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Abstract

Mathematical and statistical modeling have been at the forefront of many significant advances in

many disciplines in both the academic and industry sectors. From behavioral sciences to hard core

quantum mechanics in physics, mathematical modeling has made a compelling argument for its

usefulness and its necessity in advancing the current state of knowledge in the 21rst century. In

Finance and Insurance in particular, stochastic modeling has proven to be an effective approach in

accomplishing a vast array of tasks: risk management, leveraging of investments, prediction, hedg-

ing, pricing, insurance, and so on. However, the magnitude of the damage incurred in recent market

crisis of 1929 (the great depression), 1937 (recession triggered by lingering fears emanating from

the great depression), 1990 (1 year recession following a decade of steady expansion) and 2007

(the great recession triggered by the sub-prime mortgage crisis) has suggested that there are certain

aspects of financial markets not accounted for in existing modeling. Explanations have abounded

as to why the market underwent such deep crisis and how to account for regime change risk. One

such explanation brought forth was the existence of regimes in the financial markets. The basic idea

of market regimes underscored the principle that the market was intrinsically subjected to many

different states and can switch from one state to another under unknown and uncertain internal and

external perturbations. Implementation of such a theory has been done in the simplifying case of

Markov regimes. The mathematical simplicity of the Markovian regime model allows for semi-

closed or closed form solutions in most financial applications while it also allows for economically

interpretable parameters. However, there is a hefty price to be paid for such practical conveniences

as many assumptions made on the market behavior are quite unreasonable and restrictive. One as-

sumes for instance that each market regime has a constant propensity of switching to any other state

irrespective of the age of the current state. One also assumes that there are no ı́ntermediateśtates as

regime changes occur in a discrete manner from one of the finite states to another. There is therefore
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no telling how meaningful or reliable interpretation of parameters in Markov regime models are.

In this thesis, we introduced a sound theoretical and analytic framework for Levy driven linear

stochastic models under a semi Markov market regime switching process and derived Itó formula

for a general linear semi Markov switching model generated by a class of Lévy Itó processes (1). Itó

formula results in two important byproducts, namely semi closed form formulas for the characteris-

tic function of log prices and a linear combination of duration times (2). Unlike Markov markets, the

introduction of semi Markov markets allows a time varying propensity of regime change through the

conditional intensity matrix. This is more in line with the notion that the market’s chances of recov-

ery (respectively, of crisis) are affected by the recession’s age (respectively, recovery’s age). Such a

change is consistent with the notion that for instance, the longer the market is mired into a recession,

the more improbable a fast recovery as the the market is more likely to either worsens or undergo a

slow recovery. Another interesting consequence of the time dependence of the conditional intensity

matrix is the interpretation of semi Markov regimes as a pseudo-infinite market regimes models.

Although semi Markov regime assume a finite number of states, we note that while in any give

regime, the market does not stay the same but goes through an infinite number of changes through

its propensity of switching to other regimes. Each of those separate ı́ntermediateśtates endows the

market with a structure of pseudo-infinite regimes which is an answer to the long standing problem

of modeling market regime with infinitely many regimes.

We developed a version of Girsanov theorem specific to semi Markov regime switching stochastic

models, and this is a crucial contribution in relating the risk neutral parameters to the historical pa-

rameters (3). Given that Levy driven markets and regime switching markets are incomplete, there

are more than one risk neutral measures that one can use for pricing derivative contracts. Although

much work has been done about optimal choice of the pricing measure, two of them jump out of the

current literature: the minimal martingale measure and the minimum entropy martingale measure.

We first presented a general version of Girsanov theorem explicitly accounting for semi Markov

regime. Then we presented Siu and Yang pricing kernel. In addition, we developed the condi-

tional and unconditional minimum entropy martingale measure which minimized the dissimilarity
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between the historical and risk neutral probability measures through a version of Kulbach Leibler

distance (4).

Estimation of a European option price in a semi Markov market has been attempted before in the

restricted case of the Black Scholes model. The problems encountered then were twofold: First,

the author employed a Markov chain Monte Carlo methods which relied much on the tractability

of the likelihood function of the normal random sequences. This tractability is unavailable for most

Levy processes, hence the necessity of alternative pricing methods is essential. Second, the accu-

racy of the parameter estimates required tens of thousands of simulations as it is often the case with

Metropolis Hasting algorithms with considerable CPU time demand. Both above outlined issues

are resolved by the development of a semi-closed form expression of the characteristic function of

log asset prices, and it opened the door to a Fourier transform method which is derived on the heels

of Carr and Madan algorithm and the Fourier time stepping algorithm (5).

A round of simulations and calibrations is performed to better capture the performance of the semi

Markov model as opposed to Markov regime models. We establish through simulations that semi

Markov parameters and the backward recurrence time have a substantial effect on option prices

(6). Differences between Markov and Semi Markov market calibrations are quantified and the CPU

times are reported. More importantly, interpretation of risk neutral semi Markov parameters offer

more insight into the dynamic of market regimes than Markov market regime models (7). This has

been systematically exhibited in this work as calibration results obtained from a set of European

vanilla call options led to estimates of the shape and scale parameters of the Weibull distribution

considered, offering a deeper view of the current market state as they determine the in-regime dy-

namic crucial to determining where the market is headed.

After introducing semi Markov models through linear Levy driven models, we consider semi Markov

markets with nonlinear multidimensional coupled asset price processes (8). We establish that the

tractability of linear semi Markov market models carries over to multidimensional nonlinear asset

price models. Estimating equations and pricing formula are derived for historical parameters and

risk neutral parameters respectively (9). The particular case of basket of commodities is explored

viii



and we provide calibration formula of the model parameters to observed historical commodity prices

through the LLGMM method. We also study the case of Heston model in a semi Markov switching

market where only one parameter is subjected to semi Markov regime changes. Heston model is

one the most popular model in option pricing as it reproduces many more stylized facts than Black

Scholes model while retaining tractability. However, in addition to having a faster deceasing smiles

than observed, one of the most damning shortcomings of most diffusion models such as Heston

model, is their inability to accurately reproduce short term options prices. An avenue for solving

these issues consists in generalizing Heston to account for semi Markov market regimes. Such a

solution is implemented and a semi analytic formula for options is obtained.
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Chapter 1

A linear Levy-Itó switching model for log asset prices under semi Markov regimes

1.1 Introduction

The well known Black Scholes model [6], despite its slew of laureates has long shown well doc-

umented weaknesses as it pertains to its consistency with stylized facts of financial asset returns

and option prices. Smiles, smirks and skews are well documented empirical features of implied

volatilities [10, 26, 60, 66], unexplained in the context of Black Scholes model. Moreover, stylized

facts of financial time series also cast a doubt on the appropriateness of the normal log return dis-

tribution assumption. The literature goes about solving these issues in two main ways. The first

approach uses time dependent deterministic volatility models [39, 46] to capture most of option

market empirical properties. However, it has been shown [31] that risk neutral volatilities behave

in a random manner. This leads to the development of the second modeling approach consisting

of stochastic volatility, local volatility and regime switching models. Stochastic volatility models

[33, 40] are based on the assumption that volatility is a dynamic process in itself. In local volatility

models [5, 24], the volatility depends on time and stock price through a deterministic functional. In

both cases, in addition to the possibility of a misspecified functional form of the volatility [16], the

volatility surface often lacks smoothness and at times, takes nonsensical and counterintuitive forms.

One of the main advantages of regime switching models as noted by [16], is the interpretability of

the market states while disassociating with the very restrictive functional form assumption of the

local and stochastic volatility models.

The present chapter is an attempt to extend the currently existing semi Markov switching models for

stock price and at setting up a general theoretical framework to study qualitative and quantitative

properties of asset price processes. To the best of our knowledge, mostly Markovian interven-

tions on price processes are being successfully studied and have been investigated in many papers

[12, 13, 14, 16, 35, 37, 53, 60]. Recently, stochastic models [30, 41, 42, 59, 65] under the influ-
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ence of a semi Markov process have been examined. However, these attempts leave two gaping

holes. First they are limited to Black Scholes switching models, hence failing to take advantage

of the proven flexibility of Levy driven models. In fact, most continuous models, fail to appropri-

ately price short maturity options because existence of such contracts in the market is an acknowl-

edgement that significant market movements can be observed in short period of time. Second, the

estimation method of [42] is an MCMC based estimation method, which by his own admission re-

quires tens of thousands of samples, as well as it depends highly on the tractability of the normal

likelihood and efficiency of the candidate distribution chosen to implement the Metropolis Hasting

algorithm. A Stochastic Maximum Principle for semi Markov switching jump diffusion models

[21] has been established, leaving out the class of Lévy processes with infinite activity such as the

variance Gamma model or the Normal Inverse Gamma. We propose a theoretical setting for a more

inclusive model.

The organizational outline of this Chapter is as follows: in Section 1.2, we introduce the neces-

sary definitions and notations and we present known results. In Section 1.3, we find a closed form

solution of a Lévy type of SDE. In Section 1.4, we derive Itó differential formula and the infinites-

imal generator for a class of stochastic linear hybrid models under semi Markovian and Lévy-type

structural perturbations. Section 1.5 is concerned with the derivation of a closed form characteristic

function of the log price process. This is useful for recovering risk neutral densities to estimate op-

tion prices. Moreover, this provides an alternative tool to the computationally extensive continuous

time MCMC and the two-step numerical integration procedure [30, 42], for simulating option prices

and calibrating model parameters to market option prices.

1.2 Preliminary Definitions and Results

In this work, T ? < ∞ and T ∈ [0, T ?]. T ? and T stand for the time horizon of the market and

the maturity time of a contingent claim, respectively;
(
Ω,F, P

)
is a complete probability space;

θ is a semi Markov process defined on R+ ×
(
Ω,F, P

)
into E, where E is an at most countable

subset of the set of natural numbers N and R+ = [0,∞). For each n ∈ N, Tn stands for the

n − th jump time of θ. For s ∈ [0, T ] and θs− = j, (Lj
s−)s∈[0,T ] is the Lévy process with Lévy

triplet (µ(j), σ(j), ν(j, )), where µ(j), σ(j) and ν(j, ) are the drift rate, the diffusion rate and the

Lévy measure, respectively. (Lt)t∈[0,T ], (Ht)t∈[0,T ] and (Ht ∨ Lt)t∈[0,T ] are sub-sigma algebras

2



of F generated by the collection of Lévy processes Lj , ∀j ∈ E, the semi Markov process θ and

(Lθt , θt)t∈[0,T ], respectively. Let (βn)n≥0 and (Bt)t∈[0,T ] be a discrete-time real valued stochastic

process and the sub-sigma algebra of F adapted to the discrete process βn, respectively. We denote

the enlarged filtrations (Lt ∨ Bt)t∈[0,T ] and (Ht ∨ Bt)t∈[0,T ] by (L̄t)t∈[0,T ] and (H̄t)t∈[0,T ], respec-

tively. Let ψ(j, ., .) be the Poisson random measure with compensator ν(j, dz). It is also assumed

that the sequence (βn)n≥0 is independent of both ψ(j, ., .) and the Brownian process Bt, for j ∈ E.

DEFINITION 1.2.1 [17] Let θ and {Tn}∞n=1 be a semi Markov process and its jump time sequence

with T0 = 0, respectively. A couple (θn, Tn) is called a Markov renewal process with kernel Q

induced by the semi Markov Process (θt), if it satisfies:

P
(
θn = j, Tn ≤ t|(θk, Tk), k = 1, 2...n− 1

)
= P

(
θn = j, Tn − Tn−1 ≤ t− Tn−1|θn−1, Tn−1

)
= Q(θn−1, j, t− Tn−1), (1.2.1)

where θn stands for θTn .

REMARK 1.2.1 τn = Tn+1 − Tn denotes a holding time at Tn. The holding times conditional on

the current state are independent [17]. The kernel in (1.2.1) can be represented as:

Q(i, j, t− Tn) =P
(
θn = j, Tn − Tn−1 ≤ t− Tn−1|θn−1 = i

)
. (1.2.2)

Moreover, for (θn, Tn) = (θn(t), Tn(t)), ∀t ∈ [0, T ], where

n(t) = max{k ∈ N, Tk ≤ t} (1.2.3)

In particular,

Q(i, j, t) = P (θn = j, Tn − Tn−1 ≤ t|θn−1 = i). (1.2.4)

Furthermore, we define

pij = lim
t→∞

Q(i, j, t), (1.2.5)

where pij is called the steady state transition probability of the embedded Markov chain from state

i to state j with i, j ∈ E and n(E) = m.

For the sake of completeness, we present survival distribution and sojourn time distributions asso-

ciated with the semi Markov process θ.

3



DEFINITION 1.2.2 The conditional cumulative distribution of the holding/sojourn/residence time

(respectively, survival function) given that θ transits from a state i to state j is defined by F (t|i, j) =

P (τn ≤ t
∣∣θn = j, θn−1 = i) (respectively, S(.|i, j) = 1− F (.|i, j)).

In the following lemma, we outline a few well known properties of semi Markov processes [17, 30].

LEMMA 1.2.1 The kernel of the semi Markov process defined in (1.2.4) is represented by

Q(i, j, t) = pi,jF (t|i, j). (1.2.6)

Moreover,

S(t|i) = 1−
∑
j∈E

pi,jF (t|i, j), , (1.2.7)

f(r|θ0 = i)

P (T1 > s|θ0 = i)
=
−dS
dr (t|i, j)
S(s−|i)

, for r ≥ s (1.2.8)

λi,j(t) = pi,j
−dS
dt (t|i, j)
S(t−|i)

. (1.2.9)

Proof. We first establish (1.2.6). From (1.2.4) we have

Q(i, j, t) = P (θn = j, Tn − Tn−1 ≤ t|θn−1 = i),

= P (θn = j|θn−1 = i)P (Tn − Tn−1 ≤ t|θn−1 = i, θn = j)

= pi,jF (t|i, j).

For the proof of (1.2.7), we use Definition 1.2.2 and (1.2.6).

F (t|i) = P (τn ≤ t|θn = i)

=
∑
j∈E

pi,jF (t|i, j) (1.2.10)

Hence,

S(t|i) = 1−
∑
j∈E

pi,jF (t|i, j).

This completes the proof of (1.2.7). For the proof of (1.2.8), for r > s, we have

f(r|θ0 = i)

P (T1 > s|θ0 = i)
, ( definition of conditional density)

=
−dS
dr (r|i)

P (T1 > s|θs = i)
, ( definition of survival function)

=
−dS
dr (r|i)

S(s−|i)
. (1.2.11)
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This completes the proof of (1.2.8). The proof of (1.2.9) follows from the definition of Hazard

functions and (1.2.6). This completes the proof of the lemma. �

REMARK 1.2.2 A homogeneous Markov process is a particular case of semi Markov process.

Hence, Qij(t) = pij(1− eq(i)). We also have the following relationship:

qij = pijq(i), (1.2.12)

where (qij)m×m is the Infinitesimal generator (intensity matrix) of a Markov process, and (pij)m×m

is its transition probability matrix defined in (1.2.5). The following can also be inferred from (1.2.6)

and (1.2.7),

S(t|i) = 1−
∑
j∈E

Q(i, j, t). (1.2.13)

DEFINITION 1.2.3 Let yt be the backward recurrence time of the semi Markov process θ at time t.

yt is defined as follows:

yt =
∑
n≥0

(t− Tn)1(Tn≤t<Tn+1), (1.2.14)

where the sequence {Tn}∞n=0 is introduced in Definition 1.2.1.

DEFINITION 1.2.4 Let ψ : R+ × R × R+ 7→ R be the random Poisson measure with inten-

sity measure ν, H and G smooth functions defined on R+ × R into R, satisfying the condition:∫
z∈R

((
1 + H2(z, j)

)
1|z|>1 + G2(z, j)1|z|≤1

)
ν(j, dz) < ∞, ∀j ∈ E. Moreover; ψ̄ = ψ − ν

denotes the compensated Poisson measure associated with ψ.

In the following we present a lemma, which would be used, subsequently.

LEMMA 1.2.2 Let (an, bn) and (cn, dn) be two renewal processes defined on the same probability

space (Ω,F, P ) and state space E. Then the renewal processes have identical transition probability

matrices and sojourn time distributions, respectively.

Proof. From (1.2.5), it’s clear that the transition probability and the holding time distribution are

completely defined by the kernel matrix. In fact, we have,

lim
t→∞

Q(i, j, t) = lim
t→∞

pijF (t|i, j) = pij ,
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and hence,

F (t|i, j) =
Q(i, j, t)

pij
.

This establishes the result. �

LEMMA 1.2.3 Let n(t) be defined as in (1.2.3). The pair (θt, t− Tn(t)) is a Markov process.

Proof. Let be s ≤ t with t ∈ [Tn, Tn+1) and s ∈ [Tm, Tm+1) (m < n). For u ≤ s, we have:

P
(
θt = i, t− Tn(t) ≤ a|(θu, u− Tn(u))

)
, (for some a ∈ R+)

= P
(
θTn = i, Tn+1 − Tn ≤ a|(θu, u− Tn(u))

)
, ( for t ∈ [Tn, Tn+1))

= P
(
θTn = i, Tn+1 − Tn ≤ a|(θTk , Tk), k ≤ m

)
, ( for s ∈ [Tm, Tm+1))

= P
(
θTn = i, Tn+1 − Tn ≤ a|θTm

)
,
(

Markov renewal process property
)

= P
(
θt = i, t− Tn(t) ≤ a|θs

)
,
(

definition of n(t)
)
.

Hence, the probability at a future time depends only on the most current information at time s. This

shows that (θt, t− Tn(t)) is a Markov process. �

REMARK 1.2.3 For the remainder of this paper θ is a semi Markov process with jump time Tn,

with sojourn time τn = Tn+1 − Tn ∼ f(|θn, θn+1) with CDF F (|θn, θn+1) and with survival CDF

S(|θn, θn+1) = 1 − F (|θn, θn+1). The semi Markov kernel is denoted Q(i, j, t), the backward

recurrence time yt is defined in (1.2.14) and (pi,j)m×m is the transition probability matrix of the

embedded Markov chain.

1.3 Method for Finding Closed Form Solutions

In this section, we find a closed form solution of a Lévy-type Linear Stochastic Differential Equation

under semi Markovian structural perturbations. The presented extension is based on the procedure

described in [47]. The usefulness of the result is at least twofold. It is used to establish the martingale

property for certain processes in Chapter 2. In addition, it is used to formulate a general expression

for the simple return process with any Lévy and semi Markov jump choices. We consider the

following Lévy-type SDE:

dxt = xt−dL
θ
t , x(0) = x0, (1.3.1)
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where,

dLθt =µ(θt)dt+ σ(θt)dBt +

∫
|z|>1

H(z, θt)ψ(θt, dz, dt)

+

∫
|z|≤1

G(z, θt)ψ̄(θt, dz, dt), (1.3.2)

θ is the semi Markov process defined in Section 1.2; ψ, ν G andH are in Definition 1.2.4. Following

the procedure described in Chapter 2, [47], we break down (1.3.1) into the following four types of

simplified SDEs. 

dx1
t = x1

tµ(θt)dt

dx2
t = x2

t−σ(θt)dBt

dx3
t = x3

t−

∫
|z|>1H(z, θt)ψ(θt, dz, dt)

dx4
t = x4

t−

∫
|z|≤1G(z, θt)ψ̄(θt, dz, dt).

(1.3.3)

Imitating the procedure in [47], the closed form solution processes of

dx1
t = x1

t−µ(θt)dt and dx2
t = σ(θt)x

2
tdBt,

are

x1
t =

[
exp (

∫ t

0
µ(θs)ds)

]
c1 and x2

t = exp

[
− 1

2

∫ t

0
σ2(θs)ds+

∫ t

0
σ(θs)dBs

]
c2, (1.3.4)

respectively; c1 and c2 are arbitrary constants. We next consider the third type of SDE in (1.3.3):

dx3
t = x3

t−

∫
|z|>1

H(z, θt)ψ(θt, dz, dt). (1.3.5)

We seek a solution of a form:

x3
t = exp

[ ∫ t

0

∫
|z|>1

f4(z, θs)ψ(θs, dz, ds)

]
c3, (1.3.6)

where f4 is an unknown smooth function to be determined, and c3 is a real random variable. The

Ito integral for pure jump processes (1.3.6) yields:

x3
t+∆t − x3

t =
∑

t≤s≤t+∆t

(
x3
s − x3

s−
)

=

∫ t+∆t

t

∫
|z|>1

(
x3
s−e

f4(z,θs− ) − x3
s−
)
ψ(θs− , dz, ds)

=

∫ t+∆t

t
x3
s−

∫
|z|>1

(
ef4(z,θs− ) − 1

)
ψ(θs− , dz, ds) (1.3.7)
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As ∆t becomes very small, (1.3.7) reduces to:

dx3
t = x1

t−

∫
|z|>1

(
ef4(z,θt) − 1

)
ψ(θt, dz, dt). (1.3.8)

Since x3 is solution of stochastic differential equation (1.3.5), we repeat the procedure described in

[47] and obtain:

exp
(
f4(z, θt)

)
− 1 = H(z, θt). (1.3.9)

Hence,

f4(z, θt) = ln(1 +H(z, θt)). (1.3.10)

Therefore, the general solution of (1.3.5) is represented by

x3
t = exp{

[ ∫ t

0

∫
|z|>1

ln(1 +H(z, θs))ψ(θs, dz, ds)
]
}c3. (1.3.11)

x3 is almost surely finite. Finally, we find a solution of the following stochastic differential equation:

dx4
t = x4

t−

∫
|z|≤1

G(z, θt)ψ̄(θt, dz, dt). (1.3.12)

We seek a solution process of(1.3.12) in the following form:

x4
t = exp{

[ ∫ t

0

∫
|z|≤1

f5(z, θs)ψ̄(θs− , dx, ds) (1.3.13)

+

∫ t

0

∫
|z|≤1

f6(z, θs−)ν(θs− , dz)ds
]
}c4, (1.3.14)

where f5 and f6 are unknown smooth functions to be determined, and c4 is a real valued random

variable. x4 in (1.3.12) is an exponential function semi martingale of the form v =
∫ t

0

∫
|z|≤1 f5(z, θs)ψ̄(θs, dx, ds)+∫ t

0

∫
|z|≤1 f6(z, θs)ν(θs, dz)ds. Applying the Ito formula for discontinuous semi martingales, [1], we

have

dx4
t =

∂x4
t

∂v
dvc +

1

2

∂2x4
t

∂v2
d(vc)d(vc) +

(
∆x4

t −
∂x4

∂L
∆L
)

=x4
t−

∫
|z|≤1

(
f6(z, θt−) + exp (f5(z, θt−))− 1− f5(z, θt−)

)
ν(θt− , dz)dt

+ x4
t−

∫
|z|≤1

(
exp (f5(z, θt−))− 1

)
ψ̄(θt− , dz, dt). (1.3.15)

Again, following the procedure for finding solution processes in [47], we get:
f6(z, θt) + exp (f5(z, θt))− 1− f5(z, θt) = 0

exp (f5(z, θt))− 1 = G(z, θt).

(1.3.16)

8



Hence, 
f5(z, θt) = ln(1 +G(z, θt))

f6(z, θt) = ln(1 +G(z, θt))−G(z, θt).

(1.3.17)

Therefore,

x4
t = exp{

[ ∫ t

0

∫
|z|≤1

[
ln (1 +G(z, θs−))−G(z, θs−)

]
ν(θs− , dz)ds (1.3.18)

+

∫ t

0

∫
|z|≤1

ln (1 +G(z, θs−))ψ̄(θs− , dz, ds)
]
}c4. (1.3.19)

The product of x1, x2, x3 and x4 in (1.3.4), (1.3.4), (1.3.11) and (1.3.19), respectively, yields the

solution of initial value problem (1.3.1):

xt =x0 exp{
[ ∫ t

0

[
µ(θs−)− 1

2
σ2(θs−) +

∫
|z|≤1

[
ln (1 +G(z, θs−))−G(z, θs−)

]
ν(θs− , dz)

]
ds

+

∫ t

0
σ(θs−)dBs +

∫ t

0

∫
|z|≤1

ln (1 +G(z, θs−))ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

ln (1 +H(z, θs−))ψ(θs− , dz, ds)

]
}. (1.3.20)

In the following, we present a few versions of (1.3.20).

REMARK 1.3.1 We note that adding and subtracting∫ t

0

∫
|z|≤1

G(z, θs−)ψ̄(θs− , dz, ds) and
∫ t

0

∫
|z|>1

H(z, θs−)ψ(θs− , dz, ds),

(1.3.20) reduces to:

xt = x0 exp{
[ ∫ t

0
µ(θs−)ds+

∫ t

0
σ(θs−)dBs +

∫ t

0

∫
|z|≤1

G(z, θs−)ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

H(z, θs−)ψ(θs− , dz, ds)−
1

2

∫ t

0
σ2(θs−)ds

+

∫ t

0

∫
|z|≤1

[
ln
(
1 +G(z, θs−)

)
−G(z, θs−)

]
ν(θs− , dz)ds

+

∫ t

0

∫
|z|≤1

[
ln
(
1 +G(z, θs−)

)
−G(z, θs−)

]
ψ̄(θs− , dz)

+

∫ t

0

∫
|z|>1

[
ln
(
1 +H(z, θs−)

)
−H(z, θs−)

]
ψ(θs− , dz, ds)

]
} (1.3.21)
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Moreover, adding and subtracting
∫ t

0

∫
|z|≤1

G(z, θs−)ψ̄(θs− , dz, ds),∫ t

0

∫
|z|>1

H(z, θs−)ψ̄(θs− , dz, ds), and
∫ t

0

∫
|z|>1

H(z, θs−)ν(θs− , dz)ds,

(1.3.20) becomes:

xt = x0 exp{
[ ∫ t

0
µ(θs−)ds+

∫ t

0
σ(θs−)dBs +

∫ t

0

∫
|z|≤1

G(z, θs−)ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

H(z, θs−)ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

ln
(
H(z, θs−) + 1

)
ν(θs− , dz)ds−

1

2

∫ t

0
σ2(θs−)ds

+

∫ t

0

∫
|z|≤1

[
ln (1 +G(z, θs−))−G(z, θs−)

]
ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|≤1

[
ln (1 +G(z, θs−))−G(z, θs−)

]
ν(θs− , dz)ds

+

∫ t

0

∫
|z|>1

[
ln (1 +H(z, θs−))−H(z, θs−)

]
ψ̄(θs− , dz, ds)

]
}. (1.3.22)

In the following remark, we take a look at a few particular cases of interest which will be used,

subsequently.

