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ABSTRACT 

 

In single-case research, multiple-baseline (MB) design is the most widely used design in 

practical settings. It provides the opportunity to estimate the treatment effect based on not only 

within-series comparisons of treatment phase to baseline phase observations, but also time-

specific between-series comparisons of observations from those that have started treatment to 

those that are still in the baseline. In MB studies, the average treatment effect and the variation of 

these effects across multiple participants can be estimated using various statistical modeling 

methods. Recently, two types of statistical modeling methods were proposed for analyzing MB 

studies: a) within-series model and b) between-series model. The within-series model is a typical 

two-level multilevel modeling approach analyzing the measurement occasions within a 

participant, whereas the between-series model is an alternative modeling approach analyzing 

participants’ measurement occasions at certain time points, where some participants are in the 

baseline phase and others are in the treatment phase. Parameters of both within- and between-

series models are generally estimated with restricted maximum likelihood (ReML) estimation 

and ReML is developed based on the assumption of normality (Hox, et al., 2010; Raudenbush & 

Bryk, 2002). However, in practical educational and psychological settings, observed data may 

not be easily assumed to be normal. Therefore, the purpose of this study is to investigate the 

robustness of analyzing MB studies with the within- and between-series models when level-1 

errors are non-normal. A Monte Carlo study was conducted under the conditions where level-1 

errors were generated from non-normal distributions in which skewness and kurtosis of the 



 ix 

distribution were manipulated. Four statistical approaches were considered for comparison based 

on theoretical and/or empirical rationales. The approaches were defined by the crossing of two 

analytic decisions: a) whether to use a within- or between-series estimate of effect and b) 

whether to use REML estimation with Kenward-Roger adjustment for inferences or Bayesian 

estimation and inference. The accuracy of parameter estimation and statistical power and Type I 

error were systematically analyzed. The results of the study showed the within- and between-

series models are robust to the non-normality of the level-1 error variance. Both within- and 

between-series models estimated the treatment effect accurately and statistical inferences were 

acceptable. ReML and Bayesian estimations also showed similar results in the current study. 

Applications and implications for applied and methodology researchers are discussed based on 

the findings of the study. 
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CHAPTER ONE: INTRODUCTION 

 

Single-case research is a type of research for analyzing the effect of an intervention or 

treatment. Single-case research studies mainly differ from other intervention research studies in 

that they deal with a single or small number of participants. To evaluate the effect of treatment, 

repeatedly measured observations of each participant are collected for two distinct phases. 

Baseline and treatment are two basic phases that comprise the interrupted time series design. The 

baseline phase is also called the pre-treatment phase and it consists of a series of observations 

before introducing a treatment or intervention for participants. There are two purposes of the 

baseline phase in single-case research design: a) observations in the baseline phase provide prior 

knowledge about each participant’s performance and document the need for intervention, and b) 

observations in the baseline phase establish the basis for which predictions can be made for the 

participants if the intervention had not been implemented. The treatment phase consists of a 

series of observations after the introduction of a treatment. Comparing observations between the 

baseline and treatment phases creates the analysis of the treatment effect in single-case research.  

 In single-case research, multiple-baseline (MB) is the most widely used design in 

practical settings (Honor & Odom, 2014). It provides the opportunity to estimate the treatment 

effect based on not only within-participant comparisons of treatment phase to baseline phase 

observations, but also time-specific between-participant comparisons of observations from those 

that have started treatment to those that are still in the baseline.  
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Recently, two types of statistical models were proposed for analyzing MB studies: a) 

within-series (within-participant) model and b) between-series (between-participant) model 

(Ferron et al., 2014). The within-series model is a typical two-level multilevel modeling 

approach analyzing the measurement occasions within a participant, whereas the between-series 

model is an alternative modeling approach analyzing a subset of the participants’ measurement 

occasions, which correspond to certain time points, where some participants are in the baseline 

phase and others are in the treatment phase. The advantage of the within-series approach is that 

the treatment effects are estimated with greater precision because all collected observations are 

used. On the other hand, the between-series approach does not rely on assumptions where time 

trends are correctly specified. A simulation study found that the within-series model 

outperformed the between-series model when assumptions are satisfied but the between-series 

model produced less biased average treatment effects than the within-series model for the 

conditions where the model is misspecified or event effects are included (Ferron et al., 2014). 

Parameters of both within- and between-series models are generally estimated with 

restricted maximum likelihood (ReML) estimation. ReML is an iterative procedure to find the 

estimates, which maximize the likelihood function for the variance components of the model 

(Raudenbush & Bryk, 2002). In general, ReML is developed based on the assumption of 

normality (Hox, Moerbeek & Van de Schoot, 2010; Raudenbush & Bryk, 2002). However, in 

practical educational and psychological settings, the normality assumption is not always satisfied 

(Shadish & Sullivan, 2011; Smith, 2012) and meta-analysis of the single-case research studies 

has shown that more than 50% of the published single-case research datasets failed the normality 

test (Parker, 2006; Parker & Vannest, 2009; Parker, Vannest & Brown, 2009; Solomon, 2014). In 

addition, I conducted a preliminary survey to investigate the normality of the single-case data 
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published in Journal of Applied Behavior Analysis (JABA) from 2014 to 2016. The results from 

the survey showed that skewness and kurtosis of the MB data ranged from -0.71 to 1.91, and 

from -1.07 to 3.01, respectively. Details of this survey are discussed in later chapters. 

One possible reason for non-normal outcome variables is the scales of measurement. For 

example, if a scale of measurement is a count or percent, then either positive or negative 

skewnesss of the data may be observed. If a scale of measurement is binary or categorical, then 

normality of the data cannot be assumed (Smith, 2012; Shadish, 2014; Shadish, Kyse, & 

Rindskopf, 2013). The ceiling/floor effects or outliers are another source of creating violation of 

the normality assumption (Hox et al., 2010; Langford & Lewis, 1998). Outliers could occur due 

to a momentary or temporary event effects. For example, a momentary event effect occurs if a 

participant of an intervention study experiences a persoval problem at home at a certain time 

point and the observed outcome at the next time point is influenced by the event effect either 

positively or negatively (Ferron et al., 2014). 

In principle, analyzing non-normal data with ReML estimation could result in biased 

estimates of fixed and random effects (Crawford, Garthwaite, Azzalini, Howell & Laws, 2005; 

Mass & Hox, 2004). Also, standard errors of the parameter estimates tend to be underestimated, 

resulting in the following consequences; a) the statistical powers to detect fixed and random 

effects are downgraded, b) Type I error rates for the estimated parameters are inflated and c) 

inaccurate confidence interval (CI) coverage rates are observed (Crawford et al., 2005; Mass & 

Hox, 2004; van der Leeden et al., 1997). The same concerns can be applied for the within- and 

between-series models for MB studies and these problematic consequences of violation of 

normality could significantly affect the results of the studies. 
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Therefore, it is important to investigate alternative modeling approaches to handle non-

normality of MB data. Also, from a practical perspective, comparing the robustness of multiple 

modeling methods can provide better insight and practical solutions to applied researchers about 

how to deal with violation of the normality assumption. For this reason, four statistical modeling 

approaches are considered for comparison based on theoretical and/or empirical rationales. The 

approaches are defined by the crossing of two analytic decisions: a) whether to use a within- or 

between-series estimate of effect and b) whether to use ReML with Kenward-Roger adjustment 

(Kenward & Roger, 1997) or Bayesian approach (Gelman et al., 2004) for parameter estimation 

and statistical inferences.  

Kenward-Roger adjustment was developed to adjust for small-sample bias. More 

specifically, the Kenward-Roger method adjusts degrees of freedom to make a better inference 

for the small-sample size condition. Simulation studies have shown that using Kenward-Roger 

adjustment has shown a better performance than other degrees of freedom estimation methods 

for making inferences about the treatment effect in MB studies (Ferron, Bell, Hess, Rendina-

Giobioff, & Hibbard, 2009). Also, making inferences with Kenward-Roger adjustment is robust 

to non-normality in the level-2 errors and misspecification of the level-1 covariance structure in 

multilevel modeling (Petit-Bois, Baek, Nguyen & Ferron, 2013; Owens & Farmer, 2013). 

Bayesian estimation is an alternative way for estimating parameters and making 

inferences. Over the decades, Bayesian estimation has received increasing attention for 

estimating the parameters of statistical models, because it is comparably simple to adapt and a 

better way to deal with more complex models than ReML (e.g., Browne, Draper, Goldstein, 

Rasbash, 2002; Rindskopf, 2014; Swaminathan, Rogers & Hornor, 2014; Shadish, Rindskopf, 

Hedges & Sullivan, 2013). Bayesian estimation allows specifying prior distributions to the 



 5 

parameters in the model. By doing so, researchers can have flexibility to handle parameter 

estimation under various conditions. For example, it has been shown that Bayesian estimation is 

beneficial for estimating complex statistical models with small sample sizes due the specification 

of the prior distribution (Gelman et al., 2014). 

Bayesian estimation, previously, has been adapted for the within-series multilevel model 

and its estimation accuracy was compared with ReML (e.g., Baek, 2015; Moeyaert et al., 2016; 

Swaminathan, Rogers & Honor, 2014). However, Bayesian estimation has not been employed 

for the newly proposed between-series model and its estimation efficacy for the model is 

unknown. It is also unknown whether the between-series model would perform robustly with 

Bayesian inference compared to Kenward-Roger adjustment under the situations where the 

normality assumption is violated.  

 

Problem Statement 

Although violation of the normality assumption is a potential threat in MB studies, 

questions about the robustness of statistical models remained unsolved. For example, to what 

degree would non-normality in level-1 errors be troublesome when MB studies are analyzed with 

multiple modeling approaches? How much skewness and kurtosis can and cannot be handled 

using ReML with Kenward-Roger or Bayesian estimation? 

The majority of previous applications and methodological studies with MB design 

assumed that the level-1 errors were normally distributed (e.g., Ferron et al., 2009, Ferron, 

Farmer, & Owens, 2010, Ferron et al., 2014; Moeyaert, Ugille, Ferron, Beretvas, Van den 

Noortgate, 2013a, 2013b; Van den Noortgate & Onghena, 2003a, 2003b) and limited research 

investigated the robustness of the within- and between-series models. For example, the impacts 
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of level-2 and level-3 error non-normality (Petit-Bois et al., 2013) and level-1 and level-2 error 

non-normality (Owens & Farmer, 2013) in the within-series model were previously investigated 

and they found that non-normality does not lead to bias in estimating treatment effects but effect 

inferences were inaccurate. However, these studies were limited to the within-series model using 

ReML and they did not compare alternative modeling approaches such as the between-series 

model or Bayesian estimation. To the best of author’s knowledge, no research has compared the 

performances of various modeling approaches that may be differentially robust to non-normal 

MB data.  

 

Purpose of Study 

The purpose of this study is to investigate the robustness of analyzing MB studies with 

the within- and between-series models using ReML with Kenward-Roger adjustment or 

Bayesian estimation when level-1 errors are assumed to be non-normal. A Monte Carlo study 

was conducted under the conditions where level-1 errors were generated from non-normal 

distributions manipulating skewness and kurtosis of the residuals’ distribution. Fleishman’s 

(1978) power transformation method was used to manipulate skewness and kurtosis of the 

distribution. To compare various modeling methods, four models are compared: a) two-level 

within-series model using ReML with Kenward-Roger adjustment (Model 1), b) two-level 

within-series model using Bayesian method (Model 2), c) between-series model using ReML 

with Kenward-Roger adjustment (Model 3) and d) between-series model using Bayesian method 

(Model 4).  

The accuracy of parameter estimation and statistical inference were systematically 

analyzed. Bias, relative bias, root mean square error (RMSE), confidence/credible interval (CI) 
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coverage rates, CI widths and statistical power/Type I error were examined as a function of 

specific design factors (number of measurement occasions and participants) and degree of non-

normality (amount of skewness, and kurtosis of the distribution). The research questions are 

described as follows.  

 

Research Questions 

1. To what extent are the bias and RMSE for the treatment effect estimates of the within- 

and between-series models using ReML with Kenward-Roger and Bayesian methods 

impacted as a function of the skewness and kurtosis? 

2. To what extent are the interval estimate coverage rate and width for the treatment effect 

estimates of the within- and between-series models using ReML with Kenward-Roger 

and Bayesian methods impacted as a function of the skewness and kurtosis? 

3. To what extent are the statistical power and Type I error for the treatment effect estimates 

of the within- and between-series models using ReML with Kenward-Roger and 

Bayesian methods impacted as a function of the skewness and kurtosis? 

4. To what extent are the bias and RMSE for the parameter estimates other than the 

treatment effect of the within- and between-series models using ReML with Kenward-

Roger and Bayesian methods impacted as a function of the skewness and kurtosis? 

 

Overview of the Study 

 A Monte Carlo study was conducted to empirically address the issues of violation of the 

normality assumption in MB studies. Data generation factors included number of measurement 

occasions and participants, skewness and kurtosis of level-1 error structure, and treatment effect 
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size. Three levels of number of measurement occasions (10, 20, and 40), two levels of number of 

participants (4, and 8) four levels of level-1 error skewness (0, 1, 2, and 3) five levels of level-1 

error kurtosis (-1, 0, 1, 2, and 4) and two levels of treatment effect sizes (0, and 1) were varied. 

The analysis factors of the study included four levels of multilevel modeling approaches (Models 

1 - 4). Crossing all the data generation factors resulted in a total of 3 (number of measurement 

occasions) x 2 (number of participants) x 4 (level-1 error skewness) x 5 (level-1 error kurtosis) x 

2 (treatment effect) = 240 simulation conditions. Table 1 provides the simulation study 

conditions. The number of replications was set for 3000 per condition. The dependent variables 

of the simulation study results were bias, relative bias, RMSE, CI coverage rate, CI width and the 

statistical power/Type I error of the treatment effect estimate and bias and RMSE of the other 

parameter estimates including random components in the models.  

 

Significance of the Study 

 This Monte Carlo study contributes to both applied researchers and methodologists in 

single-case research. The results of the study can provide applied researchers pragmatic guidance 

about options when there is violation of the normality assumption, which often occurs in 

educational and psychological settings. More specifically, the results provide information about 

analyzing MB studies with multiple statistical modeling approaches and guidelines for applied 

researchers about how to handle various degrees of violation of the normality assumption. 

In addition, this study contributes to methodological literature as well. The between-

series model for MB studies is recently proposed and yet, no research has examined the 

robustness of the between-series model for non-normality of level-1 error. Also, Kenward-Roger 

adjustment and Bayesian inference methods for the within- and between-series models have not 
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been compared under non-normal data conditions. The results of the study contribute to 

methodological literature comparing various modeling approaches for MB studies.  

 

Limitations 

The data in this study were simulated based on specific conditions. Those conditions 

were chosen based on a review of single-case literature. The specific conditions chosen for this 

study are only some of the possible options. Therefore, the results of this study can only be 

generalized to studies with similar conditions. Any conclusions beyond the observed conditions 

should be interpreted with caution. 

 

Table 1.  

Simulation Study Design 

    Model 1 vs. Model 2 vs. Model 3 vs. Model 4 

    Skewness = 0, 1, 2, 3 

Participants 

Measurement 

Occasions  Kurtosis =  -1, 0, 1, 2, 4 

4 10         

 

20         

 

40         

8 10         

 

20         

 

40         

4 10         

 

20         

 

40         

8 10         

 

20         

 

40         
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Definitions of Terms 

Bayesian estimation. An estimation method of statistical models where prior information about  

parameters of the models are taken into account. The estimates of the parameter are 

computed based on the posterior distribution of the parameters. 

Between-series model. A statistical model where the subset of multiple-baseline study  

is used to compare between participants whose are in the baseline phase to those in the 

treatment phase. 

Bias. A difference between a population parameter value (generating parameter) and an  

estimated parameter value. 

Confidence interval coverage. The proportion of replications in which 95% confidence intervals  

contain a population parameter value. 

Fixed effects. Regression coefficients which present the average effects across level-2 units in  

multilevel models.  

Kenward-Roger. A method that adjusts degrees of freedom of the fixed effects for the small  

sample size conditions. 

Kurtosis. A measure of the heaviness of the tails in a distribution, relative to the normal  

distribution.  

Level-1 error.  A residual from the predicted value to the observed value of observations within  

a level-1 unit in multilevel models. 

Level-2 error. A variability across level-2 units in multilevel models.  

Multiple-baseline design. A type of single-case research design, which extends the AB design  

such that the baseline and treatment phases are established for multiple participants, 

multiple behaviors, or multiple settings. 

Multilevel modeling. A statistical model where nested structure data are taken into account for  
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estimating parameters of the model. It allows researchers to have more than one level of 

the data structure. 

Random effects. The variabilities across level-2 units and level-1 units in multilevel models.  

Relative bias. Proportions of bias compared to the population parameter values (generating  

parameters). 

Root mean squared error. The measure of estimation accuracy where squared bias and sampling  

error are taken into account. 

Skewness. A degree of symmetry in a distribution. 

Within-series model. Statistical models where multiple-baseline study observations are used to  

compare those are in the baseline phase to those in the treatment phase. 
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CHAPTER TWO: LITERATURE REVIEW 

 

The literature review section consists of four parts. First, single-case research design 

studies are discussed, including an introduction of the single-case research and types of designs, 

and analysis methods. Second, the within- and between-series models and their application to 

MB studies are reviewed. Third, the estimation methods and normality assumption are discussed, 

and finally, alternative Bayesian modeling is described and the relevant literature is reviewed.  

  

Single-Case Research 

Single-case research is an intensive study of a case by repeatedly measuring an outcome 

while altering the conditions under which the case is being observed. In general, the case may be 

a single participant or a single entity that forms the research group, such as a group of students in 

a classroom or a family. The outcome variables of a single participant or single entity are then 

repeatedly measured or quantified over the levels of one or several manipulated independent 

variables (Onghena, 2005). The independent variables are often manipulated by the researcher, 

and often, whether participants are observed in intervention (or treatment) or not is the 

independent variable in single-case research (Kazdin, 2011). The outcome variable (or dependent 

variable) is the variable participants are measured on (e.g., problem behavior, time on task) and 

often it is determined by the researchers’ theoretical background knowledge or through literature 

review. The primary purpose of single-case research is, therefore, to investigate the efficacy of 
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treatment or intervention effect on an outcome variable in which a single participant or entity is 

involved.  

Single-case research studies have been receiving increasing attention recently in 

educational and psychological studies (e.g., Barlow, Nock, & Hersen, 2009; Ittenbach & 

Lawhead, 1997; Kazdin, 2011; Kratochwill, 1985; Wacker, Steege, & Berg, 1988). For example, 

over the last decades, the key terms “single-case” or “single-subject” or “multiple baseline” were 

exclusively used for citations in the Social Science Citation Index (SSCI), and their applications 

to educational and psychological studies were substantially increased (Moeyaert et al., 2013a). 

An increasing number of citations and applications of single-case research occurs because it has 

contributed greatly to the evidence basis for a variety of practices (Kratochwill & Levin, 2010). 

Single-case research could be classified as experimental or applied behavior analysis, and it has 

been applied in various other educational and psychological disciplines. It seeks to establish 

causal relationships between independent (intervention effect) and dependent variables (outcome 

measures) with emphasis on understanding individuals’ behavior (Kratochwill, 1978; 

Kratochwill & Levin, 1992). Rather than focusing on the average treatment effect, which is often 

a primary focus in group comparison experimental design studies, single-case research focuses 

on case-specific causal effects (Barlow, Nock & Hersen, 2009). In addition, single-case research 

can be more easily implemented than group experimental design studies for situations where a 

large number of participants are not available. For example, a researcher may be investigating a 

low incidence or highly fragmented population, in which a large number of participants may not 

exist or in which it is expensive to collect a large number of participants for group comparison 

studies. Also, it is possible that the researcher may be working in an environment (e.g., school or 

clinical practice) where the logistics and resources are limited. Under these constraints, it is 
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easier to conduct a study with a small number of participants and examine the intervention 

effects on a specific case. For these reasons, single-case research studies are sometimes more 

flexible and feasible than large-group experimental design studies.   

Although single-case studies have advantages in applied research settings, they also have 

their limitations. A natural reaction to small N design studies would be questions of 

generalizability. The interpretation of the results is not easily generalized to the larger population 

because the study was designed to be case-specific. To address the generalizability issue in 

single-case studies, researchers have tried to incorporate multiple approaches such as the 

application of a multiple-baseline design, or replications of the studies. Meta-analysis can be 

used to assess generalizability of single-case research design studies’ results across studies, and 

to study moderating effects of case and study characteristics.  

To examine the causal relationships between independent and dependent variables with 

single-case research, it is necessary to measure the participant’s outcome variables from two 

distinct phases; a) baseline phase, where outcome variables are measured before the treatment, 

and b) treatment phase, where outcome variables are measured after the treatment. There are two 

purposes of the baseline phase in single-case research design: a) observations in the baseline 

phase provide prior knowledge about the participant’s performance and document a problem 

level of behavior, and b) observations in the baseline phase establish the basis for which 

predictions can be made for the participant’s behavior if the treatment had not been incorporated. 

The treatment phase consists of a series of observations after the introduction of a treatment. 

Simply comparing observations between the baseline and treatment phases from a participant 

often makes the analysis of the effect of a treatment. Figure 1 illustrates typical single-case 
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observations in baseline phase and treatment phases. They are distinguished by a vertical line 

with the outcome variable on the y-axis and the time variable on the x-axis. 

 

 

Figure 1. Observations in baseline and treatment phases separated by a vertical line 

 

Types of Single-case Research Designs 

In single-case research design studies, several types of single-case research designs were 

proposed previously, such as an AB design (or interrupted time-series design), a reversal (or 

withdrawal design; e.g., ABA, ABAB, ABABAB, ABAC designs), and a multiple-baseline 

design. 

 

AB Design  

AB design or interrupted time series (ITS) design is the most basic design in single-case 

research. AB design consists two phases, phases A and B. Phase A is often referred to as a 

baseline phase, consisting of a series of observations prior to treatment introduction. Phase B is 

 

Baseline Treatment 

Time 
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referred to as treatment phase, consisting of a series of observations following treatment 

introduction. Inference about the treatment effect, then, can be made by comparing the difference 

of outcome variables between the baseline and treatment phases.  

AB design is relatively simple and easy to implement because it does not require multiple 

phases and multiple participants. However, researchers often raise a question about the internal 

validity of AB design studies because outcome variables could be shifted by something other 

than true treatment effect (e.g., an event that happened to occur around the time of the treatment; 

Shadish, Cook, & Campbell, 2002). Suppose a researcher is interested in the effect of a newly 

implemented learning program on a student’s academic performance, and an increase in student 

academic performance was found after the implementation of the program. Then, it seems 

natural for the researcher to conclude that the newly implemented learning program is effective 

in increasing student academic performance. However, one may question if the increment of the 

student’s academic performance may be due to other sources such as academic assistance from a 

guardian or online learning program that occurs at the same time that the learning program 

occurs. Therefore, the true effect of the treatment may not be solely observed using AB design. 

 

Reversal Design  

To increase the internal validity and conclusions about shifts in time-series data, 

researchers proposed alternative designs, such as the reversal design. The reversal design is, 

generally, considered an extension of AB design. One example of the reversal design is ABA 

design, which increases the phase by withdrawing treatment. Baseline phase (A phase) is 

additionally included followed by treatment phase (B phase) to observe the pattern of data in 

which the effect in treatment phase is due to the introduction of treatment. Researchers, then, 
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expect to observe a similar pattern of observations from the participants as the first baseline 

phase. To illustrate, Figure 2 represents data using ABA design.  

 

Figure 2. Graphical representation of ABA design with phases separated by a vertical line 

 

By extending more phases through withdrawing and reintroducing treatment, one could 

have ABAB design. In ABAB design, the second treatment phase is reintroduced to expand the 

opportunity for researchers to observe the same pattern as the first treatment phase.  The 

advantage of the reversal design is that the reversal design provides the opportunity to clear out 

event effects in which the shift in outcome variables is caused by something other than the 

treatment effect (Honor & Odom, 2014).  

Although reversal design seems to be an alternative to traditional AB design, there are 

some practical concerns regarding the reversal design. It is possible that, in some cases, the 

treatment effect might be permanent or maintained after treatment is withdrawn. It often occurs 
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in educational settings such as studies involving students’ learning. Once students have learned 

from the treatment phase, it generally is not possible to remove what students learned by 

withdrawing the treatment. 

 

Multiple-Baseline Design 

Another alternative in single-case research studies is multiple-baseline (MB) design. 

Multiple-baseline is, perhaps, the most widely used design in single-case research (Honor & 

Odom, 2014; Shadish & Sullivan, 2011). Meta-analysis of single-case research studies reported 

that 79% of the single-case studies were conducted with some form of multiple baseline design 

(Shadish & Sullivan, 2011). 

MB design is an extension of the AB design that single-case researchers developed to 

answer the question about internal validity with AB design. MB design extends the AB design 

such that the baseline and treatment phases are established for either multiple participants, 

multiple behaviors, or multiple settings. The treatment phases are staggered across time creating 

different lengths of baseline phases across participants, behaviors, or settings. A graphical 

representation of a multiple-baseline design with three participants is presented in Figure 3. 

Similar to the AB design studies, in the MB studies, all participants’ observations are repeatedly 

measured simultaneously to establish the baseline phases for each participant. Once baseline 

phases are established for all participants, the first participant enters the treatment phase. While 

the first participant is in the treatment phase, the other participants are still in the baseline phase. 

A notable change in behavior is expected for the first participant in treatment phase, while the 

other participants, who are still in baseline are expected to show stable observations in their 

behaviors. Once sufficient observations are measured for the first participant to evaluate the 
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effect of the treatment, then the second participant enters the treatment phase while the other 

participants remain in the baseline phase.   

 

 

Figure 3. Graphical representation of multiple-baseline design with three participants 
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Entering the treatment phase at different time points creates the staggered implementation 

across participants and this makes event effects less plausible, meaning that the change of 

behavior was more likely due to the treatment effect rather than other event effects such as 

history or maturation of the participants (Ferron & Scott, 2005). If the change of the participant’s 

behavior was due to a history or maturation effect, then researchers would also expect to observe 

the change in behavior at the same time for the other participants who are still in the baseline 

phase. From the analysis perspective, MB design provides the opportunity to analyze the 

treatment effect and its size of effect based on not only a within-participants (or within-series) 

comparisons of treatment phase to baseline phase observations, but also a time-specific between-

participants (or between-series) comparison of observations from those that have started 

treatment phase to those that are still in the baseline phase. In addition, MB design also provides 

the opportunity for researchers to have multiple randomization options. For example, participants 

can be randomly assigned to a predetermined intervention start time (Wampold & Worsham, 

1986) or each participant’s intervention start time can be randomly assigned to the participants 

(Marascuilo & Busk, 1988) or both (Koehler & Levin, 1998). These randomization options 

increase the internal validity and scientific credibility of the single-case studies (Kratochwill & 

Levin, 2010). 

 

Analysis Methods of Single-Case Research 

 Two main streams of analysis methods for single-case research design studies were 

developed: a) researchers may visually analyze the observations of participants, or b) researchers 

may analyze the observations using statistical analysis approaches.  
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Visual Analysis 

In visual analysis, researchers visually inspect graphed data focusing on detecting the 

treatment effect that can be obviously observed through the graphed data (Kazdin, 2011). Visual 

analysis continues to be the primary method used in the analysis of single-case studies and has 

been considered as a traditional analysis method because a) it associated with theoretical 

paradigms of experimental and applied behavior analysis, including in professional journal 

articles (e.g., the Journal of Applied Behavior Analysis [JABA], or the Journal of Experimental 

Analysis of Behavior), b) multiple and complex factors are taken into account when visual 

analysts inspect multiple graphs and c) it is an appropriate analysis method for clinical practice, 

where emphasis on change in the behavior of an individual participant has been the focus 

(Kratochwill, Hitchcock, Horner, Levine, Odom, Rindskopf & Shadish, 2013; Kratochwill, 

Levin, Honer & Swoboda, 2014).   

Although it is methodologically simple and has a long history with the applied behavior 

analysis approach, visual analysis includes several limitations regarding scientific evidence. One 

may have a question about Type I error control and statistical power of visual analysis. 

