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Abstract

Historically human endeavors around the globe are in search of bilateral relationships. Knowledge and

commerce has played a very significant role in increasing the ability for humans to connect for the betterment

of the human species. As the means of communication improve, mutual benefits to the community as

a whole also increase. Moreover, the benefits are filtered down to members of the overall community.

Recent advancement in electronic communication technologies and in knowledge, in particular, physical,

chemical, engineering and medical sciences and philosophies, have facilitated nearly instantaneous multi-

cultural interactions. Local problems and solutions have become global. This has generated a need for

cooperation, coordination, and co-management at local and global levels. This instant communication and

easy access to almost all members of the global community, with minimal cost and effort, causes an increase

in uncertainty and lack of clarity in communication and misunderstanding between the members of the

community. This leads to a fuzzy and stochastic environment. In short, the 21st century has seen a significant

increase in the need to consider all human endeavors as being subject to random environmental fluctuations.

More precisely, currently the human species is highly mobile. In this work, an attempt is made (1) to bal-

ance communities working cooperatively and cohesively with one another while preserving member ability

to retain individuality and fostering an environment of cultural state diversity. We develop (2) constructive

analytic algorithms that provide tools to study qualitative and quantitative properties of multicultural diverse

dynamic social networks. Under network parametric space/set conditions (3) cohesion and co-existence of

members of multicultural dynamic network are insured. The parametric conditions (4) are algebraically

simple, easy to verify, and robust. Moreover, the presented study of parametric representations of cohesion,

co-existence and consensus attributes and robustness of multicultural dynamic networks provides a quanti-

tative tool for planning, policy and performance of human mobility processes for members of a multicultural

dynamic network.
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We develop and investigate (5) a deterministic dynamic multicultural network. To exhibit the signifi-

cance of the analysis, ideas, the complexity and limitations, we present a specific prototype model. This

serves to establish the framework for finding explicit sufficient conditions in terms of system parameters

for studying a complex dynamic network. Further, we decompose the cultural state domain into invariant

subsets (6) and consider the behavior of members within each cultural state subset. Moreover, we analyze

the relative cultural affinity between individual members relative to the center of the social network. We

then (7)outline the general method for investigating a multicultural cultural network. We also demonstrate

the degree of conservatism of the estimates using Euler type numerical approximation schemes. We are then

able to consider how changes in the various parametric effects are reflected on the dynamics of the network.

The deterministic multicultural dynamic model and analysis is extended (8) to a multicultural dynamic

network under random environmental perturbations. We present a detailed prototype model for the purpose

of investigation. Introducing the concept of stochastic cohesion and consensus in the context of probabilistic

modes of convergence (9), the explicit sufficient conditions in terms of system parameters are given to

exhibit the cohesive property of the stochastic network. The effects of random fluctuations are characterized.

We then extend the stochastic model (10) to a multicultural hybrid stochastic dynamic network model.

By considering a hybrid dynamic, we can explore the properties of a multicultural dynamic under the in-

fluence of both continuous-time and discrete-time cultural dynamic systems. This model captures external

influences and internal changes that may have an impact on the members and system parameters of the dy-

namic network. We extend the ideas of global cohesion and consensus to local cohesion and consensus (11).

Again, the detailed study is focused on a prototype hybrid multicultural dynamic network. Using the ideas

and tools developed from the stochastic network (12), we are able to establish conditions on the network

parameters for which the cultural network is locally cohesive. Using Euler-Maruyama type numerical ap-

proximation schemes to model the network, we better understand to what extent the analytically developed

estimates are feasible.
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Chapter 1

Preliminary Concept and Tools

1.1 General Notations and Results

In this section, we provide some basic notations, definitions, and important results which will be used in

later chapters. To this end, below are the general notations used throughout this work.

I(1,m) : {i ∈ Z : 1 ≤ i ≤ m}

a.s. : almost surely

w.p.1 : with probability 1

‖x‖ : Euclidean norm of x

xT : transpose of x

tr(G) : trace of a square matrix G

B(x, δ) : {y ∈ Rn : ‖x− y‖ < δ}

Bc(x, δ) : {y ∈ Rn : ‖x− y‖ ≥ δ}

Let t ≥ t0 and x(t) ∈ Rn. Let

dx = f(t, x)dx, x(t0) = x0 (1.1)

be an initial value problem such that

(i.) f is a continuous function;

(ii.) f satisfies the growth condition ‖f(t, x)‖ ≤ K (1 + ‖x‖) and the Lipschitz condition ‖f(t, x)− f(t, y)‖ ≤

L‖x− y‖ for (t, x), (t, y) ∈ [t0,∞)× Rn.

We introduce the definitions of invariant sets as given by [21] as stated below which will be used through-

out this work.
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Definition 1.1 Let A,B ∈ C[R+,Ω] such that A(t) ⊂ B(t) for t ∈ R+. The set B(t) is said to be

(i) equi conditionally invariant relative to the set A(t) and the differential system (1.1) if for some t0 ≥ 0,

x0 = x(t0) ∈ A(t0) implies

x(t, t0, x0) ∈ B(t), t ≥ t0; (1.2)

(ii) uniformly conditionally invariant relative to the setA(t) and the differential system if (i) holds for every

t0 ∈ Rn.

Definition 1.2 The set S(t) is said to be equi self-invariant relative to the differential equation (1.1) if for

some t0 ≥ 0, u0 ∈ S(t0) implies

u(t, t0, u0) ∈ S(t), t ≥ t0. (1.3)

Next, we introduce the definition of the maximal and minimal solutions to a scalar comparison differential

equation

du = g(t, u), u(t0) = u0, (1.4)

where g ∈ C[E,R], with E an open (t, u) set in R2 as defined in [19].

Definition 1.3 A solution r(t) to the scalar comparison differential equation (1.4) on [t0, t0 + a) is said to

be the maximal solution if every solution u(t) existing on [t0, t0 + a) satisfies the inequality

u(t) ≤ r(t), (1.5)

for t ∈ [t0, t0 + a).

Definition 1.4 A solution ρ(t) to the scalar comparison differential equation (1.4) on [t0, t0+) is said to be

the minimal solution if every solution u(t) existing on [t0, t0 + a) satisfies the inequality

ρ(t) ≤ u(t), (1.6)

for t ∈ [t0, t0 + a).

Below we note a comparison theorem for deterministic differential equations (1.1) as given in [26].
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Theorem 1 Let E be on open (t, u)-set in R2 and g ∈ C[E,R]. Suppose that [t0, t0 + a) is the largest

interval in which the maximal solution r(t) exists. Let m ∈ C[(t0, t0 + a),R], (t,m(t)) ∈ E for t ∈

[t0, t0 + a),m(t0) ≤ u0 and for a fixed Dini derivative

Dm(t) ≤ g(t,m(t)), (1.7)

t ∈ [t0, t0 + a)− S. Then

m(t) ≤ r(t), t ∈ (t0, t0 + a). (1.8)

1.2 Stochastic Differential Equations

In this section we outline sufficient conditions for the existence of a solution for a system of stochastic

differential equations. Let t ≥ t0 and x(t) ∈ Rn be a random vector on the complete probability space

(Ω, F, P ). An Itô-Doob type stochastic differential equation is given by

dx = f(t, x)dt+ σ(t, x)dξ, x(t0) = x0, (1.9)

where

(i.) f and σ are the drift and diffusion rates respectively;

(ii.) ξ = (ξ1, ξ2, . . . , ξm)T is an m-dimensional normalized Wiener process of independent increments;

(iii.) For t ≥ t0, Ft is an increasing family of sub-σ algebras of σ-algebra F .

(iv.) f and σ satisfy the linear growth condition: there exist some positive constants N and M such that for

t ∈ J × Rn where J ⊂ [t0,∞)

‖f(t, x)‖+ ‖σ(t, x)‖ ≤ N +M‖x‖; (1.10)

(v.) f and σ satisfy the Lipschitz condition: for (t, x), (t, y) ∈ J × Rn,

‖f(t, x)− f(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ L‖x− y‖. (1.11)

From (iv.) and (v.), (1.9) has a unique solution.

We now state the Itô-Doob differential formula as stated in [20].

3



Theorem 2 Let J ⊂ [t0,∞) and V (t, x) ∈ C [J × R,R] be a continuously differentiable function with

respect to t and twice continuously differentiable with respect to x in (1.9). Then,

dV (t, x(t)) = LV (t, x(t))dt+ σ(t)
∂

∂x
V (t, x(t))dξ(t), (1.12)

where ξ is a Wiener process and LV is the differential operator associated with (1.9) defined by

LV (t, x(t)) =
∂

∂t
V (t, x(t)) + f(t, x)

∂

∂x
V (t, x(t))dx(t) +

1

2
tr

(
∂2

∂x2
V (t, x(t))σ(t, x)σT (t, x(t))

)
.

(1.13)

1.3 Sufficient Conditions for Qualitative Properties of Stochastic Differential Equations

In this section, we state the comparison theorems which serve as one of the basic principals for studying

non-linear stochastic differential equations for which we either have or do not have a closed form solution.

Let H denote the class of functions b ∈ C [[0, ρ),R+] such that b(0) = 0 and b(r) is strictly increasing

in r, where 0 ≤ ρ ≤ ∞. Further, let CH be the class of functions a ∈ C [R+ × [0, ρ),R+] such that

b(0) = 0 and b(r) is convex and strictly increasing in r. We state a comparison theorem related to the use

of Lyapunov-like functions as given in [23].

Theorem 3 Assume that

(i.) g ∈ C
[
R+ × R+

N ,RN

]
, g(t, 0) ≡ 0, g(t, u) is concave and quasi-monotone nondecreasing in u for

each t ∈ R+;

(ii.) V ∈ C [R+ ×B(ρ),RN ], Vt(t, x), Vx(t, x) and Vxx(t, x) exist and are continous on R+ × B(ρ) and

for (t, x) ∈ R+ ×B(ρ),

LV (t, x) ≤ g(t, V (t, x)), (1.14)

where B(ρ) = {x ∈ Rn : ‖x‖ < ρ};

(iii.) for (t, x) ∈ R+ ×B(ρ),

b(‖x‖) ≤
N∑
i=1

Vi(t, x) ≤ a(t, ‖x‖), (1.15)

where b ∈ H and a ∈ CH.

Then the stability of the equilibrium solution of

u′ = g(t, u), u(t0) = u0, (1.16)

4



implies the stability in probability of the equilibrium solution of (1.9).
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Chapter 2

Deterministic Multicultural Dynamic Network

2.1 Introduction

The goal of this work is to explore the properties of a dynamic network of agents under the influence of

internal and external perturbations [6]. Cohesion within a social network is a current topic of great interest

and many authors have done research within this area [8, 4]. The concepts of cohesion and cooperation

within a group are often multi-faceted, dynamic and complex but are important concepts when trying to

better understand how nations or human groups interact and function [3]. As Knoke and Yang note [18],

it is social cohesion which enables information to spread and allows a group to act as a unit rather than

individuals.

Dynamic networks are often useful for modeling a variety of situations. For example, dynamic networks

can be used in creating dynamic models of the traffic flow of cars or airplanes (as agents) where a minimum

or threshold distance is desired between two cars or airplanes to avoid ground or air collisions. In addition,

we can use a dynamic network to model a community with individual members of community as agents and a

distances that need to be maintained to control the spread of an infectious disease. Further, social and cultural

dynamics within a group are also often represented by such a network to safe-guard or maintain their self-

respect or identity or comfort zone. In particular, we are interested in the cultural shifts of members within

culturally diverse groups. We seek to better understand the internal and environmental factors that may

foster a sense of cooperation between members of the network while allowing individuality and diversity to

be maintained and enhanced.

We use the term multicultural social network to describe a social network in which the members have a

diverse cultural and/or ethnical background and are actively seeking to enhance and to maintain diversity

with harmony and prosperity. In such a network, the goal of members is not approaching a consensus but

rather the ability to live and work cooperatively with one another for common goods and goals. For example,

consider a population in an area for which there exists a sub-populace of immigrants. In such a situation, the

6



subgroups or sub-communities of immigrants desire to be an integral part of the community and seek to be

respectable productive members of the community and the society in general while retaining their cultural

diversity.

We wish to model a network that is cohesive but for which there is not a consensus of cultural unity, that

is to say the network does not develop a singular cultural identity. In doing so, we are interested in better

understanding the cohesive properties of a multicultural social network. We present a prototype of a dynamic

model for which we explore the features of such a network. The presented example is used to exhibit the

quantitative and qualitative properties of the network. Further, the techniques used are computationally

attractive, easy to verify and algebraically simple. In addition, the presented results are in terms of network

parameters that characterize the attributes of the network. The byproduct of this provides tools for planning

and decision making policies regarding a dynamic network.

We first consider a cultural network dynamic model experiencing both attractive and repulsive forces in

the absence of stochastic perturbations. In Section 2.2, we develop the general dynamic model as well as

assumptions and notations used throughout this chapter. In Section 2.3, we present an example of such a

network. In Section 2.4, analytical tools and results are creatively developed for the usage of Lyapunov’s

Second Method and the comparison method [26] for the dynamics of individual members within the net-

work. In Section 2.5, long and short term behavior of group members and invariant cultural state sets are

investigated. In Section 2.7, we consider numerical simulations of the network to better understand the

extent of the role and scope of the estimates developed in Section 2.5. Finally, in Section 2.8, we consider

parametric variations within the model affecting the dynamics of the network. Further, we will consider how

the model relates to a multicultural network.

2.2 Problem Formulation

The network consists of m agents/members whose position at time t is represented by xi(t), i ∈ I(1,m)

with xi(t) ∈ Rn. For each member, xi ∈ Rn is a cultural position at time t > t0. In our model, this vector

does not represent a geographical location but rather a cultural state position of the ith member. That is to

say, the vector xi is a numerical representation of the ith member’s belief or background on certain cultural

or ethnic characteristics relevant to the network and questions being considered. We then consider a cultural

7



state dynamic model described by a system of differential equations:

dxi =
m∑
j=1

f(t, xi − xj)dt, xi(t0) = x0
i . (2.1)

Further, let us define a relative cultural state of ith member with a jth member of the community as xij =

xi − xj , and a center of cultural state of the network

x̄ =
1

m

m∑
j=1

xj . (2.2)

We assume that f is a function such that

(i.) f is continuous function;

(ii.) f satisfies the growth condition ‖f(t, x)‖ ≤ K (1 + ‖x‖) and the Lipschitz condition ‖f(t, x)− f(t, y)‖ ≤

L‖x− y‖ for (t, x), (t, y) ∈ [t0,∞)× Rn;

(iii.) x̄ is a stationary center of f .

In the following, we introduce a few definitions with regard to the quantitative and qualitative behavior of a

center x̄ of a cultural state network dynamic system (2.1).

Definition 2.1 We say that the network is cohesive if there exist constants T and M such that t0 ≤ T ≤ t

implies
∥∥xi(t, t0, x0

i )− x̄
∥∥ ≤M .

Definition 2.2 We say that the network reaches a consensus if
∥∥xi(t, t0, x0

i )− x̄
∥∥ → 0 as t → ∞ for all

i ∈ I(1,m).

Definition 2.3 We define the term relative cultural state affinity to be ‖xij(t)‖ =
∥∥∥xi(t, t0, x0

i )− xj(t, t0, x0
j )
∥∥∥,

the distance between the cultural state vectors of members xi and xj . We define the relative cultural state

change to be xij(t) = xi(t, t0, x
0
i )− xj(t, t0, x0

j ).

Remark 2.1: Definition 2.1 signifies that one can find a time after the initial state time such that the cultural

states of members of the network remain within a certain distance from the network center after some time.

In the case of Definition 2.2, each member of the network draws closer to each other and the cultural state

network center.

In the following sections, we establish the framework and exhibit the tools, ideas, and methods for gaining

insight and working with nonlinear and non-stationary multicultural dynamic network (2.1). We develop a

detailed nontrivial model which provides an understanding for the qualitative and quantitative analysis of a

multicultural dynamic network.
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2.3 Prototype Dynamic Model

We seek to develop and analyze a prototype dynamic multicultural network model that captures the behavior

of individual members who are seeking to belong to the group but also wanting to retain individuality

and diversity from other network members. Therefore, we consider dynamic equations subjected to both

attractive and repulsive forces. In [10], one such function considered when modeling biological dynamic

networks is given by

g(y) = −y

(
a− b exp

[
−‖y‖2

c

])
, (2.3)

where a, b and c are positive constants and y ∈ Rn. The function g has long range attraction and short range

repulsion. In the following, we formulate a modified version of a network dynamic model in which individ-

uals seek to retain a balance between individual member identity and a group/community membership. In

the following, we consider a network whose dynamics are described by incorporating a long range attraction

and short range repulsion similar to that in (2.3).

