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Abstract 

In the first essay I examine the relation between firm advertising and tax 

aggressiveness. Advertising increases firm visibility in both the product and the 

financial market. While investors would appreciate more tax savings, they are aware of 

the negative impact of tax aggressiveness on consumers’ views of the firm and hence its 

competitive positions in the product market. We find that firms that spend more on 

advertising have fewer tax sheltering activities, lower book-tax differences, and higher 

cash effective tax rates. Specifically, an increase of 1% on Advertisingi,t  (ADVGPi,t), the 

firm pays an additional tax of $0.70 million ($10.92 million). However, the negative 

impact of advertising on tax aggressiveness becomes weaker (and even reverses) for 

firms having great transparency, more public scrutiny, or strong external monitoring. 

We control for endogeneity using propensity score matching and an instrumental 

variable approach. Our findings are consistent with the argument that advertising 

enhances corporate reputation and is an important determinant in firms’ tax planning. 

In the second essay I document a significant increase in opportunistic insider 

trades when retail investors are paying greater attention to the stock. Using Google SVI 

to proxy for their level of attention, we find that a higher (lower) SVI on a stock is 

associated with more insider sales (purchases) of the stock and greater abnormal 
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returns on the sales (purchases). A value-weighted long-short portfolio mimicking 

insider trades would earn an abnormal return of 1.19% per month (14.28% per year), 

excluding transaction costs. We also fund that the SVI-related insider traders tend to be 

non-independent directors who have long tenures but no senior executive positions in 

their firm and the firm tends to exhibit weaker governance, lower reputation, and 

poorer social responsibility. Our results are more pronounced for lottery-type stocks but 

are weaker for stocks with large attention of local investors. Interestingly, the risk of 

SEC investigation and litigation is lower on SVI-related insider sales and this type of 

sales actually rises following an increase in news releases of SEC enforcement action. 

Overall, certain insiders appear to engage in trades to take advantage of variations of 

retail investors’ attention to their stock. 
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Essay 1- Advertising and Firm Tax Aggressiveness 

Introduction 

Corporate advertising helps the firm shape its image and convey tailor-made messages 

to an audience that includes consumers as well as investors. Marketing research 

identifies a number of benefits of product market advertising such as providing useful 

information about the firm, its products and their quality (Nelson, 1974; Grossman and 

Shapiro, 1984), and engaging customers in a dialogue and gaining their trust (Keller, 

2001; Smith et al., 2014). In particular, firms use advertising to promote product 

differentiation and create barriers to entry (Comanor and Wilson, 1974; Rumelt, 1987), 

to build and enhance firm and product reputation (Klein and Leffler, 1981; Kreps and 

Spence, 1985; Jorgensen and Isaaksson, 2008), and to project attractive images of 

corporate citizenship and responsibilities (Fombrun et al., 2000; Pashupati et al., 2002).  

More recently, research recognizes the spillover effect of product market 

advertising on the investment community. Advertising affects investors’ interests in the 

firm’s securities and influence their investment decisions. For example, advertising 

helps to attract investors’ attention, lower their information search costs, and enhance 

the firm’s overall visibility in the financial market (Sirri and Tufano, 1998; Grullon et al., 

2004; Frieder and Subrahmanyam, 2005; Lou, 2014). A firm may also use advertising to 
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signal its quality (Chemmanur and Yan, 2009) and to influence investors’ perceptions of 

its long-term prospect (Pauwels, 2004). Given the importance of advertising in 

attracting both consumers and investors’ attention to the firm and shaping their views, 

an interesting question concerns how advertising affects the firm’s corporate decisions 

and especially its tax policy. In particular, does a greater extent of advertising make a 

firm more or less aggressive in pursuing strategies that would lower its tax liabilities? 

This is an interesting question because the firm’s customers (or potential customers) 

and its investors may draw very different conclusions when they become aware of its 

tax aggressiveness.  

The key objective of product market advertising is to expand the reach of firm 

products (or services) to consumers. To achieve this goal, a firm often spends a 

significant amount of advertising dollars to portray it as committing to good product 

quality, great customer services, and meeting or exceeding consumers’ high 

expectations about the firm’s corporate responsibilities and overall reputation. A public 

exposure of negative incidents or breaches of these commitments may jeopardize the 

firm’s reputation in the eyes of consumers and affect their general interests in the firm’s 

products. Indeed, a public revelation that a firm explores various tax loopholes to avoid 

paying a “fair” share of corporate taxes may cause consumers to view the firm 

negatively and to react poorly to its products, in light of the perception of the firm’s 

poor corporate citizenship and ethics. Now, with a greater extent of product market 

advertising that increases a firm’s public exposure and visibility to consumers, the cost 
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would be greater if the firm is perceived to be a poor corporate citizen that does not pay 

its share of taxes. In this sense, firms that spend more on advertising would have the 

greater incentive to refrain from employing aggressive strategies to lower taxes. In other 

words, product market advertising may serve as a commitment to a reputation of not 

engaging in aggressive tax activities, and we refer to this effect of advertising on tax 

aggressiveness as Product Market Commitment (PMC).1 

Product market advertising can spill over to the financial market, causing more 

investors to pay attention to the firm and generating greater investor interests in its 

securities (primarily, stock). But, what is the effect of tax aggressiveness on firm 

investors? On one hand, the negative effect of firm tax aggressiveness on consumers’ 

product-purchase decisions would adversely affect the firm’s investors by lowering its 

sales and profits. Thus, the PMC effect of advertising on tax aggressiveness would carry 

over to the financial market, as investors recognize the threat of firm tax avoidance to its 

product market positions. On the other hand, a policy of pursuing legal tax avoidance 

(not illegal tax evasion) would improve the firm’s tax efficiency and benefit its 

shareholders by lowering the firm’s tax liabilities and increasing its after-tax income. 

Therefore, it is possible that greater advertising by a firm could increase investors’ 

awareness of the firm’s tax efficiency. In contrast to the PMC effect, the benefit to 

                                                           
1 Fombrun and Shanley (1990) define corporate reputation as a cognitive representation of a firm’s actions 
and results that crystallizes its ability to deliver valued outcomes to its stakeholders. As an example of a 
firm’s sensitivity to corporate citizenship concerns, consider Starbucks’ response to allegations by U.K. 
politicians that it was avoiding U.K. taxes (http://www.dailymail.co.uk/news/article-
2606274/Starbucks-pay-tax-Britain-relocates-European-headquarters-London-following-customer-
boycott.html). To defuse the adverse publicity, Starbucks volunteered to pay more taxes in the U.K. than 
were required by the tax code (http://www.nytimes.com/2012/12/07/business/global/07iht-
uktax07.html). 

http://www.dailymail.co.uk/news/article-2606274/Starbucks-pay-tax-Britain-relocates-European-headquarters-London-following-customer-boycott.html
http://www.dailymail.co.uk/news/article-2606274/Starbucks-pay-tax-Britain-relocates-European-headquarters-London-following-customer-boycott.html
http://www.dailymail.co.uk/news/article-2606274/Starbucks-pay-tax-Britain-relocates-European-headquarters-London-following-customer-boycott.html
http://www.nytimes.com/2012/12/07/business/global/07iht-uktax07.html
http://www.nytimes.com/2012/12/07/business/global/07iht-uktax07.html
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shareholders of improved corporate tax efficiency suggests that advertising may serve 

as an alternative commitment to lowering the firm’s tax liabilities, and we refer to the 

latter effect of advertising on tax aggressiveness as Tax Efficiency Commitment (TEC). 

While it is generally ambiguous which effect – PMC or TEC – of advertising on 

tax aggressiveness dominates, the tax aggressiveness literature in accounting offers 

some tentative suggestions. Desai and Dharmapala (2009a) observe that a common 

characteristic of aggressive tax strategies is their general complexity and ambiguity, and 

firms that employ these strategies also tend to be involved in earnings management, in 

withholding certain information from investors, and in managers’ abusing corporate 

resources for personal gains. Desai and Dharmapala (2009b) show that a firm’s overall 

transparency and governance is an important determinant on whether its tax 

aggressiveness benefits shareholders; in particular, strategies that result in lower 

corporate tax liabilities are more likely to be value enhancing if the firm has in place a 

good and non-opaque governance and oversight structure. Their results suggest that for 

advertising to have a positive effect on tax aggressiveness – for the TEC effect to 

dominate the PMC – firms must have sufficiently good managerial oversight and 

corporate transparency. In contrast, for firms with murky governance structures and 

generally opaque informational environments, managers have more opportunities to 

take actions that benefit them personably. In the accounting literature, aggressive tax 

strategies are associated with the kind of activities that thrive in opacity, raising the 

question of whether agency considerations may be in play when managers pursue such 

strategies. Since for firms that are a priori opaque, advertising can significantly enhance 
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these firms’ public visibility and exposure, thereby improving their transparency, for 

such firms, the PMC effect of advertising on tax aggressiveness would likely be more 

important than that of TEC; that is, advertising would reduce the firms’ tax 

aggressiveness.  

Using a large sample of U.S. public firms over the period of 1995 to 2013, we find 

that firms that spend more on advertising are generally less tax aggressive; the firms 

have lower probabilities of engaging in tax sheltering activities, lower book-tax 

differences, and higher cash-effective tax rates, after controlling for firm characteristics 

and for year and industry effects. The negative impact of adverting on tax 

aggressiveness is also stronger for firms having greater informational opacity in the first 

place. Overall, our findings support the PMC effect that product market advertising 

reduces tax aggressiveness. Hanlon and Heitzman (2010) raise an under-sheltering 

puzzle by asking the question of “why do some corporations avoid more taxes than 

others.” Our paper addresses this question by proposing a cost and benefit tradeoff 

when management makes decisions on the firm’s tax policy. Essentially, management 

weighs the direct benefit of lower tax liabilities against the potential cost of adverse 

consumer reactions toward a tax aggressive firm. Our results suggest that by increasing 

a firm’s product market exposure, advertising serves as a commitment to less tax 

aggressiveness. 

Interestingly, our subsample analyses reveal that for certain types of firms, the 

TEC effect can dominate the PMC – increased advertising can lead to more aggressive 



 

6 
 

tax planning. In particular, when firms that have large reputation capital in place or that 

face strong public pressure or external monitoring (e.g., those in the S&P 1500 index or 

with large institutional ownerships) increase advertising, the firms are more likely to 

engage in planning strategies to lower their tax liabilities. In other words, for these 

types of firms advertising actually has a positive impact on their tax aggressiveness.  

In the subsample of firms with family ownerships, our evidence also shows a 

positive effect of advertising on tax aggressiveness. We find that family firms with high 

advertising expenditures are no longer less tax aggressive than non-family firms. This 

finding contrasts to Chen et al.’s (2010) result that family firms are less tax aggressive 

than non-family firms; they argue that family firms’ concerns for valuation discounts 

make them less interested in having a complex informational environment that may be 

needed to facilitate aggressive tax strategies. Our result suggests that a greater extent of 

advertising may sufficiently increase the information flow and overall transparency of 

family firms, making valuation discounts less a concern, and therefore, these firms no 

longer need to be more conservative in their tax planning. Moreover, the unique 

ownership structure of family firms suggests that the firms’ tax aggressive strategies are 

likely to improve corporate tax efficiency, benefiting the firms’ shareholders (as well as 

their managers).  

A firm’s advertising expenditure, of course, is at management’s discretion and is 

not exogenous. It is possible that managers of firms that are prone to aggressive tax 

planning may choose to decrease advertising spending, so as to reduce public attention 
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to the firms and to limit the public exposure of tax aggressiveness. We address the 

endogeneity issue in two ways. First, we utilize the instrumental variable (IV) approach. 

The IV we choose is the number of (significant) customers that a firm reports; this 

number is highly correlated with the firm’s advertising expenditure but has little or no 

relation with its tax planning. Additional tests further support the quality of our 

instrument. Second, we use the propensity score matching method to isolate the effect 

of advertising on tax aggressiveness while controlling for firm characteristics at the 

same time. In both cases, our results are qualitatively unchanged and remain both 

statistically and economically significant.  

There is a growing stream of research on how product market advertising affects 

financial markets. Closely related is Grullon et al. (2004) who find that higher 

advertising spending helps to generate greater interests of individual as well as 

institutional investors to the firm’s stock and to increase the stock’s liquidity.2 As in 

theirs, increased advertising in our analysis improves the firm’s informational 

environment; however, the improved informational environment here affects the firm’s 

tax policy. To our knowledge, our paper is the first to link firm advertising to its tax 

planning. 

Another closely related paper is Gallemore et al. (2014) who examine whether 

corporate reputation concerns deter firms’ tax sheltering activities; they find that such 

concerns appear to have little impact. Our paper is similar in that we too address how 

                                                           
2 See also Srinivasan et al. (2009). Relatedly, Jain and Wu (2000) find that mutual fund managers use 
advertising to attract the interests of potential investors in spite of no significant differences in their post-
advertisement performance.  
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product market reputation may be a concern for a firm’s tax aggressiveness, but it 

differs in two important ways. First, our sample consists of a broad spectrum of firms, 

instead of limiting it only to firms that are involved in tax sheltering activities. Our 

broad sample reduces a potential self-selection bias that firms which are involved in tax 

sheltering activities might have less concern for reputation. Second, unlike Gallemore et 

al.’s (2014) use of the Fortune magazine ranking as proxy for firm reputation, a firm’s 

advertising expenditure seems to be a more direct measure of its public visibility and 

reputation because of advertising’s wide reach to consumers and investors. Using our 

advertising measures, we find that firms that spend more on advertising – thus likely 

having greater concerns for potentially negative product market reactions upon 

unflattering tax avoidance allegations – are indeed less aggressive in their tax planning.  

The rest of the paper is organized as follows. The next chapter reviews the 

related literature on advertising and tax aggressiveness and develops testable 

hypotheses. Chapter three describes the sample selection procedures and provides 

summary statistics. Chapter four presents the empirical model and discusses variable 

construction. Chapter five shows the empirical findings. Chapter six concludes.  

Literature Review and Hypothesis Development 

Advertising  

A large literature on advertising examines its impacts on the product market (e.g., 

Nelson, 1974; Mcleod and Kunita, 1994; Keller, 2001; Smith et al., 2014) and its spillover 

effects on the financial market (e.g., Grullon et al., 2004). The basic observation is that 
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advertising enhances the visibility of the firm by drawing more attention of consumers 

and investors to the firm, its products, and its stock. An important implication is that 

firms that spend more on advertising will have at stake greater reputation capital if they 

take actions that may be perceived by the public to be unethical.  

It is well known that companies use advertising to convey important messages to 

their constituents, striving to influence the audience’s perceptions and decisions 

(Mizruchi and Schwartz, 1992). Examining the long term impact of advertising on the 

market capitalization of firm, Joshi and Hanssens (2010) find that advertising increases 

firm value by improving its risk and return profile. Lou (2014) argues that advertising 

increases investors’ interest in the firm’s stock, which causes a short-term rise in the 

stock price; consistent with this view, Lou (2014) finds that firms increase their 

advertising expenditures prior to the firms’ seasoned equity offerings (SEOs) and their 

insiders’ sales of stocks. Similarly, Fich et al. (2016) show that merger and acquisition 

target firms increase their advertising spending, so as to secure higher takeover 

premiums or to attract more bidders. While our analysis is similar in that it too 

examines the spillover effects of product market advertising, our focus is the impact of 

advertising on tax policy.  

That advertising attracts people’s attention stems from the view that individuals 

have limited attention spans and attention-grabbing news or events influence their 

purchase or investment decisions. Seasholes and Wu (2005) document greater buying 

interests by individual investors of a firm’s stock when there are attention-grabbing 
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events or news on the firm, possibly because such occurrences lower the investors’ costs 

of searching for investment opportunities. Barber and Odean (2008) argue that 

individual investors have “limited cognitive abilities and preferences on their choice 

sets” and are net buyers of attention-grabbing stocks.3 Fang and Peress (2008) find that 

media coverages on particular firms affect their stock prices even when the coverages 

contain no genuine news about the firms. Research has also shown that investors tend 

to focus on “familiar firms” with the consequence that many investors’ portfolios are 

overly concentrated on the familiar stocks and are not sufficiently diversified. For 

examples, Frieder and Subrahmanyam (2005) report that individual investors are more 

likely to hold stocks of firms that have strong brand recognitions, and Keloharju et al. 

(2012) document a direct link between individuals’ product choices and their 

investment decisions. In particular, investors are more likely to buy, and less likely to 

sell, a firm’s stock if they are frequent customers of the firm’s products. This 

relationship is also stronger, the greater the customers’ product preferences.  

Tax Aggressiveness 

Corporate income taxes represent significant costs to successful companies by 

reducing their free cash flows that would otherwise be available for investments or 

other discretionary uses by managers. For this reason, managers of firms have the 

incentive to engage in tax planning activities to minimize the firms’ tax liabilities. Some 

may even attempt aggressive tax strategies that are unethical or may end up being 

                                                           
3 Barber and Odean (2008) define attention-grabbing stocks as those appearing in the news, experiencing 
high abnormal trading volume, or having extreme one day returns. 



 

11 
 

impermissible by the Internal Revenue Services (IRS). According to a report by the 

Citizens for Tax Justice,4 although the U.S. has long had a high corporate income tax 

rate of 34% or 35%, Fortune 500 U.S. companies pay an average tax rate of only 18.5% 

and 30 of the companies actually have a negative income tax due. A key issue in 

aggressive tax planning is the difference between (legal) tax avoidance and (illegal) tax 

evasion. In reality, it is often very hard to make a distinction; as Denis Healey (a British 

politician) puts it, the difference between what is and is not legal is “the thickness of a 

prison wall.” To deter and detect abusive tax strategies by U.S. corporations, the IRS has 

been increasing its enforcement actions, including various attempts to uncover 

corporate offshore tax avoidance schemes.  

Given the importance of tax, it is not surprising that firms’ tax policy, 

particularly their incentive for tax aggressiveness, has received considerable attention 

from researchers and regulators alike. A number of papers examine tax aggressiveness 

in a managerial agency framework. In a model linking managerial incentive 

compensation to corporate tax planning, Slemond (2004) argues that incentive 

compensation should motivate managers to make tax-efficient decisions that benefit 

shareholders. Consistent with this argument, Armstrong et al. (2012) find that firms that 

provide incentive contracts to tax directors observe lower reported tax expenses. Of 

course, there are potentially high costs, direct and indirect, to tax aggressiveness. The 

direct costs arise from increased personnel and budget in the tax department – hiring 

and paying very expensive fees to tax specialists or consultants. The indirect costs 

                                                           
4 See http://money.cnn.com/2011/11/03/news/economy/corporate_taxes/index.htm?iid=HP_LN.  

http://money.cnn.com/2011/11/03/news/economy/corporate_taxes/index.htm?iid=HP_LN
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include potentially costly future lawsuits, fines and penalties by the IRS for abusive tax 

reporting, as well as reputation costs to the firm and its executives (Chen et al., 2010). 

With the increased risk of IRS enforcement, a firm’s tax aggressive behavior may also 

distort its management’s effort incentive (Chen and Chu, 2005).  

 A firm’s governance structure and general informational opacity affects its 

policy on tax aggressiveness. Desai and Dharmapala (2006) suggest a positive feedback 

between a firm’s tax sheltering and its managers’ rent extraction; the relationship, 

however, is weaker for firms having better corporate governance. Desai et al. (2007) find 

that when managers want to reduce corporate taxes and divert resources for personal 

use, they structure the firm in a very complex manner; this diversion problem becomes 

more serious, the weaker the firm’s corporate governance. Comparing tax 

aggressiveness behaviors of family versus non-family firms, Chen et al. (2010) find that 

family firms are generally less tax aggressive; they argue that family firms forgo tax 

savings from complex tax planning to avoid significant stock price discounts that 

outside investors would demand in light of the additional complexity. Kim et al. (2011) 

document a close association between a firm’s tax avoidance and its stock-crashing risk; 

their result is supportive of the view that tax avoidance is a means of managerial rent 

extraction by withholding bad news, and the stock crashes when hoarding from 

investors the accumulated bad news is no longer possible.  

There is an extensive literature in finance examining how tax planning affects 

corporate decisions on capital structure, payout, compensation, risk management, and 
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even organizational form (for a comprehensive review, see Graham, 2003).  The tax 

benefit of debt is known to significantly influence corporate capital structure decisions. 

Concerning how firm debt use affects tax aggressiveness, Graham and Tucker (2006) 

find a negative relationship between debt levels of firms and the firms’ tax sheltering 

activities. Lin et al. (2014) report a lower extent of tax aggressiveness by more levered 

firms. The results suggest a substitution effect between tax-shield benefits of debt and 

tax savings from aggressive planning. There is also evidence that this substitution effect 

is intensified in the presence of outside directors (Rchardson et al., 2014).  

Hypothesis Development 

The perception of a firm, positive or negative, by its customers has a significant 

impact on the firm’s future. According to a recent survey by accounting firm 

PricewaterhouseCoopers (PWC 16th Annual Global CEO Survey), 80% of the CEOs 

agree that customers and clients exert significant influence on their business strategies, 

and the CEOs are very aware of the importance of public opinions and perceptions to 

the future of their firms. Clearly, individuals are more likely to buy a firm’s products if 

they have a positive view of the firm, and to distrust the firm and its products if their 

perception of the firm is negative – for example, if the firm is viewed as having poor 

corporate ethics. A key aspect of firm tax aggressiveness is that it is often associated 

with a high degree of public beliefs of corporate greed, perceiving firms that are 

involved in aggressive tax activities to be socially irresponsible and unethical. Indeed, 

Senator Carl Levin recently quoted a survey showing that two-thirds of Americans 

believe that U.S. corporations should bear a larger share of the tax burden. In academic 
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research, tax aggressive activities are also found to have a negative impact on the firm 

when they are associated with hidden actions of management (Scholes et al., 2005; Desai 

et al., 2007).  

Since advertising has been shown to increase firm visibility (e.g., Grullon, 2004) 

and to enhance its reputation capital (e.g., Klein and Leffler, 1981), it is plausible that 

managers of firms that spend more on advertising would be more conservative in their 

firms’ tax reporting. This is because customers’ knowledge of a firm’s tax 

aggressiveness and their subsequent negativity towards the firm can damage its 

reputation and result in possibly lost sales. The personal reputation of the firm’s 

managers may also be at stake. Fich and Shivdasani (2007) document a substantial 

impact to firms’ outside directors following financial fraud allegations against the firms; 

the directors experience a marked decline in their subsequent appointments to other 

corporate boards following such allegations. In a similar vein, Borghesi et al. (2014) 

argue that managers may pursue corporate social responsibility activities to enhance 

their personal as well as their firms’ reputation; they find that firms with higher 

advertising outlays are associated with higher levels of socially responsible corporate 

activities. Now, if a greater extent of advertising increases a firm’s public exposure and 

helps it better reach consumers, the cost becomes higher if the firm is viewed as being a 

poor corporate citizen that does not pay its “fair” share of tax. With this in mind, firms 

that spend more on advertising should have a stronger incentive not to engage in 

aggressive strategies to lower taxes. Thus, we hypothesize that advertising by firms 
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serves as a commitment to a conservative corporate tax policy, and we refer to this 

effect of advertising on tax aggressiveness as Product Market Commitment (PMC).  

Hypothesis 1 (H1): Higher advertising expenditures by firms are associated with less 

occurrence of their managers’ pursuing aggressive tax strategies – the PMC effect.  

The existing literature suggests that tax aggressiveness is linked to a high level of 

information asymmetry and possibly also to more severe managerial agency problems. 

For examples, Desai and Dharmapala (2006) argue that effective tax avoidance 

strategies require concealment of the underlying transactions, and Bushman et al. (2004) 

show that operational complexity of firms is usually associated with an extensive 

corporate engagement to arbitrage tax codes and financial regulations.5 Balakrishnan et 

al. (2012) find that tax aggressiveness reduces corporate reporting transparency and 

managers of tax aggressive companies often have to make additional tax related 

disclosures. Since operational complexity and general opacity appears almost to be a 

precondition for tax aggressiveness, we hypothesize that the Product Market 

Commitment (PMC) effect of advertising on tax aggressiveness is stronger for firms that 

are informationally more opaque a priori. 

 Hypothesis 2 (H2): The PMC effect is stronger for firms having a higher degree of 

opacity at the outset.  

                                                           
5 Apple Inc.’s complex tax planning has been alleged to complicate efforts by its shareholders and board 
members to comprehend the firm’s foreign operations 
(http://www.forbes.com/sites/beltway/2013/05/21/the-real-story-about-apples-tax avoidance-how-
ordinary-it-is/). 
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Tax aggressiveness may simply reflect managers’ maximizing shareholder 

wealth by lawfully reducing their firms’ tax liabilities (Slemrod, 2004). In other words, 

tax avoidance does not have to entail a managerial agency consideration (Hanlon and 

Heitzman, 2010).  Similarly, Frank et al. (2009) define aggressive tax reporting as a 

“downward manipulation of taxable income” that may not be fraudulent. Indeed, if 

investors view tax aggressiveness as management pursuing legal strategies to improve 

corporate tax efficiency, they should appreciate and even reward management for 

engaging in such activities. In this regard, by enhancing firms’ visibility to the 

investment community, advertising may commit the firms to pursuing an efficient tax 

policy, and we refer to this effect of advertising on tax aggressiveness as Tax Efficiency 

Commitment (TEC).6 

We have proposed a negative (PMC) and a positive (TEC) effect of advertising on 

tax aggressiveness. While it is generally ambiguous which of the effects would 

dominate, the literature on tax aggressiveness suggests that the TEC could dominate the 

PMC when firms have in place strong governance structures or face great external 

monitoring by large shareholders (institutional investors). Examining the effect of 

institutional ownership on tax aggressiveness, Khurana and Moser (2009) find that 

higher institutional ownerships are generally associated with increased tax aggressive 

activities; their result is consistent with the argument that institutional investors 

pressure managers to act in shareholders’ interest by reducing corporate taxes. Desai 

                                                           
6 The same Apple story alleged that the firm reduced its tax liabilities in 2012 by reporting as much 
income as allowed in countries with lower tax rates while expensing as much costs as permitted in 
countries (e.g., the U.S.) that have much higher tax rates. 
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and Dharmapala (2009b) argue that good corporate governance is another determinant 

that makes tax aggressiveness beneficial to shareholders. Thus, for firms with a priori 

good governance and strong external monitoring, a greater amount of advertising 

spending may reflect the firms’ commitment to engaging in aggressive tax planning 

that improves their tax efficiency. Evidently, this alternative relationship between 

advertising and tax aggressiveness is more likely to be important when there is a 

greater shareholder pressure on management. For these firms, it is possible that the net 

effect is positive of advertising on tax aggressiveness; that is, the TEC effect may 

dominate the PMC.   

Hypothesis (H3): The PMC effect is less pronounced or even dominated by the TEC effect 

for firms that a priori face greater shareholder pressure or public scrutiny. 

An interesting case to examine the opposing PMC and TEC effects of advertising 

on tax aggressiveness is to look at family versus non-family firms. Chen et al. (2010) 

show that family firms are generally less tax aggressive than non-family firms because 

family firms are more concerned with valuation discounts and are therefore less 

interested in having complex informational environments that would be needed to 

facilitate aggressive tax strategies. Now, if a greater extent of advertising sufficiently 

increases the information flow and the overall transparency of family firms, thereby 

adequately addressing outside investors’ concerns, the family firms may no longer need 

to be conservative in their tax planning. Moreover, the unique ownership structure of 

family firms suggests that these firms’ aggressive tax planning that improves tax 
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efficiency is likely to benefit their shareholders (not just managers). Taken together, our 

last hypothesis posits that for family firms, the TEC effect is more dominant than the 

PMC.  

Hypothesis (H4): The TEC effect should be more pronounced for family firms than non-

family firms. 