REMARK 1.3.2 If H(z, θs), G(z, θs) and Lθs in (1.3.2) are replaced by eH(z,θs) − 1, eG(z,θs) − 1

and

dLθs =µ(θs)ds+ σ(θs)dBs +

∫
|z|≤1

[
eG(z,θs) − 1

]
ψ̄(θs, dz, ds)

+

∫
|z|>1

[
eH(z,θs) − 1

]
ψ(θs, dz, ds), (1.3.23)

respectively, then the solution of the IVP (1.3.1) in (1.3.20), (1.3.21) and (1.3.22) reduce to:

xt = x0 exp{
[ ∫ t

0

[
µ(θs−)− 1

2
σ2(θs−)

+

∫
|z|≤1

[
G(z, θs−) + 1− eG(z,θs− )

]
ν(θs− , dz)

]
ds

+

∫ t

0
σ(θs−)dBs +

∫ t

0

∫
|z|≤1

G(z, θs−)ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

H(z, θs−)ψ(θs− , dz, ds)

]
}, (1.3.24)

xt = x0 exp{
[ ∫ t

0
µ(θs−)ds+

∫ t

0
σ(θs−)dBs
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+

∫ t

0

∫
|z|≤1

[
eG(z,θs− ) − 1

]
ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

[
eH(z,θs− ) − 1

]
ψ(θs− , dz, ds)−

1

2

∫ t

0
σ2(θs−)ds

+

∫ t

0

∫
|z|≤1

[
G(z, θs−)− eG(z,θs− ) + 1

]
ν(θs− , dz)ds

+

∫ t

0

∫
|z|≤1

[
G(z, θs−)− eG(z,θs− ) + 1

]
ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

[
H(z, θs−)− eH(z,θs− ) + 1

]
ψ(θs− , dz, ds)

]
}, (1.3.25)

xt = x0 exp{
[ ∫ t

0
µ(θs−)ds+

∫ t

0
σ(θs−)dBs

+

∫ t

0

∫
|z|≤1

[
eG(z,θs− )−1

]
ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

[
eH(z,θs− ) − 1

]
ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

H(z, θs−)ν(θs− , dz)ds−
1

2

∫ t

0
σ2(θs−)ds

+

∫ t

0

∫
|z|≤1

[
G(z, θs−)− eG(z,θs− ) + 1

]
ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|≤1

[
G(z, θs−)− eG(z,θs− ) + 1

]
ν(θs− , dz)ds

+

∫ t

0

∫
|z|>1

[
H(z, θs−)− eH(z,θs− ) + 1

]
ψ̄(θs− , dz, ds)

]
}. (1.3.26)

In addition, if µ(θs) in (1.3.2) is replaced by
[
µ(θs)+

1
2σ

2(θs)+
∫
|z|≤1

[
eG(z,θs)−1−G(z, θs)

]
ν(θs, dz)

]
,

then (1.3.24), (1.3.25) and (1.3.26), respectively, reduce to:

xt = x0 exp{
[ ∫ t

0
µ(θs−)ds+

∫ t

0
σ(θs−)dBs

+

∫ t

0

∫
|z|≤1

G(θs− , z)ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

H(θs− , z)ψ(θs− , dz, ds)
]
}

= x0 exp{[Lθt ]}, (1.3.27)

xt = x0 exp{
[ ∫ t

0
µ(θs−)ds+

∫ t

0
σ(θs−)dBs

+

∫ t

0

∫
|z|≤1

[
eG(z,θs− ) − 1

]
ψ̄(θs− , dz, ds)
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+

∫ t

0

∫
|z|>1

[
eH(z,θs− ) − 1

]
ψ(θs− , dz, ds)

+

∫ t

0

∫
|z|≤1

[
G(z, θs−)− eG(z,θs− ) + 1

]
ψ̄(θs− , dz)

+

∫ t

0

∫
|z|>1

[
H(z, θs−)− eH(z,θs− ) + 1

]
ψ(θs− , dz, ds)

]
},

xt = x0 exp{
[ ∫ t

0
µ(θs−)ds+

∫ t

0
σ(θs−)dBs

+

∫ t

0

∫
|z|≤1

[
eG(z,θs− ) − 1

]
ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

[
eH(z,θs− ) − 1

]
ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

[
eH(z,θs− ) − 1

]
ν(θs− , dz)ds

+

∫ t

0

∫
|z|≤1

[
G(z, θs−)− eG(z,θs− ) + 1

]
ψ(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

[
H(z, θs−)− eH(z,θs− ) + 1

]
ψ̄(θs− , dz, ds)

]
}, (1.3.28)

where Lθ is defined in (1.3.2). Moreover, if µ(θt−) in (1.3.1) is replaced by
[
µ(θs−) + 1

2σ
2(θs−) +∫

|z|≤1

[
eG(z,θs− ) − 1−G(z, θs−)

]
ν(θs− , dz) +

∫
|z|>1H(z, θs−)ν(θs− , dz)

]
, then (1.3.26) reduces

to;

xt = x0 exp{
[ ∫ t

0
µ(θs−)ds+

∫ t

0
σ(θs−)dBs

+

∫ t

0

∫
|z|≤1

[
eG(z,θs− )−1

]
ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

[
eH(z,θs− ) − 1

]
ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|≤1

[
G(z, θs−)− eG(z,θs− ) + 1

]
ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

[
H(z, θs−)− eH(z,θs− ) + 1

]
ψ̄(θs− , dz, ds)

]
}. (1.3.29)

1.4 Ito Differential Formula

In this section, we define the asset price model and we derive the infinitesimal generator of the

quadruplet (t, y, θ, x). We denote Lθt the Lévy process with Lévy triplet
(
µ(θt), σ(θt), ν(θt, dz)

)
defined (1.3.2). Following the argument used in [47], we formulate a linear stochastic hybrid dy-
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namic model for stock price process under structural perturbations of semi Markov and Lévy pro-

cesses.

DEFINITION 1.4.1 A linear stochastic hybrid dynamic model under semi Markov and Lévy struc-

tural perturbations is defined as follows:
dx(t) = x(t−)dLθnt , x(Tn) = xn , t ∈ [Tn, Tn+1)

xn = βnx(T−n , Tn−1, xn−1) , x(0) = x0 , n ∈ I(1,∞) = N,
(1.4.1)

where {Tn}∞n=1 is an increasing sequence of jump/regime switching times of the semi Markov pro-

cess θ with T0 = 0 introduced in Definition 1.2.1 ; for n ∈ I(0,∞) = {0, 1, 2, 3, ...}, βn denotes

the discrete time state jump process caused by the semi Markov process from state θn−1 at Tn−1 to

θn at Tn; it is denoted βn = βθn−1,θn , highlighting the assumption that semi Markov jump distribu-

tions depend only on the previous and current market states. The density function of βi,j is b(.|i, j)

and Lθt is defined in (1.3.2).

REMARK 1.4.1 A few observations about the model in the context of Remark 1.3.2 are in order.

The solution of (3.2.4) can be described by the following discrete time iterative process [47]:
x(t, Tn, xn) = xn exp

[ ∫ t
Tn
dLθns

]
, t ∈ [Tn, Tn+1)

xn = βnx(T−n , Tn−1, xn−1),

(1.4.2)

where Lθt is defined as the exponent of the solution process of (1.3.1) as expressed in (1.3.27). The

semi Markov process decomposes both the time and state domains causing structural changes in the

stock price process, while the Lévy process directly decomposes the state domain of definition of

the stochastic dynamic model.

In the following we are exhibiting three particular cases of the model developed in (1.4.1), which

generalize systematically Black Scholes model, Merton Jump diffusion model and the Normal In-

verse Gaussian model. We will subsequently use these generalized versions of these models to

exhibit the role and scope of the model in (1.4.1). In all three instances of (1.4.1), we assume

G(z, θt) = H(z, θt) = z, ∀t ∈ [0, T ]. In addition, these models are referred to as: The semi Markov

Black Scholes (SMBS),the semi Markov Merton Jump Diffusion (SMMJD), the semi Markov Nor-

mal Inverse Gaussian (SMNIG).
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ILLUSTRATION 1.4.1 We are ready to formulate an illustration regarding the models SMBS, SM-

MJD and SNNIG as special cases of (1.4.1).

Semi Markov version of Black Scholes (SMBS) model: we assume the Itó Levy process L has no

Levy jumps, in other terms, the Poisson random measure ψbs has intensity measure νbs = 0. The

Semi Markov version Black Scholes (SMBS) model in the context of (1.4.1) reduces to:
dx(t) = x(t−)

[
µ(θt)dt+ σ(θt)dBt

]
, x(Tn) = xn , t ∈ [Tn, Tn+1)

xn = βnx(T−n , Tn−1, xn−1) , x(0) = x0 , n ∈ I(1,∞) = N,
(1.4.3)

Semi Markov version of Merton Jump Diffusion (SMMJD) model: we assume the Itó Levy

process L has jumps of normal size with mean and standard deviation σmjd and µmjd, arriving at a

finite Poisson rate λmjd. We also assume the corresponding Poisson random measure denoted ψmjd

has intensity measure νmjd(θt) =
λmjd(θt)

σmjd(θt)
√

2π
exp

[
− (z−µmjd(θt))2

2σ2
mjd(θt)

]
. The semi Markov version of

Merton Jump Diffusion (SMMJD) model in the context of (1.4.1) reduces to:
dx(t) = x(t−)

[
µ(θt)dt+ σ(θt)dBt +

∫
z∈R zψmjd(θn, dz, dt)

]
, x(Tn) = xn , t ∈ [Tn, Tn+1)

xn = βnx(T−n , Tn−1, xn−1) , x(0) = x0 , n ∈ I(1,∞) = N,

(1.4.4)

Semi Markov version of Normal Inverse Gaussian (SMNIG) model: here we assume the Itó Levy

process L has no diffusion component (σ(θs) = 0), with Levy measure

νmjd(θs) =
αnig(θt)δnig(θt)

πx
K1(αnig(θt)|x|) exp

[
(βnig(θt)x)

]
,

where K1 is the modified bessel function of the third kind. The corresponding random Poisson

measure is denoted ψnig. The semi Markov version of Normal Inverse Gaussian (SMNIG) model,

in the context of (1.4.1) reduces to:
dx(t) = x(t−)

[
µ(θt)dt+ σ(θt)dBt +

∫
|z|>1 zψnig(θn, dz, dt)

+
∫
|z|≤1 zψnig(θn, dz, dt)

]
, x(Tn) = xn , t ∈ [Tn, Tn+1)

xn = βnx(T−n , Tn−1, xn−1) , x(0) = x0 , n ∈ I(1,∞) = N,

(1.4.5)

REMARK 1.4.2 From (1.3.27) and (1.4.1), the size of the jump in log price at time Tn is ln (βn).

The density function of ln (βn) is described by:

b̄(z|θn−1, θn) = b(ez|θn−1, θn)ez, (1.4.6)
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where b(.|θn−1, θn) denotes the density of βn and e is the Naperian base. We further note that the

discrete time dynamic system in (1.4.2) is an intervention process. A feature of interest of this model

is its potential to capture, simultaneously, three important stylized facts. The volatility clustering

exhibited in log return time series, the slowly decaying autocorrelation of square returns and the

observed correlation between log returns and volatility [10, 16]. As the market switches from one

state to another, the diffusion rate changes while the asset price is subjected to a jump. Thus the

diffusion rate and the price jumps are modulated by the process θ.

For the development of an infinitesimal generator, in the following, we define a point process en-

coding both the regime switches and the jumps of x at regime switches. At each regime change, we

note that the jump in log price is ln (βn). We define E2 = {(i, j), (i, j) ∈ E × E, i 6= j} and the

power set of E2, P(E2). B(R) is the Borel sigma algebra of the real line. We are ready to define

the aforementioned point process.

DEFINITION 1.4.2 βn and θn are introduced in Definition 1.4.1. Let N(t, A,B) be a stochastic

process defined on [0, T ]× B(R)× P (E2) into [0,∞) as:

N(t, A,B) =
∑
n≥1

1(
t≥Tn,ln (βn)∈A,(θn−1,θn)∈B

) (1.4.7)

and N(t, A,B) stands for the number of regime switches in B with corresponding log price jumps

ln (βn) ∈ A by time t.

REMARK 1.4.3 We observe that:

N(t, A,B) =
∑

(i,j)∈B

N(t, A, {(i, j)}), (1.4.8)

where N(t, A, {(i, j)}) counts the number of regime switches from i to j with corresponding log

price jump ln (βn) ∈ A.

In the following Lemma, we derive the predictable compensator process for N(t, A, {(i, j)}).

LEMMA 1.4.1 Let N(t, A, {(i, j)}) be the point process introduced in Definition 1.4.2. Then

N(t ∧ Tn, A, {(i, j)})− γ(t ∧ Tn, A, {(i, j)}) (1.4.9)
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is a martingale with respect to the filtration (H̄t)t≥0,∀n ∈ I(1,∞), where:

γ(t, A, {(i, j)}) =

∫ t

0

∫
z∈A

b̄(z|i, j)λi,j(ys)dzds, (1.4.10)

and λi,j are defined in (1.2.9).

Proof. From [8, 63], it is enough to prove that N(t ∧ Tn, A, {(i, j)})− γ(t ∧ Tn, A, {(i, j)}) is an(
H̄s

)
s≥0

-martingale. For any 0 ≤ s ≤ t and for each n ∈ I(1,∞), it satisfies:

E
[[
N(t ∧ Tn, A, {(i, j)})− γ(t ∧ Tn, A, {(i, j)})

]
−
[
N(s ∧ Tn, A, {(i, j)})− γ(s ∧ Tn, A, {(i, j)})

]∣∣H̄s

]
= 0 (1.4.11)

and if and only if

E
(
N(t ∧ Tn, A, {(i, j)})−N(s ∧ Tn, A, {(i, j)})

∣∣H̄s

)
= E

(
γ(t ∧ Tn, A, {(i, j)})− γ(s ∧ Tn, A, {(i, j)})

∣∣H̄s

)
. (1.4.12)

We prove that (1.4.12) holds. We first prove that (1.4.12) holds when the jump processN is stopped

at T1. We then prove by the Principle of Mathematical Induction that (1.4.12) is true when N is

stopped at time Tn. From Definition 1.4.2, (1.2.5) and for 0 ≤ s ≤ t, we have

E
(
N(t ∧ T1, A, {(i, j)})−N(s ∧ T1, A, {(i, j)})

∣∣H̄s

)
=


E
(

1(T1≤t,ln (β1)∈A,θ1=j,θ0=i) − 1(T1≤s,ln (β1)∈A,θ1=j,θ0=i)

∣∣θ0, T1 > s
)

, for T1 > s

0, for T1 ≤ s,

=1(T1>s)E
(

1(T1≤t,ln (β1)∈A,θ1=j,θ0=i) − 1(T1≤s,ln (β1)∈A,θ1=j,θ0=i)

∣∣θ0, T1 > s
)

=1(T1>s)E
(
1(s≤T1≤t,ln (β1)∈A,θ1=j,θ0=i)|θ0, T1 > s

)
=1(T1>s)1(θ0=i)

P (s ≤ T1 ≤ t, ln (β1) ∈ A, θ1 = j|θ0 = i)

P (T1 > s|θ0 = i)

=1(T1>s)1(θ0=i)pij
P (s ≤ T1, ln (β1) ∈ A|θ1 = j, θ0 = i)

S(s|i)

− 1(T1>s)1(θ0=i)pij
P (t ≤ T1, ln (β1) ∈ A|θ1 = j, θ0 = i)

S(s|i)

=1(T1>s)1(θ0=i)P (ln (β1) ∈ A| ln (β1)i, j)pij
P (s ≤ T1|θ0 = i, θ1 = j)

S(s|i)

− 1(T1>s)1(θ0=i)P (ln (β1) ∈ A| ln (β1)i, j)pij
P (t ≤ T1|θ0 = i, θ1 = j)

S(s|i)

=1(T1>s)1(θ0=i)pijP (ln (β1) ∈ A|θ0 = i, θ1 = j)
−∆S(t|i, j)
S(s|i)

, (1.4.13)
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where ∆S(t|i, j) = S(t|θ0 = i, θ1 = j) − S(s|θ0 = i, θ1 = j), with S(.|i, j) denoting the condi-

tional survival distribution of sojourn time when the process switches from i to j. From (1.2.8),

(1.2.9) and (1.4.6), we have

E
[
N(t ∧ T1, A, {i, j})−N(s ∧ T1, A, {i, j})

]
=

∫ t

s

∫
z∈A

1(T1>s)1(θ0=i)b̄(z|i, j)λi,j(yu)dudz. (1.4.14)

On the other hand, from (1.4.10) and (1.2.8), we obtain:

E
[
γ(t ∧ T1, A, {(i, j)})− γ(s ∧ T1, A, {(i, j)})|H̄s

]
=1(θ0=i)1T1>sE

[ ∫
z∈A

∫ t∧T1

0
b̄(z|i, j)λi,j(yu)dudz

−
∫
z∈A

∫ s∧T1

0
b̄(z|i, j)λi,j(yu)dudz

∣∣H̄s

]
=1T1>s1(θ0=i)E

[ ∫ T1∧t

T1∧s
P (ln (β1) ∈ A|i, j)λi,j(yu)du

∣∣T1 > s, θ0 = i
]
, ( Fubini’s theorem)

=1T1>s1(θ0=i)

∫ ∞
s

∫ T1∧t

T1∧s
P (ln (β1) ∈ A|i, j)λi,j(yu)du

−dS(r|θ0 = i)

S(s|θ0 = i)

=1T1>s1(θ0=i)

[ ∫ t

s

∫ r∧t

r∧s
P (ln (β1) ∈ A|i, j)λi,j(yu)du

−dS(r|θ0 = i)

S(s|θ0 = i)

+

∫ ∞
t

∫ r∧t

r∧s
P (ln (β1) ∈ A|i, j)λi,j(yu)du

−dS(r|θ0)

S(s|θ0 = i)

]
=1T1>s1(θ0=i)

[
− 1

S(s|i, j)

∫ t

s

∫ r

s
P (ln (β1) ∈ A|i, j)λi,j(yu)dudS(r|θ0)

+

∫ ∞
t

[ ∫ t

s
P (ln (β1) ∈ A|i, j)λi,j(yu)du

]−dS(r|θ0 = i)

S(s|θ0 = i)

]
=1T1>s1(θ0=i)

[
− 1

S(s|θ0 = i)

∫ t

s

∫ r

s
P (ln (β1) ∈ A|i, j)λi,j(yu)dS(r|θ0)du

+

∫ t

s

[ ∫ ∞
t

−dS(r|θ0 = i)

S(s|θ0 = i)︸ ︷︷ ︸
]
P (ln (β1) ∈ A|i, j)λi,j(yu)du

]

=1T1>s1(θ0=i)

[
− 1

S(s|θ0 = i)

∫ t

s
P (ln (β1) ∈ A|i, j)λi,j(yu)

×
[ ∫ t

u
dS(r|θ0 = i)

]
du

+
S(t|θ0 = i)

S(s|θ0 = i)

∫
[s,t]

P (ln (β1) ∈ A|i, j)λi,j(u)du

]
=1T1>s1(θ0=i)P (ln (β1) ∈ A|i, j)

[
1

S(s|θ0 = i)

∫ t

s
λi,j(yu)

[
S(u|θ0 = i)
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− S(t|θ0 = i)
]
du+

S(t|θ0 = i)

S(s|θ0 = i)

∫ t

s
λi,j(yu)du

]
=1T1>s1(θ0=i)

P (ln (β1) ∈ A|i, j)
S(s|θ0 = i)

∫ t

s
λi,j(u)S(u|θ0 = i)du

=1T1>s1(θ0=i)pij
P (ln (β1) ∈ A

∣∣i, j)
S(s|θ0 = i)

∫ t

s
S(u|θ0 = i)

−dS(u|i, j)
S(u|θ0 = i)

=1T1>s1(θ0=i)pijP (ln (β1) ∈ A|i, j)S(s|i, j)− S(t|i, j)
S(s|i)

. (1.4.15)

From (1.4.13) and (1.4.15), we get

E

(
γ(t ∧ T1, A, {(i, j)})− γ(s ∧ T1, A, {(i, j)})

∣∣H̄s

)
= 1T1>s1(θ0=i)pijP (ln (β1) ∈ A|i, j)S(s|i, j)− S(t|i, j)

S(s|θ0)

= E

(
N(t ∧ T1, A, {(i, j)})−N(s ∧ T1, A, {(i, j)})

∣∣H̄s

)
.

This establishes (1.4.12). Hence the stopped point process N(t ∧ T1, A, {(i, j)}) has predictable

compensator γ(t∧T1, A×{(i, j)}) defined in (1.4.10). Assuming that (1.4.11) is valid for some k ∈

I(1,∞), and repeating the above argument, we verify the induction assumption. By the principle

of mathematical induction, we conclude that N((t ∧ Tk, t ∧ Tk+1], A, {(i, j)}) − γ(t ∧ Tk, t ∧

Tk+1], A, {(i, j)}) is an (H̄t)t>0-martingale. �

Prior to turning our attention to the infinitesimal generator, we first establish Itó differential formula

for (1.4.1).

THEOREM 1.4.1 (Ito Differential Formula) Let V ∈ C
[
R+ × R+ × R+ × R,R

]
be continuously

differentiable in the first and second variables and twice continuously differentiable function in the

fourth variable. Let x, y, N and γ be stochastic processes defined in (1.4.1), (1.2.14), (1.4.7) and

(1.4.10), respectively. Moreover, processes N and ψ do not jump simultaneously P−almost surely.

Then

dV (s, ys− , θs− , xs−)

=
(
LV
)
(s, ys− , θs− , xs−)ds+ σ(θs−)xs−

∂V

∂x
dBs

+

∫
|z|≤1

[
V (s, ys, θs, xs− + xs−G(z, θs))− V (ys, θs, xs−)

]
ψ̄(θs, dz, ds)

+

∫
|z|>1

[
V (s, ys, θs, xs− + xs−H(z, θs))− V (s, ys, θs, xs−)

]
ψ̄(θs, dz, ds)
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+

∫
z∈R

∑
j∈E\{θs−}

{
V (s, ys, j, xs−e

z)

− V (s, ys− , θs− , xs−)
}
Ñ(ds, dz, {(θs− , j)}), (1.4.16)

for θs− ∈ E where:

LV (s, ys− , θs− , xs−)

=
∂V

∂s
+
∂V

∂y
+ µ(θs−)xs−

∂V

∂x
+

1

2
σ2(θs−)x2

s−
∂2V

∂x2

+

∫
|z|≤1

[
V (s, ys− , θs− , xs− + xs−G(z, θs−))

− V (s, ys− , θs− , xs−)−G(z, θs−)xs−
∂V

∂x

]
ν(θs− , dz)

+

∫
|z|>1

[
V (s, ys− , θs− , xs− + xs−H(z, θs−))

− V (s, ys− , θs− , xs−)
]
ν(θs− , dz)

+

∫
z∈R

∑
j 6=θs−

λθs− ,j(ys−)
[
V (s, ys− , j, xs−e

z)

− V (s, ys− , θs− , xs−)
]
b̄(z|θs− , j)dz, (1.4.17)

θs− ∈ E and Ñ = N − γ.

Proof. Let V be defined as in the theorem. Let {Tn}∞n=1 be a sequence of semi Markov jump times

and T0 = 0. For t ∈ R+, we can find an interval [Tn, Tn+1] such that Tn ≤ t < t+ ∆t ≤ Tn+1 for

some n ∈ N. Let {Jnj }
kn
j=0 ⊂ [Tn, Tn+1] and Jn0 = Tn be a finite sequence of jump times due to the

Lévy jump process for kn ∈ N. We further note that the interval can be rewritten as:

[Tn, Tn+1] = [Tn, T
−
n+1] ∪ [T−n+1, Tn+1] (1.4.18)

We observe that [Jnj , J
n−
j+1] ∩ [Jn−j+1, J

n
j+1] = ∅. In addition,

[Tn, T
−
n+1] =

kn⋃
j=0

(
[Jnj , J

n−
j+1] ∪ [Jn−j+1, J

n
j+1]

)
(1.4.19)

It is known that the state dynamic process operating under the above stated conditions decomposes

into three parts, namely, the continuous time, the Lévy jump time and the semi Markov jump time.

In fact, the solution process of (1.4.1)/(1.3.1) can be rewritten as:

xt = xct + xdt + xst , (1.4.20)
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where xct , x
d
t and xst are due to the presence of continuous process, Lévy process and semi Markov

process, respectively. We further observe that for s ∈ [Tn, Tn+1], we have: s = s− + (s − s−) =

s− + ∆s, where ∆s = s − s−, s− 6= s. From Definitions 1.2.3, 1.4.1, we note that ys = ys−

and θs = θs− for s ∈ [Tn, T
−
n+1] and for s = Tn+1, s 6= s−, ys− 6= ys and θTn+1 6= θs− .

Moreover, there is a j ∈ I(1, kn − 1) such that s ∈ [Jnj , J
n
j+1]∪ [Jnkn , T

−
n+1]. We choose ∆s so that

s+ ∆s ∈ [Jnj , J
n
j+1]. For these choices of s and s+ ∆s, we have:

ys+∆s = ys− + ∆s

θs+∆s = θs−

xs+∆s = xs− + ∆xss,

(1.4.21)

Furthermore,

∆xs =


∆xcs, if s ∈ [Jnj , J

n
j+1) ∪ [Jnkn , Tn+1), for j ∈ I(0, kn − 1) and n ∈ I(0,∞)

∆xds , if s = Jnj+1, for j ∈ I(1, kn − 1)

∆xss, if s = Tn+1

(1.4.22)

(1.4.22) implies that for s,∆s ∈ [Jnj , J
n
j+1), the change in state dynamic process is in the absence

of the influence of Lévy jump process. On the other hand, for s = Jnj for each j ∈ I(1, kn), the

dynamic process is interrupted by the presence of Lévy jumps. Finally, if s=Tn+1, then the dynamic

system undergoes a structural change. Here the structural change is under the influence of the semi

Markov process. Therefore, there is no contribution of the continuous time dynamic process.

Based on the nature of the dynamic process operating under continuous time process, semi Markov

process and Lévy process, we compute the change in the auxiliary function V as:

V (s+ ∆s, ys+∆s, θs+∆s, xs+∆s)− V (s, ys, θs, xs) (1.4.23)

in the context of state dynamic model (1.3.1).