Previously, studies have shown that visual analysis inflates the Type I error rates (Fisch, 2001; 

Matyas & Greenwood, 1990). Alternatively, several methods including training, structured 

criteria, and masked visual analysis have been suggested and those methods have shown 

improvement of the accuracy of visual analyses (Ferron, & Jones; 2006; Ferron, Joo, & Levin, 

2016; Fisher, Kelley & Lomas; 2003). Another limitation of visual analysis is that a quantified 

effect size measure of treatment is not provided with which researchers could use to evaluate the 

treatment. The primary purpose of an intervention study is to examine the effect of the 
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intervention and how much the intervention affects participants’ behavior. Visual analysis may 

provide whether there is an effect or not but it is limited to the information about how much of 

an effect occurred. As a result, it is not possible for the results of a visual inspection to be 

directly connected to quantitative synthesis. When researchers meta-analyze single-case research 

studies, they rely on effect size measures of the studies (Kratochwill et al., 2014). 

 

Nonparametric Statistics 

Nonparametric statistics are, historically, used to evaluate the treatment effect in single-

case studies. In general, nonparametric statistical methods do not assume a theoretical 

distribution (e.g., t or F) and as a result, several assumptions in parametric statistics (e.g., 

normality, equality of variances, and independence of observations) are not required to be 

assumed (Ferron & Levin, 2014).  

The most widely used nonparametric methods in single-case research are permutation 

and randomization tests. In permutation tests, the test statistics from observed data are first 

computed and then, the obtained test statistics are compared with an empirical distribution that is 

formed by either a) all possible permutations of the dataset, or b) computing the test statistics 

through the sampling with replacement (i.e., resampling method). If the single-case research 

study included some type of random assignment, and the permutations are based on the possible 

random assignments, then the permutation test is termed a randomization test (Edgington & 

Onghena, 2007). Randomization tests are also advantageous because they enhance the internal 

validity and statistical conclusion validity (Campbell & Stanley, 1963). A strong internal validity 

leads researchers to conclude with confidence the casual inferences involving interventions and 

outcomes. In addition, previous methodological research with randomization tests showed that if 
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randomization tests are conducted with randomization design, Type I errors associated with 

assessing intervention effect can be well controlled (Ferron, Foster-Johnson & Kromrey, 2003).  

However, some concerns with permutation and randomization tests still exist, including 

sensitivity of statistical power, heavy computational demands and feasibility of randomization 

(Ferron & Levin, 2014). Previous studies showed that the statistical power of single-case 

randomization tests varies across multiple factors, from unacceptably low to reasonably high. 

These multiple factors include the types of single-case designs, randomization methods, amount 

of data collected, degrees of autocorrelation, and effect sizes (e.g., Ferron & Onghena, 1996; 

Ferron & Sentovich, 2002; Ferron & Ware, 1995). Also note that although randomization tests 

provide a p-value for significance testing, the effect size measures are not estimable from the 

randomization tests. The complexity of the randomization procedure is another drawback of 

these nonparametric tests. Although some user-friendly applications for a standard permutation 

test are available, most applications of true randomization tests to single-case studies require 

specialized software or programming scripts. In addition, when the number of observations in 

single-case data is large, randomization procedures may require heavy computations (Ferron & 

Levin, 2014).  

 

Non-overlap Statistics 

Non-overlap statistics are also heavily-used statistical methods which can provide the 

numerical or quantified size of a treatment effect. Non-overlap statistics were developed based 

on the percent of non-overlapping data (Mastropieri & Scruggs, 1985). Various types of non-

overlap statistics were proposed and developed previously by a number of researchers in single-

case studies: a) percent non-overlapping data (PND; Scruggs, Mastropieri & Casto, 1987), b) 
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percent exceeding median data (PEM; Ma, 2006), c) percent zero data (PZD; Scotti, Evans, 

Meyer, & Walker, 1991), d) percentage of all non-overlapping data (PAND; Parker, Hagan-

Burke & Vannest, 2007), e) non-overlap of all pairs (NAP; Parker & Vannest, 2009) and f) Tau-

U (Parker, Vannest, Davis & Sauber, 2011). 

 Non-overlap statistics are appealing because a) they were developed without any 

assumptions about the distribution of the data, so that they could provide robust statistics to 

handle typical single-case data, and b) they are directly interpretable and appear to be accessible 

enough for single-case researchers to use (Parker, Vannest & Davis, 2014). However, non-

overlapping statistics also include several limitations including ceiling effect, sensitivity to 

outliers and the assumption of no trend in baseline and treatment (Parker & Vannest, 2009).  

 

Single-level Regression Analysis 

One of the parametric statistical analysis methods for single-case data is single-level 

regression model (e.g., Gottman & Glass, 1978; Huitema & McKean, 2000; Maggin, 

Swaminathan, Rogers, O’Keeffe, Sugai, & Horner, 2011). To estimate the treatment effect, each 

participant’s observation is modeled by a dichotomized variable phase (e.g., phase = 0 if 

observation is from baseline phase and phase = 1 if observation is from treatment phase) and the 

estimated coefficient of the phase variable would provide the size of the treatment effect in the 

model. Equation 1 represents the most basic form of the single-level regression model. 

𝑌𝑖 = 𝛽0 + 𝛽1 ∗ 𝑝ℎ𝑎𝑠𝑒 + 𝑒𝑖 ,     𝑒𝑖 ~ N(0, 𝜎2),                                 (1) 

where 𝑌𝑖 is participant’s observations at i
th 

time point, 𝛽0 is an average observations in baseline 

phase and 𝛽1 is an estimated shift in level from baseline to treatment phases (i.e., treatment 

effect). Also, 𝜀𝑖 indicates the error term for the i
th 

time point observation and they are assumed to 
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be normally distributed with zero mean and variance 𝜎2. Note that it is possible to model time 

trend variable for the trend effect in baseline phase or treatment phase or both. Equation 2 

represents the single-level regression model for the treatment effect, time trend effect in both 

baseline and treatment phases. 

𝑌𝑖 = 𝛽0 + 𝛽1 ∗ 𝑝ℎ𝑎𝑠𝑒 + 𝛽2 ∗ 𝑡𝑖𝑚𝑒 + 𝛽3 ∗ (𝑝ℎ𝑎𝑠𝑒 ∗ 𝑡𝑖𝑚𝑒) + 𝑒𝑖 ,  𝑒𝑖 ~ N(0, 𝜎2)          (2) 

where, 𝛽0 is an average observations in baseline phase, 𝛽1 is a treatment effect (i.e., the expected 

difference between behavior in the treatment and baseline condition at time = 0), 𝛽2 is a trend 

effect in baseline phase, and 𝛽3 is a trend effect (i.e., the difference in trends between treatment 

and baseline phases). In general, assumptions of the single-level regression model include 

independence of observations, homogeneity of variances between baseline and treatment phases, 

and error terms are normally distributed with zero mean and variance 𝜎2. However, previous 

studies examined and developed the more complex single-level regression models and indices 

regarding the assumptions of variance. For example, generalized least square (GLS) regression 

model was adapted to estimate the dependent and heterogeneous structures of residual variances 

(Maggin, et al., 2011), and modified R-square indices were introduced to address the 

autocorrelation structure in single-case data (Beretvas & Chung, 2008).  

Single-level regression analysis is an adequate method because it has flexibility to model 

not only linear time trend of the treatment effect but also quadratic growth curve or non-linear 

growth curve. Another significant advantage of single-level regression analysis is that it allows 

researchers to make an inference about the treatment and time trend effects. Although other 

statistical analysis methods (e.g., non-overlap statistics) of single-case studies have several 

advantages for estimating the treatment effect (e.g., relatively straightforward computation and 

interpretation), they are limited if researchers desire to obtain statistical inferences including 
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interval estimates or statistical significance tests because they are developed based on a series of 

assumptions (e.g., independence and homogenous variances). Single-level regression analysis, 

however, provides greater flexibility for researchers, in that they can estimate not only the size of 

the effect but also test hypotheses and create confidence intervals under a variety of different 

assumptions (e.g., independent versus autocorrelated, homogeneous versus heterogeneous).  

Single-level regression is a well-suited analysis method for studies with AB or reversal 

designs involving one participant. However, when multiple participants are involved in single-

case studies, such as MB design, replicated ABAB, or replicated alternating treatment design 

studies, a single-level regression model for each participant might not be optimal if researchers 

are interested in variability across participants as well as average treatment effects for the study. 

To analyze the multiple-participant single-case studies, multilevel modeling has been suggested 

as an analysis method (Rindskopf & Ferron, 2014; Shadish & Rindskopf, 2007; Van den 

Noortgate & Onghena, 2003a, 2003b, 2007, 2008). 

 

Multilevel Modeling   

In educational and psychological research settings, multilevel modeling became popular 

because it takes a nested structure of data into account. Multilevel models are specifically 

developed for analyzing hierarchical structure data where lower-level units are nested in higher-

level units. These hierarchical structure data are often found in behavioral and social science 

studies. For example, in educational settings, students are nested in teachers and teachers are 

nested in schools. Similarly, MB studies can be considered as hierarchical structure such that 

observations are repeatedly measured over time within a participant and multiple participants are 

involved in a study.  
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Analyzing MB studies with multilevel modeling includes various advantages over the 

multiple single-level modeling approach. For example, multilevel modeling provides not only 

individual participants’ treatment effect estimates, but also the average treatment effect estimate 

across participants. Multilevel modeling further provides the inference about the average 

treatment effect estimate as well. Another advantage of using multilevel modeling for MB 

studies is that researchers could obtain the average variance estimates for within individual 

participants’ observations as well as between participants’ observations. 

Using multilevel modeling for MB studies also includes limitations. For example, 

accurate parameter estimates and inferences can be obtained when several assumptions are 

satisfied. The assumptions include homogeneous variance across two phases (baseline and 

treatment), homogeneous variance across multiple participants, normality of observations, and 

correct specification of the fixed effect parameters and random components in the model.  

 

Within-Series Model 

The within-series model is a type of multilevel models, which estimates the treatment 

effect using series of within-participants’ observations in MB studies. In typical MB studies, 

multiple observations are measured within a participant and multiple participants are included in 

the study. This hierarchical structure can be analyzed with two-level multilevel modeling. That is, 

participants’ observations or measurement occasions are considered as first-level units, and 

participants are considered as second-level units. To illustrate the variability within and between 

participants, a simple form of multilevel model, where a treatment effect is used as a predictor in 

level-1, is described in Equations 3.1-3.3. Equation 3.1 describes participants’ measurement 

occasions for the baseline and treatment phases, respectively, along with the average variation 
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within participants. Equations 3.2 and 3.3 describe the variation across participants for the 

predictors in Equation 3.1. Similar to the single-level regression model, a predictor Phase is 

included as a dichotomous variable separating baseline (Phase = 0) and treatment (Phase = 1) 

phases. The equation for level-1 is described as follows: 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑃ℎ𝑎𝑠𝑒𝑖𝑗 + 𝑒𝑖𝑗 ,          𝑒𝑖𝑗~ N(0, 𝜎2)                          (3.1) 

𝑌𝑖𝑗 is i
th

 time point measurement occasion for j
th

 participant and 𝛽0𝑗 and 𝛽1𝑗 are the intercept and 

slope effects in the model. Note that coefficients 𝛽0𝑗 and 𝛽1𝑗 are allowed to vary across 

participants and will be described in level-2 equations. Because the Phase variable separates the 

baseline and treatment phases, baseline observations are modeled by 𝛽0𝑗 with random error 𝑒𝑖𝑗 

and treatment observations modeled by 𝛽0𝑗 plus 𝛽1𝑗 with random error 𝑒𝑖𝑗. That is, the 

observations in the treatment phase are expected be either higher or lower than those in the 

baseline phase by 𝛽1𝑗 and it is considered as the treatment effect for j
th

 participant. The random 

error 𝑒𝑖𝑗 is generally assumed to be independent for each observation and homogeneous across 

phases. It is also assumed that random errors, 𝑒𝑖𝑗 are normally distributed with variance, 𝜎2.  

For the level-2 equations, the variation of both coefficients 𝛽0𝑗 and 𝛽1𝑗 across 

participants is described as follows: 

𝛽0𝑗 = 𝛾00 + 𝑢0𝑗                                                          (3.2) 

𝛽1𝑗 = 𝛾10 + 𝑢1𝑗                                                          (3.3) 

𝛾00 and 𝛾10 are intercept and 𝑢0𝑗 and 𝑢1𝑗 are error terms for the model, respectively. From 

Equations 3.2 and 3.3, baseline observations 𝛽0𝑗 for j
th

 participant is divided into expected value 

𝛾00 plus its randomness 𝑢0𝑗. Similarly, the treatment effect 𝛽0𝑗 for j
th

 participant is translated 

into some constant 𝛾10 plus its randomness 𝑢1𝑗. Note that 𝛾00 is the average baseline observation 
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across participants and 𝛾00 + 𝛾10 is the average treatment observation across participants, so that 

𝛾10 is the average amount of shift in level from baseline to treatment phases across participants 

(i.e., treatment effect). The randomness 𝑢0𝑗 represents the amount of variation between 

participants for the average baseline observation and 𝑢1𝑗 represents the amount of variation 

between participants for the treatment effect. Error structure in level-2 is expressed in matrix 

form because error terms for intercept and slope are allowed to be correlated. That is, 𝑢0𝑗 and 

𝑢1𝑗 are distributed as multivariate normal distribution with zero-vector mean and 2 by 2 

variance-covariance matrix 𝚺𝒖. 

𝒖 ~ 𝑀𝑉𝑁(𝟎, 𝚺𝒖) 

where, 𝚺𝒖 = (
𝜏00 𝜏01

𝜏10 𝜏11
) with 𝜏01 = 𝜏10. 𝜏00 is variance across participants in the baseline means,  

𝜏11 is treatment effect variance across participants, and 𝜏10 is covariance between baseline level 

variation and treatment effect variation across participants. It is also possible to constrain the 

covariance parameters 𝜏01 and 𝜏10 equal to zero, in other words, 𝚺𝒖 = diag(𝜏00, 𝜏11). Note that 

this constraint indicates that the baseline intercept and treatment effects are assumed to be 

independent for each participant. Combining level-1 and 2 equations results in the final 

multilevel model described as follows. 

𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑃ℎ𝑎𝑠𝑒𝑖𝑗 + 𝑢0𝑗 + 𝑢1𝑗𝑃ℎ𝑎𝑠𝑒𝑖𝑗 + 𝑒𝑖𝑗,      𝑒𝑖𝑗~ N(0, 𝜎2)             (4) 

Note that 𝛾00 and 𝛾10 are called fixed effects and 𝜏00, 𝜏01, 𝜏11, and 𝜎2 are called random 

components of the model. 

Parameters in multilevel modeling can be extended depending on model predictors. 

Similar to a single-level regression model, it is possible to include additional predictor variables 

at different levels of the model. To evaluate the trend effects in both baseline and treatment 

phases, a time variable (Time) and its product with the treatment variable (Time*Phase) can be 
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included as predictors in the level-1 equation. Regardless of how time is measured, the Time 

variable is often centered for each participant where Time = 0 at the time at which the researcher 

wants to estimate the treatment effect. The extended equation is described as follows: 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑃ℎ𝑎𝑠𝑒𝑖𝑗 + 𝛽2𝑗𝑇𝑖𝑚𝑒𝑖𝑗 + 𝛽3𝑗(𝑇𝑖𝑚𝑒𝑖𝑗 ∗ 𝑃ℎ𝑎𝑠𝑒𝑖𝑗) + 𝑒𝑖𝑗,  𝑒𝑖𝑗~ N(0, 𝜎2)   (5) 

where, 𝛽0𝑗 is intercept, 𝛽1𝑗 is the time specific treatment effect, 𝛽2𝑗 is the trend in the baseline 

phase and 𝛽3𝑗 is the change in trend between the treatment and baseline phase for the j
th

 

participant. Since coefficients 𝛽0𝑗, 𝛽1𝑗, 𝛽2𝑗 and 𝛽3𝑗 are random across participants and allowed 

to be correlated, further equations can be expressed as follows. 

𝛽0𝑗 = 𝛾00 + 𝑢0𝑗                                                          (6.1) 

𝛽1𝑗 = 𝛾10 + 𝑢1𝑗                                                          (6.2) 

𝛽2𝑗 = 𝛾20 + 𝑢2𝑗                                                          (6.3) 

𝛽3𝑗 = 𝛾30 + 𝑢3𝑗                                                          (6.4) 

where, 𝛾00, 𝛾10, 𝛾20, 𝛾30 are average values for 𝛽0𝑗, 𝛽1𝑗, 𝛽2𝑗 and 𝛽3𝑗, and 𝑢0𝑗, 𝑢1𝑗, 𝑢2𝑗 and 𝑢3𝑗 

are error terms, respectively. Similar to the previous multilevel model, 𝛾00 is average baseline 

observation, 𝛾10 is average treatment effect, 𝛾20 is average trend in baseline and 𝛾30 is the across 

participant average change in trend between treatment and baseline phases. Furthermore, 𝑢0𝑗, 

𝑢1𝑗, 𝑢2𝑗 and 𝑢3𝑗 are variations for each effect across participants. They are assumed to be 

multivariate normal distribution with zero-vector mean and 4 by 4 variance-covariance matrix 𝚺𝒖  

where, 

𝚺𝒖 = (

𝜏00 𝜏01

𝜏10 𝜏11

𝜏02 𝜏03

𝜏12 𝜏13
𝜏20 𝜏21

𝜏30 𝜏31

𝜏22 𝜏23

𝜏32 𝜏33

) 
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Note that 𝜏𝑖𝑗 = 𝜏𝑗𝑖 for i ≠ j and 𝜏00, 𝜏11, 𝜏22 and 𝜏33 are variances for baseline observations, 

treatment effects baseline trends, and trend changes, respectively. Off-diagonal elements of 𝚺𝒖 

are covariance between effects described above. If fixed effects of the model are assumed to be 

independent then, variance-covariance matrix becomes 𝚺𝒖 = diag(𝜏00, 𝜏11, 𝜏22, 𝜏33). Combining 

level-1 and 2 equations results the final multilevel model as described as follows. 

𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑃ℎ𝑎𝑠𝑒𝑖𝑗 + 𝛾20𝑇𝑖𝑚𝑒𝑖𝑗 + 𝛾30(𝑇𝑖𝑚𝑒𝑖𝑗 ∗ 𝑃ℎ𝑎𝑠𝑒𝑖𝑗)                  

+𝑢0𝑗 + 𝑢1𝑗𝑃ℎ𝑎𝑠𝑒𝑖𝑗 + 𝑢2𝑗𝑇𝑖𝑚𝑒𝑖𝑗 + 𝑢3𝑗(𝑇𝑖𝑚𝑒𝑖𝑗 ∗ 𝑃ℎ𝑎𝑠𝑒𝑖𝑗) + 𝑒𝑖𝑗,     𝑒𝑖𝑗~ N(0, 𝜎2)  (7) 

Note that 𝛾00, 𝛾10, 𝛾20 and 𝛾30 are fixed effects and 𝜏𝑖𝑗 and 𝜎2 are random components of the 

model.  

Van den Noortgate and Onghena (2003a, 2003b) demonstrated the use of a two-level 

model as described above, and noted that if data from several of such single-case studies are 

combined, a three-level model is recommended to model variability in scores at each of three 

levels: scores may vary over measurement occasions within participants (level-1), between 

participants from the same study (level-2) and between studies (level-3). This meta-analytic 

three-level modeling approach was, recently, investigated to examine the efficacy of the use of 

the multilevel modeling approach for synthesizing single-case data (Moeyaert, et al., 2013a, 

2013b, 2014). 

 With within-series multilevel modeling, it is possible to include dependent level-1 error 

structures in the model. A variety of alternative error structures have been suggested for handling 

the level-1 error dependency in MB studies (Baek & Ferron, 2013; Petit-Bois, 2014) including 

first-order autoregressive models, AR(1), higher-order autoregressive models, first-order moving 

average models, MA(1), and autoregressive moving average (ARMA) models. Simulation 

studies have found that estimation of the treatment effect is unbiased and inferences are 
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relatively robust to misspecification of the correlation structure of the level-1 residuals (Petit-

Bois, 2014; Petit-Bois, Baek, Van den Noortgate, Beretvas, & Ferron, 2016). In addition, it is 

also possible to include a heterogeneous level-1 error structure in the model. Past simulation 

studies also supported the viability of estimating separate variances for the baseline and 

treatment phases when the treatment alters the variance (Bunuan, Hembry, & Beretvas, 2013; 

Joo & Ferron, 2016). Also, modeling heterogeneous variance across participants has been 

investigated (Baek & Ferron, 2013) for the within-series model. 

 

Between-Series Model 

Ferron et al. (2014) proposed the between-series model as an alternative modeling 

approach to estimate the treatment effect in MB studies. To illustrate the data used in the 

between-series model, Figure 4 provides a graphical representation of the simulated data with the 

four participants in the between-series model. As Figure 4 shows, the observations in the 

enclosed vertical boxes are used to make comparison between baseline and treatment phases. 

Dichotomous variable 𝐷𝑖𝑗 can be created such that 𝐷𝑖𝑗 = 0, if the i
th

 observation for j
th

 participant 

is not in the enclosed box and 𝐷𝑖𝑗 = 1, otherwise. This allows separating observations that are 

used for the within-series model and observations that are used for the between-series model. 

The subset of observations for the between-series model is purposely selected based on the time 

points where one observation is undergoing the treatment phase whereas the other observations 

are still in the baseline phase. In Figure 4, there are four different time points that participants are 

entering the treatment phases and to make comparison of baseline and treatment phases, the 

observations following the first 3 time points were used (see the three pairs of enclosed boxes in 

Figure 4). Also note that, from the second pair of vertical boxes, the observations have been 
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more than 3 time points after the treatment starts is not included. This is because those 

observations may include the time trend effect as well as immediate level effect (Ferron et al. 

2014).  

 

 

Figure 4. Graphical representation of the data points for the between-series model 
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The between-series model also uses a series of dichotomously coded variables (𝑃1𝑖𝑗, 𝑃2𝑖𝑗, 

… 𝑃𝑘𝑖𝑗). 𝑃𝑘𝑖𝑗 is coded 1 if an i
th

 observation for j
th

 participant is at the k
th

 vertical enclosed box 

and 𝑃𝑘 = 0, otherwise. Similar to the within-series model, Phase variable is also specified as 

dummy variable in the between-series model (e.g., 0 = baseline, 1 = treatment) so that interaction 

term (𝑃𝑘 ∗ 𝑃ℎ𝑎𝑠𝑒) can separate observations for the baseline phase, and observations for the 

treatment phase. In sum, the between-series model equation can be expressed as follows. 

𝑌𝑖𝑗 = ∑ (𝛽𝑘𝑃𝑘𝑖𝑗 + 𝛽𝐾+𝑘𝑃𝑘𝑖𝑗𝑃ℎ𝑎𝑠𝑒𝑖𝑗) + 𝑒𝑖𝑗
𝐾
𝑘=1                                (8) 

Note that coefficient 𝛽𝐾+1 is the treatment effect estimate after the first participant entered the 

treatment phase, while the other participants still stay in the baseline phase. Similarly, 𝛽𝐾+2 is 

the between-series treatment effect estimate after the second participant entered the treatment 

phase, while the other participants are in the baseline phase. The between-series model in 

Equation 8 individually estimates the treatment effect for each k
th

 time point. To estimate a 

single quantity of the treatment effect averaging across the k time points (i.e., pooled estimate), 

Equation 8 can be modified to have a common between-series effect. 

   𝑌𝑖𝑗 = ∑ (𝛽𝑘𝑃𝑘𝑖𝑗) +  𝛽𝐾+1𝑃𝑘𝑖𝑗𝑃ℎ𝑎𝑠𝑒𝑖𝑗 + 𝑒𝑖𝑗
𝐾
𝑘=1 ,                               (9) 

where 𝛽𝐾+1 is the pooled treatment effect estimate across participants. Because of the possibility 

of time trend effect, baseline observations for each k
th

 time point are still separately estimated. 

The error term, 𝑒𝑖𝑗, in the between-series model represents the combined variabilities for the  

observations within a participant and between participants. Similar to the within-series model, it 

is also possible to model various error structures. If researchers assume homogeneous variance 

across baseline and treatment phases and across k
th

 time points, then single variance would be 

modeled [i.e., Var(𝑒𝑖𝑗) = 𝜎2]. If researchers assume heterogeneous variances across two phases, 

then distinct variances would be modeled [i.e., Var(𝑒𝑖𝑗(𝑚)) = 𝜎𝑚
2 , where m represents phases] and 
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if researchers assume heterogeneous variances across k
th

 time points, then multiple variances 

would be modeled [i.e., Var(𝑒𝑖𝑗(𝑘)) = 𝜎𝑘
2, where k represents k

th
 time point for each enclosed 

box]. 

 The motivations behind the development of the between-series model are twofold: a) it 

may not be easily assumed that the time trend in the model is of a specific form (e.g., linear) and 

b) to avoid bias of the treatment effect which can be caused by effects of factors other than the 

treatment (Ferron et al., 2014). Previously, to model non-linear trajectories in outcome variables, 

researchers examined various functional forms of within-series models to fit the data best. For 

example, when outcome variables reach an asymptotic line at the end of the treatment phase, 

then the growth in the treatment phase can be modeled as a logistic function (Hembry, Bunuan, 

Beretvas, Ferron & Van den Noortgate, 2014). When the outcome is a count or a rate, then it was 

suggested that the log function would be appropriate for a non-linear trajectory in multilevel 

modeling (Shadish et al., 2013; Shadish & Rindskopf, 2007; Shadish, Rindskopf & Hedges, 

2008). However, these alternative modeling approaches make sense only when researchers 

correctly specify the model. Unfortunately, in practical research settings, researchers rarely know 

the correct model with any confidence. The between-series model can help solve this problem 

without assuming any functional forms of the model. In addition, when series of observations are 

analyzed within a participant (i.e., within-series model), the estimated treatment effect can be 

biased if an event effect is present. The between-series model, however, provides stronger 

evidence that the changes of participants’ observations are due to the treatment effect not to 

some event effect other than the treatment, by comparing those participants in treatment to those 

still in baseline (Ferron et al., 2014). A simulation study found that the within-series model 

outperformed the between-series model when assumptions are satisfied but the between-series 
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model produced less biased average treatment effects than the within-series model for the 

conditions where the model is misspecified or event effects are included (Ferron et al., 2014). 

 

ReML Estimation and Inference 

Parameters of the within- and between-series models are generally estimated with either 

maximum likelihood (ML) or restricted maximum likelihood (ReML) estimation. ML estimates 

both fixed effects and random components of the model simultaneously whereas ReML 

estimates fixed effects while restricting random components of the model during the estimation 

procedure. Both ML and ReML are iterative procedures to find the estimates, which maximize 

the likelihood function of the model (Raudenbush & Bryk, 2002). Previous research that 

investigated the efficacy of ML and ReML reported that ReML produced more accurate fixed 

effect estimates than ML and with as few as 6 level-2 units, and the variance components of 

ReML were estimated with better precision than ML (Browne & Draper, 2000). Also, Browne 

and Draper (2000) further noted that as the number of level-2 samples increase, both ML and 

ReML produce reasonable variance component estimates. With regards to statistical inference of 

the estimates, it was found that standard errors are more accurately estimated with ReML than 

ML, but still a sufficient number of level-2 units is required to obtain reliable inferences (Maas 

& Hox, 2004; van der Leeden & Busing, 1994).  

Small sample size, especially for level-2 units, is problematic because both ML and 

ReML were developed based on large-sample theory. As previous research has shown, the 

recommended sample size for the level-2 unit is at least 30 to obtain unbiased parameter 

estimates and reliable inferences (Hox, 1998, Maas & Hox, 2004). More specifically, when the 

level-2 sample size is relatively small (less than 30), the fixed effects of the model are estimated 
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with no biases, but the variance component estimates are severely biased (Raudenbush & Bryk, 

2002). Previous simulation studies also support that substantial bias in the estimates of the 

variance component when level-2 sample size is less than 30 (Bell, Morgan, Schoeneberger, 

Kromrey, & Ferron, 2012). Furthermore, statistical inferences for the fixed effects, including the 

confidence interval and statistical power, would be inaccurate because standard errors of the 

estimates are underestimated (Mass & Hox, 2004).  

In general, it is not common for MB studies to have a large number of participants (i.e., 

level-2 unit). In fact, very few research studies would involve 30 or more participants in a single 

MB study (e.g., Koutsoftas, Harmon & Gray, 2009). Thus, to obtain more reliable statistical 

inferences for the treatment effect estimate using multilevel modeling, it is necessary to 

incorporate a small sample size adjustment. 