Sample Selection and Descriptive Statistics 

Data 

Our initial sample contains all companies that appear in the Compustat North 

American Annual File during the sample period of 1995 to 2013. As Kim et al. (2011), 

we begin our sample period in 1995 to minimize potential impacts on the consistency of 

our tax avoidance measures from two regulatory changes in 1993 – FAS 109 that altered 

the accounting for income taxes and an increase from 34% to 35% of top corporate 

income tax rate. Advertising expenditure (item 45) is a key variable in our analysis, 

representing the firm’s spending on all sorts of advertising media (radio, television, 

newspapers, periodicals, etc.) and promotional activities. After excluding observations 

that have missing values on the key advertising variable, our sample size drops 

substantially. We exclude financial and utility firms (SIC between 6000-6999 and 

between 4900-4999) 7 as well as firms incorporated outside the U.S. (ones with Foreign 

Incorporation Codes-FIC). To be included in the sample, firms must be at least one year 

old since the first-year data tend to contain more errors. Moreover, our analysis is based 

                                                           
7 Advertising expense (item 45) is not available for banks or utility firms, and therefore, our final sample 
excludes these firms. 
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only on firms that report a positive amount of advertising expenditure since we cannot 

differentiate between ones that report a zero advertising expense and others that do not 

report any. We exclude firms with missing observations on the right-hand size of 

baseline regression.8 All variables are winsorized at 1% and 99% to mitigate potential 

outliers. Our final sample consists of 14,871 firm-year observations. 

We construct two variables to indicate the degree of external monitoring and that 

of corporate informational opacity. The first is based on institutional holdings from 13F 

institutional filings that begin in 1980. This dataset is formerly known as 

CDA/Spectrum 34 and includes institutional managers who have at least $100 million 

of assets under management. As Anderson et al. (2009), we construct an opacity index 

at the firm level using CRSP (Center for Research in Security Prices) and IBES 

(Institutional Brokers’ Estimate System) datasets. 

Measuring Tax Aggressiveness 

We apply five different measures of tax aggressiveness to triangulate the results 

since each measure has its own limitations and may not capture perfectly the degree to 

which a firm is involved in tax aggressive activities (Hanlon and Hertzman, 2010). We 

discuss each measure briefly here with a detailed variable definition provided in 

Appendix A. Our first measure is the sheltering probability (Shelter_Probi,t) introduced 

by Wilson (2009) to capture the likelihood of most egregious tax aggressive activities, 

which is computed as follows: 

                                                           
8 We also use the unbalanced panel sample, and the inference from our main regression is unaltered. 
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𝑆ℎ𝑒𝑙𝑡𝑒𝑟_𝑃𝑟𝑜𝑏𝑖,𝑡 = −4.86 + 5.20 × 𝐵𝑇𝐷𝑖,𝑡 + 4.08 × 𝐷𝐴𝑖,𝑡 − 0.41 × 𝐿𝐸𝑉𝑖,𝑡 + 0.76 × 𝐴𝑇𝑖,𝑡 

+3.51 × 𝑅𝑂𝐴𝑖,𝑡 + 1.72 ∗ 𝐹𝐼𝑖,𝑡 + 2.43 × 𝑅𝐷𝑖,𝑡 

      Our second measure of tax aggressiveness is the cash effective tax rate 

(CETRi,t ) which is affected by tax deferral strategies of the firm: 

𝐶𝐸𝑇𝑅𝑖,𝑡 = 𝐶𝑎𝑠ℎ 𝑇𝑎𝑥𝑒𝑠 𝑃𝑎𝑖𝑑𝑖,𝑡(# 317) 𝑃𝑟𝑒𝑡𝑎𝑥 𝐼𝑛𝑐𝑜𝑚𝑒𝑖,𝑡(#170)⁄  

This measure captures a broader scale of tax avoidance, including both permanent and 

temporary differences. Since this measure focuses on the amounts of tax payments, it 

emphasizes managerial discretions at actual taxes paid to tax authorities. A lower cash 

effective tax rate, a smaller CETR, implies a higher level of tax aggressiveness.  

The next two measures of tax aggressiveness are based on a book-tax difference 

(BTD) which captures the difference between income reported to investors and that to 

tax authorities. Wilson (2009) finds that firms with a higher probability of tax sheltering 

activities are likely to have a larger BTD, and Mills (1998) reports that large BTD firms 

are likely to be audited by the IRS and see a significant audit adjustment. Our first 

book-tax difference measure is KIMBTDi,t constructed by Kim et al. (2011).9 A large BTD 

may reflect accrual manipulation or earnings management (Desai and Dharmapala, 

2009). Many studies suggest that such manipulation is likely to occur on accruals that 

                                                           
9 We have to exclude Manzon and Plesko’s (2002) measure because it uses only U.S. numbers to compute book-tax 
differences and thus fails to capture the total tax aggressive of many multinational firms. 
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are under managerial discretion. Thus, our next measure of tax aggressiveness is 

DDKIMBTDi,t, the residual of KIMBTD after controlling for earnings management.10  

The last measure of tax aggressiveness is based on the discretionary permanent 

book-tax difference for firm i in year t (DTAXi,t), following Frank et al. (2009). This 

measure, relying on permanent book-tax differences, is free of earnings management 

bias, is less spurious than other measures (e.g., the ETR) when firms manage pre-tax 

earnings upwards, and captures more in-depth tax shelter activities.  

Table 1 displays the descriptive statistics of our initial sample. Due to data 

requirements in the estimation procedures, the sample sizes for these measures vary, 

for example, from 9,937 for CETRi,t, to 14,256 for KIMBTDi,t. Our sample statistics for 

aggressive tax avoidance measures are consistent with those in the literature. Panel A of 

Table 1 shows cross-sectional differences for the tax aggressive measures of our sample 

firms. For instance, between the 25th (Column P25) and 75th percentile (Column P75), the 

range is 0.156 to 0.376 for CETRi,t, 0.013 to 0.476 for KIMBTDi,t, and –0.020 to 0.060 for 

DTAXi,t. On our advertising measures, the mean (median) of advertising expenditure, 

Advertisingi,t, is $51.719 million ($2.3 million), and the mean (median) of the ratio of 

advertising expenditure to gross profits,  ADVGPi,t,  is 0.080 (0.035). Thus, firms’ average 

advertising spending is $51.719 million, about 8% of their gross profits. There are also 

significant cross-sectional differences on control variables such as ROA, age, leverage, 

size, and MTB, indicating a wide variety of characteristics of our sample firms. Panel B 

                                                           
10 We use the total accrual, constructed as in Hribar and Collins (2002), to proxy for earnings management (see 
Appendix A for a detailed description). 
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of Table 1 displays the Pearson correlation matrix for our five tax aggressive measures. 

As expected, there are negative correlations between the cash effective tax rate and each 

of the other four tax aggressive measures, and positive correlations between any pairs 

of the other four. 

To investigate whether tax aggressiveness diminishes with advertising, we first 

control for firm size by partitioning the overall sample into quintiles based on market 

capitalization, and then group each market value portfolio into five sub-quintiles based 

on the amount of advertising expenditure. Table 2 presents the results of this univariate 

test. Controlling for size, a larger amount of advertising spending is associated with a 

lower level of tax aggressiveness – a smaller SHELTERi,t, KIMBTDi,t, DDKIMBTDi,t, and 

DTAXi,t but a larger CETRi,t. The differences in means between the largest and smallest 

advertising quintiles are both economically and statistically significant in all market 

capitalization quintiles.11 The univariate test results are supportive of the PMC effect 

(H1): an increase in advertising reduces management’s incentive for aggressive tax 

planning. Looking at each advertising quintile more closely, we see that on all five 

measures of tax aggressiveness, the effect of advertising tends to be smaller as firm size 

gets larger. In other words, the product market commitment value of advertising to 

lower tax aggressiveness tends to be stronger, the smaller the firm size. This finding is 

supportive of our second hypothesis (H2) that smaller firms a priori exhibit greater 

opacity and therefore the impact of advertising is greater for these firms. Overall, our 

                                                           
11 We observe a similar pattern by partitioning the sample based on the advertising expenditure to gross 
profit measure.  
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results in Table 2 are consistent with the argument that greater advertising in 

magnitude and in intensity (see footnote 11) is related to fewer tax aggressive activities, 

irrespective of firm size. 

Empirical Model 

To rigorously test our hypotheses, we employ the following regression model: 

𝑇𝑎𝑥𝐴𝑔𝑔𝑖,𝑡 = 𝛼0 + 𝛽1[𝐿𝑜𝑔(𝐴𝐷𝑉)𝑖,𝑡 𝑜𝑟 𝐴𝐷𝑉𝐺𝑃𝑖,𝑡] + 𝛽2𝑅𝑂𝐴𝑖,𝑡 + 𝛽3𝐿𝐸𝑉𝑖,𝑡 + 𝛽4𝑁𝑂𝐿𝑖,𝑡 +

𝛽5∆𝑁𝑂𝐿𝑖,𝑡 + 𝛽6𝐹𝐼𝑖,𝑡 + 𝛽7𝑃𝑃𝐸𝑖,𝑡 + 𝛽8𝐼𝑁𝑇𝐴𝑁𝐺𝑖,𝑡 + 𝛽9𝐸𝑄𝐼𝑁𝐶𝑖,𝑡 + 𝛽10 log(𝐴𝐺𝐸)𝑖,𝑡 +

𝛽11 (𝑅𝐷)𝑖,𝑡 + +𝛽12𝐷𝐼𝑉𝑖,𝑡 +  𝛽13𝑆𝑖𝑧𝑒𝑖,𝑡 + 𝛽14𝑀𝐵𝑖,𝑡−1 + 𝛽15𝑇𝑎𝑥𝐴𝑔𝑔𝑖,𝑡−1 +

𝑌𝑒𝑎𝑟𝐷𝑢𝑚𝑚𝑖𝑒𝑠 + 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝐷𝑢𝑚𝑚𝑖𝑒𝑠 + 𝜀𝑖,𝑡                                                                        (1)                                                                                                

The dependent variable, TaxAggi,t  , represents one of the five measures of tax 

aggressiveness. The key independent variable is one of the two measures of advertising: 

the log of advertising expenditure, LOG(ADV)i,t, or a measure of advertising intensity, 

ADVGPi,t , which equals to advertising expenditure divided by gross profits. The 

definitions of all other variables in Equation (1) are provided in Appendix A. Now, if a 

higher level of advertising spending or advertising intensity is to result in fewer tax 

aggressive activities, we expect coefficient 𝛽1 to be negative on the shelter probability 

(SHELTERi,t), on the book-tax differences (KIMBTDi,t and DDKIMBTDi,t), and on the 

discretionary permanent book-tax difference (DTAXi,t), but to be positive on the cash 

effective tax rate (CETRi,t).  
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Our advertising variables include both the actual amount of advertising 

expenditure and the scaled measure of advertising spending to gross profits. These two 

advertising measures capture different dimensions of corporate strategies on 

advertising. While the scaled advertising measure reflects how intensive the firm 

desires to reach the product market, the actual advertising spending indicates the depth 

of reach in the marketplace. For example, in 2012, General Motors Company (GM) spent 

about $5.37 billion on advertising, which is about 26.82% of its gross profits, while 

CenturyLink, Inc. (CTL) spent $189 million on advertising and this amount accounts for 

1.75% of its gross profits. In term of the reach to consumers, there is no doubt that GM’s 

advertising is much more significant than CTL’s. Incidentally, GM’s advertising 

intensity is also substantially higher than that of CTL. 

We employ a number of variables in the regressions to control for firm 

characteristics. We control for profitability (ROA, NOI, and ∆NOI), leverage (LEV), 

foreign operation (FI), firm size (Size), firm growth opportunity (MTB), payout policy 

(DIV), as well as other firm-specific characteristics (PPE, INTANG, EQINC, RD, and 

Age). As Manzon and Plesko (2002) and Chen et al. (2010), we include lagged tax 

aggressive measures to control for their potential persistence over time.12 Additionally, 

we include dummy variables to control for year fixed effects and the two-digit SIC 

industry code to control for industry fixed effects. Except for MTB and lagged tax 

                                                           
12 We also carry out a sensitivity analysis by excluding the lag of book-tax differences from our baseline 
regressions. Our inferences on the two measures of advertising remain unchanged. 
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aggressive measures, all other control variables are measured contemporaneously with 

our main dependent variables.13 

Empirical Findings 

The Effect of Advertising on Tax aggressiveness 

To test the validity of hypothesis 1 (H1), we run the baseline logistic and OLS 

regressions of Equation (1) with clustered standard errors at the firm level, and report 

the results in Table 3. The dependent variable for tax aggressiveness is SHELTERi,t  for 

the logistic regressions, and is CETRi,t , KIMBTDi,t, DDKIMBTDi,t, and DTAXi,t for the 

OLS regressions. The main independent variable is either the log of advertising 

expenditure, LOG(ADV)i,t, or the advertising intensity, ADVGPi,t.14 As seen in Table 3, 

the coefficient on either LOG(ADV)i,t or ADVGPi,t is as expected, negative and 

statistically significant when the tax aggressive variable is the sheltering probability or 

one of the three book-tax differences, and is positive and significant when it is the cash 

effective tax rate. The results support the PMC effect of advertising (H1) that a higher 

level of advertising spending (intensity) lowers firms’ tax aggressiveness as it enhances 

the firms’ overall visibility and commits them to greater product market reputation.  

  

                                                           
13 We use the lag of advertising expenditure as additional robustness check, and our results remain 
consistent. 
14 For additional robustness check, we create the high advertising dummy HADVDUMi,t, which is equal 
to one if advertising expenditure is above the median level. The results are consistent with our baseline 
regressions. 
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The results in Table 3 are economically significant. For example, after controlling 

for other factors that might affect tax avoidance, the coefficient in Model 1 of Panel A (B) 

indicates that when a firm increases by 1% its advertising spending (advertising 

intensity ADVGPi,t), its probability of engaging in tax sheltering activities is lowered by 

0.80% (6.35%).15 The difference in probability is economically meaningful particularly 

since the sample’s mean sheltering probability is only 30.5%. The implied effects on 

cash effect tax rates are also economically significant. The coefficient in Model 2 of Panel 

A (B) indicates that a firm that spends 1% more on advertising (advertising intensity) 

sees an increased cash effective tax rate of 0.5% (7.8%). This implies that for an increase 

of 1% on Advertisingi,t  (ADVGPi,t), the firm pays an additional tax of $0.70 million 

($10.92 million) since our sample’s mean pre-tax income is $140 million. Our results are 

broadly consistent with those in Chen et al. (2010) and Hoi et al. (2013), considering that 

there are more small firms in our sample than in theirs. 

Corporate Opacity, Advertising and Tax Aggressiveness 

We now address how firms’ degrees of opacity affect the impact of advertising 

on tax aggressiveness. All else the same, we expect the impact of advertising to be 

stronger for firms that are less transparent at the outset. As Anderson et al. (2009), we 

construct an opacity index based on four components, using the CRSP and IBES 

datasets. The first component is trading volume measured by the natural logarithm of 

average daily trading volume during the fiscal year. Trading volume is viewed as a 

                                                           
15 The decrease in sheltering probability is computed as the estimated marginal effect of LOG(ADV)i,t (or 
ADVGPi,t) on tax sheltering probability – i.e., the expected decrease in sheltering probability as a function 
of variable LOG(ADV)i,t  (or ADVGPi,t),  holding all other variables in Equation (1) at the sample mean. 
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proxy for informational uncertainty (Lo et al., 2004). The second component is bid-ask 

spread defined as the difference of ask and bid prices divided by the median of bid and 

ask prices. The bid-ask spread is considered to be a proxy for informational asymmetry 

among investors. Following Anderson et al. (2009), for each firm, we choose from CRSP 

only data from the third Wednesday of the month and then average the 12 monthly 

observations for the year. The third and fourth components of our opacity index are 

analyst coverage and analyst forecast errors, respectively. To arrive at an index value, 

we first rank each component into decile based on the magnitude of information 

content each component proxies for; 16  we then sum the rank values of all four 

components; finally, we divide this sum by 40, so that the index value is normalized to 

between 0 and 1, with 1 being most opaque and 0 most transparent.  

Table 4 presents our findings in this part. For parsimony reasons, we do not 

tabulate the results on the control variables. The coefficients on advertising variables 

LOG(ADV)i,t and ADVGPi,t retain the correct signs and significance. The coefficients on 

the opacity index OPACITYi,t show that more opaque firms are generally more tax 

aggressive. However, the coefficients on interaction terms between advertising 

LOG(ADV)i,t (or ADVGPi,t) and opacity OPACITYi,t are significant and positive for tax 

aggressive measure CETRi,t, and significant and negative for the other tax aggressive 

measures SHELTERi,t, KIMBTDi,t, DDKIMBTDi,t, and DTAXi,t, all indicating that the 

negative effect of advertising on tax aggressiveness – the PMC effect – is greater for 

firms that are less transparent in the first place.  
                                                           
16 A higher rank is associated with a higher level of opacity – a lower trading volume, a greater bid-ask spread, 

fewer analyst coverages, or higher analyst forecast errors. 
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The Effect of Public Scrutiny and External Monitoring 

We have shown a negative effect of advertising on tax aggressiveness that is both 

statistically and economically significant, and particularly so for firms having more 

opaque environments at the outset. Our third hypothesis (H3) argues that for firms that 

face strong public scrutiny or external monitoring, it is also possible that advertising 

may serve as a commitment (to the investment community) of more efficient corporate 

tax planning which lowers the firms’ tax liabilities – the Tax Efficiency Commitment 

(TEC). For such firms, it may be that the PMC effect is weaker or is even dominated by 

the TEC. To check this possibility, we identify two subsamples of firms for which public 

scrutiny or external monitoring are likely to be considerably stronger. Our first 

subsample consists of firms listed in the S&P 1500 index. The index firms, which cover 

about 90% of market capitalization of all publicly listed stocks in the U.S., are exposed 

to greater public pressure and scrutiny because they are generally large, well-

established firms. Our second subsample of firms is comprised of those having a high 

level of institutional ownership; larger institutional ownerships impose greater 

discipline on firms’ managements since institutional investors are more likely to engage 

in shareholder activism and carry out external monitoring. We measure institutional 

ownership as the average of total institutional ownership stakes in the firm divided by 

the number of common shares outstanding over a given firm-year, and we interact this 

institutional ownership variable (INST. OWNi,t) with our advertising variable 

(LOG(ADV)i,t  or ADVGPi,t).  
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Table 5 presents the results of our subsample analysis on firms facing the greater 

pressure of public scrutiny or external monitoring. Panel A shows the regression results 

from the subsample of S&P 1500 firms; we see positive interaction terms of LOG(ADV)i,t 

or ADVGPi,t with SHELTERi,t, KIMBTDi,t, DDKIMBTDi,t, and DTAXi,t (and negative 

with CETRi,t). The results suggest that higher advertising spending or intensity by the 

S&P 1500 firms (i.e., the large firms which are subject to greater public scrutiny) are 

actually associated with greater tax aggressiveness. Similarly, in Panel B of Table 5, 

firms with higher institutional ownerships (i.e., those facing stronger external 

monitoring) also exhibit a positive relationship between advertising expenditure or 

intensity and tax aggressiveness. The coefficients of INST.OWNi,t  are significant and 

negative on SHELTERi,t, KIMBTDi,t, DDKIMBTDi,t, and DTAXi,t (and positive on 

CETRi,t). Overall, our results support hypothesis 3 (H3) that for firms facing strong 

public scrutiny or external monitoring, the value of advertising that commits the firms 

to tax efficiency can become more significant than that of its product market 

commitment. That is, for these firms, the TMC (positive) effect of advertising on tax 

aggressiveness now dominates the PMC (negative) effect. It is possible that strong 

external scrutiny or monitoring deters managerial agency considerations, ensuring that 

managers sufficiently value their own as well as their firms’ reputation. An important 

implication of this observation is that tax planning by firms that already face sufficiently 

great public pressure is likely to benefit the firms’ shareholders by making the firms 

more tax efficient. In other words, high advertising expenditures by such firms actually 

showcase shareholder friendliness of the firms’ aggressive tax activities.  
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Can Advertising Mitigate Agency Issues of Family Firms? 

We now turn to the incremental impact of advertising on family firms’ tax 

planning. Chen et al. (2010) find that family firms (those with a high level of family 

ownership) are generally less tax aggressive than non-family firms. They argue that 

because family firms tend to suffer from valuation discounts by outside investors, the 

firms choose to be less tax aggressive to avoid even deeper discounts. Now, if 

advertising helps to improve corporate transparency and thereby to reduce agency 

problems between family firms’ insiders and outside investors, it seems that advertising 

may lessen the negative effect of family ownership on firm tax aggressiveness.  

Table 6 shows the results of our analysis on family versus non-family firms. Our 

family firm sample is considerably smaller than the overall sample because we have 

access only to the family ownership data of S&P 500 companies from 1996 to 2006. The 

smaller sample size reduces our statistical inferences, but its effect actually biases 

against our finding a relationship. As in Chen et al. (2010), family firms in our sample 

are generally less tax aggressive. However, we find that advertising reduces family 

firms’ aversion to tax aggressiveness. In particular, the coefficients of interaction terms 

between Family Firmi,t and LOG(ADV)i,t or ADVGPi,t are positive and significant on 

SHELTERi,t, KIMBTDi,t, DDKIMBTDi,t, and DTAXi,t (and negative and significant on 

CETRi,t). The results support hypothesis 4 (H4) that the TEC (positive) effect of 

advertising is more pronounced for family firms because advertising helps reduce 

outside investors’ agency concerns and thereby enhance their confidence on the firms’ 

tax aggressive policies.  
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Endogeneity Concerns 

A firm’s advertising expenditure, of course, is at the discretion of management 

and is not exogenous. It is possible that managers who are prone to taking tax 

aggressive actions may choose to limit their firms’ public exposure by spending less on 

advertising. In other words, our study potentially has an endogeneity problem. We 

employ two standard methods to address this problem. The first is the instrument 

variable (IV) approach. The IV we use is the natural logarithm of the number of 

(significant) customers that each of our sample firms has. We obtain the customer 

dataset from the Compustat Customer Segment database from 1995 to 2013. Regulation 

SFAS No. 131 requires that a firm report information about a customer which represents 

more than 10% of the firm’s sales. We exclude firms that have contracts with U.S. 

government since Kim and Zhang (2016) document a strong relationship between the 

number of governmental customers and the firm’s tax aggressiveness.17 In our first 

stage regression, the dependent variable is as before, LOG(ADV)i,t or ADVGPi,t, and the 

independent variables include Log(Number of Customersi,t), ROAi,t, CASHi,t, LEMPi,t, 

LEVi,t, SIZEi,t, MTBi,t-1, RDi,t, PPEi,t, INTANGi,t, DIVi,t, LAGEi,t, and year as well as 

industry dummies. As shown in Panel A of Table 7, the results are consistent with those 

of our earlier baseline regressions.  

There are two reasons why the number of customers would be a good IV for our 

study. One, a firm’s advertising expenditure tends to be highly correlated with the 

                                                           
17 Specifically, we exclude firms that fall into the categories of GOVDOM, GOVFRN, GOVLOC, and 
GOVSTATE in the Compustat Customer Segment dataset. 
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number of its customers since more advertising spending would likely be needed to 

reach more customers. Two, we have little reason to expect that the customer number 

would have a relationship with the firm’s tax aggressiveness.18 In addition, we perform 

an F-test by excluding the instrument from the first-stage regression. For all 

specifications, F statistics are much higher than 10, the critical value for the weak 

instrument (Staiger and Stock, 1997). For example, when we use LOG(ADV)i,t as the 

dependent variable in the first stage regression, the F-value is 309.15 on SHELTERi,t, 

259.26 on CETRi,t, 151.26 on KIMBTDi,t, 151.42 on DDKIMBTDi,t, and 282.61 on DTAXi,t. 

We also perform a Stock and Yogo (2005) test for all linear models and the Cragg-

Donald F-statistics are much higher than the critical value of 19.93.19 These results 

suggest that our instrument is not weak, and therefore, our instrumental variable 

estimates are unlikely to be biased toward OLS estimates. 

Our second approach to address the endogeneity issue is the propensity score 

matching method (PSM). A key advantage of applying PSM in our study is that we can 

isolate the effect of advertising on tax aggressiveness while controlling for firm 

characteristics with one single propensity score. We compute the propensity score using 

a logit model on high advertising dummy HADVDUMi,t  and the independent variables 

of ROAi,t, CASHi,t, LEMPi,t, LEVi,t, SIZEi,t, MTBi,t-1, RDi,t, PPEi,t, INTANGi,t, DIVi,t, LAGEi,t, 

and year as well as industry dummies. We first match without replacement a firm-year 

observation with HADVDUMi,t=1, and a treatment observation to another firm-year 

                                                           
18 We also empirically validate the conditions of instrument exogeneity and relevance. 
19 When we use LOG(ADV)i,t as the dependent variable in the first stage regression, the Cragg-Donald F-

statistics on CETRi,t, KIMBTDi,t, DDKIMBTDi,t, and DTAXi,t are 37.68, 48.70, 48.67, and 21.63, respectively. 
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observation with HADVDUMi,t=0. We then pool the treatment and control observations 

for each of our five tax aggressive measures. As seen in Panel B of Table 7, the estimates 

on HADVDUMi,t are all significant and have the signs that are consistent with the 

results of our earlier baseline regressions.   

Additional Robustness Tests 

We carry out several additional robustness tests on the baseline analysis. First, 

we perform the firm-level regression using the averages of our empirical measures over 

the whole sample period. The results are shown in Panel A of Table 8. Second, we use 

the Fama-MacBeth (1973) method to address the concern of serial dependence of 

regression errors.20 Running this regression, we exclude the year dummies from the 

baseline model and estimate the model by each year, and test the statistical significance 

of average coefficients using a t-test. 21  The Fama-MacBeth regression results are 

presented in Panel B of Table 8. Third, we run Heckman’s two-stage model and insert 

the Inverse-Mills ratio as an additional control in the baseline model to address the 

sample self-selection bias. Lastly, we rerun the baseline regression controlling for firms’ 

fixed effect. Overall, our basic results remain unchanged, irrespective of model 

specifications. 

                                                           
20 Following Fama and French (2001), we estimate the logit regressions each year and report the average 
coefficients and pseudo R-square. T-value is estimated based on the time-series standard deviations of the 
regression coefficients. 
21 We follow the Newey-West adjustment for standard errors using three lags.  
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Conclusions 

We document strong evidence that firm advertising reduces its tax aggressiveness. 

