchor contamination rates, 

and lower familywise anchor contamination than the non-multistage methods. 

2. The anchor selection methods using IF will have higher true positive rates but also higher 

false positive rates than anchor selection methods using C4. 

3. Familywise false positive rates will be greater than .05 for most, or all, conditions. 

Questions 

1. Will any of the studied methods result in DIF detection rates equal to the DIF detection 

rates for the DIF-free anchors for all conditions? 
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2. Will there be a difference in the anchor contamination rates between the IF and C4 

methods? 

Hypothesis 1 

The multistage anchor selection methods will have higher true positive rates, lower false positive 

rates, lower familywise false positive rates, lower anchor contamination rates, and lower 

familywise anchor contamination rates than the non-multistage methods. 

The first hypothesis was generally incorrect. The multistage methods only had higher true 

positive rates under the one-sided 40% DIF condition. The multistage methods had no impact on 

false positive rates, and only a small impact on familywise false positive rates under limited 

conditions. The multistage methods had lower anchor contamination and familywise anchor 

contamination rates under the one-sided 40% DIF condition. However, these differences were 

not large enough to lower false positive rates and only had a small impact on true positive and 

familywise false positive rates.  

Hypothesis 2 

The anchor selection methods using IF will have higher true positive rates but also higher false 

positive rates than anchor selection methods using C4. 

The second hypothesis was partially correct. As expected, IF methods had higher true 

positive rates than C4 methods, although these differences were rather small. However, it was 

also expected that IF methods would have higher false positive rates. This was not observed. 

There were no differences in the false positive rates between IF methods and C4 methods. 

 The lack of difference in false positive rates between the IF anchor selection methods and 

C4 anchor selection methods was surprising because other studies had shown that longer anchors 

tend to produce higher false positive rates (Kopf et al., 2015b; Woods, 2009). However, in those 
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studies, the differences in false positive rates due to longer anchors was relatively small. 

Additionally, there are some differences between those studies and this study which make direct 

comparisons difficult.  

Woods (2009) used a graded response model and a sample size of 1,500 for the reference 

group and 500 for the focal group. Kopf et al. (2015b) used stopping criteria for IF which 

resulted in a much longer anchor than the stopping criteria used in this study, and tested the items 

within the anchor for DIF, which was not done in this study. Woods used a program written in 

C++ to conduct her simulation study, while Kopf et al. (2015b) used R. Neither study reported 

details of their software such as the estimators used, so it is not possible to determine if the 

estimators used by PROC IRT were different than the estimators used in these other two studies, 

nor if any possible differences could have led to slight variations in the results. Given all the 

differences between those studies and this study and the small changes in false positive rates for 

IF methods that were observed in those studies, there was not concern for the lack of an observed 

difference in false positive rates between IF anchor selection methods and C4 anchor selection 

methods in this study.     

Hypothesis 3 

Familywise false positive rates will be greater than .05 for most, or all, conditions. 

The third hypothesis was correct. Familywise false positive rates were well above .05 for 

all conditions. Interestingly, familywise false positive rates are not a huge area of research within 

the published DIF research. There are several applied DIF studies that use methods to control for 

multiple comparisons (Ballert, Post, Brinkhof & Reinhardt, 2015; Chen, Pan, Chung & Chen, 

2015). However, there is a limited number of simulation studies exploring the impact of multiple 

comparisons on DIF detection (Kim, 2010; Kim & Oshima, 2012). One reason for this may be 
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that efforts to control for multiple comparisons often reduce true positive rates (Kim & Oshima, 

2012). Due to the negative impact DIF can have on test score interpretations, it may be more 

acceptable for some researchers to over identify DIF rather than to under identify DIF. However, 

unnecessarily removing items can be expensive due to the cost to develop items, and it can lower 

test validity and reliability. A method for keeping familywise error rates within an acceptable 

range while maintaining a high level of true positive rates would be ideal and should be the 

subject of future research.  

Question 1 

Will any of the studied methods result in DIF detection rates equal to the DIF detection rates for 

the DIF-free anchors for all conditions? 

 Under most conditions all the anchor selection methods worked as well as the DIF-free 

anchors. However, the DIF-free anchors had higher true positive rates and lower false positive 

rates under the one-sided 40% DIF condition. Also, IF-DIF-free had slightly lower false positive 

rates and familywise false positive rates than other methods. 

 The similarities in anchor detection rates between the DIF-free anchors and the anchor 

selection methods under most conditions was similar to the results in Kopf et al.’s (2015b) study. 

Kopf et al. (2015b) found the largest differences between the DIF-free anchor and the anchor 

selection methods under the 40% one-sided DIF condition. Under all other conditions, Kopf et 

al. found small or no differences.  