The computation of change in (1.4.23) depends on the computation of changes over the time domain

of decomposition of [Tn, Tn+1] for n ∈ I(0,∞). For computation on∪kn−1
j=0 [Jnj , J

n−
j+1]

⋃
[Jnkn , Tn+1],

we utilize the generalized mean value theorem. For this purpose, we pick s, s+∆s ∈ [Jn
−

j , Jnj+1) ⊂

[Tn, T
−
n ]. From (1.4.21), the computation of (1.4.23) on the time domain∪knj=0[Jnj , J

n−
j+1]

⋃
[Jnkn , Tn+1]
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regarding the continuous part of state dynamic (1.4.1)/(1.3.1) is as follows: The decomposition of

three subsets of time domain [Tn, Tn+1], namely, ∪knj=0[Jnj , J
n−
j+1]

⋃
[Jnkn , T

−
n+1], or∪knj=1[Jn−j+1, J

n
j+1],

or [T−n+, Tn+1] for n, kn ∈ I(0,∞).

V (s+ ∆s, ys+∆s, θs+∆s, xs+∆s)− V (s, ys, θs, xs)

=

∫ 1

0

[∂V
∂s

(s+ η∆s, ys + η∆s, θs, xs + η∆xs)∆s

+
∂V

∂y
(s+ η∆s, ys + η∆ys, θs, xs + η∆xs)∆ys

+
∂V

∂x
(s+ η∆s, ys + η∆ys, θs, xs + η∆xs)∆xs

]
dη

=
∂V

∂s
(s, ys, θs, xs)∆s+

∂V

∂y
(s, ys, θs, xs)∆ys

+
∂V

∂x
(s, ys, θs, xs)∆xs

+

∫ 1

0

[∂V
∂x

(s+ η∆s, ys + η∆s, θs, xs + η∆xs)

− ∂V

∂x
(s, ys, θs, xs)

]
∆xsdη + εs,y(∆s), (1.4.24)

where,

εs,y(∆s)

=

∫ 1

0

[∂V
∂s

(s+ η∆s, ys + η∆ys, θs, xs + η∆xs)

− ∂V

∂s
(s, ys, θs, xs)

]
∆sdη

+

∫ 1

0

[∂V
∂y

(s+ η∆s, ys

+ η∆ys, θs, xs + η∆xs)−
∂V

∂y
(s, ys, θs, xs)

]
∆ysdη. (1.4.25)

We again apply the generalized mean value theorem to the integrand in (1.4.24), and we obtain:

∂V

∂x
(s+ η∆s, ys + η∆ys, θs, xs + η∆xs)

− ∂V

∂x
(s+ η∆s, ys + η∆ys, θs, xs)

=
∂2V

∂x2
(s, ys, θs, xs)η∆xs

+

∫ 1

0

[∂2V

∂x2
(s+ ∆s, ys + η∆ys, θs, xs + εη∆xs)

− ∂2V

∂x2
(s, ys, θs, xs)

]
∆xsηdε. (1.4.26)
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From (1.4.26), the fourth term in (1.4.24) reduces to:∫ 1

0

[∂V
∂x

(s+ η∆s, ys + η∆ys, θs, xs + η∆xs)−
∂V

∂x
(s, ys, θs, xs)

]
∆xsdη

=
1

2

∂2V

∂x2
(s, ys, θs, xs)(∆xs)

2 + εx(∆s), (1.4.27)

where,

εx(∆s) =

∫ 1

0

∫ 1

0

[∂2V

∂x2
(s+ ∆s, ys + η∆ys, θs, xs

+ εη∆xs)−
∂2V

∂x2
(s, ys, θs, xs)

]
(∆xs)

2ηdηdε

+

∫ 1

0

[∂V
∂x

(s+ η∆s, ys + η∆ys, θs, xs)

− ∂V

∂x
(s, ys, θs, xs)

]
dη∆xs.

From (1.4.24) and (1.4.27), we have:

V (s+ ∆s, ys + ∆ys, θs+∆s, xs+∆s)− V (s, ys, θs, xs)

=
∂V

∂s
(s, ys, θs, xs)∆s+

∂V

∂y
(s, ys, θs, xs)∆ys

+
∂V

∂x
(s, ys, θs, xs)∆xs

+
1

2

∂2V

∂x2
(s, ys, θs, xs)(∆xs)

2 + ε(∆s), (1.4.28)

where ε(∆s) = εs,y(∆s) + εx(∆s). The expressions in (1.4.24), (1.4.26) and (1.4.27) are valid for

all s ∈ [Jnj , J
n−
j+1]∪ [Jnkn , T

−
n+1] and for all j ∈ I(1, kn−1) and hence they are valid on the intervals

[Tn, Tn+1) for n, kn ∈ I(0,∞).

Using Lévy integrals and a single jump value, we compute (1.4.23) under the influence of Lévy

jump process. For this case, we first compute V (Jnj+1) − V (Jn−j+1), where V (Jnj+1) = V (s ∧

Jnj+1, ys∧Jnj+1
, θs∧Jnj+1

, xs∧Jn−j+1
+ xs∧Jn−j+1

G(z, θs∧Jnj+1
)) and V (Jn−j+1) = V (s, ys− , θs− , xs−).

We set and compute:

V (s ∧ Jnj+1)− V (s ∧ Jn−j+1)

=
[
V (s ∧ Jnj+1, ys∧Jnj+1

, θs∧Jnj+1
, xs∧Jn−j+1

+ xs∧Jn−j+1
G(z, θs∧Jnj+1

))

− V (s, ys− , θs− , xs−)
]
ψ(θs− ,∆z,∆s)

+
[
V (s ∧ Jnj+1, ys∧Jnj+1

, θs∧Jnj+1
, xs∧Jn−j+1

+ xs∧Jn−j+1
H(z, θs∧Jnj+1

))

− V (s, ys− , θs− , xs−)
]
ψ(θs− ,∆z,∆s). (1.4.29)
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From (2), for any s ∈ [Jn−j+1, J
n
j+1], j ∈ I(0, kn − 1) and n, kn ∈ I(0,∞) we have

V (s ∧ Jnj+1)− V (s ∧ Jn−j+1)

=

∫ s+∆s

s

∫
|z|≤1

[
V (s, ys, θs, xs− + xs−G(z, θs))

− V (s, ys, θs, xs−)
]
ψ(θs, dz, ds)

+

∫ s+∆s

s

∫
|z|>1

[
V (s, ys, θs, xs− + xs−H(z, θs))

− V (s, ys, θs, xs−)
]
ψ(θs, dz, ds). (1.4.30)

The expression in (1.4.30) is over a subinterval ∪kn−1
j=0 [Jn−j+1, J

n
j+1] of [Tn, Tn+1]. Finally, for s ∈

[T−n+1, Tn+1], and imitating the above argument, we compute (1.4.23) under the presence of semi

Markov jump as follows:

V
(
s ∧ Tn+1, ys∧Tn+1 , θs∧Tn+1 , xs∧T−n+1

+ ∆xs∧T−n+1

)
− V

(
s ∧ T−n+1, ys∧T−n+1

, θs∧T−n+1
, xs∧T−n+1

)
=V (s ∧ Tn+1, ys∧T−n+1+∆s, θs∧T−n+1+∆s, xs∧T−n+1

ez)− V (s, ys− , θs− , xs−)

=

∫ s+∆s

s

∫
z∈R

[
V (u, yu− , θu− , xu−e

z)

− V (u, yu− , θu− , xu−)
]
N(ds, dz, {θT−n+1

, θTn+1}), (1.4.31)

hence, adding and subtracting:∫ s+∆s

s

∫
z∈R

[
V (u, yu− , θu− , xu−e

z)

− V (u, yu− , θu− , xu−)
]
γ(ds, dz, {θu− , θu}),

we obtain

V
(
s ∧ Tn+1, ys∧Tn+1 , θs∧Tn+1 , xs∧T−n+1

+ ∆xs∧T−n+1

)
− V

(
s ∧ T−n+1, ys∧T−n+1

, θs∧T−n+1
, xs∧T−n+1

)
=

∫ s+∆s

s

∫
z∈R

[
V (u, yu− , θu− , xu−e

z)

− V (u, yu− , θu− , xu−)
]
γ(du, dz, {θu− , θu})

+

∫ s+∆s

s

∫
z∈R

[
V (u, yu− , θu− , xu−e

z)
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− V (u, yu− , θu− , xu−)
]
Ñ(du, dz, {θu− , θu}). (1.4.32)

This expression is on [T−n+1, Tn+1] for n ∈ I(0,∞). From (1.4.28), (1.4.30) and (1.4.32), (1.4.23)

reduces to:

V (s+ ∆s, ys+∆s, θs+∆s, xs+∆s)− V (s, ys, θs, xs)

=
∂V

∂s
(s, ys, θs, xs)∆s+

∂V

∂y
(s, ys, θs, xs)∆ys

+
∂V

∂x
(s, ys, θs, xs)∆xs

+
1

2

∂2V

∂x2
(s, ys, θs, xs)(∆xs)

2

+

∫ s+∆s

s

∫
|z|≤1

[
V (u, yu, θu, xu− + xu−G(z, θu−))

− V (u, yu− , θu− , xu−)
]
ψ(θu, dz, du)

+

∫ s+∆s

s

∫
|z|>1

[
V (u, yu, θu, xu− + xu−H(z, θu−))

− V (u, yu− , θu− , xu−)
]
ψ(θu, dz, du)

+

∫ s+∆s

s

∫
z∈R

∑
θu∈E\{θu−}

[
V (u, yu− , θu− , xu−e

z)

− V (u, yu− , θu− , xu−)
]
γ(ds, dz, {θu− , θu})

+

∫ s+∆s

s

∫
z∈R

[
V (u, yu− , θu− , xu−e

z)

− V (u, yu− , θu− , xu−)
]
Ñ(ds, dz, {θu− , θu}) + ε(∆s). (1.4.33)

For small ∆s, applying the concepts of stochastic differentials [1], adding and subtracting:

∫ s+∆s

s

∫
|z|>1

[
V (u, yu, θu, xu− + xu−H(z, θu−))

−V (u, yu− , θu− , xu−)
]
ν(θu− , dz)du

and∫ s+∆s

s

∫
|z|≤1

[
V (u, yu, θu, xu− + xu−G(z, θu−))

−V (u, yu− , θu− , xu−)
]
ν(θu− , dz)du,
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(1.4.33) reduces to:

dV (s, ys− , θs− , xs−)

=LV (s, ys− , θs− , xs−)ds+ σ(θs−)xs−
∂V

∂x
(s, ys, θs, xs)dBs

+

∫
|z|>1

[
V (s, ys, θs, xs− + xs−H(z, θs−)xs−)

− V (s, ys− , θs− , xs−)
]
ψ̄(θs, dz, ds)

+

∫
|z|≤1

[
V (s, ys, θs, xs− + xs−G(z, θs−)xs−)

− V (s, ys− , θs− , xs−)
]
ψ̄(θs, dz, ds)

+

∫
z∈R

[
V (s, ys− , θs− , xs−e

z)

− V (s, ys− , θs− , xs−)
]
Ñ(ds, dz × {θs− , θs}) (1.4.34)

This establishes Ito differential formula (1.4.16) for Lévy type stochastic differential equation under

semi Markovian structural perturbations. HereL in (1.4.17) is the linear differential operator relative

to (1.4.1). �

In the following, based on Theorem 1.4.1, we present a concept of infinitesimal generator and a few

results as special cases.

DEFINITION 1.4.3 For the function V defined in Theorem 1.4.1 and using (1.4.33), an infinitesimal

generator of (3.2.4) is defined by:

lim
∆t→0

[ 1

∆t
E
[
V (t+ ∆t, yt+∆t, θt+∆t, xt+∆t)

− V (t, yt, θt, xt)
∣∣yt = yt− , θt = θt− , xt = xt−

]]
= AV (t, yt− , θt− , xt−), for θt− ∈ E, (1.4.35)

Moreover, a one parameter family of semi-group is generated by

∂V

∂t
(t, yt− , θt− , xt−) = AV (t, yt− , θt− , xt−), (1.4.36)

where A = L in (1.4.16) and ∂V
∂t (t, yt, θt, xt) is the conditional partial derivative defined by the

left-hand side of (1.4.35).

We present special cases of the developed infinitesimal generator in Definition 1.4.3.
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REMARK 1.4.4 From Remark 1.3.2, the infinitesimal generator A defined in (1.4.35) extends the

earlier work in a systematic way. In fact, this generator includes the infinitesimal generator influ-

enced by finite state Markov chain [16, 26]. Moreover, it also includes the generator influenced by

a finite state semi Markov process [30, 42, 65]. If H and G are replaced by eG− 1 and eH − 1, then

A in (1.4.35) in the context of (1.4.17) is

AV (s, ys− , θs− , θs, xs−)

=
∂V

∂s
+
∂V

∂y
+ µ(θs−)xs−

∂V

∂x
+

1

2
x2
s−σ

2(θs−)
∂2V

∂x2

+

∫
|z|≤1

[
V (s, ys− , θs− , θs, xs− + xs− [eG(z,θs− ) − 1])

− V (s, ys− , θs− , θs, xs−)− xs− [eG(z,θs− ) − 1]
∂V

∂x

]
ν(θs− , dz)

+

∫
|z|>1

[
V (s, ys− , θs− , θs, xs− + xs− [eH(z,θs− ) − 1])

− V (s, ys− , θs− , θs, xs−)
]
ν(θs− , dz)

+

∫
z∈R

∑
θs∈E,θs 6=θs−

λθs−,θs
(ys)

[
V (s, ys− , θs, xs−e

z)

− V (s, ys− , θs− , xs−)
]
b̄(z|θs− , θs)dz

A few notes on the nature of the infinitesimal operator.

REMARK 1.4.5 We further remark that the infinitesimal generator defined in (1.4.35) can be rewrit-

ten in a m × m matrix form. In fact the partial differential equations in (1.4.36) are a system of

partial differential equations of dimension m. More precisely, (1.4.36) is a linear system of partial

differential equations with variable coefficients.

REMARK 1.4.6 For V (t, yt, θt, xt) = xt, the conclusion of Theorem 1.4.1 reduces to

dxt =LV (t, yt− , θt− , xt−)dt+ σ(θ−t )dBt +

∫
|z|≤1

xt−G(z, θt−)ψ̄(θt− , dz, dt)

+

∫
|z|>1

xt−H(z, θt−)ψ̄(θt− , dz, dt)

+

∫
z∈R

∑
j∈E\{θt−}

[
xt−(ez − 1)N̄(dt, dz, {(θt− , j)})

]
, (1.4.37)

26



where

LV (t, yt− , θt− , xt−)

=xt−
[
µ(θt−)

+

∫
|z|>1

H(z, θt−)ν(θt− , dz)

+

∫
|z|>1

∑
j∈E\{θt−}

[
(ez − 1)λθt− ,j(yt−)

]
b̄(z|θt− , j)dz

]
. (1.4.38)

dxt = xt−dM
θ
t , (1.4.39)

with

dM θ
t =µ(θt−)dt+

∫
|z|≤1

G(z, θt−)ψ̄(θt− , dz, dt)

+

∫
|z|>1

H(z, θt−)ψ̄(θt− , dz, dt)

+

∫
z∈R

∑
j∈E\{θt−}

[
(ez − 1)N̄(dt, dz, {(θt− , j)})

]
+

∫
|z|>1

∑
j∈E\{θt−}

[
(ez − 1)λθt− ,j(yt−)

]
b̄(z|θt− , j)dzdt

+

∫
|z|>1

H(θt− , z)ν(θt− , dz)dt

=dLθt +

∫
z∈R

∑
j∈E\{θt−}

[
(ez − 1)N(dt, dz, {(θt− , j)})

]
, (1.4.40)

whereLθ is defined in (1.3.2). Furthermore, we note that the solution process determined by (1.4.39)

has another solution representation of (1.4.1) in the framework of Remark 1.3.2. In fact, the closed

form solution representation of (1.4.39) is as follows:

xt = x0 exp{
[ ∫ t

0

∫
z∈R

∑
j∈E\{θs−}

[
zN(ds, dz, {(θs− , j)})

]
+

∫ t

0
µ(θs−)ds

− 1

2

∫ t

0
σ2(θs−)ds+

∫ t

0

∫
|z|≤1

[
ln (1 +G(z, θs−))−G(z, θs−)

]
ν(θs− , dz)ds

+

∫ t

0
σ(θs−)dBs +

∫ t

0

∫
|z|≤1

ln (1 +G(z, θs−))ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

ln (1 +H(z, θs−))ψ(θs− , dz, ds)

]
}. (1.4.41)
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We exhibit three particular cases of the infinitesimal generator.

ILLUSTRATION 1.4.2 We exhibit the infinitesimal generators corresponding to SMBS, SMMJD and

SMNIG models developed as Illustration 1.4.1.

The SMBS model: The infinitesimal generator of the SMBS defined in Illustration 1.4.1 reduces

to:

AV (s, ys− , θs− , θs, xs−) =
∂V

∂s
+
∂V

∂y
+ µ(θs−)xs−

∂V

∂x
+

1

2
x2
s−σ

2(θs−)
∂2V

∂x2

+

∫
z∈R

∑
θs∈E,θs 6=θs−

λθs−,θs
(ys)

[
V (s, ys− , θs, xs−e

z)− V (s, ys− , θs− , xs−)
]
b̄(z|θs− , θs)dz

(1.4.42)

The SMMJD model: The infinitesimal generator of the SMMJD defined in Illustration 1.4.1

reduces to:

AV (s, ys− , θs− , θs, xs−) =
∂V

∂s
+
∂V

∂y
+ µ(θs−)xs−

∂V

∂x
+

1

2
x2
s−σ

2(θs−)
∂2V

∂x2

+

∫
z∈R

[
V (s, ys− , θs− , θs, xs− + xs− [ez − 1])− V (s, ys− , θs− , θs, xs−)

]
νmjd(θs− , dz)

+

∫
z∈R

∑
θs∈E,θs 6=θs−

λθs−,θs
(ys)

[
V (s, ys− , θs, xs−e

z)− V (s, ys− , θs− , xs−)
]
b̄(z|θs− , θs)dz

(1.4.43)

The SMNIG model: The infinitesimal generator defined in Illustration 1.4.1 reduces to:

AV (s, ys− , θs− , θs, xs−) =
∂V

∂s
+
∂V

∂y
+ µ(θs−)xs−

∂V

∂x

+

∫
|z|≤1

[
V (s, ys− , θs− , θs, xs− + xs− [ez − 1])− V (s, ys− , θs− , θs, xs−)− xs− [ez − 1]

∂V

∂x

]
νnig(θs− , dz)

+

∫
|z|>1

[
V (s, ys− , θs− , θs, xs− + xs− [ez − 1])− V (s, ys− , θs− , θs, xs−)

]
νnig(θs− , dz)

+

∫
z∈R

∑
θs∈E,θs 6=θs−

λθs−,θs
(ys)

[
V (s, ys− , θs, xs−e

z)− V (s, ys− , θs− , xs−)
]
b̄(z|θs− , θs)dz

(1.4.44)

In the following section, we utilize the infinitesimal generator of the exponential semi Markov Lévy

switching process to find a closed form expression of the characteristic function of the ln (xt) with

xt solution of (1.4.1).
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1.5 Characteristic function

In this section, we derive a closed form expression for the conditional characteristic function

Ψ(u, t, y, j, x) = E
[
eiu ln (xt)

∣∣∣y0 = y, θ0 = j, x0 = x
]

(1.5.1)

of the log price process,

ln
(
xt
)

=

n(t)∑
p=1

ln (βp) + Lθt , (1.5.2)

where βn, Lθ in Definition 1.4.1 and xt is the closed form solution process of (3.2.4) in the context

of (1.3.27).

LEMMA 1.5.1 Let Lθt , x, y and γ be defined in (1.3.2), (1.4.1), (1.2.14) and (1.4.10), respectively.

A closed form expression for the conditional characteristic vector function of ln (x) is,

Ψ(u, t, y, x) = exp [iu ln (x)] exp

[ ∫ t+y

y
M(u, s)ds

]
.1, (1.5.3)

where i =
√
−1; Ψ(u, t, y, x) is an m-dimensional column vector with k-th component Ψ(u, t, y, k, x),

for k ∈ E; 1 is m×1 vector with components ones, and M(u, y) =
(
Mpq(u, y)

)
m×m is an m×m

matrix defined by:

Mq,p(u, y) =


iuµ(q)− 1

2σ
2(q)u2 +

∫
|z|≤1

[
eiuG(z,q) − 1− iuG(z, q)

]
ν(q, dz)

+
∫
|z|>1

[
eiuH(z,q) − 1

]
ν(q, dz) + λq,q(y), if p = q

λq,p(y)
∫
z∈R e

iuz b̄(z|q, p)dz, otherwise,

and it is assumed to satisfy the Lie bracket-type condition:

[
M(u, y1),M(u, y2)

]
= 0 ,∀y1, y2 ∈ R+ (1.5.4)

Proof. From (1.5.3), first we observe that

Ψ(u, t, y, x) = exp [iuLθt ] exp
[ ∫ t+y

y
M(u, s)ds

]
.1 (1.5.5)

We note that Ψ(u, t, y, θt, x) possesses all smoothness properties of V defined in Theorem 1.4.1.

Therefore, following the argument used in the proof of Theorem 1.4.1, Definition 1.4.3 and Re-

mark 1.4.5, we conclude that Ψ is in the domain of the infinitesimal generator of the process
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(yt, θt, iuL
θ
t )t∈[0,T ]. Moreover, it satisfies the following system of linear partial differential equation

∂Ψ(u, t, y, k, x)

∂t
= AΨ(u, t, y, k, x), for k ∈ E, (1.5.6)

where A is the operator defined in Definition 1.4.3. From Remark 1.4.4 with µ(θs−) replaced by

µ(θs−) +
1

2
σ(θs−) +

∫
|z|≤1

[
eG(z,θs− ) −G(Z, θs−)− 1

]
ν(θs− , dz)

and for Ψ defined in (1.5.1), we have:

AΨ(u, s, ys− , θs− , x)

=
∂Ψ(u, s, y, θs− , x)

∂s
+
∂Ψ(u, s, y, θs− , x)

∂y

+ iu
[
µ(θs) +

1

2
σ2(θs)

]
xs−

∂Ψ(u, s, y, θs− , x)

∂x

+

∫
|z|≤1

[
Ψ(u, s, y, θs− , x+ x[eiuG(z,θs− ) − 1])

−Ψ(u, s, y, θs− , x)− iuxG(z, θs−)
∂Ψ(u, s, y, θs− , x)

∂x

]
ν(θs− , dz)

+

∫
|z|>1

[
Ψ(u, s, y, θs− , x+ x[eiuH(z,θs− ) − 1])

−Ψ(u, s, y, θs− , x)
]
ν(θs− , dz)−

1

2
x2
su

2σ2(θs−)
∂2Ψ(u, s, y, θs− , x)

∂x2

+

∫
z∈R

∑
θs∈E\{θs−}

Ψ(u, s, y, θs, xe
iuz)b̄(z|θs− , θs)λθs− ,θs(y)dz

−Ψ(u, s, y, θs− , x)λθs− ,θs− (y) for θs− ∈ E. (1.5.7)

Now, we assume that Ψ(u, t, y, k, x) = exp
[
iu ln (x)

]
h(u, t, y, k), where h(u, t, y, k) is the k-th

component of an unknown m-dimensional vector function h(u, t, y) =
[
h(u, t, y, 1), ..., h(u, t, y,m)

]>.

From this, (1.5.6) reduces to the following system of partial differential equations:

∂h(u, t, y, k)

∂t

=
∂h(u, t, y, k)

∂y
+ h(u, t, y, k)

[
iu
[
µ(k) +

1

2
σ2(k)

]
+

1

2
σ2(k)[−iu− u2] +

∫
|z|≤1

[
eiuG(z,k) − 1− iuG(z, k)

]
ν(k, dz)

+

∫
|z|>1

[
eiuH(z,k) − 1

]
ν(k, dz) + λk,k(y)

]
+

∫
z∈R

∑
j 6=k

λk,j(y)h(u, t, y, j)(y)eiuz b̄(z|k, j)dz
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=
∂h(u, t, y, k)

∂y
+ h(u, t, y, k)

[
iuµ(k)− 1

2
σ2(k)u2

+

∫
|z|≤1

[
eiuG(z,k) − 1− iuG(z, k)

]
ν(k, dz)

+

∫
|z|>1

[
eiuH(z,k) − 1

]
ν(k, dz) + λk,k(y)

]
+

∫
z∈R

∑
j 6=k

λk,j(y)h(u, t, y, j)(y)eiuz b̄(z|k, j)dz. (1.5.8)

As stated in Remark 1.4.5, the coefficients of h are defined by the elements of A associated with

Ψ(u, t, y, x), in particular, them×mmatrixM(u, y) =
(
Mk,j(u, y)

)
m×m defined in (1.5.4). From

the definition of h(u, t, y), (1.5.8) reduces to:

∂h(u, t, y)

∂t
=
∂h(u, t, y)

∂y
+M(u, y)h(u, t, y), h(u, 0, y) = 1 = (1, ..., 1)>︸ ︷︷ ︸

m ones

. (1.5.9)

Using the method of characteristics, the system of partial differential equations (1.5.9) can be solved.

In this case, the characteristic curves are determined by dy
dt = ±1. Solving these differential equa-

tions, we obtain

η = t− y and ζ = t+ y. (1.5.10)

We use the above change of variable to define the transforms h̃ and M̃ from h and M , respectively,

as functions of (η, ζ): 
h̃(u, η, ζ) = h(u, η+ζ

2 , −η+ζ
2 )

M̃(u, η, ζ) = M(u, −η+ζ
2 ).

(1.5.11)

From (1.5.11), the initial value problem (1.5.9) reduces to the ODE:

∂h̃(u, η, ζ)

∂η
=

1

2
M̃(u, η, ζ)h̃(u, η, ζ), h̃(u,−y, y) = 1. (1.5.12)

Under condition (1.5.4), the general solution of the linear homogeneous ODE with time varying

coefficients is [49]:

h̃(u, η, ζ) = exp
[1

2

∫ η

0
M̃(u, κ, ζ)dκ

]
.g(ζ), (1.5.13)

where g is an arbitrary m-dimensional vector function. Using the initial condition in (1.5.12), g is

determined by

g(ζ) = exp
[1

2

∫ 0

−ζ
M̃(u, κ, ζ)dκ

]
1, ∀ζ ∈ [0, T ].
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This together with (1.5.13), yields the solution of the initial value problem (1.5.12) as:

h̃(u, η, ζ) = exp
[1

2

∫ η

−ζ
M̃(u, κ, ζ)dκ

]
1.

Using the inverse of the transformation defined in (1.5.10), the solution of the original initial value

problem (1.5.9) becomes:

h(u, t, y) = exp
[1

2

∫ t−y

−t−y
M(u,

−κ+ t+ y

2
)dκ
]
1

= exp
[ ∫ t+y

y
M(u, s)ds

]
1.