The results support our contention that advertising serves as a commitment to product 

market reputation – what we refer to as the Product Market Commitment (PMC). This 

negative effect of advertising on tax aggressiveness is also stronger for firms that have a 

priori a higher degree of corporate opacity, a lower level of public scrutiny, or a weaker 

extent of external monitoring, suggesting that advertising helps to improve corporate 

transparency and thereby to reduce concerns for managerial agency. However, for 

subsamples of firms that face greater public exposure and external monitoring – S&P 

1500 firms as well as firms with large institutional ownership stakes – we find that 

advertising can actually lead to more tax planning activities that reduce the firms’ tax 

liabilities. The latter finding is consistent with our alternative argument that advertising 

by these firms commits them to more efficient tax planning that benefits the firms’ 

shareholders – what we refer to as the Tax Efficiency Commitment (TEC). Addressing 

the question of tax aggressiveness of family firms, we find that advertising lessens 

family firms’ concerns for valuation discounts, and as a result, family firms with high 

advertising expenditures are no longer less tax aggressive than non-family firms. Our 

finding on family firms’ tax aggressiveness augments that in Chen et al. (2010) who find 

that family firms are generally less tax aggressive because of their desire to avoid 

greater valuation discounts.  
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The basic contribution of our study is to show that by increasing firms’ visibility 

and exposure to product market consumers as well as financial market investors, 

advertising affects the firms’ tax policy in different ways. While investors would 

appreciate more tax savings, they are aware of the potentially negative impact of tax 

aggressive activities on consumers’ views of the firms and hence the firms’ competitive 

positions in the product market. This tradeoff determines the effect of advertising, 

positive or negative, on tax aggressiveness.  
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Essay 2- Retail Investors’ Attention and Insider Trading 

Introduction 

Insider trades have long been documented to earn significant abnormal returns 

(e.g., Seyhun, 1986). Insiders possess superior information about their firm and 

therefore are able to exploit their informational advantage for profitable trades. More 

recently, Alldredge and Cicero (2015) show that insiders may also profitably trade on 

publicly available  information that has implications for their firm value. Alldredge and 

Cicero find that supplier firm insiders earn positive abnormal returns on sales of their 

firm’s stock when newly public information indicates bad news for major customers of 

the firm. Alldredge and Cicero attribute the abnormal returns to supplier firm insiders’ 

better and faster appreciation of interconnectness between the supplier and its 

customers. We build on the idea that certain public information may be relevant to 

insiders’ trades by examining whether insider trading may be linked to retail investors’ 

interest in – or attention to – the stock. Unlike in Alldredge and Cicero (2015), the 

information pertaining to retail investors’ attention may or may not have any bearing 

on the fundamental value of the firm.  
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We conjecture a link between investor attention and insider trading because 

varying levels of investor attention to a particular stock has been found to affect its 

price. Using a stock’s Google Search Volume Index (SVI) to proxy for retail investors’ 

attention to it, Da, Engelberg, and Gao (2011) find that a higher SVI is associated with a 

transient rise in the stock’s price. This finding is consistent with Barber and Odean’s 

(2008) argument that investors’ attention is a scarce resource and retail investors, in 

particular, pay attention only to stocks that they are interested in trading. Since retail 

investors usually sell only stocks they already own, an increase in their attention to a 

particular stock indicates that the stock will likely experience a greater buying pressure, 

resulting in a (temporary) spike in its price. Now, if this buying pressure causes the 

stock price to deviate from its fundamental value, the firm’s insiders may be in a unique 

position to engage in trades that take advantage of this mispricing. For example, a spike 

in stock price that is unsupported by the firm’s fundamentals may provide insiders 

with an opportunity to unload their shares at an attractive price. 

We test our conjecture by investigating whether a change of Google SVI on a 

stock affects the direction (buy or sell), volume, and profitability of insider trading on 

the stock. As Da, Engelberg, and Gao (2011), we use the SVI to capture retail investors’ 

attention to the stock because searches by individual investors account for a vast 

majority of stock search volume at Google. To measure changes in investors’ attention, 

we first compute the stock’s monthly SVI as the arithmatic mean of its weekly SVI in the 

month; we then calculate its monthly abnormal SVI (ABSVI) – its monthly SVI scaled by 
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the previous month’s SVI. Thus, an increase (a decrease) in a stock’s SVI means that its 

ABSVI in the month will be greater (lower) than one. Following Cohen, Malloy, and 

Pomorski (2012), we are interested only in non-routine, i.e., opportunistic, insider trades. 

Obviously, insider trading that is motivated by an actual or perceived mispricing, for 

example, that which arises from greater retail investors’ attention, is a textbook 

definition of an opportunitistic behavior.  

Our results support a link between the ABSVI and insider trading activities. We 

find that a higher ABSVI in a month predicts a lower abnormal return on the stock in 

the subsequent month, suggesting for example, that insiders would benefit by selling 

(or refraining from buying) shares when the ABSVI is high – when the volume of 

Google search is high on the stock. Indeed, a higher (lower) ABSVI is associated with 

more (fewer) insider sales and fewer (more) insider purchases; that is, the pattern of 

insider trades is contrarian to retail investors’ attention level. The contrarian insider 

trades also generate significant abnormal returns. While the observation that insider 

trades tend to be contrarian is broadly in line with the findings in other studies (e.g., 

Lakonishok and Lee, 2001; Jeng, Metrick, and Zeckhauser, 2003; Cohen, Malloy, and 

Pomorski, 2012), our focus on how retail investors’ attention affects insider trading is 

new and interesting. Further, potential profits of such insider trades are substantial. We 

show that a long-short portfolio mimicking attention-based insider trading would 

generate an abnormal return of about 119 basis points per month (14.28 % per year), 

excluding transaction costs.  
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An interesting question concerns what insiders are likely to engage in SVI-

related trades. We find that the insider traders tend to be non-independent directors 

who have long tenures but no senior positions (CEO, CFO, COO, and Chair of the 

board) in their firms. The firms tend to exhibit weaker governance, lower reputation, 

and poorer social responsibility. They also operate in more states, have more 

concentrated product sales, and are healthier financially. All these are largely consistent 

with the characteristics of opportunistic insider traders and their firms documented in 

Cohen, Malloy, and Pomorski (2012).  

Research has found that lottery-type stocks, ones that have a low price, high 

idiosyncratic volatility and skewness, tend to attract less sophisticated retail investors 

(Kumar, 2009). If a lottery-type stock’s SVI reflects the level of interest of less 

sophisticated investors in the stock, the firm’s insiders may be able to benefit more from 

SVI-related trades. Consistent with this prediction, we find that our basic results are 

more pronounced for lottery-type stocks. In particular, this type of stock is more likely 

to be sold (bought) by insiders when the stock’s SVI – retail investors’ attention to it – is 

higher (lower). 

Research also documents that local investors earn higher returns on local stocks. 

An explanation is that physical proximity of local investors to a local firm facilitates 

their acquisition of “soft information”, thereby providing them with an informational 

advantage over non-local investors (e.g., Seasholes and Zhu, 2010; Engelberg and 

Parsons, 2011; Shive, 2012; Berry and Gamble, 2013). If this informational advantage 
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exists, we expect that an increase in local investors’ attention to a local stock would not 

create as great an opportunity for insider trading as would an increase in the attention 

of non-local investors. In other words, opportunity for profitable insider trading is more 

limited based on local investors’ attention. We use a stock’s local Google SVI to proxy 

for local investors’ attention, and our results are supportive of this expectation.  

Other measures have been used to proxy for investor attention, including news 

and media headlines or reports (Barber and Odean, 2008; Yuan, 2008; Fang and Peress, 

2009), extreme returns or trading volumes (Gervais, Kaniel, and Mingelgrin, 2001; 

Barber and Odean, 2008; Hou, Xiong, and Peng, 2009), and advertising expenditure 

(Grullon, Kanatas, and Weston, 2004; Chemmanur and Yan, 2009; Lou, 2014). Da, 

Engelberg, and Gao (2011) point out that Google SVI is a better measure of investor 

attention because it is a direct, reliable, and timely reflection of genuine investor interest 

in the stock. Clearly, individuals who take time and effort to Google-search a stock are 

self-revealing of their interest in the stock (Ding and Hou, 2015). The other measures 

either do not capture this interest in a timely manner, or they fail to explain a large 

variation of SVI. For example, news coverage is a popular proxy for investor attention 

but it fails to explain a large volume of Google searches. The SVI measure also possesses 

two additional advantages: it is a continuous measure and it makes no assumption that 

investors are actually aware of the news.  

It is possible that a stock’s abnormal SVI (ABSVI) may simply reflect investors’ 

reactions to the flow of public information such as news, reports or other items that 
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impact the stock. An implication is that if the effect of the information flow is accounted 

for, the ABSVI would have little relevance to insider trading. We address this issue with 

two additional analyses. First, we control for factors that have been suggested to have 

an effect on the ABSVI, such as earnings surprise, advertising expenditure to sales, as 

well as macro variables on GDP data and FOMC interest rate decisions. After 

controlling for these factors, the unexplained component of ABSVI remains significant 

to opportunistic insider trades. To the extent that the unexplained part of ABSVI reflects 

changes in retail investors’ sentiment towards the stock, which go beyond what arise 

from the information flow, our results suggest that opportunistic insider trading may be 

taking advantage of retail sentiment which is unsubstantiated by the stock’s 

fundamentals. Second, we perform a subsample analysis by classifying a firm-month as 

either an earnings news month if the firm releases its earnings in the month, or a non-

earnings news month if it does not. While our results are more pronounced for the 

subsample of earnings news month – indicating the importance of the news – they 

remain significant with the same signs for the subsample of non-earnings news month.  

Another concern is that the SVI may be influenced by insider trading activities. 

For example, an increase in insider trading activities may cause investors to pay more 

attention to the stock by increasing their Google searches. To address this issue, we 

perform two checks, using regulatory changes as exogeneous shocks. Our first check 

utilizes a political regime change. We decompose our sample period of 2004-2014 into 

two subsample periods of 2004-2008 and 2009-2014, with the former being the years of 
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the more laissez faire Republican Bush Administration and the later being those of the 

more activist Democratic Obama Administraion. The presumption is that the Obama 

Administration would be more active in taking enforcement actions against 

questionable insider trading and thus would have a stronger deterrence on 

opportunistic insider sales. However, our results remain unchanges during the two 

subsample periods. In our second check, we use as exogneous shocks the number of 

news releases of SEC investigation and litigation against illegal insider trading. More 

SEC activities would presumably have a greater deterence effect on insider sales in the 

subsequent month. Indeed, Cohen, Malloy, and Pomorski’s (2012) document an overall 

reduction in opportunistic insider sales following an increase in SEC investigation and 

litigation.22 Now, if insider sales were to affect the SVI, we would expect a lower SVI, 

following the month of more active SEC. This is not the case; there are no discernible 

changes in the SVI surrounding SEC actions.  

Interestingly, when we classify opportunistic insider sales as being either SVI-

related or non-SVI-related. We find that following the month of increased SEC 

enforcement activities, while insiders’ non-SVI-related sales decline, their SVI-related 

sales actually rise. The latter is in contrast to Cohen, Malloy, and Pomorski’s (2012) 

                                                           
22 The SEC defines illegal insider trading as insiders buy or sell a security, in breach a fiduciary duity or 

other relationship of trust and confidence, while in possession of material, nonpublic information about 

the security. For examples, on September 14, 2014, the SEC charged two former Wells Fargo employees 

for trading on an analyst rating change on their firm’s stock  before the report was publicly available, and 

on November 21, 2014, the SEC charged a former CEO of GenTek, who had tipped a close friend of non-

public information concerning his firm’s forthcoming merger.  
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finding of an overall decline in opportunitistic insider sales. It is possible that insiders 

view the SVI-related sales as relying more on publicly available information and 

therefore being less likely to be subject to regulatory sanctions. Supporting this point of 

view, we find that SVI-related insider sales indeed have a lower risk of being subject to 

SEC investigation and litigation.  

The rest of the paper is organized as follows. Chapter two reviews the literature 

on investor attention and on insider trading and develops testable hypotheses. Chapter 

three describes the sample selection procedures and methodology and provides 

summary statistics. Chapter four presents the empirical findings. Chapter five 

concludes.  

Literature Review and Hypothesis Development 

Investor Attention  

Merton (1987) introduces the concept of investors’ attention to the field of finance, 

arguing that their attention is relevent to stock market activities because stock price is 

affected by the firm’s general visibiliy in the marketplace such as its publicity, 

popularity, and social image.23  Hirshleifer (2001) argues that investors have limited 

attention and thus focus only on a subset of available information, leading to the 
                                                           
23 Merton’s argument builds on a large body of psychological research suggesting that human attention is 

a scarce resource. The scarcity of attention refers to both selection and intensity since one always has 

alternatives to engage in (Kahneman,1973). Pashler & Johnston (1998) argue that human beings are 

constrained by their cognitive limits, so that mutiple tasking often does not work out successfully. 

Fischhoff, Slovic, and Lichtenstein (1977) argue that people often fail to filter in relevent information 

when they allocate their attention and hence underweigh the probablities of contingencies that are not 

explicitly available at the time of decision making. 
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potential misvaluation of assets. Limited attention or increased market-wide 

uncertainty also causes investors to pay more attention to the information that has 

broader sector or market implications and less on that of firm-specific nature (Peng and 

Xiong, 2006; Peng, Xiong, and Bollerslev, 2007). Barber and Odean (2008) find that 

individual investors increase their informational searches on a stock that catches their 

attention and are predisposed to buy the stock, exerting an upward pressure on its price.  

What attracts individual investors’ attention to a particular stock? Keloharju, 

Knupfer, and Linnainmaa (2012) suggest that individuals’ familarity with a firm’s 

products spills over to their interest in the stock. Fang and Peress (2009) argue that 

news or media coverage is another channel that alerts individuals to a stock, and this 

channel is especially important for stocks of small firms or with large individual 

ownerships, low analyst coverage, and high idiosyncratic risk. Indeed, Engelberg and 

Parsons (2011) show that local press coverage has a strong influence on local investors’ 

trading interest in the stock. A feedback loop may also emerge when media coverage, 

investor sentiment, and stock prices. For example, media pessimism may exert 

downward pressure on the price of stock, resulting in poor stock returns, and the poor 

returns may give rise to additional media pessimism. With this in mind, firms may 

choose to manage messages or inflence media coverage. Ahern and Sosyura (2014) 

report that during important corporate events such as mergers and acquisitions, 

managers actively use media coverage to affect their stock prices. Gurun and Butler 
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(2012) find that advertising spending steers local media to put more “postive slant” in 

its reporting of local firms. 

Although media coverage has been used to proxy for investor attention, the 

availability of Google Search Volume Index (SVI) on individual stocks offers a direct 

measure of investor interest in particular stocks. Da, Engelberg, and Gao (2011) argue 

that a stock’s SVI captures primarily small (retail) investors’ interest in – or attention to 

– the stock because small investors are numerous and rely on public domain searches to 

obtain information. In contrast, institutional, large or sophisticated investors often have 

access to in-house or proprietary sources of information. Consistent with this argument, 

Da, Engelberg, and Gao (2011) find that a higher SVI on a stock is associated with more 

contemporary retail purchases of the stock, resulting in a temporary spike in the stock 

price. Relatedly, Joseph and Zhang (2011) suggest that the SVI reflects retail investors’ 

sentiment on the stock; they find that the SVI predicts stock returns and trading volume, 

especially for more volatile or difficult-to-arbitrage stocks. In Vozlyublennaia (2014), the 

SVI is seen to reflect investors’ demand for information.  

Since retail investors do not usually possess superior information when they 

trade, more trades as a result of their greater attention suggests an increase in “noise 

trading” and hence liquidity on the stock. Consistent with this view, Ding and Hou 

(2015) document a negative relationship between a stock’s SVI and its bid-ask spreads; 

that is, a larger volunme of Google searches on a stock improves its liquidity. Now, it is 

well known that noise trading provides camouflage for informed trades, enabling 
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informed traders (e.g., insiders) to profit from trading on their private information (e.g., 

Kyle, 1985; Kyle and Wang, 1997). 24  Moreover, noise trading arising from retail 

investors’ changes of sentiment can affect stock price by making rational arbitrage 

riskier (Shleifer and Summers, 1990), and noise trading in general can have a greater 

impact on stock price than implied by its size because uninformed but rational investors 

may take noise as containing real information (Mendel and Shleifer, 2012).25  

Insider Trading  

Empirical studies on insider trading in the U.S. has long established that 

corporate insiders have better information about their firm and earn significant 

abnormal returns on their trades of their own firm’s stock (e.g., Seyhun, 1986). Further 

research documents asymmetric profits and informativeness between insider buying 

and selling of shares. Lakonishok and Lee (2001) find that insider buying is more 

informative than selling, and Jeng, Metrick, and Zeckhauser (2003) show that insiders 

earn significant abnormal returns only on their purchases of shares. An explanation for 

the apparent lack of information content on insiders’ sales of shares is that insiders may 

have other important reasons to sell shares – for example, to reduce a portfolio 

                                                           
24 In an equilibrium model, Kyle (1985) shows that insider trading is profitable only at the expenses of 
noise traders, and the higher the level of noise trading, the greater are the insider profits. To the extent 
that a rise (fall) in the Google SVI predicts an increased (a decreased) level of noise trading, our empirical 
findings are consistent with the implication of the Kyle model. Informed traders who profit from noise 
traders are sometimes referred to as “smart money.” For example, Individual Investor (in its February 
1998 issue, pp. 54) summarizes the smart money as “company executives and directors” who “know their 
business more intimately than any Wall Street analyst even would” and “know when a new product is 
flying out the door, when inventories are pilling up, whether profit magins are expanding or wheter 
production costs are raising.” 
25 In this model, unlike insiders who possess valuable information or noise traders who are vulnerable to 
sentiment shocks, rational outsiders are only able to learn information from the stock price they observe. 
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concentration of their own firm’s shares. More recently, Cohen, Malloy, and Pomorski 

(2012) classify insider trades into “routine” and “non-routine” types; they show that 

only non-routine (or opportunistic) trades are informative and generate abnormal 

returns. Additionally, the opportunistic traders tend to be non-independent directors 

who have long tenures but no senior executive responsibilities in their firms, and the 

firms also tend to have weaker governance. Hillier, Korczak, and Korczak (2015) 

examine how insiders’ attributes affect the performance of their trades; they show that 

personal traits such as age, gender, and education are important to the performance.  

Our paper is closely related to two recent papers. As Cohen, Malloy, and 

Pomorski (2012), we also classify all insider trades as being either routine or 

opportunistic (non-routine).  Clearly, insider trades that are based on Google SVI must 

be opportunistic in nature. Because the SVI information on individual stocks are 

publicly available, our study relates to Alldredge & Cicero (2015) in that this type of 

insider trading is connected more to publicly available information. In Alldredge and 

Cicero (2015), supply firm insiders profit by selling their own firm’s shares when newly 

public information is negative on the firm’s major customers. While we similarly 

examine the link between publicly available information and insiders’ trading ideas, the 

kind of information in our study – Google SVI – does not have a clear implication for 

firm value. In this regard, our paper relates also to the insider trading literature that 

emphasizes that it is the liquidity or noise traders who provide the basis for insiders’ 

trading profits. 
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Other research suggests that insiders time their trades to certain corporate 

activities. Lo and Cheng (2006) find that managerial insiders time the release of their 

firm’s bad news before purchases of shares. Bonaime & Ryngaert (2013) document more 

frequent insider trades in quarters when their firm is buying back shares. Moreover, 

insiders who buy shares when their firm is repurchasing earn higher abnormal returns 

on the purchases while insiders who sell when their firm is buying back shares are 

likely from a firm that offers a large quantity of executive stock options, has low stock 

liquidity and a low equity book-to-market ratio. There is also evidence suggesting that 

managerial insiders take strategic actions to generate profitable trading opportunities. 

Lou (2014) finds that managers increase their firm’s advertising expenditure before the 

firm’s equity issues and before their sales of shares. Ahern and Sosyura (2014) find that 

managers manipulate media coverage to influence stock price during important 

corporate events such as mergers and acquisitions. We too examine how insiders may 

time their trades to increase trading profits. We differ in that argue that insiders’ 

opportunistic trades can be based on shifting interests of retail investors, as proxied by 

the stock’s SVI. Such trades may be less likely to be subject to regulatory enforcement 

actions against illegal insider trading.  

Hypothesis Development  

Researchers have identified a number of pitfalls of retail investors that more 

sophisticated investors may be able to exploit. Retail investors are informationally 

disadvantaged (Kyle, 1985). They may be less than fully rational in their investment 
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decisions. For example, retail investors may exhibit overconfident (Fischhoff, Slovic, 

and Lichtenstein, 1977); they tend to trade aggressively and take excessive risks 

(Hirshleifer and Teoh, 2003); they are overly speculative and earn negative alphas (Han 

and Kumar, 2013); their trades are significantly influenced by sentiments (Shleifer and 

Summers, 1990). Furthermore, trading behaviors of retail investors may result in 

misleading signals to rational but insufficiently informed investors, affecting the latter’s 

ability to arbitrage (Mendel and Shleifer, 2011). All these suggest that corporate insiders, 

with their informational advantage, may be in a unique position to exploit the pitfalls of 

retail investors. Indeed, Lo and Cheng (2006) find that managerial insiders manipulate 

the content or timing of financial disclosure to take advantage of retail investors. Such 

manipulations, however, run the risk of investor lawsuit and regulatory enforcement. 

With this in mind, insiders may prefer to engage in trades that profit from the behavior 

biases of retail investors but that do not involve a manipulation of firm-specific 

information. In this context, an increase in the buying (selling) interest of retail investors 

that is driven by their changing sentiments, and not by the fundamental value of the 

stock, may present insiders with good selling (buying) opportunities.  

As Da, Engelberg, and Gao (2011), we use Google SVI to capture retail investors’ 

level of attention to, or interest in, a particular stock. Since retail investors are net buyers 

of stock that catches their attention (Barber and Odean, 2008; Joseph, Wintoki, and 

Zhang, 2011), their aggregate buying could exert pressure on the stock’s price, causing 

it to deviate from its intrisic value. In particular, if an increase in a stock’s SVI indicates 
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a rising interest of retail investors in the stock, it could cause a (temporary) rise in the 

stock’s price and thereby provide opportunities for the firm’s insiders to trade on this 

mispricing. Thus, our first hypothesis contends that an increase in the level of retail 

investors’ attention to a stock – a higher ABSVI – is associated with more frequent and 

more profitable insider trades. 

Hypothesis 1 (H1): A higher level of retail investors’ attention (a higher Abnormal 

Google SVI, ABSVI) leads to a larger volume and greater profit of insider trading. 

It is also possible that the greater attention of investors may stimulate the flow 

and dissemination of firm-specific information, making stock price more informative 

and reducing opportunities for profitable insider trading. If this is the case, a higher 

ABSVI – an increase in investor attention – would be associated with fewer and less 

profitable insider trades. Related to this point of view, several studies suggest that 

insufficient attention of investors can be detrimental to their welfare. For example, 

Daniel and Hirshleifer (2002) argue that inattentive investors provide more 

opportunities for the firm to exploit them by issuing overvalued equity shares, by 

managing earnings upward or guiding analyst forecasts, and by lobbying to alter 

accounting regulations. Hirshleifer and Teoh (2003) argue that investors’ limited 

attention could be a source of mispricing because it can cause them to allocate 

insufficient time and effort to understand the salient content of firm disclosures. 

Vozlyublennaia (2014) shows that a higher level of investor attention is associated with 

a lower predictability of stock returns. Based on these observations, we propose a 
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competing hypothesis that an increase in retail investors’ attention to a stock – a higher 

ABSVI – may diminish opportunities for profitable insider trading.   

Hypothesis 2 (H2): A higher level of retail investors’ attention (a higher Abnormal 

Google SVI, ABSVI) leads to a smaller volume and lower profit of insider trading. 

Data and Methodology 

Data  

The data for our analysis are obtained from several sources. Insider trading data 

is from Table 1 of the Thomson Reuters Insider Database, which includes all equity-

related transactions filed by insiders to the U.S. Securities and Exchange Commission 

(SEC) via Forms 3, 4, and 5.26 To ensure accuracy of insider trading data, we retain only 

transactions that are verified by Thomson Reuters based on a cleanse code of R, H, L, C, 

or Y. We exclude observations with transaction prices that are either more than three 

times or less than one third of the closing price on the transaction day since they are 

very likely to have resulted from data errors.  

To focus on opportunistic (non-routin) insider trades, we exclude trades that are 

deemed routine. As in Cohen, Malloy, and Pomorski (2012), a routine trade is one 

executed by an insider who made a similar trade in the same month of the year for the 

last three years. Cohen, Malloy, and Pomorski find no abnormal returns on routine 

                                                           
26 Form 3 includes all insiders who register equity securities for the first time with the SEC. Form 4 
documents any changes of ownership upon a transaction that must be reported within two business days. 
Form 5 reports any missing transactions on Form 4 from those insiders who are eligible for deferred 
reporting.  
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trades. We also drop trades that are linked to insiders’ stock options transactions. With 

these exclusions, our sample consists of only opportunistic open-market buying or 

selling by insiders. We aggregate insider trading data at a monthly firm level. Seyhun 

(1998) argues that aggregate insider trading predicts stock movement and may be used 

to time the market. We define a sale (purchase) month as a calendar month in which at 

least one insider trades his/her firm’s shares, resulting in a net decrease (increase) in 

his/her equity stake. If we observe a net sale by one insider and a net purchase by 

another at the same firm-month, this observation is excluded because of its ambiguity 

concerning the direction of insider trades.  

As Da, Engelberg, and Gao (2011), we use Google’s Search Volume Index (SVI) to 

proxy for retail investors’ attention to a particular stock since most Google stock 

searches are carried out by individual investors having an interest in the stock.27 The 

SVI captures the level of investor attention to the stock in a more direct and timely 

fashion than measures such as extreme returns or news items. 28  We collect SVI 

information on individual stocks between years 2004 and 2014 by manually inputting a 

stock’s ticker symbol into the Google Trend and downloading its SVI data into a CSV 

file. After compiling the data for all tickers, they are separated into two groups based on 

how frequent of their SVI data are available. An “attention” sample consists of all stocks 

of tickers that have a weekly SVI, indicating frequent searches on their tickers. A “non-
                                                           
27 The SVI is a relative measure that is constructed by Google Trends as the search interest relative to the 
highest point on the chart. 
28 Da, Engelberg, and Gao (2011) show a postive but weak correlation between Google SVI and other 
attention measures such as news coverage. They argue that this is because Google SVI is a continuous 
measure and news coverage does not guarantee investors’ attention unless they are actually aware of the 
news. 
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attention” sample, on the other hand, contains stocks of tickers that do not have a 

weekly SVI; that is, these tickers are searched so infrequently that they have either no 

SVI or only a monthly SVI.29 As Da, Engelberg, and Gao (2011), we exclude ambigious 

tickers such as A, AUTO, ALL, B, BABY, BED, DNA, GPS, GAS, and GOLF since they 

may be associated with things that are unrelated to stock.30 We collect a stock’s SVI at 

two different points in time to ensure that our sample is fairly representative of investor 

attention over time. 

Stock market return data and delisting information are obtained from the Center 

for Research in Security Prices (CRSP), and firm characteristic data (balance sheet and 

income statement items) from the Compustat North America. Our sample contains only 

common stocks (CRSP share codes 10 and 11) and excludes illiquid stocks (those with a 

price of less than $5 or a market capitalization of less than $100 million). All variables 

are winsorized at 1% and 99% to minimize outlier effects. Combining the SVI and 

insider trading data with the information on stock returns and firm characteristics 

results in a total of 92,834 firm-month observations from January 2004 through 

November 2014.31 The attention sample has 52,477 net sale months (3,096 unique firms) 

and 16,997 net purchase months (2,667 unique firms) while the non-attention sample 

                                                           
29 For Robustness checks, our inferences do not vary if monthly SVI firms are excluded from the non-
attention sample and included in attention sample although significance levels become weaker because 
we include low attention firms. 
30 We also run the same regressions without excluding those ambiguous tickers, our results remain 
unchanged. 
31  Our sample ends on November 2014 because monthly CRSP return data are available only till 
December 2014. 
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has 15,739 net sale months (1,224 unique firms) and 7,621 net purchase months (1,063 

unqiue firms). 

A stock’s monthly SVI is the arithmatic mean of its weekly SVI in the month,32 

and the stock’s abnormal monthly SVI (ABSVI) is its SVI in the month scaled by that in 

the previous month. Figure 1 illustrates Apple stock’s SVI (ticker: AAPL) between 

January 2004 and December 2004, where Panel A displays its weekly SVI and Panel B 

shows its monthly SVI derived from the weekly SVI. Comparing Panels A and B, we see 

that the monthly SVI preserves the shifts of investor attention, especially during the 

months of significant increase or decrease. Checking further Apple insiders’ trading 

patterns following each monthly SVI and using a + (-) sign to denote a net sale 

(purchase) month, we see in Panel B that insiders appeared to time their trades with 

peaks and troughes of investor attention (monthly SVI). In particular, Apple insiders 

executed more sell (buy) orders during peak (trough) SVI months. The aggregate 

volume of sales on peak months were substantially higher than that on trough months, 

and the total volume of insider trading decreased dramatically after peak months. 

