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ABSTRACT

In single-case research, multiple-baseline (MB) design is the most widely used design in
practical settings. It provides the opportunity to estimate the treatment effect based on not only
within-series comparisons of treatment phase to baseline phase observations, but also time-
specific between-series comparisons of observations from those that have started treatment to
those that are still in the baseline. In MB studies, the average treatment effect and the variation of
these effects across multiple participants can be estimated using various statistical modeling
methods. Recently, two types of statistical modeling methods were proposed for analyzing MB
studies: a) within-series model and b) between-series model. The within-series model is a typical
two-level multilevel modeling approach analyzing the measurement occasions within a
participant, whereas the between-series model is an alternative modeling approach analyzing
participants” measurement occasions at certain time points, where some participants are in the
baseline phase and others are in the treatment phase. Parameters of both within- and between-
series models are generally estimated with restricted maximum likelihood (ReML) estimation
and ReML is developed based on the assumption of normality (Hox, et al., 2010; Raudenbush &
Bryk, 2002). However, in practical educational and psychological settings, observed data may
not be easily assumed to be normal. Therefore, the purpose of this study is to investigate the
robustness of analyzing MB studies with the within- and between-series models when level-1
errors are non-normal. A Monte Carlo study was conducted under the conditions where level-1

errors were generated from non-normal distributions in which skewness and kurtosis of the
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distribution were manipulated. Four statistical approaches were considered for comparison based
on theoretical and/or empirical rationales. The approaches were defined by the crossing of two
analytic decisions: a) whether to use a within- or between-series estimate of effect and b)
whether to use REML estimation with Kenward-Roger adjustment for inferences or Bayesian
estimation and inference. The accuracy of parameter estimation and statistical power and Type |
error were systematically analyzed. The results of the study showed the within- and between-
series models are robust to the non-normality of the level-1 error variance. Both within- and
between-series models estimated the treatment effect accurately and statistical inferences were
acceptable. ReML and Bayesian estimations also showed similar results in the current study.
Applications and implications for applied and methodology researchers are discussed based on

the findings of the study.



CHAPTER ONE: INTRODUCTION

Single-case research is a type of research for analyzing the effect of an intervention or
treatment. Single-case research studies mainly differ from other intervention research studies in
that they deal with a single or small number of participants. To evaluate the effect of treatment,
repeatedly measured observations of each participant are collected for two distinct phases.
Baseline and treatment are two basic phases that comprise the interrupted time series design. The
baseline phase is also called the pre-treatment phase and it consists of a series of observations
before introducing a treatment or intervention for participants. There are two purposes of the
baseline phase in single-case research design: a) observations in the baseline phase provide prior
knowledge about each participant’s performance and document the need for intervention, and b)
observations in the baseline phase establish the basis for which predictions can be made for the
participants if the intervention had not been implemented. The treatment phase consists of a
series of observations after the introduction of a treatment. Comparing observations between the
baseline and treatment phases creates the analysis of the treatment effect in single-case research.

In single-case research, multiple-baseline (MB) is the most widely used design in
practical settings (Honor & Odom, 2014). It provides the opportunity to estimate the treatment
effect based on not only within-participant comparisons of treatment phase to baseline phase
observations, but also time-specific between-participant comparisons of observations from those

that have started treatment to those that are still in the baseline.



Recently, two types of statistical models were proposed for analyzing MB studies: a)
within-series (within-participant) model and b) between-series (between-participant) model
(Ferron et al., 2014). The within-series model is a typical two-level multilevel modeling
approach analyzing the measurement occasions within a participant, whereas the between-series
model is an alternative modeling approach analyzing a subset of the participants’ measurement
occasions, which correspond to certain time points, where some participants are in the baseline
phase and others are in the treatment phase. The advantage of the within-series approach is that
the treatment effects are estimated with greater precision because all collected observations are
used. On the other hand, the between-series approach does not rely on assumptions where time
trends are correctly specified. A simulation study found that the within-series model
outperformed the between-series model when assumptions are satisfied but the between-series
model produced less biased average treatment effects than the within-series model for the
conditions where the model is misspecified or event effects are included (Ferron et al., 2014).

Parameters of both within- and between-series models are generally estimated with
restricted maximum likelihood (ReML) estimation. ReML is an iterative procedure to find the
estimates, which maximize the likelihood function for the variance components of the model
(Raudenbush & Bryk, 2002). In general, ReML is developed based on the assumption of
normality (Hox, Moerbeek & Van de Schoot, 2010; Raudenbush & Bryk, 2002). However, in
practical educational and psychological settings, the normality assumption is not always satisfied
(Shadish & Sullivan, 2011; Smith, 2012) and meta-analysis of the single-case research studies
has shown that more than 50% of the published single-case research datasets failed the normality
test (Parker, 2006; Parker & Vannest, 2009; Parker, Vannest & Brown, 2009; Solomon, 2014). In

addition, I conducted a preliminary survey to investigate the normality of the single-case data



published in Journal of Applied Behavior Analysis (JABA) from 2014 to 2016. The results from
the survey showed that skewness and kurtosis of the MB data ranged from -0.71 to 1.91, and
from -1.07 to 3.01, respectively. Details of this survey are discussed in later chapters.

One possible reason for non-normal outcome variables is the scales of measurement. For
example, if a scale of measurement is a count or percent, then either positive or negative
skewnesss of the data may be observed. If a scale of measurement is binary or categorical, then
normality of the data cannot be assumed (Smith, 2012; Shadish, 2014; Shadish, Kyse, &
Rindskopf, 2013). The ceiling/floor effects or outliers are another source of creating violation of
the normality assumption (Hox et al., 2010; Langford & Lewis, 1998). Outliers could occur due
to a momentary or temporary event effects. For example, a momentary event effect occurs if a
participant of an intervention study experiences a persoval problem at home at a certain time
point and the observed outcome at the next time point is influenced by the event effect either
positively or negatively (Ferron et al., 2014).

In principle, analyzing non-normal data with ReML estimation could result in biased
estimates of fixed and random effects (Crawford, Garthwaite, Azzalini, Howell & Laws, 2005;
Mass & Hox, 2004). Also, standard errors of the parameter estimates tend to be underestimated,
resulting in the following consequences; a) the statistical powers to detect fixed and random
effects are downgraded, b) Type | error rates for the estimated parameters are inflated and c)
inaccurate confidence interval (Cl) coverage rates are observed (Crawford et al., 2005; Mass &
Hox, 2004; van der Leeden et al., 1997). The same concerns can be applied for the within- and
between-series models for MB studies and these problematic consequences of violation of

normality could significantly affect the results of the studies.



Therefore, it is important to investigate alternative modeling approaches to handle non-
normality of MB data. Also, from a practical perspective, comparing the robustness of multiple
modeling methods can provide better insight and practical solutions to applied researchers about
how to deal with violation of the normality assumption. For this reason, four statistical modeling
approaches are considered for comparison based on theoretical and/or empirical rationales. The
approaches are defined by the crossing of two analytic decisions: a) whether to use a within- or
between-series estimate of effect and b) whether to use ReML with Kenward-Roger adjustment
(Kenward & Roger, 1997) or Bayesian approach (Gelman et al., 2004) for parameter estimation
and statistical inferences.

Kenward-Roger adjustment was developed to adjust for small-sample bias. More
specifically, the Kenward-Roger method adjusts degrees of freedom to make a better inference
for the small-sample size condition. Simulation studies have shown that using Kenward-Roger
adjustment has shown a better performance than other degrees of freedom estimation methods
for making inferences about the treatment effect in MB studies (Ferron, Bell, Hess, Rendina-
Giobioff, & Hibbard, 2009). Also, making inferences with Kenward-Roger adjustment is robust
to non-normality in the level-2 errors and misspecification of the level-1 covariance structure in
multilevel modeling (Petit-Bois, Baek, Nguyen & Ferron, 2013; Owens & Farmer, 2013).

Bayesian estimation is an alternative way for estimating parameters and making
inferences. Over the decades, Bayesian estimation has received increasing attention for
estimating the parameters of statistical models, because it is comparably simple to adapt and a
better way to deal with more complex models than ReML (e.g., Browne, Draper, Goldstein,
Rasbash, 2002; Rindskopf, 2014; Swaminathan, Rogers & Hornor, 2014; Shadish, Rindskopf,

Hedges & Sullivan, 2013). Bayesian estimation allows specifying prior distributions to the



parameters in the model. By doing so, researchers can have flexibility to handle parameter
estimation under various conditions. For example, it has been shown that Bayesian estimation is
beneficial for estimating complex statistical models with small sample sizes due the specification
of the prior distribution (Gelman et al., 2014).

Bayesian estimation, previously, has been adapted for the within-series multilevel model
and its estimation accuracy was compared with ReML (e.g., Baek, 2015; Moeyaert et al., 2016;
Swaminathan, Rogers & Honor, 2014). However, Bayesian estimation has not been employed
for the newly proposed between-series model and its estimation efficacy for the model is
unknown. It is also unknown whether the between-series model would perform robustly with
Bayesian inference compared to Kenward-Roger adjustment under the situations where the

normality assumption is violated.

Problem Statement

Although violation of the normality assumption is a potential threat in MB studies,
questions about the robustness of statistical models remained unsolved. For example, to what
degree would non-normality in level-1 errors be troublesome when MB studies are analyzed with
multiple modeling approaches? How much skewness and kurtosis can and cannot be handled
using ReML with Kenward-Roger or Bayesian estimation?

The majority of previous applications and methodological studies with MB design
assumed that the level-1 errors were normally distributed (e.g., Ferron et al., 2009, Ferron,
Farmer, & Owens, 2010, Ferron et al., 2014; Moeyaert, Ugille, Ferron, Beretvas, Van den
Noortgate, 2013a, 2013b; Van den Noortgate & Onghena, 2003a, 2003b) and limited research

investigated the robustness of the within- and between-series models. For example, the impacts



of level-2 and level-3 error non-normality (Petit-Bois et al., 2013) and level-1 and level-2 error
non-normality (Owens & Farmer, 2013) in the within-series model were previously investigated
and they found that non-normality does not lead to bias in estimating treatment effects but effect
inferences were inaccurate. However, these studies were limited to the within-series model using
ReML and they did not compare alternative modeling approaches such as the between-series
model or Bayesian estimation. To the best of author’s knowledge, no research has compared the
performances of various modeling approaches that may be differentially robust to non-normal

MB data.

Purpose of Study

The purpose of this study is to investigate the robustness of analyzing MB studies with
the within- and between-series models using ReML with Kenward-Roger adjustment or
Bayesian estimation when level-1 errors are assumed to be non-normal. A Monte Carlo study
was conducted under the conditions where level-1 errors were generated from non-normal
distributions manipulating skewness and kurtosis of the residuals’ distribution. Fleishman’s
(1978) power transformation method was used to manipulate skewness and kurtosis of the
distribution. To compare various modeling methods, four models are compared: a) two-level
within-series model using ReML with Kenward-Roger adjustment (Model 1), b) two-level
within-series model using Bayesian method (Model 2), ¢) between-series model using ReML
with Kenward-Roger adjustment (Model 3) and d) between-series model using Bayesian method
(Model 4).

The accuracy of parameter estimation and statistical inference were systematically

analyzed. Bias, relative bias, root mean square error (RMSE), confidence/credible interval (CI)



coverage rates, Cl widths and statistical power/Type | error were examined as a function of
specific design factors (number of measurement occasions and participants) and degree of non-
normality (amount of skewness, and kurtosis of the distribution). The research questions are

described as follows.

Research Questions

1. To what extent are the bias and RMSE for the treatment effect estimates of the within-
and between-series models using ReML with Kenward-Roger and Bayesian methods
impacted as a function of the skewness and kurtosis?

2. To what extent are the interval estimate coverage rate and width for the treatment effect
estimates of the within- and between-series models using ReML with Kenward-Roger
and Bayesian methods impacted as a function of the skewness and kurtosis?

3. To what extent are the statistical power and Type | error for the treatment effect estimates
of the within- and between-series models using ReML with Kenward-Roger and
Bayesian methods impacted as a function of the skewness and kurtosis?

4. To what extent are the bias and RMSE for the parameter estimates other than the
treatment effect of the within- and between-series models using ReML with Kenward-

Roger and Bayesian methods impacted as a function of the skewness and kurtosis?

Overview of the Study
A Monte Carlo study was conducted to empirically address the issues of violation of the
normality assumption in MB studies. Data generation factors included number of measurement

occasions and participants, skewness and kurtosis of level-1 error structure, and treatment effect



size. Three levels of number of measurement occasions (10, 20, and 40), two levels of number of
participants (4, and 8) four levels of level-1 error skewness (0, 1, 2, and 3) five levels of level-1
error kurtosis (-1, 0, 1, 2, and 4) and two levels of treatment effect sizes (0, and 1) were varied.
The analysis factors of the study included four levels of multilevel modeling approaches (Models
1 - 4). Crossing all the data generation factors resulted in a total of 3 (number of measurement
occasions) x 2 (hnumber of participants) x 4 (level-1 error skewness) x 5 (level-1 error kurtosis) x
2 (treatment effect) = 240 simulation conditions. Table 1 provides the simulation study
conditions. The number of replications was set for 3000 per condition. The dependent variables
of the simulation study results were bias, relative bias, RMSE, CI coverage rate, Cl width and the
statistical power/Type | error of the treatment effect estimate and bias and RMSE of the other

parameter estimates including random components in the models.

Significance of the Study

This Monte Carlo study contributes to both applied researchers and methodologists in
single-case research. The results of the study can provide applied researchers pragmatic guidance
about options when there is violation of the normality assumption, which often occurs in
educational and psychological settings. More specifically, the results provide information about
analyzing MB studies with multiple statistical modeling approaches and guidelines for applied
researchers about how to handle various degrees of violation of the normality assumption.

In addition, this study contributes to methodological literature as well. The between-
series model for MB studies is recently proposed and yet, no research has examined the
robustness of the between-series model for non-normality of level-1 error. Also, Kenward-Roger

adjustment and Bayesian inference methods for the within- and between-series models have not



been compared under non-normal data conditions. The results of the study contribute to

methodological literature comparing various modeling approaches for MB studies.

Limitations

The data in this study were simulated based on specific conditions. Those conditions
were chosen based on a review of single-case literature. The specific conditions chosen for this
study are only some of the possible options. Therefore, the results of this study can only be
generalized to studies with similar conditions. Any conclusions beyond the observed conditions

should be interpreted with caution.

Table 1.
Simulation Study Design

Model 1 vs. Model 2 vs. Model 3 vs. Model 4
Skewness =0, 1, 2, 3

Measurement
Participants Occasions Kurtosis= -1,0,1, 2, 4

4 10
20
40
8 10
20
40
4 10
20
40
8 10
20
40




Definitions of Terms

Bayesian estimation. An estimation method of statistical models where prior information about
parameters of the models are taken into account. The estimates of the parameter are
computed based on the posterior distribution of the parameters.

Between-series model. A statistical model where the subset of multiple-baseline study
IS used to compare between participants whose are in the baseline phase to those in the
treatment phase.

Bias. A difference between a population parameter value (generating parameter) and an
estimated parameter value.

Confidence interval coverage. The proportion of replications in which 95% confidence intervals
contain a population parameter value.

Fixed effects. Regression coefficients which present the average effects across level-2 units in
multilevel models.

Kenward-Roger. A method that adjusts degrees of freedom of the fixed effects for the small
sample size conditions.

Kurtosis. A measure of the heaviness of the tails in a distribution, relative to the normal
distribution.

Level-1 error. A residual from the predicted value to the observed value of observations within
a level-1 unit in multilevel models.

Level-2 error. A variability across level-2 units in multilevel models.

Multiple-baseline design. A type of single-case research design, which extends the AB design
such that the baseline and treatment phases are established for multiple participants,
multiple behaviors, or multiple settings.

Multilevel modeling. A statistical model where nested structure data are taken into account for

10



estimating parameters of the model. It allows researchers to have more than one level of
the data structure.

Random effects. The variabilities across level-2 units and level-1 units in multilevel models.

Relative bias. Proportions of bias compared to the population parameter values (generating
parameters).

Root mean squared error. The measure of estimation accuracy where squared bias and sampling
error are taken into account.

Skewness. A degree of symmetry in a distribution.

Within-series model. Statistical models where multiple-baseline study observations are used to

compare those are in the baseline phase to those in the treatment phase.
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CHAPTER TWO: LITERATURE REVIEW

The literature review section consists of four parts. First, single-case research design
studies are discussed, including an introduction of the single-case research and types of designs,
and analysis methods. Second, the within- and between-series models and their application to
MB studies are reviewed. Third, the estimation methods and normality assumption are discussed,

and finally, alternative Bayesian modeling is described and the relevant literature is reviewed.

Single-Case Research

Single-case research is an intensive study of a case by repeatedly measuring an outcome
while altering the conditions under which the case is being observed. In general, the case may be
a single participant or a single entity that forms the research group, such as a group of students in
a classroom or a family. The outcome variables of a single participant or single entity are then
repeatedly measured or quantified over the levels of one or several manipulated independent
variables (Onghena, 2005). The independent variables are often manipulated by the researcher,
and often, whether participants are observed in intervention (or treatment) or not is the
independent variable in single-case research (Kazdin, 2011). The outcome variable (or dependent
variable) is the variable participants are measured on (e.g., problem behavior, time on task) and
often it is determined by the researchers’ theoretical background knowledge or through literature

review. The primary purpose of single-case research is, therefore, to investigate the efficacy of

12



treatment or intervention effect on an outcome variable in which a single participant or entity is
involved.

Single-case research studies have been receiving increasing attention recently in
educational and psychological studies (e.g., Barlow, Nock, & Hersen, 2009; Ittenbach &
Lawhead, 1997; Kazdin, 2011; Kratochwill, 1985; Wacker, Steege, & Berg, 1988). For example,
over the last decades, the key terms “single-case” or “single-subject” or “multiple baseline” were
exclusively used for citations in the Social Science Citation Index (SSCI), and their applications
to educational and psychological studies were substantially increased (Moeyaert et al., 2013a).
An increasing number of citations and applications of single-case research occurs because it has
contributed greatly to the evidence basis for a variety of practices (Kratochwill & Levin, 2010).
Single-case research could be classified as experimental or applied behavior analysis, and it has
been applied in various other educational and psychological disciplines. It seeks to establish
causal relationships between independent (intervention effect) and dependent variables (outcome
measures) with emphasis on understanding individuals’ behavior (Kratochwill, 1978;
Kratochwill & Levin, 1992). Rather than focusing on the average treatment effect, which is often
a primary focus in group comparison experimental design studies, single-case research focuses
on case-specific causal effects (Barlow, Nock & Hersen, 2009). In addition, single-case research
can be more easily implemented than group experimental design studies for situations where a
large number of participants are not available. For example, a researcher may be investigating a
low incidence or highly fragmented population, in which a large number of participants may not
exist or in which it is expensive to collect a large number of participants for group comparison
studies. Also, it is possible that the researcher may be working in an environment (e.g., school or

clinical practice) where the logistics and resources are limited. Under these constraints, it is
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easier to conduct a study with a small number of participants and examine the intervention
effects on a specific case. For these reasons, single-case research studies are sometimes more
flexible and feasible than large-group experimental design studies.

Although single-case studies have advantages in applied research settings, they also have
their limitations. A natural reaction to small N design studies would be questions of
generalizability. The interpretation of the results is not easily generalized to the larger population
because the study was designed to be case-specific. To address the generalizability issue in
single-case studies, researchers have tried to incorporate multiple approaches such as the
application of a multiple-baseline design, or replications of the studies. Meta-analysis can be
used to assess generalizability of single-case research design studies’ results across studies, and
to study moderating effects of case and study characteristics.

To examine the causal relationships between independent and dependent variables with
single-case research, it is necessary to measure the participant’s outcome variables from two
distinct phases; a) baseline phase, where outcome variables are measured before the treatment,
and b) treatment phase, where outcome variables are measured after the treatment. There are two
purposes of the baseline phase in single-case research design: a) observations in the baseline
phase provide prior knowledge about the participant’s performance and document a problem
level of behavior, and b) observations in the baseline phase establish the basis for which
predictions can be made for the participant’s behavior if the treatment had not been incorporated.
The treatment phase consists of a series of observations after the introduction of a treatment.
Simply comparing observations between the baseline and treatment phases from a participant

often makes the analysis of the effect of a treatment. Figure 1 illustrates typical single-case
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observations in baseline phase and treatment phases. They are distinguished by a vertical line

with the outcome variable on the y-axis and the time variable on the x-axis.
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Figure 1. Observations in baseline and treatment phases separated by a vertical line

Types of Single-case Research Designs

In single-case research design studies, several types of single-case research designs were
proposed previously, such as an AB design (or interrupted time-series design), a reversal (or
withdrawal design; e.g., ABA, ABAB, ABABAB, ABAC designs), and a multiple-baseline

design.

AB Design
AB design or interrupted time series (ITS) design is the most basic design in single-case
research. AB design consists two phases, phases A and B. Phase A is often referred to as a

baseline phase, consisting of a series of observations prior to treatment introduction. Phase B is
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referred to as treatment phase, consisting of a series of observations following treatment
introduction. Inference about the treatment effect, then, can be made by comparing the difference
of outcome variables between the baseline and treatment phases.

AB design is relatively simple and easy to implement because it does not require multiple
phases and multiple participants. However, researchers often raise a question about the internal
validity of AB design studies because outcome variables could be shifted by something other
than true treatment effect (e.g., an event that happened to occur around the time of the treatment;
Shadish, Cook, & Campbell, 2002). Suppose a researcher is interested in the effect of a newly
implemented learning program on a student’s academic performance, and an increase in student
academic performance was found after the implementation of the program. Then, it seems
natural for the researcher to conclude that the newly implemented learning program is effective
in increasing student academic performance. However, one may question if the increment of the
student’s academic performance may be due to other sources such as academic assistance from a
guardian or online learning program that occurs at the same time that the learning program

occurs. Therefore, the true effect of the treatment may not be solely observed using AB design.

Reversal Design

To increase the internal validity and conclusions about shifts in time-series data,
researchers proposed alternative designs, such as the reversal design. The reversal design is,
generally, considered an extension of AB design. One example of the reversal design is ABA
design, which increases the phase by withdrawing treatment. Baseline phase (A phase) is
additionally included followed by treatment phase (B phase) to observe the pattern of data in

which the effect in treatment phase is due to the introduction of treatment. Researchers, then,
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expect to observe a similar pattern of observations from the participants as the first baseline

phase. To illustrate, Figure 2 represents data using ABA design.
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Figure 2. Graphical representation of ABA design with phases separated by a vertical line

By extending more phases through withdrawing and reintroducing treatment, one could
have ABAB design. In ABAB design, the second treatment phase is reintroduced to expand the
opportunity for researchers to observe the same pattern as the first treatment phase. The
advantage of the reversal design is that the reversal design provides the opportunity to clear out
event effects in which the shift in outcome variables is caused by something other than the
treatment effect (Honor & Odom, 2014).

Although reversal design seems to be an alternative to traditional AB design, there are
some practical concerns regarding the reversal design. It is possible that, in some cases, the

treatment effect might be permanent or maintained after treatment is withdrawn. It often occurs
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in educational settings such as studies involving students’ learning. Once students have learned
from the treatment phase, it generally is not possible to remove what students learned by

withdrawing the treatment.

Multiple-Baseline Design

Another alternative in single-case research studies is multiple-baseline (MB) design.
Multiple-baseline is, perhaps, the most widely used design in single-case research (Honor &
Odom, 2014; Shadish & Sullivan, 2011). Meta-analysis of single-case research studies reported
that 79% of the single-case studies were conducted with some form of multiple baseline design
(Shadish & Sullivan, 2011).

MB design is an extension of the AB design that single-case researchers developed to
answer the question about internal validity with AB design. MB design extends the AB design
such that the baseline and treatment phases are established for either multiple participants,
multiple behaviors, or multiple settings. The treatment phases are staggered across time creating
different lengths of baseline phases across participants, behaviors, or settings. A graphical
representation of a multiple-baseline design with three participants is presented in Figure 3.
Similar to the AB design studies, in the MB studies, all participants’ observations are repeatedly
measured simultaneously to establish the baseline phases for each participant. Once baseline
phases are established for all participants, the first participant enters the treatment phase. While
the first participant is in the treatment phase, the other participants are still in the baseline phase.
A notable change in behavior is expected for the first participant in treatment phase, while the
other participants, who are still in baseline are expected to show stable observations in their

behaviors. Once sufficient observations are measured for the first participant to evaluate the

18



effect of the treatment, then the second participant enters the treatment phase while the other

participants remain in the baseline phase.
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Figure 3. Graphical representation of multiple-baseline design with three participants
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Entering the treatment phase at different time points creates the staggered implementation
across participants and this makes event effects less plausible, meaning that the change of
behavior was more likely due to the treatment effect rather than other event effects such as
history or maturation of the participants (Ferron & Scott, 2005). If the change of the participant’s
behavior was due to a history or maturation effect, then researchers would also expect to observe
the change in behavior at the same time for the other participants who are still in the baseline
phase. From the analysis perspective, MB design provides the opportunity to analyze the
treatment effect and its size of effect based on not only a within-participants (or within-series)
comparisons of treatment phase to baseline phase observations, but also a time-specific between-
participants (or between-series) comparison of observations from those that have started
treatment phase to those that are still in the baseline phase. In addition, MB design also provides
the opportunity for researchers to have multiple randomization options. For example, participants
can be randomly assigned to a predetermined intervention start time (Wampold & Worsham,
1986) or each participant’s intervention start time can be randomly assigned to the participants
(Marascuilo & Busk, 1988) or both (Koehler & Levin, 1998). These randomization options
increase the internal validity and scientific credibility of the single-case studies (Kratochwill &

Levin, 2010).