 The lower familywise false positive rates for IF-DIF-free were likely due to the lower 

false positive rates for IF-DIF-free. However, the lower false positive rates for IF-DIF-free were 

not observed by Kopf et al. (2015b), and were somewhat concerning since they were not 

expected, although they were only about .01 lower than the false positive rates for other methods. 
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It is possible that the longer anchors for IF-DIF-free led to lower false positive rates when 

compared to the C4 methods. Additionally, IF-DIF-free always had uncontaminated anchors 

which may explain why IF-DIF-free had lower false positive rates than the IF anchors selection 

methods in the 10%, 20%, and 40% DIF conditions. However, the issue of anchor contamination 

does not explain why IF-DIF-free had lower false positive rates than the IF anchor selection 

methods in the 0% DIF condition.  

It is possible that the reason for this observation may be explained by which items were 

selected for the anchor. IF-DIF-free randomly selected 10 items, while the IF anchor selection 

methods used an iterative procedure which selected the 10 items presumed to be the most likely 

to be DIF-free. However, during the data generation process, even items which were simulated to 

be DIF-free may occasionally have displayed some amount of DIF due to random variations in 

data generation. Using IF-DIF-free, those unintended DIF items had the same probability of 

being in the anchor as any other item. Once these items were in the anchor they were not being 

tested for DIF. However, using the IF anchor selection methods, those items should have been 

less likely to be included in the anchor which would mean they would have been tested for DIF 

and possibly shown statistically significant DIF. If this hypothesis was true, there should have 

been a decrease in the difference in familywise false positive rates between IF-DIF-free and the 

IF anchor selection methods as sample size increased because larger sample sizes would lead to 

item parameters generated closer to the intended parameters. Under the 0% DIF condition the 

difference in familywise false positive rates between IF-DIF-free and IF-SA(MTT) was .19 when 

sample sizes were 500 per group and decreased to .14 when sample sizes were 1000 per group. A 

similar trend was observed under all conditions. While these data do support the hypothesis 

explaining the lower false positive rates observed using the IF-DIF-free anchor, and the 
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hypothesis does provide a reasonable explanation for this observation, further study would be 

needed to support or refute this hypothesis.  

 It should also be noted that Kopf et al. (2015b) found differences in false positive rates 

between the DIF-free anchor and the anchor selection methods they tested. However, unlike this 

study, Kopf et al. (2015b) found differences in the C4 methods, not the IF methods. Under the 

0% DIF condition, the DIF-free C4 method they tested had higher false positive rates than all the 

anchor selection methods they tested. The false positive rates for DIF-free C4 were about .05, 

and the false positive rates for all the anchor selection methods were about .03. Since all these 

anchor methods had equal anchor lengths and DIF-free anchors, the differences in false positive 

rates must be due to some other factor. However, like this study, what that factor is isn’t clear, 

and further study would be needed to better understand these small differences.  

Question 2 

Will there be a difference in the anchor contamination rates between the IF and C4 methods?

 There was generally not a difference in anchor contamination rates between anchor 

selection methods. When there were slight differences, as were observed in the one-sided 40% 

DIF condition, these differences did not appear to be large enough to impact false positive rates, 

and only had a slight impact on true positive rates and familywise false positive rates. However, 

it may also be true that the differences in anchor contamination rates were large enough to 

impact false positive rates, but that this study design did not provide enough power to observe 

those differences. 

Limitations 

 This study is limited by the conditions of the simulation design. A limited number of 

sample sizes, percentages of DIF, and balances of DIF were used. Additionally, the test length, 
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model used to generate the data, model used to analyze the data, and software were all fixed. 

Changes to any of these conditions may produce different results; therefore, the conclusions and 

recommendations within this study are limited to the study conditions.  

Conclusions 

 Overall, the application of the multistage anchor selection methods did not produce better 

results in DIF detection rates than the methods proposed by Kopf et al. (2015b). The multistage 

methods did reduce anchor contamination and slightly improve true positive rates in some 

conditions. However, these improvements were not large enough to be practically significant. 

Also, the multistage methods were more complicated to apply than the non-multistage methods. 

Given these two factors, the multistage methods are not recommended for use in DIF detection 

under the conditions simulated in this study. 

 The methods proposed by Kopf et al. (2015b) performed well overall. The DIF-free 

anchors only had better DIF detection rates than the anchor selection methods under the one-

sided 40% DIF condition. However, even under this condition, the anchor selection methods 

performed reasonably well. Because there were not practical differences in the DIF detection 

rates between methods and C4-SA(MPT) is the easiest method to implement, C4-SA(MPT) is 

recommended for DIF detection. However, this recommendation is only applicable to the 

conditions simulated in this study which are limited. These conditions included data that fit the 

Rasch model, equal sample sizes between the reference and focal group, as well as a moderate 

amount of DIF of .4. Deviations from these conditions may produce better or worse DIF 

detection rates; therefore, practitioners should use caution when applying these techniques to 

datasets which have different parameters than the conditions simulated in this study.  
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Recommendations for Further Research 

 There are three recommendations related to this study that need further research. 