Apple insiders’ trading patterns are suggestive of correlation between their trades and 

retail investors’ attention (proxied by its ABSVI). The Apple example is also consistent 

with Barber & Odean’s (2008) observation that retail investors are net buyers of 

                                                           
32 There are instances where weekly SVI data near the end of a calendar month encompass the beginning 
days of next month. In such instances, we use a simple proportion to the number of days in a month to 
achieve the closest approximation of investor attention in the month. For example, between September 
28th and October 4th of 2008, Apple has a weekly SVI of 69, and the portion of SVI that is allocated to 
September is 30 (3/7 of 69) and to October 39 (4/7 of 69). 
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attention-grabbing stocks, and their concentrated purchases result in a (temporary) rise 

in the stock price.33 

Methodology 

Our approach to empirically test whether abnormal returns of opportunistic 

insider trades are related to retail investors’ attention is as follows. First, we investigate 

abnormal returns following trades by insiders of firms in our attention sample vis-à-vis 

those in our non-attention sample. Next, within the attention sample, we check 

abnormal returns of insider trades when there is an abnormal level of attention. We 

compute abnormal returns of stocks in two ways. In the first, we compute stock return 

in the calendar month subsequent to a trading month, adjusting for the return of a 

comparable size decile profolio based on NYSE breakpoints. This method controls for 

market-related risk factors that affect firms of similar size. In the second, we calculate 

excess stock return as the stock’s return minus the risk-free rate and use the excess 

return as dependent variable in our baseline regression.34 To address the question of 

whether investor attention affects insider trading, we regress one-month excess returns 

following the trade month onto equal-weighted market returns (to control for market 

risk) as well as control variables that count for risk factors such as firms’ market values, 

book-to-market ratios, and past stock returns. Similar regressions are employed in 

Cohen, Malloy, and Pomorski (2011) and Alldredge and Cicero (2015).  

                                                           
33 They define an attention-grabbing stock as one having an extreme one-day return, experiencing an 
abnormal trading volume, or being in the news. 
34 A stock’s excess return is defined as its monthly return minus the one-month risk-free rate reported in 
Ken French’s website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library. 
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Table 9 presents the summary statistics of our sample. Panel A of Table 9 shows 

that our sample contains no sample selection bias because its characteristics are 

generally similar to the insider trading universe. Panel B shows that firms in the 

attention sample are substantially larger than those in the non-attention sample. The 

mean market capitalization is $6.74 billion ($5.48 billion) for attention sample firms with 

insider sales (purchases), but is only $1.07 billion ($0.66 billion) for non-attention firms 

with insider sales (purchases). Bigger firms have a larger investor base, and therefore, 

are more likely to attract investors’ attention and have more active Google searches. 

However, the book-to-market ratio is only marginally different between attention and 

non-attention sample firms. Interestingly, attention firms with insider sales have more 

non-routine traders but fewer non-routine trades per firm-month than do non-attention 

firms with insider sales. This difference suggests that although attention firms have 

more opportunistic insider traders, the insiders engage in sales only when 

circumstances warrant the sales. In comparison, attention firms with insider purchases 

have fewer non-routine traders and fewer non-routine trades per firm-month than do 

non-attention firms with insider purchase. These observations appear to support Barber 

& Odean’s (2008) argument that retail investors’ attention results in net buying interests, 

which exert an upward pressure on stock price, creating opportunities for insider sales 

rather than purchases.  

Figure 2 illustrates the time-series patterns of insider trading for years 2004 

through 2014. Attention sample firms have fewer trades per insider in sale months and 
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in most purchase months than non-attention firms. The number of insider trades is also 

smaller for attention firms. These patterns are consistent with our contention that 

attention firm insiders are more likely to engage in opportunistic trades, for example, 

when greater investor attention creates tradable opportunities. Our prelimiary 

observations remain consistent throughout the sample period.  

Table 10 reports the distribution and average monthly SVI of our sample firms 

across the Fama and French 17 industry classifications. Panel A shows that our attention 

sample includes more financial companies (16.40%) and machinery and business 

equipment firms (12.05%) than our non-attention sample. In the attention sample, 74.5% 

of financial companies are commercial banks (e.g., Bank of America Corp.: BAC) while 

the rest are insurance and other financial companies; 20.2% of the machinery and 

business equipment firms are producers of eletronic components (e.g., Microchip 

Technology: MCHP). These two industries are also the largest segments in the non-

attention sample (financial companies 27.51% and machinery and business equipment 

firms 10.90%). In the non-attention sample, 60.6% of the financial companies are 

commercial banks ( e.g., First United bankcorp: FUBC); 29.1% of the machinery and 

business equipment firms are manufactuers of eletronic components ( e.g., CHIPPAC, 

Inc.: CHPC). The retail stores industry constitutes only a relatively small percentage in 

both attention and non-attention samples.  

Panel B of Table 10 depicts the level of attention – the average monthly SVI – 

during insider purchase and sale months across the 17 industries. Sale months are more 
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likely than purchase months to be associated with higher levels of investor attention. 

Indeed, 8 out of 17 industries have a statistically significant higher attention level in sale 

months than in purchase months while only 5 out of 17 industries see more attention 

(statistically significant) in purchase months. Firms that operate in relatively small 

industries of mining and minerals, steel, and fabricated products have highest levels of 

investor attention during insider sale as well as purchase months, suggesting that these 

industries’ insiders trade more during the months of high investor attention.   

Empirical Findings 

Table 11 reports one-month cumulative abnormal returns (CARs) following the 

insider trade month, adjusted by NYSE size decile portfolio returns, where Panel A (B) 

displays the results following the insider sale (purchase) month. As mentioned, NYSE 

size decile portfolios control for market factors that affect firms of similar size. Overall, 

insider sales earn higher abnormal returns when investors’ attention to the stock is 

greater – when there is an increase in the Google SVI. In particular, following insiders’ 

sale months, CARs on average are -0.688% per month for our attention firm sample and 

only -0.495% for our non-attention firm sample. The difference of CAR of 0.193% per 

month is statistically significant (T-statistics = 3.78). CARs are also less negative (-

0.541%) in months in which attention firms receive no attention, and the difference of 

0.147% per month (between -0.541% and -0.688%) is also statistically significant (T-

statistics = 2.56). These results suggest that investors’ attention, measured by the SVI, 

appears to be an important indicator of profitability of insider sales.  
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Panel A of Table 11 also details abnormal returns of sales by insider types. The 

difference of CAR between our attention and non-attention samples stems mainly from 

sales by attention firms’ non-executive directors and other non-executive insiders, 

whose sales earn 0.446% and 0.249% more, respectively, than those of the same types of 

insiders of non-attention firms. In comparison, sales by top executives of attention firms 

earn only 0.215% more than those of their counterparts in non-attention firms. The 

results suggest that senior management insiders are less keen to engage in opportunistic 

sales to profit at the expense of retail investors, possibly because top executives are 

more concerned about poor perception and reputation this sort of sales may entail. In 

both attention and non-attention samples, however, when top-level officers do sell 

shares, their sales generate greater CARs than those of other insiders, consistent with 

top managers having better information on their firms.  

Panel B of Table 11 presents the results of parallel tests on insider purchases. 

Consistent with the findings in previous research, average CARs following insider 

purchases are generally greater than those following insider sales. Within purchase 

firms, however, CARs of our attention sample are smaller than those of non-attention 

sample. Average size-adjusted CARs following the insider purchase month are 1.010% 

for attention firms and 1.215% for non-attention firms, and the difference of 0.205% is 

statistically significant (T-statistics = 3.12). Similar patterns are also evident on different 

classifications of insiders. Thus, when investors are paying greater attention (when the 

SVI is higher), purchases by insiders of all types earn lower CARs. The results again 
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supports the argument that greater investor attention puts an upward pressure on stock 

price, making insider purchases (sales) less (more) profitable.  

Return Analysis  

We now perform mutivariate regressions to examine whether insiders could 

profit from trading on varying investor attention. Our empirical approach is similar to 

that in Cohen, Malloy, and Pomorski (2011) and Alldredge and Cicero (2015). As 

outlined earlier, we define a calendar month as an insider sale (purchase) month if there 

is at least one net insider seller (buyer) of shares but no net insider buyer (seller) in the 

same month. We regress stock excess returns onto various explanatory varables 

including size and book-to-market ratio. Table 12 presents the results of the return 

analysis, where Panel A (B) presents abnormal returns following the insider sale 

(purchase) month. Column 1 in Panel A (B) presents a strong evidence of abnormal 

returns following the insider sale (puchase) month with the intercept being a 

statistically significant amount of 0.0169 (0.1133). Cohen, Malloy, & Pomorski (2011) 

also find that opportunistic insider sales lead to positive abnormal returns in the 

following month. An explanation for this finding is that insiders have other reasons to 

sell shares, for example, to diversify their porfolio holdings. Thus, sales by insiders 

while investor attention is high present them with opportunities to unload their shares 

at lower opportunity costs (less foregone returns).  

Insider trading is subject to significant regulatory and policy constratins. Many 

large corporations put in place strict compliance policy to deter questionable insider 
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trading (Lakonisjok and Lee, 2001) and a big part of securities regulation is enforcement 

by the SEC agains illegal trading. Since SEC actions tend to focus more on insider sales 

than purchases (Agrawal & Cooper, 2015), when insiders sell shares, they would want 

to do so in a way to minimize potential issues with the SEC. In this regard, insider sales 

that mainly take advantage of investors’ level of attention may pose a lower risk of 

violating insider trading regulation.35 Our evidence is consistent with this view. In 

Panel A of Table 4, the coefficient on the attention dummy, indicating greater investor 

attention, is -0.0022 (T-statistics = 3.143) on insider sales, and in Panel B, it is -0.0035 (T-

statistics = 2.917) on insider purchases. The negative coefficients suggest that a higher 

level of investors attention lowers the opportunity costs of insider sales as well as the 

potential profits of insider purchases. 

We next test how the extent of investor attention impacts returns of insider 

trades by examining the effect of abnormal investor attention. Column 2 in Table 12 

presents the regression results, where the coefficient of Log(ABSVI) is highly significant 

and negative on both insider sales (-0.0059 in Panel A) and purchases (-0.0140 in Panel 

B). Column 3 includes additional explanatory variables such as SVI Duration – the 

number of months between a trade month and the first month when a valid SVI was 

available. This variable can have two opposite effects on insiders’ trading profits. On 

one hand, the SVI Duration reflects a lengthy or durable interest of investors in the 

stock, creating more opportnities for insider trades. On the other hand, a sustained 

                                                           
35 There are a substantial number of insiders who sell (purchase) shares when investors’ attention is low 
(high). In later tests, we classify them as non-SVI-related trades. 
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interest of investors may enable them to learn from experience and become more 

sophisticated investors, reducing insider trading opportunities. Our evidence supports 

the latter conjecture. The coefficent of Log(SVI Duration) is positive on sales (0.0048 in 

Panel A)  but negative on purchases (-0.0107 in Panel B), both statistically significant. 

That is, insiders’ abnormal returns diminish on both their sales and purchases as the 

length of investors’ attention increases. We include in Column 3 the Log(Analysts) 

variable, capturing the number of analysts covering the stock, to control for publicly 

available information which may affect retail investors’ attention. We expect insiders’ 

abnormal profits to diminish when more analysts cover the stock since more analysts 

provide more information to the public, thereby reducing insiders’ informational 

advantage and dimishing their opportunities for profitable trading. Consistent with this 

prediction, the coefficient on Log(Analysts) is significant and positive on insider sales 

(0.0029 in Panel A), although the coefficient is insignificant on insider purchases (in 

Panel B).  

For the last two model specifications, Columns 4 and 5 in Table 12, the sample is 

split on the basis of abnormal SVI (ABSVI) to disentangle the impact of SVI-related 

verses non-SVI-related trading on next month’s excess returns. We find that our results 

are mainly driven by insider sales when the ABSVI is greater than one – when the 

month’s SVI is greater than that of last month – and by insider purchases when the 

ABSVI is less than one. In Panel A’s Column 4, the coefficient of Log(ABSVI) is negative 

(-0.0194) and statistically significant (T-value = 3.18). The results in Column 5 of Panel A 
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suggest that insiders’ sales generate abnormal returns following their trades that do not 

take advantage of heightened investors’ attention. In Panel B’s Columns 4 and 5, we see 

that insider purchases are generally more informative and generate abnormal returns 

following their trades. However, taking advantaging of lower investors’ attention 

(depressed stock price) would also yield higher abnormal returns. Overall, our results 

indicate that a higher (lower) Google SVI benefits insiders’ sales (purchases). The results 

are consistent with our hypothesis that insiders profit by engaging in opportunistic 

trades that take advantage of stock price variations arising from changing levels of 

investor attention.  

Insider Trading Patterns 

We perform Probit and Tobit regressions to explore further how investors’ 

attention levels affect the likelihood and amount of insiders’ trades. We measure trades 

by the volume of insiders’ sales or purchases in a given month. We conjecture that 

insiders execute trades when retail interest exerts a price pressure on the stock. Table 13 

presents the results of limited dependent variable regressions that predict insider 

trading. The dependent variable in Probit regressions is a Sale (Purchase) dummy, 

which equals one if a firm-month is a net sale (purchase) month. The dependent 

variable in Tobit regressions is Shares Sold (Purchased), which equal the number of 

shares, in thousands, that insiders sell (buy) during a sale (purchase) month. In all 

regressions, independent variables include Log(Size), Log(BM), the contemporaneous 

equally weighted market return Markett, Advertising/Sales ratio, Log(Price), and 
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Log(Turnover). In Appendix: Variable Definitions and Sources of Main Variables, we 

provide the detailed definitions of all these and other variables. The independent 

variable of particular interest is either Log(ABSVI) or a dummy variable indicating 

whether Log(ABSVI) is positive (predicting sales) or is negative (predicting purchases). 

If the coefficients of these variables have correct signs and are statistically significant, 

the results would further support the argument that insiders trade when abnormal 

investor attention presents a profitable trading opportunity. 

Table 13 displays the results of Probit and Tobit regressions, where Columns 1 

through 4 show predictions on insider sales, and Columns 5 through 8 on insider 

purchases. Overall, insiders trade more often and transact more shares when there is 

abnormal investor attention (when their trades would be more likely to be profitable). 

The marginal effect associated with the Log(ABSVI) Positive dummy in Column 2 

shows that insiders are 11.6% more likely to sell shares when there is an increase in 

investor attention.36 Similarly, the same coefficient of Tobit regression in Column 4 

shows that insiders sell 27,464 more shares when Log(ABSVI) is positive. On the 

purchase side, insiders buy more shares and more frequently when investors are less 

attentive. The marginal effect associated with the Log(ABSVI) Negative dummy in 

Column 6 shows that insiders are 3.37% more likely to buy shares when there is a lack 

of investor attention, and the same coefficient of Tobit model in Column 8 indicates that 

insiders buy 4,518 more shares under the same circumstance. 

                                                           
36 The marginal effect presented here is derived using the Stata program mfx. 
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Which Insiders Take the Trading Opportunities? 

Our preliminary results in Table 11 suggest that insiders who are non-executive, 

non- independent directors are more likely to engage in trades that are linked to 

investors’ attention. We now carefully examine this possibility, using limited dependent 

variable regressions. For this purpose, we classify insiders as top level officers, insider 

directors, independent directors, and others, based on the role classification codes 

defined in the insider filing database. Top level officers are the firm’s chief executive 

officer, chief financial officer, chief operating officer, and the chair of its board (role 

classification codes: CEO, CFO, CO, and CB). Insider directors are those who have an 

employment contract with or a beneficial interest in the firm, excluding the top level 

officers (role classification codes: DO, H, and OD). All other directors are taken to be 

independent directors.  

To test the role played by insider type, we interact each role classification 

dummy with the variable of interest, Log(ABSVI). Table 14 presents the results of Logit 

regressions, where in Columns 1, 3, and 5, the dependent variable is the sale dummy, 

and in Columns 2, 4, and 6, it is the number of shares sold (in thousands). The 

coefficients of the interaction terms on Columns 1, 3, and 5 are negative on Top-level 

Officers and on Independent Directors, but are positive on Insider Directors, confirming 

our initial observation that non-senior-executive, inside directors are the insiders who 

are likely to trade to take advantage of investors’ attention. Top executives and 

independent directors are less likely to engage in such opportunistic trades possbily 
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because of their greater concerns for reputation. The results of Tobit regressions in 

Columns 2, 4 and 6 support a simlar conclusion. 

Characteristics of the Opportunistic Traders and their Firms 

Having identified that non-senior-executive, non-independent directors tend to 

engage in opportunistic trades related to investor attention, we now explore the insider 

traders’ individual as well as firm characteristics. We employ a logit model where the 

dependent variable is a dummy that equals one if an insider is a non-senior-executive, 

non-independent director. Independent variables in the regression include major 

categories of insider and firm level characteristics such as the insider’s tenure in the 

firm as well as the firm’s geographical dispersion, governance, financial constraints, 

product dispersion, social responsibility, reputation and fame. We measure insider 

tenure as the log of the number of years the insider is active in the firm. Geographical 

dispersion is measured as the log of the number of states in which the firm operates. 

Governance is based on the G-index from Gompers, Ishii, & Metrick (2003), with the 

poor governance dummy equal to one if the firm’s G-index is 90 percentile or higher of 

the distribution (G-index >= 12 and a larger number indicating poorer governance). 

Financial constraint is based on the SA index introduced by Hadlock & Pierce (2010).37 

Corporate social responsibility is measured by the KLD index from the KLD Social 

                                                           
37 The SA Index is computed as (-0.737*Size) + (0.043* Size2)-(0.040* Age), where Size is the log of 
inflation-adjusted book asset, and Age is the number of years the firm is listed with a non-missing stock 
price on Compustat. The size is capped at the log of $4.5 billion, and age is winsorized at thirty-seven 
years. 
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Ratings database. 38  Product dispersion is the product-sales based Herfindahl-

Hirschman index from Compustat Product database. For the reputation and fame 

variable, we manually collect the Fortune magazine ranked 100 best companies to work 

for between 2004 and 2014 and we create the Fortune100 dummy to proxy for good 

corporate reputation.  

Table 15 shows that the non-senior-executive, non-independent insider traders 

are more likely to have a longer tenure in their firms and to be from firms that have 

poor governance, are socially less responsible, and are not in the list of Fortune 100 best 

companies. Moreover, their firms also operate in more states, have more concentrated 

product-sales, and are financially less constrained. Specifically, the coefficient of 

Log(Number of Years Active) in Column 1 is positive and significant, indicating the 

insider trader’s longer tenure in the firm. As Cohen, Malloy, & Pomorski (2011), we 

include the number of trades to isolate the effect of time in the firm, conditional on the 

trading activity of individual insider. Here, the coefficient of Log(Number of Trades) is 

negative and significant, suggesting that while the insider trades less in general, he/she 

actively trades when an attention-related opportunity presents itself. Thus, conditioned 

on the same amount of trades, our results indicate that an insider who has a longer 

tenure in a firm is more likely to trade opportunistically. 

                                                           
38 The KLD index is computed by considering seven dimensions: Corporate Governance, Human Rights, 
Community, Diversity, Employee Relations, Environment, and Product. The KLD is computed by 
subtracting total weaknesses from total strengths from the seven dimensions. 
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Column 2 of Table 15 examines the effect of firm geographical dispersion: the log 

of the number of states the firm operates. The coefficient is positive and significant, 

suggesting that the number of states in which a firm operates positively predicts the 

likelihood that a non-senior-executive, non-independent insider of the firm will engage 

in an opportunistic trade. This finding differs somewhat from that in Cohen, Malloy, 

and Pomorski (2011) possibly because we focus only on certain opportunistic traders. In 

particular, firms that operate in more states are likely to attract a larger base of retail 

investors, creating more opportunities for profitable insider trades. 

The effects of corporate governance, financial constraints, and product 

concentration are shown in Columns 3 through 5 of Table 15. In Column 3, the 

coefficent of the poor governance dummy is positive and significant, indicating that an 

opportunistic trader is more likely associated with a poorly govened firm. In Column 4, 

an opportunistic insider trader is more likely linked to a financially less constrained 

firm. This result is consistent with the argument that retail investors are more likely to 

be interested in firms that are doing well financially. In Column 5, we see a positive, 

although weakly significant, coefficient on product concentration. It is possible that 

when a firm’s revenue source is concentrated from fewer products, less corporate 

diversification might motivate insiders to engage in more trades when the opportunities 

are present. Overall, our results support that opportunistic insider traders are more 

likely from firms that have a poorer governance, that are financially less constrained, 

and that have more concentrated products. 
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Columns 6 through 8 turn to aspects of social responsibility and reputation of 

firms. The result in Column 6 is based on the KLD-corporate social responsibility of 

companies. The KLD measure is an aggregate on seven dimensions: corporate 

governance, human rights, community, diversity, employee relations, environment, and 

product. A higher KLD index means a higher level of social awareness and integrity. 

The negative coefficient on this measure suggests that opportunistic insiders are more 

likely to be from social less responsible firms. In Columns 7 and 8, we check whether a 

firm in our sample has been in the list of Fortune 100 best companies to work for. The 

best companies may attract more investors’ attention, thereby creating more 

opportunities for insider trading. However, such firms may also bear greater reputation 

costs if opportunistic insider trades are exposed. The negative coefficients of the 

Fortune100 dummy and Log(Nomination Ranks) support the latter argument that 

reputable firms value more highly their public image and reputation, and therefore, 

their insiders of all types are less likely to engage in trades that take advantage of retail 

investors.  

Do Lottery-type Stocks Have More SVI-related Insider Trading? 

Kumar (2009) finds that individual investors who are young, urban, single, 

relatively poor and less educated tend to overweigh stocks with lottery features in their 

portfolios. Kumar labels a stock as lottery-type if it has a low per share price, high 

idiosyncratic volatility and skewness. The idea is that a lottery-type stock, like a lottery 

ticket, can provide the buyer with a huge reward but only with a very low probability. 
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An implication of Kumar’s study is that lottery stock buyers are generally less 

sophisticated investors who may have limited resources and abilities to process relevant 

information. If this implication is true, we expect that insiders of lottery-stock firms 

would have greater opportunities to engage in SVI-related trades that take advantage of 

varying attention of individual investors on the stocks. 

We follow Kumar’s (2009) approach to identify lottery-type stocks. We first 

compute idiosyncratic volatility and skewness for each stock at month t using the CRSP 

return data of previous six months (t-6 to t-1). As in Kumar (2009) and Ang, Xing, & 

Zhang (2006), idiosyncratic volatility is calculated as follows: 

                                   𝐼𝑑𝑜𝑣𝑜𝑙𝑖,𝑡 =
∑ 𝜀𝑖,𝑑

2
𝑑𝜖𝑇𝑖(𝑡)

𝐷𝑖(𝑡)
,                                                         (1)                                                    

where stock price in month t is the closing price at the end of month t-1, Ti(t) is the set of 

CRSP daily returns for firm i in month t, Di(t) is the number of trading days for firm i in 

month t, and 𝜀𝑖,𝑑 is the residual on trading day d for firm i from regressing firm i’s daily 

return on the four factor model over the period Ti(t). For idiosyncratic skewness, we 

follow Harvey and Siddique (2000) and Kumar (2009), and use the following equation: 

                                                    𝐼𝑑𝑜𝑣𝑜𝑙𝑖,𝑡 =
∑ 𝜀𝑖,𝑑

3
𝑑𝜖𝑇𝑖(𝑡)

𝜎𝑖,𝑡
3 ,                                                         (2) 

where Ti(t), Di(t), and 𝜀𝑖,𝑑 are the same as in Equation (1), and 𝜎𝑖,𝑡 is the squared root of 

𝐼𝑑𝑜𝑣𝑜𝑙𝑖,𝑡 estimated from Equation (1). A stock in our sample is lottery-type if its price is 
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in the bottom half of distribution while its idiosyncratic volatility and skewness are both 

in the top half. All other stocks in our sample are classified as non-lottery type stocks.39  

Table 16 presents the descriptive statistics of lottery-type stocks and the results of 

firm-level regressions. In Panel A, we compare lottery-type and non-lottery stocks 

based on the three characteristics of stock price, idiosyncratic volatility and skewness. 

Our sample has 1,093 lottery-type stocks and 4,029 non-lottery stocks. Lottery-type 

stocks have a much lower average price (6.40 vs. 23.68), much higher average 

idiosyncratic volatility ( 21.99 vs. 8.11) and skewness (2.10 vs. 0.29). In our firm-level 

regressions, we introduce a dummy variable, Lottery, which equals one if the stock is 

lottery-type at the end of month t-1.40 Our main interests are the lottery dummy and its 

interaction term with Log(ABSVI): the Log(ABSVI) Positive or Log(ABSVI) Negative 

dummy. We also construct a jump (fall) dummy to capture an extreme increase 

(decrease) in the level of investor attention over that of the previous month. The Jump 

(Fall) dummy equals one when the ABSVI is in the top (bottom) 10 percentile. Panel B 

(C) of Table 16 presents the results of our Logit and Tobit regressions on net sales 

(purchases). The coefficient of Lottery is negative (positive) in Panel B (C), indicating 

that insiders sell less (buy more) of lottery-type stocks compared with insider trading 

on non-lottery stocks. Panel B also shows highly positive and significant coefficients of 

the interaction terms between Lottery and Log(ABSVI), Log(ABSVI) Positive, and Jump, 

                                                           
39 Kumar (2009) defines non-lottery type stocks as those that belong to none of the three categories. In our 
paper, our main interest is to examine the impact of lottery-type stocks on SVI-related trades, and our 
grouping approach is not expected to result in biased results. 
40 We use the lottery dummy at the end of month t-1 to regress on the month t’s insider trading activity in 
order to establish a causality relationship. 
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providing further support to our conjecture. Indeed, a greater interest of retail investors 

in a lottery-type stock (a higher ABSVI on the stock) appears to create more profitable 

opportunities for insider trading.  

Local Investors and SVI-related Insider Trading  

Research has documented that local investors are better informed, for example, 

because of local media’s coverage on local firms (Engelberg and Parsons, 2011). Because 

of this informational advantage, local investors face less adverse selection and 

contribute to price discovery of local stocks (Shive, 2012). Their portfolios overweigh 

local stocks (Seasholes and Zhu, 2010) and earn superior returns (Berry and Gamble, 

2013). Taken together, local investors appear to be better investors of local stocks with 

their local investments driven more by the fundamantal information than by other 

factors. An implication is that the interest of local investors in –their attention to – local 

stocks would be less likely to create opportunities for profitable insider trades.  

 We test this implication, using both Compustat state (STATE) and city (CITY) 

information on firms to define a firm’s locality. We manually collect from Google 

Trends firm local SVI information (at the state level: SVI_State, and at the metropolitian 

statistics area level: SVI_Metro),41 and use the information to construct two abnormal 

local SVI measures. The results in Table 17 support our expectations. Panel A shows the 

mean comparisons between two local SVI measures and the aggregated SVI. Both 

SVI_State and SVI_Metro are significantly smaller than the SVI of all Google searches, 

                                                           
41 We use the local SVI at the State and Metro level to ensure sufficient data availability. 
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indicating that local investors rely less on Internet searches than do non-local investors. 

Thus, local investors’ investment decisions are more likely influenced by their local 

information or knowledge. Panel B (C) presents the results of our Logit and Tobit 

regressions on Sales Dummy and Shares Sold (Purchase Dummy and Shares Bought). 

As expected, we observe weaker (and even insignificant) coefficients, implying that 

better informed trading by local investors presents fewer opportunities for profitable 

insider trades.  

