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ABSTRACT

Quandles are distributive algebraic structures that were introduced by David

Joyce [24] in his Ph.D. dissertation in 1979 and at the same time in separate work

by Matveev [34]. Quandles can be used to construct invariants of the knots in the

3-dimensional space and knotted surfaces in 4-dimensional space. Quandles can also

be studied on their own right as any non-associative algebraic structures.

In this dissertation, we introduce f -quandles which are a generalization of usual

quandles. In the first part of this dissertation, we present the definitions of f -quandles

together with examples, and properties. Also, we provide a method of producing a new

f -quandle from a given f -quandle together with a given homomorphism. Extensions

of f -quandles with both dynamical and constant cocycles theory are discussed. In

Chapter 4, we provide cohomology theory of f -quandles in Theorem 4.1.1 and briefly

discuss the relationship between Knot Theory and f -quandles.

In the second part of this dissertation, we provide generalized 2, 3, and 4-

cocycles for Alexander f -quandles with a few examples.

Considering “Hom-algebraic Structures” as our nutrient enriched soil, we

planted “quandle” seeds to get f -quandles. Over the last couple of years, this f -

quandle plant grew into a tree. We believe this tree will continue to grow into a larger

tree that will provide future fruit and contributions.

v



1 Introduction

In this chapter, we give a brief review of quandles, their history, connections to knot

theory, and motivation towards f -quandles. After briefly discussing the history, we

will give an overview of the structure and organization of this dissertation. We also

state the definitions that we use throughout this dissertation.

It is well known that quandles are strongly related to knot theory while Hom-

type algebras which led to f -quandles have their origin in physics and they are related

to quantum deformations of some algebras of vector fields like Virasoro and oscillator

algebras.

To answer natural questions like “what is a quandle?” and “who invented

quandles?” or “what is the history behind quandles?”, we will go back to the 1880s.

1.1 History

The term quandle first appeared in the 1979 Ph.D. thesis of David Joyce, which was

published in 1982, [24]. It also appeared in a separate work by Sergey V. Matveev

[34]. David Joyce introduced the knot quandle, as an invariant of the knot as well

as a classifying invariant of the knot [24]. It has been found that quandles appeared

earlier in history with different names:

• In 1942, Mituhisa Takasaki [45] used the word kei as an abstraction of the notion

of symmetric transformation. (“Kei” are called “involutory quandles” in David

Joyce’s work.)
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• In 1950, Conway and Wraith discussed similar structures called “wracks” [14].

• In 1982, motivated by colorings of knots, Matveev used “distributive groupoids”

to construct invariants of knots [34].

• Later, Louis Kauffman used the word “crystal” [25].

• In mid 1980s, Brieskorn named the structures as “automorphic sets” [5].

• In 1992, Roger Fenn and Colin Rourke used the word “racks” [19] in their gen-

eralization of the quandle idea.

The concepts of “Hom-Lie algebras, quasi-Hom-Lie and quasi-Lie algebras,

and Hom-algebra structures” were introduced by Hartwig, Larsson and Silvestrov, in

[20, 26, 27]. This is in order to provide general frameworks to handle q-deformations of

some Lie algebras of vector fields such as deformations and quasi-deformations of the

Heisenberg Lie algebra, sl2(K), oscillator algebras and other finite-dimensional Lie al-

gebras and infinite-dimensional Lie algebras of Witt and Virasoro type. These algebras

play an important role in Physics within the string theory, vertex operator models,

quantum scattering, lattice models and other contexts, as well as various classes of

quadratic and sub-quadratic algebras arising in connection to non-commutative ge-

ometry, twisted derivations and deformed difference operators and non-commutative

differential calculi. The main initial motivation for this investigation was the goal

of creating a unified general approach to examples of q-deformations of Witt and

Virasoro algebras constructed in 1990–1992 in pioneering works by physists, where

in particular it was observed that in these examples the Jacobi identity is no longer

satisfied, but some q-deformations of ordinary Lie algebra Jacobi identities hold. Mo-

tivated by these examples Hartwig, Larsson and Silvestrov introduced Hom-Lie al-

gebras which generalize usual Lie algebras. In fact they introduced a more general

class called quasi-Lie algebras including quasi-Hom-Lie algebras and Hom-Lie alge-

bras as subclasses. In the subclass of Hom-Lie algebras skew-symmetry is untwisted,

whereas the Jacobi identity is twisted by a single linear map and contains three terms

as in Lie algebras, reducing to ordinary Lie algebras when the twisting linear map is

2



the identity map. Later, Makhlouf and Silvestrov introduced Hom-associative alge-

bras in [30], generalizing associative algebras. They proved that the commutator of

a Hom-associative algebra defines a Hom-Lie algebra with the same structure map,

showing that there is a functor between the category of Hom-associative algebras

and the category of Hom-Lie algebras. The adjoint functor leading to the enveloping

algebra of a Hom-Lie algebra was constructed by Yau. Various algebraic structures

and results have been extended to this Hom-type framework. The main feature of

Hom-type algebras is that the usual defining identities are twisted by one or several

deforming twisting maps. Notice that a significant research activity was developed

about Hom-type algebras in the past few years.

Quandles are very useful structures not just in Mathematics, but also in con-

necting Mathematics with Physics [49, 50].

Since quandles are algebraic structures, one can think of applying the algebraic

“Deformation Theory” to it. Twisting quandles with linear maps gives the notion of

f -quandles.

This dissertation mainly consists of two parts: From chapters one to four,

we introduce generalized quandles, which we call f -quandles, their extensions and

cohomologies. In the second part, we give an application of f -quandles to Alexander

f -quandles by computing low dimensional cocycles.

In Chapter 2, we introduce generalized quandles, f -quandles, and give ex-

amples of f -quandles. Furthermore, we provide a method for constructing a new

f -quandle using a given f -quandle and an f -quandle morphism. Extensions of f -

quandles with dynamical cocycles and with constant cocycles are presented in Chap-

ter 3 together with modules. Chapter 4 is devoted to the Cohomology Theory of

f -racks and f -quandles. We give a couple examples of f -rack cohomologies. At the

end, we give some remarks on the relationship between f -quandles and Knot Theory.

In Chapter 5, we give some generalized computations on 2, 3, and 4 dimensional

cocycles of Alexander f -quandles and provide some examples if the given conjectures

hold.

3



In Appendix A, we present a useful computer code, the Maple program code

we used to verify the cohomology of the f -racks in Example 4.1.5.

1.2 Knot Diagrams

In this section we will review some basics about knots.

Definition 1.2.1 A knot is an embedding of the circle S1 into R3 or S3. In other

words, it is a simple closed curve. A link is a finite, ordered collection of disjoint

knots.

Two knots K and K ′ are equivalent if they are ambient isotopic, that is, K can be

deformed continuously to K ′. Precisely, we have the following definition.

Definition 1.2.2 [16] K is ambient isotopic to K ′ if there is a continuous map H :

R3 × [0, 1] → R3 such that H(K, 0) = K, H(K, 1) = K ′ and H(x, t) is injective for

all t ∈ [0, 1]. Such a map is called an “ambient isotopy.”

One way of changing a knot K in R3 is to consider a projection of the knot on to a

plane; p : K ⊂ R3 → R2. A point x ∈ R2 is called a double point of R3. A double

point is called a crossing. When considering projections of knots on to planes, we

require that the projection has only finitely many double points.

We usually indicate over crossings and under crossings by drawing the under

strand broken on the projected diagram. Figure 1.1 shows some knot diagrams.

4



Figure 1.1: Some knot diagrams ∗

Recall that an orientation of a knot is defined by choosing a direction to travel

around the knot. So we have two different crossings; called positive crossing and

negative crossing as shown in Figure 1.2 below.

Figure 1.2: Positive and negative crossings

Obviously a knot has many diagrams. So mathematicians had to figure out

a way to distinguish knots apart using diagrams. To overcome this situation, they

came up with “knot invariants”.

∗Appendix (I), [37]
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A knot invariant is an object (number, group, etc.) of a knot that does not

change under ambient isotopy. So in order to show that a given object of a knot is a

knot invariant, one must show that it is invariant under any ambient isotopy. In 1927,

Reidemeister proved that any ambient isotopy can be achieved via a finite sequence

of three moves that we call the “Reidemeister moves”.

Definition 1.2.3 [2] A Reidemeister move is one of three ways to change a projection

of a knot that will change the relation between the crossings. The first move allows us

to put in or out a twist in the knot, the second move allows us to add two crossings

or remove two crossings, and the third move allows us to slide a strand of the knot

from one side of a crossing to the other side of the crossing as in the diagram below:

Figure 1.3: Reidemeister move type I

Figure 1.4: Reidemeister move type II

6



Figure 1.5: Reidemeister move type III

Definition 1.2.4 Two knot diagrams, K1 and K2, are ambient isotopic if and only

if one can be changed into the other by a finite sequence of planar isotopies and

Reidemeister moves.

As an example in [16], we can transfer the following given knot diagram into a standard

diagram of the unknot by using a sequence of Reidemeister moves as follows:

Figure 1.6: Sequence of Reidemeister moves transferring a given knot into an unknot

In order to construct invariants of knots, the notion of quandles was introduced by

Joyce and Matveev [24, 34]. How quandles relate to knots will be investigated in our

next section.

1.3 Quandles

In this section, we will show a bridge between knot theory and quandle theory via

algebraic structures. Moreover, in this section we will review the notions of shelves,

racks, and quandles and give some examples. For future convenience, we will use the

following notation:

7



Notation 1.3.1 Throughout this dissertation, we use the notation B to denote the

binary operation on “quandles” and ∗ to denote the binary operation on “f -quandles”

unless otherwise stated.

Recall that, an algebraic structure is a set X with one or more operations defined on

it that satisfies a list of axioms.

In order to build up a bridge relating knot theory to quandle theory, let X be a set of

labels and B and B−1 be two binary operations. We consider the following labeling

scheme convention:

Figure 1.7: Positive and negative crossings.

According to this labeling scheme, the Reidemeister moves can be labeled as follows:

(a)
(b)

(c)

Figure 1.8: Relationship between the quandle axioms and the Reidemeister moves.
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From Reidemeister move III, we obtain the following equation

(x B y) B z = (x B z) B (y B z)

allowing the following definition.

Definition 1.3.2 [4] A shelf is a pair (X,B), where X is a non-empty set with a

binary operation B satisfying the following identity:

(a B b) B c = (a B c) B (b B c), ∀a, b, c ∈ X. (1.3.1)

Reidemeister move II gives the equation (x B y) B−1 y = x. This gives the notion of

a rack.

Definition 1.3.3 [4] A rack is a shelf such that, for any b, c ∈ X, there exists a

unique a ∈ X such that

a B b = c. (1.3.2)

Allowing Reidemeister move I gives the equation x B x = x giving the notion of a

quandle.

Definition 1.3.4 [4] A quandle is a rack such that, for each a ∈ X, the identity

a B a = a (1.3.3)

holds.

Together with an extra condition, we will get the notion of a crossed set.

Definition 1.3.5 [4] A crossed set is a quandle (X,B) such that a B b = a whenever

b B a = b for any a, b ∈ X.

Remark 1.3.6 Using the right translation Rx : X → X defined by Rx(a) = a B x,

the identity (1.3.1) can be written as Rc(Rb(a)) = RbBc(Rc(a)) for any a, b, c ∈ X.

9



The extra condition in crossed sets can be written as Rb(a) = a whenever Ra(b) = b

for any a, b ∈ X.

Definition 1.3.7 Let (X,B1) and (Y,B2) be two racks. Let φ : (X,B1) → (Y,B2)

be a function. Then φ is a morphism of racks if φ(x B1 y) = φ(x) B2 φ(y) for all

x, y ∈ X.

Typical examples of quandles include the following:

• Given any non-empty set X with the operation x B y = x for any x, y ∈ X,

then (X,B) is a quandle called the trivial quandle.

• A group X = G with n-fold conjugation as the operation:

a B b = b−nabn.

Then (X,B) is a quandle.

• For a, b ∈ Zn (integers modulo n), where n be a positive integer, define

a B b ≡ 2b− a (mod n).

Then the operation B defines a quandle structure called the dihedral quandle,

Rn. The reason it is called “dihedral” is that this quandle can be identified

with the set of reflections of a regular n-gon with conjugation as the quandle

operation.

• Any Z[t, t−1]-module M is a quandle with the operation a B b = ta + (1 − t)b,

a, b ∈M , called an Alexander quandle.

Sometimes quandles can have some additional properties.

Definition 1.3.8 A quandle is Latin if for each x ∈ X, the map Lx : X → X (we

use L for left multiplication) defined by Lx(a) = x B a is a bijection.

10



Definition 1.3.9 A quandle X is medial if for all x, y, u, v ∈ X, we have

(x B y) B (u B v) = (x B u) B (y B v).

1.4 Cohomology Theory of Quandles

In this section, we will review the definition of quandle homology and cohomology for

quandles, a new invariant introduced by Carter, Jelsovsky, Kamada, Langford, and

Saito [10], and provide formulas which are useful for later chapters.

Notation 1.4.1 In the following, the subscripts/superscript R, Q, and D represents

rack, quandle, and degenerate cochain complexes respectively and W can be any of

them.

Let CR
n (X) be the free abelian group generated by n-tuples (x1, . . . , xn) of

elements of a quandle X. Define a homomorphism ∂n : CR
n (X)→ CR

n−1(X) by

∂n(x1, . . . , xn) =
n∑
i=2

(−1)i [(x1, x2, . . . , xi−1, xi+1, . . . , xn) (1.4.4)

− (x1 B xi, x2 B xi, . . . , xi−1 B xi, xi+1, . . . , xn)]

for n ≥ 2 and ∂n = 0 for n ≤ 1 in [10] .

Then CR
• (X) = {CR

n (X), ∂n} is a chain complex.

Let CD
n (X) be the subset of CR

n (X) generated by the (n)-tuples (x1, · · · , xn) where

xi = xi+1 for some i ∈ {1, · · · , n− 1} if n ≥ 2; otherwise let CD
n (X) = 0. The

subcomplex CD
n (X) is called the degenerate subcomplex. If X is a quandle, then

∂n(CD
n (X) ⊂ CD

n−1(X) and CD
• (X) = {CD

n (X), ∂n} is a sub-complex of CR
• (X). By

taking CQ
n (X) = CR

n (X)/CD
n (X) and CQ

• (X) = {CQ
n (X), ∂′n}, where ∂′n is the induced

homomorphism. Therefore, all boundary maps will be denoted by ∂n.

11



For an abelian group A, define the chain and cochain complexes

CW
• (X;A) = CW

• (X)⊗ A, ∂ = ∂ ⊗ id

C•W (X;A) = Hom(CW
• (X), A), δ = Hom(∂, id)

in the usual way. The groups of cycles and boundaries are denoted by ker(∂) =

ZW
n (X;A) ⊂ CW

n (X;A) and Im(∂) = BW
n (X;A) ⊂ CW

n (X;A).

The cocycles and coboundaries are denoted by ker(δ) = Zn
W (X;A) ⊂ Cn

W (X;A) and

Im(δ) = Bn
W (X;A) ⊂ Cn

W (X;A).

Definition 1.4.2 The nth quandle homology group and the nth quandle cohomology

group of a quandle (X,B) with coefficients in group A are as follows:

HQ
n (X;A) = Hn(CQ

• (X;A)) = ZQ
n (X;A)/BQ

n (X;A)

Hn
Q(X;A) = Hn(C•Q(X;A)) = Zn

Q(X;A)/Bn
Q(X;A).

1.5 Quandle Cocycles

Let us consider low dimensional cocycles. Given an abelian group A, a 2-cocycle with

coefficients in A is a function φ : X ×X → A satisfying the following equations:

φ(x, y) + φ(x B y, z) = φ(x, z) + φ(x B z, y B z).

This equation can be obtained from Reidemeister moves. First color the arcs of

crossing as in the following figure.

12



Figure 1.9: Quandle Cocycle Coloring.

Then φ(x, y) can be thought of as a weight at the crossing as shown in Figure 1.9

above.

Using this labeling scheme, we can color the three Reidemeister moves and obtain the

2-cocycle condition as follows:

Figure 1.10: Reidemeister move I on cocycle coloring.

and results

φ(x, x) = 0.