 

Kenward-Roger Degrees of Freedom Adjustment 

In the past multilevel modeling with MB studies, various small sample size adjustment 

methods were introduced to obtain more reliable statistical inferences for the fixed effect 

estimates. For example, Ferron et al. (2009) compared several small sample size adjustment 

methods for multilevel modeling in the context of MB studies. They considered five adjustment 

methods; containment, residual, between-within, Satterthwaite (Satterthwaite, 1946), and 

Kenward-Roger (Kenward & Roger, 1997). These small sample size adjustments are 

distinguished from one another in terms of how they compute degrees of freedom for the fixed 

effects. Relatively simple methods, residual and containment, compute the degrees of freedom as 

follows: 

𝑑𝑓𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 = 𝑛2(𝑛1 − 𝑝)                                                  (10) 
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𝑑𝑓𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑛2𝑛1 − 1                                                     (11) 

where 𝑛2 is the number of level-2 unit, 𝑛1 is the number of level-1 unit and p is the number of 

fixed effect parameters in the model. The between-within degrees of freedom method, in general, 

partitions the residual degrees of freedom into between- and within-participant portions. 

However, in multilevel modeling with MB studies, all of the residual degrees of freedom are 

given to the within-participants so that the between-within method is essentially the same as the 

residual method (Ferron et al., 2009, 2010). These simple computations for the degrees of 

freedom tend to be overestimated when a more complex variance structure is used, thereby 

inferences about the estimates would be unreliable. On the contrary, the Satterthwaite and 

Kenward-Roger methods approximate the degrees of freedom in accordance with the complex 

variance structure of the observed data. The degrees of freedom approximation using the 

Satterthwaite method is given as follows. 

𝑑𝑓𝑆𝑎𝑡𝑡𝑒𝑟𝑡ℎ𝑤𝑎𝑖𝑡𝑒 =
2(𝑐′Σ�̂�

̂ 𝑐)
2

[𝑣𝑎𝑟(𝑐′Σ�̂�
̂ 𝑐)]

,                                                (12) 

where c is defined as 𝑐′𝛽 = 0 and Σ�̂̂� is estimated variance-covariance matrix of �̂�, defined as 

Σ�̂̂� = (𝑋�̂�−1𝑋′)
−1

, where �̂�−1 is inverse variance-covariance matrix and 𝑋 is design matrix of 

the fixed effects. The Kenward-Roger method is an extension of the Satterthwaite method. In the 

Satterthwaite method, the degrees of freedom approximation is adjusted for a small sample size 

bias (Ferron et al., 2009, 2010). The small sample bias adjustment is made by replacing Σ�̂̂� with 

adjusted Σ�̂�
∗̂, where Σ�̂�

∗̂ is a bias-adjusted estimator of the precision of �̂� (Kenward & Roger, 

1997).  

Ferron et al. (2009) showed that the Kenward-Roger and Satterwaite methods for 

estimating degrees of freedom are preferable to any other method when the within-series 
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multilevel model was used for MB studies. Although a relatively small number of participants 

was used, the Kenward-Roger method produced the unbiased treatment effect estimates and their 

confidence intervals were close to the nominal level (alpha = .05). Mean square error estimates 

for the treatment effect were also reasonable across conditions as well. In addition, Bell et al., 

(2012) also found that unbiased fixed effect estimates and accurate Type I error rates using the 

Kenward-Roger method when sample size was as low as 10.  

However, note that variance components in multilevel modeling are still problematic with 

small sample size because the Kenward-Roger method does not apply for the variance 

component estimates. Substantial biases in the variance component estimates are consistently 

found in previous research with small sample size (Bell et al., 2012; Clarke & Wheaton, 2007; 

Ferron et al., 2009; Moeyaert et al., 2013a, 2013b).  

 

Violation of Normality Assumption for MB Studies 

In addition to the estimation being based on large sample size or asymptotic theory, a 

critical assumption associated with multilevel modeling estimation, is normality of the data (Hox 

et al., 2010; Raudenbush & Bryk, 2002). Normality is generally defined as whether the 

theoretical distribution where residuals are assumed to be drawn from is a “bell-shaped” curve 

(Cohen, Cohen, West, & Aiken, 2003). The levels of normality can be measured by two well-

known moment statistics: skewness and kurtosis. Skewness indicates a lack of symmetry in 

a distribution. Data from a right-skewed (skewed to the right) distribution have values that are 

bunched together below the mean, but have a long tail above the mean. Similarly, data from a 

negatively skewed (skewed to the left) distribution have values that are bunched together above 

the mean, but have a long tail below the mean. On the other hand, kurtosis is a measure of the 
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heaviness of the tails in a distribution, relative to the normal distribution. A distribution with 

positive kurtosis (leptokurtic) is light-tailed relative to the normal distribution, while a 

distribution with negative kurtosis (platykurtic) is heavy-tailed relative to the normal distribution. 

This normality assumption is critical for multilevel modeling because both ML and 

ReML are developed in accordance with the assumption of normality (Eliason, 1993). Strictly 

speaking, although the residual errors are not normally distributed, the parameter estimates from 

ML or ReML are still consistent and asymptotically unbiased. However, the asymptotic standard 

errors are incorrect and the corresponding statistical inferences are not trustworthy. Furthermore, 

these problematic consequences are not completely vanquished even if a larger sample size is 

provided (Goldstein, 1995; Maas & Hox, 2004). 

Previous meta-analyses have shown that normality assumption is not always satisfied in 

MB studies (e.g., Parker, 2006; Shadish, 2014; Shadish & Sullivan, 2011; Smith, 2012, Solomon, 

2014). For example, Parker (2006) investigated the normality of single-case data where 166 

published data sets were analyzed with the Shapiro-Wilk test (Shapiro & Wilk, 1965). Results 

indicated that a full 51% (N = 85) of these 166 data sets failed to meet the normality assumption 

(Parker, 2006).  In addition, a meta-analysis of school-based single-case studies reported that the 

skewness of analyzed study observations ranged from .46 to 2.89 and the corresponding kurtosis 

ranged from .49 to 1.57 (Solomon, 2014).  

Non-normal data may occur in MB studies due to various reasons. Non-normality can be 

observed if the scales of measurement are not continuous variables including counts, proportions 

or percentages. In MB studies, scales of measurement vary from study to study depending on the 

researchers’ interest. For example, if a researcher is interested in the play behavior of toddlers 

with disabilities, then a count of play actions could be the target outcome variable (DiCarlo & 
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Reid, 2004). If a researcher is interested in the academic and social participation of students with 

disabilities during multiple sessions or trials, then the proportion of students’ initiations of social 

interactions with the teacher or other students could be the target outcome variable (Hunt, Soto, 

Maier & Doering, 2003). Although the measurement scales are continuous, the distribution may 

be still non-normal if the participant’s measurement occasions included ceiling/floor effects or 

outliers (Hox et al., 2010; Langford & Lewis, 1998). In MB studies, ceiling/floor effects or 

outliers may occur due to either a momentary or temporary event effect. For example, a 

momentary event effect occurs if a participant of an intervention study experiences a personal 

problem at home at a certain time point and the observed outcome at the next time point is 

influenced by the event effect, either positively or negatively (Ferron et al., 2014).  

If non-normality in MB studies were observed, one could use generalized linear (mixed) 

models assuming either Poisson or binomial distributions as underlying population distributions 

to fit the non-normal scale observations (Shadish, 2014). However, this approach includes some 

limitations. For example, fitting more complex models can increase the complexity of the 

estimation which can create problems with small sample sizes (Shadish, Kyse, & Rindskopf, 

2013). In addition, in practical situations, the researcher may not know the correct underlying 

population distribution with any confidence (Shadish, Zuur, & Sullivan, 2014). Lastly, if MB 

studies were meta-analyzed, it is more challenging to put different scales of effect size measures 

on the same metric across studies.  

Alternatively, one could use multilevel models assuming robustness of the models to the 

violation the normality assumption. It may not be an ideal approach if severe violation of 

normality led to an inaccurate interpretation of the results. However, up to date, the information 

regarding the robustness of multilevel models is limited and no guidelines or recommendations 
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with respect to skewness and kurtosis of MB data are provided. Thus, it is important to 

investigate the degree to which violation of normality assumption in MB studies can be handled 

with multilevel models. In addition, given that non-normal MB data is a potential threat and 

could possibly lead to inaccurate statistical inferences, it is important to investigate an alternative 

modeling methods, which may be robust to non-normal MB data. From a practical perspective, 

comparing traditional and alternative modeling methods can provide better insight and practical 

solutions for applied researchers about how to deal with a violation of the normality assumption.  

 

Bayesian Estimation and Inference 

One alternative approach for handling non-normal data in multilevel modeling is 

Bayesian estimation (Gelman, Carlin, Stern & Rubin, 2014). The Bayesian approach 

conceptually and methodologically differs from likelihood-based estimation methods. In 

Bayesian modeling, researchers can specify prior knowledge about the model parameter and this 

prior knowledge is often expressed as a probability distribution, also known as prior distribution. 

For example, in multilevel modeling, prior distribution can be specified for each fixed effect 

coefficient and variance component in the model before the parameter estimation. In general, the 

prior distribution is determined based on a researcher’s belief or prior knowledge and it could 

significantly affect the precision and inference of the parameter estimate. This significantly-

influencing prior distribution is generally called an informative prior distribution. If a researcher 

does not have any prior knowledge of the model parameter, then a “non-informative” or flat 

distribution should be specified as the prior distribution. This is also called a non-informative 

prior distribution. Either an informative or non-informative prior distribution is combined with 

the likelihood probability of the model to create the posterior distribution, which is a distribution 
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of the product of prior and likelihood probabilities for the model parameter. Unlike classical 

statistics, the Bayesian perspective considers a model parameter as a random variable rather than 

a fixed parameter so that parameter possesses its own probability density function. The posterior 

distribution represents the probability density function for the model parameter and it can be 

comparable to the concept of a sampling distribution in classical statistics. The model parameter 

estimate can, then, be obtained from simply taking either the expected value of the posterior 

distribution (i.e., Expected a Posteriori [EAP] estimate) or mode of the posterior distribution (i.e., 

Maximum a Posteriori [MAP] estimate).  

Bayesian estimation has several advantages over likelihood-based estimation. First, the 

Bayesian method does not require a large sample size to obtain an accurate parameter estimate. 

Bayesian estimation often works well when the sample size is relatively small because it takes 

advantage of the prior distribution on the parameter of interest (Gelman et al., 2014). For 

example, if a researcher has a basic idea such as the possible minimum or maximum values for 

the parameter based on previous studies, then putting the prior distribution that contains the 

certain minimum and maximum values would prevent an estimation of the extreme values 

beyond these boundaries from occurring. In multilevel modeling, when the variance components 

are estimated, it is generally known that variances cannot be below zero, thus, the appropriate 

prior distribution would be a positive-valued distribution such as an inverse gamma distribution 

or an inverse chi-square distribution (Gelman, 2006). Previous simulation studies also have 

shown that using Bayesian estimation with an appropriate prior distribution produced reasonable 

fixed effect and variance component estimates with relatively smaller sample sizes than ML (e.g., 

Browne & Draper, 2000, 2006; Browne et al., 2002).  
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 Another advantage of Bayesian estimation is the relative ease of the computational 

procedure. In principle, the likelihood-based estimation methods require the analytic form of the 

first- and second-order partial derivatives with respect to parameters of the model to obtain the 

parameter estimates and their standard errors. For example, in multilevel modeling, the standard 

error estimate is obtained from an inverse of Hessian matrix, which requires the second 

derivative of the likelihood function (i.e., Fisher Information). The derivative forms often get 

extremely complicated when the fitting model includes a large number of parameters. In addition, 

likelihood-based methods use an iterative procedure, which may cause a convergence problem 

when complex models are fitted. On the contrary, Bayesian estimation does not require a 

complex analytic form of a derivative function to obtain the parameter and standard error 

estimates. Rather, the Bayesian approach uses a sampling method, also known as Markov chain 

Monte Carlo (MCMC). Thus, the posterior distribution of parameter can be obtained using 

MCMC sampling from a product of prior distribution and likelihood function. This MCMC 

sampling allows researchers to take a sample of any size from the posterior distribution of the 

parameters of the model. The MCMC sampling method makes it easy to estimate any function of 

parameters even though a large number of parameters are involved in the model (only the 

sampling time gets longer). Note that there are a number of MCMC sampling methods proposed 

in the statistical literature. Gibbs sampling and Metropolis-Hastings (MH) sampling methods are 

the most commonly used algorithms in the applied literature (e.g., Spiegelhalter, Thomas, Best, 

Gilks, & Lunn, 2003). Generally speaking, Gibbs sampling draws samples from joint 

probabilities of prior and likelihood distributions to create posterior distribution of a parameter 

with the assumption that other parameters are unknown. This drawing procedure continues 

sequentially for all the parameters until the number of iterations reaches the maximum. MH 
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sampling, however, has the ability to draw samples from an arbitrary functional form of a 

distribution with an unknown scale so that it can compare the probability of the drawn sample 

with the joint probabilities of prior and likelihood distributions to decide whether the sample is 

accepted or not. Theoretically, both sampling algorithms asymptotically create the posterior 

density distribution of a parameter when the sampling algorithm shows convergence (Gelman et 

al., 2014).  

 Bayesian inference of the parameter estimates is also an advantage of using Bayesian 

estimation. In classical statistics, statistical inferences such as the p-value or confidence interval 

are often computed from the theoretical sampling distribution. The sampling distribution for a 

parameter, however, is based on the repetition of samples of a fixed quantity and the probability 

interpretation for the fixed quantity is not exactly the same as the probability interpretation for a 

parameter, which is assumed to have its own probability distribution (Rindskopf, 2014; 

Swaminathan, Rogers, & Hornor, 2014). The probability statement for the parameter makes 

more sense when the parameter is considered as a random variable rather than a fixed parameter. 

In Bayesian statistics, statistical inference is made in accordance with the posterior distribution, 

which is considered as the probability of the parameter (Gelman et al., 2014). Note that, again, 

the debate between classical and Bayesian perspectives is not a primary focus of this study so a 

detailed argument is not be further discussed. Instead, the literature review is focus more on 

current literature for Bayesian estimation and its implementation to single-case data multilevel 

modeling.  

 Lastly, a number of statistical software programs have been developed for Bayesian 

estimation and are available for applied researchers, such as WinBUGS, SAS PROC MCMC, 

JAGS, MLwiN, Mplus and R package MCMCglmm. These software programs are flexible 
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enough to fit a wide variety of statistical models including single- or multi-level models, linear or 

non-linear models (i.e., generalized linear models), and homogeneous or heterogeneous 

variances models. Several methodological studies also have demonstrated how to conduct 

Bayesian analysis with more complex statistical models, providing the program codes, output 

results from the analysis, and their interpretation. For example, Rindskopf (2014) provided 

illustrations of Bayesian data analysis for single-case data using linear and non-linear models. He 

demonstrated the empirical data analysis using the software program WinBUGS and provided 

the relevant codes, output of the results, and a detailed interpretation of the results. In addition, 

Swaminathan et al. (2014) illustrated Bayesian analysis for an effect size measure for single-case 

data. They also used the software program WinBUGS and provided the code with detailed 

explanations.  

 

Bayesian Modeling and MB Studies 

Over the last decade, Bayesian method has been exclusively integrated with multilevel 

modeling (e.g., Brown & Draper, 2000, 2006; Browne et al., 2002; Baldwin & Fellingham, 2013) 

and applied in the context of single-case research (e.g., Baek, 2015; Rindskopf, 2014, de Vries, 

& Morey, 2013; Shadish, et al., 2013; Swaminathan et al., 2014). For example, Rindskopf (2014) 

argued that Bayesian multilevel modeling has a number of advantages over likelihood-based 

estimations in analysis of data from studies such as MB studies because: a) it is more suitable for 

analyzing studies with small sample sizes, b) it is more interpretable than the results from 

classical statistics, and c) when a parameter is estimated, it takes into account the uncertainty 

about all other parameters so that larger standard errors accurately reflect the totality of the 

uncertainty about the model parameters. Previous simulation studies have also shown its 
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effectiveness in multilevel modeling. Studies found that fixed effects were well-estimated with 

small sample sizes and inferences were reasonably accurate (e.g., Baldwin & Fellingham, 2013, 

Baek, Petit-Bois, & Ferron, 2014). For example, Baldwin and Fellingham (2013) found that the 

treatment effect estimate was unbiased when the level-2 sample size was as few as 8, and the 

corresponding coverage rate was equally accurate as ReML using Kenward-Roger adjustment. 

However, similar to ReML, the variance component estimates were still substantially biased and 

inferences were not accurately estimated (Baldwin & Fellingham, 2013). Furthermore, previous 

studies compared estimation accuracies of traditional likelihood-based estimations (ML and 

ReML) and Bayesian estimations incorporating different types of the prior distributions for the 

within-series multilevel modeling of MB studies. They found that both likelihood-based and 

Bayesian estimations recovered the treatment effect estimates without biases and confidence 

interval coverages were close to the nominal level (e.g., Moeyaert et al., 2016). However, note 

that previous Bayesian modeling of MB studies were mainly focused on the within-series model 

and as yet, Bayesian estimation efficacy for the between-series model has not been investigated.  

Bayesian estimation also has been implemented to accommodate many possible 

complications in multilevel modeling with MB studies, previously. For example, Baek (2015) 

investigated multilevel modeling with the heterogeneous variances across participants, and the 

convergence issue occurred when the complex model was fitted with ReML. The convergence 

issue was then resolved when Bayesian estimation was implemented by specifying the prior 

distribution to each variance component of the model (Baek, 2015). Moreover, Gelman et al., 

(2014) and Rindskopf (2014) suggested that if the dependent variables are not normally 

distributed due to outliers or different underlying distributions, then specifying a thicker-tailed 

prior distribution can accommodate the complex situation. However, up to date, no research has 
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examined the efficacy of Bayesian modeling for non-normal MB data. Also, studies have not 

been conducted that compare of ReML and Bayesian estimation for both within- and between-

series models under the violation of normality assumptions. To fill this gap, the current study is 

aimed to investigate the efficacy of alternative Bayesian modeling for non-normal data in MB 

studies. A detailed description of Bayesian modeling such as the prior specification for the model, 

initial values, number of iterations, convergence criteria and related statistical software programs 

are further discussed in the next chapter. 

 

Summary 

A single-case study is a type of experimental study used to investigate the effect of an 

intervention or treatment for case-specific observations. The most popular design in single-case 

studies is the multiple-baseline (MB) design (Shadish & Sullivan, 2008). MB design studies are 

particularly different from other group experimental studies since a relatively small number of 

participants is involved in a study. Also, an MB study has stronger internal and external validity 

than a basic AB design in single-case studies because it allows researchers to examine the 

treatment effect comparing not only within-participants’ observations from baseline phase to 

treatment phase but also between-participants’ observations at certain time points. Several 

statistical methods were proposed to analyze the treatment effect in MB studies and two 

statistical models were recently proposed for analyzing MB studies: within-series and between-

series models. Previous research has shown that the within-series model outperforms the 

between-series model when assumptions are satisfied. When assumptions are violated due to 

event effects or model misspecification, the between-series model produced less biased estimates 

of the treatment effect than the within-series model (Ferron et al., 2014). However, the 
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robustness of the within- and between-series models for non-normality still remained 

questionable and little research has investigated this issue. Given that meta-analyses reported that 

data from single-case studies, including MB studies, tend to be non-normal due to the scales of 

measurement, ceiling/floor effects, or outliers, it is worthwhile to compare various modeling 

approaches under violation of the normality assumption. Therefore, the purpose of this study is 

to investigate the robustness of various models for MB studies when the normality assumption is 

violated. This study includes Bayesian estimation and inference as an alternative approach 

because in theory it has several advantages over maximum likelihood estimation with respect to 

non-normality.  
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CHAPTER THREE: METHODS 

 

The methods section describes simulation design, data generation, fitting models, and 

dependent variables of the simulation study.  

 

Simulation Design 

  A Monte Carlo study was conducted to empirically address the issues of violation of the 

normality assumption in MB studies. The simulation design included three design factors 

(number of measurement occasions, number of participants and population treatment effects) and 

non-normality factors (skewness and kurtosis). The three design factors were varied with a) the 

number of measurement occasions having values of 10, 20, and 40, b) the number of participants 

having values of 4, and 8, and c) population treatment effect value having values of 0 and 1. Two 

non-normality factors were varied with a) skewness of the level-1 residuals having values of 0, 1, 

2, and 3 and b) kurtosis of the level-1 residuals having values of -1, 0, 1, 2, and 4. Crossing all 

the simulation design factors resulted in a total of 3 (the number of measurement occasions) x 2 

(the number of participants) x 2 (population treatment effects) x 4 (the level of skewness) x 5 

(the level of kurtosis) = 240 simulation conditions. For each condition, 3000 data sets were 

generated. The number of replications was chosen based on the previous simulation studies with 

single-case studies (e.g., Ferron et al., 2009, 2010). The replicated data were, then, analyzed with 

4 different approaches (Models 1 - 4 as described above). The parameters of the within- and 

between-series models were estimated using ReML estimation with Kenward-Roger adjustment 
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(Models 1 and 2) and Bayesian estimation (Models 3 and 4). Data generation procedure was 

conducted using SAS/IML program (SAS Institute, 2014). ReML with Kenward-Roger 

estimation was accomplished using the SAS MIXED Procedure and Bayesian estimation was 

accomplished using the SAS MCMC Procedure. 

 

Design Factors 

 In the current study, three levels of measurement occasions (10, 20 and 40) and two 

levels of participants (4 and 8) were considered. The number of measurement occasions was 

chosen based on meta-analyses results for single-case research studies. A meta-analysis of 85 

single-case studies found that 25 studies had fewer than 11 measurement occasions, 37 studies 

had between 11 and 29 measurement occasions and 23 studies had more than 29 measurement 

occasions (Swanson & Saches-Lee, 2000). Another meta-analysis of single-case studies also 

found that a median number of measurements were 20. This meta-analysis further identified that 

90.6% of the participants had 49 or fewer measurement occasions (Shadish and Sullivan, 2011). 

In accordance with these meta-analyses results, previous simulation studies with single-case 

research have included that the number of measurement occasions within a participant varied 

from 10 to 40 (e.g., Moeyaert et al., 2013a, 2013b, 2014).  

Similarly, the numbers of participants were chosen based on previous single-case studies 

(e.g., Kazdin & Kopel, 1975). Traditionally, single-case studies include small numbers of 

participants and the typical number of participants has been four (Ferron et al., 2010; Kazdin, 

2011). In addition, Shadish and Sullivan (2011) meta-analyzed 809 single-case studies and found 

that the number of participants per study ranged from 1 to 13. Furthermore, Farmer, Owens, 
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Ferron and Allsopp (2011) found that in 93% of the surveyed multiple-baseline studies the 

number of participants was 7 or less. 

In order to investigate the statistical power and Type I error of the treatment effect 

estimate across fitting models, two different population treatment effects were included (0 and 1). 

Note that when there was no true treatment effect in the data generation step, Type I error were 

computed, whereas when there was a true treatment effect, statistical power were computed 

across simulation conditions. 

 

Non-normality Factor 

 Non-normality of level-1 error variance was created by manipulating skewness and 

kurtosis of the population distribution. To investigate the impact of non-normality, skewness and 

kurtosis were allowed to vary by equally spacing values from commonly observed ranges in 

single-case studies. Skewness of the level-1 errors was varied from 0 to 3 (i.e., 0, 1, 2, and 3) and 

kurtosis was varied from -1 to 4 (i.e., -1, 0, 1, 2, and 4). The direction of the skewness was set as 

positive across simulation conditions because one of the major focuses in the study is the 

violation of symmetric assumption for the multilevel modeling rather than the direction of the 

skewness. 

The ranges of the skewness and kurtosis were chosen based on the previous studies (e.g., 

Owens & Farmer, 2013; Solomon, 2014). A simulation study conducted by Petit-Bois et al. 

(2013) investigated the non-normality of level-2 and level-3 error structure in meta-analytic 

multilevel modeling for MB studies and they included skewness from 0 to 1.75 and kurtosis from 

0 to 3.75. Owens and Farmer (2013) included non-normality of level-1 and level-2 error structure 

varying the skewness from 0 to 1 and kurtosis from -1 to 3.75. A meta-analysis also supports that 
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skewness of analyzed study observations ranged from .46 to 2.89 and the kurtosis ranged 

from .49 to 1.57 (Solomon, 2014). In addition, the author further conducted a preliminary survey 

investigating the ranges of skewness and kurtosis of the level-1 residuals from MB studies 

published in Journal of Applied Behavior Analysis (JABA) from 2014 to 2016. A total of 20 

datasets excluding binary dependent variables were collected and fitted with the two-level 

within-series model. Because the variance component estimates in the between-series model 

contain both level-1 and level-2 error variances, the within-series model is more appropriate to 

obtain level-1 residual distributions. Skewness and kurtosis of the level-1 residuals of the model 

were computed individually and they ranged from -0.71 to 1.91 for skewness and -1.07 to 3.01 

for kurtosis, respectively.   

Based on these previous investigations, the current study examined the skewness and 

kurtosis of level-1 errors across the range of values previously investigated and observed, but 

varied the values more systematically and in smaller increments. This approach could provide a 

detailed guideline for applied researchers and practitioners about how to deal with degree to 

which skewness and kurtosis of MB studies.  

 

Data Generation 

Data Generation Models 

  The data generation took place in two stages. First normally distributed data were 

generated and then these data were transformed to induce desired levels of skewness and kurtosis. 

The initial data generating model is described as follows. 

Level-1 Equation: 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑃ℎ𝑎𝑠𝑒𝑖𝑗 + 𝛽2𝑗𝑇𝑖𝑚𝑒𝑖𝑗 + 𝛽3𝑗(𝑇𝑖𝑚𝑒𝑖𝑗 ∗ 𝑃ℎ𝑎𝑠𝑒𝑖𝑗) + 𝑒𝑖𝑗           (13) 
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Level-2 Equation: 

𝛽0𝑗 = 𝛾00 + 𝑢0𝑗                                                          (14.1) 

𝛽1𝑗 = 𝛾10 + 𝑢1𝑗                                                          (14.2) 

𝛽2𝑗 = 𝛾20 + 𝑢2𝑗                                                          (14.3) 

𝛽3𝑗 = 𝛾30 + 𝑢3𝑗                                                          (14.4) 

Level-1 errors were initially generated to be independent, normal, and homogeneous across 

phases and participants with a mean of 0 and a variance of 1. The variance-covariance 

matrix for level-2 errors (𝑢0𝑗 𝑢1𝑗, 𝑢2𝑗, and 𝑢4𝑗), was an uncorrelated diagonal matrix. That 

is, 𝚺𝒖 = diag(𝜏00, 𝜏11, 𝜏22, 𝜏33). The uncorrelated diagonal matrix was assumed because 

more complex level-2 error structure could yield more biased level-2 error variance 

estimates given that level-2 error variance estimates are generally biased in single-case data 

(Moeyaert et al., 2013a, 2013b, 2014). Also a previous study showed that misspecification 

of level-2 error structure has a minimal impact on the treatment effect estimate (Moeyaert et 

al., 2016). For the condition where power of the treatment effect was investigated, the 

population parameter values for fixed effect coefficients, 𝛾00, 𝛾10, 𝛾20, and 𝛾30 were set as 0, 

1, 0, and 0, respectively. Similarly, for the condition where Type I error of the treatment 

was examined, the data generation parameter values for the all fixed effect were set as 0. 

These parametrization of the model implies that the time trend effect is not included in the 

simulated data. These parameters were chosen because the primary focus of the current 

study is of the treatment effect estimation accuracy and inference. Population parameter 

values for level-2 variance components, 𝜏00, 𝜏11, 𝜏22, and 𝜏33 were set as .50, .50 .00, 

and .00, respectively. This parametrization indicates that there are variations across 

participants in baseline observations and treatment effect sizes but not in time trend effects 
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in baseline and treatment phases. The population parameter values for level-2 variance 

components were chosen based on previous simulation studies with single-case studies (e.g., 

Ferron et al., 2009, 2010; Moeyaert et al., 2013a, 2013b, 2014, 2016).  

 

Data Generation Steps 

The simulated data were generated using SAS/IML program. For each replication, 

the values for level-1 and -2 errors were first randomly generated from standard normal 

distribution, individually, using RANNOR function implemented in SAS/IML. Note that 

number of randomly generated values for level-1 error variances was I x J, where I is the 

number of measurement occasions, and J is the number of participants. Also, the number of 

randomly generated values for level-2 error variances was 4*J and each distinct value was 

replicated by I times. 4*J number of random values were created because the number of 

fixed effect parameters in the data generation model was four, and J number values were 

needed to create variations across participants. This strategy created each parameter’s level-

2 error variation across participants (for each parameter, 𝜏00, 𝜏11, 𝜏22, and 𝜏33, respectively) 

and within-participants variation is only affected by level-1 error variance values. 