SEC Enforcement Activities and Opportunistic Insider Sales 

 In this section, we examine whether insiders change their SVI-related trading 

behaviors upon the news releases of SEC enforcement actions on illegal insider trading 

activities. We focus on the impact of SEC actions on opportunistic insider sales because 

such sales are most likely to trigger SEC investigations (Cohen, Malloy, and Pomorski, 

2012). We classify opportunistic insider sales into two categories: SVI-related and non-

SVI-related. An opportunistic sale is SVI-related if it takes place in a month when there 

is an increase in investors’ searches on the stock – when Log(ABSVI) > 0. All other 

opportunistic sales are defined as non-SVI-related. It is possible that insiders may 

believe that the sales of shares when retail investors are paying more attention are less 

likely to be subject to SEC investigation. If this view is correct, we expect insiders to 

engage in more SVI-related sales following the releases of SEC actions on illegal insider 

trading, in contrast to Cohen, Malloy, and Pomorski’s (2012) finding that there is an 

overall reduction in opportunistic insider sales following such releases.  
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To test this conjecture, we regress the ratio of SVI-related sales to total 

opportunistic sales in month t onto the number of releases of SEC litigation on illegal 

insider trading in month t-1. The independent variable of interest is the natural log of 

one plus the number of releases of SEC cases against insider trading in month t-1. We 

include in the regression the fraction of positive Log(ABSVI) at month t and t-1, where 

the fraction of positive Log(ABSVI) is defined as the number of months that have 

positive Log(ABSVI) divided by the total number of months that ABSVIs are available. 

Control variables include an equally weighted market return in month t, the standard 

deviation of daily market returns in month t-1, and cumulative equally weighted 

market returns of past 3, 6, and 12 months. 

We report the results of the test in Table 18. Panel A shows that SVI-related sales 

increase significantly following the news releases of SEC actions. The evidence indicates 

that SEC cases result in more SVI-related insider sales even though they dampen overall  

opportunistic sales. In other words, when there are greater concerns about regulatory 

scrutiny of insider trading, insiders appear to prefer SVI-related sales to other 

opportunistic sales. The coefficient of the number of SEC releases (Num SEC Releaset-1 ) 

is 0.073 (t = 4.37).42  The coefficient of the fraction of positve Log(ABSVI) at month t is 

positive and significant, suggesting that abnormal investors’ attention attracts more 

SVI-related insider sales. Interestingly, the coefficient of the fraction of positve 

Log(ABSVI) at month t-1 is negative and significant, indicating that after taking 

                                                           
42 Summary Statistics for our litigation data are as follows: the average number of insider trading-related 
cases the SEC makes in a given month is 5.6 (median 5.5), with a standard deviation of 2.61(max=12, 75th 
percentile=7, 25th percentile=4, min=0). 
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advantage of heightened retail investors’ attention, insiders reduce their sales, 

presumably to reduce the risk of SEC action since the other forms of sales may be 

riskier.  

In Panel B of Table 18, we rerun firm-level Probit and Tobit regressions where 

the dependent variables are the sales dummy and the number of shares sold, 

respectively. The coefficients of Num SEC Releaset-1  are negative and significant, 

consistent with a deterrence effect on overall opportunistic sales. However, the 

coefficients of interaction term between Log(ABSVI)t and Num SEC Releaset-1 are 

positive and significant, indicating that insiders change their trading behaviors by 

trading more on the basis of retail interest. 

Panel C examines the probability of an insider trader being investigated by the 

SEC. The observations are at the insider level, and insider characteristics are constructed 

based on all trades and sales of each insider.43 Column 1 shows that an insider who 

engages in SVI-related trades has a lower likelihood of subsequently being investigated 

or sued by the SEC. In Column 2, we partition the number of insider trades on the basis 

of being SVI-related and non-SVI-related. The coefficient on the number of 

Non_SVI_Related Trades is positive and significant (t=2.56) while that on SVI_Related 

Trades remain insignificant. The result suggests that it is the non-SVI-related trades that 

trigger SEC actions. We also construct the percentage of SVI-related sales dummy (% 

SVI_Related) which equals one when the number of SVI-related sales (trades) is greater 

                                                           
43 We define the number of trades here as the number of an insider executing each transaction and the 
number of sales as the total number of shares sold. 
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than that of non-SVI-related sales (trades). The coefficients of % SVI_Related sales and 

trades dummies are negative and marginally significant. Overall, our evidence supports 

the argument that SVI-related sales are less likely to face SEC actions, and therefore, 

such sale activities actually increase following the news of SEC actions. 

Information or Sentiment and Additional Robustness Checks 

One concern is that Google’s SVI simply reflects investors’ interest in real news 

or information relevant to the stock. In other words, the SVI represents the variation of 

flow of publicly available firm-level information. To check whether our results are 

mainly driven by the flow of public information about particular stocks or by changing 

sentiments of retail investors on these stocks, we regress Log(ABSVI) onto such 

variables that are known to affect the SVI as earning surprise, advertising to sales, major 

macro variables of GDP final and FOMC rate decisions, as well as year and industry 

dummies. We extract the information about firms’ earning announcements from 

I/B/E/S and adjust the announcement days into the CRSP trading days. The 

magnitude of earnings surprise is constructed, using the following equation: 

                                                  𝑆𝑈𝐸𝑖,𝑞 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑃𝑆𝑖,𝑞−𝑀𝑒𝑑𝑖𝑎𝑛 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝐸𝑃𝑆𝑖,𝑞

𝑃𝑖,𝑞
                             (3) 

In the above, 𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑃𝑆𝑖,𝑞 is actual earnings per share (EPS) for firm i at quarter q, 

𝑀𝑒𝑑𝑖𝑎𝑛 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝐸𝑃𝑆𝑖,𝑞 is the median estimate of EPS among those posted 90 days 

prior to the earnings report day, and 𝑃𝑖,𝑞 is the price per share for firm i at the end of 

quarter q from Compustat. We include two manually collected major macro news 

variables: GDP final and FOMC rate decisions, which are considered by Bloomberg to 
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have most relevance to investors. We run the following regression to decompose 

Log(ABSVI):  

𝐿𝑜𝑔(𝐴𝐵𝑆𝑉𝐼)𝑖,𝑡

= 𝛼𝑖 ∗ 𝑆𝑈𝐸𝑖,𝑄(𝑡)−1 + 𝛽𝑖 ∗
𝐴𝑑𝑣

𝑠𝑎𝑙𝑒𝑖,𝑌(𝑡)−1
+ 𝛾𝑖 ∗ 𝐺𝐷𝑃𝐹𝑖𝑛𝑎𝑙𝑡−1

+ 𝛿𝑖 ∗ 𝐹𝑂𝑀𝐶𝑡−1

+ 𝑌𝑒𝑎𝑟 + 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 + 𝜀𝑖,𝑡 

                                                                                                                                                       (2) 

where 𝑆𝑈𝐸𝑖,𝑄(𝑡)−1 is firm i’s earnings surprise at the quarter immediately before month t,  

𝐴𝑑𝑣/𝑠𝑎𝑙𝑒𝑖,𝑌(𝑡)−1  is the firm’s advertising to sale ratio in the previous year, and 

𝐺𝐷𝑃_𝐹𝑖𝑛𝑎𝑙𝑡−1 and 𝐹𝑂𝑀𝐶𝑡−1 are dummy variables that equal one if there is a release of 

the macro information in month t-1. We take the predicted value as the information 

component of Log(ABSVI) – denoted Log(ABSVI-Information) – and the residual value 

as its non-information or sentiment component – denoted Log(ABSVI-Sentiment). Table 

19 presents the effects of the two components of ABSVI on insider trading. As shown in 

their respective coefficients, the sentiment component delivers stronger and more 

consistent impacts than do the information component. Thus, our results are more in 

line with retail investors’ shifting sentiments creating opportunities for profitable 

insider trades. 

To address concerns of causality as well as endogeneity, we perform two sub-

sample analyses. The first is based on a political regime change that serves as an 

exogenous shock. In particular, we decompose our whole sample period of 2004-2014 

into two subsample periods of 2004-2008 and 2009-2014 with the former being under 
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the more laissez faire Republican Bush Administration and the later under the more 

activist Democratic Obama Administraion. Presumably, the Obama Administration 

would be more active at taking enforcement actions against legally questionable insider 

trading and thus would have a stronger deterrence effect on opportunistic trades. 

However, our results remain essentially the same for the two subsample periods, 

suggesting that the SVI is not affected by insider trading. In our second sub-sample 

analysis, we create one subsample for months of earnings annoucements and another 

for months of no earnings annoucements. Our results remain significant in the months 

of no earnings annoucement, although they are stronger in the months of earnings 

annoucement. 

Portfolio Returns from SVI-Based Trading Strategy 

We now examine the returns of portfolios formed according to our SVI-related 

trading classifications. The main question is whether insiders’ SVI-based trading 

behaviors predict future returns. To address this question, we create quintiles using the 

monthly ABSVI and each firm’s monthly net transaction volume (net sales or 

purchases). Specifically, we base the portfolios on our classifications of SVI-related 

trades at the firm level rather than the insider level. We focus on firm-months that have 

either a positive or a negative Log(ABSVI) by excluding those that have a zero 

Log(ABSVI). For each subsample, we classify a firm based on its net transaction volume 

(number of shares). For example, if a firm has more insider sales (purchases) than 

purchases (sales), we group the firm into a net sale (purchase) portfolio. In essence, we 
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create two portfolios for net sale: one insider sale portfolio when Log(ABSVI) is positive 

and another insider sale portfolio when Log(ABSVI) is negative. Likewise, we also 

create two net purchase portfolios: one when Log(ABSVI) is positive and another when 

it is negative. We hold these four portfolios over the month following insider trades, 

and then rebalance all portfolios at the end of month, using new information on each 

firm’s Log(ABSVI) and net transaction volume for the month. 

Table 20 shows the portfolio returns of SVI-based trading strategy. We see that 

future one-month returns are monotonically decreasing in the ABSVI and in net 

transaction positions. In particular, firms at the highest net sales and the lowest ABSVI 

quintile experience the highest average returns (1.85%), indicating that insiders who sell 

their firm’s shares when investors’ attention (ABSVI) is extremely low will experience 

the greatest opportunity cost of trading by forgoing the highest positive return in the 

following month. In contrast, if insiders sell at a higher ABSVI, their opportunity cost of 

selling will be lower. The results are similar on net insider purchase. A higher average 

return is realized when the ABSVI is lower; that is, insiders who buy their firm’s shares 

when investors’ attention is lower will earn higher returns. Overall, the results reinforce 

the argument that the ABSVI presents meaningful opportunities for profitable insider 

trades. 

Table 21 presents raw portfolio returns and risk-adjusted alphas for the CAPM, 

Fama-French, Carhart four-factor, as well as five-factor model which includes the 

Pastor-Stambaugh liquidity factor. It also reports on both value-weighted and equal-
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weighted portfolios. We see that a portfolio strategy based on opportunistic insider 

trades when the ABSVI is low would earn significant and large abnormal returns. In 

comparison, a portfolio strategy based on opportunistic trades when the ABSVI is high 

would only earn insignificant and sometimes even negative risk-adjusted returns. 

Furthermore, an equally weighted long-short portfolio that is long on what insiders buy 

when Log(ABSVI) is negative and short on what insiders sell when Log(ABSVI) is 

positive would generate a five-factor alpha of 232 basis points (t = 7.08) or 27.84% per 

year before transaction costs. A one directional portfolio strategy, be it based on buy or 

sell, however, would generate a consistently negative alpha for all model specifications. 

In the lower half of Table 13, we present the return results of value-weighted portfolios; 

here, the five-factor alpha is 119 basis points (t = 3.08) or 14.28% per year before 

transaction costs. Taken together, our return analysis suggests that a trading strategy 

that follows insiders’ SVI-related trades would earn economically and statistically 

significant abnormal returns. 

Conclusion 

This paper explores how insiders may engage in opportunistic trades to take 

advantage of varying attention of retail investors to their firm’s stock. Our analysis rests 

on the premise that retail investors exhibit behavior biases that could result in 

mispricing and create opportunities for profitable insider trades. Our result indicates 

that insiders can indeed profit by timing their sales of shares when there is an increase 

in retail investors’ attention (proxied by the ABSVI). Exploring further this finding 
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using the Limited Depedent Variable regression, we show that a higher level of 

abnormal investor attention increases the likelihood of insiders’ selling and also the 

quantity of their sales while decreasing the likelihood of insiders’ buying and the 

quantity of their purchases. In other words, we document a pattern of opportunistic 

insider trades that are contrarian to the level of retail interest in the stock.  

While the level of investor attention is significantly and positively associated 

with insiders’ abnormal returns on sales, we observe no significant relationship 

between the attention level and abnormal returns on insiders’ purchases. This result is 

consistent with the contention that retail investors’ attention affects mostly their buying 

rather than selling decisions, with a higher attention level predicts a short-term price 

rise. Exploring further this finding using multivariate regressions, we show that 

investors’ abnormal attention has a significant negative effect on the following month’s 

excess returns. This negative effect, however, appears to be attenuated by the longevity 

of attention, implying that as retail investors’ active searches on the same firm persists, 

they may be learning from their experience and becoming less sentimental and more 

rational in making their trading decisions.  

We find that insiders who are involved in the SVI-related opportunistic trades 

tend to be non-senior-executive, non-independent directors. Such insiders may be less 

concerned about firm and individual repuation and may therefore value more the 

opportunistic trading profits. In particular, exploring the mechinism behind our return 

analysis, we find that the opportunistic traders are more likely to have a long tenure in 
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their firm, and to be from a firm that has weak corporate governance, low awareness of 

corporate social responsibility, and low reputation costs in the eyes of the public. The 

firm also operates in more states, has a high product sale concentration, and is less 

financial constrained. 

We conduct subsample analyses to address several issues. One is that retail 

investors may find lottery-type stocks more appealing and hence their optimistic 

sentiment on such stocks may create even greater opportunities for profitable insider 

trades. Our evidence supports this conjecture. Another issue concerns that our results 

might be driven by local sentiment because local investors prefer and overweigh local 

stocks in their portfolio, presumably because they are better informed about local stocks. 

Our results that are based on the local ABSVI are indeed much weaker and less 

significant, indicating that local investors are less driven by sentiment than non-local 

investors and thus there are fewer opportunities for profitable insider trades based on 

local attention. We also explore SEC enforcement risk associated with SVI-related trades. 

Interestingly, we find supportive evidence that insider trading motivated by an 

abnormal SVI faces a lower risk of SEC litigation, and thus, the amount of SVI-related 

trades actually increases following the releases of SEC litigation cases. 

It is possible that investors’ level of attention may simply refect their demand for 

newly public information about the firm; that is, corporate news or events rather than 

investor sentiment may be driving the level of attention. To address this issue, we 

disentangle the ABSVI into two components: the first is part of ABSVI that is explained 
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by arrivals of firm or market information while the second is the part that is left 

unexplained – which we refer to as the sentiment component. We show that our results 

are driven more by the sentiment component. We carry out additional subsample 

analyses based on the change of political administration and earnings news releases. 

The results show that  the SVI is unlikely to be affected by insider trading and remain 

significant even after controlling for the news element. 

We show that the potential profits of the insider trades are both statistically and 

economically significant. For example, a value-weighted (equal-weighted) mimicking 

portfolio that is long on what insiders buy when the ABSVI is negative and is short on 

what they sell when the ABSVI is positive would generate a significant five-factor alpha 

of about 119 (232) basis points per month, or 14.28 % (27.84%) per year, before 

transaction costs. Overall, we provide strong evidence that insiders strategically exploit 

mispricing of their firm’s stock arising from retail investors’ shifting sentiment, perhaps 

believing (correctly) that this type of trades is less likely to subject them to investor 

litigation and SEC enforcement actions.  
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Appendix A 

Essay1_Variable Definitions 
 

 
Variable Definition Source 

   
 Measures of Tax Aggressiveness and Advertising  
SHELTERi,t Wilson’s (2009) sheltering probability is computed using 

the following regression model (Table 5 Column 3):   

𝑆𝐻𝐸𝐿𝑇𝐸𝑅_𝑃𝑅𝑂𝐵𝑖𝑡

= −4.86 + 5.20 × 𝐵𝑇𝐷𝑖,𝑡 + 4.08 × 𝐷𝐴𝑖,𝑡 − 0.41
× 𝐿𝐸𝑉𝑖,𝑡 

+0.76 × 𝐴𝑇𝑖,𝑡 + 3.51 × 𝑅𝑂𝐴𝑖,𝑡 + 1.72 ∗ 𝐹𝐼𝑖,𝑡 + 2.43 × 𝑅𝐷𝑖,𝑡 

In the above, SHELTER_PROBit is the sheltering probability 
from firm i in year t. KIMBTDi,t  is a book-tax difference 
measure defined in Kim et al. (2011). DAi,t is discretionary 
accruals from the performance-adjusted modified cross-
sectional Jones Model. LEVi,t is the long-term debt scaled 
by lagged asset (#9/#6). ATi,t is the log of total asset (#6). 
ROAi,t is return on assets measured as operating income 
(#170 minus #192) scaled by lagged assets (#6). 𝐹𝐼𝑖,𝑡 (#273) 

is a dummy variable, equals to one for a firm-year that 
reports foreign income and zero otherwise. RDi,t  is 
research and development expense scaled by lagged total 
assets (#46/#6). We follow Rego and Wilson (2012) and 
rank SHELTER_PROBit  each year and create a dummy 
variable to capture firms that have a high sheltering 
probability. SHELTERi,t is an indicator variable that equals 
to one if the firm’s estimated sheltering probability is in 
the top quartile in that year and is zero if otherwise.  

Compustat 

CETRi,t Cash Taxes Paid/Pretax Income (#317 divided by #170). 
CETRi,t is set to missing when the denominator is zero or 
negative. It is truncated to the range of [0, 1]. 

Compustat 

KIMBTDi,t Defined as book income (#170) minus taxable income over 
lagged assets (#6). Taxable income is computed as the sum 
of current federal tax expense (#63) and current foreign tax 
expense (#64) divided by the statutory tax rate, and then 
subtracted the change in net operating loss carryforwards 
(#52). If current deferral tax expense is missing, total 

Compustat 
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current tax expense is calculated by subtracting deferred 
taxes (#50), state income taxes (#173), and other income 
tax (#211) from total income taxes (#16) in year t. 

DDKIMBTDi,t Desai and Dharmapala’s (2006) residual book-tax 
difference, which equals the residual of firm fixed effect 
regression: 𝐾𝐼𝑀𝐵𝑇𝐷𝑖,𝑡 = 𝛽1𝑇𝐴𝐶𝐶𝑖,𝑡 + 𝜇𝑖 + 𝜀𝑖,𝑡 , where 
TACCi,t  is total accruals measured using the cash flow 
method of Hribar and Collins (2002). Both variables are 
scaled by lagged total assets (#6) and are winsorized at the 
1% and 99% levels. 

Compustat 

DTAXi,t Frank et al.’s (2009) discretionary permanent book-tax 
difference for firm i in year t. DTAXi,t is the εit  from the 
following regression estimated by 2-digit SIC code and 
fiscal year: 

𝑃𝐸𝑅𝑀𝐷𝐼𝐹𝐹𝑖𝑡 = 𝛽0 + 𝛽1𝐼𝑁𝑇𝐴𝑁𝐺𝑖𝑡 + 𝛽2𝑈𝑁𝐶𝑂𝑁𝑖𝑡 + 𝛽3𝑀𝐼𝑖𝑡 +
𝛽4𝐶𝑆𝑇𝑆𝑖𝑡 + 𝛽5𝛥𝑁𝑂𝐿𝑖𝑡 + 𝛽6𝐿𝐴𝐺𝑃𝐸𝑅𝑀𝑖𝑡 + 𝜀𝑖𝑡; 

where: 

𝑃𝐸𝑅𝑀𝐷𝐼𝐹𝐹𝑖𝑡 = 𝐵𝐼𝑖𝑡 − [(𝐶𝐹𝑇𝐸𝑖𝑡 + 𝐶𝐹𝑂𝑅𝑖𝑡) 𝑆𝑇𝑅𝑖𝑡⁄ ) −
(𝐷𝑇𝐸𝑖𝑡 𝑆𝑇𝑅𝑖𝑡)⁄ ; 

BIit= pre-tax book income (#170) for firm i in year t; 

CFTEit= current federal tax expense (#63) for firm i in year 
t; 

CFORit= current foreign tax expense (#64) for firm i in year 
t; 

STRit= statutory tax rate in year t; 

DTEit= deferred tax expense (#50) for firm i in year t; 

INTANGit= good will and other intangibles (#33) for firm i 
in year t; 

UNCONit= income (loss) reported under the equity method 
(#55) for firm i in year t; 

MIit= income (loss) attributable to minority interest (#49) 
for firm i in year t; 

CSTEit= current state income tax expense (#173 ) for firm i 
in year t; 

ΔNOLit= change in net operating expense (#52) for firm i in 
year t; 

LAGPERMit = one-year lagged PERMDIFF firm i in year t; 

Following Frank et al. (2009), we handle the missing value 
problems as follows: if MIit, CFORit, UNCONit, or CSTEit is 
missing, it is set to zero. If  CFTEit (#63) is missing, then 
CFTEit is computed as total tax expense (#16) less current 

Compustat 
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foreign tax expense (#64), less current state tax expense 
(#173), and less deferred tax expense (#50). If  INTANGit 
(#33) is missing, then it is set to zero. If INTANGit (#33) = 
“C”, then it equals that for good will (#204). 

LOG(ADV)i,t Natural logarithm of one plus advertising expenditure 
(#45)  times 1,000,000 

Compustat 

ADVGPi,t Ratio of advertising (#45) to gross profits (#12-#41) Compustat 

HADVDUMi,t Dummy variable that equals one if advertising 
expenditure is above the median 

Compustat 

   
 Firm Specific Variables  

OPACITYi,t We follow Anderson et al. (2009) and compute opacity by 
aggregating the decile ranks from the variables: bid-ask 
spread, trading volume, analyst coverage, and analyst 
forecast errors, and then dividing the sum by 40. Trading 
volume is the nature logarithm of average daily trading 
volume during a fiscal year. Bid-ask spread is ask-price 
minus bid-price over the average of bid-ask prices, 
computed by averaging all trades for each firm from the 
third Wednesday of each month and then calculated a 
yearly average based on these 12 observations. Analyst 
coverage is the natural logarithm of the number of 
analysts following each firm, and analyst forecast error is 
the square of difference between the mean analysts’ 
earnings forecast and actual firms’ earnings scaled by the 
firm’s stock price.  

CRSP, 
IBES 

SP1500i,t Dummy variable that equals one if a firm is listed in the 
S&P 1500 over a firm year 

Compustat 

INST. OWNi,t Percentage of shares owned by institutional investors 
scaled by common shares outstanding 

13 f 

FAMILY 
FIRMi,t 
 

Dummy variable that equals one for family firms listed in 
the S&P 500, where founding family is defined as that with 
an equity ownership of 5% or more. Data for family firms 
are from 1995 to 2006 

Hand 
Collected 

ROAi,t Return on assets measured as operating income (#170 
minus #192) scaled by lagged assets (#6) 

Compustat 

LEVi,t Leverage ratio measured as long-term debt (#9) scaled by 
lagged asset (#6) 

Compustat 

ΔNOIi,t Change in loss carry forward (#52) scaled by lagged asset 
(#6) 

Compustat 

NOIi,t Dummy variable that equals one if loss carry forward 
(#52) is positive as of the beginning of the year 

Compustat 
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FIi,t Foreign income (#273) for firm i, year t, scaled by lagged 
assets (#6) 

Compustat 

PPEi,t Property, plant, and equipment (#8) scaled by lagged 
assets (#6) 

Compustat 

INTANGi,t Intangible assets (#33) scaled by lagged assets (#6) Compustat 

EQINCi,t Equity income in earnings (#55) scaled by lagged assets 
(#6) 

Compustat 

SIZEi,t Natural logarithm of firm i’s total assets (#6)  Compustat 

MTBi,t-1 Market-to-book ratio for firm i, at the beginning of year t, 
measured as market value of equity [ (#199) × (#25)], 
scaled by book value of equity (#60) 

Compustat 

RDi,t Research and development ratio measured as research and 
development expense (#46) scaled by lagged total assets 
(#6). Missing values are set to zero. 

Compustat 

CASHi,t Cash and cash equivalents (#1) scaled by lag of total assets 
(#6) net of cash 

Compustat 

LAGEi,t Natural logarithms of firm age in Compustat Compustat 

DIVi,t Dummy variable that equals one if a firm pays dividends 
(#201) 

Compustat 

EMPi,t Number of employees in the firm (#29) in thousands Compustat 

    
 

Appendix B 

Essay 2_Variable Definitions 

Variable Definition Source 

Panel A: Investors’ Attention Measure 

Monthly SVI Arithmetic average of weekly 
SVI 

Google Trends 

Log(ABSVI) Natural logarithm of monthly 
SVI scaled by previous month’s 
SVI 

Google Trends 

Log(SVI Duration) Natural logarithm of number of 
months that separate the trade 
month and first valid SVI month 

Google Trends 

Log(ABSVI_City) 
/Log(ABSVI_Metro) 

Natural logarithm of ABSVI that 
matches search interests of  
city/metropolitan statistical 

Google Trends 
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areas where the firm’s 
headquarter is located 

Attention Dummy Indicator variable that equals 
one (zero) if the firm is (is not) in 
the attention sample 

Google Trends 

Log(ABSVI) Positive44 Indicator variable that equals 
one (zero) if Log(ABSVI) is (is 
not) positive 

Google Trends 

 

Log(ABSVI) Negative Indicator variable that equals 
one (zero) if Log(ABSVI) is (is 
not) negative 

Google Trends 

 

Jump Indicator variable that equals 
one (zero) if the ABSVI is (is not) 
at the top 10 percentile 

Google Trends 

 

Fall Indicator variable that equals 
one (zero) if the ABSVI is (is not) 
at the bottom 10 percentile 

Google Trends 

 

Fraction Positive 
Log(ABSVI) 

Number of months that have 
positive Log(ABSVI) scaled by 
total number of months that 
ABSVIs are available 

Google Trends 

Panel B: Insider Trading and Characteristics 

Number of Shares 
Sold/Bought 

Number of shares sold/bought 
by insiders, in thousands 

Thomson Reuters 

Insider Database 

Sales/Purchase Dummy Indicator variable that equals 
one (zero) if firm-month is (is 
not) a net sale/purchase month 

Thomson Reuters 

Insider Database 

Top-
level/Inside/Independent 
director 

Indicator variable equals to one 
if a top-
level/inside/independent 
director trade in a firm-month, 
and zero if otherwise 

Thomson Reuters 

Insider Database 

Number of Year Active Number of years that an insider 
has been trading 

Thomson Reuters 

Insider Database 

Number of Trades Numbers of trades an insider 
executes. 

Thomson Reuters 

Insider Database 

Panel C: Stock and Firm Characteristics 

                                                           
44 We use a similar approach to define the local ABSVI dummies. 
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Book-to-Market Ratio The firm’s book value scaled by 
its market value 

CRSP, Compustat 

Size Previous year-end market value: 
share price times number of 
shares outstanding 

CRSP 

Log(Analysts) Natural logarithm of 1+number 
of analysts covering the firm 

IBES 

Advertising/Sales Advertising Expenditure scaled 
by sales 

Compustat 

Log(Price) Natural logarithm of stock price 
at previous year’s end 

Compustat 

CAR Firm market adjusted return CRSP 

Turnover Average monthly turnover 
scaled by share outstanding 

CRSP 

Std Market Return Standard deviation of equally 
weighted market returns 

CRSP 

Market Equally-weighted market return CRSP 

Excess Return Stock return minus risk-free rate CRSP, Fama French 

Data Library 

Geo Dispersion Natural logarithm of 1+number 
of states in which the firm 
operates 

Compustat Segment 

Poorly Governed  Firms Indicator variable that equals 
one (zero) if G-index is equal or 
larger than (less than) 12 

ISS (Formerly Risk 

Metrics) 

SA Index Computed as (-0.737*Size) + 
(0.043* Size2)-(0.040* Age), where 
Size is the log of inflation-
adjusted book asset, and Age is 
the number of years the firm is 
listed with a non-missing stock 
price on Compustat. The size is 
capped at the log of $4.5 billion, 
and age is winsorized at thirty-
seven years. 