Analysis Methods of Single-Case Research
Two main streams of analysis methods for single-case research design studies were
developed: a) researchers may visually analyze the observations of participants, or b) researchers

may analyze the observations using statistical analysis approaches.
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Visual Analysis

In visual analysis, researchers visually inspect graphed data focusing on detecting the
treatment effect that can be obviously observed through the graphed data (Kazdin, 2011). Visual
analysis continues to be the primary method used in the analysis of single-case studies and has
been considered as a traditional analysis method because a) it associated with theoretical
paradigms of experimental and applied behavior analysis, including in professional journal
articles (e.g., the Journal of Applied Behavior Analysis [JABA], or the Journal of Experimental
Analysis of Behavior), b) multiple and complex factors are taken into account when visual
analysts inspect multiple graphs and c) it is an appropriate analysis method for clinical practice,
where emphasis on change in the behavior of an individual participant has been the focus
(Kratochwill, Hitchcock, Horner, Levine, Odom, Rindskopf & Shadish, 2013; Kratochwill,
Levin, Honer & Swoboda, 2014).

Although it is methodologically simple and has a long history with the applied behavior
analysis approach, visual analysis includes several limitations regarding scientific evidence. One
may have a question about Type | error control and statistical power of visual analysis.
Previously, studies have shown that visual analysis inflates the Type | error rates (Fisch, 2001,
Matyas & Greenwood, 1990). Alternatively, several methods including training, structured
criteria, and masked visual analysis have been suggested and those methods have shown
improvement of the accuracy of visual analyses (Ferron, & Jones; 2006; Ferron, Joo, & Levin,
2016; Fisher, Kelley & Lomas; 2003). Another limitation of visual analysis is that a quantified
effect size measure of treatment is not provided with which researchers could use to evaluate the

treatment. The primary purpose of an intervention study is to examine the effect of the
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intervention and how much the intervention affects participants’ behavior. Visual analysis may
provide whether there is an effect or not but it is limited to the information about how much of
an effect occurred. As a result, it is not possible for the results of a visual inspection to be
directly connected to quantitative synthesis. When researchers meta-analyze single-case research

studies, they rely on effect size measures of the studies (Kratochwill et al., 2014).

Nonparametric Statistics

Nonparametric statistics are, historically, used to evaluate the treatment effect in single-
case studies. In general, nonparametric statistical methods do not assume a theoretical
distribution (e.g., t or F) and as a result, several assumptions in parametric statistics (e.g.,
normality, equality of variances, and independence of observations) are not required to be
assumed (Ferron & Levin, 2014).

The most widely used nonparametric methods in single-case research are permutation
and randomization tests. In permutation tests, the test statistics from observed data are first
computed and then, the obtained test statistics are compared with an empirical distribution that is
formed by either a) all possible permutations of the dataset, or b) computing the test statistics
through the sampling with replacement (i.e., resampling method). If the single-case research
study included some type of random assignment, and the permutations are based on the possible
random assignments, then the permutation test is termed a randomization test (Edgington &
Onghena, 2007). Randomization tests are also advantageous because they enhance the internal
validity and statistical conclusion validity (Campbell & Stanley, 1963). A strong internal validity
leads researchers to conclude with confidence the casual inferences involving interventions and

outcomes. In addition, previous methodological research with randomization tests showed that if
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randomization tests are conducted with randomization design, Type | errors associated with
assessing intervention effect can be well controlled (Ferron, Foster-Johnson & Kromrey, 2003).
However, some concerns with permutation and randomization tests still exist, including
sensitivity of statistical power, heavy computational demands and feasibility of randomization
(Ferron & Levin, 2014). Previous studies showed that the statistical power of single-case
randomization tests varies across multiple factors, from unacceptably low to reasonably high.
These multiple factors include the types of single-case designs, randomization methods, amount
of data collected, degrees of autocorrelation, and effect sizes (e.g., Ferron & Onghena, 1996;
Ferron & Sentovich, 2002; Ferron & Ware, 1995). Also note that although randomization tests
provide a p-value for significance testing, the effect size measures are not estimable from the
randomization tests. The complexity of the randomization procedure is another drawback of
these nonparametric tests. Although some user-friendly applications for a standard permutation
test are available, most applications of true randomization tests to single-case studies require
specialized software or programming scripts. In addition, when the number of observations in
single-case data is large, randomization procedures may require heavy computations (Ferron &

Levin, 2014).

Non-overlap Statistics

Non-overlap statistics are also heavily-used statistical methods which can provide the
numerical or quantified size of a treatment effect. Non-overlap statistics were developed based
on the percent of non-overlapping data (Mastropieri & Scruggs, 1985). Various types of non-
overlap statistics were proposed and developed previously by a number of researchers in single-

case studies: a) percent non-overlapping data (PND; Scruggs, Mastropieri & Casto, 1987), b)
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percent exceeding median data (PEM; Ma, 2006), c) percent zero data (PZD; Scotti, Evans,
Meyer, & Walker, 1991), d) percentage of all non-overlapping data (PAND; Parker, Hagan-
Burke & Vannest, 2007), e) non-overlap of all pairs (NAP; Parker & Vannest, 2009) and f) Tau-
U (Parker, Vannest, Davis & Sauber, 2011).

Non-overlap statistics are appealing because a) they were developed without any
assumptions about the distribution of the data, so that they could provide robust statistics to
handle typical single-case data, and b) they are directly interpretable and appear to be accessible
enough for single-case researchers to use (Parker, Vannest & Davis, 2014). However, non-
overlapping statistics also include several limitations including ceiling effect, sensitivity to

outliers and the assumption of no trend in baseline and treatment (Parker & Vannest, 2009).

Single-level Regression Analysis

One of the parametric statistical analysis methods for single-case data is single-level
regression model (e.g., Gottman & Glass, 1978; Huitema & McKean, 2000; Maggin,
Swaminathan, Rogers, O’Keeffe, Sugai, & Horner, 2011). To estimate the treatment effect, each
participant’s observation is modeled by a dichotomized variable phase (e.g., phase = 0 if
observation is from baseline phase and phase = 1 if observation is from treatment phase) and the
estimated coefficient of the phase variable would provide the size of the treatment effect in the
model. Equation 1 represents the most basic form of the single-level regression model.

Y; = o+ By *phase +e;, e ~N(0,0?), (1)

where Y; is participant’s observations at i" time point, 3, is an average observations in baseline
phase and f; is an estimated shift in level from baseline to treatment phases (i.e., treatment

effect). Also, ¢; indicates the error term for the i time point observation and they are assumed to
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be normally distributed with zero mean and variance o2. Note that it is possible to model time
trend variable for the trend effect in baseline phase or treatment phase or both. Equation 2
represents the single-level regression model for the treatment effect, time trend effect in both
baseline and treatment phases.

Y; = Bo + P1 * phase + B, * time + B3 * (phase * time) + ¢; , e; ~ N(0, o) (2)
where, B, Is an average observations in baseline phase, j; is a treatment effect (i.e., the expected
difference between behavior in the treatment and baseline condition at time = 0), 3, is a trend
effect in baseline phase, and 5 is a trend effect (i.e., the difference in trends between treatment
and baseline phases). In general, assumptions of the single-level regression model include
independence of observations, homogeneity of variances between baseline and treatment phases,
and error terms are normally distributed with zero mean and variance 2. However, previous
studies examined and developed the more complex single-level regression models and indices
regarding the assumptions of variance. For example, generalized least square (GLS) regression
model was adapted to estimate the dependent and heterogeneous structures of residual variances
(Maggin, et al., 2011), and modified R-square indices were introduced to address the
autocorrelation structure in single-case data (Beretvas & Chung, 2008).

Single-level regression analysis is an adequate method because it has flexibility to model
not only linear time trend of the treatment effect but also quadratic growth curve or non-linear
growth curve. Another significant advantage of single-level regression analysis is that it allows
researchers to make an inference about the treatment and time trend effects. Although other
statistical analysis methods (e.g., non-overlap statistics) of single-case studies have several
advantages for estimating the treatment effect (e.g., relatively straightforward computation and

interpretation), they are limited if researchers desire to obtain statistical inferences including
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interval estimates or statistical significance tests because they are developed based on a series of
assumptions (e.g., independence and homogenous variances). Single-level regression analysis,
however, provides greater flexibility for researchers, in that they can estimate not only the size of
the effect but also test hypotheses and create confidence intervals under a variety of different
assumptions (e.g., independent versus autocorrelated, homogeneous versus heterogeneous).

Single-level regression is a well-suited analysis method for studies with AB or reversal
designs involving one participant. However, when multiple participants are involved in single-
case studies, such as MB design, replicated ABAB, or replicated alternating treatment design
studies, a single-level regression model for each participant might not be optimal if researchers
are interested in variability across participants as well as average treatment effects for the study.
To analyze the multiple-participant single-case studies, multilevel modeling has been suggested
as an analysis method (Rindskopf & Ferron, 2014; Shadish & Rindskopf, 2007; Van den

Noortgate & Onghena, 2003a, 2003b, 2007, 2008).

Multilevel Modeling

In educational and psychological research settings, multilevel modeling became popular
because it takes a nested structure of data into account. Multilevel models are specifically
developed for analyzing hierarchical structure data where lower-level units are nested in higher-
level units. These hierarchical structure data are often found in behavioral and social science
studies. For example, in educational settings, students are nested in teachers and teachers are
nested in schools. Similarly, MB studies can be considered as hierarchical structure such that
observations are repeatedly measured over time within a participant and multiple participants are

involved in a study.
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Analyzing MB studies with multilevel modeling includes various advantages over the
multiple single-level modeling approach. For example, multilevel modeling provides not only
individual participants’ treatment effect estimates, but also the average treatment effect estimate
across participants. Multilevel modeling further provides the inference about the average
treatment effect estimate as well. Another advantage of using multilevel modeling for MB
studies is that researchers could obtain the average variance estimates for within individual
participants’ observations as well as between participants’ observations.

Using multilevel modeling for MB studies also includes limitations. For example,
accurate parameter estimates and inferences can be obtained when several assumptions are
satisfied. The assumptions include homogeneous variance across two phases (baseline and
treatment), homogeneous variance across multiple participants, normality of observations, and

correct specification of the fixed effect parameters and random components in the model.

Within-Series Model

The within-series model is a type of multilevel models, which estimates the treatment
effect using series of within-participants’ observations in MB studies. In typical MB studies,
multiple observations are measured within a participant and multiple participants are included in
the study. This hierarchical structure can be analyzed with two-level multilevel modeling. That is,
participants’ observations or measurement occasions are considered as first-level units, and
participants are considered as second-level units. To illustrate the variability within and between
participants, a simple form of multilevel model, where a treatment effect is used as a predictor in
level-1, is described in Equations 3.1-3.3. Equation 3.1 describes participants’ measurement

occasions for the baseline and treatment phases, respectively, along with the average variation
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within participants. Equations 3.2 and 3.3 describe the variation across participants for the
predictors in Equation 3.1. Similar to the single-level regression model, a predictor Phase is
included as a dichotomous variable separating baseline (Phase = 0) and treatment (Phase = 1)
phases. The equation for level-1 is described as follows:
Yij = Boj + B1jPhase;; + e;j e;;~N(0, 0?) (3.1)
Y;;is i™ time point measurement occasion for j™ participant and Boj and B, ; are the intercept and
slope effects in the model. Note that coefficients ,; and j, ; are allowed to vary across
participants and will be described in level-2 equations. Because the Phase variable separates the
baseline and treatment phases, baseline observations are modeled by S, ; with random error e;;
and treatment observations modeled by S,; plus f;; with random error e;;. That is, the
observations in the treatment phase are expected be either higher or lower than those in the
baseline phase by f;; and it is considered as the treatment effect for j™ participant. The random
error e;; is generally assumed to be independent for each observation and homogeneous across
phases. It is also assumed that random errors, e;; are normally distributed with variance, 2.
For the level-2 equations, the variation of both coefficients f,; and 3, ; across

participants is described as follows:

Boj = Yoo T+ Uo;j (3.2)

Bij = V1o + W (3.3)
Yoo and y,, are intercept and u,; and u, ; are error terms for the model, respectively. From
Equations 3.2 and 3.3, baseline observations f,; for j™ participant is divided into expected value
Yoo Plus its randomness u,;. Similarly, the treatment effect 3, ; for j™ participant is translated

into some constant y4, plus its randomness u; ;. Note that y,, is the average baseline observation
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across participants and yo + y10 IS the average treatment observation across participants, so that
Y10 IS the average amount of shift in level from baseline to treatment phases across participants
(i.e., treatment effect). The randomness u,; represents the amount of variation between
participants for the average baseline observation and u, ; represents the amount of variation
between participants for the treatment effect. Error structure in level-2 is expressed in matrix
form because error terms for intercept and slope are allowed to be correlated. That is, u,; and

uy ; are distributed as multivariate normal distribution with zero-vector mean and 2 by 2
variance-covariance matrix Z,,.

u~ MVN(0,%,)
Too To1), . . . .. . .
where, X,, = (Tw T11) with 7y, = T419. Too IS Variance across participants in the baseline means,

7,1 IS treatment effect variance across participants, and t, is covariance between baseline level
variation and treatment effect variation across participants. It is also possible to constrain the
covariance parameters t,; and t,, equal to zero, in other words, X,, = diag(zyo, 711)- Note that
this constraint indicates that the baseline intercept and treatment effects are assumed to be
independent for each participant. Combining level-1 and 2 equations results in the final
multilevel model described as follows.
Yij = Yoo + Y1ioPhase;; + uy; + us jPhase;; +e;j,  e;j~N(0, o?) 4)

Note that y,, and y,, are called fixed effects and 4, 791, 711, and a2 are called random
components of the model.

Parameters in multilevel modeling can be extended depending on model predictors.
Similar to a single-level regression model, it is possible to include additional predictor variables
at different levels of the model. To evaluate the trend effects in both baseline and treatment

phases, a time variable (Time) and its product with the treatment variable (Time*Phase) can be
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included as predictors in the level-1 equation. Regardless of how time is measured, the Time
variable is often centered for each participant where Time = 0 at the time at which the researcher
wants to estimate the treatment effect. The extended equation is described as follows:

Yij = Boj + B1jPhase;; + B,;Time;; + B3;(Time;; x Phase;;) + e;;, e;;~ N(0, a?) (5)
where, B, ; is intercept, B, ; is the time specific treatment effect, 5, is the trend in the baseline
phase and f35; is the change in trend between the treatment and baseline phase for the i
participant. Since coefficients S,;, B, B2; and B3; are random across participants and allowed

to be correlated, further equations can be expressed as follows.

Boj = Yoo T Ug;j (6.1)
Bij = V1o + W (6.2)
B2j = V20 t+ Uyj (6.3)
P3j = V30 + Us;j (6.4)

Where, ¥o0, Y10, Y20 Y30 are average values for gy, 1, B2; and B3;, and uyj, uyj, up; and us;
are error terms, respectively. Similar to the previous multilevel model, y, is average baseline
observation, y;, is average treatment effect, y, is average trend in baseline and y5, is the across
participant average change in trend between treatment and baseline phases. Furthermore, u;,

Uy j, U and ug; are variations for each effect across participants. They are assumed to be
multivariate normal distribution with zero-vector mean and 4 by 4 variance-covariance matrix X,

where,

Too To1 To2 To3

y = Tio T11 T12 Ti13
u Tyo T21 T2 T23
T30 T31 T32 133
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Note that 7;; = 7;; for i #j and 74, 711, T2, and 733 are variances for baseline observations,
treatment effects baseline trends, and trend changes, respectively. Off-diagonal elements of X,,
are covariance between effects described above. If fixed effects of the model are assumed to be
independent then, variance-covariance matrix becomes X,, = diag(tyo, 711, T22, T33)- Combining
level-1 and 2 equations results the final multilevel model as described as follows.
Yij = Yoo + Y1ioPhase;; + vz Time;; + y3o(Time;; * Phase;;)

+uyj + usjPhase;; + uyjTime;; + us; (Timel-j * Phaseij) +eij, e;j~N(O,a?) (7)
Note that ¥0, Y10, ¥20 and ys, are fixed effects and 7;; and o are random components of the
model.

Van den Noortgate and Onghena (2003a, 2003b) demonstrated the use of a two-level
model as described above, and noted that if data from several of such single-case studies are
combined, a three-level model is recommended to model variability in scores at each of three
levels: scores may vary over measurement occasions within participants (level-1), between
participants from the same study (level-2) and between studies (level-3). This meta-analytic
three-level modeling approach was, recently, investigated to examine the efficacy of the use of
the multilevel modeling approach for synthesizing single-case data (Moeyaert, et al., 2013a,
2013b, 2014).

With within-series multilevel modeling, it is possible to include dependent level-1 error
structures in the model. A variety of alternative error structures have been suggested for handling
the level-1 error dependency in MB studies (Baek & Ferron, 2013; Petit-Bois, 2014) including
first-order autoregressive models, AR(1), higher-order autoregressive models, first-order moving
average models, MA(1), and autoregressive moving average (ARMA) models. Simulation

studies have found that estimation of the treatment effect is unbiased and inferences are
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relatively robust to misspecification of the correlation structure of the level-1 residuals (Petit-
Bois, 2014; Petit-Bois, Baek, VVan den Noortgate, Beretvas, & Ferron, 2016). In addition, it is
also possible to include a heterogeneous level-1 error structure in the model. Past simulation
studies also supported the viability of estimating separate variances for the baseline and
treatment phases when the treatment alters the variance (Bunuan, Hembry, & Beretvas, 2013;
Joo & Ferron, 2016). Also, modeling heterogeneous variance across participants has been

investigated (Baek & Ferron, 2013) for the within-series model.

Between-Series Model

Ferron et al. (2014) proposed the between-series model as an alternative modeling
approach to estimate the treatment effect in MB studies. To illustrate the data used in the
between-series model, Figure 4 provides a graphical representation of the simulated data with the
four participants in the between-series model. As Figure 4 shows, the observations in the
enclosed vertical boxes are used to make comparison between baseline and treatment phases.
Dichotomous variable D;; can be created such that D;; = 0, if the i™ observation for j™ participant
is not in the enclosed box and D;; = 1, otherwise. This allows separating observations that are
used for the within-series model and observations that are used for the between-series model.
The subset of observations for the between-series model is purposely selected based on the time
points where one observation is undergoing the treatment phase whereas the other observations
are still in the baseline phase. In Figure 4, there are four different time points that participants are
entering the treatment phases and to make comparison of baseline and treatment phases, the
observations following the first 3 time points were used (see the three pairs of enclosed boxes in

Figure 4). Also note that, from the second pair of vertical boxes, the observations have been
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more than 3 time points after the treatment starts is not included. This is because those
observations may include the time trend effect as well as immediate level effect (Ferron et al.

2014).
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Figure 4. Graphical representation of the data points for the between-series model
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The between-series model also uses a series of dichotomously coded variables (Py;;, P;j,
.. Prij)- Pij is coded 1 if an i observation for j™ participant is at the k™ vertical enclosed box
and P, = 0, otherwise. Similar to the within-series model, Phase variable is also specified as
dummy variable in the between-series model (e.g., 0 = baseline, 1 = treatment) so that interaction
term (P, * Phase) can separate observations for the baseline phase, and observations for the
treatment phase. In sum, the between-series model equation can be expressed as follows.

Yij = XK1 (BiPuij + Br+iPrijPhase;;) + e;; (8)

Note that coefficient Sk, is the treatment effect estimate after the first participant entered the
treatment phase, while the other participants still stay in the baseline phase. Similarly, Sk, is
the between-series treatment effect estimate after the second participant entered the treatment
phase, while the other participants are in the baseline phase. The between-series model in
Equation 8 individually estimates the treatment effect for each k™ time point. To estimate a
single quantity of the treatment effect averaging across the k time points (i.e., pooled estimate),
Equation 8 can be modified to have a common between-series effect.

Y;j = XK1(BiPris) + Br+1PrijPhase;; + ey, ©)
where Sk, IS the pooled treatment effect estimate across participants. Because of the possibility
of time trend effect, baseline observations for each k™ time point are still separately estimated.
The error term, e;;, in the between-series model represents the combined variabilities for the
observations within a participant and between participants. Similar to the within-series model, it
is also possible to model various error structures. If researchers assume homogeneous variance
across baseline and treatment phases and across k™ time points, then single variance would be

modeled [i.e., Var(e;;) = a?]. If researchers assume heterogeneous variances across two phases,

then distinct variances would be modeled [i.e., Var(e;jm)) = a2, where m represents phases] and
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if researchers assume heterogeneous variances across k™ time points, then multiple variances
would be modeled [i.e., Var(e; ;) = a2, where k represents k™ time point for each enclosed
box].

The motivations behind the development of the between-series model are twofold: a) it
may not be easily assumed that the time trend in the model is of a specific form (e.qg., linear) and
b) to avoid bias of the treatment effect which can be caused by effects of factors other than the
treatment (Ferron et al., 2014). Previously, to model non-linear trajectories in outcome variables,
researchers examined various functional forms of within-series models to fit the data best. For
example, when outcome variables reach an asymptotic line at the end of the treatment phase,
then the growth in the treatment phase can be modeled as a logistic function (Hembry, Bunuan,
Beretvas, Ferron & Van den Noortgate, 2014). When the outcome is a count or a rate, then it was
suggested that the log function would be appropriate for a non-linear trajectory in multilevel
modeling (Shadish et al., 2013; Shadish & Rindskopf, 2007; Shadish, Rindskopf & Hedges,
2008). However, these alternative modeling approaches make sense only when researchers
correctly specify the model. Unfortunately, in practical research settings, researchers rarely know
the correct model with any confidence. The between-series model can help solve this problem
without assuming any functional forms of the model. In addition, when series of observations are
analyzed within a participant (i.e., within-series model), the estimated treatment effect can be
biased if an event effect is present. The between-series model, however, provides stronger
evidence that the changes of participants’ observations are due to the treatment effect not to
some event effect other than the treatment, by comparing those participants in treatment to those
still in baseline (Ferron et al., 2014). A simulation study found that the within-series model

outperformed the between-series model when assumptions are satisfied but the between-series
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model produced less biased average treatment effects than the within-series model for the

conditions where the model is misspecified or event effects are included (Ferron et al., 2014).

ReML Estimation and Inference

Parameters of the within- and between-series models are generally estimated with either
maximum likelihood (ML) or restricted maximum likelihood (ReML) estimation. ML estimates
both fixed effects and random components of the model simultaneously whereas ReML
estimates fixed effects while restricting random components of the model during the estimation
procedure. Both ML and ReML are iterative procedures to find the estimates, which maximize
the likelihood function of the model (Raudenbush & Bryk, 2002). Previous research that
investigated the efficacy of ML and ReML reported that ReML produced more accurate fixed
effect estimates than ML and with as few as 6 level-2 units, and the variance components of
ReML were estimated with better precision than ML (Browne & Draper, 2000). Also, Browne
and Draper (2000) further noted that as the number of level-2 samples increase, both ML and
ReML produce reasonable variance component estimates. With regards to statistical inference of
the estimates, it was found that standard errors are more accurately estimated with ReML than
ML, but still a sufficient number of level-2 units is required to obtain reliable inferences (Maas
& Hox, 2004; van der Leeden & Busing, 1994).

Small sample size, especially for level-2 units, is problematic because both ML and
ReML were developed based on large-sample theory. As previous research has shown, the
recommended sample size for the level-2 unit is at least 30 to obtain unbiased parameter
estimates and reliable inferences (Hox, 1998, Maas & Hox, 2004). More specifically, when the

level-2 sample size is relatively small (less than 30), the fixed effects of the model are estimated
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with no biases, but the variance component estimates are severely biased (Raudenbush & Bryk,
2002). Previous simulation studies also support that substantial bias in the estimates of the
variance component when level-2 sample size is less than 30 (Bell, Morgan, Schoeneberger,
Kromrey, & Ferron, 2012). Furthermore, statistical inferences for the fixed effects, including the
confidence interval and statistical power, would be inaccurate because standard errors of the
estimates are underestimated (Mass & Hox, 2004).