Additionally, a fourth recommendation about the reporting of simulation studies is included that 

could help future researchers. First, as Kopf et al. (2015b) found in their study, the DIF detection 

methods examined in this study had lower true positive rates than the DIF-free anchors under the 

most extreme DIF conditions. Also, the anchor selection methods had higher familywise false 

positive rates. Therefore, DIF detection rates could be improved if methods to better select DIF-

free anchor items were developed. Second, it is unclear how much anchor contamination is 

needed to see significant changes in DIF detection rates. A simulation study exploring this issue 

would be beneficial. Third, familywise false positive rates were high for all anchor methods in 

this study. Identifying DIF detection methods that would control familywise false positive rates 

while maintaining high true positive rates would be useful. Fourth, when reporting simulation 

studies, it is recommended that researchers provide clear justifications for their study design 

decisions as well as clearly providing all details of their study design. As further explained 

below, several study design details were not reported in the published literature which would 

have been useful when designing this study.  

Many simulation studies were reviewed while designing this project. However, 

justifications for the design of these studies were not always provided. For example, the number 

of replications in the reviewed simulation studies ranged from 100 to 2,000 with 100 being the 

most common number of replications. However, none of these studies provided justifications for 

the number of replications that were used. Providing justifications for study all design decisions, 

not just the number of replications, would be helpful both to other researchers designing 



74 

 

simulation studies as well as researchers evaluating the results of these published simulation 

studies.  

 Besides justifying study design decisions, it is also recommended that researchers clearly 

describe all aspects of their study design. Kopf et al. (2015b) stated that they used the software R 

to conduct their study. However, details such as the R package or the estimators used were not 

provided. Such details may be of use to other researchers who want to build off the work of a 

study as well as researchers who simply want to evaluate the study. 
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APPENDIX A: CODE FOR DATA GENERATION 

LIBNAME LIB '/folders/myfolders/Data'; 

 

data B_Temp_1; 

 input B; 

datalines; 

-2.522  

-1.902  

-1.351  

-1.092  

-0.234  

-0.317   

 0.037   

 0.268 

-0.571   

 0.317 

 0.295   

 0.778   

 1.514   

 1.744   

 1.951 

-1.152  

-0.526   

 1.104   

 0.961   

 1.314 

-2.198  

-1.621  

-0.761  

-1.179  

-0.610 
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-0.291   

 0.067   

 0.706  

-2.713 

 0.213 

 0.116   

 0.273   

 0.840   

 0.745   

 1.485  

-1.208   

 0.189   

 0.345   

 0.962   

 1.592 

; 

run; 

%macro DataGen(N_Ref, N_Foc, N_DIF, Balance); 

%do Rep=1 %to 400; 

data temp1;  

 do Person=1 to &N_Ref+&N_Foc; 

 if Person <= &N_Ref then Focal=0; 

 if Person  > &N_Ref then Focal=1; 

 if Focal=0 Then Theta= 0 + 1*rannor(&Rep); 

 if Focal=1 Then Theta=-1 + 1*rannor(&Rep); 

  do  Item=1 to 20; 

  output; 

  end; 

 end; 

run; 

 

data B_Temp_2; 

 set B_Temp_1; 

 Rand=ranuni(&rep); 

run; 

 

proc sort data=B_Temp_2 out=B_Temp_3; 

 by Rand; 

run; 
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Data B_Temp_4; 

 set B_Temp_3; 

 Item=_N_; 

 drop Rand; 

 if Item < 21; 

run; 

 

proc sort data=temp1 out=temp2; 

 by item; 

run; 

 

data temp3; 

 merge temp2 B_Temp_4; 

 by Item; 

run; 

 

data temp4; 

 set temp3; 

  DIF=0; 

  if Focal=1 AND &Balance='O' AND Item <= &N_DIF then DIF=(0.4); 

  if Focal=1 AND &Balance='B' AND Item <= &N_DIF AND MOD(Item,2)=1 then DIF=(-0.4); 

  if Focal=1 AND &Balance='B' AND Item <= &N_DIF AND MOD(Item,2)=0 then DIF=(0.4); 

  U=ranuni(&Rep); 

  B_Parameter=B+DIF; 

  Prob=exp(Theta-B_Parameter)/(1+exp(Theta-B_Parameter)); 

  R=0; 

  if U < Prob THEN R=1; 

run; 

 

proc sort data=temp4 out=temp5; 

 by person item; 

run; 

 

%let R=R; 

%let F=F; 

%let D=D; 

%let B= %sysfunc(dequote(&Balance)); 

%let File=DataGen_; 

 

data lib.&File.&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&Rep.; 
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 set temp5; 

run; 

 

proc sort data=temp5 out=temp6; 

 by Focal Person; 

run; 

 

proc transpose data=temp6 out=temp7 prefix=R; 

 by Focal person; 

 id item; 

 var R; 

run; 