Compustat 

KLD Index KLD is computed by subtracting 
total concerns from total strength 
from those seven dimensions. 

KLD Social Ratings 

Database 

Product Dispersion: HHI Herfindahl-Hirschman Index 
based on product sales 

Compustat Product  
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Fortune100_DUM  Indicator variable that equals 
one (zero) if a firm is (is not) one 
of Fortune 100 best companies to 
work for 

Fortune Magazine 

Fortune100_Rank Natural logarithm of ranks of 
100 best companies to work for 

Fortune Magazine 

Lottery Indicator variable that equals 
one (zero) if a stock is (is not) a 
lottery-type stock as defined in 
Kumar (2009) 

CRSP 

SUE Actual EPS minus median 
forecasted EPS over those posted 
90 days prior to the earnings 
report day scaled by the price 
per share 

IBES, Compustat 

Panel D: SEC Litigation  

Number of SEC Release Natural logarithm of 1+number 
of releases of SEC litigation cases  

SEC 

Panel E: Macro News 

GDP Final Indicator variable that equals 
one (zero) if there is (is not) an 
announcement on the GDP Final 

Bloomberg 

FOMC Indicator variable that equals 
one (zero) if there is (is not) an 
FOMC rate decision 
announcement 

Bloomberg 
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Appendix C: Tables and Figures 

 
Table 1: Sample Statistics  

This table provides sample statistics. Panel A presents descriptive statistics on the tax 
aggressiveness measures for the observations used in the baseline regression analysis as 
well as advertising expenditure and all control variables. Panel B shows the Pearson 
correlation of tax aggressiveness measures. The initial sample consists of 14,871 firm-
year observations for which data for advertising expenditure, control variables of our 
baseline regression, and at least one tax aggressive variable are available. Appendix A 
provides detailed definitions on all the variables.



 

100 
 

 
 
Table 1 (Continued) 
Panel A. Descriptive Statistics  

Variable N Mean Std Dev P25 Median P75 

SHELTERi,t 13,118 0.305 0.460 0.000 0.000 1.000 

CETRi,t 9,937 0.277 0.171 0.156 0.281 0.376 

KIMBTDi,t 14,256 0.621 1.269 0.013 0.078 0.476 

DDKIMBTDi,t 14,247 0.649 1.272 0.030 0.104 0.517 

DTAXi,t 13,735 0.014 0.148 -0.020 0.015 0.060 

ADVERTISINGi,t 

(Million $) 14,871 51.719 232.957 0.300 2.300 17.229 

LOG(ADV)i,t 14,871 14.393 3.386 12.612 14.648 16.662 

ADVGPi,t 14,807 0.080 0.141 0.011 0.035 0.098 

ASSETi,t (Million $) 14,871 1835.040 7753.270 30.364 171.318 854.500 

ROAi,t 14,871 0.033 0.162 -0.096 0.041 0.130 

LEVi,t 14,871 0.191 0.286 0.000 0.078 0.275 

CNOIi,t 14,871 0.131 0.500 -0.001 0.000 0.064 

NOIi,t 14,871 0.687 0.464 0.000 1.000 1.000 

FIi,t 14,871 0.007 0.024 0.000 0.000 0.000 

PPEi,t 14,871 0.239 0.233 0.067 0.165 0.327 

INTANGi,t 14,871 0.179 0.234 0.002 0.078 0.276 

EQINCi,t 14,871 0.000 0.004 0.000 0.000 0.000 

RDi,t 14,871 0.181 1.174 0.000 0.000 0.080 

LAGEi,t 14,871 2.510 0.841 1.946 2.565 3.135 

DIVi,t 14,871 0.244 0.430 0.000 0.000 0.000 

SIZEi,t 14,871 18.847 2.423 17.229 18.959 20.566 

MTBi,t-1 14,871 2.834 6.150 0.975 1.891 3.572 

CASHi,t 14,871 0.230 0.320 0.028 0.108 0.308 

EMPi,t (Thousands) 14,497 7.400 18.445 0.167 0.924 4.950 
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Table 1 (Continued) 
Panel B: Pearson Correlations  

 CETRi,t SHELTERi,t KIMBTDi,t DDKIMBTDi,t 

SHELTERi,t -0.094 
    (0.00) 
   KIMBTDi,t -0.283 0.513 

   (0.00) (0.00) 
  DDKIMBTDi,t -0.289 0.508 0.999 

  (0.00) (0.00) (0.00) 
 DTAXi,t -0.189 0.136 0.069 0.051 

  (0.00) (0.00) (0.00) (0.00) 
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Table 2: Univariate Analysis 

This table presents a comparison of equally weighted portfolio means for five measures 
of tax aggressiveness by quintile of firms’ market value and advertising expenditure. 
The portfolios are formed by first dividing the sample into five quintiles based on the 
market capitalization. Then each market value quintile is sub-divided into five quintiles 
based on the advertising expenditure. Advertising expenditures and firms’ market 
values are obtained from   COMPUSTAT. The significant levels for the differences are 
computed based on two tails t-test, and ***, **, and * denote a significant difference from 
zero at the 1%, 5%, and 10% levels, respectively. 
 

  Market Value Quintile 

Advertising Quintile Smallest 2 3 4 Largest 

SHELTERi,t 

     Smallest 0.497 0.492 0.353 0.283 0.571 

2 0.375 0.352 0.285 0.215 0.318 

3 0.377 0.264 0.211 0.160 0.307 

4 0.317 0.188 0.184 0.152 0.281 

Largest 0.202 0.144 0.119 0.157 0.291 

Difference (largest-Small) -0.295*** -0.348*** -0.234*** -0.126*** -0.280*** 

CETRi,t 

     Smallest 0.193 0.240 0.267 0.253 0.265 

2 0.201 0.294 0.306 0.305 0.297 

3 0.239 0.285 0.306 0.303 0.302 

4 0.247 0.278 0.329 0.314 0.301 

Largest 0.263 0.326 0.326 0.327 0.301 

Difference (largest-Small) 0.070*** 0.086*** 0.059*** 0.074*** 0.036*** 

KIMBTDi,t 

     Smallest 2.121 1.828 1.112 0.492 0.245 

2 1.567 1.209 0.721 0.294 0.143 

3 1.424 0.712 0.488 0.224 0.077 

4 1.177 0.583 0.365 0.161 0.078 

Largest 0.690 0.309 0.174 0.128 0.077 

Difference (largest-Small) -1.431*** -1.519*** -0.938*** -0.364*** -0.168*** 

DDKIMBTDi,t 
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Smallest 2.160 1.865 1.137 0.514 0.278 

2 1.607 1.236 0.750 0.320 0.170 

3 1.456 0.740 0.513 0.253 0.101 

4 1.205 0.615 0.393 0.188 0.102 

Largest 0.720 0.340 0.201 0.152 0.101 

Difference (largest-Small) -1.440*** -1.525*** -0.936*** -0.362*** -0.177*** 

 
Table 2 (Continued)      
DTAXi,t 

     Smallest 0.017 0.006 0.007 0.014 0.015 

2 0.022 0.003 0.005 0.011 0.009 

3 0.010 0.003 0.004 0.005 0.008 

4 0.007 0.004 0.005 0.002 0.007 

Largest 0.006 0.000 0.000 0.003 0.008 

Difference (largest-Small) -0.011** -0.006** -0.007** -0.011** -0.007*** 
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Table 3: Baseline Regression 
Table 3 provides regression results on the relation between advertising and various tax 
aggressiveness measures. The initial sample consists of 14,871 firm-year observations 
covering the period 1995-2013 for which data for advertising expenditure, control 
variables of our baseline regression and at least one tax aggressive measure is available. 
Appendix A provides detailed definitions on all the variable. Year and industry 
dummies (based on two-digit SIC industry code) are included in each specification. The 
t-statistics and z-statistics, reported in parentheses, are based on standard errors 
clustered at the firm level, and ***, **, and * denote a significant difference from zero at 
the 1%, 5%, and 10% levels, respectively. 
 
Panel A: Log of Advertising 

 

SHELTERi,t CETRi,t KIMBTDi,t DDKIMBTDi,t DTAXi,t 

 
(1) (2) (3) (4) (5) 

LOG(ADV)i,t -0.046*** 0.005** -0.017*** -0.016*** -0.004*** 

 
(-3.79) (2.03) (-4.31) (-4.11) (-3.85) 

ROAi,t 1.091*** -1.145*** 0.108** -0.001 0.228*** 

 
(5.89) (-28.10) (2.17) (-0.01) (14.77) 

LEVi,t 0.149 0.003 0.154*** 0.135*** 0.012 

 
(1.55) (0.13) (5.19) (4.81) (1.44) 

ΔNOIi,t 1.188*** 0.220*** 0.707*** 0.703*** -0.059*** 

 
(15.49) (5.37) (20.53) (20.28) (-7.39) 

NOIi,t 0.863*** -0.029*** 0.090*** 0.092*** 0.041*** 

 
(12.78) (-3.72) (9.98) (10.55) (15.01) 

FIi,t 5.724*** -0.630*** 0.479** 0.538*** 0.164*** 

 
(5.96) (-4.54) (2.41) (2.77) (2.71) 

PPEi,t -0.033 -0.071*** -0.100*** -0.083*** -0.006 

 
(-0.22) (-2.82) (-3.29) (-2.84) (-0.69) 

INTANGi,t -0.363*** -0.081*** -0.160*** -0.155*** -0.020** 

 
(-3.19) (-4.34) (-5.14) (-5.11) (-2.54) 

EQINCi,t 13.044** -2.841*** 1.580 1.558 -1.076*** 

 
(2.29) (-3.51) (1.57) (1.60) (-3.09) 

SIZEi,t 0.049*** -0.011*** -0.032*** -0.032*** 0.001 

 
(2.70) (-3.07) (-5.72) (-5.92) (0.66) 

RDi,t 0.044* 0.105** -0.031*** -0.032*** -0.009*** 

 
(1.78) (2.09) (-3.13) (-3.22) (-2.89) 

LAGEi,t 0.131*** -0.019*** 0.041*** 0.038*** 0.001 

 
(3.69) (-4.00) (6.11) (5.70) (0.61) 

MTBi,t-1 0.008** 0.004*** -0.005*** -0.005*** -0.001* 

 
(2.04) (4.76) (-3.63) (-3.50) (-1.69) 

DIVi,t 0.030 0.004 -0.001 0.000 -0.013*** 

 
(0.44) (0.48) (-0.09) (0.04) (-4.85) 

Lag(DepVar) 1.801*** 0.293*** 0.837*** 0.796*** -0.132*** 
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(37.68) (13.37) (69.81) (72.22) (-8.72) 

Observations 13,118 9,937 14,256 14,247 13,735 
(Pseudo) R-square 0.239 0.358 0.838 0.845 0.117 
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Table 3 (Continued) 

Panel B: Advertising Intensity 

 
SHELTERi,t CETRi,t KIMBTDi,t 

DDKIMBTDi

,t 
DTAXi,t 

 
(1) (2) (3) (4) (5) 

ADVGPi,t -0.401** 0.078* -0.169*** -0.170*** -0.047*** 

 
(-2.04)   (1.88) (-3.57) (-3.59) (-3.26) 

ROAi,t 0.687*** -1.137*** 0.098* -0.011 0.223*** 

 
(3.56) (-27.56) (1.95) (-0.23) (14.41) 

LEVi,t 0.174* 0.003 0.153*** 0.135*** 0.011 

 
 (1.72)   (0.16) (5.20) (4.82) (1.39) 

ΔNOIi,t 1.237*** 0.229*** 0.712*** 0.709*** -0.057*** 

 
 (14.81)   (5.47) (20.67) (20.41) (-7.19) 

NOIi,t  0.754*** -0.029*** 0.091*** 0.093*** 0.041*** 

 
 (10.52) (-3.65) (10.09) (10.67) (15.06) 

FIi,t 5.845*** -0.632*** 0.483** 0.543*** 0.164*** 

 
 (5.75)  (-4.54) (2.43) (2.79) (2.71) 

PPEi,t 1.345*** -0.073*** -0.089*** -0.073** -0.005 

 
 (8.39) (-2.91) (-2.95) (-2.50) (-0.56) 

INTANGi,t -0.239** -0.083*** -0.152*** -0.147*** -0.019** 

 
(-1.99)   (-4.47) (-4.91) (-4.88) (-2.37) 

EQINCi,t -0.767 -2.910*** 1.607 1.589* -1.124*** 

 
 (-0.12)  (-3.59) (1.63) (1.67) (-3.23) 

SIZEi,t -0.099*** -0.006** -0.049*** -0.049*** -0.003*** 

 
(-7.00)  (-2.52) (-11.74) (-11.72) (-3.06) 

RDi,t 0.058** 0.105** -0.031*** -0.032*** -0.010*** 

 
(1.96)    (2.09) (-3.11) (-3.21) (-2.93) 

LAGEi,t 0.187*** -0.019*** 0.037*** 0.034*** 0.001 

 
 (4.92) (-3.84) (5.60) (5.19) (0.39) 

MTBi,t-1 0.020*** 0.004*** -0.005*** -0.005*** -0.001* 

 
 (4.57) (4.82) (-3.61) (-3.47) (-1.70) 

DIVi,t -0.062 0.005 -0.001 0.000 -0.014*** 

 
 (-0.84)  (0.57) (-0.11) (0.03) (-4.98) 

Lag(DepVar)  1.868*** 0.294*** 0.839*** 0.798*** -0.130*** 

 
 (37.01)  (13.39) (70.66) (73.08) (-8.63) 

Observations 13,110 9,937 14,234 14,247 13,723 
(Pseudo) R-
square 0.300 0.359 0.838 0.845 0.116 
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Table 4: Opacity, Advertising and Tax Aggressiveness 

This table provides regression results on the relation between advertising and various 
tax aggressiveness measures. The initial sample consists of 14,871 firm-year 
observations covering the period 1995-2013 for which data for advertising expenditure, 
control variables of our baseline regression and at least one tax aggressive measure is 
available. The variable OPACITYi,t is constructed using daily CRSP and IBES datasets 
Variable definitions are provided in Appendix A. Year and industry dummies (based 
on two-digit SIC industry code) are included in each specification. The t-statistics and z-
statistics, reported in parentheses, are based on standard errors clustered on the firm 
level, and ***, **, and * denote a significant difference from zero at the 1%, 5%, and 10% 
levels, respectively. 
 

 

SHELTERi,t CETRi,t KIMBTDi,t DDKIMBTDi,t DTAXi,t 

 
Logit OLS OLS OLS OLS 

LOG(ADV)i,t -0.153*** 0.016*** -0.019** -0.019** -0.007*** 

 
 (-4.48)  (3.07) (-2.52) (-2.52) (-3.61) 

OPACITYi,t 6.139*** -0.308** 1.083*** 1.057*** 0.039* 

 
(7.02)  (-2.33) (5.36) (5.20) (1.84) 

LOG(ADV)i,t*OPACITYi,t -0.428*** 0.023*** -0.071*** -0.070*** -0.004* 

 
 (-7.60)  (2.73) (-5.49) (-5.38) (1.66) 

Controls Yes Yes Yes Yes Yes 

Observations 8,174 5,745 8,919 8,913 8,716 

(Pseudo) R-square 0.236 0.354 0.799 0.806 0.101 

      

 

SHELTERi,t CETRi,t KIMBTDi,t DDKIMBTDi,t DTAXi,t 

 

Logit OLS OLS OLS OLS 

ADVGPi,t -1.67** 0.069* -0.111** -0.112** -0.047** 

 
 (-2.02)  (1.69) (-2.06) (-2.09) (-2.22) 

OPACITYi,t 0.032 -0.061** 0.038 0.028 0.031*** 

 
(0.86)  (-2.12) (0.84) (0.64) (2.94) 

ADVGPi,t*OPACITYi,t  -5.118*** 0.173* -0.513*** -0.506*** -0.124* 

 
 (-2.83) (1.70) (-2.77) (-2.88) (-1.89) 

Controls Yes Yes Yes Yes Yes 

Observations 8,174 5,745 8,918 8,912 8,716 
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(Pseudo) R-square 0.270 0.236 0.800 0.804 0.098 
 

 
 
 
 
 
 
 

Table 5: The Effects of Public Scrutiny and External Monitoring 
This table provides regression results on the relation between advertising and various 
tax aggressiveness measures. The initial sample consists of 14,871 firm-year 
observations covering the period 1995-2013 for which data for advertising expenditure, 
control variables of our baseline regression and at least one tax aggressive measure is 
available. The variable SP1500i,t is a dummy variable that equals one if a firm is listed in 
the S&P 1500 index within a firm year. INST. OWNi,t is the average of quarterly 
institutional holdings over the number of share outstanding within a firm year. Variable 
definitions are provided in Appendix A. Year and industry dummies (based on two-
digit SIC industry code) are included in each specification. The t-statistics and z-
statistics, reported in parentheses, are based on standard errors clustered at the firm 
level, and ***, **, and * denote a significant difference from zero at the 1%, 5%, and 10% 
levels, respectively. 
  
Panel A: S&P 1500 

 

SHELTERi,t CETRi,t KIMBTDi,t DDKIMBTDi,t DTAXi,t 

 

(1) (2) (3) (4) (5) 

LOG(ADV)i,t -0.055*** 0.003  -0.018*** -0.017*** -0.004*** 

 
(-4.49) (1.23) (-4.57) (-4.37) (-4.07) 

SP1500i,t -3.719*** 0.142* -0.432*** -0.413*** -0.106*** 

 
(-6.07) (1.90) (-5.53) (-5.49) (-4.22) 

LOG(ADV)i,t*SP1500i,t 0.221*** -0.007* 0.028*** 0.027*** 0.006*** 

 
(6.06) (-1.68) (5.96) (5.89) (4.12) 

Controls Yes Yes Yes Yes Yes 

Observations 13,118 9,937 14,256 14,247 13,735 

(Pseudo) R-squared 0.241 0.502 0.838 0.845 0.118 

      

 

SHELTERi,t CETRi,t KIMBTDi,t DDKIMBTDi,t DTAXi,t 

 

(1) (2) (3) (4) (5) 

ADVGPi,t -0.437*** 0.055* -0.181*** -0.171*** -0.049*** 

 
(-2.75) (1.66) (-3.67) (-3.56) (-3.23) 

SP1500i,t -0.184* 0.025** -0.001 -0.007 -0.010** 
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(-1.85) (2.20) (-0.05) (-0.52) (-2.33) 

ADVGPi,t*SP1500i,t 0.062 -0.075* 0.286*** 0.346** 0.024 

 
(1.09) (-1.92) (3.65) (2.49) (1.56) 

Controls Yes Yes Yes Yes Yes 

Observations 13,110 9,937 14,234 14,247 13,723 

(Pseudo) R-squared 0.289 0.502 0.838 0.845 0.117 
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Table 5 (Continued)      
Panel B: Inst. Ownership 
 

     

 

SHELTERi,

t 
CETRi,t 

KIMBTDi,

t 
DDKIMBTDi,

t 
DTAXi,t 

 

(1) (2) (3) (4) (5) 

LOG(ADV)i,t -0.116*** 0.003** -0.039*** -0.037*** -0.003* 

 
(-5.69) (2.11) (-5.62) (-5.46) (-1.68) 

INST.OWNi,t -2.596*** 0.083*** -0.794*** -0.739*** 0.014 

 
(-5.18) (3.09) (-5.79) (-5.49) (0.44) 

LOG(ADV)i,t*INST.OWNi

,t 0.137*** 
 -

0.004*** 0.053*** 0.050*** 0.002* 

 
(4.14) ( -2.62) (5.90) (5.66) (1.77) 

Controls Yes Yes Yes Yes Yes 

Observations 10,252 8,160 11,166 11,160 10,876 

(Pseudo) R-squared 0.236 0.476 0.814 0.821 0.109 

      

 

SHELTERi,

t 
CETRi,t 

KIMBTDi,

t 

DDKIMBTDi,

t 
DTAXi,t 

 

(1) (2) (3) (4) (5) 

ADVGPi,t -0.456* 0.081* -0.293*** -0.290*** 
-

0.087*** 

 
(-1.68) (1.89) (-3.74) (-3.74) (-3.01) 

INST.OWNi,t -0.630***  0.019* -0.041* -0.028 
-

0.025*** 

 
(-4.88)  (1.69) (-1.80) (-1.27) (-3.90) 

ADVGPi,t* INST.OWNi,t 0.628*** -0.087 0.448*** 0.419*** 0.118*** 

 
(2.26) (-1.06) (3.30) (3.11) (2.72) 

Controls Yes Yes Yes Yes Yes 

Observations 10,251 8,160 11,160 11,157 10,874 

(Pseudo) R-squared 0.233 0.477 0.814 0.821 0.108 
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Table 6: Family and Non-Family Firms 
Note: This table provides regression results on the relation between advertising and 
various tax aggressiveness measures. The initial sample consists of 14,871 firm-year 
observations covering the period 1995-2013 for which data for advertising expenditure, 
control variables of our baseline regression, and at least one tax aggressive measure is 
available. The variable FAMILY FIRMi,t  is a dummy variable which equals one if 
founders or their family members (by either blood or marriage) are key executives, 
directors, or blockholders. Variable definitions are provided in Appendix A. Year and 
industry dummies (based on two-digit SIC industry code) are included in each 
specification. The t-statistics and z-statistics, reported in parentheses, are based on 
standard errors clustered at the firm level, and ***, **, and * denote a significant 
difference from zero at the 1%, 5%, and 10% levels, respectively. 
 

Variables SHELTERi,t CETRi,t KIMBTDi,t DDKIMBTDi,t DTAXi,t 

 
Logit OLS OLS OLS OLS 

LOG(ADV)i,t -0.991** 0.016* -0.013*** -0.011*** -0.005* 

 
(-2.30) (1.82 ) (-3.02) (-2.65) (-1.66) 

FAMILY FIRMi,t -1.941*** 0.455** -0.221*** -0.209** 0.049 

 
(-2.89) (2.03) (-2.66) (-2.57) (0.35) 

LOG(ADV)i,t* FAMILY 
FIRMi,t 1.071*** -0.022* 0.011** 0.010** -0.003 

 
(3.00) (-1.91) (2.51) (2.46) (-1.46) 

      Controls Yes Yes Yes Yes Yes 

Observations 341 376 430 430 429 

(Pseudo) R-squared 0.483 0.333 0.766 0.795 0.276 

      

 
Logit OLS OLS OLS OLS 

ADVGPi,t -3.160 0.131* -0.021*** -0.020** -0.032 

 
(-1.35) (1.91) (-2.78) (-2.20) (-1.14) 

FAMILY FIRMi,t -1.293* 0.004 -0.015** -0.017** -0.007 

 
 (-1.81)   (0.17) (-2.55) (-2.60) (-0.84) 

ADVGPi,t * FAMILY 
FIRMi,t  6.124* -0.238* 0.066* 0.071** 0.070** 

 
 (1.65)   (-1.74) (1.73) (2.06)  (2.02) 

      Controls Yes Yes Yes Yes Yes 

Observations 341 376 430 430 429 

(Pseudo) R-squared 0.483 0.328 0.760 0.760 0.275 
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Table 7: Endogeneity Tests 
This table provides regression results on the relation between advertising and various 
tax aggressiveness measures. The initial sample consists of 14,871 firm-year 
observations covering the period 1995-2013 for which data for advertising expenditure, 
control variables of our baseline regression, and at least one tax aggressive measure is 
available. Panel A presents the IV regression and we use the log of number of zero-
political connection customers as our instrument variable. The controls from first-stage 
regressions include ROAi,t, CASHi,t, LEMPi,t, LEVi,t, SIZEi,t, MTBi,t-1, RDi,t, PPEi,t, 
INTANGi,t, DIVi,t and LAGEi,t plus year and industry dummy (based on first two digit 
SIC code). Panel B shows the results from propensity score matching. Propensity scores 
are calculated using a logit model where the dependent variable is the high advertising 
dummy HADVDUMi,t and control variables are the same as in the IV regressions of 
Panel A plus year and industry dummy (based on two-digit SIC industry code). The t-
statistics and z-statistics, reported in parentheses, are based on standard errors 
clustered at the firm level, and ***, **, and * denote a significant difference from zero at 
the 1%, 5%, and 10% levels, respectively. 
Panel A: Instrumental Variable 

 

SHELTERi,t CETRi,t KIMBTDi,t DDKIMBTDi,t DTAXi,t 

  (1) (2) (3) (4) (5) 
LOG(ADV) i,t -0.228*** 0.015** -0.020** -0.017** -0.007*** 

 
(-3.35) (2.39) (-2.41) (-2.08) (-3.19) 

Controls Yes Yes Yes Yes Yes 
(Pseudo) R-squared 0.415 0.509 0.841 0.848 0.112 
N 6,199 4,533 6,635 6,632 5,367 

      

 

SHELTERi,t CETRi,t KIMBTDi,t DDKIMBTDi,t DTAXi,t 

  (1) (2) (3) (4) (5) 
ADVGPi,t -5.868** 0.442*** -0.252** -0.184* -0.007*** 

 
(-2.05）  (2.87)  (-2.31)  (-1.91) (-3.19) 

Controls Yes Yes Yes Yes Yes 
(Pseudo) R-squared 0.288 0.499 0.849 0.847 0.112 
N 6,199 4,533 6,635 6,632 5,367 

 
Panel B: Propensity Score Matching 

 

SHELTERi,t CETRi,t KIMBTDi,t DDKIMBTDi,t DTAXi,t 

  (1) (2) (3) (4) (5) 
HADVDUMi,t -0.011** 0.036** -0.047** -0.048** -0.019*** 

 
(-2.08) (2.23) (-2.23) (-2.24) (-3.25) 

Controls Yes Yes Yes Yes Yes 
(Pseudo) R-squared 0.239 0.444 0.757 0.760 0.152 
N 1,615 1,768 1,954 1,954 1,882 
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Table 8: Additional Tests 
This table reports the results of several additional analyses based on the baseline 

regressions. Panel A presents the results based on the firm level regression. All except 

dummy variables are averaged for the whole sample period between 1995 and 2013. 

Firm-level dummy variables such as SHELTERi,t, NOIi,t, and DIVi,t are denoted as 1 if 

those variables equal one at least half of the entire sample period, and equal zero if 

otherwise. We use those firm-level variables to run the firm-level regression. Panel B 

shows the results of running the Fama-MacBeth Regression. Panel C displays the results 

of using Hackman’s two-stage procedure and the Inverse Mills Ratios are computed 

from the first-stage logit regression. The controls from first-stage regressions include 

ROAi,t, CASHi,t, LEMPi,t, LEVi,t, SIZEi,t, MTBi,t-1, RDi,t, PPEi,t, INTANGi,t, DIVi,t and 

LAGEi,t plus year and industry dummy (based on two-digit SIC industry code). Panel D 

shows the results of baseline regression using firms’ fixed effect.  