Consider the network whose dynamic is given by

dxi =

[
a

m∑
j=1

xij − q‖xi − x̄‖2
m∑
j=1

xij

+b sin‖xi − x̄‖
m∑
j=1

xij exp

[
−‖xij‖

2

c

]]
dt; xi(t0) = x0

i . (2.4)

The constant coefficient parameters, a, b, c, and q ∈ R+ represent the weight of the social moderation attrac-

tiveness (q), the repulsive forces (a), the rate of decay of the long range attractiveness (c), and the long-range

attractiveness (b) between individual members and social groups. Moreover, for each i ∈ I(1,m), the first

term in (2.4) characterizes the aggregate repulsive force driving the ith member in the presence of network

members. This repulsive force is generated by the relative cultural state change of the ith member with all

other network members. The second term in (2.4) signifies the limitations of the repulsive force causing

the generation of a retardation force influencing a short-range attraction to the ith member in the presence

of network members. Finally, the third term of (2.4) naturally characterizes the long-range influence of the

relative cultural affinity to the ith member due to the interactions with members of the network.

Attractive influences can be thought of as attributes that bring people to active membership within the

group. Social acceptance, gaining social status, economic opportunity, career growth, common purpose and

membership, personal development, and a sense of mutual respect, trust and understanding are examples
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of attractive influences within a social cultural network. Repulsive forces are attributes that create some

desire for individuals to leave or be less involved in the group or to preserve some personal identity from

one other with their individual magnitude of inner repulsive force. A desire to retain a sense of individual-

ity, economic or emotional cost, interpersonal conflict within the group, or disagreement with parts of the

overall philosophies of the group are forces that may be considered as repulsive forces. In short, economic,

educational, and social inequalities coupled with the race, gender, ethical and religious bias are sources of

repulsive forces. A balance between the total attraction and repulsive forces attributes to a general sense of

individual agents maintaining a “live and let live” philosophy for the greater benefit of the community and

the common good of society.

2.4 Characteristics of the Network

In this section, we wish to explore the dynamics of the agents with the network dynamic described by (2.4).

We will be considering the cohesion, qualitative and quantitative properties such as the overall stability of

the network center, and various types of invariant sets. While exploring these ideas, we will also consider

what happens as the size of the network increases and what roles the parameters a, b, and c play within the

model. Moreover, the presented example is utilized to exhibit the quantitative and qualitative properties of

the network. In order to accomplish such a task, we utilize Lyapunov’s Second Method [26]. This method is

algebraically simple, easy to verify and computationally attractive. Furthermore, the results depend on the

system parameters a, b, c and q.

Let us first examine the dynamic of the network center, x̄, as defined in (2.2). We note that, that∑
i

∑
j xij = 0, and

dx̄ =

[
a

m∑
j=1

(x̄− xj)− q‖x̄− x̄‖2
m∑
j=1

(x̄− xj)

b sin‖x̄− x̄‖
m∑
j=1

(x̄− xj) exp

[
−‖x̄− xj‖

2

c

]]
dt

= 0 (2.5)

and x̄ is a stationary center of the network. We define the transformation of the network by zi = xi − x̄,
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noting that

mzi =
m∑
j=1

xij (2.6)

xij = zij = zi − zj . (2.7)

Therefore, the dynamics of the transformed network are given by

dzi = d (xi − x)

= dxi

=

[
amzi − qm‖zi‖2zi

+b sin‖zi‖
m∑
j=1

zij exp

[
−‖zij‖

2

c

]]
dt, zi(t0) = z0

i . (2.8)

Dynamic equation (2.8) can be useful in modeling a variety of multicultural social networks. Again, we

note that in (2.8), the magnitude of the repulsive force is represented by am‖zi‖ and the magnitude of the

long range attractive force is described by b
∥∥∥∑ zij exp[−‖zij‖2/c]

∥∥∥. Furthermore, sin (‖zi‖) is the sine-

cyclical influence due to the magnitude of the deviation of the ith agent’s cultural state from the center of

the network.

In order to better understand the dynamics of (2.8), we need to creatively develop necessary tools and re-

sults to apply Lyapunov’s Second Method in conjunction with the comparison method [26]. These methods

will provide a computationally attractive means to better understand the movement of members within the

network. To that end, let us begin with a choice of a candidate for energy function defined by

V (zi) =
1

2
‖zi‖2. (2.9)

Then the differential of V along the vector field generated by (2.8) is given by

dV (zi) = zTi · dzi

=

am‖zi‖2 − qm‖zi‖4 + b sin‖zi‖
m∑
j=1

zTi zij exp

[
−‖zij‖

2

c

] dt
= LV (zi)dt, (2.10)

where

LV (zi) = am‖zi‖2 − qm‖zi‖4 + b sin (‖zi‖)
m∑
j=1

zTi zij exp

[
−‖zij‖

2

c

]
. (2.11)
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In subsections 2.4.1 and 2.4.2, using Lyapunov’s Second Method and the comparison method [26],we will

find upper and lower estimates for LV (zi) respectively.

2.4.1 Upper Estimate of LV (zi)

In this subsection, we seek constraints on a, b, c, and q such that for zi outside of a given ball, we can

establish an upper estimate ofLV (zi). We will then use these assumptions in conjunction with the Lyapunov

method and comparison theorem [26] to establish the case for which

V (zi) ≤ r(t, t0, u0), (2.12)

where r(t, t0, u0), r(t0) = u0 is the maximal solution of a comparison differential equation through (t0, u0).

By considering the derivative of the function f(r) = r exp
[
− r2

c

]
, we note that

‖zij‖ exp

[
−‖zij‖

2

c

]
(2.13)

has a global maximum when ‖zij‖ =
√

c
2 with a maximum value of√

c

2
exp

[
−1

2

]
. (2.14)

From (2.13), (2.14), and the fact that sin‖zi‖ ≤ 1, for i ∈ I(1,m), (2.11) reduces to:

LV (zi) ≤ am‖zi‖2 − qm‖zi‖4 + b
m∑
j 6=i

‖zi‖‖zij‖ exp

[
−‖zij‖

2

c

]

≤ am‖zi‖2 − qm‖zi‖4 + b(m− 1)‖zi‖
√
c

2
exp

[
−1

2

]
= am‖zi‖2 − (qm− 1)‖zi‖4 − ‖zi‖4 + b(m− 1)‖zi‖

√
c

2
exp

[
−1

2

]
= am‖zi‖2 − ‖zi‖4 − (qm− 1)‖zi‖

(
‖zi‖3 −

b(m− 1)
√

c
2 exp

[
−1

2

]
qm− 1

)
. (2.15)

Assumption H1: Suppose qm− 1 > 0. Let us define

β1 =

(
b(m− 1)

√
c
2 exp

[
−1

2

]
qm− 1

) 1
3

, (2.16)

and let B(0, β1) = {x ∈ Rn : ‖x‖ < β1}. Further, let us denote the compliment of the B(0, β1) by

Bc(0, β1). For any zi ∈ Bc(0, β1), i ∈ I(1,m), (2.15) yields the following inequality:

LV (zi) ≤ am‖zi‖2 − ‖zi‖4

= 4V (zi)
(am

2
− V (zi)

)
. (2.17)
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Using (2.17) along with the comparison theorems [26], we establish the following result.

LEMMA 2.1 Let V be the energy function defined in (2.9), zi be a solution of the initial value problem

defined in (2.8). Further, let

du = 4u
(am

2
− u
)
dt, r(t0) = u0. (2.18)

For each i ∈ I(1,m) satisfying the differential inequality (2.17) and V (zi(t0)) ≤ u0, it follows that the

network is cohesive and

V (zi(t)) ≤ r(t, t0, u0), (2.19)

where r(t) is the maximal solution of the initial value problem (2.18).

Proof. Under the assumptions of the lemma and using the standard argument [26] combined with the

above discussion, the proof of the lemma follows from (2.17). The cohesiveness of the network follows by

definition as the solution to (2.18) is bounded. �

Remark 2.2: We remark that the assumption H1 is an alternative sufficient condition as: From (2.15), we

have

LV ≤ (am+ r1)‖zi‖2 − qm‖zi‖4 − r1‖zi‖2 + b(m− 1)‖zi‖
√
c

2
exp

[
−1

2

]
= qm‖zi‖2

(
am+ r1

qm
− ‖zi‖2

)
− r1‖zi‖

(
‖zi‖ −

b(m− 1)

r1

√
c

2
exp

[
−1

2

])
≤ 4qmV (zi)

(
am+ r1

qm
− V (zi)

)
, zi ∈ Bc(0, β1), (2.20)

where B(0, β1) = {x ∈ Rn : ‖x‖ < β1}, β1 = b(m−1)
r1

√
c
2 exp

[
−1

2

]
for any r1 > 0.

2.4.2 Lower Estimate of LV (zi)

Next, we look to establish a lower estimate of LV (zi) such that

LV (zi) ≥ ρ(t, t0, u0), (2.21)

where ρ(t) is the minimal solution to a comparison equation through (t0, u0).
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Imitating the argument used to arrive at (2.15) and noting that, for α > 0, ‖x‖ < α if and only if

−α < ‖x‖ < α, for i ∈ I(1,m), (2.11) reduces to the inequality

LV (zi) ≥ am‖zi‖2 − qm‖zi‖4 − b
m∑
j 6=i

‖zi‖
√
c

2
exp

[
−1

2

]

= am‖zi‖2 − qm‖zi‖4 − b(m− 1)

√
c

2
exp

[
−1

2

]
‖zi‖

= a‖zi‖2 + a(m− 1)‖zi‖2 − qm‖zi‖4 − b(m− 1)

√
c

2
exp

[
−1

2

]
‖zi‖

= a‖zi‖2 − qm‖zi‖4 + a(m− 1)‖zi‖

(
‖zi‖ −

b
√

c
2 exp

[
−1

2

]
a

)
. (2.22)

Assumption H2: Let us define

β2 =
b
√

c
2 exp

[
−1

2

]
a

, (2.23)

and B(0, β2) = {x ∈ Rn : ‖x‖ < β2}, with its complement being Bc(0, β2). For zi ∈ Bc(0, β2), i ∈

I(1,m), (2.22), reduces to the following differential inequality:

LV (zi) ≥ a‖zi‖2 − qm‖zi‖4

= 4qmV (zi)

(
a

2qm
− V (zi)

)
. (2.24)

Using (2.24) along with the comparison theorems [26], we establish the following result.

LEMMA 2.2 Let V be the energy function defined in (2.9) and zi be a solution of the initial value problem

defined in (2.8). Further, let

du =

(
4qmu

(
a

2qm
− u
))

dt, u(t0) = u0, (2.25)

For each i ∈ I(1,m) satisfying the differential inequality (2.24) and V (zi(t0)) ≥ u0, it follows that

V (zi(t)) ≥ ρ(t, t0, u0), (2.26)

where ρ(t) is the minimal solution of the initial value problem (2.25).

Proof. Under the assumptions of the lemma and using the standard argument [26] combined with the above

discussion, the proof of the lemma follows from (2.24). �
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Remark 2.3: A remark similar to Remark 2.2 is as follows: From (2.22), we have

LV ≥ (am− r2)‖zi‖2 − qm‖zi‖4 − r2‖zi‖2 + b(m− 1)‖zi‖
√
c

2
exp

[
−1

2

]
= qm‖zi‖2

(
am− r2

qm
− ‖zi‖2

)
+ r2‖zi‖

(
‖zi‖ −

b(m− 1)

r2

√
c

2
exp

[
−1

2

])
≥ 4qmV (zi)

(
am− r2

qm
− V (zi)

)
, zi ∈ Bc(0, β2), (2.27)

where B(0, β2) = {x ∈ Rn : ‖x‖ < β2}, where β2 = b(m−1)
r2

√
c
2 exp

[
−1

2

]
, and any r2 > 0.

We note that the upper and lower comparison equations, (2.18) and (2.25) respectively, each have a

unique solution. Therefore, the maximal and minimal solutions are the unique solutions to the respective

comparison equations.

2.5 Long and Short Term Behavior of Members and Invariant Sets

Using Lyapunov’s Second Method and the comparison method [26], we consider the behavior of the mem-

bers over time t and consider the stability and invariant sets of the network. First, let us note from ρ(t), the

minimal solution to the initial value problem (2.25) in Lemma 2.2, we find

lim
t→∞

ρ(t) = lim
t→∞

au0

2m
(
u0 +

(
a

2m − u0

)
exp [−2a(t− t0)]

)
=

a

2qm
. (2.28)

Similarly, from the solution of the comparison differential equation (2.18), and Lemma 2.1, we note that

lim
t→∞

r(t) = lim
t→∞

amu0

2
(
u0 +

(
am
2 − u0

)
exp [−2a(t− t0)]

)
=
am

2
. (2.29)

Therefore, by Lemmas 2.1 and 2.2, when zi ∈ Bc(0, β1) ∩Bc(0, β2), it follows that√
a

qm
≤ lim

t→∞
‖zi(t)‖ ≤

√
am. (2.30)

From (2.29), (2.28), and (2.30), we consider one case and the associated invariant sets. First, let us

consider the case for which β2 ≤ β1. That is, let us suppose that

b
√

c
2 exp

[
−1

2

]
a

≤

(
b(m− 1)

√
c
2 exp

[
−1

2

]
qm− 1

)1/3

. (2.31)
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Let us further suppose that it is the case that

b
√

c
2 exp

[
−1

2

]
a

≤
√

a

qm
≤

(
b(m− 1)

√
c
2 exp

[
−1

2

]
qm− 1

)1/3

. (2.32)

For β1 and β2, let us define the following sets:

A = B(0, β2)

B = Bc(0, β2) ∩B(0,

√
a

qm
)

C = Bc(0,

√
a

qm
) ∩B(0, β1)

D = Bc(0, β1) ∩B(0,
√
am)

E = Bc(0,
√
am). (2.33)

Figure 2.1.: An example in R2 of the sets defined in (2.33). Under the assumptions in (2.32), the sets form

concentric annuli.

In the following, we state and prove a few qualitative properties of the solution process of the center of
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the multi-agent determinist dynamic network described by (2.4). The following result exhibits the major

influence of long range attractive forces.

THEOREM 2.1 For 0 < ε < 1, if for all i ∈ I , zi0 ∈ B(0,
√

2ε), a neighborhood of the center x̄, then (2.11)

reduces to the inequality

LV (zi) ≥ 4qmV (zi)

(
a

2q
− V (zi)

)
− b

2
(m− 1)ε. (2.34)

Further, if a
2q > u0, there exists 0 < ε̄ ≤ 1 such that ‖zi(t)‖ > 0 for t ≥ t0 when, for all i ∈ I(1,m),

zi0 ∈ B(0,
√

2ε̄).