This establishes the conditional characteristic function for the log prices described by (1.4.1). �

REMARK 1.5.1 We note that the closed form exponential expression (1.5.3) holds only under con-

dition (1.5.4). This is due to the fact that system of ode in (1.5.12) has time varying coefficients.

Assuming the matrix (Mi,j)m×m has continuous entries with respect to y, the system of differential

equations with time varying coefficients (1.5.12) has a fundamental matrix Φ(u, t, y). Therefore,

the characteristic function in (1.5.1) is described by

Ψ(u, t, y, x) = exp [iu ln (x)]
[
Φ(u, t, y)Φ(u, 0, y)−1

]
1. (1.5.14)

The characteristic function Ψ(u, t, y, x) has a closed form expression if Φ has a closed form expres-

sion. Theorem 1.5.1 corresponds to the particular case where Ψ(u, t, y, x) = exp
[ ∫ t+y

y M(u, s)ds
]
.

We next provide three particular instances of the matrix M in (1.5.4), found inside the expression

of the closed form characteristic function in (1.5.3).

ILLUSTRATION 1.5.1 We exhibit three instances of the matrix derived in (1.5.4).

The SMBS model: In the particular case of the SMBS model, we have

Mq,p(u, y) =


iuµ(q)− 1

2σ
2(q)u2 + λq,q(y), if p = q

λq,p(y)
∫
z∈R e

iuz b̄(z|q, p)dz, otherwise,
(1.5.15)

The SMMJD model: In the particular case of the SMMJD model, we have

Mq,p(u, y) =


iu
[
µ(q)−

∫
|z|≤1 zνmjd(q, dz)

]
− 1

2σ
2(q)u2 +

∫
z∈R

[
eiuz − 1

]
νmjd(q, dz) + λq,q(y),

if p = q

λq,p(y)
∫
z∈R e

iuz b̄(z|q, p)dz, otherwise,
(1.5.16)
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The SMNIG model: In the particular case of the SMNIG, we have

Mq,p(u, y) =


iuµ(q)− 1

2σ
2(q)u2 +

∫
z∈R

[
eiuz − 1− iuz1|z|≤1

]
νnig(q, dz) + λq,q(y), if p = q

λq,p(y)
∫
z∈R e

iuz b̄(z|q, p)dz, otherwise,
(1.5.17)

In the following, we present a consequence of Lemma 1.5.1 that extends the characteristic function

of sojourn time of finite state Markov processes [25, 53].

COROLLARY 1.5.1.1 We denote Ots(k) the time spent by the semi Markov process (θt)t∈[0,T ] in its

state k in the time interval [s, t],∀s, t ∈ [0, T ], with s ≤ t, and Ots =
[
Ots(1), Ots(2), ..., Ots(m)

]>
denotes the m-dimensional occupation time vector of θ. If a = (a1, a2, ..., am)> is an m× 1 vector

of constant real numbers, then,

E
[
eiu〈J

t
s,a〉
∣∣ys = y, θs = k

]
=

〈[
exp

[ ∫ t+y

y
M(u, s)ds

]]
.ek,1

〉
,

where,

Mp,q(u, y) =


iuaq + λq,q(y) , If p = q

λp,q(y) , otherwise
(1.5.18)

Proof. Let (at)t∈[0,T ] denote a stochastic process with at = aj whenever θn(t) = j.

exp
[
iu〈Ots, a〉

]
= exp

[
iu
∑
k∈E

akO
t
s(k)

]
, for i =

√
−1

= exp
[
iu

∫ t

s
av−dv

]
, ( as a is piecewise constant)

= exp
[
iu

∫ t

s
av−dv

]
= eiu

∫ t
s dL

θ
v , with Lθv = av,∀v ∈ [0, T ].

The characteristic function of the semi Markov occupation times in the time interval [s, t] becomes:

E
[
eiu〈J

t
s,a〉
∣∣ys = y, θs = k

]
= E

[
eiu

∫ t
s dL

θ
v
∣∣ys = y, θs = k

]
= E

[
eiuL

θ
t−s
∣∣y0 = y, θ0 = k

]
,

since the couple (θ, y) is homogeneous. Applying Lemma 1.5.1 with βn = 1 ∀n ∈ I(0,∞) proves

the result. Corollary 1.5.1.1 is a direct extension of the results in [9, 36, 53]. �
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1.6 Conclusion

We derived Itó formula for an asset price driven by a Levy process in a market with semi Markov

regimes. However, applying such a model to the pricing of derivative products will present quite a

few challenges. In Itó formula, the term due to semi Markov regime changes in the market depends

on the backward recurrence time, while its counterpart in markets with Markov regimes is merely

constant. This support the economic interpretation that regimes in semi Markov markets have a time

dependent instantaneous propensity of switching to another state. In other terms, the instantaneous

probability of changing state conditional on the current one depends on the ”age” of the current

state. If one considers the financial downturns seen in the market since the great depression, one

might find sensible to assume that in the early age a financial crisis there is a decent chance that the

market regime improves as it hasn’t yet gangrened the financial system and can still be contained

and fixed. However, as the issue lasts longer, it becomes more difficult to contain it as more sectors

are affected. Markov market regimes assume that no matter the age of the market regime, the in-

stantaneous conditional probability of switching to any particular regime remains constant.

In addition to the supplementary flexibility, the new model offers a simple but reasonable low hang-

ing solution to the infinite market regime problem. Although the semi Markov market asset model

defined in this chapter is assumed to have a finite number of regimes, each regime can have infinitely

many sub-regimes. Indeed, let us assume that the market follows a three state model where the first

state corresponds to a bearish market, the second state corresponds to a normal market and the last

corresponds to a bullish market. Each observed bearish(respectively bullish, normal) market are

not identical in semi Markov markets. A given bearish (respectively bullish, normal) market with

an increasing conditional propensity of turning bullish (respectively bearish, normal) is not to be

equalled to a bearish market with a decreasing conditional propensity of turning bullish. Although

both are bearish markets, one has reasons to be more optimistic in the former than the latter as the

signs point respectively to an imminent change of regime and a long bearish market. In other terms,

semi Markov markets distinguish between a bearish market trending in the right direction and a

bearish market trending in the wrong direction. Such differences are retrieved from the functional

form of the conditional intensity matrix of the semi Markov process, which can be chosen in in-

finitely many ways hence supporting the the notion that although market regimes can be grouped in

finitely many categories, market states are actually infinite.
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The derivation of the characteristic function of the log price also allows us to envision the calibration

of the semi Markov parameters using the Fourier transform.
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Chapter 2

Risk neutral option price formula under semi Markov regimes

2.1 Introduction

In this Chapter, we introduce the conditional minimum equivalent martingale measuring the semi

Markov jump risk and the Lévy risk. In addition, we also develop an unconditional minimum

entropy martingale measure and the Esscher transform [64] measuring all three risks, namely, Lévy

risk, semi Markov jump risk and regime switching risk. In Section 2.2, we exhibit a general change

of measure and two risk neutral measures of interest, namely, the minimum entropy martingale

measures and the pricing kernel discussed in [64]. The latter accounts for the regime risk, the

jump risk and the Lévy risk. Section 2.3 is devoted to the presentation of a couple of option price

formulas. The first is an application of the well known Fourier transform method developed in [11].

The second formula is a slight modification of the integral formula developed in [30].

2.2 Change of measure and Pricing Kernels

We first utilize the closed form solution representation of (1.3.1) to shed more light on the martin-

gale property of the solution process of the Lévy type stochastic linear differential equations. For

this purpose, let xt be the solution process of (1.3.1) and assume that it is a
(
Ht ∨ L̄t

)
−martingale,

that is, for s ≤ t, E
[
xt − xs

∣∣Hs ∨ L̄s
]

= 0. This is represented by the following illustrations.

ILLUSTRATION 2.2.1 (a) FromE
[
xt−xs

∣∣Hs∨L̄s
]

= 0 and (1.3.27), it is obvious that the solution
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process xt of (1.3.1)

xt =x0 exp{
[ ∫ t

0
µ(θs−)ds+

∫ t

0
σ(θs−)dBs

+

∫ t

0

∫
|z|≤1

G(z, θs−)ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

H(z, θs−)ψ̄(θs− , dz, ds)

]
} (2.2.1)

is a martingale if and only if

µ(θt−) +
1

2
σ2(θt−) +

∫
|z|≤1

[
eG(z,θt− ) −G(z, θt−)− 1

]
ν(θt− , dz)

+

∫
|z|>1

[
eH(z,θt− ) − 1

]
ν(θt− , dz) = 0,∀θt− ∈ E. (2.2.2)

(b) Furthermore if Lθt in (1.3.2) is replaced by M θ
t :

dM θ
t =σ(θt−)dBt +

∫
|z|≤1

G(z, θt−)ψ̄(θt− , dz, dt)

+

∫
|z|>1

H(z, θt−)ψ̄(θt− , dz, dt), (2.2.3)

then the solution process of (1.3.1) in (1.3.20) is indeed a martingale and is represented by:

xt =x0 exp{
[
− 1

2

∫ t

0
σ2(θs−)ds+

∫ t

0
σ(θs−)dBs

+

∫ t

0

∫
|z|>1

[
ln
(
H(z, θs−) + 1

)
−H(z, θs−)

]
ν(θs− , dz)ds

+

∫ t

0

∫
|z|≤1

ln (1 +G(z, θs−))ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|≤1

[
ln (1 +G(z, θs−))−G(z, θs−)

]
ν(θs− , dz)ds

+

∫ t

0

∫
|z|>1

ln (1 +H(z, θs−))ψ̄(θs− , dz, ds)

]
}. (2.2.4)

(c) Replacing H(z, θs), G(z, θs) and Lθs in (1.3.2) by eH(z,θs) − 1, eG(z,θs) − 1 and M θ in (2.2.3),
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respectively, the solution of the (IVP) (1.3.1) in (1.3.22) is a martingale if and only if:

xt =x0 exp{
[ ∫ t

0
σ(θs−)dBs +

∫ t

0

∫
|z|>1

H(z, θs−)ν(θs− , dz)ds

− 1

2

∫ t

0
σ2(θs−)ds+

∫ t

0

∫
|z|≤1

[
G(z, θs−)− eG(z,θs− ) + 1

]
ν(θs− , dz)ds

+

∫ t

0

∫
|z|≤1

G(z, θs−)ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

H(z, θs−)ψ̄(θs− , dz, ds)

]
}. (2.2.5)

(d) V (t, yt− , θt− , xt−) in (1.4.16) is a martingale if and only if LV (t, yt− , θt− , xt−) is identi-

cally equal to zero. In particular, from (1.4.37), the solution process of (1.4.1) is a local

martingale if and only if LV (t, yt− , θt− , xt−) in (1.4.38) is identically zero that is µ(θt−) +∫
|z|>1H(z, θt−)ν(θt− , dz) +

∫
|z|>1

∑
j∈E\{θt−}

[
(ez − 1)λθt− ,j(yt−)

]
b̄(z|θt− , j)dz = 0

We introduce and recall a few notations necessary for presenting the next lemma.

REMARK 2.2.1 We denote Φt a positive
(
P, (Ht ∨ L̄t)t∈[0,T ]

)
− martingale process with initial

value Φ0 = 1. In fact for x0 = 1, any one of the solution processes in Illustration 2.2.1 part (a),

I can be represented by Φt, that is the fundamental solution process of linear Lévy-type stochastic

differential equations. Moreover, Φt is called a density process of a probability measure P̄ with

respect to a given probability measure P .

Based on a Girsanov theorem for Lévy [44] and point [8] processes, we present a Girsanov-type

theorem for stochastic hybrid process described by (1.4.1). We highlight the effects of change of

measures on both time and state domains of decomposition with respect to (Lθt )t∈[0,T ], (βn)n≥0 and

(θt)t∈[0,T ]. (Tn)n≥0 are the jump times in Definition 1.2.1.

LEMMA 2.2.1 (Girsanov-type Theorem) Let η and Y be piecewise deterministic stochastic pro-

cesses defined on [0, T ] × R and [0, T ] × R × R into R, respectively. ξ =
(
ξi,j(s, z)

)
m×m is

a Rm×m−valued and H̄t−predictable process defined on [0, T ] × R into R. Let us consider the

process M θ
t defined by:

dM θ
t =

∫
z∈R

∑
j∈E\{θt−}

(ez − 1)N(dt, dz, {(θt− , j)}) + dLθt , (2.2.6)

where Lθt is defined in (1.3.2). Furthermore, we make the following assumptions:
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H1 ξ = (ξi,j(s, z))m×m,
(
λi,j(ys)

)
m×m defined in (1.2.9), η and Y satisfy the following condi-

tions: 

∫ t
0

∫
z∈R ξi,j(z, s)λi,j(ys−)b̄(z|i, j)dzds <∞

Y ≥ 0∫ t
0 η(s, θs−)µ(θs−)ds <∞∫
z∈R

[
G(z, θs−)1|z|≤1

+H(z, θs−)1|z|>1

][
Y (θs− , z, s)− 1

]
ν(θs− , dz) <∞∫

z∈R
[
Y (θs− , z, s)− 1

]2
ν(θs− , dz) <∞

(2.2.7)

H2 let Zt be the solution process of the following linear SDE,

dZt =Zt−

[
η(t, θt)σ(θt)dBs +

∫
z∈R

(
Y (θt, z, t)− 1

)
ψ̄(θt, dz, dt)

+
∑

(i,j)∈E2

∫
z∈R

[
ξi,j(t, z)− 1

]
N̄(dt, dz, {(i, j)})

]
Z0 = 1, (2.2.8)

where, N̄ = N − γ defined in (1.4.17) and Zt has the closed form representation:

Zt = exp{
[
−
∫ t

0

1

2
η(s, θs−)2σ(θs−)2ds+

∫ t

0
η(s, θs−)σ(θs−)dBs

+

∫ t

0

∫
z∈R

(
Y (θs− , z, s)− 1

)
ψ̄(θs− , dz, ds)

+

∫ t

0

∫
z∈R

[
ln (Y (θs− , z, s))− (Y (θs− , z, s)− 1)

]
ψ(θs− , dz, ds)

]
}

×
∏

(i,j)∈E2

exp{
[ ∫ t

0
(1− ξi,j(s, z))b̄(z|i, j)λi,j(ys−)dzds

+

∫ t

0

∫
z∈R

ln (ξi,j(s, z))N(ds, dz, {(i, j)})
]
}. (2.2.9)

Therefore, from Remark 2.2.1 and under a local equivalent probability measure P̄ with density

process Zt with respect to P , the following hold:

1. BP̄
t = −

∫ t
0 η(s, θs−)σ(θs−)ds+Bt is a Brownian motion for each θt− ∈ E,

2. νP̄ (θt− , ) = Y (θt− , t, )ν(θt− , ) P−almost surely,

3. γP̄ (dz, {(i, j)}) = ξi,j(t, z)b̄(z|i, j)λi,j(yt)dz P−almost surely,
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4. M θ
t defined in (2.2.6) can be expressed as follows:

dM θ
t =

[
µ(θt−) + σ2(θt−)η(t, θt−)

+

∫
|z|≤1

G(z, θt−)(Y (θt− , z, t)− 1)ν(θt− , dz)

+

∫
|z|>1

H(z, θt−)Y (θt− , z, t)ν(θt− , dz)

+
∑

j∈E\{θt−}

∫
z∈R

[ez − 1]γP̄ (dz, {θt− , j})
]
dt+ σ(θt−)dBP̄

+

∫
|z|≤1

G(z, θt−)ψ̄P̄ (θt− , dz, dt) +

∫
|z|>1

H(z, θt−)ψ̄P̄ (θt− , dz, dt)

+
∑

j∈E\{θt−}

∫
z∈R

[ez − 1]
[
N(dt, dz, {θt− , j})

− γP̄ (dz, {θt− , j})dt
]
. (2.2.10)

Proof. From (2.2.8), we note that E
[
Zt−Zs

∣∣H̄s ∨Ls
]

= 0, ∀s, t ∈ [0, T ] with s ≤ t. Hence, Zt is

a local martingale. From the initial condition Z0 = 1 in (2.2.8) and Illustration 2.2.1, Zt is a density

process of P̄ . Moreover, P̄ (A) =
∫
A Zt(w)dP (w), for A ∈ H̄t ∨ Lt. Consequently, P̄ is a local

equivalent probability measure with density Zt relative to P . From the definition of BP̄ in 1, it is

obvious that it is a Brownian motion with mean −
∫ t

0 η(s, θs−)σ(θs−)ds and variance t. It remains

to show that BP̄ is a local martingale with respect to P̄ . For this purpose, we use (2.2.8) and apply

Ito formula for the product ZBP̄ [47] and we have,

d(ZtB
P̄
t ) =ZtdB

P̄ +BP̄
t dZt + dZtdB

P̄
t

=ZtdB +BP̄
t dZt

=Zt
[
1 + η(t, θt−)σ(θt−)BP̄

t

]
dBt

+ ZtB
P̄
t

[ ∫
z∈R

(
Y (θt, z, t)− 1

)
ψ̄(θt, dz, dt)

+
∑

(i,j)∈E2

∫
z∈R

[
ξi,j(t, z)− 1

]
N̄(dt, dz, {(i, j)})

]
.

From this, we conclude that BP̄ is a P̄− continuous local martingale with quadratic variation t.

From Lévy characterization of Brownian motions, BP̄ is a P̄−standard Brownian motion. This

establishes 1. We now prove that νP̄ (θt− , dz) = Y (θt− , t, z)ν(θt− , dz) is the P̄−Lévy measure of
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ψ(θt− , , ). Knowing that P̄ and P are equivalent, following the argument[1], we define the condi-

tional characteristic function for the Poisson process ψ(θt− , , ) relative to the probability measure P̄

as follows:

EP̄
[

exp
[
iu

∫ t

0

∫
z∈R

ψ(θs− , dz, ds)
]∣∣HT

]
= exp

[ ∫ t

0

∫
z∈R

[(
eiu − 1

)]
νP̄ (θs, dz)

]
, (2.2.11)

where νP̄ is an intensity measure of ψ with respect to P̄ . Using the closed form expression of the

density process (2.2.9), the characteristic function in (2.2.11) is also computed as follows;

EP̄
[

exp{
[
iu

∫ t

0

∫
z∈R

ψ(θs− , ds, dz)
]
}
∣∣HT

]
=E
[
Zt exp{

[
iu

∫ t

0

∫
z∈R

ψ(θs− , dz, ds)
]
}
∣∣HT

]
=E
[

exp{
[ ∫ t

0

∫
z∈R

(
Y (θs− , z, s)− 1

)
ψ̄(θs− , dz, ds)

+

∫ t

0

∫
z∈R

[
ln (Y (θs− , z, s))− Y (θs− , z, s)

+ 1 + iu
]
ψ(θs− , dz, ds)

]
}
∣∣∣HT

]
= exp{

[ ∫ t

0

∫
z∈R

(
1− Y (θs− , z, s)

)
ν(θs− , dz)ds

]
}

× E
[

exp{
[ ∫ t

0

∫
z∈R

(
Y (θs− , z, s)− 1

)
ψ(θs− , dz, ds)

+

∫
z∈R

[
ln (Y (θs− , z, s))− (Y (θs− , z, s)− 1) + iu

]
ψ(θs, dz, ds)

]
}
∣∣∣HT

]
= exp{

[
−
∫ t

0

∫
z∈R

(
Y (θs− , z, s)− 1

)
ν(θs− , dz)ds

]
}

× E

[
exp{

[ ∫ t

0

∫
z∈R

[
ln (Y (θs− , z, s)) + iu

]
ψ(θs− , dz, ds)

]
}
∣∣HT

]
(2.2.12)

We note that
∫ t

0

∫
z∈R

[
ln (Y (θs− , z, s)) + iu

]
ψ(θs− , dz, ds) is a compound Poisson process. From

[1], (2.2.12) becomes,

EP̄
[

exp{
[
iu

∫ t

0

∫
z∈R

ψ(θs− , ds, dz)
]
}
∣∣HT

]
= exp{

[
−
∫ t

0

∫
z∈R

(
Y (θs− , z, s)− 1

)
ν(θs− , dz)ds

]
}

= exp{
[ ∫ t

0

∫
z∈R

[
eln (Y (θs,z,s))+iu − 1

]
ν(θs, dz)ds

]
}
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= exp{
[ ∫ t

0

∫
z∈R

[
Y (θs− , z, s)e

iu − Y (θs− , z, s)
]
ν(θs− , dz)

]
}

= exp{
[ ∫ t

0

∫
z∈R

[(
eiu − 1

)]
Y (θs− , z, s)ν(θs− , dz)

]
}, (2.2.13)

From (2.2.11) and (2.2.13), it is obvious that the intensity of Lévy jump poisson measure ψ, with re-

spect to P̄ , is ν̄ = Y ν P−almost surely. Based on the proof of 2, the proof of 3 can be reformulated,

analogously. The verification of (2.2.10) follows from algebraic computations. �

REMARK 2.2.2 We recall that under the historical probability measure P, (pi,j)(i,j)∈E2 in (1.2.5),

F (|i, j) in Lemma 1.2.1 and b̄(|i, j) in (1.4.6) are the transition probability matrix of the embedded

Markov chain, the sojourn time distribution and the log jump density, respectively. We denote

(pP̄i,j)(i,j)∈E2 , F P̄ (|i, j) and b̄P̄ (|i, j) the transition probability matrix, the conditional cumulative

distribution of sojourn times and the density of the log of jump due to the semi Markov process

from state i to state j at jump time Tn−1, under the probability measure P̄ . Using these notions and

part 3 of Lemma 2.2.1, we have

b̄P̄ (z|i, j)λP̄i,j(ys) = ξi,j(s, z)b̄(z|i, j)λi,j(ys),

with λP̄i,j(ys) = pP̄i,j
f P̄ (ys|i, j)

1−
∑

k 6=i p
P̄
i,jF

P̄ (ys|i, k)
. (2.2.14)

We further remark that P̄ is a risk neutral measure, if the processLθt−
∫ t

0 r(s)ds is a local martingale

with respect to P̄ , whenever the drift coefficient satisfies the condition:

µ(θt−)− r(t) + σ2(θt−)η(t, θt−) +

∫
|z|≤1

G(z, θt−)
(
Y (θt− , z, t)− 1

)
ν(θt− , dz)

+

∫
|z|>1

H(z, θt−)Y (θt− , z, t)ν(θt− , dz)

+
∑

j∈E\{θt−}

∫
z∈R

[ez − 1]γP̄ (dz, {(θt− , j)}) = 0. (2.2.15)

Given the 2-variate process (η(t, θt), Y (θt, z, t)) in (2.2.8), one can freely choose ξ. Hence, for each

choice of ξ, one gets a distinct risk neutral measure. Furthermore, by the application of the first and

the second fundamental theorem of asset pricing [4], the market under consideration is arbitrage

free and incomplete.

Following arguments in [26, 51, 53], we define two particular equivalent martingale measures,

namely the conditional and the unconditional minimum entropy martingale measure, respectively.
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2.2.1 Conditional minimum entropy martingale measure(CMEMM)

We define the conditional minimum entropy martingale measure pricing Lévy and semi Markov

jump risks. In the absence of risk associated with regime changes, a pricing kernel is computed

through a random Esscher transform. Without loss in generality, we assume that investors always

know past and future market regimes. Based on the idea in [52], we define the processRθ as follows;

Rθt =

∫ t

0

∫
z∈R

∑
j∈E\{θs−}

[
(ez − 1)N(ds, dz, {(θs− , j)})

]
+ Lθt , (2.2.16)

where Lθt , n(t) and βk are defined in (1.3.2),(1.2.3) and (1.4.1), respectively. Picking a locally

bounded process (αt)t∈[0,T ], we modify the process defined in (2.2.16) as:∫ t

0
αsdR

θ
s =

∫ t

0

∫
z∈R

∑
j∈E\{θs−}

αs−
[
(ez − 1)N(ds, dz, {(θs− , j)})

]
+

∫ t

0
αs−dL

θ
s. (2.2.17)

In the following, we utilize the modified process (2.2.17) to formulate a dynamic process for the

asset process.

DEFINITION 2.2.1 Let α be a locally bounded process. We assume that E
[
e
∫ t
0 αs−dR

θ
s
∣∣HT

]
<

∞, ∀t ∈ [0, T ]. We define the stochastic processes Zα and k(s, z, ds, dz) as follows;

Zαt =
e
∫ t
0 αs−dR

θ
s

E
[
e
∫ t
0 αs−dR

θ
s
∣∣HT

] ,∀t ≥ 0 (2.2.18)

and

k(s, z, ds, dz) =
∑

j∈E\{θs−}

αs−(ez − 1)N(ds, dz, {(θs− , j)}),∀s ≥ 0, z ∈ R. (2.2.19)

The stochastic process defined in (2.2.18) is called an Esscher transformation with Esscher param-

eters (αs)s∈[0,T ].

We first establish preliminary results useful for finding a necessary and sufficient condition under

which the probability measure Pα with density relative to P defined by the Esscher transform in

(2.2.18) is an equivalent martingale measure relative to the asset price process xt described by

(1.4.1).
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LEMMA 2.2.2 Under Definition 1.4.1, Remark 1.3.2 and the Esscher parameter (αs)s∈[0,T ] in Def-

inition 2.2.1, a stochastic process xαt exists and satisfies the following properties.

1.

E
[
xαt
∣∣HT

]
=

n(t)∏
i=0

E

[
exp

[
αi

∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)
]∣∣∣θi, θi+1

]
e
∫ Ti+1
Ti

fi(s)ds, (2.2.20)

where,

fi(s) =α(i)µ(θi) +
1

2
σ2(θi)α(i)

+

∫
|z|≤1

[
eα(i)G(z,θi) − 1− α(i)G(z, θi)

]
ν(θi, dz)

+

∫
|z|>1

[
eα(i)H(z,θi) − 1

]
ν(θi, dz), (2.2.21)

for i ∈ I(0,∞), s ∈ [0, T ];

2.

xαt
E
[
xαt
∣∣HT

] =

n(t)∏
i=0

exp
[
αi
∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]
e
∫ Ti+1
Ti

αs−dM
θi
s

E
[

exp
[
αi
∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]∣∣∣θi, θi+1

] , (2.2.22)

where αs−dM θi
s = αs−dL

θi
s − fi(s)ds;

3. E
[

xαt
E(xαt |HT )

∣∣HT

]
= 1;

4. Zαt =
xαt

E
[
xα
∣∣HT ] is a

(
P,HT ∨ L̄

)
−local martingale;

5. If Pα is a risk neutral measure with respect to Zαt , then under Pα we have:

(a) BPα
t = Bt −

∫ t
0 αs−σ(θs−)ds, is a Pα−standard Brownian motion process,

(b) νP
α
(θs− , dz) = e

[
H(z,θs− )1(|z|>1)+G(z,θs− )1|z|≤1

]
ν(θs− , dz), is a Pα−predictable com-

pensator of the Poisson random measure ψ(j, ) for all j ∈ E,

(c) the density of the n-th jump coefficient βn is
exp

[ ∫ Tn+1
Tn

∫
z∈R k(s,z,ds,dz)

]
E
[

exp

[ ∫ Tn+1
Tn

∫
z∈R k(s,z,ds,dz)

]
|θn,θn+1

] .