In a similar fashion, Reidemeister move Type II can be labeled and notice that the

two crossings below cancel each other out as follows:

13



Figure 1.11: Reidemeister move II on cocycle coloring.

Finally, the Reidemeister move Type III yields the following diagram and the

equation that we call the 2-cocycle condition:

Figure 1.12: Reidemeister move III on cocycle coloring.

φ(x, y) + φ(x B y, z) = φ(x, z) + φ(x B z, y B z), (1.5.5)

where φ gives an invariant sum called theBoltzmann weight together with φ(x, x) = 0

for all x ∈ X.

In a similar way, a 3-cocycle θ : X ×X ×X → A satisfies the equation:

θ(p, q, r) + θ(p B r, q B r, s) + θ(p, r, s) =

θ(p B q, r, s) + θ(p, q, s) + θ(p B s, q B s, r B s) (1.5.6)
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where θ(p, p, r) = 0 and θ(p, q, q) = 0 for all p, q ∈ X.

1.6 Hom-Algebras

In this section, we recall the definitions of Hom-Lie algebras which were introduced by

Hartwig, Larsson and Silvestrov [20, 26, 27] and Hom-associative algebras, introduced

by Makhlouf and Silvestrov in [30]. In particular, they showed that there is a functor

from the category of Hom-associative algebras into the category of Hom-Lie algebras.

The adjoint functor corresponding to enveloping algebra was given by Yau who defined

also a free Hom-associative algebra.

We will take K to be an algebraically closed field of characteristic 0 and V to

be a linear space over K. An Algebra is a pair (V, α), where V is a linear space and

α is a linear self-map of V . A Hom-algebra is a triple (V, µ, α) consisting of a linear

space V , a bilinear map µ : V × V → V , and a linear transformation α : V → V.

Definition 1.6.1 ([30]) A Hom-associative algebra is a triple (V, µ, α) consisting of

a linear space V, a bilinear map µ : V × V → V, and a linear space homomorphism

α : V → V satisfying

µ(α(x), µ(y, z)) = µ(µ(x, y), α(z)).

We recover associative algebras when the structure map α is the identity map. Recall

that an associative algebra is a pair (V, µ) consisting of a linear space V and a bilinear

map µ : V × V → V satisfying

µ(x, µ(y, z)) = µ(µ(x, y), z). (1.6.7)

This equation can be written as µ(id ⊗ µ) = µ(µ ⊗ id), where id is the identity

map. Similarly, one obtains Hom-Lie algebras which are natural generalization of Lie

algebras.

Definition 1.6.2 ([20]) A Hom-Lie algebra is a triple (V, [·, ·], α) consisting of a
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linear space V, bilinear map [·, ·] : V × V → V, and a linear space homomorphism

α : V → V satisfying

1. [x, y] = −[y, x],

2. [[x, y], α(z)] + [[y, z], α(x)] + [[z, x], α(y)] = 0.

Remark: One recovers Lie algebras by taking α being the identity map. Recall that

a Lie algebra is a pair (V, [·, ·]) consisting of a linear space V over a field K and a

bilinear map [·, ·] : V × V → V, that we call the “Lie bracket”, satisfying

1. [x, y] = −[y, x],

2. [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

Proposition 1.6.3 (Functor Hom-Lie, [30]) To any Hom-associative algebra de-

fined by the multiplication µ and a homomorphism α over a K-vector space A, one

may associate a Hom-Lie algebra defined for all x, y ∈ A by the bracket

[x, y] = µ(x, y)− µ(y, x).

The enveloping algebra was studied by D. Yau.

Example 1.6.4 [31] Let {x1, x2, x3} be a basis of a 3-dimensional vector space A

over K. The following multiplication µ and linear map α on A = K3 define a Hom-

associative algebra over K:

µ(x1, x1) = ax1,

µ(x1, x2) = µ(x2, x1) = ax2,

µ(x1, x3) = µ(x3, x1) = bx3,

µ(x2, x2) = ax2,

µ(x2, x3) = bx3,

µ(x3, x2) = µ(x3, x3) = 0,

α(x1) = ax1, α(x2) = ax2, α(x3) = bx3
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where a, b are parameters in K. This algebra is not associative when a 6= b and b 6= 0,

since

µ(µ(x1, x1), x3))− µ(x1, µ(x1, x3)) = (a− b)bx3.

Example 1.6.5 (Jackson sl2, [29]) The Jackson sl2 is a q-deformation of the clas-

sical Lie algebra sl2. It carries a Hom-Lie algebra structure but not a Lie algebra

structure by using Jackson derivations. It is defined with respect to a basis {x1, x2, x3}

by the brackets and a linear map α such that

[x1, x2] = −2qx2,

[x1, x3] = 2x3,

[x2, x3] = −1
2
(1 + q)x1,

α(x1) = qx1,

α(x2) = q2x2,

α(x3) = qx3,

where q is a parameter in K. If q = 1 we recover the classical sl2.

Hom-analogues of various classical structures and results have been introduced

and discussed by many authors. For instance, representation theory, cohomology and

deformation theory for Hom-associative algebras and Hom-Lie algebras have been

developed. Moreover, the dual concept of Hom-associative algebras, called Hom-

coassociative coalgebras, as well as Hom-bialgebras and Hom-Hopf algebras, have

been introduced and studied. Furthermore Hom-Lie bialgebras have been studied

using a dual version of Hom-Lie algebras.

These “Hom-algebraic structures” motivated us to define and explore f -

quandles, a generalized version of quandles. We attach a map f : X → X to a

quandle (X,B) which results in a triple (X, ∗, f) that satisfies certain conditions

twisting the usual conditions.
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2 f-quandles ∗

Motivated by Quandles and Hom-algebras, it is naturel to address the question about

Hom-type quandles. In this chapter we introduce so called f -quandles, which are a

twisted version of quandles. Indeed, we give the definitions of f -quandle, f -quandle

morphism, and f -crossed set. Also, we provide some of their properties. This chapter

is divided into two sections: In section one, we give the definition of an f -quandle, state

some properties, and give some examples. Proposition 2.2.1 in section 2.2 provides a

method to construct a new f -quandle when an f -quandle and an f -quandle morphism

are given. This provides a way to produce examples.

2.1 Definitions and Properties of f-Quandles

Definition 2.1.1 An f -shelf is a triple (X, ∗, f) in which X is a non-empty set, ∗ is

a binary operation on X, and f : X → X is a map such that, for any x, y, z ∈ X, the

identity

(x ∗ y) ∗ f(z) = (x ∗ z) ∗ (y ∗ z) (2.1.1)

holds. An f -rack is an f -shelf such that, for any x, y ∈ X, there exists a unique z ∈ X

such that

z ∗ y = f(x). (2.1.2)

An f -quandle is an f -rack such that, for each x ∈ X, the identity

x ∗ x = f(x) (2.1.3)

∗Sections of this chapter are taken from [12], which has been published in the journal “J. of Algebra and
Its Applications”, Vol.16, no.11, 2017.
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holds.

An f -crossed set is an f -quandle (X, ∗, f) such that f : X → X satisfies x ∗ y = f(x)

whenever y ∗ x = f(y) for any x, y ∈ X.

Remark 2.1.2 Notice that a quandle (resp. rack, shelf) may be viewed as an f -

quandle (resp. f -rack, f -shelf) when the structure map f is the identity map.

Remark 2.1.3 Using the right translation Ra : X → X defined as Ra(x) = x ∗ a,

identity (2.1.1) can be written as

Rf(z)Ry = RRz(y)Rz

for any y, z ∈ X.

The extra condition in the f -crossed set definition means that, for any x, y ∈ X,

Rx(y) = f(y) is equivalent to Ry(x) = f(x).

The notion of homomorphism of f -quandles is given in the following definition.

Definition 2.1.4 Let (X1, ∗1, f1) and (X2, ∗2, f2) be two f -quandles. A map φ : X1 →

X2 is an f -quandle morphism if it satisfies φ(a ∗1 b) = φ(a) ∗2 φ(b).

Note that φ ◦ f1 = f2 ◦ φ is automatically holds from the definition.

Here we will give some examples of f -quandles:

Example 2.1.5 Given any set X and an injective map f : X → X, then the opera-

tion x ∗ y = f(x) for any x, y ∈ X gives an f -quandle (X, ∗, f).

One can check the conditions as follows:

The left-hand side of equation (2.1.1) gives us

(x ∗ y) ∗ f(z) = f(x ∗ y) = f(f(x)).

The right-hand side of equation (2.1.1) gives us

(x ∗ z) ∗ (y ∗ z) = f((x ∗ z)) = f(f(x)).
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Therefore, equation (2.1.1) is satisfied. To check the second condition, assume there

exists z, z
′ ∈ X such that z ∗ y = f(x) and z

′ ∗ y = f(x). By definition, z ∗ y = f(z)

and z
′ ∗y = f(z

′
), thus f(x) = f(z) = f(z

′
) implies that z = z

′
, so that the uniqueness

requirement is satisfied. The third condition is straight forward since x ∗ x = f(x).

We call (X, ∗, f) a trivial f -quandle structure on X.

Example 2.1.6 For any group G and any group endomorphism f of G, the operation

x ∗ y = f(y)xy−1 defines an f -quandle structure on G.

To check the first condition: Let x, y, z ∈ G. Starting from the left-hand side of (2.1.1),

Left-hand side = (x ∗ y) ∗ f(z)

= f(f(z))(x ∗ y)f−1(z)

= f 2(z)f(y)xy−1f(z)−1

Right-hand side = (x ∗ z) ∗ (y ∗ z)

= f(y ∗ z)(x ∗ z)(y ∗ z)−1

= f(f(z)yz−1)(f(z)xz−1)(f(z)yz−1)−1

= f 2(z)f(y)xy−1f(z)−1

To check the second condition, assume there exist z1, z2 ∈ G such that z1 ∗ y = f(x)

and z2 ∗ y = f(x). By definition, f(y)z1y
−1 = f(x) = f(y)z2y

−1 =⇒ z1 = z2.

To show that condition (2.1.3) holds, we have x ∗ x = f(x)xx−1 = f(x). Therefore,

(G, ∗, f), where ∗ is defined by x ∗ y = f(y)xy−1, is an f -quandle.

Example 2.1.7 Consider the Dihedral quandle Rn, where n ≥ 2, and let f be an

automorphism of Rn. Then f is given by f(x) = ax + b, for some invertible element

a ∈ Zn and some b ∈ Zn [17]. The binary operation x ∗ y = f(2y− x) = 2ay− ax+ b

(mod n) gives an f -quandle structure called the f -Dihedral quandle.

20



We verify condition (2.1.1):

The left-hand side of this condition is given by:

(x ∗ y) ∗ f(z) = 2af(z)− a(x ∗ y) + b mod (n)

= 2a(az + b)− a(2ay − ax+ b) + b mod (n)

= 2a2z + 2ab− 2a2y + a2x− ab+ b mod (n)

= 2a2z − 2a2y + a2x+ ab+ b mod (n)

While the right-hand side is given by:

(x ∗ z) ∗ (y ∗ z) = 2a(y ∗ z)− a(x ∗ z) + b mod (n)

= 2a(2az − ay + b)− a(2az − ax+ b) + b mod (n)

= 4a2z − 2a2y + 2ab− 2a2z + a2x− ab+ b mod (n)

= 2a2z − 2a2y + a2x+ ab+ b mod (n)

Thus (x ∗ y) ∗ f(z) = (x ∗ z) ∗ (y ∗ z).

To show the existence, given y, there exists an element z such that z = a−1(b−k)+2y,

where k = ax+ b so that z ∗ y = ax+ b = f(x).

To verify condition (2.1.2), assume there exists z, z
′ ∈ X such that condition (2.1.2)

holds. Then

z ∗ y = 2ay − az + b = f(x) = 2ay − az′ + b = z
′ ∗ y

which shows that z = z
′
. It is straight forward that x∗x = f(x). Therefore, (Rn, ∗, f),

with the binary operator ∗ defined by x ∗ y = 2ay − ax+ b (mod n), is an f -Dihedral

quandle.

Example 2.1.8 Any Z[T±1, S]-module M is an f -quandle with x ∗ y = Tx + Sy,

x, y ∈M, with TS = ST and f(x) = (S + T )x, called an Alexander f -quandle.
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The left-hand side of (2.1.1) is

(x ∗ y) ∗ f(z) = T (x ∗ y) + S(f(z))

= T (Tx+ Sy) + S((S + T )z)

= TTx+ TSy + SSz + STz

and the right-hand side of (2.1.1) is

(x ∗ z) ∗ (y ∗ z) = T (x ∗ z) + S(y ∗ z)

= T (Tx+ Sz) + S(Ty + Sz)

= TTx+ TSz + STy + SSz

which confirms that (2.1.1) holds under the condition TS = ST .

Assume there exist z, z
′ ∈ M such that z ∗ y = Tz + Sy = f(x) = Tz

′
+ Sy = z

′ ∗ y

which implies z = z
′
. It is straight forward that x ∗ x = Tx + Sx = f(x). Hence,

(M, ∗, f), with the operation defined above together with the condition ST = TS, is

an Alexander f -quandle.

To give a slightly different interpretation to equation (x ∗ y) ∗ f(z) = (x ∗ z) ∗ (y ∗ z),

we need to recall that a quandle (X,B) is medial if,

(x B y) B (u B v) = (x B u) B (y B v), ∀x, y, u, v ∈ X.

Remark 2.1.9 Axioms (2.1.1) and (2.1.3) of Definition 2.1.1 give the following equa-

tion:

(x ∗ y) ∗ (z ∗ z) = (x ∗ z) ∗ (y ∗ z).

We note that the two medial terms in this equation are swapped (resembling the medi-

ality condition of a quandle). Note also that the mediality in the general context may

not be satisfied for f -quandles.

For example, we can check that the f -quandle given in Example 2.1.6 is NOT medial:
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since

(x ∗ y) ∗ (z ∗ z) = (z ∗ z)−1(x ∗ y)f(z ∗ z) = f−1(z)y−1xf(y)z

is not equal to

(x ∗ z) ∗ (y ∗ z) = (y ∗ z)−1(x ∗ z)f(y ∗ z) = f−1(z)y−1xf(y)(f ◦ f)(z).

On the other hand, one can check that Example 2.1.7 is medial.

Remark 2.1.10 Let (X, ∗, f) be an f -quandle. Then f is a homomorphism since

f(x) ∗ f(y) = (x ∗ x) ∗ f(y) (∵ (2.1.3))

= (x ∗ y) ∗ (x ∗ y) (∵ (2.1.1))

= f(x ∗ y). (∵ (2.1.3))

2.2 Construction of new f-quandles

In this section, we provide a method that shows how to construct a new f -quandle

with a given f -quandle and an f -quandle morphism. We give a couple of examples

before we finish this section. At the end, we discuss a functoriality property between

f -racks and groups; see [4, 19] for the classical case.

Proposition 2.2.1 Let (X, ∗, f) be a finite f -quandle and φ : X → X be an f -

quandle morphism; that is, (φ(x ∗ y) = φ(x) ∗ φ(y)) for all x, y ∈ X. If φ is an

automorphism with a ∗φ b = φ(a ∗ b) and fφ(a) = φ(f(a)) then (X, ∗φ, fφ) is an fφ-

quandle.

If (X, ∗φ, fφ) is an fφ-quandle where f is injective then φ is an automorphism.

We will refer to (X, ∗φ, fφ) as a twist of (X, ∗, f).
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Proof. Assume that φ is an automorphism. Let a, b, c ∈ X.

(a ∗φ b) ∗φ fφ(c) = (a ∗φ b) ∗φ φ(f(c)) = φ(a ∗ b) ∗φ φ(f(c))

= φ[(a ∗ b) ∗φ f(c)] = φ2((a ∗ c) ∗ (b ∗ c))

= φ[φ(a ∗ c) ∗ φ((b ∗ c))] = φ[(a ∗φ c) ∗ (b ∗φ c)]

= (a ∗φ c) ∗φ (b ∗φ c).