Proof. Let 0 < ε < 1 and ‖zi‖2 < ε for all i ∈ I . Then,

LV = am‖zi‖2 − qm‖zi‖4

+b sin(‖zi‖)
m∑
j 6=i

1

2

[
‖zi‖2 − ‖zj‖2 + ‖zij‖2

]
exp

[
−‖zij‖

2

c

]

≥ am‖zi‖2 − qm‖zi‖4 −
b

2

m∑
j 6=i

ε

= qm‖zi‖2
(
a

q
− ‖zi‖2

)
− b

2
(m− 1)ε

= 4qmV (zi)

(
a

2q
− V (zi)

)
− b

2
(m− 1)ε. (2.35)

Considering the non-homogeneous comparison equation,

du =

[
4qmu

(
a

2q
− u
)
− b

2
(m− 1)ε

]
dt, u(t0) = v0, (2.36)

it follows that

V (zi) ≥ u(t), (2.37)

where u(t) is the minimal solution of (2.36) when V (zi0) ≥ u0. Let û(t) be the solution of the homogeneous

differential equation

dû = 4mqû

(
a

2q
− û
)
dt, û(t0) = u0 (2.38)

Then, by using the method of variation of parameters, the solution to the non-homogenous differential

equation (2.36) is given by

u(t) = û(t)− b

2
(m− 1)ε

∫ t

t0

Φ(t, s, û(s))ds, (2.39)
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where

Φ(t, t0, u0) =
∂û

∂u0
(t, t0, u0). (2.40)

Using separation of variables, the solution of the homogeneous differential equation is given by

û(t) =
u0a

2q
(
u0 +

(
a
2q − u0

)
exp [−2am(t− t0)]

) , (2.41)

and
∂û

∂u0
(t, t0, u0) =

a2 exp [−2am(t− t0)]

4q2
(
u0 +

(
a
2q − û0

)
exp [−2am(t− t0)]

)2 . (2.42)

Therefore, from (2.39),

u(t) =
u0a

2q
(
u0 +

(
a
2q − u0

)
exp [−2am(t− t0)]

)
− b

2
(m− 1)ε

∫ t

t0

a2 exp [−2am(t− t0)]

4q2
(
u0 +

(
a
2q − û0

)
exp [−2am(t− t0)]

)2

=
u0a

2q
(
u0 +

(
a
2q − u0

)
exp [−2am(t− t0)]

)
−b(m− 1)εa2

2α

[
1

2am
(1− exp [−2am(t− t0)])

+2u0

(
a

2q
− u0

)
(t− t0) exp [−2am(t− t0)]

−

(
a
2q − u0

)2

2am
(exp [−4am(t− t0)]− exp [−2am(t− t0)])

]
, (2.43)

where

α =

(
u0a+

(
a

2q
− u0

)
exp [−2am(t− t0)]

)2

. (2.44)

Let g(t) be the function defined as

g(t) =
b(m− 1)a2

2α

[
1

2am
(1− exp [−2am(t− t0)])

+2u0

(
a

2q
− u0

)
(t− t0) exp [−2am(t− t0)]

−

(
a
2q − u0

)2

2am
(exp [−4am(t− t0)]− exp [−2am(t− t0)])

]
. (2.45)
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We note thatg(t) is continuous on [t0,∞), g(t0) = 0 and

lim
t→∞

g(t) =
b(m− 1)

2amu2
0

. (2.46)

As the limit as t→∞ of g(t) is finite, for any given δ > 0, there exists a T > t0 such that∣∣∣∣g(t)− b(m− 1)

2amu2
0

∣∣∣∣ < δ, for t > T, (2.47)

and so g(t) has an upper bound on (T,∞), say M1. Further, as g(t) is continuous on [t0, T ], g(t) has an

upper bound on this interval, say M2. Let M = max{M1,M2}. As 0 = g(t0) ≤ M , it must be the case

that M > 0 and hence (2.39) reduces to

u(t) ≥ u0a

2q
(
u0 +

(
a
2q − u0

)
exp [−2am(t− t0)]

) −Mε. (2.48)

Suppose that it is the case that a
2q > u0 and so the solution u(t) is monotonically increasing as t → ∞.

Choosing 0 < ε̄ < 1,such that ε̄ < a
2q and ε̄ < u0

M , it follows that (2.48) has the lower bound

u(t) > 0, for t > t0. (2.49)

Thus, ‖zi(t)‖ > 0 for all t ≥ t0 when ‖zi0‖ ≤ ε̄ for all i ∈ I . �

THEOREM 2.2 Let the hypotheses of Lemmas 2.1 and 2.2 be satisfied. Then

(i.) the set C ∪D ∪ E = Bc
(

0,
√

a
qm

)
is conditionally invariant relative to E;

(ii.) the set D is either self-invariant or C ∪ D = Bc
(

0,
√

a
qm

)
∩ B (0,

√
am) is conditionally invariant

relative to D;

(iii.) the set C is either self-invariant or is C ∪D is conditionally invariant relative to C;

(iv.) the set C ∪D is self-invariant;

(v.) the set B ∪ C ∪D = Bc (0, β2) ∩B (0,
√
am) is conditionally invariant relative to B.

Proof. For zi ∈ E, i ∈ I(1,m), the hypotheses of Lemmas 2.1 and 2.2 are satisfied.Thus by the application

of these Lemmas, we have

ρ(t, t0, ρ0) ≤ V (zi(t, t0, z0) ≤ r(t, t0, r0), (2.50)
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for t > t0, zi0 ∈ B̄c(0,
√
am), where B̄c(0,

√
am) = {x ∈ Rn : ‖x‖ >

√
am}; ρ(t, t0, , ρ0) and

r(t, t0, r0) are the minimal and maximal solutions of the comparison differential equations (2.25) and (2.18)

respectively. Moreover, for zi ∈ Bc(0,
√
am), with r0 = ρ0 = V (zi0) = 1

2‖zi0‖
2 and zi(t0) = zi0, the

solutions r(t, t0, r0) and ρ(t, t0, ρ0) are both monotonically decreasing and approaching to am
2 and a

2qm

respectively. This yields

2ρ(t, t0, ρ0) ≤ ‖zi(t, t0, zi,0)‖2 ≤ 2r(t, t0, r0), (2.51)

for t ≥ t0. From (2.51), zi0 ∈ E, and the definitions of self-invariant and conditionally invariant [21],

it follows that statement (i) is valid. The proofs of (ii), (iii) and (iv) follow by imitating the argument

used in the proof of (i). For zi0 ∈ D, we note that ρ(t, t0, ρ0) is monotonically decreasing and r(t, t0, r0)

is monotonically increasing to a
2qm and am

2 as t → ∞ respectively. This together with (2.51) establishes

that zi(t, t0, zi0) ∈ C ∪ D proving statement (ii). For zi0 ∈ C ∪ D, ρ(t, t0, ρ0) is decreasing and the

proof of (iii) and (iv) follows from (i) and (ii). Similarly, the proof for statement (v) also follows by

imitating the argument used in (i). For zi0 ∈ B, the solutions to the comparison equation (2.25), ρ(t, t0, ρ0)

is monotonically increasing to a
2qm as t→∞ respectively. Therefore, by (2.51), zi(t, t0, zi0) ∈ B ∪C ∪D

proving statement (v). �

2.5.1 Interpretations of Results

Let us expand upon the results of Theorems 2.1 and 2.2. First, let us note that these two theorems provide the

qualitative and quantitative requirements on the cultural state parameters to insure that the model is cohesive

(Theorem 2.2) and simultaneously does not reach a cultural consensus (Theorem 2.1). We introduce the

definition of cultural bound to describe the boundary between two cultural sets, dividing the degree of

individual versus community level interaction domains of the cultural state. Suppose zi ∈ A. It can be

shown that there exists a neighborhood,B(0,
√

2ε̄) of the center such that for zi ∈ B(0,
√

2ε̄), the individual

member cultural state is pushed out/repulsed from the cultural state center x̄ at some time T depending on

ε̄ > 0. Therefore, if the cultural state of the ith member xi of the network is such that the relative cultural

affinity between xi and the center, x̄, of the network is sufficiently close to zero, then the agent’s cultural

state is repulsed from the center. That is to say, the membership of the social network will obtain and then

maintain a relative cultural affinity between members and the center that is bounded below by a value strictly

greater than zero. Once the state of the ith member zi has moved away from the center, it may be the case

that zi remains in A or the case that the state zi moves to the cultural set B, at which time the agent’s
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cultural state behavior will follow that of another category of membership described by the cultural state set

B discussed below.

Suppose the initial value, that is the function of the magnitude of the cultural state, ρ0 of the comparison

equation is such that ρ0 ≤ a
2qm . Then the solution to the lower comparison equation grows as t grows

and approaches asymptotically to the threshold limit a
2qm from below resulting in stronger ties with the

community center state, x̄. If the initial value of the lower comparison equation is such that ρ0 ≥ a
2qm , the

solution decays and asymptotically approaches to the threshold limit a
2qm from above. Therefore, if zi, a

member of the transformed social network such that zi ∈ B, by Theorem 2.2, over time, zi moves to the

cultural bound of the set C. It may also cross the cultural bound or it may be the case that zi approaches

asymptotically to the cultural bound of C. Similarly, if zi ∈ C, zi may stay in C, approaching the cultural

bounds of setsB and/orD or it may be the case that zi crosses the cultural bound ofD from which point the

member will behave as other members of D. However, if zi ∈ C, eventhough it may approach the cultural

bound ofB, it will never cross the bound. In terms of a given social network, this implies that members with

a distinct enough cultural state from the weighted average of cultural states will retain that distinctiveness of

culture. Thus, if the relative cultural affinity between a member xi and the center of the network is at least√
a
qm initially, then the relative cultural affinity will always be at least that value.

Turning to the upper comparison equation, we can consider the behavior of the transformed network

members whose initial positions are in the sets D and E. Let r0 be the initial position of the solution

r(t, t0, r0) to the upper comparison equation given in Lemma 2.1. If r0 <
am
2 , then the solution r(t, t0, r0)

grows and approaches asymptotically to the value am
2 from below. If r0 >

am
2 , the solution decays and

approaches asymptotically to the limit from above. Therefore, if zi ∈ D, zi can approach and cross the

cultural boundary of C (but will remain in C ∪D) or zi may approach but not cross the cultural boundary of

E. For zi ∈ E, zi may either cross the cultural boundary of D or the members cultural state will approach

asymptotically to the cultural boundary of D. Thus, for agents xi within the network whose initial relative

cultural affinity with respect to the center is sufficiently large, as t → ∞, the relative cultural affinity will

remain large and the although the agent is attracted back towards the center of the network, the relative

affinity is bounded below by
√

a
qm .

Further, it follows from Lemmas 2.1 and 2.2, if all parameters other than the size of the network are

held constant, then as the size of the network increases, so also the difference between the upper and lower

bounds on the relative cultural affinity between agents and the center of the network increases. Naturally,
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increasing the size of the network leads to the concept of the crowding effect. Competition over ideology

or cultural traits create a stronger desire for agents to retain more of their individuality within the society or

group. Cultural subgroups who have a high degree of separation in terms of their relative cultural affinities

are an emergent characteristic of such large scale multi-cultural networks. In the modeling for members

whose cultural state is in R (so one aspect of culture/interest being considered), we see the network dividing

into two subgroups with agents converging to states that are symmetric with respect to the time axis. One can

think of situations like a large urban environment in which there exists multiple communities, each with a

distinct cultural identity. In such a case, members within the individual communities may seek to retain their

cultural diversity. Thus, it may be the case that there is a larger relative cultural affinity between members

of different communities than the relative cultural affinity between members within the same community.

2.6 A Brief Procedure of Multicultural Dynamic Networks

The detailed development and qualitative and quantitative analysis of a prototype model for a multicultural

dynamic network in Sections 2.3, 2.4, and 2.5 sets a stage and provides a complete underlying working

insight and understanding regarding the analytical algorithm for analyzing a nonlinear and non-stationary

multicultural dynamic network (2.1). First, we note that the presented development and analysis can be

directly extended to (a) time-varying coefficient rates in (2.4), and (b) both constant and time-varying coef-

ficient matrices. We now give the procedure for studying the multicultural dynamic network (2.4).

Step 1: Choose an Energy Function.

We choose an appropriate energy function V (t, x) [19] such that

(i.) V (t, x) is continuous on [t0,∞)× Rn into R;

(ii.) For (t, x) ∈ [t0,∞)× R, V (t, x) is monotonic in x for each t;

(iii.) V is continuously differentiable with respect to t and x.

Step 2: Aggregation of Cultural State via Energy Function.

We next find the differential LV of the energy function V along the vector field generated by (2.1) given by

LV (t, x(t)) =
∂

∂t
V (t, x(t)) + f(t, x(t))

∂

∂x
V (t, x(t)). (2.52)

Step 3: Construction of Upper and Lower Differential Inequalities.
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Using differential inequalities, we find the upper estimate g(x, t) and lower estimate h(t, x) of LV such that

h(t, V (t, x)) ≤ LV (t, x) ≤ g(t, V (t, x)), (2.53)

where g and h are simpler functions than f(t, x) and g, h are continuous.

Step 4: Formation of Comparison Theorems.

Employing the upper and lower estimates in (2.53), we formulate the comparison initial value problems as:

du = h(t, u)dt u(t0) = u0 (2.54)

and

dv = g(t, v)dt v(t0) = v0 (2.55)

Let ρ(t, t0, v0) and r(t, t0, v0 be the minimal and maximal solutions of the lower and upper comparison

differential equations respectively and r(t, x) [26].

Step 5: Quantitative and Qualitative Analysis of Comparison Equations.

We study the behavior and characteristics of the maximal and minimal solutions of the simpler comparison

differential equations.

Step 6: Quantitative and Qualitative Analysis of Original Dynamic System.

Either by solving or analyzing the simpler differential equations (2.54) and (2.55) and determining the be-

havior of ρ and r, we are able to analyze the behavior of the solution to (2.1) without knowing an explicit

solution. As (2.1) is bounded by the solutions of the comparison equations, we are able to establish quanti-

tative and qualitative properties of (2.1) by considering the quantitative and qualitative properties of ρ and

r.

Step 7: Interpretations.

Based on the quantitative and qualitative properties of (2.1) found in Step 6, we draw a few interpretations

of the characteristics of the multicultural dynamic network.

2.7 Numerical Simulation

In this section, using Euler’s type numerical to approximation scheme applied to (2.8), we consider the

numerical simulations for the network dynamics governed by (2.8). We consider a network consisting of

50 members with parameters a = 0.5, q = 0.04, b = 0.41, and c = 2. Further, we note that in this case,
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β1 = 2.3, β2 ≈ 0.5 and √
a

qm
= 0.5

√
am = 5. (2.56)

In this example, the conditions for the invariant sets given in Section 2.5 are satisfied. Hence, for zi such

that 0.5 ≤ |zi|, it is the case that after some time, |zi| ≥ 0.5; that is, the member does not move towards the

center of the network. Further, for zi such that 2.3 ≤ |zi|, after some time, 0.5 ≤ |zi| ≤ 5. Figure 2.1a is a

plot of the approximate solutions for the full membership of the network. In order to make the dynamics of

the network clearer, Figure 2.1b is a plot of the approximate solution of (2.8) for six of the members of the

network.
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Figure 2.2.: Euler approximation of the solution to the differential equation given by (2.8) with parameters

a = 0.5, b = 0.41, and q = 0.04.

Next, we consider the network with the same initial values with the parameters a = 0.25, b = 0.14 and

q = 0.04. In this case β1 ≈ 1.61, β2 ≈ 0.35 and√
a

qm
≈ 0.35

√
am ≈ 3.54. (2.57)

For zi such that |zi| ≥ 0.35, the member does not move towards the center of the network and for zi such

that |zi| ≥ 1.61, after some time, 0.35 ≤ |zi| ≤ 3.54. Similar to above, we have plotted the approximate

solution for the full network in 2.2a and the approximate solution for the same six members as in Figure

2.1b in Figure 2.2b.
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Figure 2.3.: Euler approximation of the solution to the differential equation given by (2.8) with parameters

a = 0.25, b = 0.14, and q = 0.04.

The last case we considered is the network with the same initial positions with the parameters a = 0.5, b =

.18 and q = 0.2. Thus, with the given parameters, β1 ≈ 0.84, β2 ≈ 0.22, and√
a

qm
≈ 0.22

√
am = 5. (2.58)

For zi such that |zi| ≥ 0.22, the member does not move towards the center of the network and for zi such

that |zi| ≥ 0.84, after some time, 0.22 ≤ |zi| ≤ 5. Similar to above we have plotted the approximate

solution for the full network in 2.3a and the approximate solution for the same six members in Figure 2.3b.

2.8 Conclusion

We have considered requirements on network parameters for long term qualitative properties of the network.

We developed a model and established conditions on the parameters that ensure a balance between cohesion

and consensus. Further, we have considered how the initial cultural state of a network member affects

the behavior of that member over time. The presented conditions of the system are algebraically simple,

easily verifiable and computationally attractive. The developed results provide a tool for planning, decision

making, and performance. Furthermore, the presented sufficient conditions are conservative but robust,

verifiable, and reliable. From the above conditions, we are able to consider certain dynamic properties of

the social networks governed by (2.4).
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Figure 2.4.: Euler approximation of the solution to the differential equation given by (2.8) with parameters

a = 0.5, b = 0.18, and q = 0.2.
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Chapter 3

Stochastic Multicultural Dynamic Network

3.1 Introduction

In this chapter we examine the cohesive properties of a dynamic network of agents/members under the influ-

ence of internal and external perturbations [6, 13]. We extend the deterministic modeling of a multicultural

dynamic model to a stochastic model.