In general, it is not common for MB studies to have a large number of participants (i.e.,
level-2 unit). In fact, very few research studies would involve 30 or more participants in a single
MB study (e.g., Koutsoftas, Harmon & Gray, 2009). Thus, to obtain more reliable statistical
inferences for the treatment effect estimate using multilevel modeling, it is necessary to

incorporate a small sample size adjustment.

Kenward-Roger Degrees of Freedom Adjustment

In the past multilevel modeling with MB studies, various small sample size adjustment
methods were introduced to obtain more reliable statistical inferences for the fixed effect
estimates. For example, Ferron et al. (2009) compared several small sample size adjustment
methods for multilevel modeling in the context of MB studies. They considered five adjustment
methods; containment, residual, between-within, Satterthwaite (Satterthwaite, 1946), and
Kenward-Roger (Kenward & Roger, 1997). These small sample size adjustments are
distinguished from one another in terms of how they compute degrees of freedom for the fixed
effects. Relatively simple methods, residual and containment, compute the degrees of freedom as

follows:

dfcontainment =Ny (nl - p) (10)
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Afresiduar = N2y — 1 (11)
where n, is the number of level-2 unit, n, is the number of level-1 unit and p is the number of
fixed effect parameters in the model. The between-within degrees of freedom method, in general,
partitions the residual degrees of freedom into between- and within-participant portions.
However, in multilevel modeling with MB studies, all of the residual degrees of freedom are
given to the within-participants so that the between-within method is essentially the same as the
residual method (Ferron et al., 2009, 2010). These simple computations for the degrees of
freedom tend to be overestimated when a more complex variance structure is used, thereby
inferences about the estimates would be unreliable. On the contrary, the Satterthwaite and
Kenward-Roger methods approximate the degrees of freedom in accordance with the complex
variance structure of the observed data. The degrees of freedom approximation using the

Satterthwaite method is given as follows.

__\2
dF. o Z(C’ZEC) (12)
Satterthwaite [var(c’f:c)]’

B
where c is defined as ¢’ = 0 and E% is estimated variance-covariance matrix of 3, defined as
55 = (XV‘lX’)_l, where 7~ is inverse variance-covariance matrix and X is design matrix of

the fixed effects. The Kenward-Roger method is an extension of the Satterthwaite method. In the
Satterthwaite method, the degrees of freedom approximation is adjusted for a small sample size

bias (Ferron et al., 2009, 2010). The small sample bias adjustment is made by replacing f§ with

adjusted Z/E\*, where Z};* is a bias-adjusted estimator of the precision of § (Kenward & Roger,

1997).
Ferron et al. (2009) showed that the Kenward-Roger and Satterwaite methods for

estimating degrees of freedom are preferable to any other method when the within-series
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multilevel model was used for MB studies. Although a relatively small number of participants
was used, the Kenward-Roger method produced the unbiased treatment effect estimates and their
confidence intervals were close to the nominal level (alpha = .05). Mean square error estimates
for the treatment effect were also reasonable across conditions as well. In addition, Bell et al.,
(2012) also found that unbiased fixed effect estimates and accurate Type | error rates using the
Kenward-Roger method when sample size was as low as 10.

However, note that variance components in multilevel modeling are still problematic with
small sample size because the Kenward-Roger method does not apply for the variance
component estimates. Substantial biases in the variance component estimates are consistently
found in previous research with small sample size (Bell et al., 2012; Clarke & Wheaton, 2007,

Ferron et al., 2009; Moeyaert et al., 2013a, 2013b).

Violation of Normality Assumption for MB Studies

In addition to the estimation being based on large sample size or asymptotic theory, a
critical assumption associated with multilevel modeling estimation, is normality of the data (Hox
et al., 2010; Raudenbush & Bryk, 2002). Normality is generally defined as whether the
theoretical distribution where residuals are assumed to be drawn from is a “bell-shaped” curve
(Cohen, Cohen, West, & Aiken, 2003). The levels of normality can be measured by two well-
known moment statistics: skewness and kurtosis. Skewness indicates a lack of symmetry in
a distribution. Data from a right-skewed (skewed to the right) distribution have values that are
bunched together below the mean, but have a long tail above the mean. Similarly, data from a
negatively skewed (skewed to the left) distribution have values that are bunched together above

the mean, but have a long tail below the mean. On the other hand, kurtosis is a measure of the
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heaviness of the tails in a distribution, relative to the normal distribution. A distribution with
positive kurtosis (leptokurtic) is light-tailed relative to the normal distribution, while a
distribution with negative kurtosis (platykurtic) is heavy-tailed relative to the normal distribution.

This normality assumption is critical for multilevel modeling because both ML and
ReML are developed in accordance with the assumption of normality (Eliason, 1993). Strictly
speaking, although the residual errors are not normally distributed, the parameter estimates from
ML or ReML are still consistent and asymptotically unbiased. However, the asymptotic standard
errors are incorrect and the corresponding statistical inferences are not trustworthy. Furthermore,
these problematic consequences are not completely vanquished even if a larger sample size is
provided (Goldstein, 1995; Maas & Hox, 2004).

Previous meta-analyses have shown that normality assumption is not always satisfied in
MB studies (e.g., Parker, 2006; Shadish, 2014; Shadish & Sullivan, 2011; Smith, 2012, Solomon,
2014). For example, Parker (2006) investigated the normality of single-case data where 166
published data sets were analyzed with the Shapiro-Wilk test (Shapiro & Wilk, 1965). Results
indicated that a full 51% (N = 85) of these 166 data sets failed to meet the normality assumption
(Parker, 2006). In addition, a meta-analysis of school-based single-case studies reported that the
skewness of analyzed study observations ranged from .46 to 2.89 and the corresponding kurtosis
ranged from .49 to 1.57 (Solomon, 2014).

Non-normal data may occur in MB studies due to various reasons. Non-normality can be
observed if the scales of measurement are not continuous variables including counts, proportions
or percentages. In MB studies, scales of measurement vary from study to study depending on the
researchers’ interest. For example, if a researcher is interested in the play behavior of toddlers

with disabilities, then a count of play actions could be the target outcome variable (DiCarlo &
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Reid, 2004). If a researcher is interested in the academic and social participation of students with
disabilities during multiple sessions or trials, then the proportion of students’ initiations of social
interactions with the teacher or other students could be the target outcome variable (Hunt, Soto,
Maier & Doering, 2003). Although the measurement scales are continuous, the distribution may
be still non-normal if the participant’s measurement occasions included ceiling/floor effects or
outliers (Hox et al., 2010; Langford & Lewis, 1998). In MB studies, ceiling/floor effects or
outliers may occur due to either a momentary or temporary event effect. For example, a
momentary event effect occurs if a participant of an intervention study experiences a personal
problem at home at a certain time point and the observed outcome at the next time point is
influenced by the event effect, either positively or negatively (Ferron et al., 2014).

If non-normality in MB studies were observed, one could use generalized linear (mixed)
models assuming either Poisson or binomial distributions as underlying population distributions
to fit the non-normal scale observations (Shadish, 2014). However, this approach includes some
limitations. For example, fitting more complex models can increase the complexity of the
estimation which can create problems with small sample sizes (Shadish, Kyse, & Rindskopf,
2013). In addition, in practical situations, the researcher may not know the correct underlying
population distribution with any confidence (Shadish, Zuur, & Sullivan, 2014). Lastly, if MB
studies were meta-analyzed, it is more challenging to put different scales of effect size measures
on the same metric across studies.

Alternatively, one could use multilevel models assuming robustness of the models to the
violation the normality assumption. It may not be an ideal approach if severe violation of
normality led to an inaccurate interpretation of the results. However, up to date, the information

regarding the robustness of multilevel models is limited and no guidelines or recommendations
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with respect to skewness and kurtosis of MB data are provided. Thus, it is important to
investigate the degree to which violation of normality assumption in MB studies can be handled
with multilevel models. In addition, given that non-normal MB data is a potential threat and
could possibly lead to inaccurate statistical inferences, it is important to investigate an alternative
modeling methods, which may be robust to non-normal MB data. From a practical perspective,
comparing traditional and alternative modeling methods can provide better insight and practical

solutions for applied researchers about how to deal with a violation of the normality assumption.

Bayesian Estimation and Inference

One alternative approach for handling non-normal data in multilevel modeling is
Bayesian estimation (Gelman, Carlin, Stern & Rubin, 2014). The Bayesian approach
conceptually and methodologically differs from likelihood-based estimation methods. In
Bayesian modeling, researchers can specify prior knowledge about the model parameter and this
prior knowledge is often expressed as a probability distribution, also known as prior distribution.
For example, in multilevel modeling, prior distribution can be specified for each fixed effect
coefficient and variance component in the model before the parameter estimation. In general, the
prior distribution is determined based on a researcher’s belief or prior knowledge and it could
significantly affect the precision and inference of the parameter estimate. This significantly-
influencing prior distribution is generally called an informative prior distribution. If a researcher
does not have any prior knowledge of the model parameter, then a “non-informative” or flat
distribution should be specified as the prior distribution. This is also called a non-informative
prior distribution. Either an informative or non-informative prior distribution is combined with

the likelihood probability of the model to create the posterior distribution, which is a distribution
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of the product of prior and likelihood probabilities for the model parameter. Unlike classical
statistics, the Bayesian perspective considers a model parameter as a random variable rather than
a fixed parameter so that parameter possesses its own probability density function. The posterior
distribution represents the probability density function for the model parameter and it can be
comparable to the concept of a sampling distribution in classical statistics. The model parameter
estimate can, then, be obtained from simply taking either the expected value of the posterior
distribution (i.e., Expected a Posteriori [EAP] estimate) or mode of the posterior distribution (i.e.,
Maximum a Posteriori [MAP] estimate).

Bayesian estimation has several advantages over likelihood-based estimation. First, the
Bayesian method does not require a large sample size to obtain an accurate parameter estimate.
Bayesian estimation often works well when the sample size is relatively small because it takes
advantage of the prior distribution on the parameter of interest (Gelman et al., 2014). For
example, if a researcher has a basic idea such as the possible minimum or maximum values for
the parameter based on previous studies, then putting the prior distribution that contains the
certain minimum and maximum values would prevent an estimation of the extreme values
beyond these boundaries from occurring. In multilevel modeling, when the variance components
are estimated, it is generally known that variances cannot be below zero, thus, the appropriate
prior distribution would be a positive-valued distribution such as an inverse gamma distribution
or an inverse chi-square distribution (Gelman, 2006). Previous simulation studies also have
shown that using Bayesian estimation with an appropriate prior distribution produced reasonable
fixed effect and variance component estimates with relatively smaller sample sizes than ML (e.qg.,

Browne & Draper, 2000, 2006; Browne et al., 2002).
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Another advantage of Bayesian estimation is the relative ease of the computational
procedure. In principle, the likelihood-based estimation methods require the analytic form of the
first- and second-order partial derivatives with respect to parameters of the model to obtain the
parameter estimates and their standard errors. For example, in multilevel modeling, the standard
error estimate is obtained from an inverse of Hessian matrix, which requires the second
derivative of the likelihood function (i.e., Fisher Information). The derivative forms often get
extremely complicated when the fitting model includes a large number of parameters. In addition,
likelihood-based methods use an iterative procedure, which may cause a convergence problem
when complex models are fitted. On the contrary, Bayesian estimation does not require a
complex analytic form of a derivative function to obtain the parameter and standard error
estimates. Rather, the Bayesian approach uses a sampling method, also known as Markov chain
Monte Carlo (MCMC). Thus, the posterior distribution of parameter can be obtained using
MCMC sampling from a product of prior distribution and likelihood function. This MCMC
sampling allows researchers to take a sample of any size from the posterior distribution of the
parameters of the model. The MCMC sampling method makes it easy to estimate any function of
parameters even though a large number of parameters are involved in the model (only the
sampling time gets longer). Note that there are a number of MCMC sampling methods proposed
in the statistical literature. Gibbs sampling and Metropolis-Hastings (MH) sampling methods are
the most commonly used algorithms in the applied literature (e.g., Spiegelhalter, Thomas, Best,
Gilks, & Lunn, 2003). Generally speaking, Gibbs sampling draws samples from joint
probabilities of prior and likelihood distributions to create posterior distribution of a parameter
with the assumption that other parameters are unknown. This drawing procedure continues

sequentially for all the parameters until the number of iterations reaches the maximum. MH
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sampling, however, has the ability to draw samples from an arbitrary functional form of a
distribution with an unknown scale so that it can compare the probability of the drawn sample
with the joint probabilities of prior and likelihood distributions to decide whether the sample is
accepted or not. Theoretically, both sampling algorithms asymptotically create the posterior
density distribution of a parameter when the sampling algorithm shows convergence (Gelman et
al., 2014).

Bayesian inference of the parameter estimates is also an advantage of using Bayesian
estimation. In classical statistics, statistical inferences such as the p-value or confidence interval
are often computed from the theoretical sampling distribution. The sampling distribution for a
parameter, however, is based on the repetition of samples of a fixed quantity and the probability
interpretation for the fixed quantity is not exactly the same as the probability interpretation for a
parameter, which is assumed to have its own probability distribution (Rindskopf, 2014;
Swaminathan, Rogers, & Hornor, 2014). The probability statement for the parameter makes
more sense when the parameter is considered as a random variable rather than a fixed parameter.
In Bayesian statistics, statistical inference is made in accordance with the posterior distribution,
which is considered as the probability of the parameter (Gelman et al., 2014). Note that, again,
the debate between classical and Bayesian perspectives is not a primary focus of this study so a
detailed argument is not be further discussed. Instead, the literature review is focus more on
current literature for Bayesian estimation and its implementation to single-case data multilevel
modeling.

Lastly, a number of statistical software programs have been developed for Bayesian
estimation and are available for applied researchers, such as WinBUGS, SAS PROC MCMC,

JAGS, MLwiN, Mplus and R package MCMCglmm. These software programs are flexible
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enough to fit a wide variety of statistical models including single- or multi-level models, linear or
non-linear models (i.e., generalized linear models), and homogeneous or heterogeneous
variances models. Several methodological studies also have demonstrated how to conduct
Bayesian analysis with more complex statistical models, providing the program codes, output
results from the analysis, and their interpretation. For example, Rindskopf (2014) provided
illustrations of Bayesian data analysis for single-case data using linear and non-linear models. He
demonstrated the empirical data analysis using the software program WinBUGS and provided
the relevant codes, output of the results, and a detailed interpretation of the results. In addition,
Swaminathan et al. (2014) illustrated Bayesian analysis for an effect size measure for single-case
data. They also used the software program WinBUGS and provided the code with detailed

explanations.

Bayesian Modeling and MB Studies

Over the last decade, Bayesian method has been exclusively integrated with multilevel
modeling (e.g., Brown & Draper, 2000, 2006; Browne et al., 2002; Baldwin & Fellingham, 2013)
and applied in the context of single-case research (e.g., Baek, 2015; Rindskopf, 2014, de Vries,
& Morey, 2013; Shadish, et al., 2013; Swaminathan et al., 2014). For example, Rindskopf (2014)
argued that Bayesian multilevel modeling has a number of advantages over likelihood-based
estimations in analysis of data from studies such as MB studies because: a) it is more suitable for
analyzing studies with small sample sizes, b) it is more interpretable than the results from
classical statistics, and c) when a parameter is estimated, it takes into account the uncertainty
about all other parameters so that larger standard errors accurately reflect the totality of the

uncertainty about the model parameters. Previous simulation studies have also shown its
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effectiveness in multilevel modeling. Studies found that fixed effects were well-estimated with
small sample sizes and inferences were reasonably accurate (e.g., Baldwin & Fellingham, 2013,
Baek, Petit-Bois, & Ferron, 2014). For example, Baldwin and Fellingham (2013) found that the
treatment effect estimate was unbiased when the level-2 sample size was as few as 8, and the
corresponding coverage rate was equally accurate as ReML using Kenward-Roger adjustment.
However, similar to ReML, the variance component estimates were still substantially biased and
inferences were not accurately estimated (Baldwin & Fellingham, 2013). Furthermore, previous
studies compared estimation accuracies of traditional likelihood-based estimations (ML and
ReML) and Bayesian estimations incorporating different types of the prior distributions for the
within-series multilevel modeling of MB studies. They found that both likelihood-based and
Bayesian estimations recovered the treatment effect estimates without biases and confidence
interval coverages were close to the nominal level (e.g., Moeyaert et al., 2016). However, note
that previous Bayesian modeling of MB studies were mainly focused on the within-series model
and as yet, Bayesian estimation efficacy for the between-series model has not been investigated.
Bayesian estimation also has been implemented to accommodate many possible
complications in multilevel modeling with MB studies, previously. For example, Baek (2015)
investigated multilevel modeling with the heterogeneous variances across participants, and the
convergence issue occurred when the complex model was fitted with ReML. The convergence
issue was then resolved when Bayesian estimation was implemented by specifying the prior
distribution to each variance component of the model (Baek, 2015). Moreover, Gelman et al.,
(2014) and Rindskopf (2014) suggested that if the dependent variables are not normally
distributed due to outliers or different underlying distributions, then specifying a thicker-tailed

prior distribution can accommodate the complex situation. However, up to date, no research has
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examined the efficacy of Bayesian modeling for non-normal MB data. Also, studies have not
been conducted that compare of ReML and Bayesian estimation for both within- and between-
series models under the violation of normality assumptions. To fill this gap, the current study is
aimed to investigate the efficacy of alternative Bayesian modeling for non-normal data in MB
studies. A detailed description of Bayesian modeling such as the prior specification for the model,
initial values, number of iterations, convergence criteria and related statistical software programs

are further discussed in the next chapter.

Summary

A single-case study is a type of experimental study used to investigate the effect of an
intervention or treatment for case-specific observations. The most popular design in single-case
studies is the multiple-baseline (MB) design (Shadish & Sullivan, 2008). MB design studies are
particularly different from other group experimental studies since a relatively small number of
participants is involved in a study. Also, an MB study has stronger internal and external validity
than a basic AB design in single-case studies because it allows researchers to examine the
treatment effect comparing not only within-participants’ observations from baseline phase to
treatment phase but also between-participants’ observations at certain time points. Several
statistical methods were proposed to analyze the treatment effect in MB studies and two
statistical models were recently proposed for analyzing MB studies: within-series and between-
series models. Previous research has shown that the within-series model outperforms the
between-series model when assumptions are satisfied. When assumptions are violated due to
event effects or model misspecification, the between-series model produced less biased estimates

of the treatment effect than the within-series model (Ferron et al., 2014). However, the
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robustness of the within- and between-series models for non-normality still remained
questionable and little research has investigated this issue. Given that meta-analyses reported that
data from single-case studies, including MB studies, tend to be non-normal due to the scales of
measurement, ceiling/floor effects, or outliers, it is worthwhile to compare various modeling
approaches under violation of the normality assumption. Therefore, the purpose of this study is
to investigate the robustness of various models for MB studies when the normality assumption is
violated. This study includes Bayesian estimation and inference as an alternative approach
because in theory it has several advantages over maximum likelihood estimation with respect to

non-normality.
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CHAPTER THREE: METHODS

The methods section describes simulation design, data generation, fitting models, and

dependent variables of the simulation study.

Simulation Design

A Monte Carlo study was conducted to empirically address the issues of violation of the
normality assumption in MB studies. The simulation design included three design factors
(number of measurement occasions, number of participants and population treatment effects) and
non-normality factors (skewness and kurtosis). The three design factors were varied with a) the
number of measurement occasions having values of 10, 20, and 40, b) the number of participants
having values of 4, and 8, and c) population treatment effect value having values of 0 and 1. Two
non-normality factors were varied with a) skewness of the level-1 residuals having values of 0, 1,
2, and 3 and b) kurtosis of the level-1 residuals having values of -1, 0, 1, 2, and 4. Crossing all
the simulation design factors resulted in a total of 3 (the number of measurement occasions) x 2
(the number of participants) x 2 (population treatment effects) x 4 (the level of skewness) x 5
(the level of kurtosis) = 240 simulation conditions. For each condition, 3000 data sets were
generated. The number of replications was chosen based on the previous simulation studies with
single-case studies (e.g., Ferron et al., 2009, 2010). The replicated data were, then, analyzed with
4 different approaches (Models 1 - 4 as described above). The parameters of the within- and

between-series models were estimated using ReML estimation with Kenward-Roger adjustment
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(Models 1 and 2) and Bayesian estimation (Models 3 and 4). Data generation procedure was
conducted using SAS/IML program (SAS Institute, 2014). ReML with Kenward-Roger
estimation was accomplished using the SAS MIXED Procedure and Bayesian estimation was

accomplished using the SAS MCMC Procedure.

Design Factors

In the current study, three levels of measurement occasions (10, 20 and 40) and two
levels of participants (4 and 8) were considered. The number of measurement occasions was
chosen based on meta-analyses results for single-case research studies. A meta-analysis of 85
single-case studies found that 25 studies had fewer than 11 measurement occasions, 37 studies
had between 11 and 29 measurement occasions and 23 studies had more than 29 measurement
occasions (Swanson & Saches-Lee, 2000). Another meta-analysis of single-case studies also
found that a median number of measurements were 20. This meta-analysis further identified that
90.6% of the participants had 49 or fewer measurement occasions (Shadish and Sullivan, 2011).
In accordance with these meta-analyses results, previous simulation studies with single-case
research have included that the number of measurement occasions within a participant varied
from 10 to 40 (e.g., Moeyaert et al., 2013a, 2013b, 2014).

Similarly, the numbers of participants were chosen based on previous single-case studies
(e.g., Kazdin & Kopel, 1975). Traditionally, single-case studies include small numbers of
participants and the typical number of participants has been four (Ferron et al., 2010; Kazdin,
2011). In addition, Shadish and Sullivan (2011) meta-analyzed 809 single-case studies and found

that the number of participants per study ranged from 1 to 13. Furthermore, Farmer, Owens,
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Ferron and Allsopp (2011) found that in 93% of the surveyed multiple-baseline studies the
number of participants was 7 or less.

In order to investigate the statistical power and Type | error of the treatment effect
estimate across fitting models, two different population treatment effects were included (0 and 1).
Note that when there was no true treatment effect in the data generation step, Type | error were
computed, whereas when there was a true treatment effect, statistical power were computed

across simulation conditions.

Non-normality Factor

Non-normality of level-1 error variance was created by manipulating skewness and
kurtosis of the population distribution. To investigate the impact of non-normality, skewness and
kurtosis were allowed to vary by equally spacing values from commonly observed ranges in
single-case studies. Skewness of the level-1 errors was varied from 0 to 3 (i.e., 0, 1, 2, and 3) and
kurtosis was varied from -1 to 4 (i.e., -1, 0, 1, 2, and 4). The direction of the skewness was set as
positive across simulation conditions because one of the major focuses in the study is the
violation of symmetric assumption for the multilevel modeling rather than the direction of the
skewness.

The ranges of the skewness and kurtosis were chosen based on the previous studies (e.g.,
Owens & Farmer, 2013; Solomon, 2014). A simulation study conducted by Petit-Bois et al.
(2013) investigated the non-normality of level-2 and level-3 error structure in meta-analytic
multilevel modeling for MB studies and they included skewness from 0 to 1.75 and kurtosis from
0 to 3.75. Owens and Farmer (2013) included non-normality of level-1 and level-2 error structure

varying the skewness from 0 to 1 and kurtosis from -1 to 3.75. A meta-analysis also supports that
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skewness of analyzed study observations ranged from .46 to 2.89 and the kurtosis ranged

from .49 to 1.57 (Solomon, 2014). In addition, the author further conducted a preliminary survey
investigating the ranges of skewness and kurtosis of the level-1 residuals from MB studies
published in Journal of Applied Behavior Analysis (JABA) from 2014 to 2016. A total of 20
datasets excluding binary dependent variables were collected and fitted with the two-level
within-series model. Because the variance component estimates in the between-series model
contain both level-1 and level-2 error variances, the within-series model is more appropriate to
obtain level-1 residual distributions. Skewness and kurtosis of the level-1 residuals of the model
were computed individually and they ranged from -0.71 to 1.91 for skewness and -1.07 to 3.01
for kurtosis, respectively.

Based on these previous investigations, the current study examined the skewness and
kurtosis of level-1 errors across the range of values previously investigated and observed, but
varied the values more systematically and in smaller increments. This approach could provide a
detailed guideline for applied researchers and practitioners about how to deal with degree to

which skewness and kurtosis of MB studies.