 

proc sort data=temp7 out=temp8; 

 by person; 

run; 

 

data lib.&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&Rep.; 

 set temp8; 

 drop _name_; 

run; 

 

%end; 

 

%mend DataGen; 

 

%DataGen(500, 500, 0, 'B'); 

%DataGen(750, 750, 0, 'B'); 

%DataGen(1000, 1000, 0, 'B'); 

 

%DataGen(500, 500, 2, 'B'); 

%DataGen(750, 750, 2, 'B'); 

%DataGen(1000, 1000, 2, 'B'); 

%DataGen(500, 500, 2, 'O'); 

%DataGen(750, 750, 2, 'O'); 

%DataGen(1000, 1000, 2, 'O'); 

 

%DataGen(500, 500, 4, 'B'); 

%DataGen(750, 750, 4, 'B'); 

%DataGen(1000, 1000, 4, 'B'); 
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%DataGen(500, 500, 4, 'O'); 

%DataGen(750, 750, 4, 'O'); 

%DataGen(1000, 1000, 4, 'O'); 

 

%DataGen(500, 500, 8, 'B'); 

%DataGen(750, 750, 8, 'B'); 

%DataGen(1000, 1000, 8, 'B'); 

%DataGen(500, 500, 8, 'O'); 

%DataGen(750, 750, 8, 'O'); 

%DataGen(1000, 1000, 8, 'O'); 
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APPENDIX B: CODE TO APPLY ANCHOR SELECTION METHODS 

LIBNAME LIB '/folders/myfolders/Data'; 

LIBNAME LIBOUT '/folders/myfolders/Output';  

options nonotes nosource nosource2 errors=1; 

ods exclude all; 

******************************************************************************************; 

******************************************************************************************; 

*This macro runs proc IRT using "Anc" anchors. The macro then splits the file by focal group  

membership, merges the parameter estimates and standard errors, then calculates the Wald test  

and p-value. The results from multiple iterations are saved to a file; 

******************************************************************************************; 

******************************************************************************************; 

%macro IRT(); 

*Running IRT based on Anc anchors; 

ods output ParameterEstimates=IRT_Out;  

proc irt data=Data resfunc=OneP; 

   var R1-R20;  

   group focal; 

   factor f1 -> R1-R20 = 20*1; 

   mean f1; 

   equality &Anc; 

   fixvalue &Anc1/parm=[INTERCEPT] value=0; 

run; 

ods output close; 

*Selecting b parameter estimates when Focal=0; 

data IRT_Out_0; 

  set IRT_Out; 

 if Focal=0; 

 if parameter="Difficulty"; 

 drop Probt Parameter Focal; 

 rename Estimate=Estimate0_&i 
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     StdErr=StdErr0_&i; 

run; 

*Selecting b parameter estimates when Focal=1; 

data IRT_Out_1; 

  set IRT_Out; 

 if Focal=1; 

 if parameter="Difficulty"; 

 drop Probt Parameter Focal; 

 rename Estimate=Estimate1_&i 

     StdErr=StdErr1_&i; 

run; 

*Merging group estimates and completing Wald test; 

data IRT_Out_All; 

 MERGE IRT_Out_0 

    IRT_Out_1; 

 wald_&i = abs(Estimate1_&i-Estimate0_&i)/sqrt((StdErr0_&i*StdErr0_&i + StdErr1_&i*StdErr1_&i));  

 pvalue_&i = 1 - probnorm(wald_&i); 

 if Item="&AncID." then Wald_&i=.; 

 if Item="&AncID." then pvalue_&i=.; 

run; 

*Sorting data so I can merge; 

proc sort data=IRT_Out_All; 

by item; 

run; 

*Merging data with other iterations; 

data IRT_Temp; 

 Merge IRT_Final IRT_Out_All; 

 by Item; 

run; 

*Renaming results as Final so it can be merged with the next iteration; 

data IRT_Final;  

 set IRT_Temp;  

run; 

%mend; 

******************************************************************************************; 

******************************************************************************************; 

*This macro calls the IRT macro and using each item as a SA.; 

******************************************************************************************; 

******************************************************************************************; 

%macro SA(N_Ref, N_Foc, N_DIF, Balance, Pre, Rep); 
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******************************************************************************************; 

*DEFINING MACRO VARIABLES; 

data null_; 

  set Anchors; 

  cnt = left(put(_n_,6.)); 

  call symput('Item'||cnt,Item); 

  call symput('Count',cnt); 

run; 

 

proc sort data=Anchors; 

 by Item; 

run; 

******************************************************************************************; 

*CREATING DATASET TO MERGE WALD AND PVALUES TO; 

data IRT_Final; 

   set Anchors; 

   if Flag=1; 

 Rand=ranuni(&Rep); 

run; 

*Sorting items so I can merge; 

proc sort data=IRT_Final; 

 by Item; 

run; 