44



Proof. From Definition 1.4.1, 0 = T0 ≤ T1 ≤ T2 ≤ ... ≤ Tn−1 are the regime switching times

caused by the semi Markov process prior to t. For notational convenience, we denote θ−1 = θ0.

Under the assumption of the Lemma, the solution process of (1.4.1) in the context of (1.4.2) and the

simple return process (2.2.17) exists and it is represented as

xαt =

n(t)∏
i=0

exp
[ ∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)
]
e
∫ Ti+1
Ti

αs−dL
θi
s ,

with β0 = x0 = 1. For t ∈ [Tn, Tn+1], from the independence of Lévy and semi Markov processes,

we have:

E
[
xαt |HT

]
=

n−1∏
i=0

[
E
[

exp
[ ∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)
]∣∣θi−1, θi

]
× E

[
e
∫ Ti+1
Ti

αs−dL
i
se

∫ t
Ti
αs−dL

θi
s |HT

]]
. (2.2.23)

This, together with an application of the Lévy Kintchine formula [55] yields,

E
[
xαt

∣∣∣HT

]
=

n(t)∏
i=0

E

[
exp{

[ ∫ Ti+1

Ti

∫
z∈R

k(s, z, ds, dz)
]
}
∣∣∣∣θi−1, θi

]

×

[
exp{

∫ Ti+1

Ti

[
αs−µ(θi) +

1

2
σ2(θi)α

2
s−

+

∫
|z|≤1

[
eαs−G(z,θi) − 1− αs−G(z, θi)

]
ν(θi, dz)

+

∫
|z|>1

[
eαs−H(z,θi) − 1

]
ν(θi, dz)

]
ds}

]
This completes the proof of 1. For the proof of 2, we consider

xαt
E
[
xα
∣∣HT

] . (2.2.24)

From (2.2.21), (2.2.24), we obtain

xαt
E
[
xα
∣∣HT

]
=

n(t)∏
i=0

exp
[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]
exp

[ ∫ Ti+1

Ti
αs−dL

θi
s

]
n(t)∏
i=0

E

[
exp

[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]∣∣∣∣θj , θj+1

]
exp

[ ∫ Tj+1

Tj
fj(s)ds

]
=

n(t)∏
i=0

exp
[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]
exp

[ ∫ Ti+1

Ti

[
αs−dL

θj
s − fi(s)ds

]]
E

[
exp

[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]∣∣∣∣θj−1, θj

] . (2.2.25)
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From (2.2.3), (2.2.17), (2.2.21) and (2.2.25), we observe that αs−dL
θj
s − fj(s)ds has a form similar

to (2.2.3), that is

αs−dL
θj
s − fj(s)ds = αs−dM

θj
t , (2.2.26)

with coefficients G and H replaced by eG− 1 and eH − 1, respectively, hence establishing 2. Using

1, (2.2.25) and (2.2.26), we further remark that,

E

[
xαt

E
[
xαt
∣∣HT

]∣∣∣HT

]

= E

[
n(t)∏
i=0

exp{
[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]
} exp{

[ ∫ Ti+1

Ti
αs−dM

θi
s

]
}

E

[
exp{

[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]
}
∣∣∣∣θi, θi+1

] ∣∣∣HT

]

=

n(t)∏
i=0

E

[
exp{

[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]
}
∣∣∣∣θi−1, θi

]
E

[
E

[
exp{

[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]
}
∣∣∣∣θi, θi+1

]∣∣∣∣θi−1, θi

]
× E

[
exp{

[ ∫ Ti+1

Ti

[
αs−dL

θi
s − fi(s)ds

]]
}
∣∣∣HT

]
=

n(t)∏
i=0

1 = 1, for t ∈ [0, T ],

which establishes 3. For the proof of 4 we consider

xαt

E
[
xαs

∣∣HT ]
xαs

E
[
xαs

∣∣HT ] =

n(t)∏
i=n(s)+1

exp
[
αi
∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]
E

[
exp

[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]∣∣∣∣θi−1, θi

]
× exp

[ ∫ Ti+1

Ti

[
αs−dM

θi
s

]]
.

The conditional expectation with respect to HT ∨ L̄s yields

E
[ xαt
E
[
xαt
∣∣HT

]∣∣∣HT ∨ L̄s
]

=
xαs

E
[
xαs
∣∣HT

] .
This proves 4. Moreover, from 1, 4 and (2.2.22), Zα is a probability density process of a probability

measure Pα with respect to P . The proof of statements in 5a and 5b of 5 follow by imitating the

proofs of (1) and (2) of Lemma 2.2.1. We only establish 5c. For B ⊂ Bk and t ∈ [Tk, Tk+1). In
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fact

EP
α[

1B
]

= E
[
1BZ

Pα

t

]
=E
[
E
[
1BZ

Pα

t |HT

]]
,

=E

[
E

[
1B

n(t)∏
i=0

exp
[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]
E

[
exp

[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]∣∣∣∣θi−1, θi

]∣∣∣∣HT

]]

=E

[
1B

exp
[ ∫ Tk+1

Tk

∫
z∈R k(s, z, ds, dz)

]
E

[
exp

[ ∫ Tk+1

Tk

∫
z∈R k(s, z, ds, dz)

]∣∣∣∣θk−1, θk

]]

×
n(t)∏

i=1,i 6=k
E

[
exp

[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]
E

[
exp

[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]∣∣∣∣θi−1, θi

]∣∣∣∣θi−1, θi

]

=E

[
1B

exp
[ ∫ Tk+1

Tk

∫
z∈R k(s, z, ds, dz)

]
E

[
exp

[ ∫ Tk+1

Tk

∫
z∈R k(s, z, ds, dz)

]∣∣∣∣θk−1, θk

]].

Hence, ∀B ∈ Bk,EP
α[

1B
]

= E
[
1B

exp

[ ∫ Ti+1
Ti

∫
z∈R k(s,z,ds,dz)

]
E

[
exp

[ ∫ Ti+1
Ti

∫
z∈R k(s,z,ds,dz)

]∣∣∣∣θk−1,θk

]]. From Radon Nikodym

theorem [44], the density of βk under Pα is
exp

[ ∫ Tk+1
Tk

∫
z∈R k(s,z,ds,dz)

]
E

[
exp

[ ∫ Tk+1
Tk

∫
z∈R k(s,z,ds,dz)

]∣∣∣∣θk−1,θk

] . This completes

the proof of the Lemma. �

In the following lemma, we provide a sufficient condition for the price process to be a
(
Pα, (HT ∨

L̄t)t∈[0,T ]

)
-martingale. The result obtained will be used to derived the martingale condition on the

discounted price process.

LEMMA 2.2.3 In addition to assumptions of Lemma 2.2.2, we assume that
∫
|z|>1

(
H(z, θs) +

1
)
eα(j)H(z,θs)ν(j, dz) <∞, ∀j ∈ E. Then the following results hold:

1. x in (1.4.1) is a
(
Pα,(HT ∨ L̄t)t∈[0,T ]

)
-martingale measure provided that:

µ(θn) + αtσ
2(θn) +

∫
|z|≤1

G(z, θn)
[
eαtG(z,θn) − 1

]
ν(θn, dz)

+

∫
|z|>1

H(z, θn)eαtH(z,θn)ν(θn, dz) = 0, (2.2.27)

EPα
[
βn
∣∣θn−1, θn

]
= 1,∀t ∈ (Tn, Tn+1),∀n ∈ I(0,∞) (2.2.28)

47



2. the discounted price process x̃t = e
∫ t
0 rsdsxt, is a

(
Pα,(HT ∨ L̄t)t∈[0,T ]

)
-martingale if:

µ(θn) + αtσ
2(θn) +

∫
|z|≤1

[
G(z, θn)eαtG(z,θn) −G(z, θn)

]
ν(θn, dz)

+
∫
|z|>1

[
eαtH(z,θn) − 1

]
ν(θn, dz) = rt,

EPα
[
βn
∣∣θn−1, θn

]
= 1, ∀t ∈ (Tn, Tn+1),∀n ∈ I(0,∞);

(2.2.29)

3. Let α? and Pα
?

be a solution process of equation (2.2.27) and the probability measure associ-

ated with the density process Zα
?
, respectively. Under Pα

?
, the process Rθt in (2.2.16) could

be expressed as follows:

dRθt =

∫
z∈R

∑
j∈E\{θt−}

αt−(ez − 1)N(dt, dz, {(θt− , j)}) + rt−dt+ σ(θt−)dBPα
?

+

∫
|z|≤1

G(z, θt−)
[
ψ(θt− , dt, dz)− νP

α?

(θt− , dz)dt
]

+

∫
|z|>1

H(z, θt−)
[
ψ(θt− , dt, dz)− νP

α?

(θt− , dz)dt
]
,

with

EPα?
[
βn
∣∣θn−1, θn

]
= 1.

Proof. From Radon Nicodym theorem, xt is a
(
Pα, (HT ∨ L̄t)t∈[0,T ]

)
-martingale if and only if

xtZ
α
t is a

(
P, (HT ∨ L̄t)t∈[0,T ]

)
-martingale. From (1.3.20) and (1.4.1):

xtZ
α
t

= xsZ
α
s

n(t)∏
i=n(s)+1

[
βi exp

[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]
e
∫ Ti+1
Ti

[
αs−dM

θi
s +dL̄

θi
s

]
E

[
exp

[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]∣∣∣∣θi−1, θi
∣∣θi−1, θi

] ]
(2.2.30)

with L̄θt defined as follows:

dL̄θs =
[
µ(θs−)− 1

2
σ2(θs−) +

∫
|z|≤1

[
ln (1 +G(z, θs−))−G(z, θs−)

]
ν(θs− , dz)

]
ds

+ σ(θs−)Bs +

∫
|z|≤1

ln (1 +G(z, θs−))ψ̄(θs− , dz, ds)

+

∫
|z|>1

ln (1 +H(z, θs−))ψ(θs− , dz, ds) (2.2.31)
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From (2.2.3), (2.2.30), and (2.2.31) we have:

αs−dM
θi
s + dL̄θs

=

[
µ(θs−)− 1

2
α2
s−σ

2(θs−)− 1

2
σ2(θs−)ds

−
∫
|z|>1

[
eαs−H(z,θs− ) − 1

]
ν(θs− , dz)

+

∫
|z|≤1

[
αs−G(z, θs−)− eαs−G(z,θs− ) + 1

+ ln (G(z, θs−) + 1)−G(z, θs−)
]
ν(θs− , dz)ds

]
+ (αs− + 1)σ(θs−)dBs

+

∫
|z|≤1

[
αs−G(z, θs−) + ln (G(z, θs−) + 1)

]
ψ̄(θs− , dz, ds)

+

∫
|z|>1

[
αs−H(z, θs−) + ln (H(z, θs−) + 1)

]
ψ(θs− , dz, ds) (2.2.32)

From (1.3.20), d
[
e
∫ t
0 d(αs−M

θ
s+L̄θs)

]
= e

∫ t
0 d(αs−M

θ
s+L̄θs)dL?t with:

dL?s =
[
µ(θs−) + αs−σ

2(θs−)

+

∫
|z|≤1

[
G(z, θs−)eαs−G(z,θs− ) −G(z, θs−)

]
ν(θs− , dz)ds

−
∫
|z|>1

H(z, θs−)eαs−H(z,θs− )ν(θs− , dz)
]
ds+ σ(θs−)(αs− + 1)dBs

+

∫
|z|≤1

[
(G(z, θs−) + 1)eαs−G(z,θs− ) − 1

]
ψ̄(θs− , dz, ds)

+

∫
|z|>1

[
(H(z, θs−) + 1)eαs−H(z,θs− ) − 1

]
ψ̄(θs− , dz, ds) (2.2.33)

We now derive conditions under which xtZαt , is a (P, (HT ∨ L̄t)t∈[0,T ])-martingale process. xtZαt

is a (P, (HT ∨ L̄t)t∈[0,T ])-martingale process if and only if:

E
[
xtZ

α
t

∣∣HT ∨ L̄s
]

= xsZ
α
s , ∀s, t ∈ [0, T ] (2.2.34)

Applying Lemma 1.4.1 to V (s, ys, θs, Zsxs) = xtZt and replacing G, H , σ, µ and βi by,

(G(z, θs) + 1)eαsG(z,θs) − 1

,(H(z, θs) + 1)eαsH(z,θs) − 1,

(αs + 1)σs,

µ(θs) + αsσ
2(θs) +

∫
|z|≤1

[
G(z, θs)e

αsG(z,θs) −G(z, θs)
]
ν(θs, dz)
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−
∫
|z|>1

[
eαsH(θs) − 1

]
ν(θs, dz)

and

βi exp
[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]
E

[
exp

[ ∫ Ti+1

Ti

∫
z∈R k(s, z, ds, dz)

]∣∣∣∣θi−1, θi

] ,
respectively, we obtain;

xtZ
α
t − xsZαs

=

∫ t

s
xu−Z

α
u−

[
µ(θu−) + αu−σ

2(θu−)

+

∫
|z|≤1

[
G(z, θu−)eαu−G(z,θu− ) −G(z, θu−)

]
ν(θu− , dz)

−
∫
|z|>1

[
eαu−H(z,θu− ) − 1

]
ν(θu− , dz)

+

∫
|z|>1

xu−Z
α
u−
[
(H(u, θu−) + 1)eαu−H(z,θu− ) − 1

]
ν(θu− , dz)

]
du

+

∫ t

s

∫
z∈R

∑
j∈E\{θu−}

xu−Z
α
u−(ez − 1)N(du, dz, {θu− , j})

+ sum of martingale terms︸ ︷︷ ︸ .
Taking the conditional expectation, we obtain;

E
[
xtZ

α
t − xsZαs

∣∣HT ∨ L̄s
]

=

∫ t

s
E
[
xu−Z

α
u− |HT ∨ L̄s

][
µ(θu−) + αu−σ

2(θu−)

+

∫
|z|≤1

[
G(z, θu−)eαu−G(z,θu− ) −G(z, θu−)

]
ν(θu− , dz)

−
∫
|z|>1

H(z, θu−)eαu−H(z,θu− )ν(θu− , dz)

]
du

+ E

[ ∫ t

s

∫
z∈R

∑
j∈E\{θu−}

αu−xu−Z
α
u−(ez − 1)N(du, dz, {(θu− , j)})

∣∣∣∣HT ∨ Ls
]

=0, ∀s, t ∈ [0, T ], (2.2.35)

for any s, t and for small ∆s s, t = s+ ∆s ∈ (Tn, Tn+1) for some n ∈ I(1,∞). This together with

(2.2.35) yields;

µ(θs) + αsσ
2(θs) +

∫
|z|≤1

[
G(z, θs)e

αsG(z,θs) −G(z, θs)
]
ν(θs, dz)
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+

∫
|z|>1

H(s, θs)e
αsH(z,θs)ν(θs, dz)∆s = 0, ∀s ∈ (Tn, Tn+1), n ∈ I(1,∞). (2.2.36)

Lastly, we assume [s, t[= [Tn, Tn+1[. When ∆s is small. There is one regime change [s, t[ at

t = Tn. Using (2.2.36), (2.2.35) becomes,

E

[ ∫ Tn+1

Tn

∫
z∈R

∑
j∈E\{θu−}

αu−
[
xu−Z

α
u−
]∣∣∣∣HT ∨ LTn

]
= 0,∀n ∈ I(0,∞)

ZTnxnE

[
βne

αn(βn−1)

E
[
eαn(βn−1)

∣∣θn−1, θn
]∣∣∣∣θn−1, θn

∣∣∣∣HT ∨ L̄Tn
]
− 1 = 0, ∀n ∈ I(0,∞)

E

[
βne

αn(βn−1)

E
[
eαn(βn−1)

∣∣θn−1, θn
]∣∣∣∣θn−1, θn

]
− 1 = 0, ∀n ∈ I(0,∞),

E

[ βn exp
[ ∫ Tn+1

Tn

∫
z∈R k(s, z, ds, dz)

]
E
[

exp
[ ∫ Tn+1

Tn

∫
z∈R k(s, z, ds, dz)

∣∣θn−1, θn

]]∣∣∣∣θn−1, θn

]
− 1 = 0,∀n ∈ I(0,∞),

EPα
[
βn
∣∣θn−1, θn

]
− 1 = 0, ∀n ∈ I(0,∞). (2.2.37)

This completes the proof of part 1. Part 2 is a direct consequence of part 1 whenever µ(θs−) is

replaced by µ(θs−)−rs. For the proof of part 3, we use (2.2.27) to derive the risk neutral dynamic of

the processRθ defined in (2.2.16). We denoteBPα
?

and νP
α?

the standard Brownian motion and the

intensity process of the Poisson process ψ under the probability measure Pα
?
, respectively. From

Lemma 2.2.2 part (5a), solving for B in BPα
?

t = Bt −
∫ t

0 α
?
s−σ(θs−)ds, adding and subtracting

νP
α?

inside the Poisson integrals, we obtain:

dRθt =

∫
z∈R

∑
j∈E\{θt−}

(ez − 1)N(ds, dz, {(θt− , j)}) + µ(θt−)dt+ σ(θt−)dBt

+

∫
|z|≤1

G(z, θt−)ψ̄(θt− , dz, dt) +

∫
|z|>1

H(z, θt−)ψ(θt− , dz, dt)

=

∫
z∈R

∑
j∈E\{θt−}

(ez − 1)N(dt, dz, {(θt− , j)}) +

[
µ(θt−) + σ2(θt−)α?t−

+

∫
|z|≤1

G(z, θt−)
[
νP

α?

(θt− , dz)− ν(θt− , dz)
]

+

∫
|z|>1

H(z, θt−)νP
α?

(θt− , dz)

]
dt

+ σ(θt−)dBPα
?

+

∫
|z|≤1

G(z, θt−)
[
ψ(θt− , dt, dz)− νP

α?

(θt− , dz)dt
]

+

∫
|z|>1

H(z, θt)
[
ψ(θt, dt, dz)− νP

α?

(θt, dz)dt
]
, ∀t ∈ [Tn, Tn+1] (2.2.38)
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From Lemma 2.2.2 part (5a), one gets νP
α
(j, dz) = e

[
H(z,j)1(|z|>1)+G(z,j)1|z|≤1

]
ν(j, dz). Hence,

dRθt =

∫
z∈R

∑
j∈E\{θt−}

(ez − 1)N(dt, dz, {(θt− , j)}) +
[
µ(θt−)dt+ σ2(θt−)α?t−

+

∫
|z|≤1

G(z, θt−)
[
e
α?θ
t−
G(z,θt− ) − 1

]
ν(θt− , dz)dt+ σ(θt−)dBPα

?

+

∫
|z|>1

H(z, θt−)e
α?θ
t−
H(z,θt− )

ν(θt− , dz)dt
]

+

∫
|z|≤1

G(z, θt−)
[
ψ(θt− , dt, dz)− να

?
(θt− , dz)dt

]
+

∫
|z|>1

H(z, θt)
[
ψ(θt, dt, dz)− νP

α?

(θt, dz)dt
]

(2.2.39)

α? satisfies the condition 1. Therefore, (2.2.39) becomes;

dRαt =

∫
z∈R

∑
j∈E\{θt−}

(ez − 1)N(ds, dz, {(θt− , j)}) + σ(θt−)dBPα
?

+

∫
|z|≤1

G(z, θt−)
[
ψ(θt− , dt, dz)− νP

α?

(θt− , dz)dt
]

+

∫
|z|>1

H(z, θt−)
[
ψ(θt− , dt, dz)− νP

α?

(θt− , dz)dt
]
, ∀t ∈ [Tn, Tn+1], (2.2.40)

with

EPα
[
βn
∣∣θn−1, θn

]
= 1,

which proves 3. This establishes the lemma. �

In the next remark, we introduce a particular case of Rθt corresponding to the simple return process

[52] and we present a few properties of conditional entropies [67].

REMARK 2.2.3 Let P1 and P2 be two absolutely continuous probability measures relative to P . We

recall three important properties of conditional entropies [51]:

1. HHT
HT∨Lt(P1|P ) ≥ 0;

2. HHT
G (P1|P ) ≤ HHT

K (P1|P ), if K ⊂ HT ∨ LT ;

3. If P1 is a
(
P, (HT∨L̄t)t∈[0,T ]

)
−absolutely continuous martingale measure, and P2 is a probabil-

ity measure equivalent toP such that ln (dP2
dP ) is integrable with respect toP1, thenHHT

HT∨LT (P1|P ) ≥

EP1

[
ln (dP2|dP )|HT

]
.
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We now state and prove the conditional minimum entropy property of the martingale measure Pα
?

when Rθt is the simple return process of xt in Remark 2.2.3.

LEMMA 2.2.4 Let Q ∈M(x̃, P ) = {Q� P : x̃ is a
(
Q, (HT ∨ L̄t)t∈(0,T )

)
− Local martingale}.

Let Pα
?

be defined as in Definition 2.2.1 with α? solution process of (2.2.29). Then the following

inequality holds:

HHT
HT∨L̄T

(Q|P ) ≥ HHT
HT∨L̄T

(Pα
? |P ), ∀Q ∈M(x̃, P ).

WhereHHT
L̄T∨HT

is the conditional entropy defined in [26].

Proof. We prove the lemma in two steps. The first step consists in minimizing the conditional

relative entropy of any probability measure Q in the setM(x̃, P ). From (2.2.18) and Remark 2.2.3,

one notes that Zαt can also be expressed as follows;

Zαt =
e
∫ t
0 αs−dR̃

θ
s

E
[
e
∫ t
0 αs−dR̃

θ
s
∣∣HT

] ,∀t ≥ 0. (2.2.41)

By definition of an absolutely continuous local martingale measure, the discounted stock price x̃ =

e−
∫ t
0 rs−dsxt is a (Q,HT ∨ L̄t)t∈[0,T ]-local martingale process. The simple return processes Rt

and R̃t are associated with the price process xt and the discounted price process x̃t with respect

to(3.2.4), defined by dRθt = dxt
xt−

and dR̃θt = dx̃t
x̃t−

, respectively. Q ∈ M(x̃, P ) implies that x̃ is a

(P,HT ∨ L̄t)−martingale. Hence, R̃θt is a Q−local martingale process. Furthermore,
∫ t

0 αs−dR̃
θ
s is

a local Q−martingale. As a Q−local martingale,
∫ t

0 α
?
s−dR̃

θ is therefore integrable with respect to

Q. From (2.2.41) and (2.2.21) we have,

ln
(
Zα

?

t

)
=

∫ t

0
α?s−dR̃

θ
s −

∫ t

0
g(s)ds, (2.2.42)

where,

g(t) = ln
(
E
[
e
∫ t
0 α

?
s−
dR̃s |HT

])
. (2.2.43)

From (2.2.42), ln
(
Zα

?

t

)
is integrable with respect to Q as a sum of two integrable terms. Let

(tn)n∈I(0,∞) be a local sequence of increasing stopping times with limn→∞ tn = T , associated

with the local martingale
∫ t

0 αs−dR̃
θ
s . By definition of local sequences, the process

∫ tn∧t
0 αs=dR̃

θ
s
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is a Q−martingale. Hence, for any t ∈ [0, T ], we have;

HHT
HT∨L̄T

(Q|P ) ≥ HHT
HT∨L̄t∧tn

(Q|P ), ( remark 2.2.3)

≥ EQ
[

ln
(dPα?
dP

∣∣
HT∨L̄t∧tn

)∣∣HT

]
, ( remark 2.2.3). (2.2.44)

From (2.2.42) we have

EQ

[
ln (

dPα
?

dP

∣∣
HT∨L̄t∧tn

)
∣∣HT

]
= EQ

[
ln
(
Zα

?

t∧tn
)∣∣∣HT

]
= EQ

[ ∫ t∧tn

0
αs−dR̃s

∣∣HT

]
+ EQ

[
g(t ∧ tn)|HT

]
= EQ

( ∫ t∧tn

0
αsdR̃s

∣∣HT ∨ L̄0

)
+ EQ

[
g(t ∧ tn)|HT

]
= EQ

[
g(t ∧ tn)

∣∣HT

]
,

since
∫ t∧tn

0 αs−dR̃(s) is a
(
HT ∨ L̄t

)
t∈[0,T ]

−martingale. We note that,
∣∣∣EQ[g(t ∧ tn)

∣∣HT

]∣∣∣ ≤
EQ
[∣∣g(T )

∣∣∣∣HT

]
= g(T ), ∀t ∈ [0, T ], since from (2.2.43), g is HT−measurable. Hence, by the

Dominated Convergence theorem we have,

lim
n→∞

EQ
[
g(t ∧ tn)

∣∣HT

]
= EQ

[
g(T )

∣∣HT

]
= |g(T )|. (2.2.45)

Taking the limit in (2.2.44), we obtain;

HHT
HT∨L̄T

(Q|P ) ≥ EQ
[
g(T )

∣∣HT

]
= g(T ). (2.2.46)

The second step of the proof consists in showing that the conditional relative entropy of the random

Esscher transform achieves the minimum value in (2.2.46). Using (2.2.41) and the Pα
?−martingale

property of R̃t the relative entropy of Pα
?

is computed as follows;

HHT
HT∨L̄T

(Pα
? |P )

= EPα?
[

ln (
dPα

?

dP
)
∣∣HT

]
= EPα?

[ ∫ T

0
αs−dR̃s

∣∣HT ∨ L̄0

]
+ EPα?

[
g(T )

∣∣HT

]
, ( from (2.2.41))

= EPα?
[
g(T )

∣∣HT

]
= g(T ), (R̃θt is a Pα

?
a martingale).

From (2.2.46), the lemma follows. �
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2.2.2 Unconditional minimum entropy martingale measure (UMEMM)

We will define an equivalent martingale probability measure and we will establish that it has the

unconditional minimum entropy martingale measure property. (λi,j(t))m×m is the intensity matrix

of the semi Markov process θ from (1.2.9) and N is the point process defined in Definition 1.4.2.

DEFINITION 2.2.2 Let Q be a local absolutely continuous probability measure with respect to the

historical probability measure P on the filtered measurable space
(

Ω,HT ∨ L̄T ,
(
Ht ∨ L̄t

)
t∈[0,T ]

)
;

Q̂ and P̂ , denote the regular versions of the conditional probabilites P (|HT ) and Q(|HT ) over

HT ∨ L̄T . ZQt denotes a local martingale process with initial value 1, representing the density

process of Q with respect to P . (ξi,j(t))m×m denotes a matrix entries with predictable processes.