 
Panel A: Firm level Regression 

 
SHELTERi,t CETRi,t KIMBTDi,t DDKIMBTDi,t DTAXi,t 

LOG(ADV)i,t -0.077*** 0.003* -0.014***  -0.013*** -0.002** 

 
(-3.15)  (1.66)    (-3.84)   (-3.71) (-2.44) 

Controls Yes Yes Yes Yes Yes 
(Pseudo) R-square 0.263 0.672 0.872 0.881 0.255 
N 2,650 2,056 2,852 2,850 2,727 

ADVGPi,t -1.440*** 0.034* -0.219*** -0.211*** 
-

0.052*** 

 
(-3.57)  (1.77) (-3.89) (-3.83)  (-4.25) 

Controls Yes Yes Yes Yes Yes 
(Pseudo) R-square 0.265 0.419 0.873 0.881 0.266 
N 2,645 2,056 2,842 2,841 2,722 
Panel B: Fama-MacBeth 
Regressions 

     

 

SHELTERi,t CETRi,t KIMBTDi,t DDKIMBTDi,t DTAXi,t 

LOG(ADV)i,t -0.051** 0.004* -0.008** -0.011** 
-

0.004*** 

 
(-2.86) (1.79) (-2.43) (-2.41) (-6.34) 

Controls Yes Yes Yes Yes Yes 
Average (Pseudo)  
R-square 0.544 0.497 

 
0.839 0.860 0.148 
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N 13,118 9,937 14,256 14,247 13,735 

ADVGPi,t -0.590*** 0.060** -0.083*** -0.082*** 
-

0.039*** 

 
(-3.42) (2.54) (-3.09) (-3.08) (-3.85) 

Controls Yes Yes Yes Yes Yes 
Average (Pseudo)  
R-square 0.441 0.497 0.837 0.846 0.147 
N 13,110 9,937 14,234 14,247 13,723 

Panel C: Heckman Two Stage 
     

 

SHELTERi,t CETRi,t KIMBTDi,t DDKIMBTDi,t DTAXi,t 

HADVDUMi,t -0.209*** 0.011** -0.025** -0.028** 
-

0.016*** 

 
(-3.04) (2.15) (-2.11) (-2.31) (-4.61) 

      
Table 8 
(Continued)      
INVERSE_MILLS_
RATIOi,t 1.286*** -0.015** 0.231*** 0.225*** 

-
0.133*** 

 
(16.5) (-2.07) (9.88) (9.69) (-8.80) 

Controls Yes Yes Yes Yes Yes 
(Pseudo) R-square 0.255 0.502 0.841 0.848 0.117 
N 13,086 9,916 14,218 14,210 13,698 

Panel D: Firms Fixed Effect      

 

SHELTERi,t CETRi,t KIMBTDi,t DDKIMBTDi,t DTAXi,t 

LOG(ADV)i,t -0.053* 0.001 -0.025*** -0.024*** -0.003 

 
(-1.92)  (1.29) (-2.93) (-2.83) (-1.35) 

Controls Yes Yes Yes Yes Yes 
(Pseudo) R-square 0.547 0.696 0.910 0.914 0.408 
N 7,599 9,937 14,256 14,247 13,735 

ADVGPi,t -0.251 0.078* -0.114** -0.120** -0.032 

 
(-0.97)   (1.69) (-2.12) (-2.05) (-1.05) 

Controls Yes Yes Yes Yes Yes 
(Pseudo) R-square 0.529 0.696 0.910 0.914 0.407 
N 7,013 9,937 14,234 14,247 13,723 
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Table 9: Summary Statistics 

This table reports the summary statistics of sample firm-months for opportunistic 

insiders from January 2004 to November 2014. Panel A compares our sample’s firm and 

insider characteristics with those in the insider universe. Panel B presents our attention 

and non-attention samples in firm-sale and firm-purchase months. Variable Size is 

based on the previous year-end market value (in millions of dollars). Variable BTM is 

the previous year-end book-to-market equity value ratio. Trades per firm-month, 

traders per firm month, and the number of firms per month are also reported. If a firm-

month contains both an insider net sale and an insider net purchase, the observation is 

removed from the sample. 

 

Non-routine Insiders 
(2004-2014) 

Our Sample  
(Jan. 2004-Nov. 2014) 

 

  Whole Sample 
(Jan. 1986-Nov. 2014) 

Panel A:  Attention 
Sample Vs Insider 
Universe 

Mean Media
n 

 Mean Median 

Size  4,599.44 923.31  4,297.72 751.96 

BTM 0.56 0.47  0.57 0.47 

Trades per firm-month 2.87 2.00  2.88 2.00 

Traders per firm-month 1.71 1.00  1.72 1.00 

Firms per  month 708.66 698.00  621.79 622.00 

Panel B:  Decomposition 
of Our Sample 

Mean P25 Median Std. P75 

SVI Firm Sales (3,096 firms, 52,477 firm-month observations)  

Size   6,741.29 514.10 1,457.19 15,994.14 4,604.91 

BTM 0.54 0.27 0.45 0.38 0.70 

Trades per firm-month 2.77 1.00 2.00 2.98 3.00 

Traders per firm-month 1.70 1.00 1.00 1.15 2.00 

Firms per  month 399.21 318.00 381.00 120.04 492.00 

No-SVI  Firm Sales (1,224 firms,15,739 firm-month observations） 

Size  1,073.19 258.65 529.43 1,947.54 1,102.51 

BTM 0.49 0.24 0.42 0.36 0.64 

Table 9 (Continued)      

Trades per firm-month 2.95 1.00 2.00 3.08 4.00 

Traders per firm-month 1.65 1.00 1.00 1.09 2.00 

Firms per month 120.15 92.00 124.00 38.27 145.00 
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SVI Firm Purchase (2,667 firms and 16,997 firm-month observations) 

Size  5,477.28 312.48 892.26 15,557.39 2,988.72 

BTM 0.65 0.35 0.57 0.43 0.84 

Table 9 (Continued)      

Trades per firm-month 2.17 1.00 1.00 1.99 2.00 

Traders per firm-month 1.52 1.00 1.00 0.99 2.00 

Firms per month 129.75 87.00 119.00 64.63 161.00 

No-SVI Firm Purchase (1,063 firms and 7,621 firm-month observations) 

Size  663.53 163.76 293.16 1,479.03 612.84 

BTM 0.63 0.37 0.56 0.38 0.81 

Trades per firm-month 2.44 1.00 2.00 2.11 3.00 

Traders per firm-month 1.67 1.00 1.00 1.12 2.00 

Firms per month 58.18 36.00 56.00 26.96 74.00 
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Table 10:  Industry Classification 
This table reports the distribution of firms in our sample based on Fama-French 17 

industry Classifications. Panel A shows the percentage of firms in each classification 

and the difference between our attention and non-attention samples. Panel B shows the 

difference of monthly Google SVI between the purchase and sale months. We use ***, **, 

and * to denote a significant difference from zero at the 1%, 5%, and 10% levels, 

respectively. 

Panel A: Sample 
Distribution No-SVI firms   SVI firms   Difference 

Food 1.40% 
 

2.55% 
 

-1.16% 

Mining and minerals 0.51% 
 

1.23% 
 

-0.73% 

Oil and petro products 1.88% 
 

5.14% 
 

-3.26% 
Textiles, apparel, and 
footwear 0.58% 

 
1.56% 

 
-0.98% 

Consumer duration 0.87% 
 

1.56% 
 

-0.70% 

Chemicals 1.08% 
 

2.31% 
 

-1.23% 
Drugs, soap, perfume, 
tobacco 6.06% 

 
3.88% 

 
2.19% 

Construction 1.73% 
 

2.70% 
 

-0.97% 

Steel 0.79% 
 

1.26% 
 

-0.47% 

Fabricated products 0.36% 
 

0.57% 
 

-0.21% 
Machinery and business 
equipment 10.90% 

 
12.05% 

 
-1.14% 

Automobile 0.79% 
 

1.47% 
 

-0.68% 

Transportation 2.17% 
 

3.30% 
 

-1.14% 

Utilities 0.65% 
 

2.91% 
 

-2.26% 

Retail stores 4.19% 
 

6.01% 
 

-1.82% 

Financial Institutions 27.51% 
 

16.40% 
 

11.11% 

Other 38.56%   35.09%   3.47% 
Panel B: Average Monthly  
SVI Purchase   Sales   Difference 

Food 34.64 
 

37.07 
 

-2.43** 

Mining and minerals 37.84 
 

40.55 
 

-2.71** 

Oil and petro products 35.23 
 

33.07 
 

2.16*** 
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Textiles, apparel, and 
footwear 33.49 

 
37.31 

 
-3.82*** 

Consumer duration 34.47 
 

39.71 
 

-5.24*** 

Chemicals 35.10 
 

37.54 
 

-2.43*** 
Drugs, soap, perfume, 
tobacco 28.85 

 
34.42 

 
-5.57*** 

Construction 39.45 
 

39.36 
 

0.08 

Steel 41.01 
 

36.15 
 

4.86*** 

Fabricated products 44.53 
 

46.90 
 

-2.37** 
Machinery and business 
equipment 32.86 

 
31.85 

 
1.01** 

Automobile 35.66 
 

36.48 
 

-0.82 

Transportation 32.79 
 

32.40 
 

0.39 

Table 10 (Continued)      

Utilities 39.36 
 

36.85 
 

2.51*** 

Retail stores 36.28 
 

34.76 
 

1.52** 

Financial Institutions 29.86 
 

31.91 
 

-2.05*** 

Other 32.70   32.45   0.24 

Whole Sample 33.24   33.58   -0.34** 
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Table 11: Market-adjusted Returns Following Insider Trades 

This table reports one-month NYSE size decile portfolio adjusted cumulative abnormal 

returns (CARs) following the insider trading month. CARs for trade months by insiders 

of attention firms are compared with those by insiders of non-attention firms. Panels A 

and B present the results for insider sales and purchases, respectively. In both panels, 

Column 1 reports results on all insiders, Column 2 on top-level officers (CEO, CFO, 

COO, and Chairman of the Board), Column 3 on directors in, and Column 4 on all other 

insiders. Standard errors are included in parentheses. We use ***, **, and * to denote a 

significant difference from zero at the 1%, 5%, and 10% levels, respectively. 

 

Abnormal Returns 

All 
Insiders 

Top-level 
officers 

Only 
directors 

Other 
Insiders 

  (1) (2) (3) (4) 

Panel A: Sales 
    

     SVI Firms 
    Size_adj CAR(%) -0.688*** -0.930*** -0.895*** -0.497*** 

Standard Deviation (0.093) (0.094) (0.099) (0.092) 
Number of Observations 52,477 16,024 20,426 24,461 

     SVI firms in No-SVI 
months 

    Size_adj CAR(%) -0.541*** -0.747*** -0.614*** -0.490*** 
Standard Deviation (0.094) (0.098) (0.096) (0.093) 
Number of Observations 4,626 1,608 1,992 2,479 

     No-SVI Firms 
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Size_adj CAR(%) -0.495*** -0.715*** -0.449*** -0.248*** 
Standard Deviation (0.093) (0.095) (0.090) (0.096) 
Number of Observations 15,739 5,448 6,723 8,404 

     Panel B: Purchase 
    

     SVI Firms 
    Size_adj CAR(%) 1.010*** 1.334*** 0.777*** 1.111*** 

Standard Deviation (0.010) (0.108) (0.098) (0.017) 
Number of Observations 16,997 4,209 10,387 5,940 

     SVI Firms in No-SVI 
months 

    Size_adj CAR(%) 1.140*** 1.878*** 0.792** 1.420*** 
Standard Deviation (0.100) (0.109) (0.093) (0.109) 

Table 11 (Continued)     
Number of Observations 1,786 443 1,142 597 

No-SVI Firms 
    Size_adj CAR(%) 1.215*** 1.424*** 1.027*** 1.625*** 

Standard Deviation (0.115) (0.118) (0.109) (0.126) 

Number of Observations 7,621 2,113 4,903 2,616 

 

 

Abnormal Returns All 
Insiders 

  Top-level 
officers 

  Only 
directors 

  Other 
Insiders 

  (1)   (2)   (3)   (4) 

Panel A: Sales        

        

SVI Firms        

Size_adj CAR(%) -0.688***  -0.930***  -0.895***  -0.497*** 

Standard Deviation (0.093)  (0.094)  (0.099)  (0.092) 

Number of Observations 52,477  16,024  20,426  24,461 

        

SVI firms in No-SVI months        

Size_adj CAR(%) -0.541***  -0.747***  -0.614***  -0.490*** 

Standard Deviation (0.094)  (0.098)  (0.096)  (0.093) 

Number of Observations 4,626  1,608  1,992  2,479 

        

No-SVI Firms        

Size_adj CAR(%) -0.495***  -0.715***  -0.449***  -0.248*** 

Standard Deviation (0.093)  (0.095)  (0.090)  (0.096) 

Number of Observations 15,739  5,448  6,723  8,404 
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Panel B: Purchase        

        

SVI Firms        

Size_adj CAR(%) 1.010***  1.334***  0.777***  1.111*** 

Standard Deviation (0.010)  (0.108)  (0.098)  (0.017) 

Number of Observations 16,997  4,209  10,387  5,940 

        

SVI Firms in No-SVI months        

Size_adj CAR(%) 1.140***  1.878***  0.792**  1.420*** 

Standard Deviation (0.100)  (0.109)  (0.093)  (0.109) 

Number of Observations 1,786  443  1,142  597 

        

No-SVI Firms        

Size_adj CAR(%) 1.215***  1.424***  1.027***  1.625*** 

Standard Deviation (0.115)  (0.118)  (0.109)  (0.126) 

Number of Observations 7,621   2,113   4,903   2,616 
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Table 12: Return Analysis on Insider Trades 

This table compares CARs following insider trades between our attention and non-

attention firms. The dependent variable Excess Rett+1 is the one-month excess return 

following trade month t. Attention dummy equals 1 (0) if a firm is in our attention (non-

attention) sample. Log(ABSVI) is the log of monthly SVI scaled by the previous month’s 

SVI. Log(ABSVI Duration) is the log of total number of months separating the trade 

month and the month of first valid ABSVI. Log(Analysts) is the log of number of 

analysts covering the firm. Log(Size) is the log of the previous year-end market value of 

firm. Log(BM) is the log of the previous year-end book-to-market equity value ratio. 

Advertising/Sales is the previous year-end ratio of advertisement expense to sales. 

Markett+1 is the equal-weighted market return following trade month t. Log(Price) is the 

log of the previous year-end stock price. Log(Turnover) is the log of average monthly 

turnover in the previous year, where the monthly turnover is defined as the month’s 

trading volume scaled by the number of shares outstanding: (VOL*100)/ 

(SHROUT*1000). CARt-3,t-1 is the firm’s three month market adjusted return from 

months t-3 to t-1. CARt-12,t-1 is the firm’s one-year market adjusted return from month t-

12 to t-1. Panels A and Panel B show results on insider sales and insider purchases, 

respectively. Cluster standard errors at the firm level are in parentheses. We use ***, **, 

and * to denote a significant difference from zero at the 1%, 5%, and 10% levels, 

respectively. 

 

Panel  A: Insider Sales 
          

Excess Rett+1  

Attention and 
Non- Attention 

firms 

Attention 
Firms 

Attention 
Firms 

Attention 
Firms 

Attention 
Firms 

  (1) (2) (3) (4) (5) 

Constant 0.0169*** 0.0238*** 0.0156*** 0.0094 0.0363*** 



 

112 
 

 
(0.0064) (0.0077) (0.0019) (0.0067) (0.0015) 

Attention 
Dummy -0.0022*** 

    
 

(0.0007) 
    Log(ABSVI) 

 
-0.0059*** -0.0071*** -0.0194*** 0.0101* 

  
(0.0025) (0.0020) (0.0061) (0.0061) 

Log(SVI 
duration) 

  
0.0048** 0.0015 0.0056** 

   
(0.0019) (0.0025) (0.0027) 

Log(Analysts) 
  

0.0029*** 0.0038*** 0.0009 

   
(0.0008) (0.0011) (0.0011) 

Log(Size) -0.0006* -0.0002 -0.0010** -0.0012* -0.0005 

 
 (0.0003)  (0.0004) (0.0005) (0.0006) (0.0006) 

Log(BM) -0.0007 -0.0006 -0.0009 -0.0010 -0.0002 

 
(0.0006) (0.0008) (0.0009) (0.0011) (0.0011) 

Advertising/sale
s -0.0081 -0.0136 -0.0185 -0.0361 -0.0106 

 
(0.0149) (0.0167) (0.0182) (0.0280) (0.0239) 

Markett+1 1.0534*** 1.0710*** 1.0343*** 1.0151*** 1.0549*** 
Table 12 
(Continued) (0.0142) (0.0151) (0.0162) (0.0218) (0.0230) 
     
Log(Price) -0.0033*** -0.0034*** -0.0032*** -0.0039*** -0.0021 

 
(0.0008) (0.0009) (0.0010) (0.0013) (0.0014) 

Log(Turnover) -0.0030*** -0.0026*** -0.0027*** -0.0017 -0.0030** 

 
(0.0007) (0.0008) (0.0010) (0.0013) (0.0013) 

CARt-3,t-1 0.0066** 0.0059 0.0022 0.0215*** 0.0029 

 
(0.0031) (0.0039) (0.0041) (0.0060) (0.0055) 

CARt-12,t-1 -0.0018 -0.0076*** -0.0071*** -0.0124*** 0.0018 

 
(0.0015) (0.0019) (0.0021) (0.0030) (0.0028) 

Year FE Yes Yes Yes Yes Yes 

Obs 56,180 39,575 34,289 16,916 16,864 

R2 0.176 0.189 0.194 0.042 0.028 

Panel  B: Insider Purchase 
    

Excess Rett+1  

Attention and 
Non- 

Attention 
firms 

Attention 
Firms 

Attention 
Firms 

Attention 
Firms 

Attention 
Firms 

  (1) (2) (3) (4) (5) 

Constant 0.1133*** 0.1189***  0.1572*** 0.1338*** 0.1898*** 

 
(0.0123) (0.0142) (0.0216) -0.0297 (0.0317) 
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Attention Dummy -0.0035*** 
    

 
(0.0012) 

    Log(ABSVI) 
 

-0.0140*** -0.0146** -0.0174 0.0261** 

  
(0.0054) (0.0058) (0.0128) (0.0132) 

Log(SVI duration) 
  

-0.0107*** -0.0162*** -0.0074 

   
(0.0040) (0.0053) (0.0063) 

Log(Analysts) 
  

0.0007 -0.0000 0.0009 

   
(0.0016) (0.0022) (0.0022) 

Log(Size) -0.0038*** -0.0037*** 
 -

0.0037*** -0.0021 -0.0052*** 

 
(0.0007) (0.0007) (0.0009) (0.0013) (0.0013) 

Log(BM) -0.0012 -0.0014 -0.0020 -0.0017 -0.0020 

 
(0.0014) (0.0016)  (0.0017) (0.0023) (0.0024) 

Advertising/sales 0.0702* 0.0091 0.0284 -0.0430 0.1033* 

 
(0.0401) (0.0411)  (0.0453) (0.0556) (0.0615) 

Markett+1 1.1314*** 1.1483*** 1.2149*** 1.1835*** 1.2090*** 

 
(0.0227) (0.0262)  (0.0304) (0.0407) (0.0412) 

Log(Price) -0.0101*** -0.0104*** 
 -

0.0103*** -0.0096*** -0.0102*** 

 
(0.0015) (0.0017) (0.0018) (0.0025) (0.0027) 

Log(Turnover) -0.0024** -0.0015 -0.0017 -0.0057** 0.0020 

 
(0.0011) (0.0013) (0.0018) (0.0025) (0.0025) 

CARt-3,t-1 -0.0099* -0.0114*  -0.0131* -0.0011 -0.0216** 

Table 12 (Continued) (0.0057) (0.0068) (0.0074) (0.0109) (0.0108) 

      

CARt-12,t-1 -0.0063** -0.0075**  -0.0060 -0.0034 -0.0090 

 
(0.0028) (0.0035)  (0.0040) (0.0058) (0.0057) 

Year FE Yes Yes Yes Yes Yes 
Obs 15,262 10,749 8,895 4,282 4,483 

R2 0.242 0.281 0.309 0.323 0.298 
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Table 13: Predicting Insider Trading 

This table presents the results of Logit and Tobit regressions that analyze the likelihood and quantity of insider trading. In 

Columns 1 and 2, the dependent variable is Sales dummy which equals 1 only if a firm-month is a net sale month. In 

Columns 3 and 4, the dependent variable is the number of shares sold by all insiders (in thousands) for each firm-month 

observation. In Columns 5 and 6, the dependent variable is Purchase dummy which equals 1 only if a firm-month is a net 

purchase month. In Columns 7 and 8, the dependent variable is the number of shares bought by all insiders (in thousands) 

for each firm-month observation. Log(ABSVI) is the natural log of monthly ABSVI. Log(ABSVI) Positive (Negative) is a 

dummy variable which equals 1 if Log(ABSVI) is positive (negative). Log(BM) is the log of the previous year-end book-to-

market equity value ratio. Advertising/Sales is the previous year-end ratio of advertisement expense to sales. Markett is 

the equal-weighted market return. Log(Price) is the log of the previous year-end stock price. Log(Turnover) is the log of 

average monthly turnover in the previous year, where the monthly turnover is the month’s trading volume scaled by the 

number of shares outstanding: (VOL*100)/ (SHROUT*1000). Cluster standard errors at the firm level are in parentheses. 

We use ***, **, and * to denote a significant difference from zero at the 1%, 5%, and 10% levels, respectively. 

 

  
Probit Regression 

 
Tobit Regression 

 
Probit Regression 

 
Tobit Regression 

 

 
Sales Dummy Shares Sold Purchase Dummy Shares Purchased 

 
(1) (2) (3) (4) (5) (6) (7) (8) 

Log(ABSVI) 0.087***  27.419***  -0.086***  -5.056** 
 

 
(0.0333)  (7.8125)  (0.0334)  (2.1217)   

 Log(ABSVI) 
Positive 

 0.041***  10.819***  

 

 

 
 

 (0.0128)  (2.9966)  
 

 
 Log(ABSVI) 

Negative 
     0.043***   

4.518*** 

 
     (0.0128)   (1.5824) 

Log(Size) 0.011** 0.011**  17.555*** 17.526***  -0.012**  -0.012**  0.443 0.764 

 
(0.0053) (0.0053)  (1.2222) (1.2222)  (0.0053)  (0.0053) (0.6121) (0.6435) 

Log(BM)  -0.137*** -0.138***  -29.435***  -29.487***  0.137*** 0.137***  11.538*** 12.019*** 

 
 (0.0091)   (0.0091) (2.1012) (2.1012)  (0.0091) (0.0091)  (1.0661) (1.1205) 



 

105 
 

Advertising/Sales 1.186*** 1.186***  438.613*** 439.045***  -1.172*** -1.174*** -98.459*** -103.883*** 

 
(0.2038) (0.2038)  (44.2504)  (44.2506) (0.2039) (0.2039) (23.9102) (25.1360) 

         
Table 13 
(Continued) 

       
 

Markett 
3.785*** 3.795*** 452.246*** 454.008***   -3.772*** -3.784*** -

392.012*** -415.846*** 

 
(0.1372)   (0.1373) (33.8714)  (33.8884) (0.1373) (0.1374) (15.9847) (16.8168) 

Log(Price) 
0.123*** 0.124*** -48.489***  -48.440*** -0.120*** -0.120*** -

22.1177*** -25.068*** 

 
(0.0106) (0.0106) (2.4919) (2.4918) (0.0106) (0.0106)  (1.2277) (1.2904) 

Log(Turnover) 0.082*** 0.082*** 0.034 0.006 -0.079*** -0.0793***  -4.654*** -4.383*** 

 
(0.0087) (0.0087)  ( 2.0927) ( 2.0926)  (0.0087) (0.0087) ( 1.019) (1.0711) 

Constant 
0.170* 0.152   -228.538***  -233.449 

*** 
-0.162 -0.186* -41.964*** 

-46.262*** 

 
(0.0994) (0.0995)   (23.1477)  (23.1870)  (0.0995) (0.0998) (11.627) (12.2543) 

Obs 50,156 50,156 50,156 50,156 50,156 50,156 50,156 50,156 

Pseudo R2 0.031 0.031 0.002 0.002 0.030 0.030 0.009 0.009 
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Table 14: Which Insiders Make Opportunistic Trades? 

This table reports the results of Logit regressions that examine what types of insiders are likely to engage in opportunistic 

insider trades. In Columns 1, 3 and 5, the dependent variable is Sales dummy which equals 1 only if a firm-month is a net 

sale month. In Columns 2, 4 and 6, the dependent variable is the number of shares sold by all insiders (in thousands) for 

each firm-month observation. Log(ABSVI) is the natural log of monthly ABSVI. Top-level officer, Insider director, and 

Independent director are dummy variables equaling 1 if there is a trade in a firm-month by a top-level officer, an inside 

director, and an independent director, respectively. Log(BM) is the log of the previous year-end book-to-market equity 

value ratio. Advertising/Sales is the previous year-end ratio of advertisement expense to sales. Markett is the equal-

weighted market return. Log(Price) is the log of the previous year-end stock price. Log(Turnover) is the log of average 

monthly turnover in the previous year, where the monthly turnover is the month’s trading volume scaled by the number 

of shares outstanding: (VOL*100)/ (SHROUT*1000). We use ***, **, and * to denote a significant difference from zero at 

the 1%, 5%, and 10% levels, respectively. 

 

  

Sales 
Dummy Shares Sold 

Sales 
Dummy Shares Sold 

Sales 
Dummy Shares Sold 

  (1) (2) (3) (4) (5) (6) 

 
Probit Tobit Probit Tobit Probit Tobit 

Log(Abnormal SVI) 0.128*** 28.838*** 0.122*** 25.347*** 0.086** 28.570*** 

 
(0.0364) (8.604) (0.0402) (8.9112) (0.0344)  (8.0124) 

Top Level officers  0.168*** 38.264*** 
    

 
(0.0147) (3.3402) 

    Log (Abnormal SVI) *Top Level 
officers -0.235*** -6.573*** 

    
 

(0.0862) (1.9197) 
    Independent Directors 

  
-0.608*** -37.121*** 

  
   

(0.0132) (3.1517) 
  Log (Abnormal SVI) 

*Independent Directors 
  

-0.147** -5.640** 
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(0.0709) (2.5627) 

  Inside Directors  
    

 0.601***  289.832*** 

     
(0.0397) (7.766) 

Log (Abnormal SVI) *Inside 
Directors 

    
0.075 20.773 

Table 14 (Continued) 
    

(0.2003) (44.5475) 

       
Log(Size) 0.0159*** 20.703*** 0.0103* 18.957*** 0.015*** 22.060*** 

 
(0.0053) (1.2363) (0.0054) (1.2353) (0.0053) (1.2170) 

Log(BM) -0.133*** -28.870*** -0.1438*** -30.6424***  -0.135*** -28.452*** 

 
(0.0091) (2.0994) (0.0092) (2.1006) (0.0091) (2.0676) 

Advertising/Sales 1.181*** 424.188*** 1.084*** 420.737***  1.094*** 367.028*** 

 
(0.2044) (44.2117) (0.2085) (44.3147) (0.2045) (43.6574) 

Markett 3.827*** 451.840*** 3.762*** 440.560*** 3.782*** 436.633*** 

 
(0.1374) (33.8651) (0.1400) (33.9668)  (0.1375) (33.4033) 

Log(Price) 0.125*** -51.417*** 0.1348*** -50.8260*** 0.126*** -50.776*** 

 
(0.0106) (2.5260) (0.0108) (2.5325) (0.0106) (2.4921) 

Log(Turnover) 0.077*** -1.633 0.0930*** 0.201 0.087*** 2.4046 

 
(0.0087) (2.0913) (0.0089) (2.0957) (0.0087) (2.0640) 

Constant 0.008 -300.057*** 0.4187*** -239.060***  0.067 -325.820*** 

 
(0.1005) (23.5086) (0.10223) (23.4078) (0.0998) (23.0277) 

Obs 50,156 50,156 50,156 50,156 50,156 50,156 

Pseudo R2 0.0333 0.0018 0.0724 0.0018 0.0355 0.0039 
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Table 15: Insider Trader and Firm Characteristics 

This table reports the results of Logit regressions of being non-senior-executive, non-independent insiders on a number of 

insider and firm characteristics during the 2004-2014 sample period. The dependent variable is a dummy at the insider 

level, which equals 1 only for a non-senior-executive, non-independent insider. The main independent variables are: the 

number of years an insider is active; the number of years an insider has been trading; the number of states a firm has 

operations; a Poorly Governed Firms dummy that equals 1 if the G-index (Gompers, Ishii, & Metrick, 2003) is greater than 

or equal to 12; Financial Constraints-SA Index (Hadlock & Pierce, 2010); Product Sales Herfindahl index; Social 

Responsibility-KLD Index; and a Fortune100 dummy and rankings. All other control variables are described in Table 4. 