Obviously a ∗ a = f(a) implies fφ(a) = φ(f(a)) = φ(a ∗ a) = a ∗φ a. Now given

a, b ∈ X there exists a unique c ∈ X such that c ∗ b = f(a); therefore,

c ∗φ b = φ(c ∗ b) = φ(f(a)) = fφ(a).

Hence (X, ∗φ, fφ) is an fφ-quandle.

In oder to show φ is an automorphism, assume that (X, ∗φ, fφ) is an fφ-quandle with

a ∗φ b = φ(a ∗ b) and fφ(a) = φ(f(a)).

Assume φ(a) = φ(b). Then there exist a unique element x ∈ X such that x∗a = f(b).

Then, φ(x ∗ a) = φ(f(b)).

x ∗φ a = f(φ(b))

= f(φ(a))

= φ(f(a))

= φ(a ∗ a).

That is x ∗φ a = a ∗φ a = f(φ(a)) implies that x = a.

Thus x ∗ a = f(b) =⇒ f(a) = f(b) =⇒ a = b if f is injective. Since X is finite and

φ is an injective homomorphism, φ is an automorphism.

Corollary 2.2.2 In the case where f is the identity map, Proposition 2.2.1 shows

that any usual quandle along with any automorphism gives rise to an f -quandle.

Example 2.2.3 Recall from [17] that any automorphism of the dihedral quandle Zn is

24



of the form φa,b(x) = ax+ b for some a, b ∈ Zn. Using Proposition (2.2.1), we recover

the Dihedral f -quandle in Example 2.1.7. To see this, let (X, ∗, f) = (Zn, ∗, id), so

that (Zn, ∗) is a quandle, where x ∗ y = 2y − x (mod n) and define x ∗φ y = φ(x ∗ y).

It is easy to see that

x ∗φ y = φ(x ∗ y) = φ(2y − x) = 2ay − ax+ b (mod n).

Therefore, (Zn, ∗φ, φ) is the φ-quandle given in Example 2.1.7.

Example 2.2.4 Let S3 =< s, t : s2 = t3 = e, ts = st2 > be the symmetric group on

three letters. Let ∗ be conjugation on S3. We know that (S3, ∗) is a quandle ( so that

(S3, ∗, id) is an f -quandle where f = id). Let φ be the group automorphism on S3

defined by s 7→ st, t 7→ t2. Then (S3, ∗φ, φ) is a φ−quandle where the operator ∗φ is

defined by x ∗φ y = φ(y)−1φ(x)φ(y). For convenience, we give the Cayley table below:

For example:

t ∗φ st = φ(st)−1φ(t)φ(st)

= φ(t−1s−1)φ(t)φ(st) (∵ φis a homomorphism)

= φ(t2s)φ(t)φ(st) (∵ t−1 = t2, s−1 = s)

= (t4st)(t2)(stt2)

= t4st3st3

= ts2

= t

The Cayley table of the φ-quandle (S3, ∗φ, φ) is given by:
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!∗ e s t t2 st st2

e e e e e e e

s st st st2 s st2 s

t t2 t t2 t2 t t

t2 t t2 t t t2 t2

st s st2 st st2 s st

st2 st2 s s st st st2

Table 2.1: Cayley Table for x ∗φ y = φ(y)−1φ(x)φ(y)

We now define the concept of enveloping groups of f -racks.

Definition 2.2.5 Let (X, ∗, f) be an f -rack and let F (X) denote the free group gen-

erated by X. Then there is a natural map ι : X → GX , where GX is called the

enveloping group of the f -rack of X, and is defined as

GX = F (X)/ < x ∗ y = f(y)xy−1, x, y ∈ X > . (2.2.4)

In the following, we discuss a functoriality property between f -racks and groups.

Proposition 2.2.6 Let (X, ∗, f) be an f -rack and G be a group. Given any f -rack ho-

momorphism ϕ : X → Gconj, where Gconj is a group together with an f -rack structure

along a group homomorphism g, where the operation is defined as a ∗G b = g(b)ab−1,

there exists a unique group homomorphism ϕ̃ : GX → G which makes the following

diagram commutes:

(X, ∗, f) ι //

ϕ

��

GX

ϕ̃

��
(Gconj, ∗G, g)

id
// G

Proof. Let ϕ̄ : F (X) → G be an f -rack homomorphism extension of ϕ to the free

group F (X). Then

ϕ̄(yx−1f(y)−1(x ∗ y)) = 1.
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Indeed,

ϕ̄(yx−1f(y)−1(x ∗ y)) = ϕ(y)ϕ(x−1)ϕ(f(y)−1)ϕ(x ∗ y)

= ϕ(y)ϕ(x)−1ϕ(f(y))−1(ϕ(x) ∗G ϕ(y))

= ϕ(y)ϕ(x)−1ϕ(f(y))−1g(ϕ(y))ϕ(x)ϕ(y)−1

= 1

since ϕ ◦ f = g ◦ ϕ (f -rack morphism). It follows that ϕ factors through a unique

homomorphism ϕ̃ : GX → G. The commutativity of the diagram is straightforward.

Corollary 2.2.7 The functor (X, ∗, f)→ GX is left-adjoint to the functor G→ Gconj

from the category of groups to that of f -racks. That is,

Homgroups(GX , G) ' Homf−racks(X,Gconj)

by the natural isomorphism.
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3 Extensions of f-Quandles and Modules ‡

In this chapter, we investigate extensions of f -quandles motivated by the work of

[7]. We provide a general construction, as showed in [4], for an extension of X by a

dynamical cocycle α, denoted by X×αA. We define generalized f -quandle 2-cocycles

and give examples. We give an explicit formula relating group 2-cocycles to f -quandle

2-cocycles when the f -quandle is constructed from a group.

3.1 Extensions with Dynamical Cocycles and Extensions with Constant

Cocycles

Let (X, ∗, f) be an f -quandle and A be a non-empty set. Let α : X ×X → Fun(A×

A,A) be a function, g : A → A a map, and F (x, a) = (f(x), g(a)). Our aim in this

section is to give conditions on α that guarantee that (X ×A, ∗, F ) is an F -quandle.

To come up with such conditions, we begin with the given condition that (X, ∗, f) is

an f -quandle where α(x, y) : A× A→ A is defined by α(x, y)(a, b) = αx,y(a, b).

For (x, a), (y, b), (z, c) ∈ X × A, the operation ∗ is defined as

(x, a) ∗ (y, b) = (x ∗ y, αx,y(a, b)).

In order to prove that the operation ∗ satisfies the condition (2.1.1) of Definition 2.1.1,

we need to show that

[(x, a) ∗ (y, b)] ∗ F (z, c) = [(x, a) ∗ (z, c)] ∗ [(y, b) ∗ (z, c)]. (3.1.1)

‡Sections of this chapter are taken from [12], which has been published in the journal “J. of Algebra and
Its Applications”, Vol.16, no.11, 2017.
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The left-hand side of (3.1.1) can be written as

[(x, a) ∗ (y, b)] ∗ F (z, c) = [(x, a) ∗ (y, b)] ∗ (f(z), g(c))

= (x ∗ y, αx,y(a, b)) ∗ (f(z), g(c))

= [(x ∗ y) ∗ f(z); α(x∗y),f(z)(αx,y(a, b), g(c))]

The right-hand side of (3.1.1) is given by

[(x, a) ∗ (z, c)] ∗ [(y, b) ∗ (z, c)] = [(x ∗ z), αx,z(a, c)] ∗ [(y ∗ z), αy,z(b, c)])

= [(x ∗ z) ∗ (y ∗ z); α(x∗z),(y∗z)(αx,z(a, c), αy,z(b, c)]

Equating the right-hand side and the left-hand side forces the following condition:

αx∗y,f(z)(αx,y(a, b), g(c)) = αx∗z,y∗z(αx,z(a, c), αy,z(b, c))

for all x, y, z ∈ X and a, b, c ∈ A.

For the operation ∗ to satisfy condition (2.1.3), we need to show that (x, a) ∗ (x, a) =

F (x, a). So we have

(x, a) ∗ (x, a) = (x ∗ x, αx,x(a, a))

= (f(x); αx,x(a, a)).

On the other hand, F (x, a) = (f(x), g(a)) by definition. So the result is

αx,x(a, a) = g(a).

For the bijectivity of the map in (2.1.2), we need to show that given (y, b) and

(x, a) there exists a unique (z, c) ∈ X × A such that (z, c) ∗ (y, b) = F (x, a). The

left-hand side can be simplified to (z, c) ∗F (y, b) = (z ∗ y; αz,y(c, b)). By defini-

tion, F (x, a) = (f(x), g(a)). Therefore, we get the two equations z ∗ y = f(x) and
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αx,y(c, b) = g(a). Thus the uniqueness of z and c. This result is better stated in the

following proposition:

Proposition 3.1.1 Let (X, ∗, f) be an f -quandle and A be a non-empty set. Let

α : X×X → Fun(A×A,A) be a function and g : A→ A a map. Then, (X×A, ∗, F )

is an F -quandle where F (x, a) = (f(x), g(a)) and the operation is defined as

(x, a) ∗ (y, b) = (x ∗ y, αx,y(a, b)), (3.1.2)

where x∗y denotes the f -quandle operation in X, if and only if α satisfies the following

three conditions:

1. αx,x(a, a) = g(a) for all x ∈ X and a ∈ A;

2. For all x, y ∈ X and for all b ∈ A, αx,y(−, b) : A→ A is a bijection.

3. αx∗y,f(z)(αx,y(a, b), g(c)) = αx∗z,y∗z(αx,z(a, c), αy,z(b, c)) for all x, y, z ∈ X and

a, b, c ∈ A.

If (X, ∗, f) is a f -crossed set, then (X × A, ∗, F ) is a f -crossed set if and only if the

map α further satisfies αx,y(a, b) = g(b) whenever y ∗ x = f(y) and αy,x(b, a) = g(a).

Such a function α is called a dynamical f -quandle cocycle or dynamical f -rack cocycle

(when it satisfies the above conditions).

The F -quandle constructed above is denoted by X×αA, and it is called the extension

of X by a dynamical cocycle α.

Remark 3.1.2 When x = y in item (3) in Proposition 3.1.1, we have

αf(x),f(z)(αx,x(a, b), g(c)) = αx∗z,x∗z(αx,z(a, c), αx,z(b, c))

= αx,z(a, c) ∗x∗z αx,z(b, c), ∀a, b, c ∈ A.
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When f and g are both the identity map, we have

αx,z(αx,x(a, b), c) = αx∗z,x∗z
(
αx,z(a, c), αx,z(b, c)

)
αx,z(a ∗x b, c) = αx∗z(a, c) ∗x∗z αx,z(b, c) ∀a, b, c ∈ A

and thus it reduces to the classical case where

αx,z(c) : (A, ∗x)→ (A, ∗x∗z)

is an isomorphism as in [7].

Now, we discuss extensions with constant cocycles.

If for all x, y ∈ X, the map αx,y : A × A → A is a constant map where αx,y(a, b) =

a+φ(x, y). Then equation 3.1.2 of Proposition 3.1.1 can be written as (x, a) ∗ (y, b) =

(x ∗ y, a+ φ(x, y)). Recall that this situation was discussed in [9].

When φ(x, y) = βx,y, then we have the following.

Definition 3.1.3 [4] Let (X,B) be a rack and β : X×X → SX . β is a constant rack

cocycle if

βxBy,zβx,y = βxBz,yBzβx,z.

If X is a quandle, then β is called a constant quandle cocycle if β further satisfy

βx,x = id.

Definition 3.1.4 Let (X, ∗, f) be an f -rack and λ : X × X → SA, where SA is the

group of permutations of A. If,

λx∗y,f(z)λx,y = λx∗z,y∗zλx,z

we say λ is a constant f -rack cocycle.

If (X, ∗, f) is an f -quandle and further satisfies λx,x = g for all x ∈ X , then we say

λ is a constant f -quandle cocycle.
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3.2 Modules over f-Racks

In this section we will provide an equation for generalized f -rack cocycles and provide

a couple examples.

Definition 3.2.1 Let (X, ∗, f) be an f -rack. Let A be an abelian group and let g :

A → A be a homomorphism. A structure of an X-module on A consists of a family

of automorphisms (ηij)i,j∈X and a family of endomorphisms (τij)i,j∈X of A satisfying

the following conditions:

ηx∗y,f(z)ηx,y = ηx∗z,y∗zηx,z (3.2.3)

ηx∗y,f(z)τx,y = τx∗z,y∗zηy,z (3.2.4)

τx∗y,f(z)g = ηx∗z,y∗zτx,z + τx∗z,y∗zτy,z (3.2.5)

Remark 3.2.2 If X is an f -quandle and we set x = y = z, then the f -quandle

structure of the Z(X)-module on A is a structure of an X-module that further satisfies

τf(x),f(x)g = (ηf(x),f(x) + τf(x),f(x))τx,x.

Furthermore, if f and g are identity maps, then η and τ satisfy the following condition:

ηx,x + τx,x = id

as shown in [7].

Recall that α is called a dynamical cocycle if it satisfies the conditions in

Proposition 3.1.1. Assume that αx,y(a, b) = ηx,y(a) + τx,y(b) + κx,y, then let Ω(X) be

the free Z-algebra generated by ηx,y, τx,y for x, y ∈ X, where ηx,y is invertible for every

x, y ∈ X. We define Z(X) to be the quotient Z(X) = Ω(X)/R where R is the ideal

generated by the above relations given in the definition 3.2.1. The algebra Z(X) is

called the f -quandle algebra over X.
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Recall from [7], a generalized rack 2-cocycle condition is given by

ηxBy,z(κx,y) + κxBy,z = ηxBz,yBz(κx,z) + τxBz,yBz(κy,z) + κxBz,yBz

for any x, y, z ∈ X, where κx,y means κ(x, y) for (x, y) ∈ X2.

Example 3.2.3 Let A be a non-empty set, (X, f) be an f -quandle, and κ be a gen-

eralized 2-cocycle. For a, b ∈ A, let

αx,y(a, b) = ηx,y(a) + τx,y(b) + κx,y.

We substitute αx,y(a, b) in item (3) of Proposition 3.1.1 to obtain

Left-hand side = αx∗y,f(z)(αx,y(a, b) , g(c))

= αx∗y,f(z)
(
ηx,y(a) + τx,y(b) + κx,y , g(c)

)
= ηx∗y,f(z)

(
ηx,y(a) + τx,y(b) + κx,y

)
+ τx∗y,f(z)(g(c)) + κx∗y,f(z).

Right-hand side = αx∗z,y∗z(αx,z(a, c) , αy,z(b, c))

= αx∗z,y∗z
(
ηx,z(a) + τx,z(c) + κx,z , ηy,z(a) + τy,z(c) + κy,z

)
= ηx∗z,y∗z

(
ηx,z(a) + τx,z(c) + κx,z

)
+ τx∗z,y∗z

(
ηy,z(a) + τy,z(c) + κy,z

)
+ κx∗z,y∗z.

By comparison, it can be verified directly that α is a dynamical cocycle and the fol-

lowing relations hold:

ηx∗y,f(z)ηx,y = ηx∗z,y∗zηx,z (3.2.6)

ηx∗y,f(z)τx,y = τx∗z,y∗zηy,z (3.2.7)

τx∗y,f(z)g = ηx∗z,y∗zτx,z + τx∗z,y∗zτy,z (3.2.8)

ηx∗y,f(z)κx,y + κx∗y,f(z) = ηx∗z,y∗zκx,z + τx∗z,y∗zκy,z + κx∗z,y∗z (3.2.9)
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where κx,y means κ(x, y) for (x, y) ∈ X × X, as in [7]. The condition in (3.2.9) is

called the generalized f -rack 2-cocycle condition.

Definition 3.2.4 When κ further satisfies κz,z = 0 in (3.2.9) for any z ∈ X, we call

it a generalized f -quandle 2-cocycle.

Example 3.2.5 Let (X, ∗f , f) be an f -quandle and A be an abelian group.

Set ηx,y = id, τx,y = 0, κx,y = φ(x, y).

Then φ satisfies the following condition:

φ(x, y) + φ(x ∗f y, f(z)) = φ(x, z) + φ(x ∗f z, y ∗f z).

If f further satisfy f = id, then φ(x, y) + φ(x B y, z) = φ(x, z) + φ(x B z, y B z) as

in [9].