******************************************************************************************; 

*RUNNING IRT MACRO FOR EACH ANCID 

*Opening generated data; 

data Data; 

  set lib.&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&Rep.; 

run; 

*Running macro; 

%do i = 1 %to &COUNT; 

 %let Anc = &&ITEM&i; 

 %let AncID = &&ITEM&i; 

 %let Anc1 = &&ITEM&i;  

 %IRT; 

%end; 

******************************************************************************************; 

*CALCULATING MPT AND MTT RANKS; 

*Calculating item-level mean pvalue and Wald test; 

data SA_Temp; 
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 set IRT_Final; 

 if Flag=1; 

 PValue_Mean=mean(of pvalue_1-pvalue_&COUNT); 

 Wald_Mean=mean(of Wald_1-Wald_&COUNT); 

 match=1; 

run; 

*Ranking item level means; 

Proc Rank data=SA_Temp Out=SA_Rank; 

 var PValue_Mean Wald_Mean; 

 ranks PValue_Mean_Rank Wald_Mean_Rank; 

run; 

*Selecting .5*K item level means to be MPT/MTT; 

data SA_MPT; 

  set SA_Rank; 

 if PValue_Mean_Rank=round(.5*&Count); 

 MPT=PValue_Mean; 

 keep MPT match; 

 match=1; 

run; 

 

data SA_MTT; 

  set SA_Rank; 

 if Wald_Mean_Rank=round(.5*&Count); 

 MTT=Wald_Mean; 

 keep MTT match; 

 match=1; 

run; 

*Merging MPT/MTT to Final dataset; 

data SA_Temp2; 

 Merge SA_Temp SA_MTT SA_MPT; 

 by Match; 

run; 

*Counting times above/below MPP/MPT; 

*Adding ranuni to count so I can rank ties; 

data SA_Temp3; 

 set SA_Temp2; 

 

 array Wald_{*} Wald_1-Wald_&Count; 

  MTT_Count=0; 

  do _n_=1 to dim(Wald_); 
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  if 0<Wald_{_n_}<MTT then MTT_Count+1; 

 end; 

 

 array PValue_{*}  PValue_1-PValue_&Count; 

  MPT_Count=0; 

  do _n_=1 to dim(PValue_); 

  if 0<PValue_{_n_}>MPT then MPT_Count+1; 

 end; 

 

 MTT_Count2=MTT_Count+Rand; 

 MPT_Count2=MPT_Count+Rand; 

run; 

*Ranking items by MPT and MTT; 

proc rank data=SA_Temp3 Out=&Pre. descending; 

 var MTT_Count2 MPT_Count2; 

 ranks MTT_Rank MPT_Rank; 

run; 

%mend SA; 

******************************************************************************************; 

******************************************************************************************; 

***This macro runs IF, MS[IF], C4, and MS[C4] anchor methods***; 

******************************************************************************************; 

******************************************************************************************; 

%Macro IFC4(N_Ref, N_Foc, N_DIF, Balance, Pre); 

%let R=R; 

%let F=F; 

%let D=D; 

%let B=%sysfunc(dequote(&Balance)); 

******************************************************************************************; 

 *Looping through simulated datasets with IF and then C4; 

 %do RepLoop=1 %to 400; 

  %let Stage=0; 

  %let AncID_Prior=NONE; 

  data AncID_IF_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

  run; 

  *Creating initial anchor dataset since all items are used as SA.; 

  data Anchors;  

   length Item $3; 

   do  Number=1 to 20; 

    Item = cat('R',Number); 
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    Flag=1; 

    output; 

   end; 

   keep Item Flag; 

  run; 

  *Running Prelimnary SA; 

  %SA(&N_Ref, &N_Foc, &N_DIF, &Balance, SA_0, &RepLoop); 

  *Creating datasets to save ranks to; 

  data Ranks_IF; 

   set SA_0;  

   MTT_Rank_0 = MTT_Rank; 

   keep Item MTT_Rank_0; 

  run; 

  data Ranks_C4; 

   set SA_0;  

   MPT_Rank_0 = MPT_Rank; 

   keep Item MPT_Rank_0; 

  run; 

******************************************************************************************; 

  *Multi Stage IF Loop - repeates until AncID_Prior=AncID or 10 Stages; 

  %do %until (&Stage=10); 

******************************************************************************************; 

   *IF Loop; 

   %Let DIF_Free_Count=40; 

   %Let IF_Loop=1; 

   %Let i=1; 

   %do %until (&DIF_Free_Count <= (%eval(2*(&IF_Loop-1)))); 

******************************************************************************************; 

    *DEFINING ANCHOR; 

    *Selecting top IF_Loop ranked items for anchor; 

    data AnchorItem; 

     set SA_&Stage.; 

     if MTT_Rank <= &IF_Loop; 

     Keep Item; 

    run; 

    *Restructuring data; 

    proc transpose data=AnchorItem out=AnchorItem2; 

     var Item; 

    run; 