We often seek to create situations for which people of different backgrounds and beliefs are able to

coexists and create a thriving sense of community. In exploring the stochastic dynamics of a multi-cultural

network, we are looking to better understand the delicate balance between a culturally diverse cohesive

social structure and a social structure for which cohesion does not exists. For when cohesion is lacking in

the social network, cooperation may not be as prevalent and we begin to see features such as segregation,

violence, economic destabilization and crime within the network.

Uncertainties and destabilizing factors are forces which generate random environmental perturbations.

Moreover, through the centuries human societies across the globe have progressively established bilateral

relationships and contacts [29]. With recent advancement in electronic technologies in the areas of commu-

nications, transportation, advancements in science and technology, and fundamental services, multicultural

interactions have been facilitated. Local problems and solution have become global. This has generated a

need of cooperation, coordination, co-existence, and understanding at all levels. Naturally, this has gener-

ated a complexity and the complexity leads to the generation of random internal and external perturbations.

We seek to model such a situation and better understand the social dynamics of a group seeking to find

such a balance between environment and conditions. In particular, we are looking to model a dynamic

social network for which there is a balance between consensus and cohesion under stochastic environmental

perturbations. We present a prototype of a dynamic model experiencing stochastic perturbations for which

we initiate the basic features, components, and analytic tools of such a network. The perturbations reflect the

randomness that exist for the model over time as people consider and seek a balance between individuality
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and belonging to a cultural group. The presented example is used to exhibit the quantitative and qualitative

properties of a stochastic network. Further, the techniques used are computationally attractive, easy to

verify and algebraically simple. In addition, the presented results are in terms of network parameters that

characterize the attributes of the network. The byproduct of this provides tools for planning and decision

making policies regarding a dynamic network.

In this chapter, we consider a cultural network dynamic in the presence of random environmental per-

turbations by exploring a cultural state stochastic dynamic model described by a system of Itô-Doob type

stochastic differential equations. In Section 3.2, we present the general problem under consideration and

the underlining assumptions. We then present an example of such a network in Section 3.3. By creatively

developing and applying an appropriate energy function and the comparison method [23], upper and lower

estimates on cultural states are established in Sections 3.4 and 3.5, respectively. In Section 3.6, the long-

term behavior of the solutions to the comparison equations are examined. Then, in Section 3.7, we explore

the study of the cultural state invariant sets in the context of the illustration presented in Section 3.3 and

using the long-term behavior of the comparison solutions described in Section 3.6. In additions, using the

cohesive property of the network, we examine the dynamic properties of the network. In Section 3.9, we

use numerical simulations to model the network and better understand to what extent the estimates in Sec-

tions 3.4, 3.5, and 3.6 are feasible. Using the cohesive property of the network, we examine the dynamic

properties of the network in Section 3.10.

3.2 Problem Formulation

The network consists ofm agents whose position at time t is represented by xi(t), i ∈ I(1,m) = {1, 2, . . . ,m},

with xi(t) ∈ Rn. In our model, this vector does not represent a geographical location but rather a cultural

state position of the ith member. That is to say, the vector xi is a numerical representation of the ith mem-

ber’s beliefs or background on certain cultural or ethnic characteristics relevant to the network and question

being considered. Further, we assume that ξij , i, j ∈ I(1,m) is a normalized Wiener process with ξij = ξji

and for j 6= k, ξij and ξik are independent. We then consider a cultural state stochastic dynamic model

described by a system of Itô-Doob type stochastic differential equation:

dxi =

m∑
j=1

f(t, xi − xj)dt+

m∑
j 6=i

σ(t, xi − xj)dξij(t) xi(t0) = x0
i , (3.1)
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where i ∈ I(1,m); f and σ are drift and diffusion rate coefficient functions, respectively. Let

x̄ =
1

m

m∑
j=1

xi (3.2)

be a center of the multicultural state dynamic network (3.1).We will also make the following assumptions:

Assumption H1: For t0 ∈ [0,∞),

(i.) xi(t0) = xi,0 is an n-dimensional initial cultural state random vector defined on the complete probability

space (Ω, F, P ) ≡ Ω;

(ii.) For t ≥ t0, Ft is an increasing family of sub-σ algebras of σ-algebra F , i.e. Fs ⊂ Ft if t0 < s < t;

(iii.) For i, j ∈ I(1,m), ξi(t) = (ξi1, ξi2, . . . , ξim)T is a m-dimensional normalized Wiener process of

independent increments for i ∈ I(1,m);

(iv.) ξij(t) is Ft-measurable for t ≥ t0 and xi(t0) is Ft0 measurable;

(v.) xi(t0) and ξij(t) are independent for each t ≥ t0 for i 6= j, i, j ∈ I(1,m).

(vi.) f and σ satisfy the growth and Lipschitz condtitions;

(vii.) x̄ is a stationary center of (3.1)

It is assumed that the initial value problem (3.1) for the stochastic system of differential equations has a

solution process [20].

In the following, we extend the Definitions 2.1, 2.2, and 2.3 to the stochastic multicultural dynamic

network.

Definition 3.1 Let r1 and r2 be non-negative random functions for t ∈ [t0,∞) such that r1 ≤ r2. We say

that a stochastic multicultural dynamic network is

(a.) cohesive with probability 1 if for any N ∈ Ft such that P (N) = 0, N ⊂ Ω and for all t ∈ [t0, T ], T ∈

R+

r1(t) ≤ ‖xi(t)− xj(t)‖ ≤ r2(t), (3.3)

for all i, j ∈ I(1,m) (or cohesive a.s);
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(b.) cohesive in probability if for all i, j ∈ I(1,m) and any ε such that 0 < ε < 1

P ({ω : ‖xi(t)− xj(t)‖ < r1(t)or‖xi(t)− xj(t)‖ > r2(t)}) < ε, (3.4)

for all i ∈ I(1,m);

(c.) cohesive in pth mean if for all i, j ∈ I(1,m)

E [r1(t)] ≤ E [‖xi(t)− xj(t)‖p] ≤ E [r2(t)] , (3.5)

for all i ∈ I(1,m).

Definition 3.2 We say that a stochastic multicultural dynamic network

(a.) reaches a consensus with probability 1 if there existsN ⊂ F such that P (N) = 0 and for all ω ∈ Ω\N ,

lim
t→∞
‖xi(t)− x̄‖ = 0, (3.6)

for all i, j ∈ I(1,m) (or consensus a.s.);

(b.) reaches a consensus in probability if for ε > 0,

lim
ω→∞

P ({ω : ‖xi(t)− x̄‖ > ε}) = 0, (3.7)

for all i ∈ I(1,m);

(c.) reaches a consensus in the pth mean if

lim
t→∞

E [‖xi(t)− x̄‖p] = 0, (3.8)

for all i ∈ I(1,m).

Definition 3.3 Let xi and xj be cultural state random vectors for i, j ∈ I(1,m). We define the relative

cultural state affinity with probability 1 sense by

‖xi(t)− xj(t)‖; (3.9)

We note that the existence of the relative cultural state affinity in the a.s. sense is trivial as ‖•‖ is a Borel

function. In general a composite function of a random variable need not to be a random variable.
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3.3 Prototype Dynamic Model

Let us define a prototype multicultural network dynamic model under the stochastic environmental pertur-

bations described by the Itô-Doob type stochastic system of differential equations

dxi =

[
a
∑m

j=1 xij − q‖|xi − x̄‖
2∑m

j=1 xij

+b sin‖xi − x̄‖
∑m

j=1 xij exp
[
−‖xij‖2

c

]]
dt

+β sin‖xi − x̄‖
∑m

j=1 xij exp
[
−‖xij‖2

c

]
dξij ,

xi(t0) = x0
i ,

(3.10)

where a, q, b, c and β are positive real numbers; and ξij’s are Weiner processes that are mutually independent

for i 6= j, for i, j ∈ I(1,m), and

xij = xi − xj . (3.11)

Here, x̄ is the center of the multicultural dynamic system (3.10) defined by:

x̄ =
1

m

m∑
j=1

xj , (3.12)

and note that by substituting xi = x̄ into (3.10),

dx̄ =

[
a

m∑
j=1

(x̄− xj)− q‖x̄− x̄‖2
m∑
j=1

(x̄− xj) (3.13)

+b sin‖x̄− x̄‖
m∑
j=1

(x̄− xj) exp

[
−‖x̄− xj‖

2

c

]]
dt

+β sin‖x̄− x̄‖
m∑
j=1

(x̄− xj) exp

[
−‖x̄− xj‖

2

c

]
dξx̄j ,

= amx̄− a
m∑
j=1

xj

= amx̄− amx̄

= 0,

and thus x̄ defined in (3.12) is a stationary center of the multicultural dynamic network. We define the

transformation zi = xi − x̄ and observe that xij = zi − zj = zij . Then the transformed network dynamic
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model corresponding to (3.10) is reduced to:


dzi =

[
amzi − q‖zi‖2mzi + b sin‖zi‖

∑m
j=1 zij exp

[
−‖zij‖

2

c

]]
dt

+β sin‖zi‖
∑m

j=1 zij exp
[
−‖zij‖

2

c

]
dξij ,

zi(t0) = zi0.

(3.14)

The center x̄ of the multicultural dynamic model (3.10) is reduced to the center zero in (3.14). Here a, b, c

and q are as described and characterized in the deterministic network dynamic model (2.4). The parameter

β characterizes the random environmental perturbations. It exhibits both attractive and repulsive forces that

are centered at the center of the network. The magnitude of the repulsive force is described by am‖zi‖.

Repulsive forces are attributes that create some desire for individuals to leave or be less involved in the

group or to preserve some personal identity from one other with their individual magnitude of inner repul-

sive force. A desire to retain a sense of individuality, economic or emotional cost, interpersonal conflict

within the group, or disagreement with parts of the overall philosophies of the group are forces that may be

considered as repulsive forces. The magnitude of the long range deterministic attractive force is character-

ized by b
∥∥∥∑ zij exp

[
−‖zij‖

2

c

]∥∥∥. Attractive influences can be thought of as attributes that bring people to

active membership within the group. Social acceptance, gaining social status, economic opportunity, career

growth, common purpose and membership, personal development, and a sense of mutual respect, trust and

understanding are examples of attractive influences within a social cultural network. Further, sin‖zi‖ is the

sine-cyclical influence of the ith member’s relative distance to the center of the network. The stochastic

term represents the environmental influence due to long-range attractive forces. In particular, in the case of

a multi-cultural network, the noise captures the uncertainty generated due to the membership interactions

and deliberations under the influence of the long-range cultural forces.

In order to study the multicultural dynamics (3.14), we use Lyapunov’s Second Method in conjunction

with the comparison method [23]. These methods are computationally attractive and provide a means of bet-

ter understanding the movement and behavior of the cultural state memberships of the network. By utilizing

these methods, we are able to establish conditions for which we have both upper and lower estimates on the

members cultural state positions. We assume that all the inequalities presented below are with probability 1.
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3.4 Upper Comparison Equation

Using Lyapunov’s Second Method and differential inequalities, we first seek a function r(t, t0, u0) such that

‖zi(t)‖ ≤ r(t, t0, r0). (3.15)

From Definition 3.1, relation (3.15) generate concepts of a upper-cohesive cultural network in the almost

sure, probability, and pth moment sense.

To this end, let us choose an energy function V as:

V (zi) = ‖zi‖ =
(
zTi zi

) 1
2 , (3.16)

and let us denote

φ1(zi) = amzi − q‖zi‖2mzi + b sin‖zi‖
m∑
j=1

zij exp

[
−‖zij‖

2

c

]
, (3.17)

and

φ2(zij) = β sin‖zi‖zij exp

[
−‖zij‖

2

c

]
. (3.18)

Then applying Itô-Doob differential formula [20]to (3.16), the differential of V in the direction of the vector

field represented by (3.14) is

dV =
zTi dzi
‖zi‖

+
1

2

[
dzTi dzi
‖zi‖

−
(
zTi dzi

)2
‖zi‖3

]
(3.19)

=
zTi

(
φ1(zi)dt+

∑m
j=1 φ2(zij)dξij

)
‖zi‖

+

(
φT1 (zi)dt+

∑m
j=1 φ

T
2 (zij)dξij

)(
φ1(zi)dt+

∑m
j=1 φ2(zij)dξij

)
2‖zi‖

−

(
zTi

(
φ1(zi)dt+

∑m
j=1 φ2(zij)dξij

))2

2‖zi‖3

=
zTi
∑m

j=1 φ2(zij)dξij

‖zi‖
+ LV (zi)dt,
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where

LV (zi) =
zTi φ1(zi)dt

‖zi‖
+

∑m
j=1 φ

T
2 (zij)φ2(zij)

2‖zi‖
−

(
zTi
∑m

j=1 φ2(zij)
)2

2‖zi‖3
(3.20)

=

[
am‖zi‖ − qm‖zi‖3 +

b sin‖zi‖
‖zi‖

m∑
j=1

zTi zij exp

[
−‖zij‖

2

c

]

+
β2 sin2‖zi‖

∑m
j=1 z

T
ijzij exp

[
−2‖zij‖2

c

]
2‖zi‖

−
β2 sin2‖zi‖

∑
j=1m(zTi zij)

2 exp
[
−2‖zi‖2

c

]
2‖zi‖3

]
dt.

We seek constraints on the parameters a, b, c, q and β for which we have an upper estimate on the first

moment of V (zi). Thus, let us consider an upper estimate on LV defined in (3.20). We first note that the

function

f(r) = r exp

[
−r

2

c

]
(3.21)

has a maximum value of
√

c
2 exp

[
−1

2

]
when r =

√
c
2 . Further the function

g(r) = r2

(
exp

[
−r

2

c

])2

= r2 exp

[
−2r2

c

]
(3.22)

that has a maximum value of c
2 exp [−1] when r =

√
c
2 . Therefore, from (3.20),

LV ≤ am‖zi‖ − qm‖zi‖3 +
b sin‖zi‖
‖zi‖

m∑
j 6=i

zTi zij exp

[
−‖zij‖

2

c

]
(3.23)

+
β2 sin2‖zi‖

2‖zi‖

m∑
j 6=i

‖zij‖2 exp

[
−‖zij‖

2

c

]

≤ am‖zi‖ − qm‖zi‖3 + b
m∑
j 6=i

‖zi‖‖zij‖ exp

[
−‖zij‖

2

c

]

+
β2‖zi‖ sin2‖zi‖

2‖zi‖2
m∑
j 6=i

‖zij‖2 exp

[
−‖zij‖

2

c

]

≤ am‖zi‖ − qm‖zi‖3 + b‖zi‖
m∑
j 6=i

‖zij‖ exp

[
−‖zij‖

2

c

]

+
β2‖zi‖

2

m∑
j 6=i

‖zij‖2 exp

[
−‖zij‖

2

c

]

≤ am‖zi‖ − qm‖zi‖3 + b‖zi‖ (m− 1)

√
c

2
exp

[
−1

2

]
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+
β2‖zi‖ (m− 1) c exp [−1]

4

= ‖zi‖
(
am+ b (m− 1)

√
c

2
exp

[
−1

2

]
+
β2 (m− 1) c exp [−1]

4

)
−qm‖zi‖3

= qm‖zi‖

(
a

q
+

4b (m− 1)
√

c
2 exp

[
−1

2

]
+ β2 (m− 1) c exp [−1]

4qm
− ‖zi‖2

)
= qmV

(
η2 − V 2

)
= qmV (η − V ) (η + V ) ,

where

η =

(
a

q
+

4b (m− 1)
√

c
2 exp

[
−1

2

]
+ β2 (m− 1) c exp [−1]

4qm

) 1
2

. (3.24)

In the following, we present a result that will be used subsequently.

LEMMA 3.1 Let V be the energy function defined in (3.16) and zi be a solution of the initial value problem

defined in (3.14). Then, for each i ∈ I(1,m),

E [V (zi(t+ ∆t))− V (zi(t))|Ft] = LV (zi(t))∆t, (3.25)

where E stands for the conditional expected value for given Ft and ∆t, a positive increment to t.