Example 3.2.6 Let Γ = Z[T±1, S] denote the ring of Laurent polynomials. Then any

Γ-module M is a Z(X)-module for any f -quandle (X, ∗, f) with ST = TS where

ηx,y(a) = Ta, τx,y(b) = Sb and f(c) = (T + S)(c)

for any x, y ∈ X.

Example 3.2.7 For any f -quandle (X, ∗, f), the enveloping group

GX =< x ∈ X|x ∗ y = f(y)xy−1 >

with ηx,y(a) = f(y)a and τx,y(b) = f(b) − (x ∗ y)(b) where x, y ∈ X and a, b ∈ G, is

an X-module.

Example 3.2.8 Here we provide an example of an f -quandle module and the explicit

formula for the f -quandle 2-cocycle obtained from a group coboundary.
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Let G be a group and A be an abelian group. Let 0 → A → E → G → 1 be a

short exact sequence of groups where E = A oθ G is an extension of G by A with a

group 2-cocycle θ. Note that θ is a coboundary as well.

The group multiplication in E is given by

(a, x) · (b, y) = (a+ x(b) + θ(x, y), xy),

where x(b) means the action of A on G. Recall that the group 2-cocycle condition is

θ(x, y) + θ(xy, z) = xθ(y, z) + θ(x, yz).

So we obtain that

(b, y)−1 = (−y−1(b)− θ(y−1, y), y−1)

Now, let X = G be an f -quandle with the operation x∗y = y−1xf(y) and let g : A→ A

be a map on A so that we have a map F : E → E given by F (a, x) = (g(a), f(x)).

Therefore, the group E becomes an f -quandle with the operation

(a, x) ∗ (b, y) = (b, y)−1(a, x)F (b, y).

Then one can compute,

(a, x) ∗ (b, y) = (b, y)−1(a, x)F (b, y)

= (b, y)−1(a, x)(g(b), f(y)).

Explicit computations yield

ηx,y(a) = y−1a

τx,y(b) = y−1xf(b)− y−1b

and

κx,y = −θ(y−1, y) + θ(y−1, x) + θ(y−1x, g(y)).
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4 Generalized Cohomology Theory of f-racks and f-quandles §

In this chapter, our aim is to introduce a generalized cohomology theory of f -quandles

and give some examples. Quandle cohomology groups will be computed for some

Alexander f -quandles. We first start by giving the general formula of the boundary

map δn showing that we obtain a cochain complex. Then we will give the formula

of the boundary map in the simplest case when η is the identity map and τ is the

zero map as in Example (3.2.5). We will also give the formula in the case when η is

multiplication by T and τ is multiplication by S as in Example (2.1.8).

In the second half of this chapter, we make a short comment on some connections to

Knot Theory. We will give a diagrammatic notion for the twisted operator and then

show how it relates to the Reidemeister moves.

4.1 Cohomology Theory of f-quandles

Let (X, ∗, f) be an f -rack where f : X → X is an f -rack morphism. We start by

introducing some notation so that we can define the most generalized cohomology

theories of f -racks as follows.

For a sequence of elements (x1, x2, x3, x4, . . . , xn) ∈ Xn, define

[x1, x2, x3, x4, . . . , xn] = ((. . . (x1 ∗ x2) ∗ f(x3)) ∗ f 2(x4)) ∗ . . . ) ∗ fn−2(xn).

Notice that, for i < n, by applying the first axiom of f -racks (n − i) times, first

grouping the first (i − 1) terms together, then iterating this process, again grouping

§Sections of this chapter are taken from [12], which has been published in the journal “J. of Algebra and
Its Applications”, Vol.16, no.11, 2017.
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and iterating each time, we obtain the following formula which we will use in our

computations.

[x1, x2, x3, x4, . . . , xn] = [x1, . . . , x̂i, . . . , xn] ∗ f i−2[xi, . . . , xn].

Let CR
n (X, f) be the free abelian group generated by n-tuples (x1, . . . , xn) of elements

of an f -quandle (X, f). Define Cn
R((X, f), A) := Hom(CR

n (X, f), A).

The following theorem provides a cohomology complex for f -racks.

Theorem 4.1.1 The following family of operators δn : Cn
R((X, f), A)→ Cn+1

R ((X, f), A)

defines a cohomology complex:

δnφ(x1, . . . , xn+1)

= (−1)n+1

n+1∑
i=2

(−1)i
(
η[x1,...,x̂i,...,xn+1],f i−2[xi,...,xn+1]φ(x1, . . . , x̂i, . . . , xn+1)

− φ(x1 ∗ xi, x2 ∗ xi, . . . , xi−1 ∗ xi, f(xi+1), . . . , f(xn+1))
)

+(−1)n+1τ[x1,x3,...,xn+1],[x2,...,xn+1]φ(x2, . . . , xn+1)

for n ≥ 2 and δn = 0 for n ≤ 1. Then C∗R(X, f) = {Cn
R(X, f), δn} is a cochain

complex.

For n ≥ 2, let CD
n (X, f) be the subgroup of CR

n (X, f) generated by (n + 1)-tuples

~x = (x1, x2, . . . , xn+1) where xi = xi+1 for some 2 ≤ i ≤ n.

Define P n(X, f,A) = {φ ∈ Cn
R(X, f,A) | φ(~x) = 0,∀~x ∈ CD

n (X)}, otherwise define

Cn
D(X, f) = 0. Then δn(Cn

D(X, f)) ⊂ Cn+1
D (X, f) and thus C∗D(X, f) = {Cn

D(X, f), δn}

is called degenerate subcomplex of C∗R(X, f). The cohomology Hn
D(X, f,A) is called

as degenerate f -quandle cohomology of X with coefficients in A.

Before we give the general proof of the above theorem, we would like to show a low
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dimensional case, that is for all x1, x2, x3 ∈ X,

δ2δ1φ(x1, x2, x3) = 0

which will help to understand the general proof. For ψ : X → A, according to

Theorem 4.1.1, we have the map δ1ψ : X ×X → A given by

δ1ψ(x1, x2) = η[x1],f0[x2]ψ(x1)− ψ(x1 ∗ x2) + τ[x1],[x2]ψ(x2).

Now for a map φ : X ×X → A, we have the map δ2φ : X ×X ×X → A such that

δ2φ(x1, x2, x3) = −η[x1,x3],f0[x2,x3]φ(x1, x3) + η[x1,x2],f [x3]φ(x1, x2)

+ φ(x1 ∗ x2, f(x3))− φ(x1 ∗ x3, x2 ∗ x3)− τ[x1,x3],[x2,x3]φ(x2, x3).

Now taking the composition δ2δ1φ(x1, x2, x3), we get the following:

δ2δ1ψ(x1, x2, x3)

= −η[x1,x3],f0[x2,x3]
(
η[x1],f0[x3]ψ(x1)− ψ(x1 ∗ x3) + τ[x1],[x3]ψ(x3)

)

+η[x1,x2],f [x3]

(
η[x1],f0[x2]ψ(x1)− ψ(x1 ∗ x2) + τ[x1],[x2]ψ(x2)

)

+
(
η[x1∗x2],f0[f(x3)]ψ(x1 ∗ x2)− ψ((x1 ∗ x2) ∗ f(x3)) + τ[x1∗x2],[f(x3)]ψ(f(x3))

)

−
(
η[x1∗x3],f0[x2∗x3]ψ(x1 ∗ x3)− ψ((x1 ∗ x3) ∗ (x2 ∗ x3)) + τ[x1∗x3],[x2∗x3]ψ(x2 ∗ x3)

)

−τ[x1,x3],[x2,x3]
(
η[x2],f0[x3]ψ(x2)− ψ(x2 ∗ x3) + τ[x2],[x3]ψ(x3)

)
.
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Notice that the coefficient of ψ(x1) is

−η[x1,x3],f0[x2,x3]η[x1],f0[x3] + η[x1,x2],f [x3]η[x1],f0[x2]

which can be rewritten as

−ηx1∗x3,x2∗x3ηx1,x3 + ηx1∗x2,f(x3)ηx1,x2 = 0

which follows from (3.2.3). Similarly, the coefficient of ψ(x2) is

η[x1,x2],f [x3]τ[x1],[x2] − τ[x1,x3],[x2,x3]η[x2],f0[x3] = ηx1∗x2,f(x3)τx1,x2 − τx1∗x3,x2∗x3ηx2,x3

= 0 from (3.2.4)

and the coefficient of ψ(x3) is

−η[x1,x3],f0[x2,x3]τ[x1],[x3] + τ[x1∗x2],[f(x3)]f − τ[x1,x3],[x2,x3]τ[x2],[x3]

= −ηx1∗x3,x2∗x3τx1,x3 + τx1∗x2,f(x3)f − τx1∗x3,x2∗x3τx2,x3

= 0 from(3.2.5)

The coefficient of ψ(x1 ∗ x3) is given by

η[x1,x3],f0[x2,x3] − η[x1∗x3],f0[x2∗x3] = 0

since [x1, x3] = x1 ∗ x3 and [x2, x3] = x2 ∗ x3. The rest of the terms cancel out by

(2.1.1) and we see that δ2δ1φ(x1, x2, x3) = 0.

Now we will give the general proof that, for all n ≥ 1, δn+1δn = 0.

Proof. In order to prove that δn+1δn = 0, we use the linearity of η and τ , and break

the composition δn+1δn = 0 into two pieces.

First, for i ≤ j, we will show that the composition of the ith term of the first summand

of δn with the jth term of the first summand of δn+1 cancels out with the composition

of the (j+1)th term of the first summand of δn with the ith term of the first summand
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of δn+1. As the signs of these terms are opposite, we need only to show that the

compositions are equal up to their signs. Now, we can see that the composition of the

ith term of the first summand of δn with the jth term of the first summand of δn+1

can be rewritten as follows:

η[x1,...,x̂i,...,xn+1],f i−1[xi,...,xn+1]η[x1,...,x̂i,...,x̂j+1,...,xn+1],fj [xj+1,...,xn+1]

= η[x1,...,x̂i,...,x̂j+1,...,xn+1]∗fj−1[xj ,...,xn+1],f i−1[xi,...,x̂j+1,...,xn+1]∗f i−1fj−i+1[xj+1,...,xn+1]

η[x1,...,x̂i,...,x̂j+1,...,xn+1],fj−1[xj+1,...,xn+1]

= η[x1,...,x̂i,...,x̂j+1,...,xn+1]∗f i−1[xi,...,x̂j+1,...,xn+1],fj [xj+1,...,xn+1]

η[x1,...,x̂i,...,x̂j+1,...,xn+1],f i−1[xi,...,x̂j+1,...,xn+1]

= η[x1,...,x̂j+1,...,xn+1],fj [xj+1,...,xn+1]η[x1,...,x̂i,...,x̂j+1,...,xn+1],f i−1[xi,...,x̂j+1,...,xn+1],

which is precisely the (j + 1)th term of the first summand of δn with the ith term of

the first summand of δn+1. For the simplicity, let’s denote this by

ηiηj = ηj+1ηi.

Similar computations show that for i ≤ j, the composition of τ from δn with the

ith term of the first sum of δn+1 cancels out with the composition of the (i + 1)th

term of the first sum of δn with τ from δn+1 (with the same relation holding for the

compositions of τ and the second summands). That can be abbreviate by

ηiτ = τηi+1.

The composition of the ith term of the second summand of δn with the jth term of

the second summand of δn+1 cancels with the (j + 1)th term of the second summand

of δn with the ith term of the second summand of δn+1, the composition of the ith

term of the second summand of δn with the jth term of the first summand of δn+1

cancels with the (j + 1)th term of the first summand of δn with the ith term of the

second summand of δn+1 for i ≤ j. For the sake of brevity we will omit showing these
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computations.

All these relations leave three remaining terms, which cancel via the third axiom in

Definition 3.2.1.

The Table below presents all the above relations in an easier to read manner. In the

table ηi represents the ith summand of the first sum, ◦i represents the ith summand

of the second sum, with order of composition determining its origin in δn or δn+1.

ηiηj = ηj+1ηi

ηi◦j = ◦j+1ηi

ηiτ = τηi+1

τ◦i = ◦i+1τ

◦i◦j = ◦j+1 ◦i .

Now we will give some examples of f -quandles when η and τ are precisely defined.

Example 4.1.2 Let (X, ∗, f) be an f -quandle where η is the identity map and τ is

the zero map. For n ≥ 2, we compute δn :

δnφ(x1, x2, . . . , xn+1)

= (−1)n+1

n+1∑
i=2

(−1)iφ {(x1, x2, . . . , xi−1, xi+1, . . . , xn+1)

− (x1 ∗ xi, x2 ∗ xi, . . . , xi−1 ∗ xi, f(xi+1), . . . , f(xn+1))} .

Example 4.1.3 Let η be multiplication by T and τ be multiplication by S as in

Example 2.1.8 with TS = ST and f(z) = (S + T )z for all z ∈ X. Then for n ≥ 2,

the map δn is
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δnφ(x1, x2, . . . , xn+1)

= (−1)n+1

n+1∑
i=2

(−1)iTφ(x1, x2, . . . , xi−1, xi+1, . . . , xn+1)

− (−1)n+1

n+1∑
i=2

(−1)iφ(x1 ∗ xi, x2 ∗ xi, . . . , xi−1 ∗ xi, f(xi+1), . . . , f(xn+1))

+ (−1)n+1Sφ(x2, . . . , xn+1).

In particular, the 1-cocycle condition is written for a function ψ : X → A as

Tψ(x) + Sψ(y)− ψ(x ∗ y) = 0.

Note that this means ψ : X → A is a quandle homomorphism.

For φ : X ×X → A, the 2-cocycle condition must be written as

Tφ(x1, x2) + φ(x1 ∗ x2, f(x3))

= Tφ(x1, x3) + Sφ(x2, x3) + φ(x1 ∗ x3, x2 ∗ x3).

Remark 4.1.4 Suppose that the coefficient group of A is written additively as Z or

Zn. Define a characteristic function

χx(y) =

 1, if x = y

0, if x 6= y

from the free abelian group generated by Xn to the group A. The set {χx : x ∈ Xn}

of such functions spans the group C(X, f,A) of cochains. Thus, if h ∈ C1
R(X, f,A),

then

h =
∑
x∈Xn

λxχx

where λx ∈ A are the coefficients of χx.
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Similarly, define a characteristic function

χi,j(k, l) =

 1, if (i, j) = (k, l)

0, if (i, j) 6= (k, l)

from the free abelian group generated by Xn to the group A. The set {χi,j : (i, j) ∈

Xn × Xn} of such functions spans the group C2(X, f,A) of cochains. Thus, if g ∈

C2
R(X, f,A), then

g =
∑

(i,j)∈Xn

λi,jχi,j

where λi,j ∈ A are the coefficients of χi,j.

Now we will give an explicit example.

Example 4.1.5 We compute the first and second cohomology groups H1 and H2,

with coefficients in the abelian group Z3, of the f -quandle X = Z3, T = 1, S = 2.

Notice that then f(x) = 0. A direct computation shows H1
R(Z3,Z3) is 1-dimensional

with basis {χ1 + 2χ2}. Now consider the 2–cocycle φ =
∑

i,j∈Z3
λ(i,j)χ(i,j) where χ(i, j)

denotes the characteristic function. Then, for all (i, j, k) ∈ Z3, φ satisfies: [φ(i, j) +

φ(i+2j, 0)−φ(i, k)−2φ(j, k)−φ(i+2k, j+2k) = 0.] Therefore, a direct computation

shows that H2(Z3,Z3) is 1-dimension with basis {χ(1,2) − χ(2,1)}.

Proof. The f -rack Z3 has the operation

i ∗ j = i+ 2j (mod 3).

First, note that h ∈ Z1(Z3, f,Z3). Then the 1-cocycle condition is

h(i) + 2h(j)− h(i ∗ j) = 0

which can be rewritten as

h(i) + 2h(j)− h(i+ 2j) = 0.
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This implies

h(0) = 0

h(2) + h(1) = 0

By taking h(1) = β, we get h(2) = 2β.

A direct computation shows Z1(X = Z3, A = Z3) is 1-dimensional with basis {χ1 +

2χ2}.