    *Creating variables Anchor and AnchorID which I will turn into macro variables; 
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    data AnchorItem3; 

     length AnchorID $120; 

     set AnchorItem2; 

     Anchor = catx(" ",of COL:); 

     AnchorID = compress(cat(of COL:)); 

     Anchor1 = COL1; 

    run; 

    *Creating Anchor and AnchorID Macro Variables; 

    data AnchorItem4; 

      set AnchorItem3; 

      call symput('Anc',Anchor); 

     call symput('AncID',AnchorID); 

     call symput('Anc1',Anchor1); 

    run; 

******************************************************************************************; 

    *CREATING DATASET TO TRACK IF ANCHORS; 

    data AnchorItem5; 

     set AnchorItem4; 

     Stage=%eval(&Stage.+1); 

     IF_Loop=&IF_Loop; 

     keep AnchorID Stage IF_Loop; 

    run; 

    *Merging new anchor id with final anchor id file; 

    data AnchorItem6; 

     set AnchorItem5 

     AncID_IF_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

    run; 

    *Renaming final anchor id file which is needed for merge; 

    data AncID_IF_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

     set AnchorItem6; 

    run; 

******************************************************************************************; 

    *RUNNING IRT MACRO WITH NEW ANCHOR; 

    *Creating Final dataset for IRT macro; 

    data IRT_Final; 

     length Item $3;  

     do  Number=1 to 20; 

      Item = cat('R',Number); 

      output; 

     end; 



97 

 

     keep Item; 

    run; 

 

    proc sort data=IRT_Final; 

      by Item; 

    run; 

 

    %IRT; 

 

    Data &Pre.&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

     set IRT_Final; 

     DIF=0; 

     if 0 <= pvalue_&i < .025 then DIF=1; 

    run; 

******************************************************************************************; 

    *COUNTING NUMBER OF DIF ITEMS AND CREATING A MACRO VARIABLE; 

    data DIF_Free_Count; 

      merge Anchors &Pre.&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

     by item; 

     if DIF=0; 

     if flag=1; 

     run; 

 

    data DIF_Free_Count2; 

      set DIF_Free_Count; 

      cnt = left(put(_n_,6.)); 

      call symput('DIF_Free_Count',cnt); 

    run; 

*****************************************************************************************; 

    *Calculating IF_Loop; 

    %let IF_Loop = %eval(&IF_Loop+1); 

   %end; 

******************************************************************************************; 

   *SELECTING NON-DIF ITEMS FOR NEXT IF STAGE; 

   data Anchors; 

    set A_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

    if DIF=0; 

    keep Item Flag; 

    Flag=1; 

   run; 
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******************************************************************************************; 

   *SAVING DIF Test FOR IF-SA(MTT); 

   %if &Stage=0 %then %do; 

    Data LIBOUT.IF_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

     set A_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

    run; 

   %end; 

******************************************************************************************; 

   *Calculating Stage so that if AncID_Prior=AncID Stage=10 and the loop stops; 

   %if &AncID_Prior=&ANCID %then %let Stage = 10; 

   %else %let Stage = %eval(&Stage+1); 

******************************************************************************************; 

   *RUNNING SA WITH NON_DIF ITEMS IF Stage < 10; 

   %if &Stage < 10 %then %do; 

    %let AncID_Prior=&ANCID; 

    %SA(&N_Ref, &N_Foc, &N_DIF, &Balance, SA_&Stage, &RepLoop); 

******************************************************************************************; 

    *Saving ranks for each stage; 

    data Ranks_IF_2; 

     set SA_&Stage; 

     MTT_Rank_&Stage.=MTT_Rank; 

     keep Item MTT_Rank_&Stage.; 

    run; 

    data Ranks_IF_3; 

     merge Ranks_IF_2 Ranks_IF; 

     by Item; 

    run; 

    data Ranks_IF; 

     set Ranks_IF_3; 

    run; 

   %end; 

******************************************************************************************; 

   *SAVING DIF Test FOR MS[C4-SA(MPT)]; 

   %if &Stage=10 %then %do; 

    Data LIBOUT.MSIF_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

     set A_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

    run; 

    data LIBOUT.AncID_IF_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

     set AncID_IF_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

    run; 
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    data LIBOUT.Ranks_IF_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

     set Ranks_IF; 

    run; 

   %end; 

  %end; 

******************************************************************************************; 

******************************************************************************************; 

******************************************************************************************; 

  *Defining variables for Multistage C4 Loop; 

  %let n=0; 

  %let AncID_Prior=NONE; 

  data AncID_C4_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

  run; 

******************************************************************************************; 

  *Running Multistage C4 loop; 

  %do %until (&n=10); 

******************************************************************************************; 

   *DEFINING ANCHOR; 

   *Selecting top 4 ranked items for anchor; 

   data AnchorItem; 

    set SA_&N.; 

    if MPT_Rank < 5; 