Proof. Let zi(t, t0, zi(t0)) be the solution process of (3.14). Let Ft be an increasing family of sub-σ algebras

as defined in Assumption H1 and set

m (t) = E [V (zi (t)) |Ft] = V (zi (t)) , (3.26)

where the last equality holds as zi(t) is Ft measurable. Similarly, we set

m (t+ ∆t) = E [V (zi (t+ ∆t)) |Ft] , (3.27)

for all ∆t > 0. We consider

m (t+ ∆t)−m (t) = E
[
V
(
zi (t+ ∆t)− V

(
z(t)
))
|Ft

]
(3.28)

= E

[
∂V

∂z
(zi (t)) ∆zi(t)

+
1

2
tr

(
∂2V

∂z2
(∆zi(t)) (∆zi(t))

T

)
|Ft

]
= E [dV (zi(t)) |Ft] .
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This together with the Ft measurability of zi(t), (3.19), and (3.20) yields

m (t+ ∆t)−m (t) = E [LV (zi(t)) ∆t|Ft] (3.29)

= LV (zi(t)) ∆t,

as zi(t) is Ft measurable. We note that for small ∆t, we have

dm(t) = LV (zi(t)) dt. (3.30)

From (3.26) and (3.27), (3.30) reduces to (3.25). This completes the proof of the Lemma. �

From inequality (3.23), using the comparison method [23] and Lemma 3.1, we establish the following

lemma. The presented result establishes not only an upper bound but also the upper cohesive property

almost surely. Hereafter, all inequalities and equalities are assumed to be valid with probability one.

LEMMA 3.2 Let V be the energy function defined in (3.16) and zi be a solution of the initial value problem

defined in (3.14). Further, let

du = [qmu (η − u) (η + u)] dt, r(t0) = u0, (3.31)

where η is as defined in (3.24). For each V (zi), i ∈ I(1,m) satisfying the differential inequality (3.23) and

V (zi(t0)) ≤ u0, it follows that the multicultural dynamic network (3.14) is upper cohesive with probability

1 and

V (zi(t)) ≤ r(t, t0, u0), (3.32)

where r(t) is the maximal solution of the scalar non-linear deterministic comparison differential equation

random initial value problem (3.31).

Proof. From (3.23), Lemma 3.1, and following the standard argument used in proofs of comparison theo-

rems [23] in the frame-work of the Lyapunov method, with probability 1, it follows that

V (zi(t)) ≤ r(t, t0, u0), (3.33)

whenever V (zi(t0)) ≤ u0. We note that the maximal solution of (3.31) is an upper bound. Hence, the

network is upper cohesive almost surely. �

Remark 3.1: If the solution processes of (3.14) and (3.31) have a first moment, then the solution process of

(3.14) is upper 1st moment cohesive. Furthermore, under the current inequality, it is indeed upper cohesive

in the sense of probability.
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3.5 Lower Comparison Equation

Using Lyapunov’s Second Method and differential inequalities, we next seek a function ρ(t, t0, u0) such

that

‖zi(t)‖ ≥ ρ(t, t0, ρ0). (3.34)

Again, from Definition 3.1, relation (3.34) initiates a notion of a lower cohesive cultural dynamic network

in the almost sure sense.

Using the energy function defined in (3.16), (3.19) and relation (3.20), it follows that

LV ≥ am‖zi‖ − qm‖zi‖3 − b
m∑
j 6=i

‖zi‖‖zij‖ exp

[
−‖zij‖

2

c

]
(3.35)

− β2

2‖zi‖

m∑
j 6=i

‖zi‖2‖zij‖2 exp

[
−2‖zij‖2

c

]

= am‖zi‖ − qm‖zi‖3 − b‖zi‖
m∑
j 6=i

‖zij‖ exp

[
−‖zij‖

2

c

]

−β
2‖zi‖
2

m∑
j 6=i

‖zij‖2 exp

[
−2‖zij‖2

c

]

≥ amV − qmV 3 − V (m− 1)b

√
c

2
exp

[
−1

2

]
−β

2(m− 1)c exp [−1]

4
V

= qmV

(
a

q
−

4(m− 1)b
√

c
2 exp

[
−1

2

]
+ β2c(m− 1) exp [−1]

4qm
− V 2

)
.

Assumption H2:Assume there exists a positive number α such that

α ≤

(
a

q
−

4(m− 1)b
√

c
2 exp

[
−1

2

]
+ β2(m− 1)c exp [−1]

4qm

) 1
2

. (3.36)

From (3.35), and noticing the fact that assumption H2 implies

a

q
>

4 (m− 1) b
√

c
2 exp

[
−1

2

]
+ β2 (m− 1) exp [−1]

4qm
, (3.37)

it follows that

LV ≥ qmV (α− V )(α+ V ). (3.38)

From inequality (3.38) in conjunction with the comparison method [23] and Lemma 3.1, we establish the

following lemma. The presented result provides the lower estimate which in turn establishes the stochastic

lower cohesive property of (3.14).
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LEMMA 3.3 Let V be the energy function defined in (3.16) and zi be a solution of the initial value problem

defined in (3.14). Further, let

du = qmu (α− u) (α+ u) dt, u(t0) = u0, (3.39)

where α is as defined in (3.36). For each V (zi), i ∈ I(1,m) satisfying the differential inequality (3.38) and

V (zi(t0)) ≥ u0, it follows that is lower cohesive with probability 1 and

V (zi(t)) ≥ ρ(t, t0, u0), (3.40)

where ρ(t) is the minimal solution of the deterministic non-linear comparison random initial value problem

(3.39).

Proof. From inequality (3.38) and Lemma 3.1, imitating the outline of the proof of Lemma 3.2, it follows

that

V (zi(t)) ≥ ρ(t, t0, u0) (3.41)

provided that V (zi(t0)) ≥ u0. As the minimal solution of (3.39) is a lower bound, the network is lower

cohesive almost surely. Moreover, a remark similar to Remark 3.1 establishes the stochastic mean and

probability of (3.14) �

We note that comparison differential equations (3.31) and (3.39) each have a unique solution process.

Therefore the maximal and minimal solutions of (3.31) and (3.39) are indeed the unique solution of the

respective random initial value problems.

3.6 Long-term Behavior of the Comparison Differential Equation

To appreciate the role and scope of Lemmas 3.2 and 3.3, we seek to better understand the long-term behav-

ior of the network. For this purpose, we find the closed form solutions of the comparison random initial

value problems (3.31) and (3.39). Moreover, we analyze the qualitative properties of the solutions to the

comparison equations. Using the comparison method [23], we are able to establish, computationally, the

overall long-term behavior of both individual member cultural dynamic states within the network as well as

multicultural network state as a whole.

Let us first begin with the solution of the comparison differential equation

du = qmu (ν − u) (ν + u) dt, u(t0) = u0, (3.42)
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where ν is a positive real number. Following the method of finding the closed form solution process of the

initial value problem [20], the solution of (3.42) is represented by

u(t, t0, u0) =
u0ν√

u2
0 +

(
ν2 − u2

0

)
exp [−2ν2qm(t− t0)]

. (3.43)

We note that both ν and u0 in (3.43) are positive. If ν > u0, then ν2 > u2
0, and hence the term under the

radical is positive. Suppose it is the case that ν < u0. Then we note that

0 < exp
[
−2ν2qm(t− t0)

]
< 1, (3.44)

for t > t0. From (3.43) and (3.44), it follows that

u2
0 +

(
ν2 − u2

0

)
exp

[
−2ν2qm(t− t0)

]
= u2

0 − u2
0 exp

[
−2ν2qm(t− t0)

]
(3.45)

+ν2 exp
[
−2ν2qm(t− t0)

]
= u2

0

(
1− exp

[
−2ν2qm(t− t0)

])
+ν2 exp

[
−2ν2qm(t− t0)

]
> 0.

Hence, the term under the radical in (3.43) is positive in both cases: ν > u0 and ν < u0. Thus, under either

of the conditions, ν > u0 or ν < u0,

lim
t→∞

u(t, t0, u0) = lim
t→∞

u0ν√
u2

0 +
(
ν2 − u2

0

)
exp [−2ν2qm(t− t0)]

(3.46)

= ν

(3.47)

From (3.24), Lemma 3.2 and (3.46), for ν = η it follows that the limit of the upper comparison solution

r(t) as t grows large is

η =

a
q

+
4b (m− 1)

√
1
2 exp

[
−1

2

]
+ β2 (m− 1) c exp [−1]

4qm


1
2

. (3.48)

Similarly, from (3.36), Lemma 3.3 and (3.46), for ν = α, the limit of the lower comparison solution ρ(t) as

t grows large is α, where,

α ≤

(
a

q
−

4(m− 1)b
√

c
2 exp

[
−1

2

]
+ β2(m− 1)c exp [−1]

4qm

) 1
2

. (3.49)
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From the solution of the comparison equations in conjunction with Lemmas 3.2 and 3.3, we establish the

following theorem.

THEOREM 3.1 Let the hypotheses of Lemmas 3.2 and 3.3 be satisfied. Then the network is cohesive in the

almost surely.

Proof. From Lemmas 3.2 and 3.3,

ρ(t, t0, ρ0) ≤ V (zi(t)) ≤ r(t, t0, r0) (3.50)

with probability 1. Moreover, as the solution to the upper comparison equation is bounded above by η and

the solution to the lower comparison equation is bounded below by α, the network is cohesive almost surely.

In addition, under the conditions in Remark 3.1, the solution process of (3.14) is cohesive in probability and

mean sense. �

In the following section, we provide various characterizations of cultural state dynamics. This is achieved

by the nature of the initial cultural state parameters and the behavior of the upper and lower comparison

cultural state dynamic processes.

3.7 Invariant Sets and Interpretations

In this section, we analyze various types of invariant states of the multicultural dynamic network. This is

achieved by using the behavior of the solutions to both the upper and lower comparison equations. Let us

denote

r2 =

(
a

q
−

4(m− 1)b
√

c
2 exp

[
−1

2

]
+ β2(m− 1)c exp [−1]

4qm

) 1
2

(3.51)

and

r1 =

(
a

q
+

4b (m− 1)
√

c
2 exp

[
−1

2

]
+ β2 (m− 1) c exp [−1]

4qm

) 1
2

(3.52)

We note that the parameters a, b, q, c, and β imply the following relation:

r2 < r1. (3.53)
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Further, let us define the following sets:
A = B (0, r2)

B = Bc (0, r2) ∩B (0, r1)

C = Bc (0, r1)

(3.54)

Under the obvious relation (3.53), we develop and establish the following result.

THEOREM 3.2 Let the hypotheses of Lemmas 3.2 and 3.3 be satisfied. Then almost surely,

(i) the set A ∪B is conditionally invariant relative to A;

(ii) the set B is self-invariant;

(iii) the set B ∪ C is conditionally invariant relative to C.

Proof. For zi ∈ C, i ∈ I(1,m), the hypotheses of Lemmas 3.2 and 3.3 are satisfied.Thus by the application

of these Lemmas, we have

ρ(t, t0, ρ0) ≤ V (zi(t, t0, z0) ≤ r(t, t0, r0), (3.55)

for t > t0, zi0 ∈ B̄c(0, r1), and ρ(t, t0, , ρ0) and r(t, t0, r0) are the minimal and maximal solutions of

the comparison differential equations (3.39) and (3.31) respectively. Moreover, for zi ∈ Bc(0, r1), with

r0 = ρ0 = V (zi0) = ‖zi0‖, the solutions r(t, t0, r0) and ρ(t, t0, ρ0) are both monotonically decreasing and

approaching to r1 and r2 respectively. Hence, we have

ρ(t, t0, ρ0) ≤ ‖zi(t, t0, zi,0)‖ ≤ r(t, t0, r0), (3.56)

for t ≥ t0. From the definitions of self-invariant and conditionally invariant sets [21], it follows that state-

ment (iii) is valid. The proofs of (i) and (ii) follow by imitating the argument used in the proof of (iii). For

zi0 ∈ B, we note that ρ(t, t0, ρ0) is monotonically decreasing and r(t, t0, r0) is monotonically increasing

to r2 and r1 as t → ∞, respectively. This establishes that zi(t, t0, zi0) ∈ B proving statement (ii). For

zi0 ∈ A, the solutions to the comparison equation (3.39), ρ(t, t0, ρ0) is monotonically increasing to r2 as

t→∞. Therefore zi(t, t0, zi0) ∈ A ∪B proving statement (i). �

Let us examine the results of Theorems 3.2. First, we note that this theorem provides sufficient condi-

tions for the qualitative and quantitative behavior of the cultural state dynamics. In particular, the model is

cohesive and simultaneously, it does not reach a cultural consensus.
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We introduce the definition of cultural threshold bound to describe the boundary between two cultural

state sets. It is based on the degree of individual versus community level interaction domains of the cultural

states. Suppose zi ∈ A. It is the case that the individual member cultural state is pushed out/repulsed

from the cultural state center x̄ at some time T ≥ t0. That is to say, the membership of the social network

will support and then maintain a relative cultural affinity between members and the cultural center that is

bounded below by the quantity r2. Once the state of the ith member zi has moved away from the center, it

is the case that the state zi moves to the cultural state set B, at which time the agent’s cultural state behavior

will follow that of another category of membership described by the cultural state set B discussed below.

Suppose that the ith member initial cultural state zi of the transformed social network is such that zi ∈ B.

Then by Theorem 3.2, over time, zi may stay in B, approaching the cultural threshold bounds of sets C

and/or A. However, if zi ∈ B, even though it may approach the cultural bound of A and/or C, it will never

cross either of the boundaries. In terms of a given social network, this implies that members with a distinct

enough cultural states from the weighted average of cultural states will retain that distinctiveness of culture

while maintaining a certain level of closeness to the average cultural state. Thus, if the relative cultural

affinity between a member xi and the center of the network is at least r2 and less than r1, initially, then the

relative cultural state affinity will always be at least the quantity r2 but no more than the value r1.

If it is the case that zi is a member of the transformed network such that zi ∈ C. By Theorem 3.2, zi may

either cross the cultural boundary of B or the members cultural state will approach asymptotically to the

cultural state network boundary of B. Thus, for agents xi within the network whose initial relative cultural

state affinity with respect to the cultural state center is sufficiently large, as t → ∞, the relative cultural

affinity will remain large and although the agent is attracted back towards the center of the network, the

relative cultural state affinity is bounded below by r2.

3.8 A Brief Procedure of Stochastic Multicultural Dynamic Networks

The detailed development and qualitative and quantitative analysis of a prototype model for a multicultural

dynamic network in Sections 3.3, 3.4, 3.5, and 3.6, provides a framework regarding the analytical algorithm

for analyzing a nonlinear and non-stationary stochastic multicultural dynamic network (3.1). Similarly to

the remarks from Section 2.6, we note that the presented development and analysis can be directly extended

to (a) time-varying coefficient rates in (3.10), (b) both constant and time-varying coefficient matrices, and

(c) the drift and diffusion rate functions may also be functions of a right continuous Markov chain with a
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finite number of states. We now give the procedure for studying the multicultural dynamic network (3.10),

Step 1: Choose an Energy Function.

First, we choose an appropriate energy function V (t, x) [20] such that

(i.) V (t, x) is continuous on [t0,∞)× Rn into R;

(ii.) For (t, x) ∈ [t0,∞)× R, V (t, x) is monotonic in x for each t;

(iii.) V is continuously differentiable with respect to t and x.

Step 2: Aggregation of Cultural State via Energy Function.

We next find the differential of V along the vector field generated by (3.1) given by

dV (t, x(t)) = LV (t, x(t))dt+ σ(t, x)
∂

∂x
V (t, x(t))dξ(t), (3.57)

where

LV (t, x(t)) =
∂

∂t
V (t, x(t)) + f(t, x(t))

∂

∂x
V (t, x(t)) +

1

2
σ2(t, x)

∂2

∂x2
V (t, x(t)). (3.58)

Step 3: Construction of Upper and Lower Differential Inequalities.

Using differential inequalities, we find the upper estimate g(x, t) and lower estimate h(t, x) of LV such that

h(t, V (t, x)) ≤ LV (t, x) ≤ g(t, V (t, x)), (3.59)

where g and h are simpler functions than f(t, x) and g, h are continuous.

Step 4: Formation of Comparison Theorems.

From the upper and lower estimates in (3.59), we develop the comparison random differential initial value

problems:

du = h(t, u)dt h(t0) = u0 (3.60)

and

dv = g(t, v)dt g(t0) = v0. (3.61)

Let ρ(t, t0, u0) and r(t, t0, v0) be the minimal and maximal solutions of the lower and upper comparison

equations respectively.and r(t, x). Taking the expected value of (3.19), we then apply comparison theorems

[23].

Step 5: Quantitative and Qualitative Analysis of Comparison Equations.

We study of the behavior of the maximal and minimal solutions of the comparison equations.
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Step 6: Quantitative and Qualitative Analysis of Original Stochastic Dynamic Network.