Now let g ∈ Z2(Z3, f,Z3) be expressed as

g =
∑
i,j∈Z3

λ(i,j)χ(i,j)

Then, the two cocycle condition can be written as

λ(i,j) + λ(i∗j,f(k)) − λ(i,k) − 2λ(j,k) − λ(i∗k,j∗k) = 0 for i, j, k ∈ Z3.

It simplifies to the equation

λ(i,j) + λ(i+2j,0) − λ(i,k) − 2λ(j,k) − λ(i+2k,j+2k) = 0 for i, j, k ∈ Z3

and

λ(i,i) = 0 for i ∈ Z3.

Recall that the f -rack Z3 has the operation

i ∗ j = i+ 2j (mod 3).

Substituting the elements for all possibilities for the variables i, j in the above expres-

44



sion: as i and j vary over all values of Z3, we get the following simplified equations:

λ(2,0) + λ(1,0) = 0

λ(0,2) − λ(0,1) − λ(2,0) = 0

λ(0,1) − λ(1,0) − λ(0,2) = 0

λ(1,2) + λ(2,0) + λ(2,1) − λ(0,1) = 0

λ(2,1) + λ(1,0) + λ(1,2) − λ(0,2) = 0

λ(i,i) = 0 for i ∈ {0, 1, 2}.

Therefore, by taking λ(1,2) = α, λ(2,0) = β and λ(2,1) = γ, we get

λ(0,0) = 0 , λ(0,1) = α + β + γ , λ(0,2) = α− β + γ ,

λ(1,0) = −β , λ(1,1) = 0 , λ(1,2) = α ,

λ(2,0) = β , λ(2,1) = γ , λ(2,2) = 0.

Then

g = α[χ(0,1) +χ(0,2) +χ(1,2)] +β[χ(0,1)−χ(0,2)−χ(1,0) +χ(2,0)] +γ[χ(0,1) +χ(0,2) +χ(2,1)].

Since

δχ0 = χ(0,1) + χ(0,2) − χ(1,0) − χ(2,0)

δχ1 = −χ(0,1) − χ(0,2) + χ(1,2) + χ(2,1)

dim(H2) = dim (Ker δ2)− dim(Im δ1) = 3− 2 = 1. Second cohomology has the basis

{χ(1,2) − χ(2,1)}.

4.2 Relation to Knot Theory

The relationship between quandles and knots leads to the natural question of whether

f -quandles could be used to define similar knot invariants. However, the introduction
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of the f -map in the axioms causes the standard labeling schemes for the crossing

diagrams to fail to produce labeling invariants under the Reidemeister moves. Instead,

we found the following crossing diagram to be of greater interest if we consider the

crossing to be as follows:

(a) (b)

Figure 4.1: Relationship between f -quandle axioms and Reidemeister move I (a) and II(b)

Figure 4.2: Relationship between f -quandle axioms and Reidemeister move III.
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Unfortunately, we see that change-of-label at an under crossing is not a closed oper-

ation unless the f -map is bijective. That is, for an f -quandle (X, ∗, f), the label of

the arc entering a crossing must be an element of f(X), while the label of the out

going arc need not be. Indeed, to ensure a consistent labeling, it is clear one must

only use labels from fn(X), where n is such that fn(X) = fn+m(X) for every m, to

ensure one may return to the same labeling upon completing a circuit of the knot. If

a particular subset is selected though, one is restricted to a sub-f -quandle on which

the f -map is bijective.

While these issues are resolved when labeling via an f -quandle with a bijective f -

map, it appeared that this reduces the labeling by the f -quandle to precisely that of

a standard quandle.
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5 Polynomial Cocycles of Alexander f-Quandles ∗

In this chapter, we focus on Alexander f -quandles introduced in the previous chapter

and their f -quandle cohomology groups, particularly their low dimensional cohomol-

ogy groups. Precisely, we determine the second, third, and fourth cohomology groups

of Alexander f -quandles of the form Fq[T, S]/(T − ω, S − β), where Fq denotes the

finite field of order q, ω ∈ Fq\{0, 1} and β ∈ Fq. Throughout this chapter, as in stan-

dard quandle cohomology theory, we will factor by the degenerate subcomplex and

call it the f -quandle cohomology of X and denote it by H∗(X, ∗, f) (See the precise

definition below).

5.1 Preliminaries

We first recall the definition of Alexander f -quandles. Any Z[T±1, S]-module M with

the binary operation x∗y = Tx+Sy for x, y ∈M, with TS = ST and f(x) = (S+T )x,

is an Alexander f -quandle.

In Example 4.1.2 of the previous chapter, when η = id and τ = 0, we obtained a

cohomology theory where the differential is given by

δnφ(x1, . . . , xn+1)

= (−1)n+1

n+1∑
i=2

(−1)iφ(x1, . . . , x̂i, . . . , xn+1)

− (−1)n+1

n+1∑
i=2

(−1)iφ(x1 ∗ xi, x2 ∗ xi, . . . , xi−1 ∗ xi, f(xi+1), . . . , f(xn+1)).

(5.1.1)

∗Sections of this chapter are taken from [13], which has been submitted to “J. of Knot Theory and Its
Ramification”, 2017.
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As in standard quandle homology theory, the degenerate subcomplex is given by

CD
n = {(x1, x2, ....., xn) ∈ Xn ; xi = xi+1 for i ≥ 2}. A similar degenerate subcomplex

appeared in the work of Niebrzydowski and Przytycki, [39] under the name late degen-

erate complex. Also, recall Example 2.1.8: Any Z[ω±1, β]-module M is an Alexander

f -quandle when

x ∗ y = ω · x+ β · y

for x, y ∈M and ωβ = βω. Notice that f(x) = (ω + β)x.

Remark 5.1.1 When f is the identity map and β = 1 − ω above, then (X, ∗) is a

quandle and (M, ∗) is an Alexander quandle as usual.

We obtain similar results as in [3]: Consider X = Zp[T±1, S]/h(t) and A =

Zp[T±1, S]/g(t) are module rings where h(t), g(t) ∈ Zp[T±1, S] and g(t) divides h(t).

Also there exists a quotient homomorphism X → A.

Proposition 5.1.2 Let ai = pmi for i = 1, · · · , n− 1, where p is a prime and the mi

are non-negative integers. For a positive integer n, define φ : Xn → A by

φ(x1, x2, · · · , xn) = (x1 − x2)a1(x2 − x3)a2 · · · (xn−1 − xn)an−1xann ,

where the xi ∈ A via the quotient map. Then

1. If an = 0, then φ is an n-cocycle in Zn(X, ∗, f ;A) where f(x) = (ω + β)x.

2. If an = pmn , then φ is an n-cocycle if g(t) divides 1 − ωa, where a = a1 + a2 +

· · ·+ an.

Proof. 1. By definition of δn on the function φ, we obtain,
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δnφ(x1, . . . , xn+1)

= (−1)n+1

n+1∑
i=2

(−1)i[φ(x1, . . . , xi−1, xi+1, xi+2, . . . , xn+1)

− φ(x1 ∗ xi, . . . , xi−1 ∗ xi, f(xi+1), f(xi+2), . . . , f(xn+1))]

= F

F = (−1)n+1

n∑
i=2

(−1)i(x1 − x2)a1 · · · (xi−1 − xi+1)
ai−1(xi+1 − xi+2)

ai · · ·

· · · (xn − xn+1)
an−1xann+1 (−1)2n+2(x1 − x2)a1 · · · (xn−1 − xn)an−1xann

− (−1)n+1

n∑
i=2

(−1)i(x1 ∗ xi − x2 ∗ xi)a1 · · · (xi−1 ∗ x1 − f(xi+1))
ai−1

(f(xi+1)− f(xi+2))
ai · · · (f(xn)− f(xn+1))

an−1fan(xn+1)

− (−1)2n+2(x1 ∗ xn+1 − x2 ∗ xn+1)
a1 · · · (xn−1 ∗ xn+1 − xn ∗ xn+1)

an−1(xn ∗ xn+1)
an

(5.1.2)

By substituting yi = xi − xi+1 and f(x) = (ω + β)x, we have

F =
n∑
i=2

(−1)iya11 y
a2
2 · · · (yi−1 + yi)

ai−1yaii+1 · · · yan−1
n xann+1

+ (−1)n+1ya11 y
a2
2 · · · y

an−1

n−1 x
an
n

−
n∑
i=2

(−1)i(ωy1)
a1(ωy2)

a2 · · · {ωyi−1 + (ω + β)yi}ai−1{(ω + β)yi+1}ai · · ·

· · · {ω + β)yn}an−1fan(xn+1)

− (−1)n+1(ωy1)
a1(ωy2)

a2 · · · (ωyn−1)an−1{ωyn + (ω + β)xn+1}an
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Since each ai is a power of p, and the coefficients are in Zp, we obtain

δnφ(x1, . . . , xn+1)

=
n∑
i=2

(−1)iya11 y
a2
2 · · · y

ai−1

i−1 y
ai
i+1 · · · yan−1

n xann+1 + (−1)n+1ya11 y
a2
2 · · · y

an−1

n−1 x
an
n

+
n∑
i=2

(−1)iya11 y
a2
2 · · · y

ai−1

i yaii+1 · · · yan−1
n xann+1

−
n∑
i=2

(−1)iωa1+a2+···+ai−1(ω + β)ai+···+an−1ya11 y
a2
2 · · · y

ai−1

i−1 y
ai
i+1 · · · yan−1

n f(xn+1)
an

−
n∑
i=2

(−1)iωa1+a2+···+ai−2(ω + β)ai−1+···+an−1ya11 y
a2
2 · · · y

ai−1

i yaii+1 · · · yan−1
n f(xn+1)

an

− (−1)n+1ωa1+a2+···+an−2ya11 y
a2
2 · · · y

an−1

n−1 {ωyn + (ω + β)xn+1}an .

(5.1.3)

By changing the indices in the second and fourth sum we obtain

δnφ(x1, . . . , xn+1)

=
n∑
i=2

(−1)iya11 y
a2
2 · · · y

ai−1

i−1 y
ai
i+1 · · · yan−1

n xann+1

+
n−1∑
i=1

(−1)iya11 y
a2
2 · · · y

ai−1

i−1 y
ai
i+1 · · · yan−1

n xann+1

−
n∑
i=2

(−1)iωa1+a2+···+ai−1(ω + β)ai+···+anya11 y
a2
2 · · · y

ai−1

i−1 y
ai
i+1 · · · yan−1

n xann+1

−
n−1∑
i=1

(−1)iωa1+a2+···+ai−1(ω + β)ai+···+anya11 y
a2
2 · · · y

ai−1

i−1 y
ai
i+1 · · · yan−1

n xann+1

+ (−1)n+1ya11 y
a2
2 · · · y

an−1

n−1 x
an
n

− (−1)n+1ωa1+a2+···+an−1ya11 y
a2
2 · · · y

an−1

n−1 {ωyn + (ω + β)xn+1}an
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which can be simplified to

δnφ(x1, . . . , xn+1)

= (−1)nya11 y
a2
2 · · · y

an−1

n−1 x
an
n+1

− (−1)nωa1+a2+···+an−1(ω + β)anya11 y
a2
2 · · · y

an−1

n−1 x
an
n+1

+ (−1)n+1ya11 y
a2
2 · · · y

an−1

n−1 x
an
n

− (−1)n+1ωa1+a2+···+an−1ya11 y
a2
2 · · · y

an−1

n−1 {ωyn + (ω + β)xn+1}an .

Notice that when an = 0, then the term (ω + β)0 = 1, and therefore

δnφ(x1, . . . , xn+1) = 0 which implies φ is an n-cocycle.

2. If an = pmn , then

δnφ(x1, . . . , xn+1)

= (−1)nya11 y
a2
2 · · · y

an−1

n−1 x
an
n+1 − (−1)nωa1+a2+···+an−1(ω + β)anya11 y

a2
2 · · · y

an−1

n−1 x
an
n+1

+ (−1)n+1ya11 y
a2
2 · · · y

an−1

n−1 x
an
n − (−1)n+1ωa1+a2+···+anya11 y

a2
2 · · · y

an−1

n−1 y
an
n

− (−1)n+1ωa1+a2+···+an−1(ω + β)anya11 y
a2
2 · · · y

an−1

n−1 x
an
n+1

= (−1)n+1ya11 y
a2
2 · · · y

an−1

n−1 (xn − xn+1)
an − (−1)n+1ωa1+a2+···+anya11 y

a2
2 · · · y

an−1

n−1 y
an
n

= (−1)n+1(1− ωa1+a2+···+an)ya11 y
a2
2 · · · y

an−1

n−1 y
an
n

= (−1)n+1(1− ωa)ya11 ya22 · · · y
an−1

n−1 y
an
n = 0 ∈ A

by assumption. Hence, φ is an n-cocycle.

For convenience of calculations, we will reformulate the f -quandle cohomology as

follows: For i = 1, · · · , n, let Ui = xi − xi+1. Then (5.1.1) becomes
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δnφ(U1, . . . , Un+1)

= (−1)n+1

n∑
i=1

(−1)iφ(U1, . . . , Ui−1, Ui + Ui+1, Ui+2, . . . , Un+1)

− (−1)n+1

n∑
i=1

(−1)iφ(ω U1, ω U2, . . . , ω Ui−1, ω Ui + (ω + β)Ui+1, f(Ui+2), . . . , f(Un+1)).

(5.1.4)

The following formula is a generalization of [41, Eq. (3)] when η = id and τ = 0. We

will decompose the complex Cn(X) by the homogeneous degree as in [35], that is,

Cn
d (X) := {

∑
ai1,··· ,in · U i1

1 · · ·U in
n ∈ Cn(X) |

∑
1≤k≤n

ik = d}.

Since δn(Cn
d (X)) ⊂ Cn+1

d (X), we obtain a direct sum decomposition of the com-

plex as (Cn(X), δn) = (⊕Cn
d (X), δn). Also we will decompose φ ∈ Cn

d (X) as φ =∑
0≤a≤p−1 φa(U1, · · · , Un−1) · Ua

n and degree(φa) = da.

δn(φ)(U1, . . . , Un, Un+1) =
∑

0≤a≤p−1

δn−1(φa)(U1, . . . , Un) · Ua
n+1

+ (−1)n−1
∑

0≤a≤p−1

φa(U1, . . . , Un−1)(Un + Un+1)
a

− (−1)n−1
∑

0≤a≤p−1

φa(U1, . . . , Un−1)ω
da (ω + β)d−da−a (ω Un + (ω + β)Un+1)

a.

(5.1.5)

5.2 The 2-cocycles

In this section, we investigate the 2-cocycles by using equation (5.1.5). More precisely,

we provide a basis for the second cohomology H2
Q((X, ∗, f);Fq).

Proposition 5.2.1 If ωp
t+ps = 1 and (ω+β)p

t+ps = 1, where s and t are non-negative

integers, then Upt

1 U
ps

2 is a 2-cocycle.
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Proof. By (5.1.4), we have

δ(Upt

1 ) = (U1 + U2)
pt − (ω U1 + (ω + β)U2)

pt .

Then it follows from (5.1.4) and (5.1.5) that

δ(Upt

1 U
ps

2 ) = δ(Upt

1 )Ups

3 − U
pt

1 (U2 + U3)
ps

+ Upt

1 ω
da(ω + β)d−da−a(ω U2 + (ω + β)U3)

ps .
(5.2.6)

Also, note that da = pt, a = ps, and d = pt + ps. Then, we have from (5.2.6),

δ(Upt

1 U
ps

2 ) = (U1 + U2)
ptUps

3 − (ω + β)p
s

(ω U1 + (ω + β)U2)
ptUps

3 − U
pt

1 (U2 + U3)
ps

+ Upt

1 ω
pt(ω + β)0(ω U2 + (ω + β)U3)

ps

= (1− ωpt(ω + β)p
s

)Upt

1 U
ps

3 + (1− (ω + β)p
s+pt)Upt

2 U
ps

3

− (1− ωpt(ω + β)p
s

)Upt

1 U
ps

3 − (1− ωps+pt)Upt

2 U
ps

3 .

(5.2.7)

Since ωp
t+ps = 1 and (ω + β)p

t+ps = 1, the right-hand side of (5.2.7) vanishes. This

completes the proof.