Moreover, the rows add up to 0 and satisfy
∑

(i,j)∈E2

∫ t
0

∣∣ξi,j(s)λi,j(s)∣∣ds < ∞. N and γ are the

processes defined in Definition 1.4.2 and Lemma 1.4.1, respectively.

We first recall a decomposition theorem [53] and we establish a Girsanov-type lemma necessary in

the proof of the UMEMM property.

LEMMA 2.2.5 Let Q, P , ZQt , Q̂(w, ), (ξi,j)m×m, N , N̄ and P̂ (w, ) be processes and probability

measures defined in Definitions 2.2.2, 1.4.2 and Lemma 1.4.1. The following claims hold.

1. there exist two density processes ZLt and ZHT such that;

ZQt = ZLt × ZHT (2.2.47)

with:

dQ̂

dP̂

∣∣∣
L̄t∨HT

= ZLt and
dQ

dP

∣∣∣
HT

= ZHT .

2. If
(
λi,j(t)

)
m×m is the matrix with conditional intensity of the semi Markov process θ in (1.2.9)

and λi,j(t) 6= 0, ∀t ∈ [0, T ], then the following claims are equivalent;

(a)

dQ

dP

∣∣
Ht = ZHt ,

where ZH solves the SDE:

dZHt = ZHt−
∑

(i,j)∈E2

[
− 1 +

ξi,j(t
−)

λi,j(t−)

]
N̄(dt,R, {(i, j)}), ZH0 = 1.
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(b) Under probability measure Q, with density process ZHt , the point process M has condi-

tional intensities matrix
(
ξi,j(t)

)
m×m.

Proof. The proof of 1 follows closely [53]. As for 2, we note that 2a ⇒ 2b follows from the

proof of Lemma 2.2.1. We now aim at proving that 2b ⇒ 2a. From Definition 2.2.2 and 2b,

ZHt and N(,R, {(i, j)}) − γ(R, {(i, j)}) are
(
P, (Ht)t∈[0,T ]

)
−martingale processes. From the

martingale representation property of N̄(t,R, {(i, j)}) = N(t,R, {(i, j)}) − γ(R, {(i, j)}) =

N(t,R, {(i, j)}) − λi,j(t), there exists an m ×m matrix of Ht−predictable processes (si,jt )m×m

such that:

dZHt =
∑

(i,j)∈E2

si,j
t−N̄(dt,R, {(i, j)}).

As ZHt > 0 P -almost surely, there exists an m ×m matrix of predictable processes s̃i,jt satisfying

si,jt = ZHt s̃
i,j
t . Hence,

dZHt = ZHt−
∑

(i,j)∈E2

s̃i,j
t−N̄(dt,R, {(i, j)}).

From Lemma 2.2.1, the matrix of conditional Q−intensities of N(,R, {(i, j)}) is λi,j(t)(1 +

s̃i,jt ). One needs to prove that the conditional intensity of N(,R, {(i, j)}) with respect to Q is

ξi,j(t),∀i, j ∈ I(1,m). Hence, equating both matrices and solving for s̃i,j yields;

λi,j(t)(1 + s̃i,jt ) = ξi,j(t), ∀t ∈ [0, T ], (i, j) ∈ E2,

and hence, s̃i,jt =
[
− 1 +

ξi,j(t)

λi,j(t)

]
, ∀t ∈ [0, T ], (i, j) ∈ E2.

Therefore, ZH is solution process of the SDE,

dZHt = ZHt−
∑

(i,j)∈E2

[
− 1 +

ξi,j(t
−)

λi,j(t−)

][
N(dt,R, {(i, j)})− ξi,j(t−)dt

]
Z0 = 1.

From Lemma 2.2.1, the intensity matrix of the semi Markov process θ under the probability measure

Q is (ξi,j(t))m×m. This completes the proof of 2 and thence the lemma. �

We define a density process which we prove is the unconditional minimum entropy martingale

measure.
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DEFINITION 2.2.3 Let Pα
?,ξ be a risk neutral measure with density Zt = Zα

?

t × Z
ξ
T , where Zα

?

is introduced in Definition 2.2.1, with Rθ the simple return process of defined in (2.2.16). α? is the

solution process of (2.2.29) and Zξt is solution of the SDE dZξt = Zξ
t−
∑

(i,j)∈E2 s̃
i,j
t dM̄

i,j
t .

dP (α?,ξ)

dP

∣∣∣
HT∨L̄T

=
e
∫ T
0 α?

s−
dRs

E
(
e
∫ T
0 α?

s−
dRs
∣∣HT

) ∏
(i,j)∈E2

exp{
[ ∫ T

0
(1− ξi,j(s−))λi,j(s

−)ds

+

∫ T

0
ln
(
ξi,j(s

−)
)
N(ds,R, {(i, j)})

]
}.

We also define a functional F as follows;

F
(
(ξi,j)

)
=E

[
g(T ) +

∑
(i,j)∈E2

[ ∫ T

0
(1− ξi,j(s−))λi,j(s

−)ds

+

∫ T

0
ln (ξi,j(s

−))N(ds,R, {(i, j)})
]

∏
(i,j)∈E2

exp{
[ ∫ T

0
(1− ξi,j(s−))λi,j(s

−)ds

+

∫ T

0
ln (ξi,j(s

−))N(ds,R, {(i, j)})
]
}

]
,

where g is defined in (2.2.43).

We will next show that under a particular choice of ξ, Pα
?,ξ has the unconditional minimum entropy

martingale measure property.

LEMMA 2.2.6 We denote Pα
?,ξ̄ and F the risk neutral measure and the functional from Definition

2.2.3, respectively. If Q is a
(
Ht ∨ L̄t

)
t∈[0,T ]

risk neutral measure and (ξ̄i,jt )m×m minimizes the

functional F , then the following holds:

HHT∨L̄T
(
Q
∣∣P ) ≥ HHT∨L̄T

(
P (α?,ξ̄)

∣∣P ).
Proof. Let Q be a risk neutral measure. By definition of risk neutral measures, Q is locally

absolutely continuous with respect to P . From Lemma 2.2.5, there exists a process ZLt and a

process ZHt such that dQdP
∣∣∣
HT∨L̄t

= ZLt × ZHT . From Lemma 2.2.5, we have:

ZHt =
∏

(i,j)∈E2

exp
[ ∫ t

0
(1− ξi,j(s−))λi,j(ys−)ds+

∫ T

0
ln (ξ(s−))N(ds,R, {(i, j)})

]
,
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for some m×m matrix of Ht-predictable processes ξi,j(s) as in Definition 2.2.2.

HHT∨L̄T
(
Q
∣∣P )

=E
[

ln (
dQ

dP
)
dQ

dP

]
=E
[
ZLTZ

H
T (ln (ZLT )) + ZLTZ

H
T ln (ZHT )

]
=E
[
E
[
ZLTZ

H
T ln (ZLT )

∣∣HT

]
+ E

[
ZLTZ

H
T ln (ZHT )|HT

]]
=E
[
ZHT E

[
ZLT ln (ZLT )

∣∣HT

]
+ ZHT ln (ZHT )

]
=E
[
ZHT H

HT
HT∨L̄T

(Q̂|P̂ ) + ZHT ln (ZHT )
]

≥E
[
ZHT H

HT
HT∨L̄T

(P̄α|P̂ ) + ZHT ln (ZHT )
]

=E

[
g(T ) +

∑
(i,j)∈E2

[ ∫ T

0
(1− ξi,j(s−))λi,j(ys−)ds

+

∫ T

0
ln (ξi,j(s

−))N(ds,R, {(i, j)})
]

×
∏

(i,j)∈E2

exp{
[ ∫ T

0
(1− ξi,j(s−))λi,j(s

−)ds

+

∫ T

0
ln (ξi,j(s

−))N(ds,R, {(i, j)})
]
}

]
=F (ξi,j)

≥F (ξ̄i,j), ( definition of ξ̄)

=E
[

ln (
dP̄α

?,ξ̄

dP
)
dP̄α

?,ξ̄

dP

]
=HHT∨L̄T

(
P̄α

?,ξ̄
∣∣P ),

which proves the result. �

2.2.3 Siu and Yang Kernel pricing all risks

Let α be a piecewise constant stochastic process. We define the density process Zαt of a probability

measure, Pα, on the filtration (Ht ∨ L̄t)t∈[0,T ], with an Esscher transform with parameter α. The

pricing kernel discussed here is based on the work in [64], in the context of a Markov switching

asset price process.
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DEFINITION 2.2.4 Let Zα be the following stochastic process;

dP̄α

dP

∣∣∣
Ht∨L̄t

= Zαt =


E

[
e−

∫T
0 α(s)dRθs

E

[
e
−

∫T
0 α

s−dR
θ
s |θ0,y0

]∣∣∣Ht ∨ L̄t
]

if ∀t ∈ (0, T ]

1 if t = 0,

where, Rθt is the log price process in (2.2.16), induced by x from (1.4.1) in the context of solution

(1.4.2).

We note that from Lemma 1.5.1, one can retrieve any particular scalar conditional characteristic

function from the vector characteristic function as follows: Ψ(u, t, y, j, x) = exp
[
iu ln (x)

]〈
exp

( ∫ t+y
y M(u, s)ds

)
.ej ,1

〉
,

where eθt = (1θt=1, 1θt=2, ..., 1θt=m)>. αt is the Esscher parameter process associated with the

probability measure P̄α.

LEMMA 2.2.7 Let Zαt be the process in Definition 2.2.4. Zαt is an almost surely positive martingale

with unitary expectation.

Proof. We first prove that Zαt is a martingale. Let 0 ≤ s ≤ t

E
[
Zαt
∣∣Hs ∨ L̄s

]
= E

[
E
[ e−

∫ T
0 αs−dR

θ
s

E
[
e−

∫ T
0 αs−dR

θ
s |y0, θ0, L0

]∣∣∣Ht ∨ L̄t
]∣∣Hs ∨ L̄s

]

= E
[ e−

∫ T
0 αs−dR

θ
s

E
[
e−

∫ T
0 αs−dR

θ
s |y0, θ0, L0

]∣∣∣Hs ∨ L̄s
]
, (Hs ∨ L̄s ⊂ Ht ∨ L̄t)

= Zαs .

Therefore, Zαt is a martingale. It follows that Zαt has unitary expectation,

E(Zαt ) = E
[
E(Zαt )

∣∣H0 ∨ L̄0

]
= E(Zα0 ) = 1.

Noting that Zαt is an almost surely positive process by construction, the lemma follows. �

From the preceding lemma, Zαt is a density process. Hence, The Esscher transform in (2.2.4) defines

a probability measure P̄α equivalent to P . It remains to show that P̄α is a martingale measure under

a certain condition specified in the next Lemma.

LEMMA 2.2.8 Let Zαt be from Definition 2.2.4 and (xt)t∈[0,T ] as defined in (1.4.1). M(u, y) and

M̄(u, y) are defined in (1.5.4) with modified log price process defined by dRθt = αt− ln
(
βn(t)

)
+
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αt−dL
θ
t and dRθt = αt− ln

(
βn(t)

)
− rt−dt+ (αt−+ 1)dLθt , respectively, with Lθ defined in (1.3.2).

x̃t = e−
∫ t
0 rs−dsxt is a

(
P̄α, (Ht ∨ L̄t)t∈[0,T ]

)
-martingale if and only if:

〈
exp{

[ ∫ t+y

y
M̄(−i, s)ds

]
}.eθ0 ,1

〉
−
〈

exp{
[ ∫ t+y

y
M(−i, s)ds

]
}>.eθ0 ,1

〉
= 0 ∀t ∈ [0, T ], θu ∈ E,

respectively, where,

M̄p,q(−i, y)

=


−r(q) + (αq + 1)µ(q) + 1

2(αq + 1)2σ2(q) +
∫
|z|>1

[
e(αq+1)G(z,q) − 1

]
ν(q, dz)

+
∫
|z|≤1

[
e(αq+1)G(z,q) − 1− (αq + 1)G(z, q)

]
ν(q, dz) + λq,q(y) If p = q

λq,p(y)
∫
z∈R e

(αq+1)z b̄(z|q, p)dz Otherwise ,

and

Mp,q(−i, y)

=


αqµ(q) + 1

2α
2
qσ

2(q) +
∫
|z|≤1

[
eαqG(z,q) − 1− αqG(z, q)

]
ν(q, dz)

+
∫
|z|>1

[
eαqG(z,q) − 1

]
ν(q, dz) + λq,q(y) If p = q

λq,p(y)
∫
z∈R e

αqz b̄(z|q, p)dz Otherwise .

Proof. Let 0 ≤ u ≤ t. From [53, 64] and by the abstract Bayes rule [44], we have;

E
(
Zαt e

−
∫ t
0 rs−dsxt

∣∣Hu ∨ L̄u
)

(2.2.48)

= e−
∫ u
0 rs−dsxu

E
[
e−

∫ t
u rs−ds+

∫ t
u

(
α(s−)+1

)
dRθs
∣∣Hu ∨ L̄u

]
E
[
e
∫ t
u αs−dR

α
s
∣∣Hu ∨ L̄u

] (2.2.49)

Hence, e−
∫ t
0 rs−dsxt is a

(
P̄α, (Ht ∨ L̄t)t∈[0,T ]

)
-martingale if and only if

E
[
e−

∫ t
u rs−ds+

∫ t
0

(
αs−+1

)
dRαs
∣∣Hu ∨ L̄u

]
E
[
e
∫ t
0 αs−dR

α
s
∣∣Hu ∨ L̄u

] = 1 ∀u, t ∈ [0, T ]. (2.2.50)

From Lemma 1.5.1 applied to dRθt = αt− ln
(
βn(t)

)
+αt−dL

θ
t and dRθt = αt− ln

(
βn(t)

)
−rt−dt+

(αt− + 1)dLθt , respectively and on account of the Markov property and the homogeneity of the
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process (θ, y), the numerator and the denominator of (2.2.50) becomes,

E
[
e−

∫ t
u rs−ds+

∫ t
0

[
α(s−)+1

]
dLαs
∣∣Hu ∨ L̄u

]
=
〈

exp
( ∫ y+t−u

y
M̄(−i, s)ds

)
.eθ0 ,1

〉
and

E
[
e
∫ t
0 α(s−)dLαs

∣∣Hu ∨ L̄u
]

=
〈

exp
( ∫ y+t−u

y
M(−i, s)ds

)
.eθ0 ,1

〉
,

respectively, where,

M̄p,q(−i, y)

=


−r(q) + (αq + 1)µ(q) + 1

2(αq + 1)2σ2(q) +
∫
|z|>1

[
e(αq+1)G(z,q) − 1

]
ν(q, dz)

+
∫
|z|≤1

[
e(αq+1)G(z,q) − 1− (αq + 1)G(z, q)

]
ν(q, dz) + λq,q(y) If p = q

λq,p(y)
∫
z∈R e

(αq+1)z b̄(z|q, p)dz Otherwise ,

and

Mp,q(−i, y)

=


αqµ(q) + 1

2α
2
qσ

2(q) +
∫
|z|≤1

[
eαqG(z,q) − 1− αqG(z, q)

]
ν(q, dz)

+
∫
|z|>1

[
eαqG(z,q) − 1

]
ν(q, dz) + λq,q(y) If p = q

λq,p(y)
∫
z∈R e

αqz b̄(z|q, p)dz Otherwise .

Hence, (2.2.50) becomes:〈
exp{

[ ∫ y+t−u

y
M̄(−i, s)ds

]
}.eθ0 ,1

〉
−
〈

exp{
[ ∫ y+t−u

y
M(−i, s)ds

]
}.eθ0 ,1

〉
= 0, ∀u, t ∈ [0, T ], ∀θu ∈ E, (2.2.51)

which completes the proof of the lemma. �

2.3 Option Pricing Formulas

In this section, we price a European style call option within the risk neutral pricing theory [62]. We

denote Q an equivalent martingale measure of the historical probability measure P , relative to the

price process x in (1.4.1). We derive a PIDE extending the PDE in [6] satisfied by European call

prices. We also describe how two existing pricing methods blend seamlessly in the context of this

paper.
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DEFINITION 2.3.1 Let S be a function in L2(Ω, Q) defined on R+ × R+ into R representing the

payoff of a contingent claim; Q is a risk neutral probability measure of the price process x defined

by (3.2.4) with respect to the historical probability measure P ; K is a nonnegative real number

denoting the strike price of a European type option contract with maturity T ; xT denotes the asset

price value at maturity; C is the Q−risk neutral option price function defined on [0, T ] × R+ ×

R+ × [0, T ] × E × R+ into R+ and V denotes the discounted option price process defined by

V (t, T,K, yt, θt, xt) = e−
∫ t
0 rs−dsC(t, T,K, yt, θt, xt).

LEMMA 2.3.1 Let S be a random variable representing the payoff of a general European style

contingent claim with maturity T and strike price K in Definition 2.3.1; let Q be the risk neutral

measure defined in Definition 2.3.1 and C is the Q−risk neutral option price of a contingent claim.

Then, the Q−risk neutral option price C of a European contingent claim with maturity T , strike

price K and payoff S can be expressed;

C(t, T,K, yt, θt, xt) = EQ
(
e−

∫ T
t rsdsS(xT ,K)|yt, θt, xt

)
. (2.3.1)

Proof. From [62], the Q−risk neutral option price C at time t is given by;

C(t, T,K, yt, θt, xt) = EQ
[
e−

∫ T
t rsdsS(xT ,K)|Ht ∨ L̄t

]
.

We note from Lemma 1.2.3, that the triplet (y, θ, x) is Markovian, hence

C(t, T,K, yt, θt, xt) = EQ
[
e−

∫ T
t rsdsS(xT ,K)|yt, θt, xt

]
,

which proves the result. �

A partial integro differential equation(PIDE) satisfied by a European style contingent claim with

maturity T and payoff H is presented in the next Lemma.

LEMMA 2.3.2 LetQ,C and V be the risk neutral measure, theQ−risk neutral option price function

and the discounted option price process defined in 2.3.1, respectively. Then V satisfies the following
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system of PIDE;

∂V

∂s
+
∂V

∂y
+ µ(j)xs−

∂V

∂x
+

1

2
σ2(j)x2

s

∂2V

∂x2

+

∫
|z|≤1

[
V (s, T,K, ys, θs, xs− + xs−G(z, j))− V (s, T,K, ys, j, xs−)

−G(z, j)xs−
∂V

∂x

]
ν(j, dz)

+

∫
|z|>1

[
V (s, T,K, ys, θs, xs− + xs−H(z, θs))

− V (s, T,K, ys, θs, xs−)
]
ν(θs, dz)

+

∫
z∈R

∑
j 6=i

λi,j(ys)V (s, T,K, ys, j, xs−e
z)b̄(z|i, j)dz

+ V (s, T,K, ys− , i, xs−)λj,j(y) = 0,

with terminal condition,

V (T, T,K, yT , θT = j, xT ) = e−
∫ T
0 r(θs)dsS(xT ,K), for j ∈ E.

Proof. From (2.3.1), the discounted price process could be expressed as follows:

V (t, T,K, y, j, x) = e−
∫ t
0 r(θs)dsC(t, T,K, y, j, x)

= EQ
(
e
−

∫
[0,T ] r(θs)dsS(xT ,K)|yt, θt, xt

)
(2.3.2)

V is a
(
Q, L̄t ∨Ht)

)
-Martingale since it is a Q-conditional expectation. We use the law of iterated

expectation and u ≤ t to prove it as follows:

E
(
V (t, T,K, y, j, x)|L̄u ∨Hu

)
= E

(
e−

∫ t
0 r(θs)dsC(t, T,K, y, j, x)|L̄u ∨Hu

)
= E

[
e−

∫ t
0 r(θs)dsE

(
e−

∫ T
t r(θs)dsS(x,K)|L̄t ∨Ht

)
|L̄u ∨Hu

]
= E

[
E
(
e−

∫ T
0 r(θs)dsS(x,K)|L̄t ∨Ht

)
|L̄u ∨Hu

]
= E

[
e−

∫ T
0 r(θs)dsS(x,K)|L̄u ∨Hu

]
= e−

∫ u
0 r(θs)dsE

[
e−

∫ T
u r(θs)dsS(x,K)|L̄u ∨Hu

]
= V (t, T,K, y, j, x)
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From Ito differential formula in Lemma 1.4.1, we have:

dV (t, T,K, yt, θt, x(t)) = AV (t, T,K, yt− , θt− , x(t−))dt+ Martingale Terms︸ ︷︷ ︸
As V is a martingale, the first term vanishes and (1.4.17), the following PIDE is obtained:

∂V

∂s
+
∂V

∂y
+ µ(θs−)xs−

∂V

∂x
+

1

2
σ2(θs−)x2

s

∂2V

∂x2

+

∫
|z|≤1

[
V (s, T,K, ys, θs, xs− + xs−G(z, θs))− V (s, T,K, ys, θs, xs−)

−G(z, θs)xs−
∂V

∂x

]
ν(θs, dz)

+

∫
|z|>1

[
V (s, T,K, ys, θs, xs− + xs−H(z, θs))− V (s, T,K, ys, θs, xs−)

]
ν(θs, dz)

+

∫
z∈R

∑
j 6=i

λi,j(ys)V (s, T,K, ys, j, xs−e
z)b̄(z|i, j)dz

− V (s, T,K, ys− , i, xs−)λθs− ,j(ys) = 0, ∀t ∈ [0, T ].

Hence, the proof is complete. �

DEFINITION 2.3.2 Let C̃ be a continuous function on [0, T ]×R+×R× [0, T ]×E ×R+ into R+

representing the modified European call option price; let Υ be the characteristic function of C̃ with

respect to its third variable, and k denotes the logarithm of the positive real number K in Definition

2.3.1.

REMARK 2.3.1 Assuming a deterministic interest rate r, a closed form formula for the Fourier

transform of a modified vanilla European call option price is known [11]. Let us denote C, C̃ and η

the European call price, the modified European call price of Carr and Madan type and a positive real

number, respectively, for the payoff function of a European call option S(xT ,K) = (xT −K)+ =

(eln (xT ) − ek)+, with k = ln (K). Further assume that∫ ∞
0
|C̃(t, T, k, j, y)|dk <∞,∀j ∈ E.

Then the modified European call price defined by Carr and Madan is expressed as follows;

C̃(t, T, k, yt, θt, x(t)) = eηEQ
(
e−

∫ T
t r(t)ds(eln (xT ) − ek)+

∣∣yt, θt, xt) (2.3.3)

In the following lemma, we recall the characteristic function of the modified European Carr and

Madan type call option [11].
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LEMMA 2.3.3 If Υ and Ψ(u, t, y0, θ0, x(0)) are the Fourier transform of C̃ defined in Definition

2.3.2 and the conditional characteristic function of the log price process defined in Lemma 1.5.1,

respectively, then we have;

Υ(T,w, y0, θ0 = j, x0)

=
e−

∫ T
0 rs−ds

(η + iw)(1 + η + iw)
Ψ
(
wk − ix0(1 + η), T, y0, θ0 = j, x0

)
. (2.3.4)

Proof. The proof can be found in [11]. �

REMARK 2.3.2 We note that in the case of a regime switching interest rate [53] uses the Carr and

Madan type transformation to obtain the characteristic function of European call option prices. The

formula in [11] is based on the characteristic function of occupation times which is known in closed

form when market states are described by a Markov Chain. We have derived the characteristic

function of the occupation times in Corollary 1.5.1.1 which allows us to extend the results in [25, 53]

when market states are described by a semi Markov process.

In the context of a price process driven by the Brownian motion [30], an integral option price

formula is obtained. In the following result, we present a similar pricing formula [30] in the context

of (1.4.1), where we assume that f js is the density of the increment of the log price process in an

interval of length s, whenever the semi Markov process is in state j for any j ∈ I(1,m) = E.

LEMMA 2.3.4 An integral option pricing formula in the context of model (1.4.1) is represented by

the following formula:

C(t, yt, θt, xt) = P (t, yt, θt)C
θt(t, T,K, xt)

+Q(t, yt, θt)

∫ T−t

0
er(θt)up(t, yt, θt)

[ ∫ ∞
0

C̃(t+ u, 0, j, xt)du
]
dx, (2.3.5)

with P (t, yt, θt) = 1−F (yt+T−t|θt)
1−F (yt|θt) ,1 − P (t, yt, θt) = Q(t, yt, θt), p(t, yt, θt) = f(yt+T−t|θt)

1−F (yt|θt) and

C̃(t + u, yt, j, xt) =
∑

θt+u=j,j 6=θt−
C(t + u, yt, j, xt)f

j
u(ln (x/St)), where F (.|θt−) and f(.|θt−)

are defined in Remark 1.2.1. Cθt is the Black Scholes option price when the market is in state θt

and C(t, yt, θt, xt) is short hand notation for C(t, T,K, yt, θt, xt).