    Keep Item; 

   run; 

   *Restructuring data; 

   proc transpose data=AnchorItem out=AnchorItem2; 

    var Item; 

   run; 

   *Creating variables Anchor and AnchorID which I will turn into macro variables; 

   data AnchorItem3; 

    set AnchorItem2; 

    Anchor = catx(" ",of COL:); 

    AnchorID = compress(cat(of COL:)); 

    Anchor1 = COL1; 

   run; 

   *Creating Anchor and AnchorID Macro Varaibles; 

   data AnchorItem4; 

     set AnchorItem3; 

     call symput('Anc',Anchor); 

    call symput('AncID',AnchorID); 
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    call symput('Anc1',Anchor1); 

   run; 

******************************************************************************************; 

   *CREATING DATASET TO TRACK C4 ANCHORS; 

   data AnchorItem5; 

    set AnchorItem4; 

    Stage=%eval(&N.+1); 

    keep AnchorID Stage; 

   run; 

   *Merging new anchor id with final anchor id file; 

   data AnchorItem6; 

    set AnchorItem5 

    AncID_C4_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

   run; 

   *Renaming final anchor id file which is needed for merge; 

   data AncID_C4_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

    set AnchorItem6; 

   run; 

******************************************************************************************; 

   *RUNNING IRT MACRO WITH NEW ANCHOR; 

   *Creating Final dataset for IRT macro; 

   data IRT_Final; 

    length Item $3;  

    do  Number=1 to 20; 

     Item = cat('R',Number); 

     output; 

    end; 

    keep Item; 

   run; 

 

   proc sort data=IRT_Final; 

     by Item; 

   run;  

    

   %Let i=1; 

   %IRT;  

 

   Data &Pre.&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

    set IRT_Final; 

    DIF=0; 
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    if 0 <= pvalue_&i < .025 then DIF=1; 

   run; 

******************************************************************************************; 

   *SELECTING NON-DIF ITEMS FOR NEXT STAGE; 

   data Anchors; 

    set A_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

    if DIF=0; 

    keep Item Flag; 

    Flag=1; 

   run; 

******************************************************************************************; 

   *SAVING DIF Test FOR C4-SA(MPT); 

   %if &n=0 %then %do; 

    Data LIBOUT.C4_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

     set A_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

    run; 

   %end; 

******************************************************************************************; 

   *Reculating Stage so that if AncID_Prior=AncID Stage=10 and the loop stops; 

   %if &AncID_Prior=&ANCID %then %let n=10; 

   %else %let n=%eval(&n+1); 

******************************************************************************************; 

   *RUNNING SA WITH NON_DIF ITEMS IF ANCID_PRIOR NE ANCID; 

   %if &n < 10 %then %do; 

    %let AncID_Prior=&ANCID; 

    %SA(&N_Ref, &N_Foc, &N_DIF, &Balance, SA_&n, &RepLoop) 

******************************************************************************************; 

    *Saving ranks for each stage; 

    data Ranks_C4_2; 

     set SA_&n; 

     MPT_Rank_&n.=MPT_Rank; 

     keep Item MPT_Rank_&n.; 

    run; 

    data Ranks_C4_3; 

     merge Ranks_C4_2 Ranks_C4; 

     by Item; 

    run; 

    data Ranks_C4; 

     set Ranks_C4_3; 

    run; 
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   %end; 

******************************************************************************************; 

   *SAVING DIF Test FOR MS[C4-SA(MPT)]; 

******************************************************************************************; 

   %if &n=10 %then %do; 

    Data LIBOUT.MSC4_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

     set A_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

    run; 

    data LIBOUT.AncID_C4_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

     set AncID_C4_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

    run; 

    data LIBOUT.Ranks_C4_&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&RepLoop.; 

     set Ranks_C4; 

    run; 

   %end; 

  %end; 

  proc datasets library=work kill; 

  run; 

  quit; 

 %end; 

%Mend; 

 

%IFC4(500, 500, 0, 'B', A_); 

%IFC4(750, 750, 0, 'B', A_); 

%IFC4(1000, 1000, 0, 'B', A_); 

 

%IFC4(500, 500, 2, 'B', A_); 

%IFC4(750, 750, 2, 'B', A_); 

%IFC4(1000, 1000, 2, 'B', A_); 

%IFC4(500, 500, 2, 'O', A_); 

%IFC4(750, 750, 2, 'O', A_); 

%IFC4(1000, 1000, 2, 'O', A_); 

 

%IFC4(500, 500, 4, 'B', A_); 

%IFC4(750, 750, 4, 'B', A_); 

%IFC4(1000, 1000, 4, 'B', A_); 

%IFC4(500, 500, 4, 'O', A_); 

%IFC4(750, 750, 4, 'O', A_); 

%IFC4(1000, 1000, 4, 'O', A_); 
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%IFC4(500, 500, 8, 'B', A_); 