By either solving or analyzing the simpler differential equations (3.60) and (3.61) and determining the

behavior of ρ and r, we are able to analyze the behavior of the solution to (3.1) without knowing an explicit

solution.

Step 7: Interpretations.

Based on the quantitative and qualitative properties of (3.1) found in Step 6, we draw interpretations of the

characteristics of the stochastic multicultural dynamic network.

3.9 Numerical Simulations

In this section, we consider numerical simulations for the multicultural dynamic network governed by the

stochastic differential equation (3.14) using a Euler-Maruyama [17, 11, 12] type numerical approximation

scheme. We consider a network of fifty members, using the same initial position and varying the parameters

a, b, q, c, and β. Further, we consider the case such that ξij(t) for i, j ∈ I(1, 50) are a one dimensional

Brownian motion process with mean of zero and variance of 1 over the interval [0, 1]. To generate each

member state cultural trajectory, we average the position for fifty simulations for each of the various cases,

and then plot the average position, zi(t) for each member.

In order to consider the effects of changing the parametric value β, we consider various models for which

a = 2, b = 1, and c = 2 are held constant and we vary both β and q. First, in Figure 3.1, we consider

a network in which q = 2
1.7 and β = .5. With the given parameters, r1 ≈ 1.5 and r2 ≈ 1.1. Therefore,

using the upper and lower limits of the comparison equations, the long run behavior of the network has the

approximate bounds given by

1.1 ≤ ‖zi‖ ≤ 1.5, (3.62)

as demonstrated in Figure 3.1. In the simulation, we see that members whose cultural state start close to the

center shift away from the center over time. Further, in the simulation, members whose cultural state start

farther away from the center are attracted back towards the center over time.

Next, in Figure 3.2, we consider the case with the parameters q = 2
5.4 and β = 1. In this case, r1 ≈ 2.7,

and r2 ≈ 1.8. In this case, using the bounds on the limits of the solutions of the comparison equations yield

the approximate bounds on the long term behavior of the network

1.8 ≤ ‖zi‖ ≤ 2.7. (3.63)
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Figure 3.1.: Euler-Maruyama approximation of the differential equation given by (3.14) with fifty members

and parameters a = 2, b = 1, c = 2, q = 2
1.7 , and β = .5.
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Figure 3.2.: Euler-Maruyama approximation of the differential equation given by (3.14) with fifty members

and parameters a = 2, b = 1, c = 2, q = 2
5.4 , and β = 1.

We note that in this case by increasing β and decreasing q, the upper and lower bounds, as well as the

distance between them, increase. In the simulation, we observe a similar behavior of members within the

network; those starting close to the center are repulsed away and those starting away from the center are

attracted back towards it. In Figure 3.3, we consider the case with parameters q = 1
12 and β = 2. Further,

we note that in this case, r1 ≈ 6.3, and r2 ≈ 2.9. In this case, the approximate bounds on the long term

behavior of the network are given by

2.9 ≤ ‖zi‖ ≤ 6.3. (3.64)

By increasing β and decreasing q, we have again increased the values of the upper and lower bounds as well

as the distance between the bounds. Further, in the simulations, we see a strong repulsion from the center of

the network and that over time, the memberships cultural states settle relatively far from the cultural state of

the center.

We now consider the case with the parameters q = 1
7 and β = 2. In this case, r1 ≈ 4.8, and r2 ≈ 2.2.

We note that using the limits of the upper and lower comparison equations, we compute the long term

approximate bounds as

2.2 ≤ ‖zi‖ ≤ 4.8, (3.65)
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Figure 3.3.: Euler-Maruyama approximation of the differential equation given by (3.14) with fifty members

and parameters a = 2, b = 1, c = 2, q = 1
12 , and β = 2.
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Figure 3.4.: Euler-Maruyama approximation of the differential equation given by (3.14) with fifty members

and parameters a = 2, b = 1, c = 2, q = 1
7 , and β = 2.

as seen in Figure 3.4. By increasing q in this simulation, the upper and lower bounds are smaller than those

from Figure 3.3. We also note that the distance between the bounds has decreased from that in Figure 3.3.

3.10 Conclusion

We have considered requirements on the parameters that allow the perturbed multicultural dynamic network

to remain cohesive while retaining a cultural state that is distinctive from the cultural state center of the

network. We established qualitative and quantitative conditions that are computationally attractive and veri-

fiable. Further, we have analyzed cultural state invariant sets and long-term cultural states of members within

the multicultural dynamic network. We also conducted simulations of the multicultural network that exhibit

the influence of the random perturbations as well as demonstrate the long-term behavior of the multicultural

network.
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Chapter 4

Stochastic Hybrid Dynamic Network

4.1 Introduction

The aim of this chapter is to explore and extend the cohesive properties of a dynamic network of multi-

agents/members with a desired minimum distance between the members of the network [6, 13, 14] under

the influence of both continuous and discrete-time stochastic perturbations. One of the concepts studied

using a dynamic social network is that of consensus [7, 9, 27, 1]. In such models, the conditions under

which a group collectively comes to an agreement are studied. Another question of interest for such a

network is when the group may divide into subgroups with an agreement reached within the subgroup but

never reaching a consensus at an overall group level.

Dynamic network models play an important role in a variety of modeling applications. For example,

economics, finance, engineering, management sciences, and biological networks have considered such large

scale dynamic models to investigate connectivity, stability, dynamic reliability, and convergence [22, 24, 2,

28]. Much of the work done in these areas look to develop consensus seeking algorithms and consider long

term stability of the network in consideration [5, 30, 15, 16]. The concepts of cohesion, coordination, and

cooperation within a group are often multi-faceted, dynamic and complex, but are important concepts when

trying to better understand how nations or communities function [3]. We seek to better understand the group

dynamics of such a society in order to create policies and practices which encourage a sense of community

among individuals from a variety of cultural backgrounds.

In fact, we systematically initiated the study of this issue [13, 14] to better understand the social dy-

namics of a group seeking to find such a balance under the influence of both continuous and discrete-time

stochastic perturbations. In doing so, we are interested in better understanding the cohesive properties of

a multi-cultural social network. In this work, we further extend the developed results in the framework of

hybrid stochastic dynamic model for which we explore the features of the a network. By considering a hy-

brid dynamic [25], we are able to consider the impact that events both from external and internal stochastic
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fluctuations on the network have on the cultural dynamics. The presented work is used to exhibit the quanti-

tative and qualitative properties of the network. Further, the techniques used are computationally attractive

and algebraically simple relating with the underlying network parameters.

In Section 4.2, we present the general problem under consideration and the underlining assumptions. We

then present an illustration of such a network in Section 4.3 to exhibit the role and scope of the underlying

complexity with the simplicity without loss of generality. Using an appropriate energy function and the

comparison method, upper and lower estimates on cultural states are established in Section 4.4. In Section

4.5, the long-term behavior of the solutions to the comparison equations are examined and we explore

the study of the cultural state invariant sets in the context of the illustration presented in Section 4.3. In

Section 4.6, we use numerical simulations to model the network and to better understand to what extent the

analytically developed estimates in Section 4.5 are feasible.

4.2 Problem Formulation

The network consists ofm agents whose position at time t is represented by xi(t), i ∈ I(1,m) = {1, 2, . . . ,m},

with xi(t) ∈ Rn. In our model, this vector does not represent a geographical location but rather a cultural

position of the ith member. That is to say, the vector xi is a numerical representation of the ith member’s

beliefs or background on certain cultural or ethnic practices relevant to the network under study. Further,

we assume that ξij , i, j ∈ I(1,m) is a normalized Wiener process such that ξij = ξji and for j 6= k, ξij and

ξik are independent. We then consider a system of Itô-Doob type stochastic system of differential equations

that describes the cultural state dynamic process:
dxi =

∑m
j=1 f(t, xi, xi − xj , k − 1)dt+

∑m
j 6=i σ(t, xi − xj , k − 1)dξij(t),

∆xki = I
(
xk−1
i (t−k , tk−1, x

k−1
i ), k

)
, x0

i (t0) = x0
i ,

(4.1)

for (t, xi) ∈ [tk−1, tk) × Rn and k ∈ I(1,∞), where xi, xj ∈ Rn are continuous time dynamic states;

i, j ∈ I(1,m); f and σ are drift and diffusion rate coefficient functions, respectively; and ∆xki = xki −x
k−1
i ,

where I in (4.1) stands for a discrete time intervention dynamic process. We will also make the following

assumptions: Assumption H1: For

i) xk−1
i (tk−1) = xk−1

i is an n-dimensional initial cultural state random vector defined on the complete

probability space (Ω, F, P ) and k ∈ I(0,∞) at the kth intervention time;
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ii) xk−1
i and ξij(t) are mutually independent for each tk−1 ≤ t < tk for i 6= j, i, j ∈ I(1,m) and

k ∈ I(0,∞);

iii) For i, j ∈ I(1,m), ξi(t) = (ξi1, ξi2, . . . , ξij . . . , ξim)T is a m-dimensional normalized Wiener process

of independent increments for i ∈ I(1,m);

iv) ξijs are Ft-measurable for all t ≥ t0 and ξij(t + h) − ξij(t) is independent of Ft, where Ft represents

an increasing family of the smallest sub-σ algebra of F , i.e. Fs ⊂ Ft if t0 < s < t;

v) xi(t0) is Ft0 measurable;

vi) {tk}∞k=1 is a sequence of intervention time, and tk →∞ as k →∞;

vii) f and σ are defined on : R+ × Rn × Rn × I(1,∞) into Rn, and continuous on [tk−1, tk) × Rn × Rn

for each (t, x, y) ∈ [tk−1, tk)× Rn × Rn;

viii) f and σ satisfy for each k ∈ I(1,∞) and for each (t, x, y, k) ∈ [tk−1, tk)× Rn × Rn × I(1,∞),

f(t, x, y, k − 1)→ f(t−k , x, y, k − 1) (4.2)

σ(t, x, y, k − 1)→ σ(t−k , x, y, k − 1) (4.3)

as t→ t−k ;

ix) I : Rn × I(1,∞)→ Rn is a Borel measurable discrete time intervention function.

It is assumed that the initial value problem (4.1) for the system of stochastic differential equations has a

solution process.

We wish to investigate the stochastic cohesive property of such a network. Further, we will explore the

behavior of a member of the network based on the cultural state distance between a network member cultural

state and the cultural state center of the network.

In the following, we extend Definitions 3.1, 3.2, and 3.3 to the hybrid stochastic multicultural dynamic

network.

Definition 4.1 Let r1 and r2 be non-negative random functions for t ∈ [tk−1, tk), k ∈ I(1,∞) such that

r1 ≤ r2. We say that a stochastic multicultural dynamic network is
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(a.) locally cohesive with probability 1 if for any N ∈ Ft such that P (N) = 0, N ⊂ Ω and for all t ∈

[tk−1, tk)

r1(t) ≤
∥∥∥xk−1

i (t)− xk−1
j (t)

∥∥∥ ≤ r2(t), (4.4)

for all i, j ∈ I(1,m);

(b.) locally cohesive in probability if for all i, j ∈ I(1,m), t ∈ [tk−1, tk), ω ∈ Ω and any 0 < ε < 1

P
({
ω :
∥∥∥xk−1

i (t)− xk−1
j (t)

∥∥∥ < r1(t)or
∥∥∥xk−1

i (t)− xk−1
j (t)

∥∥∥ > r2(t)
})

< ε, (4.5)

for all i ∈ I(1,m);

(c.) locally cohesive in pth mean if for all i, j ∈ I(1,m) and t ∈ [tk−1, tk)

E [r1(t)] ≤ E
[∥∥∥xk−1

i (t)− xk−1
j (t)

∥∥∥p] ≤ E [r2(t)] , (4.6)

for all i ∈ I(1,m).

If (i.), (ii.), or (iii.) exist for all t ∈ [t0,∞), we say the network is globally cohesive with probability 1, in

probability or in pth mean respectively.

Definition 4.2 We say that a stochastic multicultural dynamic network

(a.) locally reaches a consensus with probability 1 if there exists N ⊂ F such that P (N) = 0 and for all

ω ∈ Ω \N ,

lim
t→∞

∥∥∥xk−1
i (t)− x̄k−1

∥∥∥ = 0, (4.7)

for k ∈ I(1,∞) and all i, j ∈ I(1,m);

(b.) locally reaches a consensus in probability if for ε > 0 and t ∈ [tk−1, tk), k ∈ I(1,∞),

lim
t→∞

P
({∥∥∥xk−1

i (t)− x̄k−1
∥∥∥ > ε

})
= 0, (4.8)

for all i ∈ I(1,m);

(c.) locally reaches a consensus in the pth mean if for t ∈ [tk−1, tk), k ∈ I(1,∞),

lim
t→∞

E [‖xi(t)− x̄‖p] = 0, (4.9)

for all i ∈ I(1,m).
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If (i.), (ii.), or (iii.) exist for all t ∈ [t0,∞), we say the network is reaches a global consensus with

probability 1, in probability or in pth mean respectively.

Definition 4.3 Let xk−1
i and xk−1

j be cultural state random vectors for i, j ∈ I(1,m) and k ∈ I(1,∞).

For t ∈ [tk−1, tk), we define the relative cultural state affinity with probability 1 by∥∥∥xk−1
i (t)− xk−1

j (t)
∥∥∥. (4.10)

We note that the relative cultural state affinity in the a.s. sense exists as ‖•‖ is Borel measurable.

4.3 Prototype Dynamic Model

Let us define a prototype multicultural network dynamic model under the stochastic environmental pertur-

bations described by the Itô-Doob type stochastic system of differential equations

dxk−1
i =

[
ak−1

∑m
j=1 x

k−1
ij − qk−1

∥∥∥xk−1
i − x̄k−1

∥∥∥2∑m
j=1 x

k−1
ij

+bk−1 sin
∥∥∥xk−1

i − x̄k−1
∥∥∥∑m

j=1 x
k−1
ij exp

[
−‖x

k−1
ij ‖

2

ck−1

]]
dt

+βk−1 sin
∥∥∥xk−1

i − x̄k−1
∥∥∥∑m

j=1 x
k−1
ij exp

[
−‖x

k−1
ij ‖

2

ck−1

]
dξij ,

xki = (1 + δk−1
i )xk−1

i (t−k , tk−1, x
k−1
i ), x0

i (t0) = x0
i ,

(4.11)

for t ∈ [tk−1, tk), k ∈ I(0,∞) and where ak−1, qk−1, bk−1, ck−1 and βk−1 are positive real numbers,

xk−1
ij = xk−1

i − xk−1
j , (4.12)

We note that the solution process xi of (4.11) is defined by

xi(t, t0, x
0
i ) =



x0
i (t, t0, x

0
i ) t0 ≤ t < t1,

x1
i (t, t1, x

1
i t1 ≤ t < t2,

...
...

xk−1
i (t, tk−1, x

k−1
i ) tk−1 ≤ t < tk,

...
...

(4.13)

Here, x̄k−1 is the center of the multicultural dynamic system (4.11) defined by:

x̄k−1 =
1

m

m∑
j=1

xk−1
j (t), t ∈ [tk−1, tk), (4.14)
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and note that by substituting for xk−1
i by x̄k−1 into (4.11), we have

dx̄k−1 =

[
ak−1

m∑
j=1

(
x̄k−1 − xk−1

j

)
− qk−1

∥∥∥x̄k−1 − x̄k−1
∥∥∥2

m∑
j=1

(
x̄k−1 − xk−1

j

)

+bk−1 sin
∥∥∥x̄k−1 − x̄k−1

∥∥∥ m∑
j=1

(
x̄k−1 − xk−1

j

)
exp

−
∥∥∥x̄k−1 − xk−1

j

∥∥∥2

ck−1

]dt
+βk−1 sin

∥∥∥x̄k−1 − x̄k−1
∥∥∥ m∑

j=1

(
x̄k−1 − xk−1

j

)
exp

−
∥∥∥x̄k−1 − xk−1

j

∥∥∥2

ck−1

dξx̄k−1j ,

= ak−1mx̄
k−1 − ak−1

m∑
j=1

xk−1
j

= ak−1mx̄
k−1 − ak−1mx̄

k−1

= 0, (4.15)

for t ∈ [tk−1, tk), k ∈ I(1,∞), and thus x̄k−1 defined in (4.14) is a stationary center of the multicultural

dynamic network on each interval [tk−1, tk). We define the transformation zk−1
i = xk−1

i −x̄k−1 and observe

that xk−1
ij = zk−1

i − zk−1
j = zk−1

ij . Then the transformed network dynamic model corresponding to (4.11)

is reduced to:

dzk−1
i =

[
ak−1mz

k−1
i − qk−1

∥∥∥zk−1
i

∥∥∥2
mzk−1

i + bk−1 sin
∥∥∥zk−1

i

∥∥∥∑m
j=1 z

k−1
ij exp

[
−‖z

k−1
ij ‖

2

ck−1

]]
dt

+βk−1 sin
∥∥∥zk−1

i

∥∥∥∑m
j=1 z

k−1
ij exp

[
−‖z

k−1
ij ‖

2

ck−1

]
dξij , t ∈ [tk−1, tk)

zki =
(

1 + δk−1
i

)
zk−1
i

(
t−k , tk−1, z

k−1
i

)
, z0

i (t0) = z0
i .