Cluster standard errors at the firm level are in parentheses. We use ***, **, and * to denote a significant difference from 

zero at the 1%, 5%, and 10% levels, respectively. 

 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Number of years active 0.361*** 
       

 
(0.0125) 

       Number of Trades -0.106*** 
       

 
(0.0262) 

       Geo Dispersion: # States 
 

0.346* 
      

  
(0.2032) 

      Poorly Governed Firm (Gindex>=90  
Pecentile) 

 

0.162** 

     

   

(0.0784) 

  

 

  SA Index (Financial 
Constraints) 

   

-0.074*** 

    
    

(0.0225) 
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Product Dispersion: HHI 
    

0.084* 
   

     
(0.0326) 

   KLD Index 
     

-0.023*** 
  

      
(0.0064) 

  FORTUNE100_DUM 
     

 -0.238**  

      
 (0.1097) 

 FORTUNE100_Rank 
     

 
 

-0.082* 

      

 

 

(0.0467
) 

Log(Size) -0.156*** -0.325*** -0.112*** -0.110*** -0.143*** -0.142*** -0.163*** -0.117* 

Table 15 (Continued) 

(0.0160) (0.1106) (0.0275) (0.0250) (0.0188) (0.0180) (0.0162) (0.0667
) 

Log(BM) -0.079*** -0.600*** -0.129*** -0.017 -0.057* -0.072*** -0.056** -0.061 

 

(0.0238) (0.1808) (0.0485) 
(0.0279) 

(0.0312) (0.0282) (0.0244) (0.1723
) 

Advertising/Sales -0.022 -32.416* -1.327 -1.341*** -1.307* -1.339** -1.304** -5.807* 

 

(0.1369) (17.9263) (1.3145) (0.5706) (0.7004) (0.6277) (0.5712) (3.0283
) 

Markett 
-0.297 0.307 1.530 0.286 0.193 0.229 0.256 -

5.033** 

 

(0.3329) (3.9024) (1.9919) (0.3317) (0.4007) (0.3504) (0.3294) (2.2607
) 

Log(Price) -0.026 0.418** -0.036 0.0144 -0.013 0.008 0.020 0.228 

 
(0.0294) (0.2007) (0.0623) (0.0303) (0.0360) (0.034) (0.0297) 0.1726 

Log(Turnover) 0.113*** 0.072 0.086 0.142*** 0.144*** 0.138*** 0.134*** 0.294** 

 

(0.02) (0.2321) (0.0543) (0.0211) (0.0259) (0.0241) (0.0207) (0.1467
) 

Past Firm Std Deviation -0.415*** -2.031 -0.747 -0.890*** -0.841*** -0.992*** -0.974*** -0.675 

 

(0.1551) (1.7720) (0.8015) (0.2473) (0.3001) (0.279) (0.243) (2.1066
) 

Constant 3.178*** 5.310** 2.476*** 2.747*** 3.376*** 3.243*** 3.662*** 2.633 
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(0.3067) (2.4163) (0.5984) (0.4652) (0.3769) (0.3596) (0.3225) (1.8283
) 

Obs 74,226 683 7,877 72,643 50,927 59,241 74,226 1,407 

Pseudo R2 0.0409 0.1127 0.0105 0.0128 0.0125 0.0121 0.0157 0.0291 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 16: Lottery-type Stocks and Insider Trades 

This table reports insider trading results in the subsample of lottery-type stocks. Lottery-type stocks are those with a price 

in the bottom half of distribution while its volatility and skewness are both in the top half. Panel A shows mean monthly 

characteristics of lottery-type and non-lottery-type stocks during the 2004-2014 sample period. In Columns 1 through 4 of 

Panel B (C), we run Logit regressions where the dependent variable is Sales (Purchase) dummy which equals 1 if a firm-

month is a net sale (purchase) month. In Columns 5 through 8, we run Tobit regressions where the dependent variable is 

the number of shares sold (bought) by all insiders (in thousands) for each firm-month observation. Lottery dummy takes 

value 1 only if firm i’s stock is a lottery stock at the end of month t-1. Log(ABSVI) is the natural log of monthly ABSVI. 

Log(ABSVI) Positive (Negative) is a dummy variable that equals 1 if Log(ABSVI) positive (negative). Jump dummy equals 

1 if ABSVI is in the top 10% of distribution, and Fall dummy equals 1 if ABSVI is in the bottom 10%. Control variables 

include Advertising/Sales, Log(BM), the equal-weighted market return, Log(Price), and Log(Turnover). Cluster standard 
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errors at the firm level are in parentheses.  We use ***, **, and * to denote a significant difference from zero at the 1%, 5%, 

and 10% levels, respectively. 

 

Panal A: Lottery Vs Non-Lottery Stocks   Lottery Type   Non-Lottery Type   

Number of Stocks 
  

1,093 
 

4,029 
 

       Price 
  

6.40 
 

23.68 
 

       Idiosyncratic Volatility 
  

21.99 
 

8.11 
 

       Idiosyncratic Skewness 
  

2.10 
 

0.29 
 

        Panel B: Sales Dummy/ 
Shares Sold (1) (2) (3) (4) (5) (6) (7) (8) 

Lottery 
-0.173*** -0.268*** -0.102 -

0.230***  -23.121** 
-57.249*** - 50.614*  -44.546** 

 

(0.0664)  (0.0744) (0.0846
) 

 
(0.0690) (10.352) 

(21.0939) (28.3731)  (19.5887) 

Log(ABSVI) 0.081*** 
  

  23.910***   

 
 

(0.0301) 
  

  (7.3748)   
 Log(ABSVI)*Lottery 0.241** 

   
 178.567**   

 
 

(0.1015) 
   

 (70.1504)    
 Log(ABSVI) Positive 

 
 0.036*** 

  
 9.738***  

 Table 16 (Continued) 
 

(0.0123) 
  

  (2.8276)  
 Log(ABSVI) Positive* Lottery 

 
 0.195** 

  
  68.3704**  

 
  

(0.0861) 
  

  (29.8891)   
 

Log(ABSVI) Negative 
  

-
0.040**

* 
 

  

-10.416***  
 

   
 

 
   (2.8938) 
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(0.0124
) 

Log(ABSVI) 
Negative*Lottery 

  
 -0.143 

 

 

 
-58.6311** 

 

   

(0.0889
) 

 

 

 
 (29.5472)  

 JUMP 
   

0 .027*  
  

12.917*** 

    
(0.0165)  

  
(3.5790) 

JUMP *Lottery 
   

0.259*** 
 

  

101.896**
*  

    
(0.1116)  

  
 (37.639) 

Constant 0.341 0.324 0.362 0.328 

-
225.379**

* 

-
229.743**

* 

-219.748 -
231.914**

*  

 
 (0.2767) (0.2766) 

(0.2765
) (0.2745)  

 (58.3314)  
(58.4663) 

 58.14354  
 (57.957) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 
Obs 50,156 50,156 50,156 50,156 50,156 50,156 50,156 50,156 

Pseudo R2 0.031 0.031 0.030 0.031 0.002 0.002 0.002 0.002 

Panel C: Puchase Dummy/ 
Shares Bought (1) (2) (3) (4) (5) (6) (7) (8) 

Lottery  0.153**  0.250*** 0.073 0.208***  20.200** 30.064***  25.836** 20.544** 

 
(0.0658) 

(0.0743) (0.0849
) 

 
(0.0681) 

 (8.0768)  (9.2428) (10.2457) 
(8.5486) 

Log(ABSVI) -0.079**  
  

 -4.583**   
 

 
(0.0318)  

  
 (2.000)   

 Log(ABSVI)*Lottery  -0.264**    -18.005   
 

 
(0.1174)     (30.4801)   

 Log(ABSVI) Positive  -0.036***    -3.847**  
 

 
 (0.0123)    (1.4981)  
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Log(ABSVI) Positive* Lottery   -0.200**     -20.821*  
 

 
 (0.0887)     (11.1352)   

 Table 16 (Continued)         

Log(ABSVI) Negative 

   
0.040**

* 

     
4.154*** 

 

 

  (0.0124
) 

   (1.505) 

 Log(ABSVI) 
Negative*Lottery 

  0.160*   

 

 26.459**  

 

 

  (0.0912
) 

  

 

 (11.2473) 

 FALL    0.029*  
 

 4.94**  

 
   (0.0166)  

 
 (2.0414) 

FALL*Lottery     0.260**     3.034** 

 

    
(0.1118) 

   
 (1.4353) 

Constant -0.331 -0.314 -0.352 -0.318 -47.451 -45.666 -49.661  -47.336 

 
(0.2774) (0.2774)  

(0.2773
) 

(0.2752)  (31.7501)  (31.7331)  (31.7650) 
(31.5079) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 
Obs 50,156 50,156 50,156 50,156 50,156 50,156 50,156 50,156 

Pseudo R2 0.030 0.030 0.030 0.030 0.009 0.009 0.009 0.009 

 

 

 

 

 

 

 



 

114 
 

 

 

 

 

 

 

 

 

 

Table 17: Local Investors and Insider Trades 

This table reports the effect of local investors on opportunistic insider trading. Panel A makes mean comparisons between 

two measures of local SVI and the aggregated SVI during the 2004-2014 sample periods. In Columns 1 through 4 of Panel 

B (C), we run Logit regressions where the dependent variable is Sales (Purchase) dummy which equals 1 if a firm-month 

is a net sale (purchase) month. In Columns 5 through 8, we run Tobit regressions where the dependent variable is the 

number of shares sold (bought) by all insiders (in thousands) for each firm-month observation. Log(ABSVI _State) and 

Log(ABSVI _Metro) are the log of monthly ABSVI at the state and metro levels, respectively. Log(ABSVI _State) Positive 

(Negative) and Log(ABSVI_Metro) Positive (Negative) are dummy variables that equal 1 if the log values are positive 

(negative). Control variables include Advertising/Sales, Log(BM), the equal-weighted market return, Log(Price), and 

Log(Turnover). Cluster standard errors at the firm level are in parentheses. We use ***, **, and * to denote a significant 

difference from zero at the 1%, 5%, and 10% levels, respectively. 

 

Panel A: Local_SVI  Vs  
Aggregate_SVI SVI SVI_State SVI_Metro Diff_SVI_State Diff_SVI_Metro       

         SVI 33.50 23.68 23.96 -9.82*** -9.54***    

     
    

N 69,440 29,388 19,673 - -    

Panel B: Sales Dummy/Shares Sold Probit Regression Tobit Regression 

 
Sales Dummy Shares Sold 
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(1) (2) (3) (4) (5) (6) (7) (8) 

Log(ABSVI_State) 0.058*    10.116*   
 

 
 (0.0313)    (6.2007)   

 Log(ABSVI_State) Positive   0.057*    9.281  
 

 
 (0.0344)    (7.1110)  

 Log(ABSVI_Metro)   0.043**    2.251 
 

 
  (0.0214)    (5.2193) 

 Log(ABSVI_Metro) Positive    0.039     3.232 

 
   (0.0259)    (6.2695) 

 
       

          

Constant 
0.6866   

1.637***  
 0.660 1.616*** -173.289*   15.862  -173.129* 

14.428 

 

(0.4650) (0.5233) (0.4651) (0.5234) (95.1718) (96.8565
) 

(95.1012) (97.7505
) 

Table 17 (Continued)         
Controls Yes Yes Yes Yes Yes Yes Yes Yes 

Obs 17,041 17,041 11,121 11,121 17,041 17,041 11,121 11,121 

Pseudo R2 0.036 0.032 0.036 0.032 0.002 0.001 0.002 0.002 

Panel C: Purchase Dummy/Shares 
Bought 

  
                     Probit Regression  

  
    Tobit Regression 

 
                 Purchase Dummy Shares Bought 

 
(1) (2) (3) (4) (5) (6) (7) (8) 

Log(ABSVI_State)  -0.049    -4.230   
 

 
(0.0316)    (3.7654)   

 Log(ABSVI_State) Negative  0.042*    5.679**  
 

 

 (0.0232)    ( 
2.5307) 

 

 Log(ABSVI_Metro)  
 

-0.058*    
 

-7.998* 
 

 
  (0.0343)   

 
(4.3173) 
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Log(ABSVI_Metro) Negative    0.053**    4.687 

 
   (0.0261)     (3.1983) 

 
       

 

Constant 

-0.666 -0.708 -
1.623*** 

-
1.659*** 

-64.942 

-66.9201 

-
171.998

*** 

-
174.077**

* 

 

(0.4674) (0.4648) (0.5282) (0.5262)  (49.0662) (49.0544
) 

(61.1809
)  (61.1376) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 
Obs 16,988 16,988 11,085 11,085 16,988 16,988 11,085 11,085 

Pseudo R2 0.035 0.035 0.032 0.032 0.011 0.011 0.011 0.011 

 

 

 

 

 

 
 
 

Table 18: SEC Actions and Opportunistic Insider Trading 
This table explores the link between SEC litigations and opportunistic insider trading during the 2004-2014 sample period. 

Panel A reports on regressions of the fraction of SVI-related sales on month t following news releases of SEC insider 

litigations at month t-1. The dependent variable is the number of opportunistic insider sales divided by the number of 

total opportunistic sales. The independent variable of interest is the Num SEC Releases in month t-1, which is the log of 

one plus the number of SEC releases on actions against illegal insider trading. We include control variables such as the 

fraction of positive Log(ABSVI) at month t and at month t-1, equally weighted market return, standard deviation of 

market return, and past cumulative market returns. Panel B reports the results of firm-level regressions where the 

dependent variables are Sales dummy (Columns 1-3) and Shares Sold (Columns 4-6). The independent variables of 

interest are the Num SEC Release and its interaction terms with Log(ABSVI). Panel C reports Logit regressions of SEC 
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investigation. The observations are at the insider level and insider characteristics are constructed based on all trades and 

sales of each insider. SVI-relateded Sales dummy is equal to one if an insider sells in a month that has a positive 

Log(ABSVI),  and % of SVI_induced traded (sales) dummy is equal to 1 if the number of SVI trades (sales) is more than 

the number of non-SVI trades (sales). Cluster standard errors are in parentheses. We use ***, **, and * to denote a 

significant difference from zero at the 1%, 5%, and 10% levels, respectively. 

 

Panel A: Insider-level Regression (1) (2) (3) (4) (5) (6) 

Num SEC Releaset-1 0.086*** 0.055*** 0.066*** 0.073*** 0.069*** 0.073*** 

 
(0.0217) (0.0173)  (0.0190) (0.0156) (0.0188) (0.0167) 

Fraction Positive Log(ABSVI)t 
 

0.282*** 0.264*** 0.264*** 0.265*** 0.264*** 

  
(0.0369) (0.0329) (0.0327)  (0.0334) (0.0321)  

Fraction Positive Log(ABSVI)t-1 
  

 -0.078*** -0.081*** -0.080*** -0.081*** 

   
(0.0186) (0.0177)  (0.0175) (0.0176) 

Market Returnt-1 
   

0.141 0.092 0.137 

    
(0.3099) (0.3345) (0.2948) 

Std Market Returnt-1 
   

3.223** 4.292* 3.069 

    
(1.5228)  (2.1646) (2.6544) 

Market Returnt-4,t-2 
   

0.114 
  

    
(0.2786) 

  Market Returnt-7,t-2 
    

0.147 
 Table 18 (Continued) 

    
(0.1222) 

 Market Returnt-13,t-2 
     

0.171 

      
(0 .1172) 

Obs 130 130 129 129 129 129 

R2 0.039 0.547 0.585 0.594 0.595 0.594 

Panel B: Firm-level Regressions Probit Regression Tobit Regression 

 
     Sales Dummy Shares Sold 

 
(1) (2) (3) (4) (5) (6) 

Num SEC Releaset-1 -0.051*** -0.065*** -0.063*** -3.232 -5.639*  -5.541* 
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(0.0104) (0.0130) (0.0131)  (2.5189) (3.1685)  (3.1696) 

Log(Abnormal SVI)t  0.081*** 0.640***  27.972*** 118.071*** 

 
 (0.0313) (0.1055)   (7.4658)  (26.5771) 

Log(ABSVI)t*Num SEC Releaset-1  

 

0.326***   52.216*** 

 
  (0.0591)   (14.8172) 

Constant - 0.051 0.204 0.203 66.1598*** 76.331*** 76.460*** 

 
(0.2417) (0.2771) (0.2764)  (13.0303) (16.4054)  (16.4046) 

Controls Yes Yes Yes Yes Yes Yes 

Obs 71,582 50,156 50,156 71,582 50,156 50,156 

Pseudo R2 0.027 0.031 0.032 0.001 0.001 0.001 

Panel C: Probability of Being Investigated by the SEC 
    

 
(1) (2) (3) (4) 

  SVI-Induced Sales Dummy -0.812** -1.456* -0.104 -0.034 
  

 
(0.40873) (0.7601) (0.4493) (0.4493) 

  Total Number of Insider Sales  0.434*** 
     

 
(0.1075) 

     Num of SVI_Induced Trades 
 

 0.326 
    

  
(0.2140) 

    Num of Non_SVI_Induced 
Trades 

 
0.336** 

    
  

(0.1323) 
    % SVI_Induced Trades Dummy 

  
-1.307* 

   Table 18 (Continued) 
  

(0.6902) 
   % SVI-Induced Sales Dummy 

   
-1.125* 

  
    

(0.6802) 
  Obs 38,193 38,193 38,193 38,193     

Pseudo R2 0.0348 0.0383 0.0125 0.0101     
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Table 19: Public Information Flow or Investor Sentiment 
This table reports on the effects SVI components: investor sentiment and public 

information on insider trading. We run following equation to decompose Log(ABSVI): 

𝐿𝑜𝑔(𝐴𝐵𝑆𝑉𝐼)𝑖,𝑡 = 𝛼𝑖 ∗ 𝑆𝑈𝐸𝑖,𝑄(𝑡)−1 + 𝛽𝑖 ∗
𝐴𝑑𝑣

𝑠𝑎𝑙𝑒𝑖,𝑌(𝑡)−1
+ 𝛾𝑖 ∗ 𝐺𝐷𝑃𝐹𝑖𝑛𝑎𝑙𝑡−1

+ 𝛿𝑖 ∗ 𝐹𝑂𝑀𝐶𝑡−1 +

𝑌𝑒𝑎𝑟 + 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 + 𝜀𝑖,𝑡, where 𝑆𝑈𝐸𝑖,𝑄(𝑡)−1is the previous quarter q of month t’s earnings 

surprise for firm i. In Columns 1-3, the dependent variable is Sales (Purchase) dummy 

which equals 1 if a firm-month is a net sale (purchase) month. In Columns 4-6, the 

dependent variable is the number of shares sold (bought) by all insiders (in thousands) for 

each firm-month observation. 𝐴𝑑𝑣/𝑠𝑎𝑙𝑒𝑖,𝑌(𝑡)−1  is the previous year-end advertising 

expenditure to sales ratio, 𝐺𝐷𝑃_𝐹𝑖𝑛𝑎𝑙𝑡−1 and 𝐹𝑂𝑀𝐶𝑡−1 are dummy variables that equal 1 

if any macro news is release in month t-1. We take the predicted value as the 

information component denoted by Log(ABSVI-Information) and the residual value as 

the sentiment component denoted by Log(ABSVI-Sentiment). In all specifications, 

control variables include Log(Size), Log(BM), equally weighted market return, 

Log(Price), and Log(Turnover). Cluster standard errors at the firm level are in 

parentheses. We use ***, **, and * to denote a significant difference from zero at the 1%, 

5%, and 10% levels, respectively. 

 

Panel A: Sales Probit Regression Tobit Regression 

 
(1) (2) (3) (4) (5) (6) 

Log(ABSVI-
Information) 1.186** 

 
1.208** 35.317 

 
38.183 

 
(0.5963) 

 
(0.5640) (125.3903) 

 
(125.2870) 

Log(ABSVI-
Sentiment) 

 
0.067** 0.068** 

 
25.634*** 25.616*** 

  
(0.0263) (0.0283) 

 
(7.0948) (6.1449) 

Constant 0.418 0.401 0.419 -197.389*** 
-

164.752*** 
-

196.828*** 
  (0.2866) (0.2871) (0.2866) (55.5111) (24.9630) (55.5026) 

Controls Yes Yes Yes Yes Yes Yes 
Obs 43,144 43,144 43,144 43,144 43,144 43,144 

Pseudo R2 0.0287 0.0293 0.0296 0.0012 0.0011 0.0011 

Panel B: 
Purchase Probit Regression Tobit Regression 

 
(1) (2) (3) (4) (5) (6) 

Log(ABSVI-
Information) -1.246* 

 
-1.267 -28.117 

 
-29.516 

 
(0.7345) 

 
(0.8347) (55.5102) 

 
(55.5357) 

Log(ABSVI-
Sentiment) 

 
-0.063** -0.065** 

 
-3.901** -3.951** 

  
(0.0303) (0.0303) 

 
(1.8672) (1.8688) 
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Constant -0.409*** 
-

0.391*** -0.410*** -61.015*** -60.618*** -61.106*** 
  (0.1074) (0.1072) (0.1074) (13.6674) (13.6366) (13.6683) 

Controls Yes Yes Yes Yes Yes Yes 
Obs 43,144 43,144 43,144 43,144 43,144 43,144 

Pseudo R2 0.0273 0.0286 0.0292 0.0090 0.0095 0.0096 

 
Table 20: Opportunistic Trading, ABSVI, and Future 1-month Stock Returns 

This table shows the relationships of opportunistic trading, ABSVI, and future 1-month 

stock returns. We separate the sample into the net sales and net purchase subsamples, 

and we independently create quintiles based on the ABSVI and net sales and net 

purchase positions of each individual firm.  

 

Net Sales\ABSVI  1 (Low) 2 3 4 5 (High) 

1 (High) 1.871% 1.537% 1.347% 1.242% 0.878% 
2 1.526% 1.323% 1.301% 0.968% 0.859% 
3 1.416% 1.255% 1.054% 1.187% 0.746% 
4 1.213% 1.125% 0.930% 0.954% 0.706% 
5 (Low) 1.112% 1.129% 1.307% 0.952% 0.641% 

Net Purchase\ABSVI 1 (Low) 2 3 4 5 (High) 

1 (High) 3.625% 3.266% 3.356% 2.728% 1.756% 
2 2.601% 2.924% 3.270% 2.102% 1.715% 
3 2.568% 2.330% 2.172% 1.363% 1.600% 
4 1.923% 1.948% 1.542% 1.311% 1.011% 
5 (Low) 1.696% 1.284% 1.142% 1.604% 1.179% 
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Table 21: Portfolio Returns on SVI-based Trading Strategies 
This table shows the returns of buy and sale portfolios that follow the ABSVI from 2004-2014. We first classify the sample 

into the positive or negative Log(ABSVI) and then create sub-groups of buy and sell portfolio samples based on the net 

sale or purchase positions. For example, if a firm in month t has a net sales position and encounters a positive Log(ABSVI) 

in month t, we group this firm into a Positive Log(ABSVI) Sells portfolio. At the end of month t+1, we rebalance the 

portfolio based on new firms’ net positions and ABSVI. We report below the monthly percentage return on both buy and 

sell equally weighted as well as value weighted portfolios. Panel A presents the results of equal-weighted portfolios and 

Panel B shows those of value-weighted portfolios. Standard errors at the portfolio level are in parentheses.  We use ***, **, 

and * to denote a significant difference from zero at the 1%, 5%, and 10% levels, respectively. 

 

  

Positive 
Log(ABSVI) 

Buys 

Negative 
Log (ABSVI) 

Buys 
L/S 
Buys 

Positive 
Log(ABSVI

) Sells 

Negative 
Log(ABSVI

) Sells 
L/S 
Sells 

Negative 
Log(ABSVI) Buys-

Positive 
Log(ABSVI) Sells 

  Panel A: Equal-Weighted 

Average Returns % 0.667 2.261 -1.594 -0.021 2.315 -2.335 2.281 
Standard dev. 6.1646 5.8811 3.7997 5.4006 5.2111 3.7997 3.6811 

CAPM Alpha 0.448 2.043*** 
-

1.594*** -0.299 2.073*** -2.371*** 2.341*** 

 
(0.5469) (0.5197) (0.3373) (0.4731) (0.4565) (0.2656) (0.3250) 

Fama-French Alpha 0.428 2.032*** 
-

1.604*** -0.317 2.056*** -2.373*** 2.349*** 

 
(0.5393) (0.5206) (0.3353) (0.4646) (0.4503) (0.2662) (0.3234) 

Carhart Alpha 0.455 2.064*** 
-

1.610*** -0.269 2.081*** -2.350*** 2.334*** 

 
(0.5410) (0.5214) (0.3377) (0.4618) (0.4514) (0.2656) (0.3245) 

5-factor Alpha 0.581 2.144*** 
-

1.562*** -0.180 2.139*** -2.319*** 2.323*** 

 
(0.5387) (0.5239) (0.3391) (0.4621) (0.4542) (0.2675) (0.3280) 

    Panel B: Value-Weighted  
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Average Return % 0.670 1.395 -0.725 0.292 1.427 -1.135 1.103 
Standard dev. 6.1397 5.5957 4.9426 4.7540 4.6496 3.1868 4.3025 
CAPM Alpha 0.468 1.182** -0.713 -0.005 1.175*** -1.168 1.177*** 

 
(0.5442) (0.4958) (0.4385) (0.4121) (0.4055) (0.2822) (0.3796) 

Fama-French Alpha 0.458 1.166** -0.708 -0.012 1.162*** -1.174*** 1.177*** 

 
(0.5453) (0.4908) (0.4391) (0.4036) (0.4028) (0.2805) (0.3826) 

Table 21 
(Continued)        
Carhart Alpha 0.477 1.204** -0.727 0.019 1.189*** -1.172*** 1.188*** 

 
(0.5477) (0.4902) (0.4411) (0.4037) (0.4031) (0.2821) (0.3845) 

5-factor Alpha 0.5440 1.256** -0.712 0.059 1.177*** -1.138*** 1.197*** 
  (0.5515) (0.4941) (0.4459) (0.4070) (0.4076) (0.2841) (0.3887) 
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Panel A: Weekly Google Trends for Apple Inc. (AAPL) 
 

 
Panel B: Monthly SVI and Insiders trading Patterns of Apple Inc. (AAPL) 
Figure 1: Google Trends Search Index and Insider Trading 
Figure 1 illustrates Google Trends search index and insider trading. Panel A displays 

the graphical output of Google Trends search index on Apple Inc. (ticker: AAPL). The 

graph plots a weekly aggregate search frequency (SVI) on “AAPL.” The SVI measures 

the weekly search volume on “AAPL” scaled by the highest searching volume on the 

chart. Panel B displays insider trading patterns as related to the monthly SVI. The “+” 

(“-”) sign refers to a net insider sale (purchase) month. Panel B only presents a trading 

volume greater than 50 (in thousands) shares and the number in each box is rounded to 

the nearest thousands. 
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Panel A: Number of Trades per Insider (Firm-month) 

 

 
Panel B: Number of Trades per firms (Firm-month) 

Figure 2: Number of Trades per Insider and per Month 
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