We have the following:

Conjecture 5.2.2 Fix ω, β ∈ Fq with ω 6= 0, 1. Let X be the corresponding Alexander

f -quandle on Fq. Then the set

{Upv

1 U
pu

2 | ωp
v+pu = 1, (ω + β)p

v+pu = 1; 0 ≤ v < u < m}

is a basis for the second cohomology H2
Q((X, ∗, f);Fq).
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Example 5.2.3 Let p be an odd prime and u, v be non-negative integers. Let ω = −1

and β = 2. Then we have ωp
v+pu = 1 and (ω+ β)p

v+pu = 1. Hence, the set defined in

Conjecture 5.2.2 is a basis for 2-cocycles.

Let us recall the definition of a primitive element.

Definition 5.2.4 Let F be a finite dimensional extension field of K. An element α

such that F = K(α) is said to be primitive.

Example 5.2.5 Let f(x) = x2 + x + 1 ∈ F2[x] and consider F4 = F2[x]/(f). Let ω

be a primitive element of F4. (Then the order of ω is 3). Let β = ω2. Note that

ω2 = ω + 1 and that ω2 is also a primitive element of F4 since it is a conjugate of ω

with respect to F2. We have

ω20+21 = 1 and (ω + β)2
0+21 = 1.

If Conjecture 5.2.2 true, then {U20

1 U
21

2 } will be a basis for the second cohomology

H2
Q((X, ∗, f);F4).

5.3 The 3-Cocycles

In this section, we give a basis for the third cohomology group H3
Q((X, ∗, f);Fq). For

positive integers a and b, let

µa(x, y) = (x+ y)a − xa − ya

and define

ψ(a, b) := (µa(U1, U2)− µa(ω U1, (ω + β)U2)) · U b
3 .

Then we have the following proposition.

Proposition 5.3.1 If ωa+p
s

= 1 and (ω + β)a+p
s

= 1, then Ψ(a, ps) is a 3-cocycle.
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Proof. Define

h(U1, U2) = µa(U1, U2)− µa(ω U1, (ω + β)U2).

Note that

ψ(a, b) := h(U1, U2) · U b
3 .

Then by equation (5.1.4), we have

δ(Ua
1 ) = (U1 + U2)

a − (ω U1 + (ω + β)U2)
a,

which implies the following equality.

h(U1, U2) = δ(Ua
1 )− (1− ωa) · Ua

1 − (1− (ω + β)a) · Ua
2 .

Also, from equation (5.1.4), we have

δ(h(U1, U2))

= −h(U1 + U2, U3) + h(ωU1 + (ω + β)U2, (ω + β)U3) + h(U1, U2 + U3)

− h(ωU1, ωU2 + (ω + β)U3)

= (1− ωa)h(U1, U2)− (1− (ω + β)a)h(U2, U3)

=
(
h(U1, U2)− h(U2, U3)

)
−
(
ωa h(U1, U2)− (ω + β)a h(U2, U3)

)
.

(5.3.8)

Since

ψ(a, b) = h(U1, U2) · U b
3 ,

from equations (5.1.5) and (5.3.8) we have

δ(Ψ(a, b))

= δ(h(U1, U2)) · U b
4 − h(U1, U2) δ(U

b
3)

=
[(
h(U1, U2)− h(U2, U3)

)
− (ω + β)b

(
ωa h(U1, U2)− (ω + β)a h(U2, U3)

)]
U b
4

− h(U1, U2)
(
(U3 + U4)

b − ωa (ω U3 + (ω + β)U4)
b
)
.

(5.3.9)

56



Let b = ps. Then, from equation (5.3.9) we obtain

δ(Ψ(a, ps))

= (1− ωa (ω + β)p
s

)h(U1, U2)U
ps

4 − (1− (ω + β)a+p
s

)h(U2, T3)U
ps

4

− (1− ωa+ps)h(U1, U2)U
ps

3 − (1− ωa (ω + β)p
s

)h(U1, U2)U
ps

4 .

(5.3.10)

Since ωa+p
s

= 1 and (ω + β)a+p
s

= 1, the right-hand side of (5.3.10) is zero. This

completes the proof.

Let χ(x, y) =

p−1∑
i=1

(−1)i−1 · i−1 · xp−i · yi ≡ 1

p
((x+ y)p − xp − yp) (mod p). Define

E0(a · p, b) =
(
χ(U1, U2)

a − (ω + β)b χ(ω U1, (ω + β)U2)
a
)
· U b

3 .

Also, define h(U1, U2) := χ(U1, U2)
a − (ω + β)b χ(ω U1, (ω + β)U2)

a.

Then we have

E0(a · p, b) = h(U1, U2) · U b
3 .

Hence, we have the following proposition:

Proposition 5.3.2 If ωp
s+ph = 1 and (ω+ β)p

s+ph = 1 with s > 0, then E0(p
s, ph) is

a 3−cocycle.

Proof. We compute the following coboundary of E0(a · p, b).

δ(E0(a · p, b)) = δ(h(U1, U2)) · U b
4 − h(U1, U2) δ(U

b
3)

= (1− ωap (ω + β)b)h(U1, U2)U
b
4 − (1− (ω + β)ap+b)h(U2, U3)U

b
4

− h(U1, U2)
(
(U3 + U4)

b − ωap (ω U3 + (ω + β)U4)
b
)
.

(5.3.11)

Let a = ps−1 and b = ph. Then from equation (5.3.11) we have
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δ(E0(p
s, ph)) = (1− ωps (ω + β)p

h

)h(U1, U2) · Uph

4

− (1− (ω + β)p
s+ph)h(U2, U3) · Uph

4

− (1− ωps+ph)Uph

3 h(U1, U2)

− (1− ωps (ω + β)p
h

)h(U1, U2) · Uph

4 .

(5.3.12)

Since ωp
s+ph = 1 and (ω + β)p

s+ph = 1, the right hand side of (5.3.12) is zero. This

completes the proof.

Again, let χ(x, y) =

p−1∑
i=1

(−1)i−1 · i−1 · xp−i · yi ≡ 1

p
((x+ y)p − xp − yp) (mod p).

Define

E1(a, b · p) = Ua
1 ·
(
χ(U2, U3)

b − ωa χ(ω U2, (ω + β)U3)
b
)
.

Also, define

h(U2, U3) := χ(U2, U3)
b − ωa χ(ω U2, (ω + β)U3)

b.

Then we have the following proposition.

Proposition 5.3.3 If ωp
s+pt = 1 and (ω + β)p

s+pt = 1 with s > 0, then E1(p
t, ps) is

a 3−cocycle.

Proof. Note that

E1(a, b · p) = Ua
1 · h(U2, U3).
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We have

δ(E1(a, b · p))

= δ(Ua
1 · h(U2, U3))

= δ(Ua
1 )h(U3, U4)− Ua

1 δ(h(U2, U3))

=
(
(U1 + U2)

a − (ω + β)p·b (ω U1 + (ω + β)U2)
a
)
h(U3, U4)

− Ua
1

(
h(U2 + U3, U4)− ωa h(ω U2 + (ω + β)U3, (ω + β)U4)

)
+ Ua

1

(
h(U2, U3 + U4)− ωa h(ω U2, ω U3 + (ω + β)U4)

)
.

(5.3.13)

Let a = pt and b = ps−1. Then from (5.3.13) we have

δ(E1(p
t, ps))

= Upt

1 ·
[
(1− ωpt(ω + β)p

s

)h(U3, U4)− h(U2 + U3, U4)

+ ωp
t

h(ω U2 + (ω + β)U3, (ω + β)U4) + h(U2, U3 + U4)

− ωpt h(ω U2, ω U3 + (ω + β)U4)
]

+ (1− (ω + β)p
t+ps)Upt

2 h(U3, U4).

(5.3.14)

Since h(Ui, Ui+1) = χ(Ui, Ui+1)
ps−1 − ωp

t
χ(ω Ui, (ω + β)Ui+1)

ps−1
, ωp

s+ph = 1 and

(ω + β)p
s+pt = 1, straightforward computation yields that the right-hand side of

(5.3.14) vanishes. This completes the proof.

Let p be a prime and let u, v, and t be non-negative integers. Define F (pv, pu, pt) =

Upv

1 U
pu

2 Upt

3 ∈ C3 where pv, pu, pt < q.

Proposition 5.3.4 1. If ωp
v+pu+pt = 1 and (ω + β)p

v+pu+pt = 1, then F (pv, pu, pt)

is a 3-cocycle.

2. If ωp
v+pu = 1 and (ω + β)p

v+pu = 1, then F (pv, pu, 0) is a 3-cocycle.
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Proof. We first prove (1).

δ(F (pv, pu, pt))

= δ(Upv

1 U
pu

2 Upt

3 )

=
(
(U1 + U2)

pv − (ω + β)p
u+pt(ωU1 + (ω + β)U2)

pv
)
· Upu

3 · U
pt

4

− Upv

1 ·
(
(U2 + U3)

pu − ωpv(ω + β)p
t

(ωU2 + (ω + β)U3)
pu
)
· Upt

4

+ Upv

1 · U
pu

2

(
(U3 + U4)

pt − ωpv+pu(ωU3 + (ω + β)U4)
pt
)

= (1− ωpv(ω + β)p
u+pt)Upv

1 U
pu

3 Upt

4 + (1− (ω + β)p
v+pu+pt)Upv

2 U
pu

3 Upt

4

− (1− ωpv+pu(ω + β)p
t

)Upv

1 U
pu

2 Upt

4 − (1− ωpv(ω + β)p
t+pu)Upv

1 U
pu

3 Upt

4

+ (1− ωpv+pu+pt)Upv

1 U
pu

2 Upt

3 + (1− ωpv+pu(ω + β)p
t

)Upv

1 U
pu

2 Upt

4

= 0.

(5.3.15)

Since ωp
v+pu+pt = 1 and (ω + β)p

v+pu+pt = 1, the right hand side of (5.3.15) is 0. In

(2), by taking pt as zero in (5.3.15), and with ωp
v+pu = 1 and (ω+ β)p

v+pu = 1, it can

be shown in a similar manner that δ(F (pv, pu, 0)) = 0.

As in [33, 35], let Q be the set of all tuples (pv, pu, pt, ps) where p is a prime,

v < t, u < s, u ≤ t, and ωp
v+pt = ωp

u+ps = (ω+β)p
v+pt = (ω+β)p

u+ps = 1, and where

one of the following conditions hold:

Case I. ωp
v+pu = (ω + β)p

v+pu = 1.

Case II. ωp
v+pu , (ω + β)p

v+pu 6= 1 and t > s.

Case III. ωp
v+pu 6= 1, (ω + β)p

v+pu 6= 1, t = s, and p 6= 2.

Case IV. ωp
v+pu 6= 1, (ω + β)p

v+pu 6= 1, u ≤ v < t < s, ωp
v

= ωp
u
, and

(ω + β)p
v

= (ω + β)p
u

when p 6= 2.

Case V. ωp
v+pu 6= 1, (ω + β)p

v+pu 6= 1, u < v < t ≤ s, ωp
v

= ωp
u
, and

(ω + β)p
v

= (ω + β)p
u

when p = 2. Moreover, if p = 2, we need u < t as well.

For each (pv, pu, pt, ps) ∈ Q, we denote a cocycle by Γ. We have the following propo-

sition related to case I, ωp
v+pu = (ω + β)p

v+pu = 1.

Proposition 5.3.5 Γ(pv, pu, pt, ps) = F (pv, pu + pt, ps) is a 3-cocycle.
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Proof. We compute δ(F (pv, pu + pt, ps)).

δ(F (pv, pu + pt, ps))

= δ(Upv

1 U
pu+pt

2 Ups

3 )

= δ(Upv

1 )Upu+pt

3 Ups

4 − U
pv

1 δ(U
pu+pt

3 )Ups

4 + Upv

1 U
pu+pt

3 δ(Ups

4 )

= ((U1 + U2)
pv − (ω + β)p

u+pt+ps(ωU1 + (ω + β)U2)
pvUpu+pt

3 Ups

4

− Upv

1 · ((U2 + U3)
pu+pt − ωpv(ω + β)p

s

(ω + β)p
v

(ωU2 + (ω + β)U3)
pu+pt))Ups

4

+ Upv

1 · U
pu+pt

2 · ((U3 + U4)
ps − ωpv+pu+pt(ω + β)p

v+pu+pt(ωU3 + (ω + β)U4)
ps).

(5.3.16)

Note that (x+y)p
u+pt = (xp

u
+yp

u
)(xp

t
+yp

t
), in which case the above can be reduced

to

δ(Upv

1 U
pu+pt

2 Ups

3 )

= (1− ωpv(ω + β)p
u+pt+ps)Upv

1 U
pu+pt

3 Ups

4 + (1− (ω + β)p
u+pt+ps+pv)Upv

2 U
pu+pt

3 Ups

4

− (1− ωpv+pu+pt(ω + β)p
s

)Upv

1 U
pu+pt

2 Ups

4 − (1− ωpv(ω + β)p
s+pu+pt)Upv

1 U
pu+pt

3 Ups

4

− (1− ωpv+pu(ω + β)p
s+pt)Upv

1 U
pu

2 Upt

3 U
ps

4 − (1− ωpv+pt(ω + β)p
s+pu)Upv

1 U
pt

2 U
pu

3 Ups

4

+ (1− ωpv+pu+pt+ps)Upv

1 U
pu+pt

2 Ups

3 + (1− ωpv+pu+pt(ω + β)p
s

)Upv

1 U
pu+pt

2 Ups

4

= 0.

(5.3.17)

For case II, where we have the following proposition ωp
v+pu , (ω + β)p

v+pu 6= 1 and

t > s.

Proposition 5.3.6

Γ(pv, pu, pt, ps) = F (pv, pu + pt, ps)− F (pu, pv + ps, pt)

− (ωp
u

(ω + β)p
s − 1)−1(1− ωpu+pv(ω + β)p

t+ps)F (pv, pu, pt + ps) + F (pv + pu, ps, pt)

61



is a 3-cocycle.

Proof.

δ(F (pv, pu + pt, ps))− δ(F (pu, pv + ps, pt))

− (ωp
u

(ω + β)p
s − 1)−1(1− ωpu+pv(ω + β)p

t+ps)δ(F (pv, pu, pt + ps)

+ δ(F (pv + pu, ps, pt)))

= −(1− ωpv+pu(ω + β)p
s+pt)Upv

1 U
pu

2 Upt

3 U
ps

4 + (1− ωpv+pu(ω + β)p
s+pt)Upu

1 Upv

2 U
ps

3 U
pt

4

− (ωp
u

(ω + β)p
s − 1)−1(1− ωpu+pv(ω + β)p

t+ps)[(1− ωpv+pu+pt(ω + β)p
s

)Upv

1 U
pu

2 Upt

3 U
ps

4

− (1− ωpu(ω + β)p
s+pt+pv)Upu

1 Upv

2 U
ps

3 U
pt

4 ]

= 0.

(5.3.18)

For case III, where we have the following proposition, ωp
v+pu , (ω + β)p

v+pu 6= 1, t = s

and p 6= 2. In [42], it is shown that we can present this as follows:

Proposition 5.3.7 Γ(pv, pu, pt, ps) = F (pv, pt + ps, pu) is a 3-cocycle.

Proof. The proof is similar to that of Proposition 5.3.5.

Finally, we have the following proposition concerning the cases IV and V, ωp
v+pu 6=

1, (ω + β)p
v+pu 6= 1, u ≤ v < t < s and ωp

v
= ωp

u
, (ω + β)p

v
= (ω + β)p

u
when p 6= 2

and ωp
v+pu , (ω + β)p

v+pu 6= 1, u < v < t ≤ s and ωp
v

= ωp
u
, (ω + β)p

v
= (ω + β)p

u

when p = 2.In [42], can be present as:

Proposition 5.3.8 Γ(pv, pu, pt, ps) = F (pt, pv + pu, ps) is a 3-cocycle.

Proof. The proof is similar to that of Proposition 5.3.5.