Data Generation

Data Generation Models

The data generation took place in two stages. First normally distributed data were
generated and then these data were transformed to induce desired levels of skewness and kurtosis.
The initial data generating model is described as follows.
Level-1 Equation:

Yl] = ﬁ()] + ﬁlehaseij + ,BZJTlmeU + ,83](Tlmel] * Phaseij) + ei]- (13)
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Level-2 Equation:

Boj = Yoo T+ Uo;j (14.2)
Bij = Y10+ Wy (14.2)
B2j = V20 T+ Uyj (14.3)
B3j = V30 + Us;j (14.4)

Level-1 errors were initially generated to be independent, normal, and homogeneous across
phases and participants with a mean of 0 and a variance of 1. The variance-covariance
matrix for level-2 errors (uo; uyj, uy;, and uy,;), was an uncorrelated diagonal matrix. That
is, X,, = diag(tgo, T11, T2, T33)- The uncorrelated diagonal matrix was assumed because
more complex level-2 error structure could yield more biased level-2 error variance
estimates given that level-2 error variance estimates are generally biased in single-case data
(Moeyaert et al., 2013a, 2013b, 2014). Also a previous study showed that misspecification
of level-2 error structure has a minimal impact on the treatment effect estimate (Moeyaert et
al., 2016). For the condition where power of the treatment effect was investigated, the
population parameter values for fixed effect coefficients, oo, Y10, Y20, @and y3, Were set as 0,
1, 0, and 0, respectively. Similarly, for the condition where Type I error of the treatment
was examined, the data generation parameter values for the all fixed effect were set as 0.
These parametrization of the model implies that the time trend effect is not included in the
simulated data. These parameters were chosen because the primary focus of the current
study is of the treatment effect estimation accuracy and inference. Population parameter
values for level-2 variance components, Ty, T11, T22, and T35 were set as .50, .50 .00,

and .00, respectively. This parametrization indicates that there are variations across

participants in baseline observations and treatment effect sizes but not in time trend effects
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in baseline and treatment phases. The population parameter values for level-2 variance
components were chosen based on previous simulation studies with single-case studies (e.qg.,

Ferron et al., 2009, 2010; Moeyaert et al., 2013a, 2013b, 2014, 2016).

Data Generation Steps

The simulated data were generated using SAS/IML program. For each replication,
the values for level-1 and -2 errors were first randomly generated from standard normal
distribution, individually, using RANNOR function implemented in SAS/IML. Note that
number of randomly generated values for level-1 error variances was | x J, where | is the
number of measurement occasions, and J is the number of participants. Also, the number of
randomly generated values for level-2 error variances was 4*J and each distinct value was
replicated by | times. 4*J number of random values were created because the number of
fixed effect parameters in the data generation model was four, and J number values were
needed to create variations across participants. This strategy created each parameter’s level-
2 error variation across participants (for each parameter, 7y, T11, T22, and T35, respectively)
and within-participants variation is only affected by level-1 error variance values.

Furthermore, the time variable was created as a sequence of integers corresponding
to the session number, the phase variable as the baseline or treatment phase indicator (coded
0 = baseline, 1 = treatment) and the phase*time variable as the treatment observation time
interaction. The variable phase*time was created by simply multiplying two variables phase
and time. Note that the phase variable was created to mimic MB studies such that each
participant had the different intervention time points. For example, for the condition where

the number of participants was four and the number of measurement occasions was 10, the
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first, second, third and fourth participant’s phase variable became 1 when their observations
were at 4, 5, 6, and 7™ time point, respectively so that all phases had at least 3 observations.
Similarly, for the condition where the number of participants was eight and the number of
measurement occasions was 10, pairs of participants’ phase variables were created. That is,
first and second participants had the same intervention time point, third and fourth
participants had the same intervention time point and so on. When the numbers of
measurement occasions were 20 and 40, the intervention phases started at 5, 8, 11, and 14"
observations and 10, 16, 22, and 28" observations for the first, second, third and fourth
participants, respectively. It is also important to note that variables time and phase*time
were created by the group-centering approach, meaning each participant's time was 0 when
treatment phase started. This group-centering approach allows creating data sets where the
treatment effect is an immediate shift in level at the initial treatment observation for each
participant.

After error variance values and predictor variables were generated, two different
data generation routes were taken depending on the simulation conditions to generate a
dependent variable Y;;. For the condition where normality assumption was not violated, all
error variance values were combined with predictors parameters (Yoo, Y11, V22, and y33) and
their variables were used to create the dependent variable Y;; Equation 13 as described
above. For the condition where normality assumption was violated, a series of level-1 error
values for each participant was manipulated using Fleishman’s power transformation
method (Fleishman, 1978). Using Fleishman’s method, certain degrees of skewness and
kurtosis can be achieved. A detailed explanation about the power transformation method is

discussed in later section. Once the level-1 error values are manipulated as desired, the
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simulated dependent variable Y;;, were again generated using Equations 13 and 14.1 - 14.4.

jo
Saving the id variable for both level-1 and level-2 units, total six variables were created for
each simulated data set; Y;;, idlevell, idlevel2, phase, time, and phase*time.

For the between-series model parameterization, additional four dummy variables
(P1ij, P2ij, Psij, and Pj;) were created in the simulated data sets. Pajj, Pajj, Psij, and Pjj were
indicators where the values became 1 if observations were used for the between-participant
comparison and 0 otherwise. More specifically, Py;; = 1 if i™ observation for j™ participant
was used for the first time point between-participant comparison. Similarly, Py;; = 1 if i
observation for j™ participant was used for the second time point between-participant

comparison. And, Psj; = 1 if i observation for ™ participant was used for the third between-

participant comparison. Finally, Pj = 1 if P1j;= 1 or Pjj = 1 or P3;; = 1, 0 otherwise.

Fleishman’s Power Transformation Method

Fleishman (1978) proposed a power method to generate non-normal distribution data.
The proposed method allows manipulating skewness and kurtosis of the standard normal
distribution using the powers of polynomial equations. The polynomial equation is given as
follows.

Y =a+bX +cX?*+dXx3 (15)

where Y is transformed non-normal variable with specified population skewness and
kurtosis, X is standard normal variable and a, b, ¢ and d are constants needed for
transforming the standard normal distribution to non-normal distribution with specified
degrees of skewness and kurtosis. Note that a = - c. In Fleishman’s article (1978), the

coefficient values (a, b, ¢ and d) are provided to generate the non-normal distribution with
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specified population skewness and kurtosis. For example, if one desires to generate a
distribution with population skewness = 2 and kurtosis = 3, then the constants values are as
follows.

b =0.92966052480111

¢ = 0.39949667453766

d =-0.03646699281275
Also, note that standard normal distribution can be obtained whenb =1,¢c=0,d = 0.

Fleishman’s transformation coefficients for the current study conditions were computed

using SAS/IML program. The computed coefficients are shown in Table 2. Note that once the
transformation was made with the Fleishman’s method, the values were standardized to set mean

of zero and standard deviation of one.

Table 2.
Fleishman Transformation Coefficients for Various Degrees of Skewness and Kurtosis
Skewness Kurtosis a b C d

0 -1 0 1.22101 0 -0.0802
0 0 0 1 0 0
0 1 0 0.90298 0 0.03136
0 2 0 0.83566 0 0.05206
0 4 0 0.73738 0 0.08093
1 -1 0.38757 -3.0507 -0.3876 2.56235
1 0 -0.2394 1.08828 0.23938 -0.0422
1 1 -0.191 1.01749 0.191 -0.0186
1 2 -0.1472 0.90476 0.14721 0.02386
1 4 -0.117 0.77659 0.11698 0.0655
2 -1 -0.2341 -49.851 0.23413 8.36508
2 0 -14.858 -26.684 14.858 4.18199
2 1 4.00552 -4.1548 -4.0055 -0.8493
2 2 -1.5751 0.81684 1.57508 -0.1344
2 4 -0.3389 0.93083 0.33887 -0.0084
3 -1 -0.1207 1.17205 0.12073 0.29789
3 0 634.454 250.927 -634.45 -13.804
3 1 -0.2651 0.6859 0.26508 0.08867
3 2 1.22953 4.79678 -1.2295 -0.7268
3 4

-0.7709 -4.0862 0.77087 0.49931
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(a) Residual Skewness = 1.91 & Kurtosis = 3.01 (Edwards et al., 2015)
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(b) Residual Skewness = -.60 & Kurtosis = -.27 (Himle & Wright, 2014)

Distribution of Resid

o Distribution of Sim Resid

2e+06

Frequency

Oe+00
Lo
o
r

]

k) ] o 1 2 Sim Residuals

(c) Residual Skewness = .55 & Kurtosis = .69 (Washington, Banna, & Gibson, 2014)
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Figure 5. Residual distributions from multiple studies (left) and simulated data (right).

Also, for the illustration purpose, Figure 5 shows the histograms of residuals from the
preliminary survey data and simulated data to show replicability of simulated data to real data

residual distributions. The preliminary survey data were fitted with two-level within-series model
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and residuals were computed. Also, the computed residuals were standardized to make the same
scale as the simulated data. For the simulated data, 1 million random samples were drawn from
standard normal distribution and then transformed using Fleishman’s equation to mimic the

skewness and kurtosis of the survey residual distribution.

Fitting Models
Within-Series Model
The equation for the within-series model is described as follows.
Yij =Yoo + YioPhase;j + y,oTime;; + ]/30(Timel-j * Phasel-j)
+uo; + uy jPhase;; + uy;Time;; + u, j(Time;; = Phase;;) + e;;, e;~N(0, 62) (16)
Note that the fitted within-series model is equivalent to the data generation model. The level-1
error variance was assumed to be independent and homogeneous across phases and participants.

Level-2 error structure was assumed to be an uncorrelated diagonal matrix.

X, =diag(too, T11, T22, T33)

Between-Series Model
The equation for the between-series model is described as follows.
Y;j = B1P1ij + B2Paij + B3Psij + BaPij * Phase;; + e;j,  e;;~N(0, 0?) (17)
The between-series model contains four parameters using three comparison time-point
observations across participants and one pooled treatment effect parameter. The between-
participant comparison time points were fixed at the third observations after the treatment
phase started. As discussed earlier in chapter two, separate time points baseline

observation estimates allows the model to have time trend effect for baseline phases.
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Residual variance of the model, a2, was assumed to be independent and homogeneous
across phases and participants. Note that the between-series model residual 2 includes

both within- and between-participant variations.

Parameter Estimation

Parameters of within- and between-series models were estimated using ReML and
Bayesian estimation methods. When ReML was used to estimate parameters of the model, the
Kenward-Roger approach was used to compute adjusted standard error and degrees of freedom
for small sample size. SAS PROC MIXED was used to estimate the parameters of the models

using ReML with Kenward-Roger adjustment.

Prior Distribution

Prior specification for parameters in the model is an important step in Bayesian
estimation. Based on previous Bayesian multilevel modeling studies, the following prior
distributions were specified for the within- and between-series models. For the within-series
model, prior distributions for fixed effect parameters y9, Y11, V22, and y53 were assumed to be
the normal distribution with zero mean and 1 x 101 variance. In addition, prior distributions for
level-1 and level-2 error structure were assumed to be the inverse-Wishart distribution with
degrees of freedom parameter v = 0 and expected parameter V was a 4 x 4 identity matrix. Note
that both normal and inverse-Wishart distributions are considered as conjugate priors for the
fixed effects and random effects, respectively, meaning the posterior distribution can be
theoretically derived from the prior distribution and likelihood function (Gelman et al, 2014).

These prior specifications were also chosen based on the previous Bayesian multilevel modeling
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studies. Previously, dispersed distributions have been heavily used as prior distributions for both
fixed effect and variance components (e.g., Baldwin & Fellingham, 2013; Browne & Draper,
2006; Gelman, 2006; Moeyaert et al., 2016; Rindskopf, 2014).

However, it is important to note that although Bayesian multilevel modeling introduces
the prior distribution, which theoretically reasonable for the variance component parameter, it
was found that the variance components estimates are still substantially biased if the sample size
is relatively small (Baldwin and Fellingham, 2013; Moeyaert et al., 2016). Limited research, yet,
have found more effective and precise prior distributions for the variance components for small
sample size conditions in Bayesian multilevel modeling.

For the between-series model, similar prior distributions as the within-series model for
the parameters were specified. Prior distributions for the parameters, 3, 8., B5 and 8, were
assumed to be the normal distribution with zero mean and 1 x 10%° variance, respectively. Also,
the prior distribution for the variance component o2 was assumed to be the inverse-Wishart
distribution with the same parameterization as the within-series model prior specification. Note
that because the assumptions of independence and homogeneity across phases and participants
hold for the level-1 error structure in the between-series model as well, the inverse-Wishart

distribution became univariate inverse-gamma distribution.

Convergence Criteria
For the current simulation study, the convergence rates for both ReML and Bayesian
estimations were recorded and summarized. The convergence rates were computed as

proportions of replications in which estimations were reaches the convergence.
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Unlike ReML, Bayesian estimation has several criteria for determining convergence of
the sampling procedure. Once MCMC samples reach a certain degree of stability across
iterations, posterior distribution samples are considered as converged. MCMC convergence can
be checked with a) Kernel density plots of samples, b) history or trace plots of the mixing
procedure, c) autocorrelation between adjacent posterior samples and d) statistical diagnostics.
Various statistical diagnostics are developed in statistical literatures including R (Gelman &
Rubin, 1992), Geweke test (Geweke, 1992), Heidelberger-Welch stationary and half-width tests
(Heidelberger & Welch, 1983) and Raftery-Lewis test (Raftery & Lewis, 1992). In current study,
Geweke test was used to evaluate the convergence rates. Note that Geweke test evaluates the
convergence of the Markov chain samples by comparing means from the early and latter part of
the Markov chain. Significant differences between two parts of the Markov chain samples
indicate that MCMC procedure does not reach to the convergence.

A preliminary simulation study was conducted to examine the sufficient number of
iterations for the convergence. The study indicated that the Markov chain samples were stable
after a burn-in period between 5,000 and 10,000 iterations. In order to achieve the convergence
in the final simulation across conditions, 100,000 iterations with the 10,000 burn-in period were
conducted and only every 25th draws after burn-in period were kept (thinning =25). This strategy
was chosen based on the previous Bayesian estimation studies (e.g., Moeyaert et al., 2016). For
the current study, the convergence status for each replication was recorded for both ReML and
Bayesian estimations. The convergence rates for both estimation methods are reported across

simulation conditions.
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Estimation

Once the MCMC procedure reaches the maximum number of iterations, the parameters
of the models were, then, estimated by taking a mean of the posterior samples. One could
question whether taking a median of the posterior samples is more reasonable than a mean for
the variance components because the posterior density of the variance component tends to be a
right-skewed distribution. However, across the simulation conditions, minimal differences
between mean and median were found. Therefore, to keep the consistency of the results, only

mean statistics of the posterior samples were reported for the variance components.

Dependent Variables

Simulation results are analyzed with various criteria. For the accuracy of parameter
estimation of the within- and between-series models, the following statistics were used to
analyze the accuracy of the estimation methods:

R BB

Bias = = (18)
Y=
Relative Bias = —£— (19)
R

R a5 2
RMSE = M (20)
R

R denotes the total number of replications, 8 denotes population (generating) parameters and f3,
represents estimated parameters for i replication for the multilevel modeling. Note that bias and
relative bias were computed for each replication then averaged across replications. RMSE was
computed by taking the sum of square differences between population and estimated parameters

for replications then averaged across replication (mean square error). The final RMSE was
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obtained by taking the square root of the mean square error. Previous research noted that relative
bias less than .05 can be considered as an acceptable bias for the fixed effect estimates and .10
for the variance component estimates (Hoogland & Boomsma, 1998).

As a measure of statistical inference, interval estimate coverage rates, interval estimate
width, and statistical power/Type | error of the treatment effect parameter were computed. When
parameters were estimated with ReML, confidence interval (CI) coverage rates, Cl widths, and
power/Type | error were computed as traditional fashion. That is, SEs and degrees of freedom
were computed with Kenward-Roger method and Cls were obtained using those quantities. ClI
coverage rates were, then, obtained from taking proportions of replications in which population
parameters were inside of the computed CI. Cl widths were also computed taking the difference
from upper bound to lower bound of Cls per replications then averaged across replications.
Statistical power was also computed for treatment effect where the p-value was less than nominal
level of significance. Empirical statistical power was, then, obtained from the proportion of
replications in which p-value was less than the nominal level. The nominal level of significance
was set as .05. Type | error rates were also computed similarly as statistical power when true
treatment effect was zero.

When Bayesian estimation was used, highest posterior density (HPD) was used to
compute interval estimates for the treatment effect. Note that HPD is essentially different than
credible interval in Bayesian inference. The credible interval is generally computed taking 2.5%
and 97.5% quartiles of the overall posterior distribution as lower and upper bounds, respectively.
However, the HPD interval is computed taking the 2.5% quartile and 97.5% quartile of the
highest posterior sample density for the lower bound and higher bound HPD intervals,

respectively. These credible and HPD intervals do not always produce the same intervals. If the
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posterior distribution is not symmetrical or bimodal shape, then credible and HPD intervals are
substantially different. In the current study, the HPD coverage rate and its interval width were
computed the same fashion as ReML computes CI coverage rates and Cl widths. Statistical
power and Type | error rates for Bayesian estimation were computed as proportions of
replications in which the HPD intervals contained 0. This computation is comparable to the
ReML approach.

Because 3000 datasets for each condition were simulated, the coverage proportions for
both ReML and Bayesian interval estimates should be estimated relatively accurately. To
evaluate the coverage proportions, an acceptable range of the coverage estimates was computed
using the standard error of the coverage probability, p (Burton, Altman, Royston, & Holder,
2006). The standard error equation is

SE(p) = Ip(1 —p)l/B (21)
where p represents the nominal coverage probability of .95, and B is 3000 (the number of
replications per condition), resulting in a range from .942 to .958 for acceptable coverage
estimates. The estimation accuracy for the parameters other than treatment effect such as
coefficients for intercept, time, and interaction and level-2 and level-1 error estimates in the
within-series model and level-1 error estimate in the between-series model were analyzed by

computing only bias and RMSE across replications.

Analysis of Dependent Variables
Results tables of the dependent variables across simulation conditions are presented in the
results section. To analyze the variation in outcomes as a function of the simulation design and

non-normality factors, multi-way univariate ANOVAs were conducted on biases, relative biases,
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RMSEs, coverage rates, coverage widths, and statistical power/Type | error. The ANOVA
analyses are appropriate to determine the simulation condition effects and their effect size
measures. Eta-square (n?) statistics were additionally computed based on the ANOVA results to
investigate the effect size of the design and non-normality factors. Eta-square is often used to
compute the amount of explained variance for each factor, along with significant tests. Eta-
square was computed using the proportion of variability of each dependent variable that is
associated with each of the effects in the simulation conditions. The ratio of the effect variance
(SSettect) to the total variance (SSiota) Yields the eta-square statistics.

SS
2 effect
Nt = (22)
total

Cohen’s (1992) recommended effect sizes are, then, applied for the interpretation of
effect size measures (i.e., small: n2 < .06, medium: .06 < n2 <.14, and large: n2 > .15) to focus
the discussion on the factors that are most substantially related to parameter estimation
accuracies and their inferences. The multi-way univariate ANOVAs and eta-analyses were
computed using PROC GLM in SAS.

In addition to the multi-way univariate ANOVA analyses, graphical representations
including box plots, histograms and line graphs for each outcome variable are presented across
simulation conditions. Also, marginal means for each simulation condition factor were computed
to summarize the results by simulation conditions. The computed marginal means are, then,

illustrated with graphical representations.
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CHAPTER FOUR: RESULTS

This section consists of the findings of the study. The chapter reports each dependent
variable (bias, RMSE, CI coverage rates, Cl widths, and statistical power/Type | errors) of the
study. In addition, n?values from ANOVA analyses of each dependent variable provide an
indication of the impact of each of the simulation design factors, non-normality factors and their
interactions. The estimation accuracy (bias and RMSE) and statistical inference (CI coverage
rate, Cl width, statistical power, and Type | error) of the treatment effect parameter is
sequentially reported across independent variables of the study by using box plots and bar
graphs. Then, the estimation accuracy (bias and RMSE) for the parameters other than the
treatment effect of the models are additionally provided. Finally, the convergence rates of the

models are provided in the end of the chapter.

Bias for the Treatment Effect

The bias of the treatment effect was computed by taking an average of the bias across
replications. Note that bias and relative bias are equivalent because the population value for the
treatment effect was set for 1. The complete bias/relative bias results for the treatment effect are
shown in Table 5 in Appendix A. In addition, to identify simulation factors that have a
substantial effect on the bias, two univariate ANOVA analyses were conducted for the within-
and between-series estimators, individually. The n2 values from these ANOVA analyses are also

presented in Table 24 in Appendix B.
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Based on ANOVA analyses for the bias of the treatment effect, the interaction of the
skewness and kurtosis factor (skewness*kurtosis) had a medium effect size (n? = .13) and the
other simulation factors (e.g., I*kurtosis, J*kurtosis, I, skewness, I*skewness, kurtosis, 1*J, and
J*skewness) had small effect sizes (n? < .03) for the within-series model. For the between-series
model, skewness*kurtosis had a medium effect (n? = .07) and the other factors (I*kurtosis,
J*kurtosis, 1*J, I*skewness, J*skewness, skewness, and kurtosis) had small effect sizes (n? <

06).
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Figure 6. Box plots: Marginal bias of the within- and between-series estimators across

simulation conditions

Figure 6 presents box plots for marginal bias of the within- and between estimators. As
shown in Figure 6, the bias of the within- and between-series estimators for the treatment effect

was distributed less than 5% bias of the population value across simulation conditions. The
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marginal mean bias of the two estimators were close to zero, and they were ranged from -.04 and
.04 across conditions. The box plots also indicated that the within-series estimator had ales
variance in the bias distribution than the between-series estimator.

Figures 7 and 8 represent bias of the within- and between-series estimators across
skewness and kurtosis, respectively. As shown in Figures 7 and 8, minimal bias was observed
across various degrees of skewness and kurtosis. The bias of the treatment effect estimate for the
within- and between-series models was ranged between -.04 and .04 and the minimal bias were
consistently found as skewness and kurtosis increased. Although ANOVA analyses indicated the
interaction between skewness and kurtosis explained 13% of the variance in bias values, the

variance was so small that there was no meaningful effect of skewness and kurtosis on bias.
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Figure 7. Box plots: Bias of the within- and between-series estimators across skewness
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Bias of Within- and Between-Series Estimators by Kurtosis
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Figure 8. Box plots: Bias of the within- and between-series estimators across kurtosis

Bias of Within- and Between-Series Estimators by Estimation Methods

0.04 -
[+] [+]
[+]
g
0.02- T
@
2 000
-0.02 -
-0.04 - o
T T
ReML MCMC

Estimation_Methods

Model B Within-Series B Between-Series

Figure 9. Box plots: Bias of the within- and between-series estimators across estimation methods
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Figure 9 shows bias box plots of the within- and between-series estimators across
estimation methods. Based on ANOVA analyses and Figure 9, it was found that ReML and
Bayesian estimations for the treatment effect estimate were almost indistinguishable. No
significant difference between two estimation methods was found based on the results of the

study. Both estimation methods produced minimal bias across simulation conditions.

Bias of Within- and Between-Series Estimators by Number of Measurement Occasions
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Figure 10. Box plots: Bias of the within- and between-series estimators across number of

measurement occasions

Figures 10 and 11 represent bias of the within- and between-series estimators across the
number of measurement occasions and the number of the participants, respectively. As shown in
Figures 10 and 11, the marginal mean bias for the within- and between-series model was near
zero across conditions. For the within-series model, standard deviation of the bias decreased as

both the numbers of the measurement occasions and participants increased. For the between-
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series model, however, the standard deviation of the bias only decreased as the number of
participants increased. Marginal bias of the within- and between-series estimators was

consistently near zero as numbers of measurement occasions and participants increased.

Bias of Within- and Between-Series Estimators by Number of Participants
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Figure 11. Box plots: Bias of the within- and between-series estimators across number of

participants

RMSE for the Treatment Effect

RMSE for the treatment effect estimate was computed by taking a square root of the
average squared bias across replications. Note that RMSE includes not only squared bias but also
variance across replications. The variance across replications is also considered as sampling error
of the simulation study.