(4.16)

The center x̄k−1 of the multicultural dynamic model (4.11) is reduced to the center zero in (4.16) over each

interval [tk−1, tk) and k ∈ I(1,m). For each k ∈ I(1,∞), ak, bk, ck, qk and βk are as described and charac-

terized in (3.14).It exhibits both attractive and repulsive forces that are centered at the center of the network.

The magnitude of the repulsive forces over [tk−1, tk) are described by ak−1m
∥∥∥zk−1

i

∥∥∥ and the magnitude of

the long range deterministic attractive forces are characterized by bk−1

∥∥∥∥∑ zk−1
ij exp

[
−‖z

k−1
ij ‖

2

c

]∥∥∥∥. Further,

sin
∥∥∥zk−1

i

∥∥∥ is the sine-cyclical influence of the ith member’s relative distance to the center of the network.

The stochastic term represents the environmental influence due to long-range attractive forces. In particular,

in the case of a multi-cultural network, the noise captures the uncertainty generated due to the membership

interactions and deliberations under the influence of the long-range cultural forces.
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We remark that the solution process of (4.16) can be re-casted as (4.13). In order to study the multicultural

dynamics (4.16), we use Lyapunov’s Second Method in conjunction with the comparison method [23].

These methods are computationally attractive and provide a means of better understanding the movement

and behavior of the state memberships of the network. By utilizing these methods, we are able to establish

conditions for which we have both upper and lower estimates on the members cultural state positions on the

interval [tk−1, tk) for k ∈ I(1,m). In this work, we assume that all inequalities are with probability 1.

4.4 Upper and Lower Comparison Equations4

Using Lyapunov’s Second Method and differential inequalities, we first seek a function rk−1(t, tk−1, uk−1)

such that ∥∥∥zk−1
i (t)

∥∥∥ ≤ rk−1(t, tk−1, rk−1), t ∈ [tk−1, tk). (4.17)

From Definition 4.1, relation (4.17) generates a concept of a locally upper-cohesive cultural network in the

almost surely on the k − 1th interval for k ∈ I(1,∞).

To this end, for t ∈ [tk−1, tk) let us choose an energy function Vk−1 as:

Vk−1(zk−1
i ) =

∥∥∥zk−1
i

∥∥∥ =

((
zk−1
i

)T
zk−1
i

) 1
2

. (4.18)

We have previously shown that the differential of Vk−1 in the direction of the vector field represented by

(4.16) is

dVk−1 =

(
zk−1
i

)T
dzk−1

i∥∥∥zk−1
i

∥∥∥ +
1

2


(
dzk−1

i

)T
dzk−1

i∥∥∥zk−1
i

∥∥∥ −

((
zk−1
i

)T
dzk−1

i

)2

∥∥∥zk−1
i

∥∥∥3


=

(
zk−1
i

)T ∑m
j=1 φ2(zk−1

ij )dξij

‖zi‖k−1
+ LV (zk−1

i )dt, (4.19)

where

φ1(zk−1
i ) = ak−1mz

k−1
i − qk−1

∥∥∥zk−1
i

∥∥∥2
mzi + bk−1 sin

∥∥∥zk−1
i

∥∥∥ m∑
j=1

zk−1
ij exp

−
∥∥∥zk−1

ij

∥∥∥2

ck−1

, (4.20)

φ2(zk−1
ij ) = βk−1 sin

∥∥∥zk−1
i

∥∥∥zk−1
ij exp

−
∥∥∥zk−1

ij

∥∥∥2

ck−1

, (4.21)
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and

LVk−1(zk−1
i ) =

(
zk−1
i

)T
φ1(zk−1

i )dt∥∥∥zk−1
i

∥∥∥ +

∑m
j=1 φ

T
2 (zk−1

ij )φ2(zk−1
ij )

2
∥∥∥zk−1

i

∥∥∥ −

((
zk−1
i

)T ∑m
j=1 φ2(zk−1

ij )

)2

2
∥∥∥zk−1

i

∥∥∥3

=

[
ak−1m

∥∥∥zk−1
i

∥∥∥− qk−1m
∥∥∥zk−1

i

∥∥∥3
+
bk−1 sin

∥∥∥zk−1
i

∥∥∥∥∥∥zk−1
i

∥∥∥
m∑
j=1

(
zk−1
i

)T
zk−1
ij exp

[
−‖zij‖

2

ck−1

]

+

β2
k−1 sin2

∥∥∥zk−1
i

∥∥∥∑m
j=1

(
zk−1
ij

)T
zk−1
ij exp

[
−2‖zk−1

ij ‖
2

ck−1

]
2
∥∥∥zk−1

i

∥∥∥
−
β2
k−1 sin2

∥∥∥zk−1
i

∥∥∥∑j=1m

((
zk−1
i

)T
zk−1
ij

)2

exp

[
−2‖zk−1

i ‖
2

ck−1

]
2
∥∥∥zk−1

i

∥∥∥3

]
dt. (4.22)

We seek constraints on the parameters ak−1, bk−1, ck−1, qk−1 and βk−1, k ∈ I(1,∞) for which we have

an upper estimate on Vk−1(zk−1
i ). To this end, imitating the argument made in [14], an upper estimate of

LVk−1 in (4.22) is

LVk−1 ≤ qk−1m‖zi‖

(
ak−1

qk−1

+
4bk−1 (m− 1)

√
ck−1

2 exp
[
−1

2

]
+ β2

k−1 (m− 1) ck−1 exp [−1]

4qk−1m
− ‖zi‖2

)
≤ qk−1mVk−1

(
η2
k−1 − V 2

k−1

)
≤ qk−1mVk−1 (ηk−1 − Vk−1) (ηk−1 + Vk−1) , (4.23)

where

ηk−1 =

ak−1

qk−1
+

4bk−1 (m− 1)
√

ck−1

2 exp
[
−1

2

]
+ β2

k−1 (m− 1) ck−1 exp [−1]

4qk−1m


1
2

. (4.24)

In the following, we present a result that will be used subsequently.

Lemma 4.1 Let Vk−1 be the energy function defined in (4.18) and zk−1
i be a solution of the initial value

problem defined in (4.16). Then, for each i ∈ I(1,m), k ∈ I(1,∞), and t ∈ [tk−1, tk),

E
[
Vk−1(zk−1

i (t+ ∆t))− Vk−1(zk−1
i (t))|Ft

]
= LVk−1(zk−1

i (t))∆t, (4.25)

where E stands for the expected value.
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Proof. For each k ∈ I(1,∞), let zk−1
i (t, tk−1, zi(tk−1)) be the solution process of (4.16). Let Ft be an

increasing family of sub-σ algebras as previously defined and set

m (t) = E
[
Vk−1

(
zk−1
i (t)

)
|Ft

]
= V

(
zk−1
i (t)

)
, (4.26)

where the last equality holds as zk−1
i (t) is Ft measurable. Similarly, we have set

m (t+ ∆t) = E
[
Vk−1

(
zk−1
i (t+ ∆t)

)
|Ft

]
, (4.27)

for all ∆t > 0 sufficiently small such that (t+ ∆t) ∈ [tk−1, tk). We consider

m (t+ ∆t)−m (t) = E
[
Vk−1

(
zk−1
i (t+ ∆t)− Vk−1

(
zk−1
i (t)

))
|Ft

]
= E

[
∂Vk−1

∂z

(
zk−1
i (t)

)
∆zk−1

i (t) +
1

2
tr

(
∂2Vk−1

∂z2

(
∆zk−1

i (t)
)(

∆zk−1
i (t)

)T)
|Ft

]
= E

[
dVk−1

(
zk−1
i (t)

)
|Ft

]
. (4.28)

This together with (4.19), yields

m (t+ ∆t)−m (t) = E
[
LVk−1

(
zk−1
i (t)

)
∆t|Ft

]
= LVk−1

(
zk−1
i (t)

)
∆t, (4.29)

as zk−1
i (t) is Ft measurable. We note that for small ∆t, we have

dm(t) = LVk−1

(
zk−1
i (t)

)
dt. (4.30)

�

From the inequality (4.23) utilizing the comparison method [23] and Lemma 4.1, we establish the follow-

ing lemma. For each interval [tk−1, tk) and k ∈ I(1,∞), the presented result establishes not only an upper

bound but also the locally upper cohesive property almost surely. Hereafter, all inequalities and equalities

are assumed to be valid with probability one.

Lemma 4.2 Let Vk−1 be the energy function defined in (4.18), k ∈ I(1,∞), t ∈ [tk−1, tk), and zk−1
i be

a solution of the initial value problem defined in (4.16). Let rk−1(t) be the maximal solution of a random

initial value problem [23]

duk−1 = [qk−1muk−1 (ηk−1 − uk−1) (ηk−1 + uk−1)] dt, uk−1(tk−1) = uk−1, (4.31)
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where ηk−1 is defined as in (4.24). For each Vk−1(zk−1
i ), i ∈ I(1,m), k ∈ I(1,∞) satisfying the differential

inequality (4.23) and Vk−1(zk−1
i (tk−1)) ≤ uk−1, it follows that the multicultural dynamic network (4.16) is

upper cohesive on [tk−1, tk) with probability 1 and

Vk−1(zk−1
i (t)) ≤ uk−1(t, tk−1, uk−1), (4.32)

Proof. From Lemma 4.1, (4.23), and the application of stochastic comparison theorem [23], with probability

1, it follows that

Vk−1(zk−1
i (t)) ≤ r(t, tk−1, uk−1), (4.33)

when Vk−1(zi(tk−1)) ≤ uk−1. As the solution to (4.31) has an upper bound, the network is upper cohesive

almost surely. �

Remark 4.1: For each k ∈ I(1,∞), if the solution processes of (4.16) and (4.31) have a first moment,

then the solution process of (4.16) is locally upper 1st moment cohesive. Furthermore, under the current

inequality, it is indeed locally upper cohesive in the sense of probability.

Next we consider the lower comparison equation. Using Lyapunov’s Second Method and differential

inequalities, we next seek a function ρk−1(t, tk−1, uk−1) such that

‖zi(t)‖ ≥ ρ(t, tk−1, ρk−1), t ∈ [tk−1, tk). (4.34)

Again, from Definition 4.1, relation (4.34) initiates a notion of a locally lower cohesive cultural dynamic

network in the almost sure sense.

Using the energy function defined in (4.18) and relation (4.22), for t ∈ [tk−1, tk) it follows that

Lvk−1 ≥ ak−1mVk−1 − qk−1mV
3
k−1 − Vk−1(m− 1)bk−1

√
ck−1

2
exp

[
−1

2

]
−
β2
k−1(m− 1)ck−1 exp [−1]

4
Vk−1

= qk−1mVk−1

(
ak−1

qk−1

−
4(m− 1)bk−1

√
ck−1

2 exp
[
−1

2

]
+ β2

k−1ck−1(m− 1) exp [−1]

4qk−1m
− V 2

k−1

)
. (4.35)

Assumption H2:Assume there exists a positive number αk−1 such that

αk−1 ≤

ak−1

qk−1
−

4(m− 1)bk−1

√
ck−1

2 exp
[
−1

2

]
+ β2

k−1(m− 1)ck−1 exp [−1]

4qk−1m


1
2

. (4.36)
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From (4.35), and noticing the fact that assumption H2 implies

ak−1

qk−1
>

4 (m− 1) bk−1

√
ck−1

2 exp
[
−1

2

]
+ β2

k−1 (m− 1) exp [−1]

4qk−1m
, (4.37)

it follows that

LVk−1 ≥ qk−1mVk−1(αk−1 − Vk−1)(αk−1 + Vk−1). (4.38)

By inequality (4.38) and the comparison method [23] and Lemma 4.1, we establish the following lemma.

The presented result provides the lower estimate which in turn establishes the locally lower cohesive prop-

erty of (4.16).

Lemma 4.3 Let Vk−1 be the energy function defined in (4.18),k ∈ I(1,∞), t ∈ [tk−1, tk), and zk−1
i be

a solution of the initial value problem defined in (4.16). Let ρk−1(t) be the minimal solution of a random

initial value problem [23]

duk−1 = qk−1muk−1 (αk−1 − uk−1) (αk−1 + uk−1) dt, uk−1(tk−1) = uk−1, (4.39)

whereαk−1 is as defined in (4.36). For each Vk−1(zk−1
i ), i ∈ I(1,m), k ∈ I(1,∞) satisfying the differential

inequality (4.38) and V (zk−1
i (tk−1)) ≥ uk−1, it follows that the multicultural dynamic network (4.11) is

lower cohesive on [tk−1, tk) with probability 1 and

Vk−1(zk−1
i (t)) ≥ ρk−1(t, tk−1, uk−1). (4.40)

Proof. From inequality (4.38) and Lemma 4.1 and the imitating the outline of the proof of Lemma 4.2, it

follows that

Vk−1(zk−1
i (t)) ≥ ρ(t, tk−1, uk−1) (4.41)

provided that Vk−1(zk−1
i (tk−1)) ≥ uk−1. As the minimal solution of (4.39) is a lower bound, the network

is lower cohesive almost surely. Moreover, a remark similar to Remark 4.1 establishes the locally stochastic

mean and probability of (4.16) �

We note that comparison differential equations (4.31) and (4.39) each have a unique solution process.

Therefore the maximal and minimal solutions of (4.31) and (4.39) are the unique solutions of the respective

random initial value problems.
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4.5 Long-term Behavior of Comparison Differential Equations and Invariant Sets

To appreciate the role and scope of Lemmas 4.2 and 4.3, we seek to better understand both the behavior

of the network on each interval [tk−1, tk) and the long-term behavior of the network. For this purpose, for

k ∈ (1,∞), we find the closed form solutions of the comparison random initial value problems (4.31) and

(4.39). Moreover, we analyze the qualitative properties of the solutions to the comparison equations. Using

the comparison method [23], we are able to establish, quantitatively, the behavior of the individual member

cultural dynamic states on the interval [tk−1, tk). Using this, we also establish the overall long-term behavior

of both individual member cultural dynamic states in the network as well as multicultural network state as a

whole.

Following the method of finding the closed form solution process of the initial value problem [20], the

solution of (4.39) is represented by

uk−1(t, tk−1, uk−1) =
uk−1ν√

u2
k−1 +

(
ν2 − u2

k−1

)
exp [−2ν2qk−1m(t− tk−1)]

. (4.42)

As zki (tk) = (1 + δk−1
i )zk−1

i (t−k , tk−1, x
k−1
i ) for k ∈ I(0,∞), we seek to write the initial position uk in

terms of u0.