Proof. The lemma follows by imitating the proof of Theorem 3.1 of [30]. Let V (t) = v(t, yt, θt, xt)

defined as in Lemma 1.4.1, using the risk neutral pricing formula, the tower Law of expectations,
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the identity 1 = 1Tn(t)+1≤1 + 1Tn(t)+1>1 and the notations:

E
[
V (t)|s, ys, θs, xs

]
= Es[V (t)],

E
[
V (t)|s, ys, θs, xs, Tn(t)+1 < T

]
= E≤Ts [V (t)], t

E
[
V (t)|s, ys, θs, xs, Tn(t)+1 > T

]
= E>Ts [V (t)]

E
[
V (t)|s, u, ys, yu, θs, θu, xs, xu

]
= Es,u[V (t)]

E
[
V (t)|s, u, ys, yu, θs, θu, xs, xu, Tn(t)+1 > T

]
= E>Ts,u [V (t)]

E
[
V (t)|s, s+ u, ys, ys+u, θs, θs+u, xs, xs+u, τn(s) = yt + u

]
= Eτ=T

s,u [V (t)],

∀s, t, u ∈ R+ and s < t, we obtain:

C(t,yt, θt, xt)

=Et−
[
e
∫ T
t r(θs)ds(xT −K)+

]
,

=Et−
[
E
[
e
∫ T
t r(θs)ds(xT −K)+

∣∣yt, θt, xt, Tn(t)+1

]]
,

=Et−
[
1(Tn(t)+1)>TE

[
e
∫ T
t r(θs− )ds(xT −K)+

∣∣yt, θt, xt, Tn(t)+1

]]
+ E

[
1Tn(t)+1≤TE

[
e
∫ T
t r(θs− )ds(xT −K)+

∣∣yt, θt, xt, Tn(t)+1

]]
,

=P
(
Tn(t)+1 > T |yt− , θt− , xt−

)
E>Tt−

[
E
[
C(t, yt− , θt− , xt−)

∣∣Tn(t)+1

]]
+ P

(
(Tn(t)+1 ≤ T )|yt− , θt− , xt−

)
E≤T
t−

[
E
(
C(t, yt− , θt− , xt−)

∣∣, Tn(t)+1

]]
=P
(
Tn(t)+1 > T |yt− , θt− , xt−

)
E
[
C(t, yt− , θt− , xt−)

∣∣Tn(t)+1 > T
]

+ P
(
Tn(t)+1 ≤ T |yt− , θt− , xt−

)
E
[
C(t, yt− , θt− , xt−)

∣∣Tn(t)+1 ≤ T
]

=P
(
Tn(t)+1 > T |yt− , θt− , xt−

)
Cθt(t, xt) + P

(
Tn(t)+1 > T |yt− , θt− , xt−

)
× E≤T

t−

[
E
(
C(t, yt− , θt− , xt−)

∣∣τn(t) = yt + u
]]

=P (t, yt, θt)C
θt(t, xt) +Q(t, yt, θ + t)

∫ T−t

0
p(T − u, yt, θt)

× E
[
C(t, yt− , θt− , xt−)

∣∣τn(t) = yt + u
]
du

=P (t, yt, θt)C
θt(t, xt) +Q(t, yt, θt)

∫ T−t

0
p(t, yt, θt)Et+u,t

[
er(θt)uE

[
e
∫ T
t+u r(θs− )ds(xT −K)+

∣∣yt− , θt− , xt− , τn(t) = yt + u
]]

=P (t, yt, θt)C
θt(t, xt) +Q(t, yt, θt)

∫ T−t

0
Et

[
er(θt)up(T − u, yt, θt)
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× Eτ=yt+u
t,u

[
e
∫ T
t+u r(θs− )ds(xT −K)+

]]
du

=P (t, yt, θt)C
θt(t, xt) +Q(t, yt, θt)

∫ T−t

0
er(θt)up(T − u, yt, θt)du

×
∫ ∞

0

∑
θt+u=j
j 6=θt

E
[
C(t+ u, yt+u = 0, θt+u, xt−)

∣∣τn(t) = yt + u
]

× f ju(ln (x/St))dudx

=P (t, yt, θt)C
θt(t, xt) +Q(t, yt, θt)

∫ T−t

0
er(θt)up(T − u, yt, θt)

×
∫ ∞

0
C̃(t+ u, 0, j, xt)dudx.

�

2.4 Conclusion

Option pricing in a semi Markov switching regime and performed through risk neutral pricing raised

the issue of choice of the martingale measure. Existence of uniqueness of the equivalent martin-

gale measure in the well known case of Black Scholes model has been well documented. However,

the completeness of the market is in general invalidated when additional sources of randomness

are introduced. Semi Markov regimes do not escape the rule and render the market incomplete.

The issue now is to pick the ”best” equivalent martingale measure to price derivative with. Such a

choice is generally arduous as one needs to first describe an acceptable definition of ”best”. In the

current literature, two preeminent versions of equivalent martingale measure are the Minimum mar-

tingale measure(MMM) and the minimum entropy martingale measure(MEMM). In this chapter,

we applied a version of Girsanov theorem to present a general equivalent martingale measure and

we exhibited one non optimal and two optimal martingale measures producing sensible derivative

prices. We also presented the conditional minimal entropy martingale measure as it is closest to the

historical probability measure with respect to Kulback Leibler distance. Carr and Madan pricing al-

gorithm have consequently been used along with the Fourier transform derived last chapter. A semi

closed pricing formula of the pricing formula is obtained. The new feature of the pricing formula is

its conditional intensity and the backward recurrence time. One is interested on how much impact

the semi Markov parameters have on the option prices and how much difference there is between

Markov regime prices and semi Markov regime prices.
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Chapter 3

Simulation of option prices and calibration of option prices parameters under semi-Markov

and Levy process structural perturbations

3.1 Introduction

Stochastic hybrid models have been used in financial modeling by quite a few authors among which,

[2, 16, 36, 45, 48, 63]. This is in response to the well documented limitations of the seminal Black

Scholes stock price model [6]. The non normality of log returns is exhibited by a pronounced

skewness and fat tails along with non constant implied volatility, therefore contradicting modeling

assumptions underlying Black Scholes model [6]. Moreover, smiles, smirks and skew empirically

observed in the option market are unexplained by the Black Scholes model. Heavy tailed and asym-

metric distributions have been successfully applied as a remedy to the log return distribution misfits.

However, the skew, smile and smirk are reproduced by exponential Levy models for asset prices with

relative success for short to medium maturity [66]. A consensual agreement is that volatility is not

constant as assumed by [6]. Furthermore, there is strong empirical evidence supporting stochastic

volatility. Stochastic volatility and local volatility models have provided a better explanation for

many stylized facts of the derivative market and log return times series. However, stochastic regime

switching models with random volatility switching from one state to another provide economically

interpretable alternative to stochastic volatility and local volatility models. Regime switching mod-

els have been first used in [38] in the context of time series in a two-state market regime. Since then,

a slew of regime switching stock price models have ensued [2, 10, 14, 34, 43, 54]. However, most

of the models developed are assumed to have Markov states. The convenience of Markov market

states stems from the constant conditional intensity matrix of Markov processes which proves to be

unrealistic for a market often undergoing structural changes. Indeed, under the assumption of con-

stant conditional intensities matrix, the market has the same propensity of switching regime at any

given time, regardless of occurring changes. We note that application of Markov regime switching
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models to financial derivatives is still a work in progress, namely, Markov regime switching expo-

nential Levy models for asset prices with applications in credit risk are used in [36] and an option

pricing method under Markov regime switching exponential jump diffusion [18]. On the other hand,

semi Markov regime switching models are a relatively unexplored topic [2, 30, 41]. Moreover, sim-

ulation methods for option prices from [30, 41] along with continuous and discrete time MCMC

calibration method formulated by [41] for semi Markov Black Scholes models of asset prices are

developed. Both calibration methods rely on normal likelihood simulation and aren’t extensible to

other switching exponential Levy models. This is because they either do not have a closed form

density function or their known density does not have easy-to-simulate-from conjugate priors. This

issue is solved by [2], where a closed form expression for the characteristic function of log asset

prices is developed. This paved the way for calibration and simulation of option prices induced by

an arbitrary exponential Levy price process with closed form log price characteristic function.

In this paper, we explore four problems of interest: estimation of historical parameters of a semi

Markov switching asset price model via LLGMM approach first developed by [56], estimation of

the effects of the semi Markov sojourn distribution parameters on option prices, application of [11]

and the Fourier space time stepping algorithm of [43] to semi Markov modulated stock price pro-

cesses and comparison of Markov modulated and semi Markov modulated stock price models.

The paper is organized as follows: in Section 3.2, we define the model along with related filtrations.

We use the LLGMM method of [56] to estimate the historical parameters of the model illustrated by

three case studies in Section 3.3. Section 4 highlights the effects of risk neutral semi Markov param-

eters on option prices and volatility surfaces via simulations based on the Carr and Madan method.

We also show that we can use the Fourier time stepping method of [60] to price American options

and exotic options. Both algorithms are shown to blend naturally in the semi Markovian regime

model due to the piecewise constant assumption imposed on the conditional intensity matrix. Sec-

tion 3.4 ends with calibrations of Heston model, Markov and semi Markov regime switching Black

Scholes models to a couple of option data, and we compare the fit of all models through the resid-

ual mean square error risk function. Section 3.5 concludes our work with a summary and a few

problems encountered along the way, which haven’t yet found a satisfying resolution.
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3.2 Preliminary notations and definitions of the model

Let T > 0 and T ? > 0 be the maturity date of an option contract and the time horizon of the

market, respectively. We assume that the market is subjected to regime/state structural changes. It

is assumed that the market structural states are governed by a semi Markov process θt. (θn, Tn) is

the corresponding Markov renewal process, where Tn and θn = θTn are the time and the state of the

process at the n-th regime change. We assume that the structural state domain E of (θt)t>0 is finite,

and m = n(E). We also denote τn = Tn+1 − Tn the sojourn time of the semi Markov process. Let

(βn)n≥0 be a sequence of real nonnegative independent random variables. We assume that the jump

in price only depends on the past and current transition states of the semi Markov process, namely,

βn = βθn−1,θn with density g(|θn−1, θn). n(t) = maxn{n ∈ I(0,∞), Tn ≤ t} denotes last regime

change prior to or at time t. Let ψ(θt− , dz, ds) and ν(θs− , dz)ds be a Poisson random measure and

its intensity measure, respectively. We denote ψ̄(θs− , dz, ds) = ψ(θs− , dz, ds) − ν(θs− , dz)ds, as

compensated measure of ψ(θs− , dz, ds). G and H are smooth functions defined from R×E into R

satisfying ∫
z∈R

[(
1 +H2(z, j)

)
1|z|>1 + 1|z|≤1G

2(z, j)
]
ν(j, dz) <∞, ∀j ∈ E. (3.2.1)

Condition (3.2.1) ensures that H and G have slow growth enough to allow existence and finiteness

of average transformed small and big jumps. It also ensures that the average big jump is finite, which

will ensure existence of certain expected values for some versions of H and G. Such features will

be necessary in the remainder of the article as we will apply the isometry property of martingales

Let Lθt and L̃θt be stochastic processes defined by:

Lθt =

∫ t

0
µ(θs− , s)ds+

∫ t

0
σ(θs− , s)dBs +

∫ t

0

∫
|z|≤1

G(z, θs−)ψ̄(θs− , dz, ds)

+

∫ t

0

∫
|z|>1

H(z, θs−)ψ(θs− , dz, ds), (3.2.2)

and

dL̃θt =

∫ t

0

[ ∫
|z|≤1

(eG(z,θs− ) − 1−G(z, θs−))ν(θs− , dz) + µ(θs− , s) +
1

2
σ2(θs− , s)

]
ds

+

∫ t

0
σ(θs− , s)dBs

+

∫ t

0

∫
|z|≤1

(eG(z,θs− ) − 1)ψ̄(θs− , dz, ds) +

∫ t

0

∫
|z|>1

(eH(z,θs− ) − 1)ψ(θs− , dz, ds), (3.2.3)
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respectively. The asset price process
(
x(t)

)
t∈[0,T ]

is described by the solution of a following Levy-

type stochastic differential equation developed by [2, 47]:
dx(t) = x(t−)dL̃θnt , x(Tn) = xn, t ∈ [Tn, Tn+1),

xn = βnx(T−n , Tn−1, xn−1), x(0) = x0,∀n ∈ I(0,∞).

(3.2.4)

The solution process x defined on each interval [Tn, Tn+1) takes the following form found by [2,

47]: 
x(t) = xn exp

[ ∫ t
Tn
dLθns

]
, t ∈ [Tn, Tn+1)

xn = βnx(T−n , Tn−1, xn−1),∀n ∈ I(0,∞).

(3.2.5)

Let
(
Ω,F

)
be the reference measurable space. (Ht)t∈[0,T ], (Lt)t∈[0,T ] and Bn are filtration generated

by the semi Markov process θt, the Levy processes Ljs, s ∈ [0, t], ∀j ∈ E = {1, 2, 3, ...,m} and

the discrete sequence βn, respectively. We also denote L̄t = Lt ∨ Bn(t), Ḡt = HT ∨ L̄t and

Gt = Ht ∨ L̄t, ∀t ∈ [0, T ?]. Let P and Q be the historical probability and an equivalent martingale

measures as found by [2], associated with the price process
(
x(t)

)
t>0

defined on the measurable

space
(
Ω,F

)
, respectively.

3.3 Parameter estimation via LLGMM.

3.3.1 Estimating equations

We recall the definition of the infinitesimal generator developed by [2].

DEFINITION 3.3.1 Let L and V represent the infinitesimal generator of the price process x(t) solu-

tion of the SDE (3.2.4) and a function such that V ∈ C
[
R+×R+×R+×R,R

]
, with V continuously

differentiable in the first and second variables and twice continuously differentiable function in the

fourth variable. Let s ∈ [Tn, Tn+1) with θTn = j. We have,

LV (s, ys− , θs− , xs−) =
∂V

∂s
+
∂V

∂y
+
[
µ(θs− , s) +

1

2
σ2(θs− , s)

]
xs−

∂V

∂x
+

1

2
σ2(θs− , s)x

2
s−
∂2V

∂x2

+

∫
|z|≤1

[
V (s, ys− , θs− , xs−e

G(z,θs− ))− V (s, ys− , θs− , xs−)−G(z, θs−)xs−
∂V

∂x

]
ν(θs− , dz)

+

∫
|z|>1

[
V (s, ys− , θs− , xs−e

H(z,θs− ))− V (s, ys− , θs− , xs−)
]
ν(θs− , dz)

+

∫
z∈R

∑
j 6=θs−

λθs− ,j(ys−)
[
V (s, ys− , j, xs−e

z)− V (s, ys− , θs− , xs−)
]
b̄(z|θs− , j)dz. (3.3.1)

71



We establish two difference equations that are needed in the LLGMM estimation method.

LEMMA 3.3.1 Let V ∈ C
[
R+ × R+ × R+ × R,R

]
be continuously differentiable in the first and

second variables and twice continuously differentiable function in the fourth variable. PnMn =

{tk}Mn
k=0, Tn = t0 < t1 < ... < tMn = T−n+1 is a partition of the time interval [Tn, Tn+1), where

θn = j. The conditional expectation and variance of V , associated with a discretized scheme of the

transformed stochastic differential equation:

dV (s, ys, θs, xs) = LV (s, ys− , θs− , xs−) + σ(θs− , s)xs−
∂V

∂x
dBs

+

∫
|z|≤1

[
V (s, ys− , θs− , xs−e

G(z,j))− V (s, ys− , θs− , xs−)
]
ψ̄(j, dz, ds)

+

∫
|z|>1

[
V (s, ys− , θs− , xs−e

H(z,j))− V (s, ys− , θs− , xs−)
]
ψ̄(j, dz, ds), (3.3.2)

are:

E
[
∆V (tk+1, ytk+1

, j, xtk+1
)|Gtk

]
= LV (tk, ytk , j, xtk)∆tk+1 (3.3.3)

E
[
∆V (tk+1, ytk+1

, j, xtk+1
)− E

[
∆V (tk+1, ytk+1

, j, xtk+1
)|Gtk

]∣∣∣∣Gtk

]2

=


[
xtk−

∂V
∂x σ(j, tk

−)
]2

∆tk+1 +
∫
|z|≤1

[
V (tk, ytk , j, xtke

G(z,j))− V (tk, ytk , j, xtk)
]2
ν(j, dz)∆tk+1

+
∫
|z|>1

[
V (tk, ytk , j, xtke

H(z,j))− V (tk, ytk , j, xtk)
]2
ν(j, dz)∆tk+1.

(3.3.4)

Proof. We apply Euler-Maruyama discretization process as formulated by [45], to the transformed

Levy-type stochastic differential equation (3.3.2) and obtain:

∆V (tk+1, ytk+1
, j, xtk+1

) = LV (tk, ytk , j, xtk)∆tk + σ(j, tk)xtk
∂V

∂x
∆Btk+1

+

∫
|z|≤1

[
V (tk, ytk , j, xtke

G(z,j))− V (tk, ytk , j, xtk)
]
ψ̄(j, dz,∆tk)

+

∫
|z|>1

[
V (tk, ytk , j, xtke

H(z,j))− V (tk, ytk , j, xtk)
]
ψ̄(j, dz,∆tk) at tk+1 ∈ PnMn . (3.3.5)

Now we apply the conditional mean to the numerical scheme (3.3.5) and have:

E
[
∆V (tk+1, ytk+1

, j, xtk+1
)|Gtk

]
= LV (tk, ytk , j, xtk)∆tk+1, (3.3.6)
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E
(

∆V (tk+1, ytk+1
, j, xtk+1

)− E
(
∆V (tk+1, ytk+1

, j, xtk+1
)|Gtk

)∣∣∣∣Gtk

)2
= E

[[
xtk

∂V

∂x
σ(j, tk)∆Btk+1

]2
∣∣∣∣Gtk

]
+ E

[[ ∫
|z|≤1

[
V (tk, ytk , j, xtke

G(z,j))− V (tk, ytk , j, xtk)
]
ψ̄(j, dz,∆tk+1)

]2
∣∣∣∣Gtk

]
+ E

[[ ∫
|z|>1

[
V (tk, ytk , j, xtke

H(z,j))− V (tk, ytk , j, xtk)
]
ψ̄(j, dz,∆tk+1)

]2
∣∣∣∣Gtk

]
+ 2E

[[
xtk

∂V

∂x
σ(j, tk)∆Btk+1

∫
|z|≤1

[
V (tk, ytk , j, xtke

G(z,j))− V (tk, ytk , j, xtk)
]
ψ̄(j, dz,∆tk+1)

]∣∣∣∣Gtk

]
+ 2E

[[
xtk

∂V

∂x
σ(j, tk)∆Btk+1

∫
|z|>1

[
V (tk, ytk , j, xtke

H(z,j))− V (tk, ytk , j, xtk)
]
ψ̄(j, dz,∆tk+1)

]∣∣∣∣Gtk

]
.

(3.3.7)

ψ̄ and B are independent martingales. Hence, the products involving both have zero expectations.

We also note that products involving the compensated Poisson measure ψ̄ for large and small jumps

vanish as they never jump, simultaneously. From Ito isometry, (3.3.7) becomes:

E
(

∆V (tk+1, ytk+1
, j, xtk+1

)− E
(
∆V (tk+1, ytk+1

, j, xtk+1
)|Gtk

)∣∣∣∣Gtk

)2
=
[
xtk

∂V

∂x
σ(j, tk)

]2
∆tk+1

+

∫
|z|≤1

[
V (tk, ytk , j, xtke

G(z,j))− V (tk, ytk , j, xtk)
]2
ν(j, dz)∆tk+1

+

∫
|z|>1

[
V (tk, ytk , j, xtke

H(z,j))− V (tk, ytk , j, xtk)
]2
ν(j, dz)∆tk+1 (3.3.8)

This establishes the results. �

The following remark describes the jump integral estimation problem.

REMARK 3.3.1 (3.3.3) and (3.3.4) form the building blocks of the estimation procedure that is

utilized to estimate the drift and diffusion coefficients. It is therefore possible that due to roundoff,

discretization and computational errors, σ̂2 have negative values. Hence, it is critically important to

chose an efficient numerical estimation methods of the Levy integrals. We chose to estimate Levy

integrals via Monte Carlo integration method. We first note that compound Poisson processes have

independent and identically distributed (iid) jump sizes. Hence, jumps sizes of Levy integrals are

iid. We can apply the following monte carlo estimation scheme defined in [61]:∫
z∈R

g(z)ν(j, dz) = Eν(j,)
[
g(z)

]
≈ 1

n(j)

n(j)∑
k=1

g(zk), (3.3.9)

where g is a ν(j, )−integrable real valued function, and (zi)
n(j)
i=1 is an iid sample of Levy jump sizes

when the market is in state θt = j. n(j) denotes the number of Levy jump corresponding to the

j − th regime.
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In the following Lemma, we present a particular case of interest along with an explicit formula for

parameter estimates and a recursive formula for price simulation updates.

LEMMA 3.3.2 (i) If H(z, j) = G(z, j) = z, ∀z ∈ R,∀j ∈ E and V (t, yt, j, x(t)) = ln(x(t)),

then the transformed stochastic Levy type differential equation, and the conditional expecta-

tions of Euler-Maruyama type discretization scheme in Lemma 3.3.1 reduce to:

dV (s, ys, θs, xs) = LV (s, ys− , θs− , xs−) + σ(θs− , s)xs−
∂V

∂x
dBs

+

∫
|z|≤1

[
V (s, ys− , θs− , xs−e

G(z,j))− V (s, ys− , θs− , xs−)
]
ψ̄(j, dz, ds)

+

∫
|z|>1

[
V (s, ys− , θs− , xs−e

H(z,j))− V (s, ys− , θs− , xs−)
]
ψ̄(j, dz, ds), (3.3.10)

E
[
∆ ln (xtk+1

)|Gtk
]

=
[ ∫
|z|>1

zν(j, dz) + µ(j, tk)
]
∆tk+1, (3.3.11)

E

[(
∆ ln (xtk+1

)− E(∆ ln (xtk+1
)|Gtk)

)∣∣∣∣Gtk

]2

= σ2(j, tk)∆tk+1 +

∫
z∈R

z2ν(j, dz)∆tk+1.

(3.3.12)

(ii) At time tk, we consider the subpartition Pn,kMn,mk
= {tk−mk , tk−mk+1, ..., tk−1} of PnMn

con-

sisting of the past mk consecutive data values of the price process xt. We assume ∆tk = ∆t,

µ(j, t) = µ(j) and σ(j, t) = σ(j). We denote µ̂jtk,mk and σ̂jtk,mk the estimates of µ(j) and

σ(j) relative to the subpartition Pn,kMn,mk
, respectively. Explicit formulas for µ̂jtk,mk and σ̂jtk,mk

can be expressed as follows:

µ̂tk,mk =
1

mk∆t

k−1∑
i=k−mk

E(∆ ln (xti)|Gti−1)− 1

n(j)

n(j)∑
k=1

zk1|zk|>1 (3.3.13)

(σ̂jtk,mk)2 =
1

mk − 1

k−1∑
i=k−mk

E
(
∆ ln (xti)− E(∆ ln (xti)|Gti−1)

∣∣Gti−1

)2 − mk

mk − 1

k−1∑
i=n−mk

zi∆tk..

(3.3.14)

(iii) We denote x̂tk = E
[
xtk
∣∣Gtk−1

]
the estimated conditional mean asset price. The following

recurrence relation holds:

x̂tk+1
= x̂tk exp

[
µ̂jtk,mk∆tk+1 +

1

2
(σ̂jtk,mk)2∆tk+1 +

1

n(j)

n(j)∑
l=1

[
ezl − 1− zl1|zl|≤1

]]
.

(3.3.15)
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Proof. Under the assumptionH(z, j) = G(z, j) = z,∀z ∈ R,∀j ∈ E, and using V (t, yt, j, x(t)) =

ln (x(t)), and applying Lemma 3.3.1, (3.3.3) and (3.3.4) reduce to (3.3.11) and (3.3.12), respec-

tively. (ii) is a direct consequence of part (i). Summing up (3.3.13) and (3.3.14) over the subpartition

Pn,kMn,mk
, we obtain:

k−1∑
i=k−mk

E
[
∆ ln (xtk)|Gtk−1

]
= mk

[ 1

n(j)

n(j)∑
k=1

zk1|zk|>1 +mkµ(j)
]
∆t (3.3.16)

k−1∑
i=k−mk

E

[(
∆ ln (xtk)− E(∆ ln (xtk)|Gtk−1

)
)∣∣∣∣Gtk−1

]2

= mkσ
2(j)∆t+mk

∫
z∈R

z2ν(j, dz)∆t.

(3.3.17)

Solutions of algebraic equations in (3.3.16) and (3.3.17) establish (3.3.13) and (3.3.14), respectively.

For (iii), we consider n ∈ I(1,M) and tn−1, tn, points of the partition PM such that Tk−1 < tn−1 <

tn < Tk where θTk−1
= j for some k ∈ I(1,∞). By Levy Kintchine formula [55], we have:

E
[
xtn |Gtn−1

]
= E

[
xtn−1 exp

[ ∫ tn

tn−1

dLjs
]∣∣∣Gtn−1

]
= E

[
xtn−1 exp

[
µ(j)∆t+ σ(j)∆Bn +

∫ tn

tn−1

∫
|z|>1

zψ(j, dz, ds) +

∫ tn

tn−1

∫
|z|≤1

zψ̄(j, dz, dt)
]∣∣∣Gtn−1

]
= xtn−1 exp

[[
µ(j) +

1

2
σ2(j) +

∫
z∈R

[ez − 1− z1|z|≤1]ν(j, dz)
]
∆t
]
.

Hence, at each time step tn, the simulated conditional mean observation is computed recursively as

follows:

x̂tn = x̂tn−1 exp
[
µ̂(j)∆t+

1

2
σ̂2(j)∆t+

∆t

n(j)

n(j)∑
k=1

[
ezk − 1− zk1|zk|<1

]]
, (3.3.18)

where n(j) is the size of the data when the market is in regime j, hence proving the lemma. �

3.3.2 Parameter estimation for three real data.

We assume the regime switching times observable. Although semi Markov jumps β, are not ex-

pected to stand out by their size, large jumps have empirically been associated with local structural

changes through clustering [10] and will therefore be chosen as jump times. These jump times could

be used to estimate the sojourn time parameters of the semi Markov process, however, we focus on

estimating the price jump distribution parameters and the parameters of the Levy distributions in
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between jumps. The IBM, Bank of America Corporation and BNP Paris Bas data were collected

over a period of 20 years and six months (daily except for the weekends and market holidays) from

January 2nd 1994 to July 11th 2014. Structural changes were identified in each data set and the cor-

responding jumps were considered semi Markov market price jumps. Based on Lemma 3.3.2, we

estimate the parameters of model (3.2.4) between jumps using the LLGMM algorithm developed in

[56]. The fit of the LLGMM is presented by the first columns of Figures 1, 2 and 3. Another feature

of the LLGMM is the more obvious randomness in the volatility as opposed to that of Garch(1,1).

The same conclusion is reached in the context of semi Markov exponential Levy asset prices as

shown in the second columns of Figures 1, 2 and 3. As noted in Remark 3.3.1, jumps are indepen-

dent and so are log jumps. Estimation of the parameters of the distribution of β could be performed

by maximum likelihood.
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Figure 1.: The first column exhibits the fit of the LLGMM simulated IBM stock prices against

historical prices. The second column illustrates a comparison of LLGMM and Garch(1,1) annual

volatilities.
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Figure 2.: The first column shows the fit for the LLGMM simulated BAC stock prices against

historical prices. The second column exhibits the performance of the LLGMM and Garch(1,1)

annual volatilities.
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Figure 3.: The first column exhibits the fit of the LLGMM stock of Bank National de Paris (BNP)

against historical prices. The second column illustrates a comparison of LLGMM and Garch(1,1)

annual volatilities.
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Table 1: IBM: Overview of a few LLGMM parameter estimates and simulated values

Index: tk Data: ytk Estimate: ŷm̂k Error: |ytk − ŷm̂k | Volatility: sm̂k Drift: µ̂(j) Sample: m̂k:

11 167.73 169.19 0.70 0.000033 -0.013 2

12 169.72 168.82 0.90 0.000404 -0.002 2

13 164.90 166.98 2.08 0.000434 -0.011 3

14 165.45 165.71 0.27 0.000257 -0.008 5

15 167.19 166.87 0.32 0.000026 0.007 2

16 169.02 168.68 0.35 0.000000 0.011 2

17 169.35 168.97 0.38 0.000240 0.002 6

18 169.55 169.77 0.22 0.000029 0.005 3

19 168.03 169.12 1.08 0.000052 -0.004 2

6043 15.73 15.60 0.12 0.000259 0.009 2

6044 15.59 15.59 0.00 0.000170 -0.001 296

6045 15.65 15.64 0.01 0.000156 0.003 4

6046 15.80 15.75 0.06 0.000019 0.007 2

6047 15.71 15.72 0.01 0.000116 -0.002 100

6048 15.75 15.75 0.00 0.000136 0.002 14

6049 15.57 15.67 0.10 0.000049 -0.005 3

6050 15.43 15.51 0.08 0.000003 -0.010 2
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Table 2: BAC: Overview of a few LLGMM parameter estimates and simulated values.