We will have the following.
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Conjecture 5.3.9 Fix ω, β ∈ Fq with ω 6= 0,±1. Let X be the corresponding Alexan-

der f -quandle on Fq where H2
Q((X, ∗, f);Fq) ∼= 0. Then the set

I = {F (pv, pu, pt) | ωpv+pu+pt = (ω + β)p
v+pu+pt = 1, pv < pu < pt < q}

∪ {F (pv, pu, 0) | ωpv+pu = (ω + β)p
v+pu = 1, pv < pu < q}

∪ {E0(p · pv, pu) | ωp
v+1+pu = (ω + β)p

v+1+pu = 1, pv < pu < q}

∪ {E1(p
v, p · pu) | ωpv+pu+1

= (ω + β)p
v+pu+1

= 1, pv ≤ pu < q}

∪ {Γ(pv, pu, pt, ps) | (pv, pu, pt, ps) ∈ Q(q)}

is a basis for the third cohomology H3
Q((X, ∗, f);Fq).

Example 5.3.10 Let p be an odd prime and let u, v and t be non-negative integers.

Let ω = −1 and β = 2. Then ωp
v+pu+pt 6= 1 and (ω + β)p

v+pu+pt = 1, and we have

the following:

1. F (pv, pu, pt) is not a 3-cocycle.

2. F (pv, pu, 0) is a 3-cocycle since ωp
v+pu = 1 and (ω+β)p

v+pu = 1. Also, E0(p
v+1, pu)

and E1(p
v, pu+1) are 3-cocycles. Moreover,

Q(q) = {(pv, pu, pt, ps) | pu ≤ pt, pv < pt, pu < ps},

and ωp
v+pu = (ω + β)p

v+pu = 1 for any (pv, pu, pt, ps) ∈ Q(q).

Therefore,

{F (pv, pu, 0) | 0 < pv < pu < q} ∪ {E0(p
v+1, pu) | pv < pu < q}

∪ {E1(p
v, pu+1) | pv < pu < q}

∪ {F (pv, pu + pt, ps) | pu ≤ pt, pv < pt, pu < ps, pi < q, for all i ∈ {v, u, t, s}}

is a basis for the cohomology group H3
Q((X, ∗, f);Fq).
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Remark 5.3.11 Example 5.3.10 shows that when β = 1 − ω, the basis for the co-

homology group H3
Q((X, ∗, f);Fq) above is the same as the basis for the cohomology

group H3
Q((X, ∗);Fq) as in [35, Subsection 2.4.1].

Example 5.3.12 Let f(x) = x3 + x2 + 1 ∈ F2[x] and consider F8 = F2[x]/(f). Let

ω be a primitive element of F8. (Then the order of ω is 7). Let β = ω22. Note that

ω22 = ω3 + ω and that ω22 is also a primitive element of F8 since it is a conjugate of

ω with respect to F2. We have

ω20+21+22 = 1 and (ω + β)2
0+21+22 = 1,

but ω2i+2j 6= 1 for i, j ∈ {0, 1, 2}. If Conjecture 5.3.9 is true, then {F (20, 21, 22)} will

be a basis for the third cohomology group H3
Q((X, ∗, f);F8).

Note: There are many Alexander quandles satisfying the condition H2(X,Fq) ∼= 0

as shown in [40] with Fq is an extension of Fp of the odd degree with ω 6= −1. Under

the assumption of H2
Q(X, f,Fq) ∼= 0, basis in Conjecture 5.3.9 is given in the following

remark.

Remark 5.3.13 (Theorem A.2, [1]) Fix ω ∈ Fq with ω 6= 0, 1. Let X be the

Alexander f -quandle on Fq as above. Assume H2
Q(X, f,Fq) ∼= 0. Then the following

set provides a basis of the third cohomology H3
Q(X, f,Fq):

{UpvUpuUpt | ωpv+pu+pt = 1, (ω + β)p
v+pu+pt = 1, 0 ≤ v < u < t < m}.

5.4 The 4-Cocycles

In this section, we present some polynomials and show that they are 4-cocycles. The

main theorem gives a basis for the cohomology group H4
Q((X, ∗, f);Fq) under the con-

dition that H2
Q((X, ∗, f);Fq) is trivial. Also we have given some 4-cocycles in Propo-

sitions 5.4.5, 5.4.6, 5.4.7, and 5.4.8 without the assumption of H2
Q((X, ∗, f);Fq) ∼= 0.
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Proposition 5.4.1 If ωp
v+pu+pt+ps = 1 = (ω + β)p

v+pu+pt+ps, then the polynomial

Upv

1 U
pu

2 Upt

3 U
ps

4 is a 4-cocycle.

Proof.

δ(Upv

1 U
pu

2 Upt

3 U
ps

4 )

= ((U1 + U2)
pv − (ω + β)p

u+pt+ps (ωU1 + (ω + β)U2)
pv)Upu

3 Upt

4 U
ps

5

− Upv

1 · ((U2 + U3)
pu − ωpv (ω + β)p

t+ps (ωU2 + (ω + β)U3)
pu)Upt

4 U
ps

5

+ Upv

1 · U
pu

2 · ((U3 + U4)
pt − ωpv+pu(ω + β)p

s

(ωU3 + (ω + β)U4)
pt)Ups

5

− Upv

1 · U
pu

2 · U
pt

3 · ((U4 + U5)
ps − ωpv+pu+pt (ωU4 + (ω + β)U5)

ps)

= (1− ωpv (ω + β)p
u+pt+ps)Upv

1 U
pu

3 Upt

4 U
ps

5 + (1− (ω + β)p
v+pu+pt+ps)Upv

2 U
pu

3 Upt

4 U
ps

5

− (1− ωpv+pu(ω + β)p
t+ps)Upv

1 U
pu

2 Upt

4 U
ps

5 − (1− ωpv(ω + β)p
u+pt+ps)Upv

1 U
pu

3 Upt

4 U
ps

5

+ (1− ωpv+pu+pt(ω + β)p
s

)Upv

1 U
pu

2 Upt

3 U
ps

5 + (1− ωpv+pu(ω + β)p
s+pt)Upv

1 U
pu

2 Upt

4 U
ps

5

− (1− ωpv+pu+pt+ps)Upv

1 U
pu

2 Upt

3 U
ps

4 − (1− ωpv+pu+pt(ω + β)p
s

)Upv

1 U
pu

2 Upt

3 U
ps

5 .

(5.4.19)

Since ωp
v+pu+pt+ps = 1 = (ω + β)p

v+pu+pt+ps = 1, the right-hand side of (5.4.19) is

zero. This completes the proof.

We recall χ(x, y) =

p−1∑
i=1

(−1)i−1 · i−1 · xp−i · yi ≡ 1

p
((x+ y)p − xp − yp) (mod p).

Proposition 5.4.2 If ωp
u+1+pt+ps = 1 = (ω + β)p

u+1+pt+ps, then the polynomial(
χ(U1, U2)

pu − (ω + β)p
t+psχ(ω U1, (ω + β)U2)

pu
)
Upt

3 U
ps

4 is a 4-cocycle.

Proof. Let

h(U1, U2) = χ(U1, U2)
pu − (ω + β)p

t+psχ(ω U1, (ω + β)U2)
pu .

Then we will get the following.
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δ(h(U1, U2)U
pt

3 U
ps

4 )

= δ(h(U1, U2)U
pt

4 U
ps

5

− h(U1, U2)
(
(U3 + U4)

pt − ωp
u+1

(ω + β)p
s

(ω U3 + (ω + β)U4)
pt
)
Ups

5

+ h(U1, U2)U
pt

3

(
(U4 + U5)

ps − ωp
u+1+pt (ω U4 + (ω + β)U5)

ps
)

= (1− ωpu+1

(ω + β)p
s+pt)h(U1, U2)U

pt

4 Ups

5 − (1− (ω + β)p
u+1+pt+ps)h(U2, U3)U

pt

4 Ups

5

− (1− ωpu+1+pt (ω + β)p
s

)h(U1, U2)U
pt

3 Ups

5 − (1− ωpu+1

(ω + β)p
s+pt)h(U1, U2)U

pt

4 Ups

5

+ (1− ωpu+1+pt+ps)h(U1, U2)U
pt

3 Ups

4 + (1− ωpu+1+pt (ω + β)p
s

)h(U1, U2)U
pt

3 Ups

5 .

(5.4.20)

Since ωp
u+1+pt+ps = 1 = (ω + β)p

u+1+pt+ps = 1, the right hand side of (5.4.20) is

vanishes. This completes the proof.

Proposition 5.4.3 If ωp
v+pt+1+ps = 1 = (ω + β)p

v+pt+1+ps = 1, then the polynomial

Upv

1

(
χ(U2, U3)

pt − ωpv(ω + β)p
s
χ(ωU2, (ω + β)U3)

pt
)
Ups

4 is a 4-cocycle.

Proof. Let h(U2, U3) = χ(U2, U3)
pt − ωpv(ω + β)p

s
χ(ωU2, (ω + β)U3)

pt . Then

δ(Upv

1 h(U2, U3)U
ps

4 )

=
(
(U1 + U2)

pv − (ω + β)p
t+1+ps (ω U1 + (ω + β)U2)

pv
)
h(U3, U4)U

ps

5

− Upv

1

(
h(U2 + U3, U4) − ωp

v

(ω + β)p
s

h(ω U2 + (ω + β)U3, (ω + β)U4)
)
Ups

5

+ Upv

1

(
h(U2, U3 + U4) − ωp

v

(ω + β)p
s

h(ω U2, ω U3 + (ω + β)U4)
)
Ups

5

− Upv

1 h(U2, U3)
(
(U4 + U5)

ps − ωp
v+pt+1

(ω U4 + (ω + β)U5)
ps
)

= Upv

1

[
(1− ωpv (ω + β)p

t+1+ps)h(U3, U4)− h(U2 + U3, U4) + h(U2, U3 + U4)

+ ωp
v

(ω + β)p
s

h(ω U2 + (ω + β)U3, (ω + β)U4)

− ωp
v

(ω + β)p
s

h(ω U2, ω U3 + (ω + β)U4)− (1− ωpv+pt+1

(ω + β)p
s

)h(U2, U3)
]
Ups

5

+ (1− (ω + β)p
v+pt+1+ps)Upv

2 h(U3, U4)U
ps

5 − (1− ωpv+pt+1+ps)Upv

1 h(U2, U3)U
ps

4 .

(5.4.21)
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Since

h(Ui, Ui+1) = χ(Ui, Ui+1)
pt − ωpv(ω + β)p

s

χ(ωUi, (ω + β)Ui+1)
pt ,

and ωp
v+pt+1+ps = 1 = (ω+ β)p

v+pt+1+ps = 1, it can be shown that the right hand side

of (5.4.21) is zero. This completes the proof.

Proposition 5.4.4 If ωp
v+pu+ps+1

= 1 and (ω+β)p
v+pu+ps+1

= 1, then the polynomial

Upv

1 U
pu

2

(
χ(U3, U4)

ps − ωpv+pu χ(ω U3, (ω + β)U4)
ps
)

is a 4-cocycle.

Proof. Let h(U3, U4) = χ(U3, U4)
ps − ωpv+pu χ(ω U3, (ω + β)U4)

ps . Then

δ(Upv

1 U
pu

2 h(U3, U4))

= δ(Upv

1 )Upu

3 h(U4, U5)− Upv

1 δ(U
pu

2 )h(U4, U5)) + Upv

1 U
pu

2 δ(h(U3, U4))

=
(
(U1 + U2)

pv − (ω + β)p
u+ps+1

(ω U1 + (ω + β)U2)
pv
)
Upu

3 h(U4, U5)

− Upv

1

(
(U2 + U3)

pu − ωpv(ω + β)p
s+1

(ω U2 + (ω + β)U3)
pu
)
h(U4, U5)

+ Upv

1 U
pu

2

(
h(U3 + U4, U5)− ωp

v+pu h(ω U3 + (ω + β)U4, (ω + β)U5)
)

− Upv

1 U
pu

2

(
h(U3, U4 + U5)− ωp

v+pu h(ω U3, ω U4 + (ω + β)U5)
)

= (1− (ω + β)p
v+pu+ps+1

)Upv

2 U
pu

3 h(U4, U5) + Upv

1 U
pu

2

[
h(U3 + U4, U5)− h(U3, U4 + U5)

− (1− ωpv+pu (ω + β)p
s+1

)h(U4, U5) + ωp
v+pu h(ω U3, ω U4 + (ω + β)U5)

− ωpv+pu h(ω U3 + (ω + β)U4, (ω + β)U5)
]
.

(5.4.22)

Since

h(Ui, Ui+1) = χ(Ui, Ui+1)
ps − ωpv+pu χ(ω Ui, (ω + β)Ui+1)

ps
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and ωp
v+pu+ps+1

= 1 = (ω + β)p
v+pu+ps+1

, it can be shown that the right-hand side of

(5.4.22) is vanishes. This completes the proof.

In following Propositions 5.4.5, 5.4.6, 5.4.7, and 5.4.8), the conditionH2
Q((X, ∗, f);Fq) =

0 is not needed.

Proposition 5.4.5 If ωp
i+pj+pu+pt+ps = 1, (ω+β)p

i+pj+pu+pt+ps = 1, ωp
i+pj = ωp

i+pu =

1 and (ω + β)p
u+pt+ps = (ω + β)p

j+pt+ps = 1, then the polynomial Upi

1 U
pj+pu

2 Upt

3 U
ps

4 is

a 4-cocycle.

Proof. We will compute δ(Upi

1 U
pj+pu

2 Upt

3 U
ps

4 ).

δ(Upi

1 U
pj+pu

2 Upt

3 U
ps

4 )

= ((U1 + U2)
pi − (ω + β)p

j+pu+pt+ps (ωU1 + (ω + β)U2)
pi)Upj+pu

3 Upt

4 U
ps

5

− Upi

1 · ((U2 + U3)
pj+pu − ωpi(ω + β)p

t+ps(ωU2 + (ω + β)U3)
pj+pu))Upt

4 U
ps

5

+ Upi

1 · U
pj+pu

2 · ((U3 + U4)
pt − ωpi+pj+pu(ω + β)p

s

(ωU3 + (ω + β)U4)
pt))Ups

5

− Upi

1 · U
pj+pu

2 · Upt

3 · ((U4 + U5)
ps − ωpi+pj+pu+pt (ωU4 + (ω + β)U5)

ps).

(5.4.23)

Note that (x+ y)p
j+pu = (xp

j
+ yp

j
)(xp

u
+ yp

u
). Hence, from (5.4.23) we have
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δ(Upi

1 U
pj+pu

2 Upt

3 U
ps

4 ) = (1− ωpi (ω + β)p
j+pu+pt+ps)Upi

1 U
pj+pu

3 Upt

4 U
ps

5

+ (1− (ω + β)p
i+pj+pu+pt+ps)Upi

2 U
pj+pu

3 Upt

4 U
ps

5

− (1− ωpi+pj+pu(ω + β)p
t+ps)Upi

1 U
pj+pu

2 Upt

4 U
ps

5

− (1− ωpi(ω + β)p
j+pu+pt+ps)Upi

1 U
pj+pu

3 Upt

4 U
ps

5

− (1− ωpi+pj(ω + β)p
u+pt+ps)Upi

1 U
pj

2 U
pu

3 Upt

4 U
ps

5

− (1− ωpi+pu(ω + β)p
j+pt+ps)Upi

1 U
pu

2 Upj

3 U
pt

4 U
ps

5

+ (1− ωpi+pj+pu+pt(ω + β)p
s

)Upi

1 U
pj+pu

2 Upt

3 U
ps

5

+ (1− ωpi+pj+pu(ω + β)p
s+pt)Upi

1 U
pj+pu

2 Upt

4 U
ps

5

− (1− ωpi+pj+pu+pt+ps)Upi

1 U
pj+pu

2 Upt

3 U
ps

4

− (1− ωpi+pj+pu+pt(ω + β)p
s

)Upi

1 U
pj+pu

2 Upt

3 U
ps

5 .

(5.4.24)

Since ωp
i+pj+pu+pt+ps = 1, (ω + β)p

i+pj+pu+pt+ps = 1, ωp
i+pj = ωp

i+pu = 1 and (ω +

β)p
u+pt+ps = (ω+β)p

j+pt+ps = 1, the right hand side of (5.4.24) is zero. This completes

the proof.