In Table 6 of Appendix A, the complete RMSE results of the treatment effect across
simulation conditions are presented. In addition, in Table 25 of Appendix B, two univariate

ANOVA analyses for the within- and between-series models are presented to identify simulation
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factors that have a significant effect on RMSE. Based on the ANOVA analyses, the number of
measurement occasions had the largest effect size (n? = .62), followed by the number of
participants (n? = .32) for the within-series model. Also, the interaction between the number of
measurement occasions and participants (1*J) and estimation method had a small effect size on
RMSE when the within-series model was used (n? < .03). For the between-series model, the
number of participants had the largest effect size (n? =.93) and the number of measurement
occasions had a medium effect size (n? = .07) on RMSE. It is noteworthy that neither skewness
nor kurtosis of the level-1 error variance had a significant effect on RMSE for both within- and

between-series models (n? = .00).
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Figure 12. Box plots: Marginal RMSE of the within- and between-series estimators

Marginal RMSE box plots of the within- and between-series estimators for the treatment

effect across simulation conditions are illustrated in Figure 12. The marginal box plots of RMSE
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show that the within-series estimator produced less RMSE of the treatment effect estimate than
the between-series estimator. The marginal mean RMSE was .65 for the within-series model as
opposed to .85 for the between-series model. Also, the standard deviations of RMSE across

simulation conditions were .18 and .15 for the within- and between-series model, respectively.
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Figure 13. Bar graphs: RMSE of the within- and between-series estimators across number of

measurement occasions

Based on ANOVA analyses on RMSE, bar graphs for both within- and between-series
models were also created across the numbers of measurement occasions and participants. Figures
13 and 14 represent bar graphs of RMSE across the number of measurement occasions and the
number of participants, respectively. As shown in Figure 13, RMSE for the within-series model
decreased substantially as the number of measurement occasions increased. However, consistent

with ANOVA analyses, RMSE for the between-series model decreased minimally as the number
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of measurement occasions increased. From the bar graphs as illustrated in Figure 14, RMSE for

both within- and between-series models decreased significantly as the number of participants

increased.

RMSE of Within- and Between-Series Estimators by Number of Participants
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Figure 14. Bar graphs: RMSE of the within- and between-series estimators across number of

participants

CI Coverage Rate for the Treatment Effect

To examine accuracy of the statistical inference for the within- and between-series
models on the treatment effect, CI coverage rate was computed. Two estimation methods, ReML
and Bayesian, computed the Cls differently: ReML used Kenward-Roger inference method
computing small sample adjusted standard error and degrees of freedom, whereas Bayesian used

highest posterior density (HPD) of the Markov chain samples to compute CI. CI coverage rate
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was then obtained by computing the proportion of replications in which the population value was
inside of the computed confidence interval. The nominal level for Cl was set as .95.

The complete CI coverage rate table is shown in Table 7 in Appendix A. To identify
simulation factors that have a significant effect on CI coverage rate, univariate ANOVA analyses
for the within- and between-series models were conducted and presented in Table 26 in
Appendix B. Based on ANOVA analyses, the number of measurement occasions had the largest
effect size (n? = .41), followed by the estimation method (n? = .17) for the within-series model.
The interaction between the number of participants and estimation method (J*Est) had a medium
effect size (n? = .07) and other factors (e.g., kurtosis, I*Est, skewness*kurtosis, 1*skewness, 1*J,
I*kurtosis, and J) had a small effect (n? < .02) when the within-series model was used. For the
between-series model, a similar pattern was observed. The number of measurement occasions
also had the largest effect size (n? = .40) and the estimation method had the second largest effect
size (n? = .12). The other factors (e.g., J, I*kurtosis, skewness*kurtosis, 1*skewness, 1*J,
kurtosis, J*kurtosis, J*Est, and J*skewness) showed a small effect (n? < .04) for the between-
series model. Similar to the previous results, skewness and kurtosis had a minimal effect on CI
coverage rate for both within- and between-series models.

Figure 15 presents box plots of marginal CI coverage rate for the within- and between-
series models across simulation conditions. As shown in Figure 15, the within-series model
produced acceptable ranges of the treatment effect ClI coverage rate across conditions. However,
the between-series model yielded an under-coverage rate less than the acceptable CI coverage
rate. Marginal mean CI coverage for the within-series model was .94 whereas that for the
between-series model was .87. The standard deviation of Cl coverage rate across simulation

condition was .01 for both within- and between-series model.
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Figure 15. Box plots: Marginal CI coverage rate of the within- and between-series models

As ANOVA analyses indicated, the measurement occasion and estimation method had
the large effect size of CI coverage rate, thus, the marginal box plots for each design factor were
created. Figure 16 shows that CI coverage rate of the within- and between-series models across
the number of measurement occasions. As can be seen in Figure 16, Cl coverage rate decreased
as the number of measurement occasions increased. The same pattern was observed for the
between-series model. Across conditions, between-series consistently showed lower CI coverage
rate than the within-series model. Marginal CI coverage rate of the within-series model was .95,
.94 and .93 when the number of measurement occasions was 10, 20 and 40, respectively.
Similarly, marginal CI coverage rate of the between-series model was .87, .87 and .86 across 10,

20 and 40 measurement occasions.
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Cl Coverage of Within- and Between-Series Estimators by Measurement Occasions
and Participants
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Figure 16. Box plots: Cl coverage rate of the within-series model across numbers of

measurement occasions

Figure 17 illustrates box plots of Cl coverage rate for the within- and between-series
model across estimation methods. Overall, ReML with Kenward-Roger and Bayesian estimation
and inference methods showed comparable performances. Cl coverage rate of both approaches
produced closer values to the nominal level and their values across simulation conditions were
distributed in the acceptable range. For example, the marginal mean CI coverage rate for the
ReML and Bayesian methods were .94 when the within-series model was used. In addition, a
similar pattern was found for the between-series model. Although the overall values were lower
than a nominal level, ReML and Bayesian produced similar CI coverage rate across conditions.
For example, the marginal mean CI coverage rate for ReML estimation was .87 and the

corresponding value for the Bayesian estimation was .86.
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Figure 17. Box plots: CI coverage rate of ReML and MCMC for the within- and between-series

models

Cl Width for the Treatment Effect

In addition to CI coverage rate, Cl width was computed as well across simulation
conditions. The complete Cl width table is shown in Table 8 in Appendix A. Similar to the
previous outcome measures, univariate ANOVA analyses for the within- and between-series
models were conducted separately and presented in Table 27 in Appendix B. Based on ANOVA
analyses, the two largest effect size design factors on CI width were the number of measurement
occasions and the number of participants for both models. The number of measurement
occasions had the largest effect size (n? = .57), followed by the number of participants (72 = .17)
for the within-series model. The interaction between the numbers of measurement occasions and

participants (I*J) had a small effect size (n? = .02) when the within-series model was used. For
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the between-series model, on the contrary, the number of participants had the largest effect size
(n? = .88), followed by the number of measurement occasions (n? = .11). Similar to the previous
results, skewness and kurtosis had a minimal effect on CI width for both within- and between-

series models.
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Figure 18. Box plots: Marginal CI width of within- and between-series estimators

Figure 18 shows two the marginal box plots of CI width for the within- and between-
series models. As shown in Figure 18, no substantial difference between two models was found.
For example, the marginal mean CI width for the within-series model was 2.27 and the
corresponding value for the between-series model was 2.57 across conditions. Note that the
within-series model, however, showed more variability of CI width across simulation conditions

than the between-series model. For example, the standard deviation of CI width across
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conditions was .75 for the within-series model whereas the corresponding value was .46 for the
between-series model.
Cl Width of Within- and Between-Series Estimators by Numbers of Measurement

Occasions and Participants
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Figure 19. Bar graphs: CI width of the within-series estimator across numbers of measurement

occasions and participants

Figures 19 and 20 represent two-way interaction CI width bar graphs across the number
of measurement occasions and the number of participants for the within- and between-series
models, respectively. As shown in ANOVA analyses on Cl width, Figures 21 and 22 show that
the numbers of measurement occasions and participants had the largest effect size for both
within- and between-series models. For the within-series model, as the numbers of measurement
occasions and participants increased, Cl width decreased substantially. A minimum CI width was

observed when the number of participants was eight and the number of measurement occasions
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was 40. However, for the between-series model, the substantial decrement of Cl width was found
as the number of participants increased. Although the decreasing pattern of Cl width was

observed as the number of measurement occasions increased, the size of the effect was smaller

than the number of participants.

Cl Width of Within- and Between-Series Estimators by Numbers of Measurement
Occasions and Participants
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Figure 20. Box plots: Cl width of the between-series estimator across numbers of measurement

occasions and participants

Power/Type | Error for the Treatment Effect

Statistical power and Type | error of the treatment effect estimate were also dependent
variables of the study. Tables 9 and 10 in Appendix A provide the complete power and Type |
error tables across simulation conditions. Two-way ANOVA analyses on power were also
conducted and the resulting n’ values are provided in Table 28 in Appendix B. For the power

condition, similar to RMSE and Cl width, the numbers of measurement occasions and
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participants had the largest effect sizes when the within-series model was used to estimate the
treatment effect. The number of measurement occasions had the largest effect size (n? = .55),
followed by the number of participants (n? = .41). The interaction between these two variables
(1*J) had a minimal effect size (n? = .03). When the between-series model was used, the number
of participants had the largest effect size (n? = .87), followed by the number of measurement
occasions (n? = .11). Similar to the previous results, skewness and kurtosis had a minimal effect
on the power of the test for the treatment effect estimate for both within- and between-series

models.
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Figure 21. Box plots: Marginal statistical power of the within- and between-series estimators

Figure 21 shows the marginal mean power box plots for the within- and between-series
models. It is prominent that the within-series model has higher power to detect the treatment

effect than the between-series model. The marginal power for the within-series model was .48,
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whereas the corresponding value for the between-series model was .38. In addition, the within-
series model showed more variation than the between-series model.

As ANOVA analyses indicated, the numbers of measurement occasions and participants
had the largest effect sizes on statistical power. Thus, Figures 22 and 23 illustrated interaction
bar graphs across the number of measurement occasions and the number of participants for the
within- and between-series models, respectively. Consistent with expectation, as the number of
measurement occasions and participants increased, statistical power increased substantially with
the within-series model. On the other hand, statistical power increased considerably as the

number of participants increased only for the between-series model.

Power of Within- and Between-Series Estimators by Numbers of Measurement
Occasions and Participants
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Figure 22. Bar graphs: Statistical power of the within-series estimator across numbers of

measurement occasions and participants
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Power of Within- and Between-Series Estimators by Numbers of Measurement
Occasions and Participants
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Figure 23. Bar graphs: Statistical power of the between-series estimator across numbers of

measurement occasions and participants

For the Type | error result, Figure 24 shows box plots of the marginal mean Type | error
results between two models. Type | error was well-controlled for the within-series model,
whereas inflated values were consistently found for the between-series model. The marginal
Type | error for the within-series model was .06, as opposed to .13 for the between-series model
across simulation conditions. For both within- and between-series models, maximum Type |
errors, .09, and .16 were observed when numbers of participants and measurement occasions
were 8 and 40, respectively and MCMC was used. For the skewness and kurtosis conditions,

consistent pattern of the Type I error results was found.
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Figure 24. Box plots: Marginal Type | error of the within- and between-series estimators

Bias and RMSE for the Other Fixed Effects

Bias and RMSE of the fixed effect parameters other than the treatment effect for the
within-series model were computed in the current study. Note that the within-series model was
specified with four parameters including intercept, treatment effect, time effect for the baseline
phase, and change in time effect with treatment. Because the population values for the other
fixed parameters were set as zero, bias of the parameter estimates was computed rather than
relative bias.

The complete tables of bias and RMSE are presented in Tables 12 — 17 in Appendix A.
Figures 25 and 26 also represent bias and RMSE box plots of intercept, time effect for the
baseline, and change in time effect with treatment, respectively. Overall, minimal bias was
observed for the fixed effect parameters across simulation conditions. As shown in Figure 25,

intercept, baseline time effect, and change in time effect with treatment parameters had bias
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values that ranged from -.02 to .02 and marginal bias values that were close to zero. In addition,
RMSE distributions of fixed effect parameters of the within-series model are shown in Figure 26.
Box plots of RMSE indicate intercept parameters had larger RMSE than the other fixed effect
parameters. Marginal RMSE of the intercept, baseline time effect and change in time trend with

treatment parameters were .38, .06, and .10, respectively.
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Figure 25. Box plots: Bias of the other fixed effect parameters for the within-series model

As shown in previous results, no substantial difference between ReML and Bayesian
estimation methods was found in bias and RMSE of the fixed effect parameters. As expected,
RMSE for the other fixed effect parameters decreased considerably as the numbers of
measurement occasions and participants increased. Minimal RMSE were found when the

measurement occasion was 40 and the number of participants was eight. Consistent with
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previous results, skewness and kurtosis of the level-1 error variance in the within-series model

had no significant effect on bias and RMSE of the other fixed effect parameters.
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Figure 26. Box plots: RMSE of the other fixed effect parameters for the within-series model

Bias and RMSE for the Level-1 Error Variance

Bias and RMSE of the leve-1 error variance for the within- and between-series models
were computed. The complete results are presented in Tables 18 and 19 in Appendix A. Note
that the level-1 error variance was standardized after the Fleishman’s transformation. Thus,
population mean and variance for the level-1 error variance remained zero and one, respectively.
Also, since the level-1 error variance for the between-series model contains the within- and
between-participant variations, the population value was set combining level-1 error variance
and level-2 error variance (a2 + 73,). This parameter value is appropriate for the baseline phase,

but in the treatment phase the variance would be larger because of the variation in the treatment
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effect (o2 + 73, + 77,). As a consequence, one would anticipate the estimated variance values
from the between-series model will exceed the baseline variance parameter value. A follow-up
study at the end of this chapter presents results for a between-series model with separate variance

estimates for the baseline and treatment phases.
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Figure 27. Box plots: Bias of the level-1 error variance

Figures 27 and 28 illustrate box plots of bias and RMSE of level-1 error variance for the
within- and between-series models. As shown in Figure 27, the within-series model estimated the
level-1 error variance with relatively smaller bias than the between-series model across
simulation conditions. The bias of the level-1 error variance was ranged from -.06 to .01. Also,
the RMSE values were ranged from .00 to .12 across conditions. However, for the between-

series model, bias and RMSE ranged from .02 to .18 and from .04 to .25, respectively, across
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conditions. Maximum bias was found when the number of measurement occasions was 10 and

the number of participants was four.
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Figure 28. Box plots: RMSE of the level-1 error variance

Consistent with the previous results, skewness and kurtosis of the level-1 error variance
did not affect the bias and RMSE results. For both within- and between-series models, bias, and
RSME of the level-1 error variance were similar across skewness and kurtosis conditions. In
addition, ReML and Bayesian estimations did not show a substantial difference. As expected,

RMSE decreased as the numbers of participants and measurement occasions increased.
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Bias and RMSE for the Level-2 Error Variance

Bias and RMSE of the level-2 error variance estimate were computed for the within-
series model only. The complete tables are presented in Tables 20 — 23 in Appendix A. Note that
the population value was 0.5 for the intercept (73,), and treatment effect (z2,) level-2 error
variances, and 0 for the other parameter level-2 error variances, respectively. Bias and RMSE
were computed only for 7, and 72, because the population values were non-zero and relative
bias for the corresponding parameters can be obtained.

Consistent with expectation, level-2 error variance estimates of the within-series model
were biased across conditions. Relative bias were ranged from -.27 to .12, and from -.17 to .09
for 72, and 72, , respectively. Also, RMSE values ranged from .18 to .50 for 72, and from .12 to
.61 for 72, Interestingly, it was found that Bayesian estimation showed better accuracy
estimating the level-2 error variance than ReML. Figures 29 and 30 illustrate bias and RMSE
box plots for 73, and 7%, across ReML and Bayesian estimations. Overall, the marginal mean
bias of Bayesian estimation was close to zero for both 72, and t%,, whereas, the corresponding
values of ReML were near -.10 and -.15 for 73, and tZ,. In addition, as shown in Figure 30,
RMSE of 73, and 77, estimates for Bayesian estimation were considerably smaller than ReML
estimation. This finding was consistently found across simulation conditions.

The skewness and kurtosis of the level-1 error variance had a minimal effect on the
accuracy of level-2 error variance estimation. Also, estimation accuracy increased as the

numbers of the measurement occasions and participants increased.
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Figure 29. Box plots: Bias of the level-2 error variance for the within-series model across

estimation methods

RMSE of Level-2 Error Variance Estimates

0.6 -
Ly
73]
Z 04
T T
Intercept Treatment Effect
parameter

Estimation_Methods B ReML B MCMC

Figure 30. Box plots: RMSE of the level-2 error variance for the within-series model across

estimation methods
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Convergence Rate

The convergence rates for both within- and between-series models were computed across
replications. Also, ReML and Bayesian estimation convergence rates were computed as well.
Results showed that both within- and between-series models were 100% converged across
replications and simulation conditions when ReML estimation was used. However, when
Bayesian estimation method was used, average 96% convergence rate was observed across
simulation conditions. Note that, in the current study, convergence of Bayesian estimation was

determined based on Geweke’ statistics.

Follow-Up Study

For the between-series model, although minimal bias was produced across simulation
conditions, statistical inferences including Cl coverage rate, and Type | error were problematic.
For example, it was found that the between-series model yielded substantially lower CI coverage
rate than the nominal level for the treatment effect estimate. In addition, Type I error was
substantially inflated across simulation conditions. This finding was consistent when the level-1
error variance was normally distributed. Note that variance structure for the between-series
model in the current study was specified for homogeneous across the baseline and treatment
phases. However, the data generation model included the level-2 error variances for intercept and
treatment effect and fitting the data with the homogeneous variance model represents a form of
model misspecification. Based on the previous study (Ferron et al., 2014), the heterogeneous
variance structure can be specified for the between-series model and it seems worthwhile to

explore whether the between-series model would perform differently across non-normality
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conditions if the heterogeneous variance is specified. Thus, the follow-up study was conducted to
examine the performance of the between-series model with heterogeneous variance structure.

In the follow-up study, the same skewness (0, 1, 2, and 3) and kurtosis (-1, 0, 1, 2, and 4)
of the level-1 error variance conditions were considered to examine the effect of the non-
normality. Also, two sample size conditions (small [I = 10, J = 4], and large [I = 40, J = 8]) were
considered. Because ReML and Bayesian methods showed indistinguishable performance in the
earlier study, only ReML was used to estimate the heterogeneous variance between-series model
in the follow-up study. The data generation model and population values were the same as in the
earlier study. For the dependent variable of the follow-up study, bias, RMSE, CI coverage rate,
Cl width, power and Type | error of the treatment effect were computed. The number of the
replications was set as 3000 to keep the consistency.

Tables 3 and 4 show the comparisons of the homogeneous and heterogeneous variance
between-series models. Table 3 shows accuracy of the treatment effect estimation and inference
for the small sample size conditions, and Table 4 shows the corresponding values for the large
sample size conditions. Consistent with the homogeneous variance model, the heterogeneous
variance model produced the minimal bias across conditions. Also, RMSE of the treatment effect
estimate for the heterogeneous variance was comparable to the homogeneous variance model
results. Similar to the previous results, skewness and kurtosis of the level-1 error variance did not
have a significant effect. No substantial difference or pattern was observed as skewness and
kurtosis increased. However, as shown in both Tables 3 and 4, CI coverage rate was in the
acceptable ranges across simulation conditions for the heterogeneous variance model. In

addition, relatively wider CI width and lower statistical power were observed. Lastly, Type |
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error was well-controlled for the between-series model across simulation conditions when

heterogeneous variance structure was specified.

Table 3.
Homogeneous and Heterogeneous Variance Between-Series Models for the Small Sample Size
Condition (1 =20 & J =4)

Homogeneous Heterogeneous

Skew Kurt Bias RMSE Cov Wid Pwr TI Bias RMSE Cov Wid Pwr TI

0 -1 .023 1.10 .867 3.31 .299 .120 -.020 1.07 947 552 .122 .054
-.040 1.07 869 3.31 .268 .128 .010 1.06 .943 553 .134 .063
1 -.003 1.05 878 3.31 .275 .120 -.020 1.07 952 5.53 .127 .050
2 011 1.08 875 3.32 .285 .112 .016 1.06 .941 548 .128 .049
4 .000 1.07 .869 3.30 .284 .123 031 1.08 .949 5.70 .126 .057
1 -1 -.004 1.10 .861 3.30 .285 .118 -.020 1.06 .941 552 .128 .054
0 .000 1.05 .878 3.29 .284 .123 .001 1.07 950 5.73 .128 .059
1 .041 1.06 .878 3.30 .290 .124 011 1.05 .944 532 .149 .059
2 -.031 1.06 .881 3.31 .268 .123 -.025 1.09 947 5.72 .130 .057
4 011 1.04 .883 3.30 .277 .113 .005 1.03 .948 5.34 .135 .055
2 -1 .002 1.06 .872 3.32 .27/0 .122 -.016 1.05 .947 571 .111 .062
0 -.012 1.06 .873 3.31 .274 .129 .010 1.09 .943 551 .143 .059
1 -.033 1.07 872 3.30 .276 .132 -.018 1.05 .950 549 .111 .053
2 -.006 1.07 879 3.31 .288 .117 .000 1.05 .945 5.60 .149 .062
4 -011 1.06 .872 3.30 .279 .128 .023 1.05 .939 548 .153 .055
3 -1 .010 1.09 .863 3.31 .282 .129 -.012 1.04 .948 550 .125 .056
0 .022 1.05 .876 3.30 .280 .126 -.004 1.04 944 543 111 .047
1 -.009 1.03 .889 3.30 .265 .130 .023 1.06 943 5.46 .153 .053
2 .001 1.05 .886 3.31 .280 .120 034 1.06 947 5.62 .116 .055
4 -.015 1.05 .880 3.31 .267 .128 -.002 1.02 949 541 .134 .056

o

Note. | = number of measurement occasions, J = number of participants, Skew = skewness, Kurt
= kurtosis, RMSE = root mean square error, Cov = CI coverage rate, Wid = CI width, Pwr =
power, Tl = Type | error. Values in Bold are not in the acceptable CI coverage range (.942 and
.958).
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Table 4.
Homogeneous and Heterogeneous Variance Between-Series Models for the Large Sample Size
Condition (I =40 & J = 8)

Homogeneous Heterogeneous
Skew Kurt Bias RMSE Cov Wid Pwr TI Bias RMSE Cov Wid Pwr TI
0 -1 -.028 .697 .858 2.04 .487 .137 000 .684 .945 3.09 .255 .064
017 .686 .860 2.04 .508 .149 -001 .679 950 3.11 .251 .048
1 -.009 672 .875 2.04 .485 .136 -.004 683 .946 3.12 .254 .048
2 -.008 .683 .860 2.04 .491 .129 -009 .681 .949 3.12 .251 .049
4 -.002 .679 .870 2.04 .490 .128 013 .696 .942 3.07 .281 .051
1 -1 .004 .704 856 2.04 .493 .129 016 .695 .957 3.03 .307 .045
0 -.005 .683 .865 2.04 .480 .128 012 692 .946 3.12 .247 .051
1 .020 .689 .869 2.04 .498 .136 -016 .701 .944 3.08 .237 .056
2 -.002 .675 .868 2.04 .484 .141 -008 .680 .949 3.12 .241 .056
4 -.010 .688 .859 2.04 .472 .136 012 .688 .948 3.12 .257 .046
2 -1 .007 .688 .859 2.04 .482 .139 007 .647 .954 3.13 .244 .057
0 -.006 .691 .854 2.04 .469 .135 -019 701 .944 3.08 .233 .050
1 .013 .684 863 2.04 .500 .131 -003 .694 950 3.09 .311 .050
2 -.014 .686 .864 2.04 .481 .139 -013 .675 .948 3.08 .244 .046
4 -.005 .667 .870 2.04 .486 .150 007 .681 .946 3.13 .231 .051
3 -1 -.002 .668 .874 2.04 .493 .145 007 .690 .950 3.10 .263 .046
0 .003 .696 .858 2.04 .500 .142 004 693 .955 3.11 .302 .043
1 -.015 691 .861 2.04 .482 .129 013 .687 .946 3.10 .248 .060
2 .004 701 .859 2.04 .496 .144 009 .698 .948 3.13 .270 .062
4 -.019 .683 .864 2.04 .482 .136 -011 .683 .951 3.11 .236 .052

Note. | = number of measurement occasions, J = number of participants, Skew = skewness, Kurt
= kurtosis, RMSE = root mean square error, Cov = CI coverage rate, Wid = Cl width, Pwr =
power, Tl = Type | error. Values in Bold are not in the acceptable CI coverage range (.942 and
.958).
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CHAPTER FIVE: DISCUSSION

This chapter consists of summary of the study, findings, implications and applications for
the applied single-case researchers and methodologists. Then, limitation and future research are

further discussed.