Furthermore, the time variable was created as a sequence of integers corresponding 

to the session number, the phase variable as the baseline or treatment phase indicator (coded 

0 = baseline, 1 = treatment) and the phase*time variable as the treatment observation time 

interaction. The variable phase*time was created by simply multiplying two variables phase 

and time. Note that the phase variable was created to mimic MB studies such that each 

participant had the different intervention time points. For example, for the condition where 

the number of participants was four and the number of measurement occasions was 10, the 
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first, second, third and fourth participant’s phase variable became 1 when their observations 

were at 4, 5, 6, and 7
th

 time point, respectively so that all phases had at least 3 observations. 

Similarly, for the condition where the number of participants was eight and the number of 

measurement occasions was 10, pairs of participants’ phase variables were created. That is, 

first and second participants had the same intervention time point, third and fourth 

participants had the same intervention time point and so on. When the numbers of 

measurement occasions were 20 and 40, the intervention phases started at 5, 8, 11, and 14
th

 

observations and 10, 16, 22, and 28
th

 observations for the first, second, third and fourth 

participants, respectively. It is also important to note that variables time and phase*time 

were created by the group-centering approach, meaning each participant's time was 0 when 

treatment phase started. This group-centering approach allows creating data sets where the 

treatment effect is an immediate shift in level at the initial treatment observation for each 

participant.  

After error variance values and predictor variables were generated, two different 

data generation routes were taken depending on the simulation conditions to generate a 

dependent variable 𝑌𝑖𝑗. For the condition where normality assumption was not violated, all 

error variance values were combined with predictors parameters (𝛾00, 𝛾11, 𝛾22, and 𝛾33) and 

their variables were used to create the dependent variable 𝑌𝑖𝑗 Equation 13 as described 

above. For the condition where normality assumption was violated, a series of level-1 error 

values for each participant was manipulated using Fleishman’s power transformation 

method (Fleishman, 1978). Using Fleishman’s method, certain degrees of skewness and 

kurtosis can be achieved. A detailed explanation about the power transformation method is 

discussed in later section. Once the level-1 error values are manipulated as desired, the 
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simulated dependent variable 𝑌𝑖𝑗, were again generated using Equations 13 and 14.1 - 14.4. 

Saving the id variable for both level-1 and level-2 units, total six variables were created for 

each simulated data set; 𝑌𝑖𝑗, idlevel1, idlevel2, phase, time, and phase*time. 

For the between-series model parameterization, additional four dummy variables 

(P1ij, P2ij, P3ij, and Pij) were created in the simulated data sets. P1ij, P2ij, P3ij, and Pij were 

indicators where the values became 1 if observations were used for the between-participant 

comparison and 0 otherwise. More specifically, P1ij = 1 if i
th

 observation for j
th

 participant 

was used for the first time point between-participant comparison. Similarly, P2ij = 1 if i
th

 

observation for j
th

 participant was used for the second time point between-participant 

comparison. And, P3ij = 1 if i
th

 observation for j
th

 participant was used for the third between-

participant comparison. Finally, Pij = 1 if P1ij = 1 or P2ij = 1 or P3ij = 1, 0 otherwise. 

 

Fleishman’s Power Transformation Method 

Fleishman (1978) proposed a power method to generate non-normal distribution data. 

The proposed method allows manipulating skewness and kurtosis of the standard normal 

distribution using the powers of polynomial equations. The polynomial equation is given as 

follows. 

𝑌 = 𝑎 + 𝑏𝑋 + 𝑐𝑋2 + 𝑑𝑋3                                                   (15) 

where Y is transformed non-normal variable with specified population skewness and 

kurtosis, X is standard normal variable and a, b, c and d are constants needed for 

transforming the standard normal distribution to non-normal distribution with specified 

degrees of skewness and kurtosis. Note that a = - c. In Fleishman’s article (1978), the 

coefficient values (a, b, c and d) are provided to generate the non-normal distribution with 
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specified population skewness and kurtosis. For example, if one desires to generate a 

distribution with population skewness = 2 and kurtosis = 3, then the constants values are as 

follows. 

b = 0.92966052480111 

c = 0.39949667453766 

d = -0.03646699281275 

Also, note that standard normal distribution can be obtained when b = 1, c = 0, d = 0. 

Fleishman’s transformation coefficients for the current study conditions were computed 

using SAS/IML program. The computed coefficients are shown in Table 2. Note that once the 

transformation was made with the Fleishman’s method, the values were standardized to set mean 

of zero and standard deviation of one.  

Table 2.  

Fleishman Transformation Coefficients for Various Degrees of Skewness and Kurtosis 

Skewness Kurtosis a b c d 

0 -1 0 1.22101 0 -0.0802 

0 0 0 1 0 0 

0 1 0 0.90298 0 0.03136 

0 2 0 0.83566 0 0.05206 

0 4 0 0.73738 0 0.08093 

1 -1 0.38757 -3.0507 -0.3876 2.56235 

1 0 -0.2394 1.08828 0.23938 -0.0422 

1 1 -0.191 1.01749 0.191 -0.0186 

1 2 -0.1472 0.90476 0.14721 0.02386 

1 4 -0.117 0.77659 0.11698 0.0655 

2 -1 -0.2341 -49.851 0.23413 8.36508 

2 0 -14.858 -26.684 14.858 4.18199 

2 1 4.00552 -4.1548 -4.0055 -0.8493 

2 2 -1.5751 0.81684 1.57508 -0.1344 

2 4 -0.3389 0.93083 0.33887 -0.0084 

3 -1 -0.1207 1.17205 0.12073 0.29789 

3 0 634.454 250.927 -634.45 -13.804 

3 1 -0.2651 0.6859 0.26508 0.08867 

3 2 1.22953 4.79678 -1.2295 -0.7268 

3 4 -0.7709 -4.0862 0.77087 0.49931 
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(a) Residual Skewness = 1.91 & Kurtosis = 3.01 (Edwards et al., 2015) 

 

 
 

(b) Residual Skewness = -.60 & Kurtosis = -.27 (Himle & Wright, 2014) 

 

 
 

(c) Residual Skewness = .55 & Kurtosis = .69 (Washington, Banna, & Gibson, 2014) 

 

 
 

Figure 5. Residual distributions from multiple studies (left) and simulated data (right). 

 

Also, for the illustration purpose, Figure 5 shows the histograms of residuals from the 

preliminary survey data and simulated data to show replicability of simulated data to real data 

residual distributions. The preliminary survey data were fitted with two-level within-series model 
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and residuals were computed. Also, the computed residuals were standardized to make the same 

scale as the simulated data. For the simulated data, 1 million random samples were drawn from 

standard normal distribution and then transformed using Fleishman’s equation to mimic the 

skewness and kurtosis of the survey residual distribution. 

 

Fitting Models  

Within-Series Model  

The equation for the within-series model is described as follows. 

𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑃ℎ𝑎𝑠𝑒𝑖𝑗 + 𝛾20𝑇𝑖𝑚𝑒𝑖𝑗 + 𝛾30(𝑇𝑖𝑚𝑒𝑖𝑗 ∗ 𝑃ℎ𝑎𝑠𝑒𝑖𝑗)                  

+𝑢0𝑗 + 𝑢1𝑗𝑃ℎ𝑎𝑠𝑒𝑖𝑗 + 𝑢2𝑗𝑇𝑖𝑚𝑒𝑖𝑗 + 𝑢1𝑗(𝑇𝑖𝑚𝑒𝑖𝑗 ∗ 𝑃ℎ𝑎𝑠𝑒𝑖𝑗) + 𝑒𝑖𝑗,     𝑒𝑖𝑗~ N(0, 𝜎2)  (16) 

Note that the fitted within-series model is equivalent to the data generation model. The level-1 

error variance was assumed to be independent and homogeneous across phases and participants. 

Level-2 error structure was assumed to be an uncorrelated diagonal matrix. 

Σ𝑢 = 𝑑𝑖𝑎𝑔(𝜏00, 𝜏11, 𝜏22, 𝜏33) 

 

 Between-Series Model  

The equation for the between-series model is described as follows. 

𝑌𝑖𝑗 = 𝛽1𝑃1𝑖𝑗 + 𝛽2𝑃2𝑖𝑗 + 𝛽3𝑃3𝑖𝑗 + 𝛽4𝑃𝑖𝑗 ∗ 𝑃ℎ𝑎𝑠𝑒𝑖𝑗 + 𝑒𝑖𝑗,     𝑒𝑖𝑗~ N(0, 𝜎2)  (17) 

The between-series model contains four parameters using three comparison time-point 

observations across participants and one pooled treatment effect parameter. The between-

participant comparison time points were fixed at the third observations after the treatment 

phase started. As discussed earlier in chapter two, separate time points baseline 

observation estimates allows the model to have time trend effect for baseline phases. 
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Residual variance of the model, 𝜎2, was assumed to be independent and homogeneous 

across phases and participants. Note that the between-series model residual 𝜎2 includes 

both within- and between-participant variations.  

 

Parameter Estimation 

 Parameters of within- and between-series models were estimated using ReML and 

Bayesian estimation methods. When ReML was used to estimate parameters of the model, the 

Kenward-Roger approach was used to compute adjusted standard error and degrees of freedom 

for small sample size. SAS PROC MIXED was used to estimate the parameters of the models 

using ReML with Kenward-Roger adjustment.   

 

Prior Distribution 

 Prior specification for parameters in the model is an important step in Bayesian 

estimation. Based on previous Bayesian multilevel modeling studies, the following prior 

distributions were specified for the within- and between-series models. For the within-series 

model, prior distributions for fixed effect parameters 𝛾00, 𝛾11, 𝛾22, and 𝛾33 were assumed to be 

the normal distribution with zero mean and 1 × 1010 variance. In addition, prior distributions for 

level-1 and level-2 error structure were assumed to be the inverse-Wishart distribution with 

degrees of freedom parameter 𝜈 = 0 and expected parameter V was a 4 x 4 identity matrix. Note 

that both normal and inverse-Wishart distributions are considered as conjugate priors for the 

fixed effects and random effects, respectively, meaning the posterior distribution can be 

theoretically derived from the prior distribution and likelihood function (Gelman et al, 2014). 

These prior specifications were also chosen based on the previous Bayesian multilevel modeling 
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studies. Previously, dispersed distributions have been heavily used as prior distributions for both 

fixed effect and variance components (e.g., Baldwin & Fellingham, 2013; Browne & Draper, 

2006; Gelman, 2006; Moeyaert et al., 2016; Rindskopf, 2014). 

However, it is important to note that although Bayesian multilevel modeling introduces 

the prior distribution, which theoretically reasonable for the variance component parameter, it 

was found that the variance components estimates are still substantially biased if the sample size 

is relatively small (Baldwin and Fellingham, 2013; Moeyaert et al., 2016). Limited research, yet, 

have found more effective and precise prior distributions for the variance components for small 

sample size conditions in Bayesian multilevel modeling. 

 For the between-series model, similar prior distributions as the within-series model for 

the parameters were specified. Prior distributions for the parameters, 𝛽1, 𝛽2, 𝛽3 and 𝛽4 were 

assumed to be the normal distribution with zero mean and 1 × 1010 variance, respectively. Also, 

the prior distribution for the variance component 𝜎2 was assumed to be the inverse-Wishart 

distribution with the same parameterization as the within-series model prior specification. Note 

that because the assumptions of independence and homogeneity across phases and participants 

hold for the level-1 error structure in the between-series model as well, the inverse-Wishart 

distribution became univariate inverse-gamma distribution.    

 

Convergence Criteria 

For the current simulation study, the convergence rates for both ReML and Bayesian 

estimations were recorded and summarized. The convergence rates were computed as 

proportions of replications in which estimations were reaches the convergence.  
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Unlike ReML, Bayesian estimation has several criteria for determining convergence of 

the sampling procedure. Once MCMC samples reach a certain degree of stability across 

iterations, posterior distribution samples are considered as converged. MCMC convergence can 

be checked with a) Kernel density plots of samples, b) history or trace plots of the mixing 

procedure, c) autocorrelation between adjacent posterior samples and d) statistical diagnostics. 

Various statistical diagnostics are developed in statistical literatures including �̂� (Gelman & 

Rubin, 1992), Geweke test (Geweke, 1992), Heidelberger-Welch stationary and half-width tests 

(Heidelberger & Welch, 1983) and Raftery-Lewis test (Raftery & Lewis, 1992). In current study, 

Geweke test was used to evaluate the convergence rates. Note that Geweke test evaluates the 

convergence of the Markov chain samples by comparing means from the early and latter part of 

the Markov chain. Significant differences between two parts of the Markov chain samples 

indicate that MCMC procedure does not reach to the convergence.  

A preliminary simulation study was conducted to examine the sufficient number of 

iterations for the convergence. The study indicated that the Markov chain samples were stable 

after a burn-in period between 5,000 and 10,000 iterations. In order to achieve the convergence 

in the final simulation across conditions, 100,000 iterations with the 10,000 burn-in period were 

conducted and only every 25th draws after burn-in period were kept (thinning =25). This strategy 

was chosen based on the previous Bayesian estimation studies (e.g., Moeyaert et al., 2016). For 

the current study, the convergence status for each replication was recorded for both ReML and 

Bayesian estimations. The convergence rates for both estimation methods are reported across 

simulation conditions. 
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Estimation 

Once the MCMC procedure reaches the maximum number of iterations, the parameters 

of the models were, then, estimated by taking a mean of the posterior samples. One could 

question whether taking a median of the posterior samples is more reasonable than a mean for 

the variance components because the posterior density of the variance component tends to be a 

right-skewed distribution. However, across the simulation conditions, minimal differences 

between mean and median were found. Therefore, to keep the consistency of the results, only 

mean statistics of the posterior samples were reported for the variance components. 

 

Dependent Variables 

 Simulation results are analyzed with various criteria. For the accuracy of parameter 

estimation of the within- and between-series models, the following statistics were used to 

analyze the accuracy of the estimation methods: 

𝐵𝑖𝑎𝑠 =
∑ 𝛽�̂�−𝛽𝑅

𝑖=1

𝑅
                                                                (18) 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑎𝑠 =
∑

𝛽�̂�−𝛽

𝛽
𝑅
𝑖=1

𝑅
                                                                   (19)                 

𝑅𝑀𝑆𝐸 = √∑ (𝛽�̂�−𝛽)
2𝑅

𝑖=1

𝑅
                                                         (20) 

R denotes the total number of replications, 𝛽 denotes population (generating) parameters and 𝛽�̂� 

represents estimated parameters for i
th 

replication for the multilevel modeling. Note that bias and 

relative bias were computed for each replication then averaged across replications. RMSE was 

computed by taking the sum of square differences between population and estimated parameters 

for replications then averaged across replication (mean square error). The final RMSE was 
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obtained by taking the square root of the mean square error. Previous research noted that relative 

bias less than .05 can be considered as an acceptable bias for the fixed effect estimates and .10 

for the variance component estimates (Hoogland & Boomsma, 1998). 

 As a measure of statistical inference, interval estimate coverage rates, interval estimate 

width, and statistical power/Type I error of the treatment effect parameter were computed. When 

parameters were estimated with ReML, confidence interval (CI) coverage rates, CI widths, and 

power/Type I error were computed as traditional fashion. That is, SEs and degrees of freedom 

were computed with Kenward-Roger method and CIs were obtained using those quantities. CI 

coverage rates were, then, obtained from taking proportions of replications in which population 

parameters were inside of the computed CI. CI widths were also computed taking the difference 

from upper bound to lower bound of CIs per replications then averaged across replications. 

Statistical power was also computed for treatment effect where the p-value was less than nominal 

level of significance. Empirical statistical power was, then, obtained from the proportion of 

replications in which p-value was less than the nominal level. The nominal level of significance 

was set as .05. Type I error rates were also computed similarly as statistical power when true 

treatment effect was zero. 

When Bayesian estimation was used, highest posterior density (HPD) was used to 

compute interval estimates for the treatment effect. Note that HPD is essentially different than 

credible interval in Bayesian inference. The credible interval is generally computed taking 2.5% 

and 97.5% quartiles of the overall posterior distribution as lower and upper bounds, respectively. 

However, the HPD interval is computed taking the 2.5% quartile and 97.5% quartile of the 

highest posterior sample density for the lower bound and higher bound HPD intervals, 

respectively. These credible and HPD intervals do not always produce the same intervals. If the 
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posterior distribution is not symmetrical or bimodal shape, then credible and HPD intervals are 

substantially different. In the current study, the HPD coverage rate and its interval width were 

computed the same fashion as ReML computes CI coverage rates and CI widths. Statistical 

power and Type I error rates for Bayesian estimation were computed as proportions of 

replications in which the HPD intervals contained 0. This computation is comparable to the 

ReML approach.   

Because 3000 datasets for each condition were simulated, the coverage proportions for 

both ReML and Bayesian interval estimates should be estimated relatively accurately. To 

evaluate the coverage proportions, an acceptable range of the coverage estimates was computed 

using the standard error of the coverage probability, p (Burton, Altman, Royston, & Holder, 

2006). The standard error equation is 

𝑆𝐸(𝑝) = √[𝑝(1 − 𝑝)]/𝐵                                                       (21) 

where p represents the nominal coverage probability of .95, and B is 3000 (the number of 

replications per condition), resulting in a range from .942 to .958 for acceptable coverage 

estimates. The estimation accuracy for the parameters other than treatment effect such as 

coefficients for intercept, time, and interaction and level-2 and level-1 error estimates in the 

within-series model and level-1 error estimate in the between-series model were analyzed by 

computing only bias and RMSE across replications.  

 

Analysis of Dependent Variables 

Results tables of the dependent variables across simulation conditions are presented in the 

results section. To analyze the variation in outcomes as a function of the simulation design and 

non-normality factors, multi-way univariate ANOVAs were conducted on biases, relative biases, 
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RMSEs, coverage rates, coverage widths, and statistical power/Type I error. The ANOVA 

analyses are appropriate to determine the simulation condition effects and their effect size 

measures. Eta-square (𝜂2) statistics were additionally computed based on the ANOVA results to 

investigate the effect size of the design and non-normality factors. Eta-square is often used to 

compute the amount of explained variance for each factor, along with significant tests. Eta-

square was computed using the proportion of variability of each dependent variable that is 

associated with each of the effects in the simulation conditions. The ratio of the effect variance 

(SSeffect) to the total variance (SStotal) yields the eta-square statistics. 

𝜂2  =  
𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
                                                           (22) 

Cohen’s (1992) recommended effect sizes are, then, applied for the interpretation of 

effect size measures (i.e., small: η
2 ≤ .06, medium: .06 < η

2 ≤.14, and large: η
2
 > .15) to focus 

the discussion on the factors that are most substantially related to parameter estimation 

accuracies and their inferences. The multi-way univariate ANOVAs and eta-analyses were 

computed using PROC GLM in SAS. 

In addition to the multi-way univariate ANOVA analyses, graphical representations 

including box plots, histograms and line graphs for each outcome variable are presented across 

simulation conditions. Also, marginal means for each simulation condition factor were computed 

to summarize the results by simulation conditions. The computed marginal means are, then, 

illustrated with graphical representations.  
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CHAPTER FOUR: RESULTS 

  

This section consists of the findings of the study. The chapter reports each dependent 

variable (bias, RMSE, CI coverage rates, CI widths, and statistical power/Type I errors) of the 

study. In addition, η
2 

values from ANOVA analyses of each dependent variable provide an 

indication of the impact of each of the simulation design factors, non-normality factors and their 

interactions. The estimation accuracy (bias and RMSE) and statistical inference (CI coverage 

rate, CI width, statistical power, and Type I error) of the treatment effect parameter is 

sequentially reported across independent variables of the study by using box plots and bar 

graphs. Then, the estimation accuracy (bias and RMSE) for the parameters other than the 

treatment effect of the models are additionally provided. Finally, the convergence rates of the 

models are provided in the end of the chapter. 

 

Bias for the Treatment Effect 

The bias of the treatment effect was computed by taking an average of the bias across 

replications. Note that bias and relative bias are equivalent because the population value for the 

treatment effect was set for 1. The complete bias/relative bias results for the treatment effect are 

shown in Table 5 in Appendix A. In addition, to identify simulation factors that have a 

substantial effect on the bias, two univariate ANOVA analyses were conducted for the within- 

and between-series estimators, individually. The η
2 

values from these ANOVA analyses are also 

presented in Table 24 in Appendix B.  
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Based on ANOVA analyses for the bias of the treatment effect, the interaction of the 

skewness and kurtosis factor (skewness*kurtosis) had a medium effect size (𝜂2 = .13) and the 

other simulation factors (e.g., I*kurtosis, J*kurtosis, I, skewness, I*skewness, kurtosis, I*J, and 

J*skewness) had small effect sizes (𝜂2 < .03) for the within-series model. For the between-series 

model, skewness*kurtosis had a medium effect (𝜂2 = .07) and the other factors (I*kurtosis, 

J*kurtosis, I*J, I*skewness, J*skewness, skewness, and kurtosis) had small effect sizes (𝜂2 < 

.06).  

 

 

Figure 6. Box plots: Marginal bias of the within- and between-series estimators across 

simulation conditions 

 

Figure 6 presents box plots for marginal bias of the within- and between estimators. As 

shown in Figure 6, the bias of the within- and between-series estimators for the treatment effect 

was distributed less than 5% bias of the population value across simulation conditions. The 
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marginal mean bias of the two estimators were close to zero, and they were ranged from -.04 and 

.04 across conditions. The box plots also indicated that the within-series estimator had ales 

variance in the bias distribution than the between-series estimator. 

 Figures 7 and 8 represent bias of the within- and between-series estimators across 

skewness and kurtosis, respectively. As shown in Figures 7 and 8, minimal bias was observed 

across various degrees of skewness and kurtosis. The bias of the treatment effect estimate for the 

within- and between-series models was ranged between -.04 and .04 and the minimal bias were 

consistently found as skewness and kurtosis increased. Although ANOVA analyses indicated the 

interaction between skewness and kurtosis explained 13% of the variance in bias values, the 

variance was so small that there was no meaningful effect of skewness and kurtosis on bias.  

 

 

Figure 7. Box plots: Bias of the within- and between-series estimators across skewness 

 



 71 

 

Figure 8. Box plots: Bias of the within- and between-series estimators across kurtosis 

 

 

Figure 9. Box plots: Bias of the within- and between-series estimators across estimation methods 
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Figure 9 shows bias box plots of the within- and between-series estimators across 

estimation methods. Based on ANOVA analyses and Figure 9, it was found that ReML and 

Bayesian estimations for the treatment effect estimate were almost indistinguishable. No 

significant difference between two estimation methods was found based on the results of the 

study. Both estimation methods produced minimal bias across simulation conditions. 

 

 

Figure 10. Box plots: Bias of the within- and between-series estimators across number of 

measurement occasions 

 

Figures 10 and 11 represent bias of the within- and between-series estimators across the 

number of measurement occasions and the number of the participants, respectively. As shown in 

Figures 10 and 11, the marginal mean bias for the within- and between-series model was near 

zero across conditions. For the within-series model, standard deviation of the bias decreased as 

both the numbers of the measurement occasions and participants increased. For the between-
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series model, however, the standard deviation of the bias only decreased as the number of 

participants increased. Marginal bias of the within- and between-series estimators was 

consistently near zero as numbers of measurement occasions and participants increased. 

 

 

Figure 11. Box plots: Bias of the within- and between-series estimators across number of 

participants 

 

RMSE for the Treatment Effect 

 RMSE for the treatment effect estimate was computed by taking a square root of the 

average squared bias across replications. Note that RMSE includes not only squared bias but also 

variance across replications. The variance across replications is also considered as sampling error 

of the simulation study. 

In Table 6 of Appendix A, the complete RMSE results of the treatment effect across 

simulation conditions are presented. In addition, in Table 25 of Appendix B, two univariate 

ANOVA analyses for the within- and between-series models are presented to identify simulation 
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factors that have a significant effect on RMSE. Based on the ANOVA analyses, the number of 

measurement occasions had the largest effect size (𝜂2 = .62), followed by the number of 

participants (𝜂2 = .32) for the within-series model. Also, the interaction between the number of 

measurement occasions and participants (I*J) and estimation method had a small effect size on 

RMSE when the within-series model was used (𝜂2 < .03). For the between-series model, the 

number of participants had the largest effect size  (𝜂2 = .93) and the number of measurement 

occasions had a medium effect size (𝜂2 = .07) on RMSE. It is noteworthy that neither skewness 

nor kurtosis of the level-1 error variance had a significant effect on RMSE for both within- and 

between-series models (𝜂2 = .00).  

 

 

Figure 12. Box plots: Marginal RMSE of the within- and between-series estimators 

 

Marginal RMSE box plots of the within- and between-series estimators for the treatment 

effect across simulation conditions are illustrated in Figure 12. The marginal box plots of RMSE 
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show that the within-series estimator produced less RMSE of the treatment effect estimate than 

the between-series estimator. The marginal mean RMSE was .65 for the within-series model as 

opposed to .85 for the between-series model. Also, the standard deviations of RMSE across 

simulation conditions were .18 and .15 for the within- and between-series model, respectively. 

   

 

Figure 13. Bar graphs: RMSE of the within- and between-series estimators across number of 

measurement occasions 

 

Based on ANOVA analyses on RMSE, bar graphs for both within- and between-series 

models were also created across the numbers of measurement occasions and participants. Figures 

13 and 14 represent bar graphs of RMSE across the number of measurement occasions and the 

number of participants, respectively. As shown in Figure 13, RMSE for the within-series model 

decreased substantially as the number of measurement occasions increased. However, consistent 

with ANOVA analyses, RMSE for the between-series model decreased minimally as the number 
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of measurement occasions increased. From the bar graphs as illustrated in Figure 14, RMSE for 

both within- and between-series models decreased significantly as the number of participants 

increased.  

 

 

Figure 14. Bar graphs: RMSE of the within- and between-series estimators across number of 

participants 

 

CI Coverage Rate for the Treatment Effect 

 To examine accuracy of the statistical inference for the within- and between-series 

models on the treatment effect, CI coverage rate was computed. Two estimation methods, ReML 

and Bayesian, computed the CIs differently: ReML used Kenward-Roger inference method 

computing small sample adjusted standard error and degrees of freedom, whereas Bayesian used 

highest posterior density (HPD) of the Markov chain samples to compute CI. CI coverage rate 
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was then obtained by computing the proportion of replications in which the population value was 

inside of the computed confidence interval. The nominal level for CI was set as .95. 

The complete CI coverage rate table is shown in Table 7 in Appendix A. To identify 

simulation factors that have a significant effect on CI coverage rate, univariate ANOVA analyses 

for the within- and between-series models were conducted and presented in Table 26 in 

Appendix B. Based on ANOVA analyses, the number of measurement occasions had the largest 

effect size (𝜂2 = .41), followed by the estimation method (𝜂2 = .17) for the within-series model. 

The interaction between the number of participants and estimation method (J*Est) had a medium 

effect size (𝜂2 = .07) and other factors (e.g., kurtosis, I*Est, skewness*kurtosis, I*skewness, I*J, 

I*kurtosis, and J) had a small effect (𝜂2 < .02) when the within-series model was used. For the 

between-series model, a similar pattern was observed. The number of measurement occasions 

also had the largest effect size (𝜂2 = .40) and the estimation method had the second largest effect 

size (𝜂2 = .12). The other factors (e.g., J, I*kurtosis, skewness*kurtosis, I*skewness, I*J, 

kurtosis, J*kurtosis, J*Est, and J*skewness) showed a small effect (𝜂2 < .04) for the between-

series model. Similar to the previous results, skewness and kurtosis had a minimal effect on CI 

coverage rate for both within- and between-series models. 