By squaring both sides and rearranging the terms, we can write the above as

u2
k−1(t, tk−1, uk−1)

ν2 − u2
k−1(t, tk−1, uk−1)

=
u2
k−1 exp

[
2ν2qk−1m(t− tk−1)

]
ν2 − u2

k−1

. (4.43)

We now set

yk−1(t, tk−1, yk−1) =
u2
k−1(t, tk−1, uk−1)

ν2 − u2
k−1(t, tk−1, uk−1)

, (4.44)

where y(tk−1) = yk−1 on the interval [tk−1, tk). Next, we take the derivative of both sides

dyk−1 =
2uk−1(t, tk−1, uk−1)

[(
ν2 − u2

k−1(t, tk−1, uk−1)
)

+ 2uk−1(t, tk−1, uk−1)(u2
k−1(t, tk−1, uk−1)

]
duk−1(

ν2 − u2
k−1(t, tk−1, uk−1)

) 2

=
2ν2uk−1(t, tk−1, uk−1)duk−1(
ν2 − u2

k−1(t, tk−1, uk−1)
)

=
2ν2uk−1(t, tk−1, uk−1)

(
qk−1muk−1(t, tk−1, uk−1)(ν2 − u2

k−1(t, tk−1, uk−1))
)
dt(

ν2 − u2
k−1(t, tk−1, uk−1)

)2
= 2ν2qk−1m

(
u2
k−1(t, tk−1, uk−1)

ν2 − u2
k−1(t, tk−1, uk−1)

)
dt

=
(
2ν2qk−1m

)
yk−1dt. (4.45)
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Therefore, on the interval [tk−1, tk), the solution of (4.45) is

yk−1(t, tk−1, yk−1) = yk−1 exp
[
2ν2mqk−1(t− tk−1)

]
, y0(t0) = y0. (4.46)

Let ∆tk = tk − tk−1. When k = 1, the solution of (4.46) on [t0, t1) is

y0(t, t0, u0) = y0 exp
[
2ν2mq0(t− t0)

]
y0(t−1 , t0, u0) = y0 exp

[
2ν2mq0∆t1

]
y1(t1) =

∣∣1 + δ0
i

∣∣y0 exp
[
2ν2mq0∆t1

]
. (4.47)

We assume that for k − 1 ∈ I(1,∞), the solution of (4.46) on [tk−1, tk) is

yk−1(t, tk−1, yk−1) =
k−1∏
j=1

∣∣∣1 + δj−1
i

∣∣∣y0 exp

2ν2m

k−1∑
j=1

qj−1∆tj−1 + (t− tk−1)


yk−1(t−k , tk−1, uk−1) =

k−1∏
j=1

∣∣∣1 + δj−1
i

∣∣∣y0 exp

2ν2m
k−1∑
j=1

qj−1∆tj


yk(tk) =

∣∣∣1 + δk−1
i

∣∣∣yk−1(t−k , tk−1, uk−1)

=

k∏
j=1

∣∣∣1 + δj−1
i

∣∣∣y0 exp

2ν2m

k∑
j=1

qj−1∆tj

. (4.48)

Then for k ∈ I(1,m), the solution of (4.46) on [tk, tk−1) is

yk(t, tk, yk) = yk exp
[
2ν2mqk(t− tk)

]
=

k∏
j=1

∣∣∣1 + δj−1
i

∣∣∣y0 exp

2ν2m

 k∑
j=1

qj−1∆tj + (t− tk)

, (4.49)

and

yk(t−k+1, tk, yk) =

k∏
j=1

∣∣∣1 + δj−1
i

∣∣∣y0 exp

2ν2m

k+1∑
j=1

qj−1∆tj

, (4.50)

so

yk+1(tk+1) =
∣∣∣1 + δk+1

i

∣∣∣yk(t−k+1, tk, yk)

=
k+1∏
j=1

∣∣∣1 + δj−1
i

∣∣∣y0 exp

2ν2m
k+1∑
j=1

qj−1∆tj

. (4.51)

59



Therefore, using mathematical induction, it follows that for any k ∈ I(1,∞),

yk−1(t, tk−1, yk−1) =

k−1∏
j=1

∣∣∣1 + δj−1
i

∣∣∣y0 exp

2ν2m

k−1∑
j=1

qj−1∆tj−1 + (t− tk−1)


yk(tk) =

k∏
j=1

∣∣∣1 + δj−1
i

∣∣∣y0 exp

2ν2m

k∑
j=1

qj−1∆tj

. (4.52)

From the definition of yk and (4.52), for k ∈ I(1,∞) and t ∈ [tk−1, tk),

u2
k−1(t, tk−1, uk−1) =

ν2yk−1(t, tk−1, yk−1)

1 + yk−1(t, tk−1, yk−1)

=
ν2
∏k−1

j=1

∣∣∣1 + δj−1
i

∣∣∣u2
0∏k−1

j=1

∣∣∣1 + δj−1
i

∣∣∣u2
0 +

(
ν2 − u2

0

)
exp

[
−2ν2m

(∑k−1
j=1 qj−1∆tj + (t− tk−1)

)]
=

ν2u2
0

u2
0 + (ν2 − u2

0) exp
[
−2ν2m

(∑k−1
j=1 qj−1∆tj + (t− tk−1)

)]∏k−1
j=1

∣∣∣1 + δj−1
i

∣∣∣−1

(4.53)

and

u(t, tk, uk) =
νu0(

u2
0 +

(
ν2 − u2

0

)
exp

[
−2ν2m

(∑k
j=1 qj−1∆tj−1 + (t− tk)

)]∏k−1
j=1

∣∣∣1 + δj−1
i

∣∣∣−1
) 1

2

.

(4.54)

Further, for k ∈ (1,∞),

u(tk) =
u0ν(

u2
0 + (ν2 − u2

0) exp
[
−2ν2m

∑k+1
j=1 qj−1δtj−1

]∏k
j=1

∣∣∣1 + δj−1
i

∣∣∣−1
) 1

2

. (4.55)

By (4.55), taking the limit as k∞, it follows that the initial positions uk−1 will converge and

lim
k→∞

uk−1 = ν. (4.56)

Further, by (4.54)

lim
k→∞

u(t, tk−1, uk−1) = ν. (4.57)

Therefore, taking the limit of the upper comparison solution r(t, t0, u0) at t→∞, the long term behavior

of is such that

lim
t→∞

r(t, t0, u0) = η, (4.58)
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where

η = lim sup
k→∞

ηk−1, (4.59)

if it exists and

ηk−1 =

ak−1

qk−1
+

4bk−1 (m− 1)
√

1
2 exp

[
−1

2

]
+ β2

k−1 (m− 1) ck−1 exp [−1]

4qk−1m


1
2

. (4.60)

Thus, if the limit superior η exists, the solution process of (4.16) is globally upper cohesive a.s. on [0,∞).

Similarly, the limit of the solution of the lower comparison equation (4.39) as t→∞ is

lim
t→∞

ρ(t, t0, u0) = α, (4.61)

where

α = lim inf
k→∞

αk−1 (4.62)

and

αk−1 ≥

ak−1

qk−1
−

4(m− 1)bk−1

√
ck−1

2 exp
[
−1

2

]
+ β2

k−1(m− 1)ck−1 exp [−1]

4qk−1m


1
2

. (4.63)

Moreover, the solution process of (4.16) is globally lower cohesive a.s. on [t0,∞).

Using the long term behavior of the comparison equations in conjunction with Lemmas 4.2 and 4.3, we

establish the following theorem.

Theorem 4 Let the hypotheses of Lemmas 4.2 and 4.3 be satisfied. Then the network is locally cohesive in

the almost surely on [tk−1, tk) for k ∈ I(1,∞). If additionally η exists and is finite, then the network is

globally cohesive almost surely on [t0,∞).

Proof. From Lemmas 4.2 and 4.3,

ρk−1(t, tk−1, ρk−1) ≤ Vk−1(zk−1
i (t)) ≤ rk−1(t, tk−1, rk−1) (4.64)

with probability 1. Moreover, as the solution to the upper comparison equation is bounded above by ηk−1

and the solution to the lower comparison equation is bounded below by αk−1, the network is cohesive almost

surely. Suppose that η exist and is finite. Then, we have

ρ(t, t0, u0) ≤ V (zi(t, t0, z
0
i )) ≤ r(t, t0, u0) (4.65)

for t ≥ t0. As the solutions ρ and r are bounded, the network is globally cohesive with probability 1. �
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4.5.1 Invariant Sets

In the case of the hybrid stochastic dynamical network, we can first consider the behavior of the solution

process on the interval [tk−1, tk). In this situation the invariant sets can be found in the same manner as

those in Section invariant sets3. For k ∈ I(1,∞), let us denote

r2 =

ak−1

qk−1
−

4(m− 1)bk−1

√
ck−1

2 exp
[
−1

2

]
+ β2

k−1(m− 1)ck−1 exp [−1]

4qk−1m


1
2

(4.66)

and

r1 =

ak−1

qk−1
+

4bk−1 (m− 1)
√

ck−1

2 exp
[
−1

2

]
+ β2 (m− 1) ck−1 exp [−1]

4qk−1m


1
2

. (4.67)

Further, let us define the following sets:
Ak−1 = B (0, r2)

Bk−1 = Bc (0, r2) ∩B (0, r1)

Ck−1 = Bc (0, r1)

(4.68)

From the analysis developed in that section, we establish the following theorem for the solution on the

interval [tk−1, tk).

THEOREM 4.4 Let the hypotheses of Lemmas 4.2 and 4.3 be satisfied. Then almost surely,

(i) the set Ak−1 ∪Bk−1 is conditionally invariant relative to Ak−1;

(ii) the set Bk−1 is self-invariant;

(iii) the set Bk−1 ∪ Ck−1 is conditionally invariant relative to Ck−1.

Proof. Following the proof outlined in Theorem 3.2, the result follows directly. �

By considering the limit as k → ∞, we also establish the following result for the long-range invariant

sets of (4.16). For k ∈ (1,∞)

lim
k→∞

u(tk−1) = lim
k→∞

u(t, tk−1, uk−1) (4.69)

for both the upper and lower comparison equations, then as k →∞

α ≤
∥∥∥zk−1

i (tk−1)
∥∥∥ ≤ η (4.70)
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and

α ≤
∥∥∥zk−1

i (t, tk−1, z
k−1
i )

∥∥∥ ≤ η (4.71)

for sufficiently large k ∈ (1,∞). Thus, (4.16) exhibits long-range self-invariance for every member of the

network.

In Section 4.6, we use numerical simulations to better understand the estimates and network behavior on

the intervals [tk−1, tk) for a finite number k.

4.6 Numerical Simulations

In this section, we consider numerical simulations for the multicultural dynamic network governed by the

stochastic differential equation (4.16). We use a Euler-Maruyama [17, 11, 12] type numerical approximation

scheme. We consider a network of six members, using the same initial position and varying the parameters

ak−1, bk−1, and βk−1, k ∈ I(1,∞). Further, we consider the case such that ξk−1
ij (t) for i, j ∈ I(1, 6) are a

one dimensional Brownian motion process with mean of zero and variance of 1 over the interval [0, 1].

Often in a cultural network, events such as natural disasters, sudden political or economic changes, etc.,

can cause rippling effects in the cultural network. These changes can be characterized by the parametric

changes in the stochastic differential equation (4.16). Therefore, we choose to simulate such a situation

in the models in this section. Here, we choose 5 arbitrary times tk on the interval (0, 1) for which the

model experiences an intervention on the dynamic. Further, for each tk, k ∈ I(1, 5), we set xki (tk) =

(1 + δki )xki (t−), δki is a constant for fixed i and k ∈ I(1, 5), and consider the various scenarios based on

changing the parameters ak, bk and βk.

In order to consider the effects of changing the parametric quantity ak−1, we consider various models for

which βk−1 = 2, bk−1 = 1, ck−1 = 2, and qk−1 = 1
7 are held constant for k ∈ I(1, 5) and ak = ak−1 + 1,

a0 = 2. The plot of the position zi(t) for t ∈ [0, 1] is given in Figure 4.1 and Figure 4.2 is the plot of the

positions on the interval [0.2, 0.4].

In order to consider the effects of changing the parametric quantity bk−1, we consider the model for which

ak−1 = 2, βk−1 = 2, ck−1 = 2, and qk−1 = 1
7 are held constant for k ∈ I(1, 5) and bk = bk−1 + 1, b0 = 1.

Figure 4.3 exhibits the simulated positions of the members zi.

In order to consider the effects of changing the parametric quantity βk−1, we consider the model for

which ak−1 = 2, bk−1 = 1, ck−1 = 2, and qk−1 = 1
7 are held constant for k ∈ I(1, 5) and βk = βk−1 + 1,
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Figure 4.1.: Euler-Maruyama approximation of the differential equation with six members and parameter

ak = ak−1 + 1.

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
−30

−20

−10

0

10

20

30

40

Figure 4.2.: Euler-Maruyama approximation of the differential equation with six members and parameter

ak = ak−1 + 1 for t in the interval [0.2, 0.3].
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Figure 4.3.: Euler-Maruyama approximation of the differential equation with six members and parameter

bk = bk−1 + 1.
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Figure 4.4.: Euler-Maruyama approximation of the differential equation with six members and parameter

βk = βk−1 + 1.
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Figure 4.5.: Euler-Maruyama approximation of the differential equation with six members and parameter

βk = βk−1 + 1.

β0 = 2. In Figure 4.4, we plot the positions of the members for t ∈ [0, 1] and Figure 4.5 is the position for

t ∈ [0.2, 0.4].

In order to consider the effects of a change in the parametric quantity ak−1, and βk−1, we consider the

model for which bk = 1, ck−1 = 2, and qk−1 = 1
7 are held constant for k ∈ I(1, 5) and ak = ak−1 + 1, and

βk = βk−1 + 1, β0 = 2. The plot of the positions of the members of the simulated network are given in 4.6

4.7 Conclusion

Maintaining diversity while simultaneously fostering a sense of community membership, individual cultural

identity, and cohesion is currently a goal among communities worldwide. It is important for members in

a society to both feel as a part of the community in which they live and interact as well as feel free to

embrace a strong sense of self and individuality. We seek to better understand the factors that play a role

in obtaining such a balance by considering the impact of the repulsive and attractive forces influencing
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Figure 4.6.: Euler-Maruyama approximation of the differential equation with six members and parameters

ak = ak−1 + 1, bk = bk−1 + 1 and βk = βk−1 + 1.

the multicultural network as in the previous work [13, 14]. Attractive influences can be thought of as

attributes that bring people to active membership within the group. Social acceptance, gaining social status,

economic opportunity, career growth, common purpose and membership, personal development, and a sense

of mutual respect, trust and understanding are examples of attractive influences within a social cultural

network. Repelling forces are attributes that create some desire for individuals to leave or be less involved

in the group or to preserve some personal identity from one other with their individual magnitude of inner

repulsive force. A desire to retain a sense of individuality, economic or emotional cost, interpersonal conflict

within the group, or disagreement with parts of the overall philosophies of the group are forces that may

be considered as repulsive forces. The goal of the presented multicultural dynamic network is model the

balance sought by members of the network in achieving these type of objectives. By doing so, we can

consider the impact that policies and environmental factors may have on such a network.

By considering a hybrid dynamic model, we are able to better understand the impacts of outside influences

that occur within a community members and the cultural impacts such events have on the modeled cultural

network. We have considered change based on the parameters that allow the perturbed multicultural dynamic

network to remain cohesive while retaining a cultural state that is distinctive from the cultural state center

of the network. We established qualitative and quantitative conditions that are computationally attractive

and verifiable. We also conducted simulations of the multicultural network that exhibit the influence of the

random perturbations as well as demonstrate the long-term behavior of the multicultural network.

We are interested in further exploring similar multicultural networks in the context of better understanding

the relative cultural affinity ‖xij‖ between members within the network and not just the cultural affinity
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between the cultural state of a member relative to the center of the network. The goal is to better understand

the environmental factors that help foster a sense of individuality and diversity between all members within

the network while maintaining a cohesive structure.
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Chapter 5

Conclusion and Future Work

Maintaining diversity while simultaneously fostering a sense of community membership, individual cultural

identity, and cohesion is currently a goal among communities worldwide. It is important for members in

society to both feel as a part of the community in which they live and interact as well as feel free to embrace

a strong sense of self and individuality. We seek to better understand the factors that play a role in obtaining

such a balance by considering the impact of the repulsive and attractive forces influencing the multicultural

network. The goal of the presented multicultural dynamic network is model the balance sought by members

of the network in achieving these type of objectives. By doing so, we can consider the impact that policies

and environmental factors may have on such a network.

The presented work provides a framework for considering cultural dynamic networks. It can be noted that

in the presented prototypes, the parameters are considered constant. In future work, we wish to consider the

case that the parameters are not constant which can be built up from the presented work. In this work, we

explored the features of a multicultural network with dynamics described by a specific differential equation

and the long term stability and behaviors of individual members within such a network. We are interested

in further exploring social networks in the context of better understanding the relative cultural state affinity

between agents ‖xij‖ and not just the cultural affinity between an agent and the center of the network. The

presented work may be utilized to create a coupled dynamic system in which relative cultural state affinity

can be further explored. Our hopes are to better understand what factors may lead to preserving a lower

bound on the relative cultural state affinity ‖xij‖ that is strictly greater than zero as t → ∞. In modeling

such a network, we are looking to better understand how diversity between all members may be maintained

over the long term within a culturally diverse network.
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