Summary

The purpose of the study was to investigate the robustness of the within- and between-
series estimators for the non-normal MB studies. The parameters of the within- and between-
series models were estimated using two estimation methods: ReML and Bayesian. A Monte
Carlo study was conducted under the conditions where level-1 error variances were generated
from non-normal distributions manipulating skewness and kurtosis of the residuals’ distribution.
Fleishman’s (1978) power transformation method was used to manipulate skewness and kurtosis
of the distribution. Four modeling approaches were compared in the current study: a) two-level
within-series model with ReML estimation and Kenward-Roger inference (Model 1), b) two-
level within-series model with Bayesian estimation and inference (Model 2), c) between-series
model with ReML estimation and Kenward-Roger inference (Model 3) and d) between-series
model with Bayesian estimation and inference (Model 4).

The accuracy of parameter estimation and the statistical inference was systematically
analyzed. Primarily, estimation accuracy and statistical inference for the treatment effect

parameter of the fitted models were examined. Bias, relative bias, RMSE, CI coverage rates, ClI
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widths and statistical power/Type | error were computed as a function of specific design factors
(number of measurement occasions and participants) and non-normality factors (amount of
skewness, and kurtosis of the distribution).

A Monte Carlo study was designed to empirically evaluate the issues of violation of the
normality assumption under various conditions. Data were generated varying the numbers of
measurement occasions and participants, skewness and kurtosis of level-1 errors, and treatment
effect sizes. Three levels of number of measurement occasions (10, 20, and 40), two levels of
number of participants (4, and 8), four levels of skewness of the level-1 errors (0, 1, 2, and 3),
five levels of kurtosis of the level-1 errors (-1, 0, 1, 2, and 4) and two levels of treatment effect
sizes (0, and 1) were included. The conditions were chosen based on a preliminary survey of the
published MB data and previous simulation studies. The analysis factors included four levels of
modeling approaches (Models 1 - 4). Crossing all the data generation factors resulted in a total of
3 (number of measurement occasions) x 2 (number of participants) x 4 (level-1 error skewness) x
5 (level-1 error kurtosis) x 2 (treatment effects) = 240 simulation conditions. The simulation
study results were analyzed by computing bias, relative bias, RMSE, CI coverage rate, Cl width
and the statistical power/Type | error for the treatment effect parameter and bias and RMSE for

the other fixed effect and variance component parameters in the models.

Findings

Bias and RMSE of the Treatment Effect Estimate

The results of the study indicated that both within- and between-series models are robust
to the non-normality of the level-1 error variance structure. The bias of the treatment effect

estimate was consistently close to zero across various degrees of skewness and kurtosis. Relative
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bias also was less than 5% of the population parameter value across simulation conditions.
Similarly, RMSE of the treatment effect for the within- and between-series models was not
affected by the non-normality of the level-1 errors. RMSE of the within- and between-series
models, however, showed significant differences across conditions. The within-series model
continuously yielded smaller RMSE of the treatment effect estimate than the between-series
model. This finding is consistent with the previous study that compared the within- and between-
series estimators (e.g., Ferron et al., 2014).

In addition, ReML and Bayesian estimation methods were compared in the current study.
Based on the results of the study, no significant difference between two methods was found. Bias
and RMSE of the treatment effect estimates were indistinguishable across simulation conditions.
This finding can also be found in the previous research that compared ReML and Bayesian
estimations (Moeyaert et al., 2016). Note that Moeyaert et al. (2016) compared ReML and
Bayesian estimations using the two-level within-series model for MB data. Similar findings have
also been found when ReML and Bayesian estimates of the fixed effects of multilevel models
used with group designs have been compared for conditions where partially clustered data
(Baldwin & Fellingham, 2013) and dichotomous outcome (Browne & Draper, 2006) was used.

Consistent with expectations and previous research that has examined the within-series
model for single-case data structures with two levels (Ferron et al., 2009, 2010) and three levels
(Moeyaert et al., 2013a, 2013Db, 2014), treatment effect for both within- and between-series
models were more precisely estimated as the number of measurement occasions and participants
increased. More specifically, treatment effect of the within-series model was estimated more

accurately as both the numbers of measurement occasions and participants increased. Treatment
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effect of the between-series model, whereas, was more accurately estimated as only the number

of participants increased. This finding is consistent with the previous study (Ferron et al., 2014).

Cl Coverage Rate and CI Width of the Treatment Effect Estimate

ClI coverage rate and Cl width for the treatment effect were evaluated as a function of the
skewness and kurtosis in level-1 error variance structure. Overall, the within-series model
consistently showed acceptable CI coverage rate for both normal and non-normality conditions.
This implies that CI coverage rate is not affected by non-normality in level-1 error variance
structure and the within-series model is robust to the non-normality conditions. This finding is
consistent with the previous studies examined non-normality of the level-1 and 2 (Owens &
Farmer, 2013) and level-2 and 3 errors (Petit-Bois et al, 2013) in single-case data. Also, similar
result was found in the general multilevel modeling literature examined non-normality of the
level-2 errors using the robust standard error method (Mass & Hox, 2004).

However, the between-series model assuming homogeneous variances showed notably
lower CI coverage rate than the nominal level (.95). Across simulation conditions, none of Cl
coverage rates were in the acceptable ranges and this pattern was consistent even for the
condition where the level-1 errors were normally distributed. These results stand in contrast to
previous research that showed nominal level coverage for the between-series model estimates
when data were normally distributed (Ferron et al., 2014). Note that the between-series model
initially examined in the current study used the homogeneous variance structure across the
baseline and treatment phases, but the data generation model included not only baseline
observation variance across participants (tZ,) but also treatment effect variance across

participants (z2,). Given that the between-series model has the flexibility to estimate a
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heterogeneous variance structure for the baseline and treatment phases (Ferron et al., 2014), the
follow-up study was conducted to evaluate the between-series model under the non-normality
conditions when the heterogeneous variance model is specified.

The results of the follow-up study showed that the CI coverage rate was in the acceptable
range across simulation conditions, and consistent with the previous results, skewness and
kurtosis of the level-1 errors still did not affect Cl coverage rate. Cl coverage rate from the
follow-up study was comparable to that of the within-series model. This result implies that
reliable CI coverage rate can still be obtained using the between-series model for the non-normal
level-1 error conditions if the model is correctly specified. For ReML and Bayesian inference
methods, no significant difference was found in CI coverage rate. This result implies that
confidence intervals using the Kenward-Roger method are comparable to HPD intervals.

Consistent with CI coverage rate results, Cl widths results also showed no impact of the
skewness and kurtosis the level-1 errors. However, wider Cl width was consistently found from
the between-series model compared to the within-series model. Furthermore, as the number of
measurement occasions and participants increased, Cl width became narrower. This finding
implies that standard error decreased as the number of measurement occasions and participants
increased. The same pattern regarding CI width can also be found in the previous studies with

single-case simulation studies (e.g., Moeyaert et al., 2013a, 2014).

Statistical Power and Type | Error Rate of the Treatment Effect Estimate
In terms of statistical power to detect the treatment effect estimate, the within- and
between-series models were robust to the non-normality of the level-1 error variance. Similar to

the previous results, no distinct pattern was found across skewness and kurtosis conditions.
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Statistical power for the within-series model showed considerably higher than the between-series
model. In addition, statistical power for the within-series model increased as both number of
measurement occasions and participants increased, whereas that of the between-series model
increased only when the number of participants increased. Note these findings are consistent
with the previous study (Ferron et al., 2014). Similar to Cl coverage rate and width, ReML and
Bayesian methods did not show a significant difference in power across simulation conditions.

With regards to Type | error, the within-series model showed well-controlled Type I error
across skewness and kurtosis conditions. Type | error rates for the within-series model remained
close to the nominal level (.05) as both skewness and kurtosis increased. This result is
comparable to the results from the correctly specified within-series model as shown in previous
studies (e.g., Ferron et al., 2010). However, similar to the CI coverage rate and width results, the
between-series model with homogeneous variance showed the inflated Type I error rate. Type |
error rate was around .10 across simulation conditions. The follow-up study results, however,
showed that the between-series model with heterogeneous variance structure well-controlled
Type I error rate across non-normality conditions. The result is comparable to the previous study
with the correctly specified between-series model (Ferron et al., 2014).

ReML and Bayesian approaches also showed the similar result for Type I error control.
Both approaches showed considerably well-controlled Type I error rates ranged from .05 to .07
across conditions. Note that previous studies compared ReML and Bayesian estimations for
single-case context (e.g., Moeyaert et al., 2016) or multilevel modeling in general (e.g., Baldwin

& Fellingham, 2013) did not compare the Type | error or statistical power results.
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Bias and RMSE of the Parameters other than the Treatment Effect Estimate

In the current study, the bias and RMSE for the parameters other than the treatment effect
were computed. For the within-series model, bias and RMSE of the fixed effect parameters (i.e.,
intercept [yoo], time trend in baseline phase [y,,], and change in time trend with treatment
[¥30]), level-1 error variance (a2), and level-2 error variance for the intercept (z3,) and treatment
effect (z%,) were computed. For the between-series model, bias and RMSE of the level-1 error
variance (a2) were computed.

Overall, skewness and kurtosis of the level-1 error variance did not affect the accuracy of
the other fixed effect estimates in the within-series model. Relative bias results also showed less
than 5% bias of the population parameter across conditions. Both ReML and Bayesian methods
estimated the other fixed effect parameters with minimal bias across simulation conditions. As
expected, RMSE of the fixed effect estimates decreased as both number of measurement
occasions and participants increased. The bias and RMSE values for the fixed effect parameters
were similar to the previous within-series single-case studies (e.g., Ferron et al., 2009, 2010;
Moeyaert et al., 2013a, 2013b).

For the variance component estimates, as previous studies have shown, the estimates had
some bias, especially for the level-2 error variances (Moyeart et al., 2013a, 2013b). The within-
series model, however, showed relatively smaller bias for the level-1 error variance than the
between-series model that assumed homogeneous variance. This pattern was consistent for the
normal and non-normal level-1 error variance conditions. For the level-2 error variance estimates
of the within-series model, substantial bias and relative bias were found. However, interestingly,

the Bayesian method produced consistently smaller RMSE for the level-2 error variances for the
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intercept and treatment effect parameters in the within-series model. This finding can also be
found in the previous study with Bayesian single-case research (Moeyaert et al., 2016).

In sum, the current study found that estimation and inference for the treatment effect
using the within- and between-series models are robust to non-normality of the level-1 errors.
Minimal bias and relative bias of the treatment effect estimates were observed for both models.
ClI coverage rate was in the acceptable ranges with the within-series model and the
heterogeneous variance between-series model. Also, Type | error was well-controlled as the
normality of level-1 error was violated. The parameters other than the treatment effect in the
within-series model were also accurately estimated across simulation conditions. Finally, no
substantial difference was found between ReML with Kenward-Roger and Bayesian approaches
for the fixed effect estimates, whereas the Bayesian method outperformed ReML for the level-2

error variance estimation.

Implications

In practice, it is not uncommon to observe non-normality of data from MB studies.
Applied single-case researchers (e.g., Parker, 1996; Solomon, 2014) and methodologists (e.g.,
Shadish, 2014) have commented on this potentially problematic aspect of single-case data.
However, there has been only limited research to systematically verify the robustness of
statistical modeling approaches when data are not normally distributed. Owens and Farmer
(2013) examined the robustness to non-normality of the level-1 and 2 errors for the within-series
model using ReML. However, the robustness to non-normality for Bayesian estimation of single-
case research or the robustness of the between series model has not been investigated previously.

For this reason, this study was designed to provide practical information about how skewness
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and kurtosis of level-1 errors impact the accuracy of estimation and statistical inference for the
treatment effect parameter in within- and between-series models. In addition, this study
investigated how various conditions including the numbers of participants and measurement
occasions, and estimation methods (e.g., ReML and Bayesian) impact the performance of the
models. The results lead to several implications for applied single-case researchers who are
interested in the effect of interventions in MB studies, as well as for the methodologists who are

interested in statistical methods for analyzing MB studies.

Implications for the Applied Researchers

The current study has following implications for the applied single-case researchers.
First, it was found that both within- and between-series models are robust to the non-normality in
level-1 errors. One of the concerns that may arise with empirical MB data is the violation of the
normality assumption due to the scale of the measurement or outliers. However, based on the
results of the study, the within- and between-series models can estimate the parameters of the
models with precision even though the normality assumption is violated. Minimal bias of the
treatment effect estimate was observed, for the situations where skewness and kurtosis of the
level-1 errors ranged from 0 to 3 and -1 to 4, respectively. In addition, the other fixed effects in
the within-series model including intercept, time trend effects in baseline and change in time
trend with treatment were also estimated without substantial bias. These findings imply that
when applied researchers want to estimate treatment effects in their MB studies that the within-
and between-series models can be used even when the outcomes are non-normally distributed

with skewness in the level-1 errors as high as 3 and kurtosis as high as 4.
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Second, statistical inferences about the treatment effect in MB studies were often reliable
using the within- and between-series models, although the normality assumption is violated.
More specifically, acceptable Cl coverage rates and well-controlled Type | error rates were
observed for the within-series model and the between-series model when the models were
correctly specified. Similarly, statistical power was not affected by the non-normality of level-1
errors. However, the results of the study showed that unacceptable CI coverage rates and inflated
Type I error rates can be found if the variance structure of the between-series model is
misspecified. Although no substantial bias was observed for the between-series model with
homogeneous and heterogeneous variance structures, it is recommended that care be taken to
specify the variance structure accurately to obtain reliable statistical inference. More specifically,
if an applied researcher expects the treatment effect to vary across participants, the
heterogeneous variance structure across the baseline and treatment phases for the between-series
model is recommended.

Third, parameter estimation and inference of the within- and between-series models were
accurate with relatively small numbers of participants and measurement occasions. Based on the
study results, minimal bias and acceptable inference of the parameter estimates were still
observed with as low as four participants, and ten measurement occasions from both within- and
between-series models. In MB studies, it is common to find a relatively small number of
participants, and as a result, the accuracy of parameter estimates may concern researchers. Based
on the study results, it is encouraging that minimal bias and reliable inference can still be

obtained using the within- and between-series model under small sample size conditions.
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Implications for the Methodologists

The current study compared the performances of the widely-used within-series model and
the newly-proposed between-series model under various non-normality conditions. Based on the
results, correctly specified within- and between-series models are comparable in terms of
parameter estimation bias and accuracy of statistical inferences. The between-series model,
however, suffers from relatively lower statistical power and higher RMSE of parameter estimates
due to the small sample size. However, as Ferron et al. (2014) shown, the between-series model
effect estimates were not biased in circumstances where the within-series model effect estimates
were, particularly when the within-series model is misspecified as a result of event effects, such
as history, maturation, or instrumentation. By comparing the average treatment effect estimates
from the between- and within-series models researchers can potentially detect model
misspecification (Ferron et al., 2014). In addition, methodologists should also consider averaging
the treatment effect at multiple time points (e.g., 1, 2, and 3 observations after treatment) to get
more stability in the between-series estimate. Although in the current study, only one time point
after treatment was considered for the between-series model, one can obtain a more stable
estimate if multiple time point estimates were averaged. Ferron et al. (2014) showed that the
multiple time point between-series estimate has lower RMSE and higher power than the single
time point estimate. However, methodologists should also recognize issues with the multiple
time point approach including additional complexity of the model and practical limitations of
handling delayed treatment effects or limited time between intervention start points.

The current study also compared two estimation methods, ReML, and Bayesian
estimations. ReML is often used in practice because a number of statistical programs used ReML

as a default and it produces the results considerably faster than Bayesian estimation. Bayesian
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estimation, however, also has an advantage for estimating more complex models because it
incorporates prior distributions for the parameters of the model and sampling methods to obtain
posterior distributions. Interestingly, both ReML and Bayesian estimations showed
indistinguishable results for the fixed effect estimates. Both methods estimated the fixed effects
accurately and their inferences were identically precise. This finding implies that both ReML and
Bayesian methods are robust to the non-normality in the level-1 errors and they estimate fixed
effect parameters comparably well using the within- and between-series models. Given that the
current study used non-informative priors for the parameters in the models, this finding also
implies that non-informative prior of Bayesian estimation yields the identical fixed effect
estimates as ReML estimation. Although non-informative prior and ReML fixed effect estimates
were robust to the non-normality in level-1 error, methodologists should also consider
informative priors for the treatment effect in MB studies to increase precision. It is possible that
one can collect information about means and standard deviations or lower and upper boundaries
of the previous MB treatment effect estimates to determine the most appropriate informative
priors.

From the results of the study, the variance component estimates showed some
differences. As previous studies have shown, the variance components of the within-series model
have are biased using ReML estimation (e.g., Ferron et al., 2009, 2010; Moeyaert et al., 2013a,
2013b). Bayesian estimation has been considered as an alternative approach for the variance
component estimation in the context of single-case research because it allows researchers to
specify a prior distribution for the variance component (Moeyaert et al., 2016). From the current
study results, it was found that Bayesian estimation yielded more accurate estimates for the

level-2 variance components. Lower RMSE of the level-2 error variance for intercept and
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treatment effect in the within-series model was observed. Because of the prior specification in
the level-2 error distribution, Bayesian estimation results in better parameter estimates than
ReML when the sample size is limited. This finding suggests that Bayesian estimation should be
encouraged if a researcher is interested in estimating the level-2 error variance in single-case
research data. For example, if a researcher is interested in obtaining the standardized effect size
using the within- or between-series model, then less biased variance estimates should be used
and MCMC might be the more appropriate approach. In addition, methodologists should also
consider the small sample bias correction if the standardized effect size is of primary interest
because biased variance components tend to result in biased effect size estimates (Hedges,
Pustejovsky, & Shadish, 2012). Hedges et al. (2012) provides the small sample correction

approach for the standardized effect size in single-case research design.

Limitation and Future Research

There are several limitations in the current study. First, the study was conducted with
only limited ranges of the skewness and kurtosis of the level-1 error variance. As the results of
the study indicated, the within- and between-series estimators are robust to the degrees of
skewness and kurtosis examined. Those degrees of the skewness and kurtosis were chosen based
on a preliminary survey of published single-case research design data and also can be considered
as probable ranges for applied settings. However, it is possible for single-case research design
data to have more extreme degrees of skewness and kurtosis of the level-1 errors. The results
may be different if more extreme skewness or kurtosis of the level-1 errors was present. It is
worthwhile to investigate the performance of the within- and between-series models with

conditions where the level-1 errors were generated with more extreme skewness and kurtosis.
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Second, non-normality conditions in the current study design were only manipulated with
degrees of skewness and kurtosis assuming dependent variables are continuous. Non-normality,
however, may also occur if the scales of measurement are not continuous variables including
counts, proportions or percentages (Shadish et al., 2013). Past research has suggested using more
complex and sophisticated statistical models to fit those types of non-normal data. However,
limited studies investigated the efficacy of more complex statistical models when non-
continuous MB data are distributed as non-normal. Since fitting more complex models to MB
studies could create potential problems such as estimation with small sample sizes (Shadish,
Kyse, & Rindskopf, 2013) or misspecification of the underlying population distribution (Shadish,
Zuur, & Sullivan, 2014), more empirical-based research is needed to examine the efficiency of
more complex models to non-normal MB data.

Third, the current study investigated non-normality in only level-1 errors. Non-normality
in level-2 errors may occur in practical situations and only limited studies investigated this issue
(e.g., Owens & Farmer, 2013; Petit-Bois et al., 2013). The comparison of the within- and
between-series models in conjunction with non-normality in the level-2 error variances has not
been investigated. In addition, given that Bayesian estimation showed better results in estimating
the level-2 error variance in the current study, it would be interesting to examine ReML and
Bayesian estimations for the level-2 error variance when non-normality occurs in level-2 errors.
Future research can examine the performances of various statistical approaches by creating non-
normality in level-2 error distributions.

Lastly, when the within- and between-series models were estimated with Bayesian
estimation, only non-informative prior distributions were considered. As the current study

showed, similar results in the fixed effect estimates from ReML and Bayesian estimation were

111



found using non-informative prior distributions. A similar pattern was observed from the
previous studies as well (e.g., Baek, 2015; Moeyaert et al., 2016). Informative prior distributions
can be obtained from the meta-analysis of MB studies or survey of the published MB data. It is
also possible to assume different underlying prior distributions such as a student’s t or Cauchy
distribution for the fixed effect parameter, and uniform distribution, or (not inverse) Wishart
distribution for the variance component. More research is needed to examine the performance of
different prior distributions in Bayesian modeling with MB studies under various situations.
Nonetheless, the results of this study provide valuable information about how to deal with
non-normal MB data using the within- and between-series models, and ReML with Kenward-
Roger and Bayesian methods, which are being considered for single-case research. The author
hopes the study will allay concerns about the usefulness of the within- and between-series
treatment effect estimators and in doing so encourage the estimation and reporting of effect

estimates MB research.
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Table 5.

APPENDIX A. TABLES OF THE COMPLETE RESULTS

Relative Bias for the Treatment Effect
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number of measurement occasions, J = number of participants.
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Table 6.

RMSE for the Treatment Effect

1=10

20

40

J=4

J=8

J=4

J=38

J=4

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

Skew Kurt

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

0

[N
' '
NFRPOPRFRPMANPFPOPRPPANPORL,MADNEOPR

N
1

w
1

4

872
.842
.840
.846
.840
.848
.826
.847
.849
.837
.830
.831
.834
.854
.845
.843
.838
821
.838
.835

1.101
1.073
1.045
1.079
1.072
1.103
1.046
1.064
1.061
1.043
1.061
1.065
1.071
1.070
1.057
1.089
1.053
1.032
1.047
1.054

967
929
.935
943
.939
931
924
.930
949
933
931
.926
932
951
943
931
920
913
941
934

1.102
1.073
1.046
1.079
1.072
1.103
1.046
1.064
1.061
1.043
1.061
1.065
1.071
1.069
1.057
1.090
1.054
1.033
1.047
1.054

571
574
577
.567
574
576
577
575
570
.567
572
573
571
577
572
579
577
.581
574
.566

742
746
.753
.758
.758
.750
744
744
732
746
745
754
743
.756
759
745
157
162
142
.739

640
653
650
636
640
649
662
650
640
630
657
647
644
649
643
653
641
644
651
640

742
746
.753
.758
.758
.750
745
744
732
746
.746
754
744
.756
.760
745
757
762
743
.740

.567
572
574
577
581
.590
576
567
573
.582
.581
.581
.588
.585
576
.584
574
.585
.567
.568

.940
.946
.956
.946
.959
.964
.945
961
.956
.949
.969
.938
.954
.963
961
975
.969
.963
.952
.962

.628
622
.632
.629
.631
.645
632
626
627
640
.632
.630
.646
628
632
643
637
.640
.616
.616

.940
947
.956
.946
.959
.965
.945
.961
.957
.949
.968
.938
.954
.963
.962
975
.969
.964
.953
.962

404
401
405
400
402
405
.406
404
.400
402
406
397
400
.400
405
405
411
400
406
.399

.676
.694
.680
.674
.686
.680
.687
.687
.680
.681
.679
.673
.680
.683
.688
.665
.686
.675
672
.678

438
437
447
445
442
445
446
443
445
439
447
440
438
439
440
443
453
444
451
436

675
.694
.680
675
.685
.680
.688
.688
.681
.681
.679
.673
.680
.683
.688
.665
.686
675
672
678

464
464
469
463
.466
476
465
463
465
.466
.468
470
463
457
468
464
464
463
469
465

.967
.984
970
.954
.960
.996
973
.963
975
973
.955
.989
.965
.987
.986
.987
973
977
.969
.962

503
.505
507
.504
.503
518
511
.506
.504
.506
.509
.505
.505
498
.506
.505
.502
.506
511
511

.967
.984
971
.954
.960
.996
973
.963
975
973
.955
.990
.966
.988
.986
.988
974
978
970
.962

.339
327
324
316
.326
.330
.326
321
.329
.335
.330
.326
322
.330
.330
324
.333
.326
335
324

.697
.686
672
.683
.679
.704
.683
.689
.675
.688
.688
.691
.684
.686
.667
.668
.696
.691
.701
.683

351

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =

number of measurement occasions, J = number of participants.

123



Table 7.