Figure 15 presents box plots of marginal CI coverage rate for the within- and between-

series models across simulation conditions. As shown in Figure 15, the within-series model 

produced acceptable ranges of the treatment effect CI coverage rate across conditions. However, 

the between-series model yielded an under-coverage rate less than the acceptable CI coverage 

rate. Marginal mean CI coverage for the within-series model was .94 whereas that for the 

between-series model was .87. The standard deviation of CI coverage rate across simulation 

condition was .01 for both within- and between-series model.  
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Figure 15. Box plots: Marginal CI coverage rate of the within- and between-series models  

 

 As ANOVA analyses indicated, the measurement occasion and estimation method had 

the large effect size of CI coverage rate, thus, the marginal box plots for each design factor were 

created. Figure 16 shows that CI coverage rate of the within- and between-series models across 

the number of measurement occasions. As can be seen in Figure 16, CI coverage rate decreased 

as the number of measurement occasions increased. The same pattern was observed for the 

between-series model. Across conditions, between-series consistently showed lower CI coverage 

rate than the within-series model. Marginal CI coverage rate of the within-series model was .95, 

.94 and .93 when the number of measurement occasions was 10, 20 and 40, respectively. 

Similarly, marginal CI coverage rate of the between-series model was .87, .87 and .86 across 10, 

20 and 40 measurement occasions.  
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Figure 16. Box plots: CI coverage rate of the within-series model across numbers of 

measurement occasions 

 

Figure 17 illustrates box plots of CI coverage rate for the within- and between-series 

model across estimation methods. Overall, ReML with Kenward-Roger and Bayesian estimation 

and inference methods showed comparable performances. CI coverage rate of both approaches 

produced closer values to the nominal level and their values across simulation conditions were 

distributed in the acceptable range. For example, the marginal mean CI coverage rate for the 

ReML and Bayesian methods were .94 when the within-series model was used. In addition, a 

similar pattern was found for the between-series model. Although the overall values were lower 

than a nominal level, ReML and Bayesian produced similar CI coverage rate across conditions. 

For example, the marginal mean CI coverage rate for ReML estimation was .87 and the 

corresponding value for the Bayesian estimation was .86. 
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Figure 17. Box plots: CI coverage rate of ReML and MCMC for the within- and between-series 

models 

 

CI Width for the Treatment Effect 

In addition to CI coverage rate, CI width was computed as well across simulation 

conditions. The complete CI width table is shown in Table 8 in Appendix A. Similar to the 

previous outcome measures, univariate ANOVA analyses for the within- and between-series 

models were conducted separately and presented in Table 27 in Appendix B. Based on ANOVA 

analyses, the two largest effect size design factors on CI width were the number of measurement 

occasions and the number of participants for both models. The number of measurement 

occasions had the largest effect size (𝜂2 = .57), followed by the number of participants (𝜂2 = .17) 

for the within-series model. The interaction between the numbers of measurement occasions and 

participants (I*J) had a small effect size (𝜂2 = .02) when the within-series model was used. For 
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the between-series model, on the contrary, the number of participants had the largest effect size 

(𝜂2 = .88), followed by the number of measurement occasions (𝜂2 = .11). Similar to the previous 

results, skewness and kurtosis had a minimal effect on CI width for both within- and between-

series models.  

 

 

Figure 18. Box plots: Marginal CI width of within- and between-series estimators 

 

Figure 18 shows two the marginal box plots of CI width for the within- and between-

series models. As shown in Figure 18, no substantial difference between two models was found. 

For example, the marginal mean CI width for the within-series model was 2.27 and the 

corresponding value for the between-series model was 2.57 across conditions. Note that the 

within-series model, however, showed more variability of CI width across simulation conditions 

than the between-series model. For example, the standard deviation of CI width across 
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conditions was .75 for the within-series model whereas the corresponding value was .46 for the 

between-series model. 

 

 

Figure 19. Bar graphs: CI width of the within-series estimator across numbers of measurement 

occasions and participants 

 

Figures 19 and 20 represent two-way interaction CI width bar graphs across the number 

of measurement occasions and the number of participants for the within- and between-series 

models, respectively. As shown in ANOVA analyses on CI width, Figures 21 and 22 show that 

the numbers of measurement occasions and participants had the largest effect size for both 

within- and between-series models. For the within-series model, as the numbers of measurement 

occasions and participants increased, CI width decreased substantially. A minimum CI width was 

observed when the number of participants was eight and the number of measurement occasions 
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was 40. However, for the between-series model, the substantial decrement of CI width was found 

as the number of participants increased. Although the decreasing pattern of CI width was 

observed as the number of measurement occasions increased, the size of the effect was smaller 

than the number of participants. 

 

 

Figure 20. Box plots: CI width of the between-series estimator across numbers of measurement 

occasions and participants 

 

Power/Type I Error for the Treatment Effect 

Statistical power and Type I error of the treatment effect estimate were also dependent 

variables of the study. Tables 9 and 10 in Appendix A provide the complete power and Type I 

error tables across simulation conditions. Two-way ANOVA analyses on power were also 

conducted and the resulting η
2 

values are provided in Table 28 in Appendix B. For the power 

condition, similar to RMSE and CI width, the numbers of measurement occasions and 
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participants had the largest effect sizes when the within-series model was used to estimate the 

treatment effect. The number of measurement occasions had the largest effect size (𝜂2 = .55), 

followed by the number of participants (𝜂2 = .41). The interaction between these two variables 

(I*J) had a minimal effect size (𝜂2 = .03). When the between-series model was used, the number 

of participants had the largest effect size (𝜂2 = .87), followed by the number of measurement 

occasions (𝜂2 = .11). Similar to the previous results, skewness and kurtosis had a minimal effect 

on the power of the test for the treatment effect estimate for both within- and between-series 

models.   

 

 

Figure 21. Box plots: Marginal statistical power of the within- and between-series estimators  

 

Figure 21 shows the marginal mean power box plots for the within- and between-series 

models. It is prominent that the within-series model has higher power to detect the treatment 

effect than the between-series model. The marginal power for the within-series model was .48, 
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whereas the corresponding value for the between-series model was .38. In addition, the within-

series model showed more variation than the between-series model. 

 As ANOVA analyses indicated, the numbers of measurement occasions and participants 

had the largest effect sizes on statistical power. Thus, Figures 22 and 23 illustrated interaction 

bar graphs across the number of measurement occasions and the number of participants for the 

within- and between-series models, respectively. Consistent with expectation, as the number of 

measurement occasions and participants increased, statistical power increased substantially with 

the within-series model. On the other hand, statistical power increased considerably as the 

number of participants increased only for the between-series model.  

  

 

Figure 22. Bar graphs: Statistical power of the within-series estimator across numbers of 

measurement occasions and participants 

 



 86 

 

Figure 23. Bar graphs: Statistical power of the between-series estimator across numbers of 

measurement occasions and participants 

 

For the Type I error result, Figure 24 shows box plots of the marginal mean Type I error 

results between two models. Type I error was well-controlled for the within-series model, 

whereas inflated values were consistently found for the between-series model. The marginal 

Type I error for the within-series model was .06, as opposed to .13 for the between-series model 

across simulation conditions. For both within- and between-series models, maximum Type I 

errors, .09, and .16 were observed when numbers of participants and measurement occasions 

were 8 and 40, respectively and MCMC was used. For the skewness and kurtosis conditions, 

consistent pattern of the Type I error results was found.   
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Figure 24. Box plots: Marginal Type I error of the within- and between-series estimators  

 

Bias and RMSE for the Other Fixed Effects 

 Bias and RMSE of the fixed effect parameters other than the treatment effect for the 

within-series model were computed in the current study. Note that the within-series model was 

specified with four parameters including intercept, treatment effect, time effect for the baseline 

phase, and change in time effect with treatment. Because the population values for the other 

fixed parameters were set as zero, bias of the parameter estimates was computed rather than 

relative bias.  

The complete tables of bias and RMSE are presented in Tables 12 – 17 in Appendix A. 

Figures 25 and 26 also represent bias and RMSE box plots of intercept, time effect for the 

baseline, and change in time effect with treatment, respectively. Overall, minimal bias was 

observed for the fixed effect parameters across simulation conditions. As shown in Figure 25, 

intercept, baseline time effect, and change in time effect with treatment parameters had bias 
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values that ranged from -.02 to .02 and marginal bias values that were close to zero. In addition, 

RMSE distributions of fixed effect parameters of the within-series model are shown in Figure 26. 

Box plots of RMSE indicate intercept parameters had larger RMSE than the other fixed effect 

parameters. Marginal RMSE of the intercept, baseline time effect and change in time trend with 

treatment parameters were .38, .06, and .10, respectively.  

 

 

Figure 25. Box plots: Bias of the other fixed effect parameters for the within-series model 

 

As shown in previous results, no substantial difference between ReML and Bayesian 

estimation methods was found in bias and RMSE of the fixed effect parameters. As expected, 

RMSE for the other fixed effect parameters decreased considerably as the numbers of 

measurement occasions and participants increased. Minimal RMSE were found when the 

measurement occasion was 40 and the number of participants was eight. Consistent with 
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previous results, skewness and kurtosis of the level-1 error variance in the within-series model 

had no significant effect on bias and RMSE of the other fixed effect parameters. 

 

 

Figure 26. Box plots: RMSE of the other fixed effect parameters for the within-series model 

 

Bias and RMSE for the Level-1 Error Variance 

 Bias and RMSE of the leve-1 error variance for the within- and between-series models 

were computed. The complete results are presented in Tables 18 and 19 in Appendix A. Note 

that the level-1 error variance was standardized after the Fleishman’s transformation. Thus, 

population mean and variance for the level-1 error variance remained zero and one, respectively. 

Also, since the level-1 error variance for the between-series model contains the within- and 

between-participant variations, the population value was set combining level-1 error variance 

and level-2 error variance (𝜎2 + 𝜏00
2 ).  This parameter value is appropriate for the baseline phase, 

but in the treatment phase the variance would be larger because of the variation in the treatment 
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effect (𝜎2 + 𝜏00
2  + 𝜏11

2 ).  As a consequence, one would anticipate the estimated variance values 

from the between-series model will exceed the baseline variance parameter value.  A follow-up 

study at the end of this chapter presents results for a between-series model with separate variance 

estimates for the baseline and treatment phases.   

  

 

Figure 27. Box plots: Bias of the level-1 error variance  

 

Figures 27 and 28 illustrate box plots of bias and RMSE of level-1 error variance for the 

within- and between-series models. As shown in Figure 27, the within-series model estimated the 

level-1 error variance with relatively smaller bias than the between-series model across 

simulation conditions. The bias of the level-1 error variance was ranged from -.06 to .01. Also, 

the RMSE values were ranged from .00 to .12 across conditions. However, for the between-

series model, bias and RMSE ranged from .02 to .18 and from .04 to .25, respectively, across 
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conditions. Maximum bias was found when the number of measurement occasions was 10 and 

the number of participants was four. 

 

 

Figure 28. Box plots: RMSE of the level-1 error variance  

 

Consistent with the previous results, skewness and kurtosis of the level-1 error variance 

did not affect the bias and RMSE results. For both within- and between-series models, bias, and 

RSME of the level-1 error variance were similar across skewness and kurtosis conditions. In 

addition, ReML and Bayesian estimations did not show a substantial difference. As expected, 

RMSE decreased as the numbers of participants and measurement occasions increased. 
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Bias and RMSE for the Level-2 Error Variance 

 Bias and RMSE of the level-2 error variance estimate were computed for the within-

series model only. The complete tables are presented in Tables 20 – 23 in Appendix A. Note that 

the population value was 0.5 for the intercept (𝜏00
2 ), and treatment effect (𝜏11

2 ) level-2 error 

variances, and 0 for the other parameter level-2 error variances, respectively. Bias and RMSE 

were computed only for 𝜏00
2 , and 𝜏11

2  because the population values were non-zero and relative 

bias for the corresponding parameters can be obtained. 

 Consistent with expectation, level-2 error variance estimates of the within-series model 

were biased across conditions. Relative bias were ranged from -.27 to .12, and from -.17 to .09 

for 𝜏00
2  and 𝜏11

2 , respectively. Also, RMSE values ranged from .18 to .50 for 𝜏00
2  and from .12 to 

.61 for 𝜏11
2 . Interestingly, it was found that Bayesian estimation showed better accuracy 

estimating the level-2 error variance than ReML. Figures 29 and 30 illustrate bias and RMSE 

box plots for 𝜏00
2  and 𝜏11

2  across ReML and Bayesian estimations. Overall, the marginal mean 

bias of Bayesian estimation was close to zero for both 𝜏00
2  and 𝜏11

2 , whereas, the corresponding 

values of ReML were near -.10 and -.15 for 𝜏00
2  and 𝜏11

2 . In addition, as shown in Figure 30, 

RMSE of 𝜏00
2  and 𝜏11

2  estimates for Bayesian estimation were considerably smaller than ReML 

estimation. This finding was consistently found across simulation conditions. 

The skewness and kurtosis of the level-1 error variance had a minimal effect on the 

accuracy of level-2 error variance estimation. Also, estimation accuracy increased as the 

numbers of the measurement occasions and participants increased. 
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Figure 29. Box plots: Bias of the level-2 error variance for the within-series model across 

estimation methods 

 

Figure 30. Box plots: RMSE of the level-2 error variance for the within-series model across 

estimation methods 
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Convergence Rate 

 The convergence rates for both within- and between-series models were computed across 

replications. Also, ReML and Bayesian estimation convergence rates were computed as well. 

Results showed that both within- and between-series models were 100% converged across 

replications and simulation conditions when ReML estimation was used. However, when 

Bayesian estimation method was used, average 96% convergence rate was observed across 

simulation conditions. Note that, in the current study, convergence of Bayesian estimation was 

determined based on Geweke’ statistics.   

 

Follow-Up Study 

For the between-series model, although minimal bias was produced across simulation 

conditions, statistical inferences including CI coverage rate, and Type I error were problematic. 

For example, it was found that the between-series model yielded substantially lower CI coverage 

rate than the nominal level for the treatment effect estimate. In addition, Type I error was 

substantially inflated across simulation conditions. This finding was consistent when the level-1 

error variance was normally distributed. Note that variance structure for the between-series 

model in the current study was specified for homogeneous across the baseline and treatment 

phases. However, the data generation model included the level-2 error variances for intercept and 

treatment effect and fitting the data with the homogeneous variance model represents a form of 

model misspecification. Based on the previous study (Ferron et al., 2014), the heterogeneous 

variance structure can be specified for the between-series model and it seems worthwhile to 

explore whether the between-series model would perform differently across non-normality 
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conditions if the heterogeneous variance is specified. Thus, the follow-up study was conducted to 

examine the performance of the between-series model with heterogeneous variance structure.  

In the follow-up study, the same skewness (0, 1, 2, and 3) and kurtosis (-1, 0, 1, 2, and 4) 

of the level-1 error variance conditions were considered to examine the effect of the non-

normality. Also, two sample size conditions (small [I = 10, J = 4], and large [I = 40, J = 8]) were 

considered. Because ReML and Bayesian methods showed indistinguishable performance in the 

earlier study, only ReML was used to estimate the heterogeneous variance between-series model 

in the follow-up study. The data generation model and population values were the same as in the 

earlier study. For the dependent variable of the follow-up study, bias, RMSE, CI coverage rate, 

CI width, power and Type I error of the treatment effect were computed. The number of the 

replications was set as 3000 to keep the consistency. 

Tables 3 and 4 show the comparisons of the homogeneous and heterogeneous variance 

between-series models. Table 3 shows accuracy of the treatment effect estimation and inference 

for the small sample size conditions, and Table 4 shows the corresponding values for the large 

sample size conditions. Consistent with the homogeneous variance model, the heterogeneous 

variance model produced the minimal bias across conditions. Also, RMSE of the treatment effect 

estimate for the heterogeneous variance was comparable to the homogeneous variance model 

results. Similar to the previous results, skewness and kurtosis of the level-1 error variance did not 

have a significant effect. No substantial difference or pattern was observed as skewness and 

kurtosis increased. However, as shown in both Tables 3 and 4, CI coverage rate was in the 

acceptable ranges across simulation conditions for the heterogeneous variance model. In 

addition, relatively wider CI width and lower statistical power were observed. Lastly, Type I 
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error was well-controlled for the between-series model across simulation conditions when 

heterogeneous variance structure was specified. 

 

Table 3.  

Homogeneous and Heterogeneous Variance Between-Series Models for the Small Sample Size 

Condition (I = 20 & J = 4) 

    Homogeneous   Heterogeneous 

Skew Kurt Bias RMSE Cov Wid Pwr TI   Bias RMSE Cov Wid Pwr TI 

0 -1 .023 1.10 .867 3.31 .299 .120   -.020 1.07 .947 5.52 .122 .054 

  0 -.040 1.07 .869 3.31 .268 .128   .010 1.06 .943 5.53 .134 .063 

  1 -.003 1.05 .878 3.31 .275 .120   -.020 1.07 .952 5.53 .127 .050 

  2 .011 1.08 .875 3.32 .285 .112   .016 1.06 .941 5.48 .128 .049 

  4 .000 1.07 .869 3.30 .284 .123   .031 1.08 .949 5.70 .126 .057 

1 -1 -.004 1.10 .861 3.30 .285 .118   -.020 1.06 .941 5.52 .128 .054 

  0 .000 1.05 .878 3.29 .284 .123   .001 1.07 .950 5.73 .128 .059 

  1 .041 1.06 .878 3.30 .290 .124   .011 1.05 .944 5.32 .149 .059 

  2 -.031 1.06 .881 3.31 .268 .123   -.025 1.09 .947 5.72 .130 .057 

  4 .011 1.04 .883 3.30 .277 .113   .005 1.03 .948 5.34 .135 .055 

2 -1 .002 1.06 .872 3.32 .270 .122   -.016 1.05 .947 5.71 .111 .062 

  0 -.012 1.06 .873 3.31 .274 .129   .010 1.09 .943 5.51 .143 .059 

  1 -.033 1.07 .872 3.30 .276 .132   -.018 1.05 .950 5.49 .111 .053 

  2 -.006 1.07 .879 3.31 .288 .117   .000 1.05 .945 5.60 .149 .062 

  4 -.011 1.06 .872 3.30 .279 .128   .023 1.05 .939 5.48 .153 .055 

3 -1 .010 1.09 .863 3.31 .282 .129   -.012 1.04 .948 5.50 .125 .056 

  0 .022 1.05 .876 3.30 .280 .126   -.004 1.04 .944 5.43 .111 .047 

  1 -.009 1.03 .889 3.30 .265 .130   .023 1.06 .943 5.46 .153 .053 

  2 .001 1.05 .886 3.31 .280 .120   .034 1.06 .947 5.62 .116 .055 

  4 -.015 1.05 .880 3.31 .267 .128   -.002 1.02 .949 5.41 .134 .056 

Note. I = number of measurement occasions, J = number of participants, Skew = skewness, Kurt 

= kurtosis, RMSE = root mean square error, Cov = CI coverage rate, Wid = CI width, Pwr = 

power, TI = Type I error. Values in Bold are not in the acceptable CI coverage range (.942 and 

.958). 
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Table 4.  

Homogeneous and Heterogeneous Variance Between-Series Models for the Large Sample Size 

Condition (I = 40 & J = 8) 

    Homogeneous   Heterogeneous 

Skew Kurt Bias RMSE Cov Wid Pwr TI   Bias RMSE Cov Wid Pwr TI 

0 -1 -.028 .697 .858 2.04 .487 .137   .000 .684 .945 3.09 .255 .064 

  0 .017 .686 .860 2.04 .508 .149   -.001 .679 .950 3.11 .251 .048 

  1 -.009 .672 .875 2.04 .485 .136   -.004 .683 .946 3.12 .254 .048 

  2 -.008 .683 .860 2.04 .491 .129   -.009 .681 .949 3.12 .251 .049 

  4 -.002 .679 .870 2.04 .490 .128   .013 .696 .942 3.07 .281 .051 

1 -1 .004 .704 .856 2.04 .493 .129   .016 .695 .957 3.03 .307 .045 

  0 -.005 .683 .865 2.04 .480 .128   .012 .692 .946 3.12 .247 .051 

  1 .020 .689 .869 2.04 .498 .136   -.016 .701 .944 3.08 .237 .056 

  2 -.002 .675 .868 2.04 .484 .141   -.008 .680 .949 3.12 .241 .056 

  4 -.010 .688 .859 2.04 .472 .136   .012 .688 .948 3.12 .257 .046 

2 -1 .007 .688 .859 2.04 .482 .139   .007 .647 .954 3.13 .244 .057 

  0 -.006 .691 .854 2.04 .469 .135   -.019 .701 .944 3.08 .233 .050 

  1 .013 .684 .863 2.04 .500 .131   -.003 .694 .950 3.09 .311 .050 

  2 -.014 .686 .864 2.04 .481 .139   -.013 .675 .948 3.08 .244 .046 

  4 -.005 .667 .870 2.04 .486 .150   .007 .681 .946 3.13 .231 .051 

3 -1 -.002 .668 .874 2.04 .493 .145   .007 .690 .950 3.10 .263 .046 

  0 .003 .696 .858 2.04 .500 .142   .004 .693 .955 3.11 .302 .043 

  1 -.015 .691 .861 2.04 .482 .129   .013 .687 .946 3.10 .248 .060 

  2 .004 .701 .859 2.04 .496 .144   .009 .698 .948 3.13 .270 .062 

  4 -.019 .683 .864 2.04 .482 .136   -.011 .683 .951 3.11 .236 .052 

Note. I = number of measurement occasions, J = number of participants, Skew = skewness, Kurt 

= kurtosis, RMSE = root mean square error, Cov = CI coverage rate, Wid = CI width, Pwr = 

power, TI = Type I error. Values in Bold are not in the acceptable CI coverage range (.942 and 

.958). 

  



 98 

 

 

 

 

 

CHAPTER FIVE: DISCUSSION  

 

This chapter consists of summary of the study, findings, implications and applications for 

the applied single-case researchers and methodologists. Then, limitation and future research are 

further discussed. 

 

Summary  

The purpose of the study was to investigate the robustness of the within- and between-

series estimators for the non-normal MB studies. The parameters of the within- and between-

series models were estimated using two estimation methods: ReML and Bayesian. A Monte 

Carlo study was conducted under the conditions where level-1 error variances were generated 

from non-normal distributions manipulating skewness and kurtosis of the residuals’ distribution. 

Fleishman’s (1978) power transformation method was used to manipulate skewness and kurtosis 

of the distribution. Four modeling approaches were compared in the current study: a) two-level 

within-series model with ReML estimation and Kenward-Roger inference (Model 1), b) two-

level within-series model with Bayesian estimation and inference (Model 2), c) between-series 

model with ReML estimation and Kenward-Roger inference (Model 3) and d) between-series 

model with Bayesian estimation and inference (Model 4).  

The accuracy of parameter estimation and the statistical inference was systematically 

analyzed. Primarily, estimation accuracy and statistical inference for the treatment effect 

parameter of the fitted models were examined. Bias, relative bias, RMSE, CI coverage rates, CI 
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widths and statistical power/Type I error were computed as a function of specific design factors 

(number of measurement occasions and participants) and non-normality factors (amount of 

skewness, and kurtosis of the distribution).  

A Monte Carlo study was designed to empirically evaluate the issues of violation of the 

normality assumption under various conditions. Data were generated varying the numbers of 

measurement occasions and participants, skewness and kurtosis of level-1 errors, and treatment 

effect sizes. Three levels of number of measurement occasions (10, 20, and 40), two levels of 

number of participants (4, and 8), four levels of skewness of the level-1 errors (0, 1, 2, and 3), 

five levels of kurtosis of the level-1 errors (-1, 0, 1, 2, and 4) and two levels of treatment effect 

sizes (0, and 1) were included. The conditions were chosen based on a preliminary survey of the 

published MB data and previous simulation studies. The analysis factors included four levels of 

modeling approaches (Models 1 - 4). Crossing all the data generation factors resulted in a total of 

3 (number of measurement occasions) x 2 (number of participants) x 4 (level-1 error skewness) x 

5 (level-1 error kurtosis) x 2 (treatment effects) = 240 simulation conditions. The simulation 

study results were analyzed by computing bias, relative bias, RMSE, CI coverage rate, CI width 

and the statistical power/Type I error for the treatment effect parameter and bias and RMSE for 

the other fixed effect and variance component parameters in the models.  

 

Findings 

 Bias and RMSE of the Treatment Effect Estimate 

 The results of the study indicated that both within- and between-series models are robust 

to the non-normality of the level-1 error variance structure. The bias of the treatment effect 

estimate was consistently close to zero across various degrees of skewness and kurtosis. Relative 
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bias also was less than 5% of the population parameter value across simulation conditions. 

Similarly, RMSE of the treatment effect for the within- and between-series models was not 

affected by the non-normality of the level-1 errors. RMSE of the within- and between-series 

models, however, showed significant differences across conditions. The within-series model 

continuously yielded smaller RMSE of the treatment effect estimate than the between-series 

model. This finding is consistent with the previous study that compared the within- and between-

series estimators (e.g., Ferron et al., 2014).  

In addition, ReML and Bayesian estimation methods were compared in the current study. 

Based on the results of the study, no significant difference between two methods was found. Bias 

and RMSE of the treatment effect estimates were indistinguishable across simulation conditions. 

This finding can also be found in the previous research that compared ReML and Bayesian 

estimations (Moeyaert et al., 2016). Note that Moeyaert et al. (2016) compared ReML and 

Bayesian estimations using the two-level within-series model for MB data. Similar findings have 

also been found when ReML and Bayesian estimates of the fixed effects of multilevel models 

used with group designs have been compared for conditions where partially clustered data 

(Baldwin & Fellingham, 2013) and dichotomous outcome (Browne & Draper, 2006) was used. 

Consistent with expectations and previous research that has examined the within-series 

model for single-case data structures with two levels (Ferron et al., 2009, 2010) and three levels 

(Moeyaert et al., 2013a, 2013b, 2014), treatment effect for both within- and between-series 

models were more precisely estimated as the number of measurement occasions and participants 

increased. More specifically, treatment effect of the within-series model was estimated more 

accurately as both the numbers of measurement occasions and participants increased. Treatment 
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effect of the between-series model, whereas, was more accurately estimated as only the number 

of participants increased. This finding is consistent with the previous study (Ferron et al., 2014).  

 

CI Coverage Rate and CI Width of the Treatment Effect Estimate 

CI coverage rate and CI width for the treatment effect were evaluated as a function of the 

skewness and kurtosis in level-1 error variance structure. Overall, the within-series model 

consistently showed acceptable CI coverage rate for both normal and non-normality conditions. 

This implies that CI coverage rate is not affected by non-normality in level-1 error variance 

structure and the within-series model is robust to the non-normality conditions. This finding is 

consistent with the previous studies examined non-normality of the level-1 and 2 (Owens & 

Farmer, 2013) and level-2 and 3 errors (Petit-Bois et al, 2013) in single-case data. Also, similar 

result was found in the general multilevel modeling literature examined non-normality of the 

level-2 errors using the robust standard error method (Mass & Hox, 2004).  

However, the between-series model assuming homogeneous variances showed notably 

lower CI coverage rate than the nominal level (.95). Across simulation conditions, none of CI 

coverage rates were in the acceptable ranges and this pattern was consistent even for the 

condition where the level-1 errors were normally distributed. These results stand in contrast to 

previous research that showed nominal level coverage for the between-series model estimates 

when data were normally distributed (Ferron et al., 2014). Note that the between-series model 

initially examined in the current study used the homogeneous variance structure across the 

baseline and treatment phases, but the data generation model included not only baseline 

observation variance across participants (𝜏00
2 ) but also treatment effect variance across 

participants (𝜏11
2 ). Given that the between-series model has the flexibility to estimate a 
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heterogeneous variance structure for the baseline and treatment phases (Ferron et al., 2014), the 

follow-up study was conducted to evaluate the between-series model under the non-normality 

conditions when the heterogeneous variance model is specified.  

The results of the follow-up study showed that the CI coverage rate was in the acceptable 

range across simulation conditions, and consistent with the previous results, skewness and 

kurtosis of the level-1 errors still did not affect CI coverage rate. CI coverage rate from the 

follow-up study was comparable to that of the within-series model. This result implies that 

reliable CI coverage rate can still be obtained using the between-series model for the non-normal 

level-1 error conditions if the model is correctly specified. For ReML and Bayesian inference 

methods, no significant difference was found in CI coverage rate. This result implies that 

confidence intervals using the Kenward-Roger method are comparable to HPD intervals.  

 Consistent with CI coverage rate results, CI widths results also showed no impact of the 

skewness and kurtosis the level-1 errors. However, wider CI width was consistently found from 

the between-series model compared to the within-series model. Furthermore, as the number of 

measurement occasions and participants increased, CI width became narrower. This finding 

implies that standard error decreased as the number of measurement occasions and participants 

increased. The same pattern regarding CI width can also be found in the previous studies with 

single-case simulation studies (e.g., Moeyaert et al., 2013a, 2014). 