Proposition 5.4.6 If ωp
u+1+ps+1

= 1 and (ω + β)p
u+1+ps+1

= 1, then the polynomial

(
χ(U1, U2)

pu−(ω+β)p
s+1

χ(ω U1, (ω+β)U2)
pu
)(
χ(U3, U4)

ps−ωpu+1

χ(ω U3, (ω+β)U4)
ps
)

is a 4-cocycle.

Proof. Let h(U1, U2) = χ(U1, U2)
pu − (ω + β)p

s+1
χ(ω U1, (ω + β)U2)

pu and

h∗(U3, U4) = χ(U3, U4)
ps − ωpu+1

χ(ω U3, (ω + β)U4)
ps .
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Then

δ(h(U1, U2)h
∗(U3, U4))

= δ(h(U1, U2))h
∗(U4, U5)− h(U1, U2) δ(h

∗(U3, U4))

= h(U1, U2)
[
h∗(U3, U4 + U5)− h∗(U3 + U4, U5) + (1− ωpu+1

(ω + β)p
s+1

)h∗(U4, U5)

− ωpu+1

h∗(ω U3, ω U4 + (ω + β)U5) + ωp
u+1

h∗(ω U3 + (ω + β)U4, (ω + β)U5)
]

− (1− (ω + β)p
u+1+ps+1

)h(U2, U3)h
∗(U4, U5).

(5.4.25)

Since h(Ui, Ui+1) = χ(Ui, Ui+1)
pu − (ω + β)p

s+1
χ(ω Ui, (ω + β)Ui+1)

pu ,

h∗(Ui, Ui+1) = χ(Ui, Ui+1)
ps − ωpu+1

χ(ω Ui, (ω + β)Ui+1)
ps , ωp

u+1+ps+1
= 1, and

(ω+β)p
u+1+ps+1

= 1, it can be shown that the right-hand side of (5.4.25) is zero. This

completes the proof.

Proposition 5.4.7 If ωp
i+pj+pu+ps+1

= 1, (ω+β)p
i+pj+pu+ps+1

= 1, ωp
i+pj = ωp

i+pu =

1, and (ω + β)p
u+ps+1

= (ω + β)p
j+ps+1

= 1, then the polynomial

Upi

1 U
pj+pu

2

(
χ(U3, U4)

ps − ωpi+pj+pu χ(ω U3, (ω + β)U4)
ps
)

is a 4-cocycle.

Proof. Let h(U3, U4) = χ(U3, U4)
ps − ωpi+pj+pu χ(ω U3, (ω + β)U4)

ps . Then
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δ(Upi

1 Upj+pu

2 h(U3, U4))

= δ(Upi

1 )Upj+pu

3 h(U4, U5)− Upi

1 δ(Upj+pu

2 )h(U4, U5) + Upi

1 Upj+pu

2 δ(h(U3, U4))

= ((U1 + U2)
pi − (ω + β)p

j+pu+ps+1

(ω U1 + (ω + β)U2)
pi)Upj+pu

3 h(U4, U5)

− Upi

1 · ((U2 + U3)
pj+pu − ωpi(ω + β)p

s+1

(ω U2 + (ω + β)U3)
pj+pu)h(U4, U5)

+ Upi

1 Upj+pu

2

(
h(U3 + U4, U5)− ωp

i+pj+pu h(ω U3 + (ω + β)U4, (ω + β)U5)
)

− Upi

1 Upj+pu

2

(
h(U3, U4 + U5)− ωp

i+pj+pu h(ω U3, ω U4 + (ω + β)U5)
)

= (1− ωpi (ω + β)p
j+pu+ps+1

)Upi

1 Upj+pu

3 h(U4, U5)

+ (1− (ω + β)p
i+pj+pu+ps+1

)Upi

2 Upj+pu

3 h(U4, U5)

− (1− ωpi+pj+pu (ω + β)p
s+1

)Upi

1 Upj+pu

2 h(U4, U5)

− (1− ωpi+pj (ω + β)p
u+ps+1

)Upi

1 Upj

2 Upu

3 h(U4, U5)

− (1− ωpi+pu (ω + β)p
j+ps+1

)Upi

1 Upu

2 Upj

3 h(U4, U5)

− (1− ωpi (ω + β)p
j+pu+ps+1

)Upi

1 Upj+pu

3 h(U4, U5)

+ Upi

1 Upj+pu

2

(
h(U3 + U4, U5)− ωp

i+pj+pu h(ω U3 + (ω + β)U4, (ω + β)U5)
)

− Upi

1 Upj+pu

2

(
h(U3, U4 + U5)− ωp

i+pj+pu h(ω U3, ω U4 + (ω + β)U5)
)
.

(5.4.26)

Since h(Ui, Ui+1) = χ(Ui, Ui+1)
ps−ωpi+pj+pu χ(ω Ui, (ω+β)Ui+1)

ps , ωp
i+pj+pu+ps+1

= 1,

(ω+β)p
i+pj+pu+ps+1

= 1, ωp
i+pj = ωp

i+pu = 1, and (ω+β)p
u+ps+1

= (ω+β)p
j+ps+1

= 1,

the right hand side of (5.4.26) vanishes. This completes the proof.

Proposition 5.4.8 If ωp
i+pj+pv+pu+pt+ps = 1, (ω + β)p

i+pj+pv+pu+pt+ps = 1,

ωp
i+pj = ωp

i+pv = ωp
v+pu = ωp

v+pt = 1, and

(ω + β)p
s+pt = (ω + β)p

s+pu = (ω + β)p
v+pu = (ω + β)p

j+pu = 1,

then the polynomial Upi

1 U
pj+pv

2 Upu+pt

3 Ups

4 is a 4-cocycle.
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Proof.

δ(Upi

1 U
pj+pv

2 Upu+pt

3 Ups

4 )

= ((U1 + U2)
pi − (ω + β)p

j+pv+pu+pt+ps (ω U1 + (ω + β)U2)
pi)Upj+pv

3 Upu+pt

4 Ups

5

− Upi

1 · ((U2 + U3)
pj+pv − ωpi(ω + β)p

u+pt+ps(ω U2 + (ω + β)U3)
pj+pv)Upu+pt

4 Ups

5

+ Upi

1 · U
pj+pv

2 · ((U3 + U4)
pu+pt − ωpi+pj+pv(ω + β)p

s

(ωU3 + (ω + β)U4)
pu+pt)Ups

5

− Upi

1 · U
pj+pv

2 · Upu+pt

3 · ((U4 + U5)
ps − ωpi+pj+pv+pu+pt (ω U4 + (ω + β)U5)

ps).

(5.4.27)

Note that (x+ y)p
j+pu = (xp

j
+ yp

j
)(xp

u
+ yp

u
). Hence, from (5.4.27) we have

δ(Upi

1 U
pj+pv

2 Upu+pt

3 Ups

4 )

= (1− ωpi(ω + β)p
j+pv+pu+pt+ps)Upi

1 U
pj+pv

3 Upu+pt

4 Ups

5

+ (1− (ω + β)p
i+pj+pv+pu+pt+ps)Upi

2 U
pj+pv

3 Upu+pt

4 Ups

5

− (1− ωpi+pj+pv(ω + β)p
u+pt+ps)Upi

1 U
pj+pv

2 Upu+pt

4 Ups

5

− (1− ωpi(ω + β)p
j+pv+pu+pt+ps)Upi

1 U
pj+pv

3 Upu+pt

4 Ups

5

− (1− ωpi+pj(ω + β)p
v+pu+pt+ps)Upi

1 U
pj

2 U
pv

3 U
pu+pt

4 Ups

5

− (1− ωpi+pv(ω + β)p
j+pu+pt+ps)Upi

1 U
pv

2 U
pj

3 U
pu+pt

4 Ups

5

+ (1− ωpi+pj+pv+pu+pt(ω + β)p
s

)Upi

1 U
pj+pv

2 Upu+pt

3 Ups

5

+ (1− ωpi+pj+pv(ω + β)p
u+pt+ps)Upi

1 U
pj+pv

2 Upu+pt

4 Ups

5

+ (1− ωpi+pj+pv+pu(ω + β)p
s+pt)Upi

1 U
pj+pv

2 Upu

3 Upt

4 U
ps

5

+ (1− ωpi+pj+pv+pt(ω + β)p
s+pu)Upi

1 U
pj+pv

2 Upt

3 U
pu

4 Ups

5

− (1− ωpi+pj+pv+pu+pt+ps)Upi

1 U
pj+pv

2 Upu+pt

3 Ups

4

− (1− ωpi+pj+pv+pu+pt(ω + β)p
s

)Upi

1 U
pj+pv

2 Upu+pt

3 Ups

5 .

(5.4.28)

Since ωp
i+pj+pv+pu+pt+ps = 1, (ω+β)p

i+pj+pv+pu+pt+ps = 1, ωp
i+pj = ωp

i+pv = ωp
v+pu =

ωp
v+pt = 1, and (ω + β)p

s+pt = (ω + β)p
s+pu = (ω + β)p

v+pu = (ω + β)p
j+pu = 1, the

right hand side of (5.4.28) is zero. This completes the proof.
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Let q = pm, where m is a positive integer. Let

A =
{
Upv

1 U
pu

2 Upt

3 U
ps

4 | ωp
v+pu+pt+ps = 1, (ω + β)p

v+pu+pt+ps = 1, 0 ≤ v < u < t < s <

m
}

,

B =
{(
χ(U1, U2)

pu − (ω + β)p
t+psχ(ω U1, (ω + β)U2)

pu
)
Upt

3 U
ps

4 | ωp
u+1+pt+ps = 1, (ω +

β)p
u+1+pt+ps = 1, 0 ≤ u < t < s < m

}
,

C =
{
Upv

1

(
χ(U2, U3)

pt − ωpv(ω + β)p
s
χ(ωU2, (ω + β)U3)

pt
)
Ups

4 | ωp
v+pt+1+ps = 1, (ω +

β)p
v+pt+1+ps = 1, 0 ≤ v ≤ t < s < m

}
,

D =
{
Upv

1 U
pu

2

(
χ(U3, U4)

ps − ωp
v+pu χ(ω U3, (ω + β)U4)

ps
)
| ωpv+pu+ps+1

= 1, (ω +

β)p
v+pu+ps+1

= 1, 0 ≤ v < u ≤ s < m
}

, and

E = Γ(pv, pu, pt, 0) =
{
Upv

1 U
pu

2 Upt

3 | ωp
v+pu+pt = 1, (ω + β)p

v+pu+pt = 1, 0 ≤ v < u <

t < m
}

.

We have the following Conjecture:

Conjecture 5.4.9 Fix ω, β ∈ Fq with ω 6= 0, 1. Let X be the corresponding Alexander

f -quandle on Fq where H2
Q((X, ∗, f);Fq) ∼= 0. Then A∪B∪C∪D∪E (defined above)

is a basis for the fourth cohomology H4
Q((X, ∗, f);Fq).

Example 5.4.10 Let f(x) = x4 + x+ 1 ∈ F2[x] and consider F16 = F2[x]/(f). Let ω

be a primitive element of F16. (Then the order of ω is 15). Let β = ω22. Note that

ω22 = ω + 1 and that ω22 is also a primitive element of F16 since it is a conjugate of

ω with respect to F2. We have

ω20+21+22+23 = 1 and (ω + β)2
0+21+22+23 = 1,

but ω2i+2j+2k 6= 1 for i, j, k ∈ {0, 1, 2, 3}. If Conjecture 5.4.9 is true, then A is a basis

for fourth cohomology group H4
Q((X, ∗, f);F16) where A defined above.
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6 Conclusion and Future Work

The main goal of this dissertation was to generalize quandles. We have introduced a

new hom-algebraic structure on quandles, an f -quandle. In Chapters 2, 3, and 4, we

have given definitions, properties, examples, classification, extensions, and cohomolo-

gies. Since Quandles and hom-algebraic structures have been investigated separately

in a thoroughly manner by numerous authors, one can investigate more properties and

connections of f -quandles towards different areas of Mathematics and Physics, such

as the Yang-Baxter Equation, String Theory, quantum scattering, lattice models, and

other contexts.

We have given generalized 2, 3, and 4-cocycles on Alexander f -quandles in

chapter 5. Furthermore, we have given three Conjectures, (5.2.2),(5.3.9), and (5.4.9).

We plan to work on their proofs. Also, one can investigate the results of attaching

not only one homomorphism, but several homomorphisms to an f -quandle.

We believe we have opened up a new concept that can be more and more

fruitful in Mathematics and Physics.
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Appendix A - Programming Codes

Here we present a Maple code that we used to double-check our hand calculations on

Example 4.1.5.

Maple Code 1

#clean up everything and initialize used libraries

restart:

with(group):

with(LinearAlgebra[Modular]):

#gives the dig-th digit of the number a over base pp

used for indexing purposes

digt:=proc(a,dig)

floor(a/pp^(dig-1)) mod pp: end:

pp:=3; # This is ‘‘p’’ of Z_p over which the the twisted quandle

is defined.

SS:=2;

TT:=1;

Zn:=3; #the n of Zn being mapped too

#defines the operation of the twisted quandle

h:=proc(a1,a2)

(TT*a1 + SS*a2) mod pp : end:

#1-cocycle acting on b1 and b2 with phi set to be the characteristic

function for Charic

cyc1:=proc(b1,b2,Charic)

local map1;

map1:=[seq(0,i=1..pp)];

map1[Charic+1]:=1;
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Appendix A (Continued)

(TT*map1[b1+1]+SS*map1[b2+1]-map1[h(b1,b2)+1]) mod Zn: end:

#runs 1-cocycle for all b1,b2 with characteristic function for

c1, output given as a list

Imag1:=proc(c1)

[seq(cyc1(digt(i,2),digt(i,1),c1),i=0..pp^2-1)]: end:

#2-cocycle acting on d1,d2,d3, with phi set as the characteristic

function for pair (Char1,Char2)

cyc2:=proc(d1,d2,d3,Char1,Char2)

local map1:=[seq([seq(0,i=1..pp)],j=1..pp)]:

map1[Char1+1,Char2+1]:=1:

(TT*map1[d1+1][d3+1]+SS*map1[d2+1][d3+1]+

map1[h(d1,d3)+1][h(d2,d3)+1]-TT*map1[d1+1][d2+1]-

map1[h(d1,d2)+1][h(d3,d3)+1]) mod Zn: end:

#runs 2-cocycle for all d1,d2,d3 with characteristic function

for (e1,e2), output as list

Imag2:=proc(e1,e2)

[seq(cyc2(digt(i,3),digt(i,2),digt(i,1),e1,e2),i=0..pp^3-1)]: end:

for i from 1 to pp-1 do

ImgCyc1[i,1]:=0;

ImgCyc1[i,5]:=0;

ImgCyc1[i,9]:=0;

od:

#Creates a matrix whose i-th row is the values of the

1-cocycle condition acting on the
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Appendix A (Continued)

#i-th characteristic function, evaluated on each pair of

elements in lexicographic order

ImgCyc1:=Matrix([seq(Imag1(i),i=0..pp-1)]);

#The above matrix thus gives the image of each characteristic

function, and thus a generating

#set for the Image of the 1-cocycle

#Dimension of Img of the 1-cocycle condition

Rank(pp,ImgCyc1);

#Creates a matrix like a above for the second cocycle condition

ImgCyc2:=Matrix([seq(Imag2(digt(i,2),digt(i,1)),i=0..pp^2-1)]):

#implements 2-cocycle secondary condition \xi[i][i]=0

for i from 1 to pp^3 do

ImgCyc2[1,i]:=0;

ImgCyc2[5,i]:=0;

ImgCyc2[9,i]:=0;

od:

ImgCyc2;

#Dimension of Img of the 2-cocycle condition

Rank(pp,ImgCyc2);
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#These give the basis vectors for the Img of 1-cocycle and

2-cocycle conditions

Basis(Zn,ImgCyc1,row,row,false);

Basis(Zn,ImgCyc2,row,row,false);

#These give the basis vectors for the ker of 1-cocycle

and 2-cocycle conditions

Nullspace(ImgCyc1^+) mod 3; Nullspace(ImgCyc2^+) mod 3;
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