ClI coverage Rate for the Treatment Effect

1=10

1=20

1=40

J=4

J=

8

J=4

J=

8

=4

J=

8

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

Skew Kurt W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

0 937
.953
.950
.945
.944
.945
.952
.944
.945
.946
.949
947
.956
943
.945
.950
.948
.950
.949
4 .950

[SN
1 1
NP ORMNMNRPORDMNREPORLRMANEREROLPR

N
1

w
1

.867
.869
878
875
.869
.861
.878
878
.881
.883
872
873
872
.879
872
.863
.876
.889
.886
.880

.935
.945
.944
.940
941
947
942
.944
.939
.940
.944
947
.946
.940
.942
943
947
.949
.939
947

.857
.859
872
.862
.859
.847
.868
872
.869
873
.863
.866
.863
.867
.863
.853
.865
877
873
871

951
.949
947
953
953
.948
.952
.949
.954
953
957
.946
.950
.948
.948
.945
951
.949
.955
.956

.884
.882
.881
.870
.876
874
.886
877
.891
.884
.885
.879
.881
.878
.875
.876
871
873
.886
.887

943
943
943
.946
.948
.946
942
943
.949
.952
942
947
.944
.949
.950
.944
951
.946
.948
.945

879
877
875
.866
.870
.868
.878
873
.883
.881
.879
.869
.879
871
871
872
.866
.868
.876
.886

942
.948
.946
942
.945
943
.939
942
.946
.940
.939
.936
.938
933
.942
.938
943
933
947
.939

.882
871
878
874
875
871
.879
873
.869
.866
871
.880
.867
.866
872
.859
872
.869
.868
872

.939
943
941
.939
.938
.930
.940
.945
942
.936
.938
.940
937
932
937
931
.938
937
.946
943

.870
.864
873
.863
.869
.865
871
.862
.864
.859
.862
873
.861
.860
.865
.854
.866
.861
.860
.865

947
947
.948
943
.944
.945
941
941
951
.949
.949
951
951
.953
941
941
.936
.949
941
.949

871
.857
872
871
.868
.867
874
.869
874
.867
872
.876
874
871
873
.883
871
.878
874
871

941
934
933
.935
.938
.935
937
.938
937
.939
.924
.936
942
942
937
933
922
.935
934
.935

.869
.852
.867
.868
.864
.867
.865
.868
872
.863
.867
873
872
.870
.870
.878
.866
.875
.869
.865

934
.935
.936
934
934
928
.930
937
933
941
.936
.934
.934
943
.928
.930
933
.936
937
931

.864
.864
.861
871
.865
.869
.858
.860
.849
.862
.863
.856
.861
.862
.861
.861
.864
.863
.852
.868

937
929
933
.936
941
929
929
934
933
.938
937
931
.938
942
931
.930
933
.936
929
.933

.863
.861
.856
.864
.857
.862
.854
.854
.844
.858
.855
.852
.858
.856
.859
.855
.857
.859
.848
.863

932
.945
947
.950
947
943
.946
953
941
937
.940
.944
.945
933
.938
.946
942
.944
944
.943

.858
.860
.875
.860
.870
.856
.865
.869
.868
.859
.859
.854
.863
.864
.870
874
.858
.861
.859
.864

916
.935
.928
.934
927
923
919
925
.926
919
922
925
.934
919
922
.920
921
927
914
.930

.855
.855
873
.858
.867
.853
.857
.862
.861
.851
.853
.844
.861
.856
.866
.868
.854
.855
.855
.863

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =
number of measurement occasions, J = number of participants. Values in Bold are in the unacceptable range [.942 ,.958].
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Table 8.

Cl Width for the Treatment Effect

1=10

1=20

1=40

J=4

J=38

J=4

J=

8

=4

J=

8

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

Skew Kurt W

B

W

B W

B W

B W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

0 3.69
3.65
3.66
3.63
3.64
3.62
3.62
3.64
3.64
3.61
3.64
3.67
3.65
3.62
3.62
3.68
3.60
3.61
3.63
4 3.67

[SN
1 1
NP ORMNMNRPORDMNREPORLRMANEREROLPR

N
1

w
1

3.31
3.31
3.31
3.32
3.30
3.30
3.29
3.30
3.31
3.30
3.32
3.31
3.30
3.31
3.30
3.31
3.30
3.30
3.31
3.31

3.67
3.67
3.67
3.67
3.67
3.67
3.67
3.66
3.68
3.67
3.68
3.67
3.67
3.67
3.66
3.67
3.67
3.67
3.67
3.68

3.22
3.22
3.22
3.22
3.21
3.21
3.21
3.22
3.22
3.21
3.23
3.22
3.21
3.22
3.21
3.21
3.21
3.21
3.22
3.22

2.33
2.33
2.32
2.33
2.33
2.32
2.33
2.32
2.33
2.33
2.33
2.33
2.32
2.32
2.33
2.33
2.32
2.32
2.34
2.33

2.35 2.54
2.35 2.53
2.35 2.54
2.34 2.53
2.35 2.53
2.35 2.53
2.35 2.53
2.34 2.53
2.35 2.54
2.35 2.54
2.35 2.54
2.35 2.54
2.35 2,53
2.35 2.53
2.35 2.53
2.35 254
2.35 2.54
2.35 2,53
2.35 2,53
2.35 2.53

2.32
2.32
2.32
231
231
231
231
231
2.32
2.32
2.32
2.32
2.32
2.32
2.32
2.32
2.32
2.31
2.32
2.32

2.60
2.62
2.64
2.57
2.60
2.63
2.61
2.58
2.64
2.62
2.61
2.58
2.63
2.64
2.60
2.61
2.60
2.58
2.63
2.62

2.94
2.94
2.94
2.93
2.93
2.94
2.94
2.94
2.94
2.93
2.94
2.93
2.94
2.93
2.94
2.94
2.94
2.94
2.93
2.93

242
242
2.43
242
242
242
242
242
2.43
242
241
241
2.43
242
242
242
241
241
241
241

2.89
2.89
2.89
2.88
2.89
2.89
2.89
2.89
2.89
2.88
2.89
2.88
2.89
2.89
2.89
2.89
2.89
2.89
2.89
2.89

1.64
1.64
1.65
1.64
1.64
1.64
1.63
1.63
1.65
1.66
1.65
1.64
1.64
1.64
1.64
1.65
1.64
1.64
1.63
1.65

2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08

1.66
1.67
1.66
1.66
1.66
1.66
1.66
1.66
1.66
1.67
1.66
1.66
1.67
1.66
1.66
1.67
1.66
1.66
1.66
1.66

2.06
2.06
2.06
2.06
2.06
2.06
2.06
2.06
2.06
2.06
2.06
2.06
2.06
2.06
2.06
2.06
2.06
2.06
2.06
2.06

2.28
2.22
2.26
2.25
2.25
2.24
2.25
2.26
2.24
2.25
2.26
2.27
2.26
2.27
2.25
2.26
2.26
2.26
2.24
2.23

2.88
2.88
2.88
2.88
2.88
2.88
2.88
2.88
2.88
2.88
2.88
2.88
2.88
2.88
2.88
2.88
2.88
2.88
2.88
2.88

191
191
191
191
191
191
191
1.92
1.92
1.92
191
191
191
191
191
1.92
1.92
191
1.90
1.91

2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85

1.37
1.36
1.37
1.37
1.37
1.36
1.37
1.37
1.36
1.37
1.36
1.38
1.36
1.37
1.36
1.37
1.37
1.37
1.36
1.37

2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.04

1.30
1.30
1.30
1.30
131
1.30
1.30
1.30
1.29
1.30
1.29
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30

2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =

number of measurement occasions, J = number of participants.
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Table 9.

Statistical Power for the Treatment Effect

1=10

J=4

J=8

J=4

J=38

J=4

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

Skew Kurt

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

0

[N
' '
NFRPOPRFRPMANPFPOPRPPANPORL,MADNEOPR

N
1

w
1

4

.208
.185
.189
.186
.189
197
191
.207
181
187
191
.188
176
.207
211
199
201
192
192
.188

.299
.268
275
.285
.284
.285
.284
.290
.268
277
270
274
276
.288
279
.282
.280
.265
.280
.267

.200
.189
197
.189
199
191
.196
197
.196
190
.190
.200
184
201
212
192
187
193
.190
202

313
.284
.288
.302
297
.304
.298
.306
.280
.289
.285
293
.290
.300
291
.298
.300
281
292
.284

.376
.384
397
.390
.380
.394
.386
403
.390
406
.382
394
376
.385
.383
402
.387
409
393
.383

.388
404
417
407
411
410
409
421
414
427
412
419
411
.396
420
403
402
419
419
414

.326
.338
341
333
329
342
347
.353
332
347
347
347
327
.346
.340
.358
320
.346
.345
.326

395
413
424
419
423
417
415
432
423
434
421
423
424
404
426
413
411
426
425
425

.339
.365
331
.365
.352
.349
.343
.357
.333
.358
.329
.361
341
.348
.342
.353
.340
.363
.336
.338

.315
319
324
.318
313
.309
314
313
.305
.318
310
311
334
.326
.303
.328
319
317
312
322

.355
.381
.364
.369
377
377
371
378
.359
379
.364
.363
.345
375
.367
.367
370
391
.362
.376

323
.330
.329
332
321
317
.328
.326
313
.326
.320
323
342
.338
311
.337
331
324
322
331

.665
.675
.667
.658
.666
.649
.662
.666
.648
.647
.647
.657
.662
.669
.650
.658
677
.656
.666
.660

473
482
476
484
486
471
470
474
477
473
465
474
491
470
462
.465
478
458
482
487

.659
.655
.650
.640
.652
627
.645
.647
.638
.646
.639
.644
.638
.652
635
.644
.660
.650
.647
.644

479
492
483
489
495
476
477
AT7
483
480
475
481
496
481
469
471
485
464
490
490

443
.460
442
461
450
.458
435
463
452
446
450
430
441
433
436
441
443
458
447
452

.343
.338
325
329
.339
331
.329
.318
.336
322
324
317
.343
.309
.320
.330
351
.305
334
.323

528
537
525
547
.554
539
521
535
.536
535
.528
.528
513
531
532
533
529
537
534
.540

.348
.342
331
.336
.346
.336
.335
323
341
.330
333
325
.350
311
.326
.337
.361
.310
.343
331

.796
811
.805
.804
821
.802
.823
.826
.804
792
.817
.813
.824
.804
.813
.819
.806
.813
.801
.800

487
.508
485
491
490
493
.480
498
484
472
482
469
.500
481
.486
493
.500
482
496
482

.825

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =

number of measurement occasions, J = number of participants.
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Table 10.

Type | Error for the Treatment Effect

1=10

J=4

J=8

J=4

J=38

J=4

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

Skew Kurt

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

0

[N
' '
NFRPOPRFRPMANPFPOPRPPANPORL,MADNEOPR

N
1

w
1

4

.050
.052
.050
.046
.054
.047
.052
.050
.054
.053
.044
.048
.057
.053
.052
.050
.045
.054
.055
.055

120
128
120
112
123
118
123
124
123
113
122
129
132
117
128
129
126
.130
120
128

.055
.044
.065
.051
.055
.051
.058
.054
.059
.053
.056
.052
.062
.057
.053
.051
.053
.058
.055
.058

131
138
130
121
133
128
132
138
135
127
130
139
144
124
142
138
135
141
126
138

.047
.043
.051
.050
.055
.054
.047
.048
.048
.055
.044
.053
.049
.052
.050
.046
.056
.052
.045
.053

JA21
115
122
133
135
131
119
114
119
123
J11
122
120
.120
118
115
125
123
123
123

.054
.055
.051
.057
.055
.059
.057
.053
.053
.057
.050
.057
.055
.056
.053
.050
.054
.054
.049
.059

125
117
127
137
.140
138
126
118
125
128
116
126
125
125
122
123
129
128
129
128

.051
.054
.059
.051
.057
.061
.059
.054
.057
.056
.049
.058
.059
.061
.049
.050
.059
.051
.062
.054

132
123
134
A21
.140
128
131
27
431
134
131
133
124
137
.140
122
128
133
133
124

.065
.062
.065
.068
.063
.067
.064
.070
.058
071
.065
.062
.068
.068
.063
.054
.070
.064
.060
.065

141
128
137
128
144
133
.136
133
.140
142
142
141
130
142
143
127
134
142
144
129

.058
.049
.055
.051
.057
.052
.057
.049
.056
.058
.057
.049
.060
.055
.051
.049
.055
.059
.052
.061

J21
122
142
122
125
126
27
133
137
123
120
132
119
.136
118
124
118
124
128
.138

071
.061
.066
.064
074
.061
.075
.065
.075
.068
.073
.070
.070
.065
.065
.068
074
071
072
.078

126
123
144
128
127
133
132
139
139
130
126
133
123
142
122
129
123
129
133
138

.064
.065
.064
.062
.066
.065
.068
.065
.064
.068
.072
.064
.072
.058
.063
.065
.064
.061
.056
071

141
139
147
431
141
133
132
135
.136
141
132
136
134
129
141
126
133
132
.146
.149

.068
.070
.067
.074
.065
.070
.065
.064
.070
.067
072
.070
.073
.067
.060
.066
.066
.067
.062
074

144
144
151
135
.148
137
138
144
141
144
138
142
141
135
147
130
.136
139
.149
154

.059
.063
.060
.059
.056
.060
.057
.049
.049
.059
.061
.054
.051
.057
.059
.061
.058
.059
.060
.060

137
.149
136
129
128
129
128
.136
141
.136
139
135
431
139
.150
.145
142
129
144
136

.083

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =

number of measurement occasions, J = number of participants.
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Table 11.

The Treatment Effect Parameter Estimate

1=10

1=20

1=40

J=4

J=

8

J=4

J=

8

=4

J=

8

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

Skew Kurt w

B

W

B W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

W

B

0 1.03

.98
1.00
1.00
1.01
1.00
1.01
1.02

.98
1.00
1.00
1.00

.96
1.01
1.03
1.01
1.01
1.02
1.00
4 1.00

[SN
1 1
NP ORMNMNRPORDMNREPORLRMANEREROLPR

N
1

w
1

1.02
.96
1.00
1.01
1.00
1.00
1.00
1.04
97
1.01
1.00
.99
97
.99
.99
1.01
1.02
.99
1.00
.99

1.02
.98
1.02
.99
.99
1.00
1.01
1.02
.99
1.00
.99
1.00
.98
1.00
1.03
.99
1.02
1.01
.99
1.01

1.02
.96
1.00
1.01
1.00
1.00
1.00
1.04
97
1.01
1.00
.99
97
1.00
.99
1.01
1.02
.99
1.00
.99

.99
1.00
1.00
1.00

.99
1.00
1.00
1.02
1.00
1.02
1.00
1.01

.98
1.00
1.01
1.02

.99
1.01
1.01

.99

.99
1.00
1.00

.99
1.00
1.00
1.00
1.02
1.02
1.01
1.01
1.01
1.01

.99
1.01
1.01

.98
1.01
1.01
1.01

.98
1.00
1.01
1.00

.99

.99
1.00
1.01
1.00
1.01
1.00
1.01

.99
1.00
1.00
1.02

.99
1.00
1.00

.98

.99
1.00
1.00

.99
1.00
1.00
1.00
1.02
1.02
1.01
1.01
1.01
1.01

.99
1.01
1.01

.98
1.01
1.01
1.01

.99
1.01
1.00
1.00
1.00
1.00

.99
1.01

.99
1.02

.98
1.00
1.00
1.02

.99
1.00

.98
1.01

.99

1.00
1.02
1.01
1.02
.99
1.01
1.01
1.00
97
1.03
.98
1.01
1.02
1.03
.98
1.02
.99
1.03
.98

.99
1.01
1.00
1.00
1.00
1.00

.99
1.01

.98
1.01

.98
1.00
1.00
1.01

.98
1.00

.99
1.01

.99

.99
1.02
1.01
1.02

.99
1.01
1.01
1.00

97
1.03

.98
1.01
1.02
1.03

.98
1.02

.99
1.03

.98

1.00 1.00 1.00 1.00

1.01
1.00
1.01

.99
1.00

.99
1.00
1.00

.99
1.00

.99
1.00
1.00
1.00

.99

.99
1.02
1.00
1.00
1.00

1.00
1.01
1.00
.99
1.02
.99
.99
.99
1.00
1.02
.98
1.00
1.00
1.01
.99
.98
.99
1.00
1.00
1.00

1.01
1.00
1.00
.99
1.00
.98
1.00
1.00
.99
1.00
.99
.99
1.00
1.00
.99
1.00
1.02
.99
1.01
1.00

1.00
1.01
1.00
.99
1.02
.99
.99
.99
1.00
1.01
.98
1.00
1.00
1.01
.99
.98
.99
1.00
1.00
1.00

1.00
1.00
1.00
1.01
1.01
1.00
.98
1.01
1.01
.99
1.00
.99
.99
.99
.99
1.01
1.00
.99
1.00
1.00

1.01
1.01
.98
.99
1.01
1.00
1.03
.99
1.01
.99
1.00
.99
1.01
.98
.99
1.02
1.02
97
1.01
1.01

1.00
.99
.99

1.00

1.00

1.00
.98

1.01

1.00
.99

1.00
.99
.98
.98
.99

1.01

1.00
.99
.99

1.00

1.01
1.01
.98
.99
1.01
1.00
1.02
.99
1.01
.99
1.00
.99
1.01
.98
.99
1.02
1.02
97
1.01
1.01

.99
1.01
1.01

.99
1.00
1.00
1.01
1.01

.98

.99
1.00
1.00
1.01
1.00
1.00
1.00
1.01
1.00
1.00

.99

97
1.02
.99
.99
1.00
1.00
1.00
1.02
1.00
.99
1.01
.99
1.01
.99
1.00
1.00
1.00
.99
1.00
.98

.99
1.00
1.01
1.00
1.00
1.00
1.01
1.01

.98

.99
1.00
1.00
1.01
1.00
1.00
1.00
1.00
1.00
1.00

99

97
1.02
.99
.99
1.00
1.00
1.00
1.02
1.00
.99
1.01
.99
1.01
.99
1.00
1.00
1.00
.99
1.00
.98

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =

number of measurement occasions, J = number of participants.
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Table 12.
Bias of Intercept Parameter Estimate in the Within-Series Model

1=10 1=20 1=40

J=4 J=8 J=4 J=8 J=4 J=8

Skew Kurt ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC

0 -1 .001 .001 -.006 -.007  .006 .005 -.006 -.003 -.004 -003  .003 .005
o -.009 -009  -.004 -005 -.005 -003  -.004 -006 -.001 -005 -.004 -.007
1 -.006 -004  -.005 -.004 -.004 -.005  .000 -001 -.003 -005  .002 .002
.006 005 -.005 -005 -.002 -.004  .003 .000 -.002 -003 -.002 -.001
4 .007 .003 -.004 -.003  .007 .008  .002 .002  -.007 -008  .002 .002
1 -1 -.002 -001 -.002 -002 -.014 -.014 -.004 -005 -.010 -010  .009 011
0 .005 .003  .006 .007  .000 -002  .003 .002 -.003 -.007 -.008 -.009
1 .008 .006 -.003 -006 -.013 -.014 -.002 -002 -.015 -019  .007 .006
2 -.016 -011  .010 .008  -.007 -.008 -.004 -.004  -.007 -010  .009 .007
4 .005 005  .002 .002 -.003 -.004 -.002 .000  .007 .008  .003 .003
2 -1 -.012 -012 -.003 -.002 -.006 -003  .002 002 .011 .010 -.007 -.008
0 .000 -003  .005 .003  .008 005 011 .009  .004 .004  .002 .000
1 -011 -006 -.018 -017 -.012 -009 -.004 -002  .009 .006 -.001 .000
2  .005 .001 -.001 .000 .012 .009  .003 .003 -.006 -.008  .002 .004
4 .009 .009 -.001 -003  .012 010 .001 .000 .008 .007  .001 .002
3 -1 -.006 -008  .004 .006  .000 -.004 -.008 -006  .005 .005 -.001 -.002
0 -.006 -004  .004 006 -.004 -.003  .008 .010 .014 .012  .000 -.002
1 .005 004 011 009  .006 .004 -.004 -007  .002 .007  .003 .001
2 -011 -012 -.007 -.008 -.008 -006  .001 .003 -.004 -.007  .000 .000
4 .004 .007 -.006 -009  .007 006  .000 -001 -.011 -012 -.001 .001

N

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =
number of measurement occasions, J = number of participants.
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Table 13.
RMSE of Intercept Parameter Estimate in the Within-Series Model

1=10 1=20 1=40

J=4 J=8 J=4 J=8 J=4 J=8

Skew Kurt ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC

0 -1 481 493 330 336 427 447 303 315  .395 412 274 285
0 493 204 342 354 424 444 303 316 .394 410 283 297
1 .460 473 335 346 427 443 303 315  .394 410 276 290
484 495 341 351 427 446 308 318 404 421 288 298
4 475 486  .336 346 427 444 307 319 387 406 279 286
1 -1 469 482 336 344 440 460  .305 321 .399 415 279 290
0 491 506  .336 348 439 455 302 315 407 422 285 295
1 484 497 341 349 425 445 300 315  .400 416 293 302
2 .469 486  .338 348 435 454 300 311 .407 428 277 290
4 485 499 338 348 438 454 302 310 400 416 .283 293
2 -1 477 491 329 339 442 456 307 321 .395 412 281 293
0 479 491 335 342 431 446 302 315 402 422 288 .300
1 473 491 333 345 437 454 303 315 .397 417 276 290
2 479 498 335 344 438 457 298 310  .389 405 281 292
4 486 494 339 348 434 451 302 311 400 417 279 290
3 -1 482 495 338 349 431 449 308 321 .399 412 285 295
483 499 332 339 444 459 303 316 .397 415 281 293
480 490 342 349 437 455 310 319 404 421 283 295
473 485 341 348 428 445 300 313 .39 412 281 293
4 476 491 335 344 445 460  .307 319 397 412 285 295

N

N — O

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =
number of measurement occasions, J = number of participants.
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Table 14.
Bias of Time Effect in the Baseline Phase in the Within-Series Model

1=10 1=20 1=40

J=4 J=8 J=4 J=8 J=4 J=8

Skew Kurt ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC

0 -1 -.002 -002  .003 .004  .001 .002  .000 -.001  .000 .000  .000 .000
.002 001 002 .002  .000 -001 000 .001  .000 .001  .000 .000
1 -.002 -004  .000 -001  .000 .001  .000 .001  .000 .001  .000 .000
2 -.001 .000 .001 .000 -.001 -001  .001 .001  .000 .000  .000 .000
4 -.002 .001 .001 .001  .000 .000  .000 -001  .000 .000  .000 .000
1 -1 -.001 -002  .000 .001 .001 .001  .001 .001  .000 .000  .000 -.001
0 -.004 -002  .001 .001  .000 .001  .000 .000  .000 .001  .000 .000
1 -.003 -002 -.003 -001  .000 .000  .000 .000  .000 .000  .000 .000
2 .004 .001  .000 .001  .000 .001  .000 .000  .000 .000  .000 .000
4 -001 -001 -.001 -001 -.001 .000 .001 .000 .001 .000  .000 .000
2 -1 .003 .003  .000 .000 .001 .001  .001 .001  .000 .000  .000 .000
0 -.002 -001 -.003 -001 -.001 .000 -.001 .000  .000 .000  .000 .000
1  .006 .003  .005 .004  .001 -001  .001 .001  .000 .001  .000 .000
2 -.003 -001  .000 -001 -.002 .000  .000 .000  .000 .001  .000 .000
-.004 -004 -.003 -001  .000 .001  .000 .000  .000 .000  .000 .000
3 -1 -.001 .001 -.002 -003  .000 .001  .000 .000  .000 .000 .000 .000
.001 .000 .001 .000 .001 .000 -.001 -.002  .000 .000 .000 .000
-.004 -003 -.002 .000  .000 .001  .000 001 .001 .000  .000 .000
.001 .001  .000 .000 .000 -001  .000 -001  .000 .001  .000 .000
4 -.003 -005 .001 .003  .000 .000 -.001 .000  .000 .001  .000 .000

o

o

N — O

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =
number of measurement occasions, J = number of participants.
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Table 15.
RMSE of Time Effect in the Baseline Phase in the Within-Series Model

1=10 1=20 1=40

J=4 J=8 J=4 J=8 J=4 J=8

Skew Kurt ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC

0 -1 141 164 .095 110 .055 071 .032 .045 .000 .032  .000 .000
0 138 161 .095 110 055 071 032 .045 .000 .032  .000 .000

1 138 161 095 110 .055 071 .032 .045 .000 .032  .000 .000

138 161 .095 110 .055 071  .032 .045 .000 .032  .000 .000
4 138 161 .095 110 .055 071  .032 .045 .000 .032  .000 .000

1 -1 138 161 095 110 .055 071 .032 .045 .000 .032  .000 .000
0 138 161 .095 114 .055 071  .032 .045 .000 .032  .000 .000

1 138 161 095 110 .055 071 .032 .045 .000 .032  .000 .000

2 138 161 095 110 .055 071 .032 .045 .000 .032  .000 .000

4 141 164 .095 110 .055 071  .032 .045 .000 .032  .000 .000

2 -1 134 161 .089 110 .055 071 .032 .045 .000 .032  .000 .000
0 138 161 .095 110 .055 071  .032 .045 .000 .032  .000 .000

1 134 161 .095 110 .055 071  .032 .045 .000 .032  .000 .000

2 138 161 095 114 .055 071 .032 .045 .000 .032  .000 .000

138 161 .095 110 .055 071  .032 .045 .000 .032  .000 .000

3 -1 138 161 095 110 .055 071 .032 .045 .000 .032  .000 .000
138 161 .095 110 .055 071 .032 .045 .000 .032  .000 .000
134 158  .095 110 .055 071  .032 .045 .000 .032  .000 .000
138 161 095 110 .045 071 .032 .045 .000 .032  .000 .000
4 138 164 .095 110 .055 071  .032 .045 .000 .032  .000 .000