  

Statistical Power and Type I Error Rate of the Treatment Effect Estimate 

In terms of statistical power to detect the treatment effect estimate, the within- and 

between-series models were robust to the non-normality of the level-1 error variance. Similar to 

the previous results, no distinct pattern was found across skewness and kurtosis conditions. 
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Statistical power for the within-series model showed considerably higher than the between-series 

model. In addition, statistical power for the within-series model increased as both number of 

measurement occasions and participants increased, whereas that of the between-series model 

increased only when the number of participants increased. Note these findings are consistent 

with the previous study (Ferron et al., 2014). Similar to CI coverage rate and width, ReML and 

Bayesian methods did not show a significant difference in power across simulation conditions.  

With regards to Type I error, the within-series model showed well-controlled Type I error 

across skewness and kurtosis conditions. Type I error rates for the within-series model remained 

close to the nominal level (.05) as both skewness and kurtosis increased. This result is 

comparable to the results from the correctly specified within-series model as shown in previous 

studies (e.g., Ferron et al., 2010). However, similar to the CI coverage rate and width results, the 

between-series model with homogeneous variance showed the inflated Type I error rate. Type I 

error rate was around .10 across simulation conditions. The follow-up study results, however, 

showed that the between-series model with heterogeneous variance structure well-controlled 

Type I error rate across non-normality conditions. The result is comparable to the previous study 

with the correctly specified between-series model (Ferron et al., 2014). 

 ReML and Bayesian approaches also showed the similar result for Type I error control. 

Both approaches showed considerably well-controlled Type I error rates ranged from .05 to .07 

across conditions. Note that previous studies compared ReML and Bayesian estimations for 

single-case context (e.g., Moeyaert et al., 2016) or multilevel modeling in general (e.g., Baldwin 

& Fellingham, 2013) did not compare the Type I error or statistical power results. 
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 Bias and RMSE of the Parameters other than the Treatment Effect Estimate 

In the current study, the bias and RMSE for the parameters other than the treatment effect 

were computed. For the within-series model, bias and RMSE of the fixed effect parameters (i.e., 

intercept [𝛾00], time trend in baseline phase [𝛾20], and change in time trend with treatment 

[𝛾30]), level-1 error variance (𝜎2), and level-2 error variance for the intercept (𝜏00
2 ) and treatment 

effect (𝜏11
2 ) were computed. For the between-series model, bias and RMSE of the level-1 error 

variance (𝜎2) were computed.  

Overall, skewness and kurtosis of the level-1 error variance did not affect the accuracy of 

the other fixed effect estimates in the within-series model. Relative bias results also showed less 

than 5% bias of the population parameter across conditions. Both ReML and Bayesian methods 

estimated the other fixed effect parameters with minimal bias across simulation conditions. As 

expected, RMSE of the fixed effect estimates decreased as both number of measurement 

occasions and participants increased. The bias and RMSE values for the fixed effect parameters 

were similar to the previous within-series single-case studies (e.g., Ferron et al., 2009, 2010; 

Moeyaert et al., 2013a, 2013b).  

For the variance component estimates, as previous studies have shown, the estimates had 

some bias, especially for the level-2 error variances (Moyeart et al., 2013a, 2013b). The within-

series model, however, showed relatively smaller bias for the level-1 error variance than the 

between-series model that assumed homogeneous variance. This pattern was consistent for the 

normal and non-normal level-1 error variance conditions. For the level-2 error variance estimates 

of the within-series model, substantial bias and relative bias were found. However, interestingly, 

the Bayesian method produced consistently smaller RMSE for the level-2 error variances for the 
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intercept and treatment effect parameters in the within-series model. This finding can also be 

found in the previous study with Bayesian single-case research (Moeyaert et al., 2016).   

In sum, the current study found that estimation and inference for the treatment effect 

using the within- and between-series models are robust to non-normality of the level-1 errors. 

Minimal bias and relative bias of the treatment effect estimates were observed for both models. 

CI coverage rate was in the acceptable ranges with the within-series model and the 

heterogeneous variance between-series model. Also, Type I error was well-controlled as the 

normality of level-1 error was violated. The parameters other than the treatment effect in the 

within-series model were also accurately estimated across simulation conditions. Finally, no 

substantial difference was found between ReML with Kenward-Roger and Bayesian approaches 

for the fixed effect estimates, whereas the Bayesian method outperformed ReML for the level-2 

error variance estimation.  

 

Implications  

 In practice, it is not uncommon to observe non-normality of data from MB studies. 

Applied single-case researchers (e.g., Parker, 1996; Solomon, 2014) and methodologists (e.g., 

Shadish, 2014) have commented on this potentially problematic aspect of single-case data. 

However, there has been only limited research to systematically verify the robustness of 

statistical modeling approaches when data are not normally distributed. Owens and Farmer 

(2013) examined the robustness to non-normality of the level-1 and 2 errors for the within-series 

model using ReML. However, the robustness to non-normality for Bayesian estimation of single-

case research or the robustness of the between series model has not been investigated previously. 

For this reason, this study was designed to provide practical information about how skewness 
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and kurtosis of level-1 errors impact the accuracy of estimation and statistical inference for the 

treatment effect parameter in within- and between-series models. In addition, this study 

investigated how various conditions including the numbers of participants and measurement 

occasions, and estimation methods (e.g., ReML and Bayesian) impact the performance of the 

models. The results lead to several implications for applied single-case researchers who are 

interested in the effect of interventions in MB studies, as well as for the methodologists who are 

interested in statistical methods for analyzing MB studies. 

 

Implications for the Applied Researchers 

The current study has following implications for the applied single-case researchers. 

First, it was found that both within- and between-series models are robust to the non-normality in 

level-1 errors. One of the concerns that may arise with empirical MB data is the violation of the 

normality assumption due to the scale of the measurement or outliers. However, based on the 

results of the study, the within- and between-series models can estimate the parameters of the 

models with precision even though the normality assumption is violated. Minimal bias of the 

treatment effect estimate was observed, for the situations where skewness and kurtosis of the 

level-1 errors ranged from 0 to 3 and -1 to 4, respectively. In addition, the other fixed effects in 

the within-series model including intercept, time trend effects in baseline and change in time 

trend with treatment were also estimated without substantial bias. These findings imply that 

when applied researchers want to estimate treatment effects in their MB studies that the within- 

and between-series models can be used even when the outcomes are non-normally distributed 

with skewness in the level-1 errors as high as 3 and kurtosis as high as 4.  
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 Second, statistical inferences about the treatment effect in MB studies were often reliable 

using the within- and between-series models, although the normality assumption is violated. 

More specifically, acceptable CI coverage rates and well-controlled Type I error rates were 

observed for the within-series model and the between-series model when the models were 

correctly specified. Similarly, statistical power was not affected by the non-normality of level-1 

errors. However, the results of the study showed that unacceptable CI coverage rates and inflated 

Type I error rates can be found if the variance structure of the between-series model is 

misspecified. Although no substantial bias was observed for the between-series model with 

homogeneous and heterogeneous variance structures, it is recommended that care be taken to 

specify the variance structure accurately to obtain reliable statistical inference. More specifically, 

if an applied researcher expects the treatment effect to vary across participants, the 

heterogeneous variance structure across the baseline and treatment phases for the between-series 

model is recommended.   

 Third, parameter estimation and inference of the within- and between-series models were 

accurate with relatively small numbers of participants and measurement occasions. Based on the 

study results, minimal bias and acceptable inference of the parameter estimates were still 

observed with as low as four participants, and ten measurement occasions from both within- and 

between-series models. In MB studies, it is common to find a relatively small number of 

participants, and as a result, the accuracy of parameter estimates may concern researchers. Based 

on the study results, it is encouraging that minimal bias and reliable inference can still be 

obtained using the within- and between-series model under small sample size conditions.  
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Implications for the Methodologists 

The current study compared the performances of the widely-used within-series model and 

the newly-proposed between-series model under various non-normality conditions. Based on the 

results, correctly specified within- and between-series models are comparable in terms of 

parameter estimation bias and accuracy of statistical inferences. The between-series model, 

however, suffers from relatively lower statistical power and higher RMSE of parameter estimates 

due to the small sample size. However, as Ferron et al. (2014) shown, the between-series model 

effect estimates were not biased in circumstances where the within-series model effect estimates 

were, particularly when the within-series model is misspecified as a result of  event effects, such 

as history, maturation, or instrumentation. By comparing the average treatment effect estimates 

from the between- and within-series models researchers can potentially detect model 

misspecification (Ferron et al., 2014). In addition, methodologists should also consider averaging 

the treatment effect at multiple time points (e.g., 1, 2, and 3 observations after treatment) to get 

more stability in the between-series estimate. Although in the current study, only one time point 

after treatment was considered for the between-series model, one can obtain a more stable 

estimate if multiple time point estimates were averaged. Ferron et al. (2014) showed that the 

multiple time point between-series estimate has lower RMSE and higher power than the single 

time point estimate. However, methodologists should also recognize issues with the multiple 

time point approach including additional complexity of the model and practical limitations of 

handling delayed treatment effects or limited time between intervention start points. 

The current study also compared two estimation methods, ReML, and Bayesian 

estimations. ReML is often used in practice because a number of statistical programs used ReML 

as a default and it produces the results considerably faster than Bayesian estimation. Bayesian 



 109 

estimation, however, also has an advantage for estimating more complex models because it 

incorporates prior distributions for the parameters of the model and sampling methods to obtain 

posterior distributions. Interestingly, both ReML and Bayesian estimations showed 

indistinguishable results for the fixed effect estimates. Both methods estimated the fixed effects 

accurately and their inferences were identically precise. This finding implies that both ReML and 

Bayesian methods are robust to the non-normality in the level-1 errors and they estimate fixed 

effect parameters comparably well using the within- and between-series models. Given that the 

current study used non-informative priors for the parameters in the models, this finding also 

implies that non-informative prior of Bayesian estimation yields the identical fixed effect 

estimates as ReML estimation. Although non-informative prior and ReML fixed effect estimates 

were robust to the non-normality in level-1 error, methodologists should also consider 

informative priors for the treatment effect in MB studies to increase precision. It is possible that 

one can collect information about means and standard deviations or lower and upper boundaries 

of the previous MB treatment effect estimates to determine the most appropriate informative 

priors.  

From the results of the study, the variance component estimates showed some 

differences. As previous studies have shown, the variance components of the within-series model 

have are biased using ReML estimation (e.g., Ferron et al., 2009, 2010; Moeyaert et al., 2013a, 

2013b). Bayesian estimation has been considered as an alternative approach for the variance 

component estimation in the context of single-case research because it allows researchers to 

specify a prior distribution for the variance component (Moeyaert et al., 2016). From the current 

study results, it was found that Bayesian estimation yielded more accurate estimates for the 

level-2 variance components. Lower RMSE of the level-2 error variance for intercept and 
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treatment effect in the within-series model was observed. Because of the prior specification in 

the level-2 error distribution, Bayesian estimation results in better parameter estimates than 

ReML when the sample size is limited. This finding suggests that Bayesian estimation should be 

encouraged if a researcher is interested in estimating the level-2 error variance in single-case 

research data. For example, if a researcher is interested in obtaining the standardized effect size 

using the within- or between-series model, then less biased variance estimates should be used 

and MCMC might be the more appropriate approach. In addition, methodologists should also 

consider the small sample bias correction if the standardized effect size is of primary interest 

because biased variance components tend to result in biased effect size estimates (Hedges, 

Pustejovsky, & Shadish, 2012). Hedges et al. (2012) provides the small sample correction 

approach for the standardized effect size in single-case research design. 

 

Limitation and Future Research 

 There are several limitations in the current study. First, the study was conducted with 

only limited ranges of the skewness and kurtosis of the level-1 error variance. As the results of 

the study indicated, the within- and between-series estimators are robust to the degrees of 

skewness and kurtosis examined. Those degrees of the skewness and kurtosis were chosen based 

on a preliminary survey of published single-case research design data and also can be considered 

as probable ranges for applied settings. However, it is possible for single-case research design 

data to have more extreme degrees of skewness and kurtosis of the level-1 errors. The results 

may be different if more extreme skewness or kurtosis of the level-1 errors was present. It is 

worthwhile to investigate the performance of the within- and between-series models with 

conditions where the level-1 errors were generated with more extreme skewness and kurtosis.  
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Second, non-normality conditions in the current study design were only manipulated with 

degrees of skewness and kurtosis assuming dependent variables are continuous. Non-normality, 

however, may also occur if the scales of measurement are not continuous variables including 

counts, proportions or percentages (Shadish et al., 2013). Past research has suggested using more 

complex and sophisticated statistical models to fit those types of non-normal data. However, 

limited studies investigated the efficacy of more complex statistical models when non-

continuous MB data are distributed as non-normal. Since fitting more complex models to MB 

studies could create potential problems such as estimation with small sample sizes (Shadish, 

Kyse, & Rindskopf, 2013) or misspecification of the underlying population distribution (Shadish, 

Zuur, & Sullivan, 2014), more empirical-based research is needed to examine the efficiency of 

more complex models to non-normal MB data.  

Third, the current study investigated non-normality in only level-1 errors. Non-normality 

in level-2 errors may occur in practical situations and only limited studies investigated this issue 

(e.g., Owens & Farmer, 2013; Petit-Bois et al., 2013). The comparison of the within- and 

between-series models in conjunction with non-normality in the level-2 error variances has not 

been investigated. In addition, given that Bayesian estimation showed better results in estimating 

the level-2 error variance in the current study, it would be interesting to examine ReML and 

Bayesian estimations for the level-2 error variance when non-normality occurs in level-2 errors. 

Future research can examine the performances of various statistical approaches by creating non-

normality in level-2 error distributions. 

Lastly, when the within- and between-series models were estimated with Bayesian 

estimation, only non-informative prior distributions were considered. As the current study 

showed, similar results in the fixed effect estimates from ReML and Bayesian estimation were 
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found using non-informative prior distributions. A similar pattern was observed from the 

previous studies as well (e.g., Baek, 2015; Moeyaert et al., 2016). Informative prior distributions 

can be obtained from the meta-analysis of MB studies or survey of the published MB data. It is 

also possible to assume different underlying prior distributions such as a student’s t or Cauchy 

distribution for the fixed effect parameter, and uniform distribution, or (not inverse) Wishart 

distribution for the variance component. More research is needed to examine the performance of 

different prior distributions in Bayesian modeling with MB studies under various situations.   

Nonetheless, the results of this study provide valuable information about how to deal with 

non-normal MB data using the within- and between-series models, and ReML with Kenward-

Roger and Bayesian methods, which are being considered for single-case research. The author 

hopes the study will allay concerns about the usefulness of the within- and between-series 

treatment effect estimators and in doing so encourage the estimation and reporting of effect 

estimates MB research.  
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APPENDIX A. TABLES OF THE COMPLETE RESULTS 

 

Table 5.  

Relative Bias for the Treatment Effect  

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 

Skew Kurt W B W B W B W B W B W B W B W B W B W B W B W B

0 -1 .026 .023 .024 .023 -.015 -.014 -.018 -.014 -.012 -.005 -.013 -.006 .009 -.004 .014 -.004 -.003 .008 -.004 .008 -.011 -.028 -.007 -.028

0 -.021 -.040 -.016 -.040 -.003 .002 -.005 .002 .009 .016 .014 .015 .001 .010 -.003 .010 .001 .012 -.007 .013 .006 .017 .003 .017

1 .004 -.003 .016 -.003 .003 -.001 .005 .000 .001 .014 -.002 .014 .005 -.001 .002 -.001 -.005 -.024 -.008 -.024 .005 -.009 .005 -.009

2 -.005 .011 -.011 .011 .001 -.008 .001 -.007 .003 .018 .004 .018 -.008 -.008 -.010 -.008 .005 -.011 .002 -.011 -.006 -.008 -.001 -.008

4 .010 .000 -.008 .000 -.008 -.003 -.008 -.004 .004 -.010 .004 -.010 -.001 .020 .001 .020 .005 .009 .003 .009 .003 -.002 .003 -.002

1 -1 -.001 -.004 .001 -.005 .000 -.004 -.006 -.004 -.003 .013 -.001 .013 -.014 -.012 -.016 -.012 .002 -.003 .002 -.002 -.002 .004 .001 .004

0 .013 .000 .009 .000 .000 .002 .000 .002 -.009 .006 -.014 .006 .001 -.010 .001 -.010 -.016 .025 -.024 .024 .010 -.005 .010 -.005

1 .021 .041 .017 .041 .017 .019 .008 .019 .005 .004 .005 .004 .001 -.014 .002 -.014 .010 -.011 .005 -.011 .012 .020 .009 .020

2 -.023 -.031 -.008 -.030 .004 .018 -.005 .018 -.015 -.031 -.016 -.031 -.010 .000 -.010 .000 .008 .011 .004 .010 -.016 -.002 -.019 -.003

4 -.001 .011 -.002 .012 .015 .013 .014 .012 .016 .029 .008 .029 -.002 .015 .001 .014 -.008 -.010 -.007 -.010 -.009 -.010 -.010 -.010

2 -1 -.005 .002 -.007 .002 -.004 .005 -.001 .005 -.022 -.019 -.018 -.020 -.011 -.023 -.010 -.023 .000 .003 -.003 .003 .003 .007 .001 .008

0 .003 -.012 -.002 -.012 .014 .013 .009 .012 -.001 .008 -.005 .008 -.002 .002 -.007 .002 -.007 -.010 -.011 -.010 .000 -.006 -.005 -.006

1 -.041 -.033 -.025 -.032 -.017 .006 -.013 .006 -.004 .016 .001 .015 -.005 .001 -.003 .001 -.012 .013 -.021 .013 .005 .013 .005 .013

2 .010 -.006 .002 -.005 -.005 -.007 -.002 -.007 .018 .027 .008 .027 -.003 .008 -.001 .008 -.007 -.020 -.016 -.021 -.004 -.014 -.003 -.014

4 .030 -.011 .030 -.012 .006 .010 -.001 .010 -.012 -.023 -.016 -.022 -.007 -.015 -.007 -.015 -.006 -.015 -.008 -.015 .001 -.005 .002 -.005

3 -1 .007 .010 -.007 .010 .018 .007 .023 .006 .000 .021 -.004 .021 -.006 -.023 -.002 -.023 .005 .015 .005 .016 .003 -.002 .002 -.002

0 .009 .022 .016 .022 -.014 -.019 -.009 -.019 -.018 -.009 -.013 -.008 .015 -.011 .018 -.012 .002 .020 -.004 .020 .006 .003 .002 .003

1 .015 -.009 .008 -.009 .009 .013 .002 .014 .012 .025 .008 .025 -.001 .003 -.006 .003 -.013 -.032 -.008 -.032 -.005 -.015 -.004 -.015

2 -.002 .001 -.007 .001 .007 .014 .004 .014 -.012 -.021 -.009 -.021 .001 -.002 .006 -.002 -.002 .011 -.008 .012 .003 .004 .004 .004

4 .003 -.015 .012 -.015 -.007 .009 -.017 .009 .001 .000 -.001 .000 .002 -.005 .000 -.005 .003 .010 -.001 .010 -.011 -.019 -.010 -.018

ReML MCMC ReML MCMC

I=20

J = 4 J = 8

ReML MCMC

I=10

J = 4 J = 8

ReML MCMC

I=40

J = 4 J = 8

ReML MCMC ReML MCMC
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Table 6.  

RMSE for the Treatment Effect  

 
Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 

  

Skew Kurt W B W B W B W B W B W B W B W B W B W B W B W B

0 -1 .872 1.101 .967 1.102 .571 .742 .640 .742 .567 .940 .628 .940 .404 .676 .438 .675 .464 .967 .503 .967 .339 .697 .367 .697

0 .842 1.073 .929 1.073 .574 .746 .653 .746 .572 .946 .622 .947 .401 .694 .437 .694 .464 .984 .505 .984 .327 .686 .354 .686

1 .840 1.045 .935 1.046 .577 .753 .650 .753 .574 .956 .632 .956 .405 .680 .447 .680 .469 .970 .507 .971 .324 .672 .356 .673

2 .846 1.079 .943 1.079 .567 .758 .636 .758 .577 .946 .629 .946 .400 .674 .445 .675 .463 .954 .504 .954 .316 .683 .345 .683

4 .840 1.072 .939 1.072 .574 .758 .640 .758 .581 .959 .631 .959 .402 .686 .442 .685 .466 .960 .503 .960 .326 .679 .354 .679

1 -1 .848 1.103 .931 1.103 .576 .750 .649 .750 .590 .964 .645 .965 .405 .680 .445 .680 .476 .996 .518 .996 .330 .704 .359 .704

0 .826 1.046 .924 1.046 .577 .744 .662 .745 .576 .945 .632 .945 .406 .687 .446 .688 .465 .973 .511 .973 .326 .683 .356 .683

1 .847 1.064 .930 1.064 .575 .744 .650 .744 .567 .961 .626 .961 .404 .687 .443 .688 .463 .963 .506 .963 .321 .689 .354 .690

2 .849 1.061 .949 1.061 .570 .732 .640 .732 .573 .956 .627 .957 .400 .680 .445 .681 .465 .975 .504 .975 .329 .675 .356 .676

4 .837 1.043 .933 1.043 .567 .746 .630 .746 .582 .949 .640 .949 .402 .681 .439 .681 .466 .973 .506 .973 .335 .688 .365 .688

2 -1 .830 1.061 .931 1.061 .572 .745 .657 .746 .581 .969 .632 .968 .406 .679 .447 .679 .468 .955 .509 .955 .330 .688 .362 .688

0 .831 1.065 .926 1.065 .573 .754 .647 .754 .581 .938 .630 .938 .397 .673 .440 .673 .470 .989 .505 .990 .326 .691 .354 .691

1 .834 1.071 .932 1.071 .571 .743 .644 .744 .588 .954 .646 .954 .400 .680 .438 .680 .463 .965 .505 .966 .322 .684 .351 .684

2 .854 1.070 .951 1.069 .577 .756 .649 .756 .585 .963 .628 .963 .400 .683 .439 .683 .457 .987 .498 .988 .330 .686 .359 .686

4 .845 1.057 .943 1.057 .572 .759 .643 .760 .576 .961 .632 .962 .405 .688 .440 .688 .468 .986 .506 .986 .330 .667 .361 .667

3 -1 .843 1.089 .931 1.090 .579 .745 .653 .745 .584 .975 .643 .975 .405 .665 .443 .665 .464 .987 .505 .988 .324 .668 .354 .668

0 .838 1.053 .920 1.054 .577 .757 .641 .757 .574 .969 .637 .969 .411 .686 .453 .686 .464 .973 .502 .974 .333 .696 .363 .696

1 .821 1.032 .913 1.033 .581 .762 .644 .762 .585 .963 .640 .964 .400 .675 .444 .675 .463 .977 .506 .978 .326 .691 .354 .691

2 .838 1.047 .941 1.047 .574 .742 .651 .743 .567 .952 .616 .953 .406 .672 .451 .672 .469 .969 .511 .970 .335 .701 .366 .702

4 .835 1.054 .934 1.054 .566 .739 .640 .740 .568 .962 .616 .962 .399 .678 .436 .678 .465 .962 .511 .962 .324 .683 .351 .683

I=10

J = 4 J = 8

ReML MCMC ReML MCMC

I=20

J = 4 J = 8

ReML MCMC ReML MCMC

I=40

J = 4 J = 8

ReML MCMC ReML MCMC
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Table 7.  

CI coverage Rate for the Treatment Effect  

 
Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. Values in Bold are in the unacceptable range [.942 ,.958]. 

  

Skew Kurt W B W B W B W B W B W B W B W B W B W B W B W B

0 -1 .937 .867 .935 .857 .951 .884 .943 .879 .942 .882 .939 .870 .947 .871 .941 .869 .934 .864 .937 .863 .932 .858 .916 .855

0 .953 .869 .945 .859 .949 .882 .943 .877 .948 .871 .943 .864 .947 .857 .934 .852 .935 .864 .929 .861 .945 .860 .935 .855

1 .950 .878 .944 .872 .947 .881 .943 .875 .946 .878 .941 .873 .948 .872 .933 .867 .936 .861 .933 .856 .947 .875 .928 .873

2 .945 .875 .940 .862 .953 .870 .946 .866 .942 .874 .939 .863 .943 .871 .935 .868 .934 .871 .936 .864 .950 .860 .934 .858

4 .944 .869 .941 .859 .953 .876 .948 .870 .945 .875 .938 .869 .944 .868 .938 .864 .934 .865 .941 .857 .947 .870 .927 .867

1 -1 .945 .861 .947 .847 .948 .874 .946 .868 .943 .871 .930 .865 .945 .867 .935 .867 .928 .869 .929 .862 .943 .856 .923 .853

0 .952 .878 .942 .868 .952 .886 .942 .878 .939 .879 .940 .871 .941 .874 .937 .865 .930 .858 .929 .854 .946 .865 .919 .857

1 .944 .878 .944 .872 .949 .877 .943 .873 .942 .873 .945 .862 .941 .869 .938 .868 .937 .860 .934 .854 .953 .869 .925 .862

2 .945 .881 .939 .869 .954 .891 .949 .883 .946 .869 .942 .864 .951 .874 .937 .872 .933 .849 .933 .844 .941 .868 .926 .861

4 .946 .883 .940 .873 .953 .884 .952 .881 .940 .866 .936 .859 .949 .867 .939 .863 .941 .862 .938 .858 .937 .859 .919 .851

2 -1 .949 .872 .944 .863 .957 .885 .942 .879 .939 .871 .938 .862 .949 .872 .924 .867 .936 .863 .937 .855 .940 .859 .922 .853

0 .947 .873 .947 .866 .946 .879 .947 .869 .936 .880 .940 .873 .951 .876 .936 .873 .934 .856 .931 .852 .944 .854 .925 .844

1 .956 .872 .946 .863 .950 .881 .944 .879 .938 .867 .937 .861 .951 .874 .942 .872 .934 .861 .938 .858 .945 .863 .934 .861

2 .943 .879 .940 .867 .948 .878 .949 .871 .933 .866 .932 .860 .953 .871 .942 .870 .943 .862 .942 .856 .933 .864 .919 .856

4 .945 .872 .942 .863 .948 .875 .950 .871 .942 .872 .937 .865 .941 .873 .937 .870 .928 .861 .931 .859 .938 .870 .922 .866

3 -1 .950 .863 .943 .853 .945 .876 .944 .872 .938 .859 .931 .854 .941 .883 .933 .878 .930 .861 .930 .855 .946 .874 .920 .868

0 .948 .876 .947 .865 .951 .871 .951 .866 .943 .872 .938 .866 .936 .871 .922 .866 .933 .864 .933 .857 .942 .858 .921 .854

1 .950 .889 .949 .877 .949 .873 .946 .868 .933 .869 .937 .861 .949 .878 .935 .875 .936 .863 .936 .859 .944 .861 .927 .855

2 .949 .886 .939 .873 .955 .886 .948 .876 .947 .868 .946 .860 .941 .874 .934 .869 .937 .852 .929 .848 .944 .859 .914 .855

4 .950 .880 .947 .871 .956 .887 .945 .886 .939 .872 .943 .865 .949 .871 .935 .865 .931 .868 .933 .863 .943 .864 .930 .863

ReML MCMC

I=10

J = 4 J = 8

ReML MCMC

I=20

J = 4 J = 8

ReML MCMC ReML MCMC ReML MCMC ReML MCMC

I=40

J = 4 J = 8
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Table 8.  