%IFC4(750, 750, 8, 'B', A_); 

%IFC4(1000, 1000, 8, 'B', A_); 

%IFC4(500, 500, 8, 'O', A_); 

%IFC4(750, 750, 8, 'O', A_); 

%IFC4(1000, 1000, 8, 'O', A_); 
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APPENDIX C: CODE TO APPLY DIF-FREE ANCHORS 

options nonotes nosource nosource2 errors=1; 

*Options macrogen mlogic symbolgen notes; 

ods exclude all; 

LIBNAME LIB '/folders/myfolders/Data'; 

LIBNAME LIBOUT '/folders/myfolders/Output'; 

******************************************************************************************; 

******************************************************************************************; 

%macro Perfect(); 

*Running IRT based on Anc anchors; 

ods output ParameterEstimates=IRT_Out; 

proc irt data=Data resfunc=OneP; 

   var R1-R20;  

   group focal; 

   factor f1 -> R1-R20 = 20*1; 

   mean f1; 

   equality &Anc1-R20; 

   fixvalue R20/parm=[INTERCEPT] value=0; 

run; 

ods output close; 

*Selecting b parameter estimates when Focal=0; 

data IRT_Out_0; 

  set IRT_Out; 

 if Focal=0; 

 if parameter="Difficulty"; 

 drop Probt Parameter Focal; 

 rename Estimate=Estimate0 

     StdErr=StdErr0; 

run; 

*Selecting b parameter estimates when Focal=1; 

data IRT_Out_1; 
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  set IRT_Out; 

 if Focal=1; 

 if parameter="Difficulty"; 

 drop Probt Parameter Focal; 

 rename Estimate=Estimate1 

     StdErr=StdErr1; 

run; 

*Merging group estimates and completing Wald test; 

data IRT_Out_All; 

 MERGE IRT_Out_0 

    IRT_Out_1; 

 wald = abs(Estimate1-Estimate0)/sqrt((StdErr0*StdErr0 + StdErr1*StdErr1));  

 pvalue = 1 - probnorm(wald); 

 DIF=0; 

 if 0 <= pvalue < .025 then DIF=1; 

run; 

*Saving output; 

data LIBOUT.&Pre.&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&Rep.;  

 set IRT_Out_All; 

run; 

%mend Perfect; 

******************************************************************************************; 

 

%macro RunPerfect(N_Ref, N_Foc, N_DIF, Balance); 

%let R=R; 

%let F=F; 

%let D=D; 

%let B=%sysfunc(dequote(&Balance)); 

%do Rep=1 %to 400; 

%let Anc1=R17; 

%let Pre=PerC4_; 

data Data; 

  set LIB.&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&Rep.; 

run; 

%Perfect; 

%end; 

****************************************************; 

*Manually change Anc1 depending on percentage of DIF; 

****************************************************; 

%do Rep=1 %to 400; 
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%let Anc1=R13; 

%let Pre=PerIF_; 

data Data; 

  set LIB.&R.&N_Ref.&F.&N_Foc.&D.&N_DIF.&B.&Rep.; 

run; 

%Perfect; 

%end; 

%Mend RunPerfect; 

 

%RunPerfect(500, 500, 0, 'B'); 

%RunPerfect(750, 750, 0, 'B'); 

%RunPerfect(1000, 1000, 0, 'B'); 

 

%RunPerfect(500, 500, 2, 'O'); 

%RunPerfect(750, 750, 2, 'O'); 

%RunPerfect(1000, 1000, 2, 'O'); 

%RunPerfect(500, 500, 2, 'B'); 

%RunPerfect(750, 750, 2, 'B'); 

%RunPerfect(1000, 1000, 2, 'B'); 

 

%RunPerfect(500, 500, 4, 'O'); 

%RunPerfect(750, 750, 4, 'O'); 

%RunPerfect(1000, 1000, 4, 'O'); 

%RunPerfect(500, 500, 4, 'B'); 

%RunPerfect(750, 750, 4, 'B'); 

%RunPerfect(1000, 1000, 4, 'B'); 

 

%RunPerfect(500, 500, 8, 'O'); 

%RunPerfect(750, 750, 8, 'O'); 

%RunPerfect(1000, 1000, 8, 'O'); 

%RunPerfect(500, 500, 8, 'B'); 

%RunPerfect(750, 750, 8, 'B'); 

%RunPerfect(1000, 1000, 8, 'B'); 
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APPENDIX D: IRB EXEMPTION LETTER 
 

 
 

4/5/2017 
 

Brandon Craig 

L-CACHE - Leadership, Counseling, Adult, Career & Higher Education 

Tampa, FL 33612 
 

RE:      Not Human Subjects Research Determination 

IRB#:   Pro00029209 

Title:    The Empirical Selection of Anchor Items Using a Multistage Approach 
 

 

Dear Mr. Craig: 
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