N

N — O

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =
number of measurement occasions, J = number of participants.
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Table 16.
Bias of Time Effect in the Treatment Phase in the Within-Series Model

1=10 1=20 1=40

J=4 J=8 J=4 J=8 J=4 J=8

Skew Kurt ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC

0 -1 .003 .002 -.001 -001 -.001 -001  .000 .001  .000 .000  .000 .000
o -.001 -001  -.002 -002  .000 001 000 .000  .000 .000  .000 .000
1 .005 .009  .005 .005  .000 .000 -.001 -.002  .000 -001  .000 .000
2 -.001 -004 -.001 -001  .001 001 -.001 -.003  .000 .000  .000 .000
4 -.005 -012 -.002 -003  .000 -001  .001 .001  .000 .000  .000 .000
1 -1 .003 .003 -.001 -003 -.002 -.002 -.001 .000  .000 .000  .000 .000
0 .003 .005 -.002 -001  .000 -002  .001 .001  .000 -001  .000 .000
1 .000 .001  .004 .002 -.001 -001  .000 .001  .000 -001  .000 .000
2 -.004 .001  .001 -003  .000 -001  .000 .000  .000 .000  .000 -.001
4 -.003 -002  .001 .000 -.001 -.002  .000 .000  .000 .000  .000 .000
2 -1 -.002 -003 -.001 .000 -.001 -.002  .000 .000  .000 .000  .000 .000
.003 .002  .003 .002  .001 .000 .001 .000  .000 .000  .000 .000
-.001 .001 -.002 -001 -.001 .000 -.002 .000 -.001 .000  .000 .000
.001 .002  .001 .002 .001 -001  .000 -001 -.001 -001  .000 .000
.004 .007  .002 .000 .001 -.002  .000 -001  .000 -001  .000 .000
3 -1 -.001 -004  .002 .003  .000 -002 -.001 .001  .000 .000 .000 .000
.003 .002 -.002 -001 -.001 .001  .000 .002 -.001 -001  .000 .000
.001 .001 .001 -001  .001 .000 -.001 -.003  .000 .000  .000 -.001
.002 -002 -.001 -004  .001 .001  .001 .002  .000 .000  .000 .000
4  .003 .007 -.002 -006  .000 -001  .000 .000  .000 .000  .000 .000

A N - O

N — O

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =
number of measurement occasions, J = number of participants.
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Table 17.
RMSE of Time Effect in the Treatment Phase in the Within-Series Model

1=10 1=20 1=40

J=4 J=8 J=4 J=8 J=4 J=8

Skew Kurt ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC

0 -1 .205 261 134 173 071 100 .045 071 .032 .032  .000 .032
o 210 263 134 173 071 100 045 071  .032 .032  .000 .032

1 .205 257 130 173 071 100 .045 071 .032 .032  .000 .032

200 253 .130 173 071 100  .045 071  .032 .032  .000 .032
4 205 259 134 173 071 100  .045 071  .032 .032  .000 .032

1 -1 .207 257 138 176 071 100 .045 071 .032 .032  .000 .032
0 .200 253 134 179 071 100  .045 071  .032 .032  .000 .032

1 .207 259 134 176 071 095 045 071 .032 .032  .000 .032

2 .205 257 134 173 071 100 .045 071 .032 .032  .000 .032

4 205 259 134 173 071 100  .045 071  .032 .032  .000 .032

2 -1 .200 261 130 173 071 100 .045 071 .032 .032  .000 .032
0 .202 253 141 179 071 100  .045 071  .032 032  .000 .032

1 .207 261 134 176 071 100  .045 071  .032 032  .000 .032

2 .207 259 138 179 071 100 .045 071 .032 .032  .000 .032

200 253 134 176 071 100  .045 071  .032 032  .000 .032

3 -1 207 257 134 176 071 100 .045 071 .032 .032  .000 .032
207 259 134 173 071 100 .045 071 .032 .032  .000 .032
202 257  .138 176 071 100  .045 071  .032 032  .000 .032
202 255 134 173 071 100 .045 071 .032 .032  .000 .032
4 200 257 134 176 071 100  .045 071  .032 .032  .000 .032

N

N — O

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =
number of measurement occasions, J = number of participants.
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Table 18.

Relative Bias of Level-1 Error Variance Estimate

1=10

1=20

1=40

J=4

J=38

J=

4

J=8

J=14

J=8

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

Skew Kurt W

B W

B W

B W

B W

B

w

B W

B

wW

B W

B

w

B W

B

w

B

0 -1-.049.
0 -.054 .
1 -.050
2 -.051
4 -.051
1 -1-.056
0 -.052
1 -.056
2 -.049
4 -.051
2 -1-.049
0 -.049
1 -.053
2 -.052
4 -.055
3 -1-.055
0 -.051
1 -.049
2 -.052
4 -.045 .

103 -.017
105 -.022

101 -.016
107 -.020
.098 -.019
.096 -.021
.092 -.022
.099 -.025
.099 -.018
.098 -.020
109 -.017
103 -.017
.096 -.021
105 -.020
.095 -.025
.100 -.024
.097 -.019
.098 -.020
102 -.019

105 -.015

134 -.025
137 -.028
133 -.023
137 -.027
131 -.027
27 -.027
124 -.026
132 -.027
132 -.024
129 -.026
139 -.025
134 -.026
127 -.025
135 -.028
127 -.029
.130 -.027
128 -.025
.130 -.026
133 -.025
136 -.025

155 -.017
.156 -.019
157 -.015
.150 -.020
154 -.018
.156 -.018
153 -.018
151 -.021
.160 -.016
161 -.017
156 -.017
.158 -.017
155 -.015
.158 -.020
152 -.021
.158 -.018
159 -.017
154 -.019
157 -.016
157 -.017

177 -.017
178 -.018
77 -.017
171 -.019
176 -.021
177 -.020
176 -.017
173 -.017
181 -.018
.183 -.020
178 -.019
181 -.018
177 -.018
.180 -.019
175 -.017
.180 -.019
.180 -.018
175 -.018
179 -.018
179 -.019

.041
.039
.038
.037
.037
.040
.039
.040
.039
.036
.041
.037
.040
.038
.040
.039
.039
.040
.037
.036

.003
.001
.003
.000

-.001

.001
.003
.003
.004
.000
.001
.002
.003
.001
.004
.001
.002
.002
.002
.002

.053 -.010
.050 -.010
.051 -.010
.048 -.010
.049 -.010
.051 -.011
.051 -.009
.051 -.010
.051 -.011
.047 -.010
.052 -.010
.048 -.011
.051 -.011
.050 -.010
.052 -.011
.051 -.010
.051 -.012
.051 -.011
.049 -.010
.048 -.010

.060
.059
.059
.058
.059
.059
.061
.061
.060
.062
.061
.059
.060
.059
.060
.060
.059
.061
.061
.061

.002
.003
.003
.002
.003
.001
.003
.003
.002
.003
.003
.003
.001
.002
.003
.002
.001
.001
.002
.002

.070 -.008
.070 -.008
.070 -.007
.069 -.008
.069 -.008
.069 -.008
.071 -.007
.071 -.008
.071 -.008
.073 -.008
.072 -.008
.070 -.008
.070 -.008
.069 -.007
.071 -.008
.071 -.008
.070 -.008
.072 -.007
.071 -.007
.071 -.007

.020
.019
.020
.020
.021
.019
.019
.019
.019
.020
.020
.019
.019
.020
.020
.020
.021
019
.020
.020

.004
.004
.005
.004
.005
.005
.005
.004
.004
.004
.005
.004
.004
.005
.005
.004
.005
.006
.005
.005

.024 -.006
.023 -.005
.024 -.006
.024 -.005
.025 -.005
.023 -.005
.023 -.005
.023 -.005
.024 -.005
.024 -.005
.024 -.005
.023 -.005
.023 -.005
.024 -.005
.024 -.005
.024 -.005
.026 -.005
.024 -.005
.024 -.005
.024 -.005

.029
.029
.029
.030
.029
.030
.030
.029
.030
.029
.029
.030
.030
.029
.030
.029
.029
.029
.028
.028

.004
.005
.004
.006
.005
.005
.005
.004
.005
.004
.005
.005
.005
.004
.005
.004
.005
.005
.005
.005

.033
.033
.033
.034
.033
.034
.034
.033
.034
.033
.033
.034
.034
.034
.034
.033
.033
.033
.032
.032

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =
number of measurement occasions, J = number of participants.
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Table 19.

RMSE of Level-1 Error Variance Estimate

1=10

1=20

1=40

8

4

8

MCMC

MCMC

MCMC

ReML

MCMC

ReML

MCMC

ReML

MCMC

Skew Kurt W

w

B

W

B

w

B

w

B

wW

B

w

B

w

B

w

B

w

B

2 122 .
228

4 118

110
114
110
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
110

241
247
245
247
243
243
237
249
.239
.232
247
241
241
243
.239
.245
243
.239
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Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =
number of measurement occasions, J = number of participants.
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Table 20.
Relative Bias of Level-2 Error Variance for the Intercept in Within-Series Model

1=10 1=20 1=40

J=4 J=8 J=4 J=8 J=4 J=8

Skew Kurt ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC

0 -1 -.250 .060 -.262 -114  -116 086 -.132 -.088 -.076 102 -.080 -.042
0 -226 060 -.262 -106  -.144 066 -.130 -084 -.064 114 -.092 -.054
1 -220 068 -.270 -124  -122 086 -.154 -102  -.082 106 -.064 -.034
2 -.266 052 -.248 -100 -.134 076 -.142 -090 -.070 106 -.050 -.018
4 -220 074  -.266 -122  -.158 070 -.138 -092 -118 078 -.054 -.032
1 -1 -.228 066 -.258 -120  -.132 .068 -.148 -.084 -.082 106 -.058 -.032
0 -238 070 -.246 -118  -.148 068 -.126 -082 -.090 106 -.070 -.036
1 -232 076 -.270 -114  -130 076 -.132 -.086 -.080 108  -.090 -.054
2 -.228 066 -.248 -108  -.130 078 -.144 -.090 -.084 102 -.064 -.030
4 -236 066 -.238 -114  -.138 070 -.118 -074 -074 096 -.060 -.026
2 -1 -.236 054 -.262 -126  -.118 .080 -.130 -078 -.082 .098 -.084 -.042
0 -.264 052 -.248 -114  -.158 062 -.122 -080 -.086 .098 -.080 -.044
1 -.248 060 -.244 -114  -144 070 -124 -082 -.076 108  -.046 -.026
-.238 058 -.248 -112 -124 086 -.154 -.084 -.102 .096 -.080 -.042
-.242 072 -.258 -114  -.130 078 -.108 -074 -.068 106 -.068 -.038
3 -1 -.236 072 -242 -106  -.134 068 -.142 -092 -.064 122 -.080 -.046
0 -.230 056 -.246 -106  -.172 066 -.124 -076  -.072 106 -.078 -.044
1 -230 076 -.258 -112  -.126 078 -.118 -078 -.080 092 -.068 -.038
2 -.246 052 -.264 -132  -.128 072 -120 -.084 -.098 102 -.080 -.038
4 -232 064 -.258 -112  -.110 086 -.116 -072 -.092 094 -074 -.032

BN

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =
number of measurement occasions, J = number of participants.
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Table 21.
RMSE of Level-2 Error Variance for the Intercept in the Within-Series Model

1=10 1=20 1=40

J=4 J=8 J=4 J=8 J=4 J=8

Skew Kurt ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC

0 -1 .479 205  .335 192 479 261 311 212 440 265  .285 217
0 49 207 335 197 457 235 308 210 460 274 286 221

1 .498 224 332 187  .480 247 303 202 439 265  .297 226

AT7 197 330 195 476 249 307 207 445 261 290 235
4 497 214 330 184 458 232 311 214 432 257 293 230

1 -1 500 212 330 192 466 226 .307 219 444 274 285 226
0 485 212 332 190 470 224 310 207 444 274 293 224

1 500 230  .330 190 482 243 311 219 449 272 283 219

2 500 214 333 200 471 239  .303 205 437 268  .283 221

4 483 210 324 182 475 247 313 210 449 261 293 237

2 -1 482 200  .329 190 484 243 310 210 447 259  .283 224
0 477 207 332 190 479 241 308 214 446 261 285 221

1 475 205  .330 187 477 239  .308 217 449 277 288 217

2 496 210  .338 190 475 255 302 210  .439 265  .283 224

499 210  .335 190 474 249 313 212 438 263 286 228

3 -1 .49 212 344 205  .465 226 .303 202 438 276 .283 226
493 195 341 200  .458 232 307 210  .436 263 290 224
503 232 .330 190 479 239  .310 210 438 249 281 219
493 200 .335 182 480 241 311 205 435 266  .281 224
4 486 207 .329 192 503 266 .305 217 442 261  .288 230

N

N — O

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =
number of measurement occasions, J = number of participants.
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Table 22.
Relative Bias of Level-2 Error Variance for the Treatment Effect in the Within-Series Model

1=10 1=20 1=40

J=4 J=8 J=4 J=8 J=4 J=8

Skew Kurt ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC

0 -1 -.030 078 -134 -112  -.108 048 -112 -120 -.076 056 -.062 -.084
0 -.084 078 -.124 -114  -.100 048 -.096 -112  -.116 .058 -.080 -.092
1 -.096 074 -160 -110 -.058 062 -.080 -118 -.086 .052 -.068 -.078
2 -072 070 -.140 -104  -.130 052 -112 -110 -.102 056 -.070 -.094
4 -092 076 -.144 -114  -.100 042 -114 -130 -.100 056 -.062 -.078
1 -1 -.108 .082 -.158 -112 -114 056 -.094 -116  -.104 .070 -.082 -.086
0 -.106 078 -.156 -116  -.090 056 -.128 -126  -.072 072 -074 -.092
1 -.082 076 -.150 -110 -.126 050 -.128 -130 -.092 .076 -.078 -.090
2 -.086 074 -118 -102  -.078 058 -.078 -116  -.094 .062  -.090 -.104
4 -138 076 -.142 -112  -.084 054 -.062 -110 -.096 078 -.074 -.096
2 -1 -.094 072 -128 -116  -.090 .048 -.080 -120 -.080 .068 -.090 -.110
0 -.070 074 -134 -114  -144 044  -.108 -128 -.078 .054 -.054 -.086
1 -124 086 -.170 -108 -.074 066 -.108 -116  -.076 .068 -.080 -.082
-.132 076 -.150 -114  -.080 068 -.114 -120 -.076 .066 -.066 -.092
-124 076 -.118 -108 -.110 050 -.094 -120 -.088 076 -.098 -.106
3 -1 -.100 086 -.126 -108 -.088 062 -.086 -112  -.070 .082 -.074 -.098
0 -.166 076 -.162 -112 -118 .050 -.108 -108 -.070 .068 -.068 -.084
1 -132 092 -.166 -110 -.138 050 -.100 -124  -.080 .070 -.070 -.096
2 -.096 078 -110 -118 -.096 042 -118 -120 -.086 .050 -.090 -.104
4 -.090 074 -128 -110  -.112 042 -.080 -118 -.100 066 -.066 -.098

BN

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =
number of measurement occasions, J = number of participants.
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Table 23.
RMSE of Level-2 Error Variance for the Treatment Effect in the Within-Series Model

1=10 1=20 1=40

J=4 J=8 J=4 J=8 J=4 J=8

Skew Kurt ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML MCMC

0o -1 .718 134 464 126 591 179 387 176 512 217 344 228
o .707 138 469 126 .605 197 301 195 509 243 345 221

1 675 126 451 138 597 184 383 184 508 219 336 226

704 118 452 134 591 249 382 195 504 221 332 219
4 674 126 455 130 591 176 373 184 517 228 333 224

1 -1  .666 126 453 130 574 235 .39 190 505 247 335 226
0 .680 134 462 126 613 207  .379 192 539 266  .332 221

1 .700 130 454 141 566 182 381 192 520 263  .333 224

2 691 145 466 141 604 184 395 184 515 241 335 219

4 670 126 458 126 .607 187 404 192 503 253 332 217

2 -1 724 118 464 118 584 167 390 182 515 228 335 205
0 .714 148 460 126 .602 200  .383 179 500 226 .344 230

1 672 192 455 155 597 226 .386 190 527 245 333 224

2 .688 173 454 126 .602 228  .387 187 519 241 342 226

672 130 465 126 .603 195 385 184 514 255 327 219

3 -1 .705 155 463 122 609 214 391 187 519 251 .327 219
666 155 448 126 588 192 381 202 519 237 342 230
663 219 437 126 588 202  .375 182 532 259 332 217
704 141 457 126 564 184 394 187 506 217 336 217
4 709 118 459 126 579 170 394 190 525 245 332 212

N

N — O

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum
likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, | =
number of measurement occasions, J = number of participants.
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APPENDIX B. TABLES OF ETA-SQUARE ANALYSES

Table 24.
Eta-Square for Bias of the Treatment Effect Estimate
Within-Series Model Between-Series Model

Source Eta-Square Source Eta-Square
Skewness*Kurtosis 13 Skewness*Kurtosis .07
I*Kurtosis .03 I*Kurtosis .06
J*Kurtosis .03 J*Kurtosis .04
I .02 1*J .03
Skewness .02 I*Skewness .03
I*Skewness .02 J*Skewness .02
Kurtosis .02 Skewness .02
1*J .01 Kurtosis .01
J*Skewness .01 | .00
Est .00 J .00
Kurtosis*Est .00 Skewness*Est .00
I*Est .00 I*Est .00
J .00 Kurtosis*Est .00
J*Est .00 J*Est .00
Skewness*Est .00 Est .00

Note. | = number of measurement occasions, J = number of participants, Est = estimation
methods
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Table 25.

Eta-Square for RMSE of the Treatment Effect Estimate

Within-Series Model

Between-Series Model

Source Eta-Square Source Eta-Square
I .62 J 93
J .32 I .07
I*J .03 1*J .00
Est .02 Skewness*Kurtosis .00
I*Est .00 J*Kurtosis .00
J*Est .00 I*Kurtosis .00
Kurtosis .00 I*Skewness .00
Skewness*Kurtosis .00 Kurtosis .00
I*Kurtosis .00 J*Skewness .00
I*Skewness .00 Skewness .00
J*Kurtosis .00 Est .00
J*Skewness .00 Kurtosis*Est .00
Skewness .00 Skewness*Est .00
Kurtosis*Est .00 I*Est .00
Skewness*Est .00 J*Est .00

Note. | = number of measurement occasions, J = number of participants, Est = estimation

methods
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Table 26.

Eta-Square for Cl Coverage Rate of the Treatment Effect Estimate

Within-Series Model

Between-Series Model

Source Eta-Square Source Eta-Square
I 41 I 40
Est 17 Est 12
J*Est .07 J .04
Kurtosis .02 I*Kurtosis .04
I*Est .02 Skewness*Kurtosis .03
Skewness*Kurtosis .01 I*Skewness .02
I*Skewness .01 1*J .02
1*J 01 Kurtosis .02
I*Kurtosis 01 J*Kurtosis .02
J .01 J*Est .01
Kurtosis*Est .00 J*Skewness 01
Skewness .00 I*Est .00
J*Kurtosis .00 Kurtosis*Est .00
J*Skewness .00 Skewness .00
Skewness*Est .00 Skewness*Est .00

Note. | = number of measurement occasions, J = number of participants, Est = estimation

methods
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Table 27.

Eta-Square for Cl Width of the Treatment Effect Estimate

Within-Series Model

Between-Series Model

Source Eta-Square Source Eta-Square
| 57 J .88
J 40 I 11
I*J .02 1*J .00
I*Est .01 Est .00
J*Est .01 J*Est .00
Est .00 I*Est .00
Skewness*Kurtosis .00 Skewness*Kurtosis .00
I*Skewness .00 I*Kurtosis .00
J*Kurtosis .00 J*Skewness .00
I*Kurtosis .00 I*Skewness .00
Kurtosis .00 J*Kurtosis .00
Kurtosis*Est .00 Skewness .00
Skewness*Est .00 Kurtosis .00
Skewness .00 Kurtosis*Est .00
J*Skewness .00 Skewness*Est .00

Note. | = number of measurement occasions, J = number of participants, Est = estimation

methods
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Table 28.

Eta-Square for Statistical Power of the Treatment Effect Estimate

Within-Series Model

Between-Series Model

Source Eta-Square Source Eta-Square
I .55 J .87
J 41 I 11
I*J .03 1*J .01
I*Est .01 Est .00
J*Est .00 Skewness*Kurtosis .00
Est .00 I*Skewness .00
Skewness*Kurtosis .00 J*Kurtosis .00
J*Kurtosis .00 I*Kurtosis .00
I*Skewness .00 Skewness .00
I*Kurtosis .00 I*Est .00
Skewness .00 J*Est .00
Kurtosis .00 Kurtosis .00
J*Skewness .00 J*Skewness .00
Kurtosis*Est .00 Kurtosis*Est .00
Skewness*Est .00 Skewness*Est .00

Note. | = number of measurement occasions, J = number of participants, Est = estimation

methods
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APPENDIX C. SAS CODES

Within-Series Model (ReML with Kenward-Roger)

proc mixed data=j1 covtest cl;

class idlevel2;

model y = phase time inter / s cl alpha = .05 ddfm = kenward,;
random int phase time inter / sub = idlevel2;

repeated / sub = idlevel2;

run;

Within-Series Model (Bayesian)

proc memc data=j1 diag=all dic nbi=5000 nmc=20000 stats(alpha=(0.05 ))=(summary
intervals) dic monitor=(betal beta2 beta3 beta4 Sigmal Sigma6 Sigmall Sigmal6 var_e);
ods output PostSummaries=esttmp3 PostIntervals=inttmp3 Geweke=geweke3
Heidelberger=heide3;

array Sigma [4,4];

array beta [4] ;

array b [4];

array mu0 [4] (00 0 0);

array Sig0[4,4] (1e60 0001e6 0000 1e6 00 0 0 1e6);
array SDIFFUSE[4,4] (10 0001000010000 1),
parms var_e 1;

parm Sigma 1;

parms beta O ;

prior beta ~ mvn(mu0,Sig0);

prior var_e ~ igamma (shape=2.001, scale=1.001);
prior Sigma ~ iwish(6 , SDIFFUSE);

mu = (bl1) + (b2)*phase + (b3)*time + (b4)*inter;
random b ~mvn(beta,Sigma) subject=idlevel2 ;

model y~normal(mu,var=var_e);

run;

146



Between-Series Model (ReML with Kenward-Roger)

* Homogeneous Variance Model;

proc mixed data =j1 covtest cl;

class idlevel2;

model y = D1 D1*phase P13 P23 P33 P1*phase / noint s cl alpha = .05 ddfm = kenward;
random D1 D1*phase / sub=idlevel2;

repeated / sub = idlevel2;

run;

* Hetrogeneous Variance Model;

proc mixed data =j1 covtest cl;

class idlevel2 Phcat1,

model y = D1 D1*phase P13 P23 P33 P1*phase / noint s cl alpha = .05 ddfm = kenward;
random D1 D1*phase / sub=idlevel2;

repeated / group = Phcatl sub = idlevel2;

run;

Between-Series Model (Bayesian)

proc mcmc data=j1 diag=all dic nbi=5000 nmc=20000 stats(alpha=(0.05 ))=(summary
intervals ) dic monitor=(betal beta2 alphal alpha2 alpha3 alpha4 Sigmal Sigma4 var_e);
ods output PostSummaries=esttmp4 Postintervals=inttmp4 Geweke=geweke4
Heidelberger=heide4;

array Sigma [2,2];

array beta [2] ;

array b [2];

array alpha [4];

array mu0 [2] (0 0);

array mul [4] (000 0);

array Sig0[2,2] (1e6 0 0 1e6);

array Sig1[4,4] (1e60 000 1e60000 1e6 0 0 0 0 1e6);
array SDIFFUSE[2,2] (100 1);

parms var_e 1;

parms Sigma 1;

parms beta O ;

parms alpha 0;

prior beta ~ mvn(muo0,Sig0);

prior alpha ~ mvn(mul,Sigl);

prior var_e ~ igamma (shape=2.001, scale=1.001);
prior Sigma ~ iwish(6 , SDIFFUSE);

mu = (b1)*D1 + (b2)*D1*phase + (alphal)*P13 + (alpha2)*P23 + (alpha3)*P33 +
(alphad)*P1*Phase;

random b ~ mvn(beta,Sigma) subject=idlevel?2 ;
model y~normal(mu,var=var_e); run;
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