CI Width for the Treatment Effect 

 
Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 

  

Skew Kurt W B W B W B W B W B W B W B W B W B W B W B W B

0 -1 3.69 3.31 3.67 3.22 2.33 2.35 2.54 2.32 2.60 2.94 2.42 2.89 1.64 2.08 1.66 2.06 2.28 2.88 1.91 2.85 1.37 2.04 1.30 2.02

0 3.65 3.31 3.67 3.22 2.33 2.35 2.53 2.32 2.62 2.94 2.42 2.89 1.64 2.08 1.67 2.06 2.22 2.88 1.91 2.85 1.36 2.04 1.30 2.02

1 3.66 3.31 3.67 3.22 2.32 2.35 2.54 2.32 2.64 2.94 2.43 2.89 1.65 2.08 1.66 2.06 2.26 2.88 1.91 2.85 1.37 2.04 1.30 2.02

2 3.63 3.32 3.67 3.22 2.33 2.34 2.53 2.31 2.57 2.93 2.42 2.88 1.64 2.08 1.66 2.06 2.25 2.88 1.91 2.85 1.37 2.04 1.30 2.02

4 3.64 3.30 3.67 3.21 2.33 2.35 2.53 2.31 2.60 2.93 2.42 2.89 1.64 2.08 1.66 2.06 2.25 2.88 1.91 2.85 1.37 2.04 1.31 2.02

1 -1 3.62 3.30 3.67 3.21 2.32 2.35 2.53 2.31 2.63 2.94 2.42 2.89 1.64 2.08 1.66 2.06 2.24 2.88 1.91 2.85 1.36 2.04 1.30 2.02

0 3.62 3.29 3.67 3.21 2.33 2.35 2.53 2.31 2.61 2.94 2.42 2.89 1.63 2.08 1.66 2.06 2.25 2.88 1.91 2.85 1.37 2.04 1.30 2.02

1 3.64 3.30 3.66 3.22 2.32 2.34 2.53 2.31 2.58 2.94 2.42 2.89 1.63 2.08 1.66 2.06 2.26 2.88 1.92 2.85 1.37 2.04 1.30 2.02

2 3.64 3.31 3.68 3.22 2.33 2.35 2.54 2.32 2.64 2.94 2.43 2.89 1.65 2.08 1.66 2.06 2.24 2.88 1.92 2.85 1.36 2.04 1.29 2.02

4 3.61 3.30 3.67 3.21 2.33 2.35 2.54 2.32 2.62 2.93 2.42 2.88 1.66 2.08 1.67 2.06 2.25 2.88 1.92 2.85 1.37 2.04 1.30 2.02

2 -1 3.64 3.32 3.68 3.23 2.33 2.35 2.54 2.32 2.61 2.94 2.41 2.89 1.65 2.08 1.66 2.06 2.26 2.88 1.91 2.85 1.36 2.04 1.29 2.02

0 3.67 3.31 3.67 3.22 2.33 2.35 2.54 2.32 2.58 2.93 2.41 2.88 1.64 2.08 1.66 2.06 2.27 2.88 1.91 2.85 1.38 2.04 1.30 2.02

1 3.65 3.30 3.67 3.21 2.32 2.35 2.53 2.32 2.63 2.94 2.43 2.89 1.64 2.08 1.67 2.06 2.26 2.88 1.91 2.85 1.36 2.04 1.30 2.02

2 3.62 3.31 3.67 3.22 2.32 2.35 2.53 2.32 2.64 2.93 2.42 2.89 1.64 2.08 1.66 2.06 2.27 2.88 1.91 2.85 1.37 2.04 1.30 2.02

4 3.62 3.30 3.66 3.21 2.33 2.35 2.53 2.32 2.60 2.94 2.42 2.89 1.64 2.08 1.66 2.06 2.25 2.88 1.91 2.85 1.36 2.04 1.30 2.02

3 -1 3.68 3.31 3.67 3.21 2.33 2.35 2.54 2.32 2.61 2.94 2.42 2.89 1.65 2.08 1.67 2.06 2.26 2.88 1.92 2.85 1.37 2.04 1.30 2.02

0 3.60 3.30 3.67 3.21 2.32 2.35 2.54 2.32 2.60 2.94 2.41 2.89 1.64 2.08 1.66 2.06 2.26 2.88 1.92 2.85 1.37 2.04 1.30 2.02

1 3.61 3.30 3.67 3.21 2.32 2.35 2.53 2.31 2.58 2.94 2.41 2.89 1.64 2.08 1.66 2.06 2.26 2.88 1.91 2.85 1.37 2.04 1.30 2.02

2 3.63 3.31 3.67 3.22 2.34 2.35 2.53 2.32 2.63 2.93 2.41 2.89 1.63 2.08 1.66 2.06 2.24 2.88 1.90 2.85 1.36 2.04 1.30 2.02

4 3.67 3.31 3.68 3.22 2.33 2.35 2.53 2.32 2.62 2.93 2.41 2.89 1.65 2.08 1.66 2.06 2.23 2.88 1.91 2.85 1.37 2.04 1.30 2.02

I=10

J = 4 J = 8

ReML MCMC ReML MCMC

I=20

J = 4 J = 8

ReML MCMC ReML MCMC

I=40

J = 4 J = 8

ReML MCMC ReML MCMC
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Table 9.  

Statistical Power for the Treatment Effect 

 
Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 

  

Skew Kurt W B W B W B W B W B W B W B W B W B W B W B W B

0 -1 .208 .299 .200 .313 .376 .388 .326 .395 .339 .315 .355 .323 .665 .473 .659 .479 .443 .343 .528 .348 .796 .487 .817 .493

0 .185 .268 .189 .284 .384 .404 .338 .413 .365 .319 .381 .330 .675 .482 .655 .492 .460 .338 .537 .342 .811 .508 .834 .508

1 .189 .275 .197 .288 .397 .417 .341 .424 .331 .324 .364 .329 .667 .476 .650 .483 .442 .325 .525 .331 .805 .485 .830 .490

2 .186 .285 .189 .302 .390 .407 .333 .419 .365 .318 .369 .332 .658 .484 .640 .489 .461 .329 .547 .336 .804 .491 .839 .498

4 .189 .284 .199 .297 .380 .411 .329 .423 .352 .313 .377 .321 .666 .486 .652 .495 .450 .339 .554 .346 .821 .490 .828 .493

1 -1 .197 .285 .191 .304 .394 .410 .342 .417 .349 .309 .377 .317 .649 .471 .627 .476 .458 .331 .539 .336 .802 .493 .827 .495

0 .191 .284 .196 .298 .386 .409 .347 .415 .343 .314 .371 .328 .662 .470 .645 .477 .435 .329 .521 .335 .823 .480 .842 .489

1 .207 .290 .197 .306 .403 .421 .353 .432 .357 .313 .378 .326 .666 .474 .647 .477 .463 .318 .535 .323 .826 .498 .841 .504

2 .181 .268 .196 .280 .390 .414 .332 .423 .333 .305 .359 .313 .648 .477 .638 .483 .452 .336 .536 .341 .804 .484 .822 .490

4 .187 .277 .190 .289 .406 .427 .347 .434 .358 .318 .379 .326 .647 .473 .646 .480 .446 .322 .535 .330 .792 .472 .812 .476

2 -1 .191 .270 .190 .285 .382 .412 .347 .421 .329 .310 .364 .320 .647 .465 .639 .475 .450 .324 .528 .333 .817 .482 .835 .491

0 .188 .274 .200 .293 .394 .419 .347 .423 .361 .311 .363 .323 .657 .474 .644 .481 .430 .317 .528 .325 .813 .469 .830 .478

1 .176 .276 .184 .290 .376 .411 .327 .424 .341 .334 .345 .342 .662 .491 .638 .496 .441 .343 .513 .350 .824 .500 .843 .502

2 .207 .288 .201 .300 .385 .396 .346 .404 .348 .326 .375 .338 .669 .470 .652 .481 .433 .309 .531 .311 .804 .481 .833 .486

4 .211 .279 .212 .291 .383 .420 .340 .426 .342 .303 .367 .311 .650 .462 .635 .469 .436 .320 .532 .326 .813 .486 .828 .490

3 -1 .199 .282 .192 .298 .402 .403 .358 .413 .353 .328 .367 .337 .658 .465 .644 .471 .441 .330 .533 .337 .819 .493 .829 .497

0 .201 .280 .187 .300 .387 .402 .320 .411 .340 .319 .370 .331 .677 .478 .660 .485 .443 .351 .529 .361 .806 .500 .832 .500

1 .192 .265 .193 .281 .409 .419 .346 .426 .363 .317 .391 .324 .656 .458 .650 .464 .458 .305 .537 .310 .813 .482 .830 .488

2 .192 .280 .190 .292 .393 .419 .345 .425 .336 .312 .362 .322 .666 .482 .647 .490 .447 .334 .534 .343 .801 .496 .827 .501

4 .188 .267 .202 .284 .383 .414 .326 .425 .338 .322 .376 .331 .660 .487 .644 .490 .452 .323 .540 .331 .800 .482 .825 .490

ReML MCMC ReML MCMC ReML MCMC ReML MCMC

I=10

J = 4 J = 8

I=20

J = 4 J = 8

I=40

J = 4 J = 8

ReML MCMC ReML MCMC
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Table 10.  

Type I Error for the Treatment Effect  

 
Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 

 

  

Skew Kurt W B W B W B W B W B W B W B W B W B W B W B W B

0 -1 .050 .120 .055 .131 .047 .121 .054 .125 .051 .132 .065 .141 .058 .121 .071 .126 .064 .141 .068 .144 .059 .137 .082 .140

0 .052 .128 .044 .138 .043 .115 .055 .117 .054 .123 .062 .128 .049 .122 .061 .123 .065 .139 .070 .144 .063 .149 .088 .148

1 .050 .120 .065 .130 .051 .122 .051 .127 .059 .134 .065 .137 .055 .142 .066 .144 .064 .147 .067 .151 .060 .136 .079 .141

2 .046 .112 .051 .121 .050 .133 .057 .137 .051 .121 .068 .128 .051 .122 .064 .128 .062 .131 .074 .135 .059 .129 .078 .130

4 .054 .123 .055 .133 .055 .135 .055 .140 .057 .140 .063 .144 .057 .125 .074 .127 .066 .141 .065 .148 .056 .128 .076 .133

1 -1 .047 .118 .051 .128 .054 .131 .059 .138 .061 .128 .067 .133 .052 .126 .061 .133 .065 .133 .070 .137 .060 .129 .075 .130

0 .052 .123 .058 .132 .047 .119 .057 .126 .059 .131 .064 .136 .057 .127 .075 .132 .068 .132 .065 .138 .057 .128 .077 .131

1 .050 .124 .054 .138 .048 .114 .053 .118 .054 .127 .070 .133 .049 .133 .065 .139 .065 .135 .064 .144 .049 .136 .081 .139

2 .054 .123 .059 .135 .048 .119 .053 .125 .057 .131 .058 .140 .056 .137 .075 .139 .064 .136 .070 .141 .049 .141 .068 .146

4 .053 .113 .053 .127 .055 .123 .057 .128 .056 .134 .071 .142 .058 .123 .068 .130 .068 .141 .067 .144 .059 .136 .079 .138

2 -1 .044 .122 .056 .130 .044 .111 .050 .116 .049 .131 .065 .142 .057 .120 .073 .126 .072 .132 .072 .138 .061 .139 .080 .144

0 .048 .129 .052 .139 .053 .122 .057 .126 .058 .133 .062 .141 .049 .132 .070 .133 .064 .136 .070 .142 .054 .135 .072 .140

1 .057 .132 .062 .144 .049 .120 .055 .125 .059 .124 .068 .130 .060 .119 .070 .123 .072 .134 .073 .141 .051 .131 .069 .139

2 .053 .117 .057 .124 .052 .120 .056 .125 .061 .137 .068 .142 .055 .136 .065 .142 .058 .129 .067 .135 .057 .139 .078 .143

4 .052 .128 .053 .142 .050 .118 .053 .122 .049 .140 .063 .143 .051 .118 .065 .122 .063 .141 .060 .147 .059 .150 .072 .156

3 -1 .050 .129 .051 .138 .046 .115 .050 .123 .050 .122 .054 .127 .049 .124 .068 .129 .065 .126 .066 .130 .061 .145 .082 .145

0 .045 .126 .053 .135 .056 .125 .054 .129 .059 .128 .070 .134 .055 .118 .074 .123 .064 .133 .066 .136 .058 .142 .079 .144

1 .054 .130 .058 .141 .052 .123 .054 .128 .051 .133 .064 .142 .059 .124 .071 .129 .061 .132 .067 .139 .059 .129 .081 .132

2 .055 .120 .055 .126 .045 .123 .049 .129 .062 .133 .060 .144 .052 .128 .072 .133 .056 .146 .062 .149 .060 .144 .070 .149

4 .055 .128 .058 .138 .053 .123 .059 .128 .054 .124 .065 .129 .061 .138 .078 .138 .071 .149 .074 .154 .060 .136 .083 .139

MCMC ReML MCMCReML MCMC ReML MCMC ReML MCMC ReML MCMC ReML 

I=10 I=20 I=40

J = 4 J = 8 J = 4 J = 8 J = 4 J = 8
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Table 11.  

The Treatment Effect Parameter Estimate 

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 

 

  

Skew Kurt W B W B W B W B W B W B W B W B W B W B W B W B

0 -1 1.03 1.02 1.02 1.02 .99 .99 .98 .99 .99 1.00 .99 .99 1.01 1.00 1.01 1.00 1.00 1.01 1.00 1.01 .99 .97 .99 .97

0 .98 .96 .98 .96 1.00 1.00 1.00 1.00 1.01 1.02 1.01 1.02 1.00 1.01 1.00 1.01 1.00 1.01 .99 1.01 1.01 1.02 1.00 1.02

1 1.00 1.00 1.02 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.00 1.01 1.01 1.00 1.00 1.00 1.00 .98 .99 .98 1.01 .99 1.01 .99

2 1.00 1.01 .99 1.01 1.00 .99 1.00 .99 1.00 1.02 1.00 1.02 .99 .99 .99 .99 1.01 .99 1.00 .99 .99 .99 1.00 .99

4 1.01 1.00 .99 1.00 .99 1.00 .99 1.00 1.00 .99 1.00 .99 1.00 1.02 1.00 1.02 1.01 1.01 1.00 1.01 1.00 1.00 1.00 1.00

1 -1 1.00 1.00 1.00 1.00 1.00 1.00 .99 1.00 1.00 1.01 1.00 1.01 .99 .99 .98 .99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00 .99 1.01 .99 1.01 1.00 .99 1.00 .99 .98 1.03 .98 1.02 1.01 1.00 1.01 1.00

1 1.02 1.04 1.02 1.04 1.02 1.02 1.01 1.02 1.01 1.00 1.01 1.00 1.00 .99 1.00 .99 1.01 .99 1.01 .99 1.01 1.02 1.01 1.02

2 .98 .97 .99 .97 1.00 1.02 1.00 1.02 .99 .97 .98 .97 .99 1.00 .99 1.00 1.01 1.01 1.00 1.01 .98 1.00 .98 1.00

4 1.00 1.01 1.00 1.01 1.02 1.01 1.01 1.01 1.02 1.03 1.01 1.03 1.00 1.02 1.00 1.01 .99 .99 .99 .99 .99 .99 .99 .99

2 -1 1.00 1.00 .99 1.00 1.00 1.01 1.00 1.01 .98 .98 .98 .98 .99 .98 .99 .98 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01

0 1.00 .99 1.00 .99 1.01 1.01 1.01 1.01 1.00 1.01 1.00 1.01 1.00 1.00 .99 1.00 .99 .99 .99 .99 1.00 .99 1.00 .99

1 .96 .97 .98 .97 .98 1.01 .99 1.01 1.00 1.02 1.00 1.02 1.00 1.00 1.00 1.00 .99 1.01 .98 1.01 1.01 1.01 1.01 1.01

2 1.01 .99 1.00 1.00 1.00 .99 1.00 .99 1.02 1.03 1.01 1.03 1.00 1.01 1.00 1.01 .99 .98 .98 .98 1.00 .99 1.00 .99

4 1.03 .99 1.03 .99 1.01 1.01 1.00 1.01 .99 .98 .98 .98 .99 .99 .99 .99 .99 .99 .99 .99 1.00 1.00 1.00 1.00

3 -1 1.01 1.01 .99 1.01 1.02 1.01 1.02 1.01 1.00 1.02 1.00 1.02 .99 .98 1.00 .98 1.01 1.02 1.01 1.02 1.00 1.00 1.00 1.00

0 1.01 1.02 1.02 1.02 .99 .98 .99 .98 .98 .99 .99 .99 1.02 .99 1.02 .99 1.00 1.02 1.00 1.02 1.01 1.00 1.00 1.00

1 1.02 .99 1.01 .99 1.01 1.01 1.00 1.01 1.01 1.03 1.01 1.03 1.00 1.00 .99 1.00 .99 .97 .99 .97 1.00 .99 1.00 .99

2 1.00 1.00 .99 1.00 1.01 1.01 1.00 1.01 .99 .98 .99 .98 1.00 1.00 1.01 1.00 1.00 1.01 .99 1.01 1.00 1.00 1.00 1.00

4 1.00 .99 1.01 .99 .99 1.01 .98 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 .99 .98 .99 .98

I=10 I=20 I=40

J = 4 J = 8 J = 4 J = 8 J = 4 J = 8

ReML MCMCMCMC ReML MCMC ReML MCMCReML MCMC ReML MCMC ReML 
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Table 12.  

Bias of Intercept Parameter Estimate in the Within-Series Model  

    I=10 I=20 I=40 

    J = 4 J = 8 J = 4 J = 8 J = 4 J = 8 

Skew Kurt ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC 

0 -1 .001 .001 -.006 -.007 .006 .005 -.006 -.003 -.004 -.003 .003 .005 

  0 -.009 -.009 -.004 -.005 -.005 -.003 -.004 -.006 -.001 -.005 -.004 -.007 

  1 -.006 -.004 -.005 -.004 -.004 -.005 .000 -.001 -.003 -.005 .002 .002 

  2 .006 .005 -.005 -.005 -.002 -.004 .003 .000 -.002 -.003 -.002 -.001 

  4 .007 .003 -.004 -.003 .007 .008 .002 .002 -.007 -.008 .002 .002 

1 -1 -.002 -.001 -.002 -.002 -.014 -.014 -.004 -.005 -.010 -.010 .009 .011 

  0 .005 .003 .006 .007 .000 -.002 .003 .002 -.003 -.007 -.008 -.009 

  1 .008 .006 -.003 -.006 -.013 -.014 -.002 -.002 -.015 -.019 .007 .006 

  2 -.016 -.011 .010 .008 -.007 -.008 -.004 -.004 -.007 -.010 .009 .007 

  4 .005 .005 .002 .002 -.003 -.004 -.002 .000 .007 .008 .003 .003 

2 -1 -.012 -.012 -.003 -.002 -.006 -.003 .002 .002 .011 .010 -.007 -.008 

  0 .000 -.003 .005 .003 .008 .005 .011 .009 .004 .004 .002 .000 

  1 -.011 -.006 -.018 -.017 -.012 -.009 -.004 -.002 .009 .006 -.001 .000 

  2 .005 .001 -.001 .000 .012 .009 .003 .003 -.006 -.008 .002 .004 

  4 .009 .009 -.001 -.003 .012 .010 .001 .000 .008 .007 .001 .002 

3 -1 -.006 -.008 .004 .006 .000 -.004 -.008 -.006 .005 .005 -.001 -.002 

  0 -.006 -.004 .004 .006 -.004 -.003 .008 .010 .014 .012 .000 -.002 

  1 .005 .004 .011 .009 .006 .004 -.004 -.007 .002 .007 .003 .001 

  2 -.011 -.012 -.007 -.008 -.008 -.006 .001 .003 -.004 -.007 .000 .000 

  4 .004 .007 -.006 -.009 .007 .006 .000 -.001 -.011 -.012 -.001 .001 

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 
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Table 13.  

RMSE of Intercept Parameter Estimate in the Within-Series Model  

    I=10 I=20 I=40 

    J = 4 J = 8 J = 4 J = 8 J = 4 J = 8 

Skew Kurt ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC 

0 -1 .481 .493 .330 .336 .427 .447 .303 .315 .395 .412 .274 .285 

  0 .493 .504 .342 .354 .424 .444 .303 .316 .394 .410 .283 .297 

  1 .460 .473 .335 .346 .427 .443 .303 .315 .394 .410 .276 .290 

  2 .484 .495 .341 .351 .427 .446 .308 .318 .404 .421 .288 .298 

  4 .475 .486 .336 .346 .427 .444 .307 .319 .387 .406 .279 .286 

1 -1 .469 .482 .336 .344 .440 .460 .305 .321 .399 .415 .279 .290 

  0 .491 .506 .336 .348 .439 .455 .302 .315 .407 .422 .285 .295 

  1 .484 .497 .341 .349 .425 .445 .300 .315 .400 .416 .293 .302 

  2 .469 .486 .338 .348 .435 .454 .300 .311 .407 .428 .277 .290 

  4 .485 .499 .338 .348 .438 .454 .302 .310 .400 .416 .283 .293 

2 -1 .477 .491 .329 .339 .442 .456 .307 .321 .395 .412 .281 .293 

  0 .479 .491 .335 .342 .431 .446 .302 .315 .402 .422 .288 .300 

  1 .473 .491 .333 .345 .437 .454 .303 .315 .397 .417 .276 .290 

  2 .479 .498 .335 .344 .438 .457 .298 .310 .389 .405 .281 .292 

  4 .486 .494 .339 .348 .434 .451 .302 .311 .400 .417 .279 .290 

3 -1 .482 .495 .338 .349 .431 .449 .308 .321 .399 .412 .285 .295 

  0 .483 .499 .332 .339 .444 .459 .303 .316 .397 .415 .281 .293 

  1 .480 .490 .342 .349 .437 .455 .310 .319 .404 .421 .283 .295 

  2 .473 .485 .341 .348 .428 .445 .300 .313 .396 .412 .281 .293 

  4 .476 .491 .335 .344 .445 .460 .307 .319 .397 .412 .285 .295 

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 
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Table 14.  

Bias of Time Effect in the Baseline Phase in the Within-Series Model  

    I=10 I=20 I=40 

    J = 4 J = 8 J = 4 J = 8 J = 4 J = 8 

Skew Kurt ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC 

0 -1 -.002 -.002 .003 .004 .001 .002 .000 -.001 .000 .000 .000 .000 

  0 .002 .001 .002 .002 .000 -.001 .000 .001 .000 .001 .000 .000 

  1 -.002 -.004 .000 -.001 .000 .001 .000 .001 .000 .001 .000 .000 

  2 -.001 .000 .001 .000 -.001 -.001 .001 .001 .000 .000 .000 .000 

  4 -.002 .001 .001 .001 .000 .000 .000 -.001 .000 .000 .000 .000 

1 -1 -.001 -.002 .000 .001 .001 .001 .001 .001 .000 .000 .000 -.001 

  0 -.004 -.002 .001 .001 .000 .001 .000 .000 .000 .001 .000 .000 

  1 -.003 -.002 -.003 -.001 .000 .000 .000 .000 .000 .000 .000 .000 

  2 .004 .001 .000 .001 .000 .001 .000 .000 .000 .000 .000 .000 

  4 -.001 -.001 -.001 -.001 -.001 .000 .001 .000 .001 .000 .000 .000 

2 -1 .003 .003 .000 .000 .001 .001 .001 .001 .000 .000 .000 .000 

  0 -.002 -.001 -.003 -.001 -.001 .000 -.001 .000 .000 .000 .000 .000 

  1 .006 .003 .005 .004 .001 -.001 .001 .001 .000 .001 .000 .000 

  2 -.003 -.001 .000 -.001 -.002 .000 .000 .000 .000 .001 .000 .000 

  4 -.004 -.004 -.003 -.001 .000 .001 .000 .000 .000 .000 .000 .000 

3 -1 -.001 .001 -.002 -.003 .000 .001 .000 .000 .000 .000 .000 .000 

  0 .001 .000 .001 .000 .001 .000 -.001 -.002 .000 .000 .000 .000 

  1 -.004 -.003 -.002 .000 .000 .001 .000 .001 .001 .000 .000 .000 

  2 .001 .001 .000 .000 .000 -.001 .000 -.001 .000 .001 .000 .000 

  4 -.003 -.005 .001 .003 .000 .000 -.001 .000 .000 .001 .000 .000 

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 
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Table 15.  

RMSE of Time Effect in the Baseline Phase in the Within-Series Model  

    I=10 I=20 I=40 

    J = 4 J = 8 J = 4 J = 8 J = 4 J = 8 

Skew Kurt ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC 

0 -1 .141 .164 .095 .110 .055 .071 .032 .045 .000 .032 .000 .000 

  0 .138 .161 .095 .110 .055 .071 .032 .045 .000 .032 .000 .000 

  1 .138 .161 .095 .110 .055 .071 .032 .045 .000 .032 .000 .000 

  2 .138 .161 .095 .110 .055 .071 .032 .045 .000 .032 .000 .000 

  4 .138 .161 .095 .110 .055 .071 .032 .045 .000 .032 .000 .000 

1 -1 .138 .161 .095 .110 .055 .071 .032 .045 .000 .032 .000 .000 

  0 .138 .161 .095 .114 .055 .071 .032 .045 .000 .032 .000 .000 

  1 .138 .161 .095 .110 .055 .071 .032 .045 .000 .032 .000 .000 

  2 .138 .161 .095 .110 .055 .071 .032 .045 .000 .032 .000 .000 

  4 .141 .164 .095 .110 .055 .071 .032 .045 .000 .032 .000 .000 

2 -1 .134 .161 .089 .110 .055 .071 .032 .045 .000 .032 .000 .000 

  0 .138 .161 .095 .110 .055 .071 .032 .045 .000 .032 .000 .000 

  1 .134 .161 .095 .110 .055 .071 .032 .045 .000 .032 .000 .000 

  2 .138 .161 .095 .114 .055 .071 .032 .045 .000 .032 .000 .000 

  4 .138 .161 .095 .110 .055 .071 .032 .045 .000 .032 .000 .000 

3 -1 .138 .161 .095 .110 .055 .071 .032 .045 .000 .032 .000 .000 

  0 .138 .161 .095 .110 .055 .071 .032 .045 .000 .032 .000 .000 

  1 .134 .158 .095 .110 .055 .071 .032 .045 .000 .032 .000 .000 

  2 .138 .161 .095 .110 .045 .071 .032 .045 .000 .032 .000 .000 

  4 .138 .164 .095 .110 .055 .071 .032 .045 .000 .032 .000 .000 

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 
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Table 16.  

Bias of Time Effect in the Treatment Phase in the Within-Series Model  

    I=10 I=20 I=40 

    J = 4 J = 8 J = 4 J = 8 J = 4 J = 8 

Skew Kurt ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC 

0 -1 .003 .002 -.001 -.001 -.001 -.001 .000 .001 .000 .000 .000 .000 

  0 -.001 -.001 -.002 -.002 .000 .001 .000 .000 .000 .000 .000 .000 

  1 .005 .009 .005 .005 .000 .000 -.001 -.002 .000 -.001 .000 .000 

  2 -.001 -.004 -.001 -.001 .001 .001 -.001 -.003 .000 .000 .000 .000 

  4 -.005 -.012 -.002 -.003 .000 -.001 .001 .001 .000 .000 .000 .000 

1 -1 .003 .003 -.001 -.003 -.002 -.002 -.001 .000 .000 .000 .000 .000 

  0 .003 .005 -.002 -.001 .000 -.002 .001 .001 .000 -.001 .000 .000 

  1 .000 .001 .004 .002 -.001 -.001 .000 .001 .000 -.001 .000 .000 

  2 -.004 .001 .001 -.003 .000 -.001 .000 .000 .000 .000 .000 -.001 

  4 -.003 -.002 .001 .000 -.001 -.002 .000 .000 .000 .000 .000 .000 

2 -1 -.002 -.003 -.001 .000 -.001 -.002 .000 .000 .000 .000 .000 .000 

  0 .003 .002 .003 .002 .001 .000 .001 .000 .000 .000 .000 .000 

  1 -.001 .001 -.002 -.001 -.001 .000 -.002 .000 -.001 .000 .000 .000 

  2 .001 .002 .001 .002 .001 -.001 .000 -.001 -.001 -.001 .000 .000 

  4 .004 .007 .002 .000 .001 -.002 .000 -.001 .000 -.001 .000 .000 

3 -1 -.001 -.004 .002 .003 .000 -.002 -.001 .001 .000 .000 .000 .000 

  0 .003 .002 -.002 -.001 -.001 .001 .000 .002 -.001 -.001 .000 .000 

  1 .001 .001 .001 -.001 .001 .000 -.001 -.003 .000 .000 .000 -.001 

  2 .002 -.002 -.001 -.004 .001 .001 .001 .002 .000 .000 .000 .000 

  4 .003 .007 -.002 -.006 .000 -.001 .000 .000 .000 .000 .000 .000 

 Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 
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Table 17.  

RMSE of Time Effect in the Treatment Phase in the Within-Series Model  

    I=10 I=20 I=40 

    J = 4 J = 8 J = 4 J = 8 J = 4 J = 8 

Skew Kurt ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC 

0 -1 .205 .261 .134 .173 .071 .100 .045 .071 .032 .032 .000 .032 

  0 .210 .263 .134 .173 .071 .100 .045 .071 .032 .032 .000 .032 

  1 .205 .257 .130 .173 .071 .100 .045 .071 .032 .032 .000 .032 

  2 .200 .253 .130 .173 .071 .100 .045 .071 .032 .032 .000 .032 

  4 .205 .259 .134 .173 .071 .100 .045 .071 .032 .032 .000 .032 

1 -1 .207 .257 .138 .176 .071 .100 .045 .071 .032 .032 .000 .032 

  0 .200 .253 .134 .179 .071 .100 .045 .071 .032 .032 .000 .032 

  1 .207 .259 .134 .176 .071 .095 .045 .071 .032 .032 .000 .032 

  2 .205 .257 .134 .173 .071 .100 .045 .071 .032 .032 .000 .032 

  4 .205 .259 .134 .173 .071 .100 .045 .071 .032 .032 .000 .032 

2 -1 .200 .261 .130 .173 .071 .100 .045 .071 .032 .032 .000 .032 

  0 .202 .253 .141 .179 .071 .100 .045 .071 .032 .032 .000 .032 

  1 .207 .261 .134 .176 .071 .100 .045 .071 .032 .032 .000 .032 

  2 .207 .259 .138 .179 .071 .100 .045 .071 .032 .032 .000 .032 

  4 .200 .253 .134 .176 .071 .100 .045 .071 .032 .032 .000 .032 

3 -1 .207 .257 .134 .176 .071 .100 .045 .071 .032 .032 .000 .032 

  0 .207 .259 .134 .173 .071 .100 .045 .071 .032 .032 .000 .032 

  1 .202 .257 .138 .176 .071 .100 .045 .071 .032 .032 .000 .032 

  2 .202 .255 .134 .173 .071 .100 .045 .071 .032 .032 .000 .032 

  4 .200 .257 .134 .176 .071 .100 .045 .071 .032 .032 .000 .032 

 Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 
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Table 18.  

Relative Bias of Level-1 Error Variance Estimate  

 
Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 

 

 

 

Skew Kurt W B W B W B W B W B W B W B W B W B W B W B W B

0 -1 -.049 .103 -.017 .134 -.025 .155 -.017 .177 -.017 .041 .003 .053 -.010 .060 .002 .070 -.008 .020 .004 .024 -.006 .029 .004 .033

0 -.054 .105 -.022 .137 -.028 .156 -.019 .178 -.018 .039 .001 .050 -.010 .059 .003 .070 -.008 .019 .004 .023 -.005 .029 .005 .033

1 -.050 .101 -.016 .133 -.023 .157 -.015 .177 -.017 .038 .003 .051 -.010 .059 .003 .070 -.007 .020 .005 .024 -.006 .029 .004 .033

2 -.051 .107 -.020 .137 -.027 .150 -.020 .171 -.019 .037 .000 .048 -.010 .058 .002 .069 -.008 .020 .004 .024 -.005 .030 .006 .034

4 -.051 .098 -.019 .131 -.027 .154 -.018 .176 -.021 .037 -.001 .049 -.010 .059 .003 .069 -.008 .021 .005 .025 -.005 .029 .005 .033

1 -1 -.056 .096 -.021 .127 -.027 .156 -.018 .177 -.020 .040 .001 .051 -.011 .059 .001 .069 -.008 .019 .005 .023 -.005 .030 .005 .034

0 -.052 .092 -.022 .124 -.026 .153 -.018 .176 -.017 .039 .003 .051 -.009 .061 .003 .071 -.007 .019 .005 .023 -.005 .030 .005 .034

1 -.056 .099 -.025 .132 -.027 .151 -.021 .173 -.017 .040 .003 .051 -.010 .061 .003 .071 -.008 .019 .004 .023 -.005 .029 .004 .033

2 -.049 .099 -.018 .132 -.024 .160 -.016 .181 -.018 .039 .004 .051 -.011 .060 .002 .071 -.008 .019 .004 .024 -.005 .030 .005 .034

4 -.051 .098 -.020 .129 -.026 .161 -.017 .183 -.020 .036 .000 .047 -.010 .062 .003 .073 -.008 .020 .004 .024 -.005 .029 .004 .033

2 -1 -.049 .109 -.017 .139 -.025 .156 -.017 .178 -.019 .041 .001 .052 -.010 .061 .003 .072 -.008 .020 .005 .024 -.005 .029 .005 .033

0 -.049 .103 -.017 .134 -.026 .158 -.017 .181 -.018 .037 .002 .048 -.011 .059 .003 .070 -.008 .019 .004 .023 -.005 .030 .005 .034

1 -.053 .096 -.021 .127 -.025 .155 -.015 .177 -.018 .040 .003 .051 -.011 .060 .001 .070 -.008 .019 .004 .023 -.005 .030 .005 .034

2 -.052 .105 -.020 .135 -.028 .158 -.020 .180 -.019 .038 .001 .050 -.010 .059 .002 .069 -.007 .020 .005 .024 -.005 .029 .004 .034

4 -.055 .095 -.025 .127 -.029 .152 -.021 .175 -.017 .040 .004 .052 -.011 .060 .003 .071 -.008 .020 .005 .024 -.005 .030 .005 .034

3 -1 -.055 .100 -.024 .130 -.027 .158 -.018 .180 -.019 .039 .001 .051 -.010 .060 .002 .071 -.008 .020 .004 .024 -.005 .029 .004 .033

0 -.051 .097 -.019 .128 -.025 .159 -.017 .180 -.018 .039 .002 .051 -.012 .059 .001 .070 -.008 .021 .005 .026 -.005 .029 .005 .033

1 -.049 .098 -.020 .130 -.026 .154 -.019 .175 -.018 .040 .002 .051 -.011 .061 .001 .072 -.007 .019 .006 .024 -.005 .029 .005 .033

2 -.052 .102 -.019 .133 -.025 .157 -.016 .179 -.018 .037 .002 .049 -.010 .061 .002 .071 -.007 .020 .005 .024 -.005 .028 .005 .032

4 -.045 .105 -.015 .136 -.025 .157 -.017 .179 -.019 .036 .002 .048 -.010 .061 .002 .071 -.007 .020 .005 .024 -.005 .028 .005 .032

ReML MCMC ReML MCMC

I=40

J = 4 J = 8

ReML MCMC ReML 

I=20

J = 4 J = 8

MCMC

I=10

J = 4 J = 8

ReML MCMC ReML MCMC
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Table 19.  

RMSE of Level-1 Error Variance Estimate  

 
Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 

 

 

 

 

Skew Kurt W B W B W B W B W B W B W B W B W B W B W B W B

0 -1 .122 .224 .110 .241 .071 .214 .077 .235 .055 .089 .063 .095 .032 .084 .045 .095 .032 .045 .032 .045 .000 .045 .000 .045

0 .122 .228 .114 .247 .077 .219 .077 .237 .055 .089 .063 .095 .032 .084 .045 .095 .032 .045 .032 .045 .000 .045 .032 .045

1 .118 .228 .110 .245 .071 .217 .077 .235 .055 .095 .055 .100 .032 .084 .045 .095 .032 .045 .032 .045 .000 .045 .000 .045

2 .118 .230 .114 .247 .077 .210 .077 .228 .055 .089 .063 .095 .032 .084 .045 .095 .032 .045 .032 .045 .000 .045 .032 .045

4 .122 .224 .114 .243 .071 .217 .077 .237 .055 .089 .063 .095 .032 .084 .045 .095 .032 .045 .032 .045 .000 .045 .032 .045

1 -1 .118 .226 .114 .243 .071 .214 .077 .232 .055 .100 .063 .105 .032 .084 .045 .095 .032 .055 .032 .055 .000 .045 .000 .045

0 .122 .221 .114 .237 .077 .212 .077 .232 .055 .095 .063 .100 .032 .084 .045 .095 .032 .045 .032 .045 .000 .045 .032 .045

1 .122 .230 .114 .249 .071 .207 .077 .226 .055 .089 .063 .100 .032 .089 .045 .095 .032 .045 .032 .045 .000 .045 .000 .045

2 .118 .221 .114 .239 .071 .219 .077 .237 .055 .095 .063 .100 .032 .084 .045 .095 .032 .045 .032 .045 .000 .045 .032 .045

4 .122 .214 .114 .232 .071 .219 .077 .239 .055 .089 .055 .095 .032 .089 .045 .095 .032 .045 .032 .045 .000 .045 .000 .045

2 -1 .118 .228 .114 .247 .071 .217 .077 .235 .055 .095 .063 .100 .032 .089 .045 .095 .032 .045 .032 .045 .000 .045 .000 .045

0 .118 .224 .114 .241 .071 .221 .077 .241 .055 .089 .055 .095 .032 .084 .045 .095 .032 .045 .032 .045 .000 .045 .000 .045

1 .118 .224 .114 .241 .071 .217 .077 .235 .055 .095 .063 .100 .032 .084 .045 .095 .032 .045 .032 .055 .000 .045 .032 .045

2 .118 .226 .114 .243 .077 .217 .077 .237 .055 .095 .055 .105 .032 .084 .045 .095 .032 .045 .032 .045 .000 .045 .032 .045

4 .122 .221 .114 .239 .077 .212 .077 .232 .055 .095 .055 .100 .032 .084 .045 .095 .032 .045 .032 .045 .000 .045 .032 .045

3 -1 .122 .228 .114 .245 .071 .219 .077 .239 .055 .095 .063 .100 .032 .084 .045 .095 .032 .045 .032 .045 .000 .045 .000 .045

0 .118 .226 .114 .243 .071 .221 .077 .241 .055 .095 .055 .100 .032 .084 .045 .095 .032 .045 .032 .055 .000 .045 .032 .045

1 .122 .221 .114 .239 .071 .212 .077 .232 .055 .095 .055 .100 .032 .089 .045 .095 .032 .045 .032 .045 .000 .045 .032 .045

2 .122 .226 .114 .243 .071 .219 .077 .239 .055 .089 .063 .095 .032 .089 .045 .095 .032 .045 .032 .045 .000 .045 .032 .045

4 .118 .228 .110 .247 .071 .217 .077 .237 .055 .089 .063 .095 .032 .084 .045 .095 .032 .045 .032 .045 .000 .045 .032 .045

ReML MCMC

J = 4 J = 8 J = 4

MCMC ReML MCMC ReML MCMCReML MCMC ReML MCMC ReML 

J = 8 J = 4

I=10 I=20 I=40

J = 8
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Table 20.  

Relative Bias of Level-2 Error Variance for the Intercept in Within-Series Model 

    I=10 I=20 I=40 

    J = 4 J = 8 J = 4 J = 8 J = 4 J = 8 

Skew Kurt ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC 

0 -1 -.250 .060 -.262 -.114 -.116 .086 -.132 -.088 -.076 .102 -.080 -.042 

  0 -.226 .060 -.262 -.106 -.144 .066 -.130 -.084 -.064 .114 -.092 -.054 

  1 -.220 .068 -.270 -.124 -.122 .086 -.154 -.102 -.082 .106 -.064 -.034 

  2 -.266 .052 -.248 -.100 -.134 .076 -.142 -.090 -.070 .106 -.050 -.018 

  4 -.220 .074 -.266 -.122 -.158 .070 -.138 -.092 -.118 .078 -.054 -.032 

1 -1 -.228 .066 -.258 -.120 -.132 .068 -.148 -.084 -.082 .106 -.058 -.032 

  0 -.238 .070 -.246 -.118 -.148 .068 -.126 -.082 -.090 .106 -.070 -.036 

  1 -.232 .076 -.270 -.114 -.130 .076 -.132 -.086 -.080 .108 -.090 -.054 

  2 -.228 .066 -.248 -.108 -.130 .078 -.144 -.090 -.084 .102 -.064 -.030 

  4 -.236 .066 -.238 -.114 -.138 .070 -.118 -.074 -.074 .096 -.060 -.026 

2 -1 -.236 .054 -.262 -.126 -.118 .080 -.130 -.078 -.082 .098 -.084 -.042 

  0 -.264 .052 -.248 -.114 -.158 .062 -.122 -.080 -.086 .098 -.080 -.044 

  1 -.248 .060 -.244 -.114 -.144 .070 -.124 -.082 -.076 .108 -.046 -.026 

  2 -.238 .058 -.248 -.112 -.124 .086 -.154 -.084 -.102 .096 -.080 -.042 

  4 -.242 .072 -.258 -.114 -.130 .078 -.108 -.074 -.068 .106 -.068 -.038 

3 -1 -.236 .072 -.242 -.106 -.134 .068 -.142 -.092 -.064 .122 -.080 -.046 

  0 -.230 .056 -.246 -.106 -.172 .066 -.124 -.076 -.072 .106 -.078 -.044 

  1 -.230 .076 -.258 -.112 -.126 .078 -.118 -.078 -.080 .092 -.068 -.038 

  2 -.246 .052 -.264 -.132 -.128 .072 -.120 -.084 -.098 .102 -.080 -.038 

  4 -.232 .064 -.258 -.112 -.110 .086 -.116 -.072 -.092 .094 -.074 -.032 

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 
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Table 21.  

RMSE of Level-2 Error Variance for the Intercept in the Within-Series Model 

    I=10 I=20 I=40 

    J = 4 J = 8 J = 4 J = 8 J = 4 J = 8 

Skew Kurt ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC 

0 -1 .479 .205 .335 .192 .479 .261 .311 .212 .440 .265 .285 .217 

  0 .495 .207 .335 .197 .457 .235 .308 .210 .460 .274 .286 .221 

  1 .498 .224 .332 .187 .480 .247 .303 .202 .439 .265 .297 .226 

  2 .477 .197 .330 .195 .476 .249 .307 .207 .445 .261 .290 .235 

  4 .497 .214 .330 .184 .458 .232 .311 .214 .432 .257 .293 .230 

1 -1 .500 .212 .330 .192 .466 .226 .307 .219 .444 .274 .285 .226 

  0 .485 .212 .332 .190 .470 .224 .310 .207 .444 .274 .293 .224 

  1 .500 .230 .330 .190 .482 .243 .311 .219 .449 .272 .283 .219 

  2 .500 .214 .333 .200 .471 .239 .303 .205 .437 .268 .283 .221 

  4 .483 .210 .324 .182 .475 .247 .313 .210 .449 .261 .293 .237 

2 -1 .482 .200 .329 .190 .484 .243 .310 .210 .447 .259 .283 .224 

  0 .477 .207 .332 .190 .479 .241 .308 .214 .446 .261 .285 .221 

  1 .475 .205 .330 .187 .477 .239 .308 .217 .449 .277 .288 .217 

  2 .496 .210 .338 .190 .475 .255 .302 .210 .439 .265 .283 .224 

  4 .499 .210 .335 .190 .474 .249 .313 .212 .438 .263 .286 .228 

3 -1 .490 .212 .344 .205 .465 .226 .303 .202 .438 .276 .283 .226 

  0 .493 .195 .341 .200 .458 .232 .307 .210 .436 .263 .290 .224 

  1 .503 .232 .330 .190 .479 .239 .310 .210 .438 .249 .281 .219 

  2 .493 .200 .335 .182 .480 .241 .311 .205 .435 .266 .281 .224 

  4 .486 .207 .329 .192 .503 .266 .305 .217 .442 .261 .288 .230 

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 
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Table 22.  

Relative Bias of Level-2 Error Variance for the Treatment Effect in the Within-Series Model  

    I=10 I=20 I=40 

    J = 4 J = 8 J = 4 J = 8 J = 4 J = 8 

Skew Kurt ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC 

0 -1 -.030 .078 -.134 -.112 -.108 .048 -.112 -.120 -.076 .056 -.062 -.084 

  0 -.084 .078 -.124 -.114 -.100 .048 -.096 -.112 -.116 .058 -.080 -.092 

  1 -.096 .074 -.160 -.110 -.058 .062 -.080 -.118 -.086 .052 -.068 -.078 

  2 -.072 .070 -.140 -.104 -.130 .052 -.112 -.110 -.102 .056 -.070 -.094 

  4 -.092 .076 -.144 -.114 -.100 .042 -.114 -.130 -.100 .056 -.062 -.078 

1 -1 -.108 .082 -.158 -.112 -.114 .056 -.094 -.116 -.104 .070 -.082 -.086 

  0 -.106 .078 -.156 -.116 -.090 .056 -.128 -.126 -.072 .072 -.074 -.092 

  1 -.082 .076 -.150 -.110 -.126 .050 -.128 -.130 -.092 .076 -.078 -.090 

  2 -.086 .074 -.118 -.102 -.078 .058 -.078 -.116 -.094 .062 -.090 -.104 

  4 -.138 .076 -.142 -.112 -.084 .054 -.062 -.110 -.096 .078 -.074 -.096 

2 -1 -.094 .072 -.128 -.116 -.090 .048 -.080 -.120 -.080 .068 -.090 -.110 

  0 -.070 .074 -.134 -.114 -.144 .044 -.108 -.128 -.078 .054 -.054 -.086 

  1 -.124 .086 -.170 -.108 -.074 .066 -.108 -.116 -.076 .068 -.080 -.082 

  2 -.132 .076 -.150 -.114 -.080 .068 -.114 -.120 -.076 .066 -.066 -.092 

  4 -.124 .076 -.118 -.108 -.110 .050 -.094 -.120 -.088 .076 -.098 -.106 

3 -1 -.100 .086 -.126 -.108 -.088 .062 -.086 -.112 -.070 .082 -.074 -.098 

  0 -.166 .076 -.162 -.112 -.118 .050 -.108 -.108 -.070 .068 -.068 -.084 

  1 -.132 .092 -.166 -.110 -.138 .050 -.100 -.124 -.080 .070 -.070 -.096 

  2 -.096 .078 -.110 -.118 -.096 .042 -.118 -.120 -.086 .050 -.090 -.104 

  4 -.090 .074 -.128 -.110 -.112 .042 -.080 -.118 -.100 .066 -.066 -.098 

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 
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Table 23.  

RMSE of Level-2 Error Variance for the Treatment Effect in the Within-Series Model  

    I=10 I=20 I=40 

    J = 4 J = 8 J = 4 J = 8 J = 4 J = 8 

Skew Kurt ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC ReML  MCMC ReML MCMC 

0 -1 .718 .134 .464 .126 .591 .179 .387 .176 .512 .217 .344 .228 

  0 .707 .138 .469 .126 .605 .197 .391 .195 .509 .243 .345 .221 

  1 .675 .126 .451 .138 .597 .184 .383 .184 .508 .219 .336 .226 

  2 .704 .118 .452 .134 .591 .249 .382 .195 .504 .221 .332 .219 

  4 .674 .126 .455 .130 .591 .176 .373 .184 .517 .228 .333 .224 

1 -1 .666 .126 .453 .130 .574 .235 .394 .190 .505 .247 .335 .226 

  0 .680 .134 .462 .126 .613 .207 .379 .192 .539 .266 .332 .221 

  1 .700 .130 .454 .141 .566 .182 .381 .192 .520 .263 .333 .224 

  2 .691 .145 .466 .141 .604 .184 .395 .184 .515 .241 .335 .219 

  4 .670 .126 .458 .126 .607 .187 .404 .192 .503 .253 .332 .217 

2 -1 .724 .118 .464 .118 .584 .167 .390 .182 .515 .228 .335 .205 

  0 .714 .148 .460 .126 .602 .200 .383 .179 .500 .226 .344 .230 

  1 .672 .192 .455 .155 .597 .226 .386 .190 .527 .245 .333 .224 

  2 .688 .173 .454 .126 .602 .228 .387 .187 .519 .241 .342 .226 

  4 .672 .130 .465 .126 .603 .195 .385 .184 .514 .255 .327 .219 

3 -1 .705 .155 .463 .122 .609 .214 .391 .187 .519 .251 .327 .219 

  0 .666 .155 .448 .126 .588 .192 .381 .202 .519 .237 .342 .230 

  1 .663 .219 .437 .126 .588 .202 .375 .182 .532 .259 .332 .217 

  2 .704 .141 .457 .126 .564 .184 .394 .187 .506 .217 .336 .217 

  4 .709 .118 .459 .126 .579 .170 .394 .190 .525 .245 .332 .212 

Note. Skew = skewness of the level-1 error variance, Kurt = kurtosis of the level-1 error variance, ReML = restricted maximum 

likelihood estimation, MCMC = Markov chain Monte Carlo estimation, W = within-series model, B = between-series model, I = 

number of measurement occasions, J = number of participants. 
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APPENDIX B. TABLES OF ETA-SQUARE ANALYSES 

 

Table 24.  

Eta-Square for Bias of the Treatment Effect Estimate  

 

Note. I = number of measurement occasions, J = number of participants, Est = estimation 

methods 

 

 

 

 

 

 

 

Source Eta-Square Source Eta-Square

Skewness*Kurtosis .13 Skewness*Kurtosis .07

I*Kurtosis .03 I*Kurtosis .06

J*Kurtosis .03 J*Kurtosis .04

I .02 I*J .03

Skewness .02 I*Skewness .03

I*Skewness .02 J*Skewness .02

Kurtosis .02 Skewness .02

I*J .01 Kurtosis .01

J*Skewness .01 I .00

Est .00 J .00

Kurtosis*Est .00 Skewness*Est .00

I*Est .00 I*Est .00

J .00 Kurtosis*Est .00

J*Est .00 J*Est .00

Skewness*Est .00 Est .00

Within-Series Model Between-Series Model
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Table 25.  

Eta-Square for RMSE of the Treatment Effect Estimate  

 

Note. I = number of measurement occasions, J = number of participants, Est = estimation 

methods 

  

Source Eta-Square Source Eta-Square

I .62 J .93

J .32 I .07

I*J .03 I*J .00

Est .02 Skewness*Kurtosis .00

I*Est .00 J*Kurtosis .00

J*Est .00 I*Kurtosis .00

Kurtosis .00 I*Skewness .00

Skewness*Kurtosis .00 Kurtosis .00

I*Kurtosis .00 J*Skewness .00

I*Skewness .00 Skewness .00

J*Kurtosis .00 Est .00

J*Skewness .00 Kurtosis*Est .00

Skewness .00 Skewness*Est .00

Kurtosis*Est .00 I*Est .00

Skewness*Est .00 J*Est .00

Within-Series Model Between-Series Model
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Table 26.  

Eta-Square for CI Coverage Rate of the Treatment Effect Estimate  

 

Note. I = number of measurement occasions, J = number of participants, Est = estimation 

methods 

 

  

Source Eta-Square Source Eta-Square

I .41 I .40

Est .17 Est .12

J*Est .07 J .04

Kurtosis .02 I*Kurtosis .04

I*Est .02 Skewness*Kurtosis .03

Skewness*Kurtosis .01 I*Skewness .02

I*Skewness .01 I*J .02

I*J .01 Kurtosis .02

I*Kurtosis .01 J*Kurtosis .02

J .01 J*Est .01

Kurtosis*Est .00 J*Skewness .01

Skewness .00 I*Est .00

J*Kurtosis .00 Kurtosis*Est .00

J*Skewness .00 Skewness .00

Skewness*Est .00 Skewness*Est .00

Within-Series Model Between-Series Model
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Table 27.  

Eta-Square for CI Width of the Treatment Effect Estimate  

 

Note. I = number of measurement occasions, J = number of participants, Est = estimation 

methods 

  

Source Eta-Square Source Eta-Square

I .57 J .88

J .40 I .11

I*J .02 I*J .00

I*Est .01 Est .00

J*Est .01 J*Est .00

Est .00 I*Est .00

Skewness*Kurtosis .00 Skewness*Kurtosis .00

I*Skewness .00 I*Kurtosis .00

J*Kurtosis .00 J*Skewness .00

I*Kurtosis .00 I*Skewness .00

Kurtosis .00 J*Kurtosis .00

Kurtosis*Est .00 Skewness .00

Skewness*Est .00 Kurtosis .00

Skewness .00 Kurtosis*Est .00

J*Skewness .00 Skewness*Est .00

Within-Series Model Between-Series Model
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Table 28.  

Eta-Square for Statistical Power of the Treatment Effect Estimate  

 

Note. I = number of measurement occasions, J = number of participants, Est = estimation 

methods 

  

Source Eta-Square Source Eta-Square

I .55 J .87

J .41 I .11

I*J .03 I*J .01

I*Est .01 Est .00

J*Est .00 Skewness*Kurtosis .00

Est .00 I*Skewness .00

Skewness*Kurtosis .00 J*Kurtosis .00

J*Kurtosis .00 I*Kurtosis .00

I*Skewness .00 Skewness .00

I*Kurtosis .00 I*Est .00

Skewness .00 J*Est .00

Kurtosis .00 Kurtosis .00

J*Skewness .00 J*Skewness .00

Kurtosis*Est .00 Kurtosis*Est .00

Skewness*Est .00 Skewness*Est .00

Within-Series Model Between-Series Model
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APPENDIX C. SAS CODES 

 

Within-Series Model (ReML with Kenward-Roger) 

proc mixed data=j1 covtest cl;  

class idlevel2; 

model y = phase time inter / s cl alpha = .05 ddfm = kenward;  

random int phase time inter / sub = idlevel2; 

repeated / sub = idlevel2;  

run; 

 

Within-Series Model (Bayesian) 

proc mcmc data=j1  diag=all dic nbi=5000  nmc=20000 stats(alpha=(0.05  ))=(summary 

intervals) dic monitor=(beta1 beta2 beta3 beta4 Sigma1 Sigma6 Sigma11 Sigma16 var_e); 

ods output PostSummaries=esttmp3 PostIntervals=inttmp3 Geweke=geweke3 

Heidelberger=heide3; 

 

array Sigma [4,4]; 

array beta [4] ; 

array b [4]; 

array mu0 [4] (0 0 0 0); 

array Sig0[4,4] (1e6 0  0 0 0 1e6 0 0 0 0 1e6 0 0 0 0 1e6); 

array SDIFFUSE[4,4] (1 0  0 0 0 1 0 0 0 0 1 0 0 0 0 1); 

parms var_e   1; 

parm  Sigma 1; 

parms beta 0 ; 

prior  beta   ~ mvn(mu0,Sig0); 

prior var_e ~ igamma (shape=2.001, scale=1.001); 

prior Sigma ~ iwish(6 , SDIFFUSE); 

mu = (b1) + (b2)*phase + (b3)*time + (b4)*inter; 

random b ~mvn(beta,Sigma) subject=idlevel2 ; 

model y~normal(mu,var=var_e); 

run; 
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Between-Series Model (ReML with Kenward-Roger) 

* Homogeneous Variance Model; 

proc mixed data =j1 covtest cl;  

class idlevel2; 

model y = D1 D1*phase P13 P23 P33 P1*phase / noint s cl alpha = .05 ddfm = kenward; 

random D1 D1*phase / sub=idlevel2; 

repeated / sub = idlevel2;  

run; 

* Hetrogeneous Variance Model; 

proc mixed data =j1 covtest cl;  

class idlevel2 Phcat1; 

model y = D1 D1*phase P13 P23 P33 P1*phase / noint s cl alpha = .05 ddfm = kenward; 

random D1 D1*phase / sub=idlevel2; 

repeated / group = Phcat1 sub = idlevel2;  

run; 

Between-Series Model (Bayesian) 

proc mcmc data=j1  diag=all dic nbi=5000  nmc=20000 stats(alpha=(0.05  ))=(summary 

intervals ) dic monitor=(beta1 beta2 alpha1 alpha2 alpha3 alpha4 Sigma1 Sigma4 var_e); 

ods output PostSummaries=esttmp4 PostIntervals=inttmp4 Geweke=geweke4 

Heidelberger=heide4; 

 

array Sigma [2,2]; 

array beta [2] ; 

array b [2]; 

array alpha [4]; 

array mu0 [2] (0 0); 

array mu1 [4] (0 0 0 0); 

array Sig0[2,2] (1e6 0 0 1e6); 

array Sig1[4,4] (1e6 0  0 0 0 1e6 0 0 0 0 1e6 0 0 0 0 1e6); 

array SDIFFUSE[2,2] (1 0 0 1); 

parms var_e   1; 

parms Sigma 1; 

parms beta 0 ; 

parms alpha 0; 

prior  beta  ~ mvn(mu0,Sig0); 

prior  alpha ~ mvn(mu1,Sig1); 

prior var_e ~ igamma (shape=2.001, scale=1.001); 

prior Sigma ~ iwish(6 , SDIFFUSE); 

mu = (b1)*D1 + (b2)*D1*phase + (alpha1)*P13 + (alpha2)*P23 + (alpha3)*P33 + 

(alpha4)*P1*Phase; 

random b ~ mvn(beta,Sigma) subject=idlevel2 ; 

model y~normal(mu,var=var_e); run; 
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