Index: tk Data: ytk Estimate: ŷm̂k Error:|ytk − ŷm̂k | Volatility:sm̂k Drift: µ̂(j) Sample: m̂k:

11 14.98 15.35 0.22 0.000427 -0.018 2

12 15.04 15.13 0.09 0.000684 -0.015 2

13 14.98 14.97 0.01 0.000380 -0.011 3

14 15.05 14.99 0.06 0.000023 0.002 3

15 15.05 15.03 0.02 0.000011 0.002 2

16 15.35 15.18 0.17 0.000202 0.010 2

17 15.37 15.34 0.03 0.000177 0.011 2

18 15.35 15.35 0.01 0.000127 0.000 15

19 15.23 15.27 0.05 0.000025 -0.005 2

6043 5.10 5.04 0.05 0.000000 0.029 2

6044 5.14 5.14 0.00 0.000207 0.019 2

6045 5.24 5.24 0.00 0.000104 0.019 3

6046 5.24 5.24 0.00 0.000650 0.000 4819

6047 5.21 5.23 0.02 0.000015 -0.003 2

6048 5.33 5.31 0.02 0.000194 0.015 7

6049 5.44 5.42 0.02 0.000000 0.022 2

6050 5.40 5.42 0.02 0.000324 -0.001 2156
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Table 3: BNP: Overview of a few LLGMM parameter estimates and simulated values.

Index: tk Data: ytk Estimate: ŷm̂k Error: |ytk − ŷm̂k | Volatility: sm̂k Drift: µ̂(j) Sample: m̂k

11 51.40 51.60 0.09 0.000078 -0.008 3

12 50.89 51.01 0.12 0.000014 -0.012 3

13 49.89 50.28 0.39 0.000049 -0.015 2

14 51.00 50.36 0.64 0.000883 0.001 2

15 50.22 50.22 0.00 0.000155 -0.003 14

16 49.99 49.99 0.00 0.000111 -0.005 14

17 50.16 50.08 0.08 0.000252 0.001 4

18 50.38 50.30 0.08 0.000000 0.004 2

19 50.49 50.49 0.00 0.000001 0.003 3

3626 21.93 22.05 0.11 0.000202 -0.008 2

3627 21.73 21.87 0.14 0.000102 -0.008 3

3628 22.56 22.19 0.37 0.001114 0.014 2

3629 22.42 22.36 0.06 0.000696 0.007 3

3630 22.14 22.16 0.01 0.000017 -0.009 2

3631 22.92 22.46 0.46 0.000697 0.013 4

3632 23.43 23.11 0.32 0.000082 0.028 2

3633 24.10 23.78 0.32 0.000041 0.028 3
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3.4 Option pricing

We develop option pricing based on Carr and Madan method and the FST method. We first recall

the following definitions from [2] useful in the remainder of this section:

DEFINITION 3.4.1 Let S denotes a continuous function defined on R+×R+ into R representing the

payoff of a contingent claim; Q is a risk neutral probability measure of the price process x defined

by (3.2.4) with respect to the historical probability measure P ; K is a nonnegative real number

denoting the strike price of a derivative contract with maturity T ; xT denotes the asset price value at

maturity;C is theQ−risk neutral option price function defined on [0, T ]×R+×R+×[0, T ]×E×R+

into R+ and V denotes the discounted option price process defined by V (t, T,K, yt, θt, xt) =

e−
∫ t
0 rs−dsC(t, T,K, yt, θt, xt). The Fourier transform and the inverse Fourier transform of an

integrable function f , are interchangeably denoted F(f) or f̂ and F−1(f) or f̌ , respectively. Let

N(t, A,B) be a stochastic process defined on [0, T ]× B(R)× P (E2) into [0,∞) as:

N(t, A,B) =
∑
n≥1

1(
t≥Tn,ln (βn)∈A,(θn−1,θn)∈B

) (3.4.1)

and N(t, A,B) stands for the number of regime switches in B with corresponding log price jumps

ln (βn) ∈ A by time t. The compensators γ(t, A, {(i, j)}) =
∫ t

0

∫
z∈A b̄(z|i, j)λi,j(ys)dzds of

N(t, A, {(i, j)}) are derived in [2].

We model asset prices with the semi Markov switching exponential Levy process in (3.2.5), where

Lθ defined in (3.2.2) is based on H(z, j) = G(z, j) = z. Options are priced based on the risk

neutral theory. The martingale probability measure chosen for pricing purpose is the conditional

minimum entropy martingale measure (CMEMM) Pα
?

with density process expressed in [2] as the

following Esscher transform:

dP̄α
?

dP

∣∣
HT∨Lt

=

[
n∏
i=1

eα
?
i βi

E
(
eα

?
i βi
∣∣θi, θi−1

)] e
∫ t
0 α

?
sdLs

E
(
e
∫ t
0 α

?
sdLs

∣∣HT

) , ∀t ∈ [Tn, Tn+1).

From [2], for ∀t ∈ [Tn, Tn+1),∀n ∈ I(1,∞), the risk neutral conditions satisfied by the Esscher

parameter process (α?t )t∈[0,T ], are as follows:
µ(θn) + α?tσ

2(θn) +
∫
|z|≤1

[
G(z, θn)eα

?
tG(z,θn) −G(z, θn)

]
ν(θn, dz)

+
∫
|z|>1H(z, θn)

(
eα

?
tH(z,θn) − 1

)
ν(θn, dz) = r(t),∀t ∈ (Tn, Tn+1)[

EP
α?

[βn
∣∣θn, θn−1

]
− 1
]

=
[
E
[ βne

α?t βn

E
[
eα
?
t βn |θn,θn−1

]∣∣θn, θn−1

]
− 1
]

= 0 if t = Tn.

(3.4.2)
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The risk neutral pricing formula for European call options is described by:

C(t, T,K, yt, j, xt) = EP̄
α(
e−

∫ T
t rsds(xT −K)+|Ht ∨ L̄t

)
= EP̄

α(
e−

∫ T
t rsds(elog (xT ) − ek)+|yt, θt = j, xt

)
= EP̄

α(
ek−

∫ T
t rsds(ek

(
log (xT )

k
−1
)
− 1)+|yt, θt = j, xt

)
, (3.4.3)

where k = lnK. Given the known closed form expression of the characteristic function of log

prices [2], one can apply Carr and Madan formula [11]:

Υ(t, T, u, y0, j, x0) =
e−

∫ T
t rsds

(α+ iu)(1 + α+ iu)
Ψ
(
u− i(1 + α), t, y0, j, x0

)
, (3.4.4)

where Υ is the characteristic function of the modified option price

C̃(t, T, k, yt, j, xt) = eαkEP̄
α
[
e−

∫ T
t rsds(eln (xT ) − ek)+|yt, θt = j, xt

]
Ψ is the characteristics function of the log prices developed in [2]:

Ψ(t, T, u, x, j, y) =E
[
eiu ln (xt)

∣∣θ0 = j, y0 = y, x0 = x
]

= exp (iu ln (xt))
〈

exp
( ∫ t+y

y
M(u, η)dη

)
ej ,1

〉
, (3.4.5)

and M is an m×m matrix function with components Mqp are defined by:

Mqp(u, y) =


iuµ(q)− 1

2σ
2(q)u2 +

∫
|z|≤1

[
eiuG(z,q) − 1− iuG(z, q)

]
ν(q, dz)

+
∫
|z|>1

[
eiuH(z,q) − 1

]
ν(q, dz) + λq,q(y), if p = q

λq,p(y)
∫
z∈R e

iuz b̄(z|q, p)dz, otherwise.

(3.4.6)

M is assumed to satisfies the Lie bracket condition [49]

[M(u, t1),M(u, t2)] = 0, ∀t1, t2 ∈ R+. (3.4.7)

µ satisfies the martingale condition in (3.4.2). We next explore the effects of parameters on option

prices and implied volatilities. By developing a closed form solution to a PIDE which will allow us

to apply the FST algorithm, hence paving the way for the pricing of exotic and American options

[60] in the context of asset price model (3.2.4). The option price is the inverse Fourier transform of

Υ:

C(t, T, k, yt, j, xt) =
e−αk

2π

∫
R
e−iukΥ(t, T, u, y, j, x)du. (3.4.8)
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The Fourier time stepping method from [60], is an option pricing method of vanilla and exotic option

contracts based on the inverse Fourier transform. The FST has been used to price options when the

market is subjected to Markov regime changes, [43, 53, 60]. We investigate an application of the

FST method to semi Markov regimes with jumps at regime changes. We assume in this subsection

that the asset price process in (3.2.5) is defined under a
(
P,H∨ L̄

)
− equivalent martingale measure

Q.

LEMMA 3.4.1 Let S be a random variable representing the payoff of a general European style

contingent claim with maturity T and strike price K in Definition 3.4.1; let Q and L be the risk

neutral measure and the infinitesimal generator defined in Definitions 3.4.1 and 3.3.1. Let C be the

Q−risk neutral option price of a contingent claim.

(i) Then, for θs− = j, the Q−risk neutral option price C of a European contingent claim with

maturity T , strike price K and payoff S satisfies the following PIDE:
LV (s, T,K, ys− , j, xs−) = 0

V (T, T,K, yT , θT , xT ) = e
∫ T
0 ruduS(xT ,K)

(3.4.9)

For any j ∈ I(1,m), and V (s, T,K, ys− , j, xs−) = e−
∫ s
0 ruduC(s, T,K, ys− , j, xs−).

(ii) The vector solution C(s, T,K, y, x) =
(
C(s, T,K, y, 1, x), C(s, T,K, y, 2, x), ..., C(s, T,K, y,m, x)

)
has Fourier Transform (with respect to ln (x)):

Ĉ(s, T,K, y, w) =
[
Ĉ(s, T,K, y, 1, w), Ĉ(s, T,K, y, 2, w), ..., Ĉ(s, Y,K, y,m,w)

]
=

exp
[ ∫ T−t+y

y
M(u, s)ds

]
.
[
Ŝ(w)1

]
, (3.4.10)

and the Fourier transform of option prices in individual regimes are:

Ĉ(s, T,K, y, j, w) =
〈

exp
[ ∫ T−t+y

y
M(u, s)ds

]
.
[
Ŝ(w).ej

]
,1
〉
. (3.4.11)

Proof. (i) is a direct consequence of the PIDE derived in [2] with µ, H and G replaced by∫
|z|≤1

[
eG(z,j) − 1 − G(z, j)

]
ν(j, dz) + 1

2σ
2(j), eG(z,j) − 1 and eH(z,j) − 1. We prove (ii) us-

ing properties of the Fourier transform. Using the change of variable x̄ = ln (x), assuming

S,C ∈ L1(Ω, Ḡ, Q) with respect to the first and the sixth variables, respectively, and using the
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properties F( ∂n

∂x̄nC)(t, T,K, y, j, w) = (iw)nĈ(t, T,K, y, j, w), F
(
C(t, T,K, y, j, xez)

)
(w) =

eiwzĈ(t, T,K, y, j, w), along with linearity of the Fourier transform lead to:

∂Ĉ
∂s + ∂Ĉ

∂y + iwµ(j) + 1
2σ

2(j) +
[ ∫
|z|≤1

[
eiwG(z,j) − 1− iwG(z, j)

]
ν(j, dz)

+
∫
|z|>1

[
eiwH(z,j) − 1

]
ν(j, dz)

+λj,j(ys−)− r(s)
]
Ĉ(s, T,K, ys− , j, w)

+
∑

i 6=j

[[ ∫
z∈R λj,i(ys)e

iwz b̄(z|j, i)dz
]
Ĉ(s, T,K, ys− , i, w)

]
= 0,

Ĉ(T, T,K, yT , θT , xT ) = Ŝ(w,K)

(3.4.12)

In vector form, (3.4.12) becomes:
∂Ĉ
∂s + ∂Ĉ

∂y +M(w, y)Ĉ(s, y) = 0

Ĉ(T, T,K, yT , w) = Ŝ(w,K).1

With the matrix
(
M(w, y)

)
m×m defined by its elements:

Mp,q(w, y) =


iwµ(p)− 1

2w
2σ2(p) +

∫
|z|≤1

[
eiwG(z,p) − 1− iweG(z,p)

]
ν(p, dz)

+
∫
|z|>1

[
eiwH(z,p) − 1

]
ν(p, dz) + λp,p(y)− r(p) If p = q

λq,p(y)
∫
z∈R e

iwz b̄(z|q, p)dz Otherwise,
(3.4.13)

which proves (ii). Such a system of PIDE does not in general admit classical solutions as many

payoff functions or derivative instruments are continuous but not differentiable. The solutions con-

sidered for this type of PIDE are weak solutions in the sense of viscosity, which are proven to exist

in [53] in the Markov regime switching case. We assume in our case that the conditional intensity

matrix is a piecewise constant function of the backward recurrence time. Hence, PIDE (3.4.9) has a

unique viscosity solution and is solved in [2] yielding the general solution:

Ĉ(s, T,K, y, w) = exp
[ ∫ T−t+y

y
M(w, s)ds

]
.
[
Ŝ(w,K)1

]
, (3.4.14)

hence,

Ĉ(s, T,K, y, j, w) =
〈

exp
[ ∫ T−t+y

y
M(w, s)ds

]
.
[
Ŝ(w,K).1

]
, ej
〉
. (3.4.15)

Which proves (iii). �

86



REMARK 3.4.1 We note that for any t2 > t1 we have:
Ĉ(t1, T,K, y, w) = exp

[ ∫ t2−t1+y
y M(w, s)ds

]
.Ĉ(t2, T,K, y2, w)

Ĉ(t1, T,K, y, j, w) =
〈

exp
[ ∫ t2−t1+y

y M(w, s)ds
]
.Ĉ(t2, T,K, y2, w), ej

〉
.

(3.4.16)

REMARK 3.4.2 We recall the discretization necessary for implementing the FST algorithm, [60].

First partition the time space [0, T ] inN subintervals with P t,n = (tn)Nn=0. Discretization of the log

stock price space (−∞,∞) is done by approximating the log price domain by a bounded domain

[xmin, xmax] and set P x,M = (xi)
M
i=0, xi = xmin + i∆x where ∆x = xmin−xmax

M . As noted by

[60], it is sometimes preferred to discretize either ln (x/x0) or ln (x/K) with K the strike price

of the option contract depending on whether the pricing is needed around the strike price or not.

The frequency domain [0, wmax] is partitioned with Pw,N = (wi)
(N+1)/2
i=0 ,wi = xmin + i∆w =

2wmax/N and wmax = 1
2∆x , the Niquisdt critical frequency.

Next lemma describes the basic difference between option prices in semi Markov regimes and

Markov regimes and shows that it boils down mainly to the difference in integrated conditional

intensities.

LEMMA 3.4.2 Let M , Mm, Cm,Υm and Ψm be the matrix defined by (3.4.6), the matrix de-

fined by (3.4.6) when (θt)t∈[0,T ] is a Markov process with generator matrix components denoted

(λmi,j)1≤i,j≤m, Carr and Madan option price via FFT, the characteristic function of option prices

and the characteristic function of spot prices in Markov switching market regimes.

2π

e−αk

(
C(t, T, k, yt, j, xt)− Cm(t, T, k, j, xt)

)
=

∫
R

exp
[
(iu(ln (xt)− uk))−

∫ T
t rsds

]
(α+ iu)(1 + α+ iu)

∞∑
n=1

〈[(∫ t+y

y
M(u− i(1 + α), η)dη

)n
−
(
tMm(u− i(1 + α))

)n]
ej ,1

〉
du

(3.4.17)

Proof.

2π

e−αk
(
C(t, T, k, yt, j, xt)− Cm(t, T, k, j, xt)

)
=
e−αk

2π

∫
R
e−iukΥ(t, T, u, y, j, x)du− e−αk

2π

∫
R
e−iukΥm(t, T, u, j, x)du,

=

∫
R
e−iuk

(
Υ(t, T, u, y, j, x)−Υm(t, T, u, j, x)

)
du, from (3.4.8),
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=

∫
R

e−iuk−
∫ T
t rsds

(α+ iu)(1 + α+ iu)

[
Ψ
(
u− i(1 + α), t, y0, j, x0

)
−Ψm

(
u− i(1 + α), t, j, x0

)]
du, from (3.4.4)

=

∫
R

exp
[
(iu(ln (xt)− uk))−

∫ T
t rsds

]
(α+ iu)(1 + α+ iu)

〈[
exp

( ∫ t+y

y
M(u− i(1 + α), η)dη

)
− exp

(
tMm(u− i(1 + α))

)]
ej ,1

〉
du, from (3.4.5)

=

∫
R

exp
[
(iu(ln (xt)− uk))−

∫ T
t rsds

]
(α+ iu)(1 + α+ iu)

∞∑
n=1

〈[(∫ t+y

y
M(u− i(1 + α), η)dη

)n
−
(
tMm(u− i(1 + α))

)n]
ej ,1

〉
du

�

3.4.1 Effect of parameters on option prices.

Simulation of option prices is performed by computing the inverse Fourier transform of (3.4.4).

We use Simpson rule of integration, with upper limit of integration in w being a. Moreover, the

frequency space is divided into N subintervals of equal lengths; the log strike k ranges from −b to

b divided into N subintervals of equal lengths. Inverting the Fourier Transform of C̃ could be done

quite efficiently by FFT or even by FRFT as suggested in [15]. Let’s use the notation: wj = (j−1)η

with η = a
N , ku = −b+ λ(u− 1) with λ = 2b

N . To match the Discrete Fourier Transform with the

FFT requires one to impose the condition λη = 2π
N :

C(t, T, ku, yt, j, xt) ≈ Re
[
e−αku

π

N∑
j=1

e−i
2π
N

(j−1)(u−1)Υ(uj , yt, j, xt)e
ibuj

η

3

[
3 + (−1)j − δj

]]
(3.4.18)

The presented condition generates a tradeoff between precision of the integral approximation and

step size of the log strike partitions. However the fractional Fourier transform (FRFT) allows to use

independent log strikes step size and integration grid precision [15]. Under the risk neutral measure,

we consider a couple of semi Markov spot price log-jump densities b̄i,j , when the market switches
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from regime i to j, and we denote them κi,j with:

κi,j =


1− εi,j with probability pi,j

1 with probability 1− 2pi,j

1 + εi,j with probability pi,j

(3.4.19)

with (3.4.20)

εi,j > 0, pi,j ∈ [0,
1

2
],∀i, j ∈ I(1,m). (3.4.21)

We consider the following partition 0 = a0 < a1 < ... < aM−1 = T ? of [0, T ?] and for convenience

we denote aM = ∞. We assume that the conditional intensity of the semi Markov process θt is a

piecewise constant approximation of Weibull intensities. This is guided by a couple of motivations:

first its flexibility and then the necessity of Lie bracket condition (3.4.7). On the one hand, Weibull

intensities are quite flexible as they can simulate increasing, constant and decreasing rates. On the

other hand, the Lie bracket condition is satisfied piecewise, since the λi,j are piecewise constant.

The piecewise conditional intensity approximation of Weibull intensities relative to the partition

(a)M−1
k=0 are defined:

λi,j(ys) =


pi,j
∑M−1

k=0
ϑi
ςi

(a?k
ςi

)ϑi−1
1[ak,ak+1)(ys) if i 6= j

−
∑m

j=1,j 6=i λi,j(ys) otherwise

=


αi,j

∑M−1
k=0

(
a?k
)ϑi−1

1[ak,ak+1)(ys) if i 6= j

−
∑m

j=1,j 6=i λi,j(ys) otherwise ,
(3.4.22)

∀s ∈ [0, T ], with αi,j = pi,j
ϑi

ς
ϑi
i

and a?k =
ak+ak+1

2 ,∀k ∈ I(0,M − 2). Three notable sets of

parameters are absent from most option price formulas whenever the market is subjected to Markov

regime changes: the backward recurrence time, the semi Markov sojourn time distribution, and the

price jumps associated with regime changes, respectively. We will examine the added flexibility

of stock price models under semi Markov regimes due to the extra parameters and the impact of

each of the first two parameters on option prices and implied volatilities. We first make a couple

of observations necessary to shed more light on the simulation results. If the intensity function is a

continuous function of the backward recurrence time, from the derivative of the matrix exponential
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under the Lie bracket condition [49], from (3.4.4) and (3.4.8) we have:

∂C

∂y
(t, T, k, y, j, x) =

e−αk

2π

∫
R
e−iuk

∂Υ

∂y
(t, T, u, y, j, x)du

=
e−αk

2π

∫
u∈R

〈[
M(u− i(1 + η), y + t) (3.4.23)

−M(u− i(1 + η), y)
]

exp
( ∫ t+y

y
M(u, η)dη

)
ej , e

iu(ln (x)−k)1

〉
du,

(3.4.24)

where the difference of matrices in (3.4.24) is performed componentwise and yields,

Mpq(u− i(1 + η), y + t)−Mpq(u− i(1 + η), y) (3.4.25)

=


λp,p(y + t)− λp,p(y) if p=q[
λp,q(y + t)− λp,q(y)

]
Eκp,q

[
ei ln (βp,q)

[
u−i(1+η)

]]
,

(3.4.26)

whereEκp,q is the expected value with respect to kp,q. (3.4.25) shows an interesting feature of option

prices in semi Markov market regimes. The derivative with respect to the backward recurrence time

of option prices First, if the rate matrix (λi,j(y))m×m is monotonic componentwise, the backward

recurrence time effect on option prices is most significant for long range maturity options. Assuming

the intensity functions λi,j have finite limits when the backward recurrence time grows to infinity,

we have

lim
y→∞

∂C

∂y
(t, T, k, y, x) = 0, ∀i, j ∈ E. (3.4.27)

Hence, the semi Markov conditional intensity matrix is asymptotically constant, which implies that

asymptotically, semi Markov market regime prices are identical to Markov market regime option

prices. Examining Figures 6, 7 and 8 shows that irrespective of the model, option prices from prices

processes in Markov market regimes can be sandwiched between semi Markov market regimes

with shape parameter ϑ above and below 1. More importantly, the specific observation that prices

from semi Markov market regimes with ϑi < 1 and ϑi > 1 are higher and lower than Markov

prices, respectively is consistent with the underlying mathematical and economic theory. Indeed,

our price model accounts for two sources of risk, the Levy and the semi Markov switching risks.
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The former is hedged against by the conditional minimum entropy martingale measure as the Levy

jump process is turned into a martingale, and the latter isn’t considered hedgeable and directly

affects option prices. Hence, the higher the regime switching risk the larger the option price. From

(3.4.22), choosing ϑi < 1 (resp. ϑi > 1) implies a decreasing (resp. increasing) transition rate,

which translates in a decreasing (resp. increasing) regime switching risk. Simulations for Figures

6 and 7 are performed with y = .1 year and ϑi < 1, hence, λi,j(y) is largest for ϑi < 1, which

justifies why prices for ϑi < 1 lie above prices corresponding to ϑi = 1 and ϑi > 1, respectively.

Simulation of Figure 8 was performed with y = 1.1 year. It shows that option prices are higher for

larger shape parameters. This is in agreement with (3.4.22) as it shows that λ is higher for higher

values of ϑi. One of the most documented shortcomings of Levy models for price processes is

their inability to capture long term implied volatility smiles, [50]. Markov switching Levy price

models succeed in slowing the dampening of the implied volatility smiles through the conditional

intensity rate matrix, [50]. In our context, the conditional rate matrix is time dependent and could

be affected by y, α and ϑ, hence offering more control than Markov market regime models over

long term smiles. Figure 15 shows that, irrespective of the Levy process used, long term smiles

an smirks which often vanish at T = 1 year in Markov regimes [7], are still persistent at T = 2

years when market regimes are semi Markovian. In addition, Figures 16, 17 and 18 show that

the backward recurrence time, the shape and the scale parameters do have a prominent effect on

the implied volatility surface. The three rows of Figure 9 display three different effects of the

backward recurrence time on the difference in prices between all market regimes, based on three

different values of the shape parameter ϑ. The first and the third row were simulated based upon

ϑi < 1,∀i ∈ E and ϑi > 1,∀i ∈ E, respectively. Option prices are decreasing in the first row

and increasing in the third row in all market regimes. However, in each regime, prices decrease or

increase at different rates, hence affecting the price differences between market regime prices. One

therefore observe either an exacerbation or a reduction of differences in regimes as evidenced in the

first and third row. The second row corresponds to ϑi = 1, ∀i ∈ E and shows no change in option

prices as the price model reduces to Markov market regime price model which is independent of y.

Indeed, from (3.4.22), when ϑi = 1,∀i ∈ E, λi,j will reduce to a mere constant and will therefore

be free of y. Similar observations are made in Figures 10 and 11. One also note from Figure 12,

13 and 14 that y, α and ϑ, respectively, affect in-the money, at-the-money and out-of-the-money
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options prices and leave deep in-the-money (low call strikes relative to the spot price)and out-of-

the-money (high call strikes relative to the spot price) option prices relatively unchanged. This stems

from (3.4.3), where the payoff vanishes or grows substantially causing the option price to vanish or

grow as well irrespective of the market regime when the log strike k grows or decreases relative to

the spot price respectively.

3.4.2 FST pricing of vanilla and exotic option contracts

We first look into the pricing of two vanilla option contracts: single asset European option contracts

and single asset American option contracts. We recall that American option contracts can be exer-

cised any time before expiration of the contract, unlike European option contracts which are settled

at maturity. It has been shown [28] that it is not optimal to exercise a non-dividend-paying Ameri-

can option contract before maturity. Hence, American and European call options contracts have the

same price provided that the underlying asset does not pay dividends, [32]. One will therefore be

concerned only with pricing and comparing prices induced by [11], and the FST numerical meth-

ods, [60], respectively. The FST pricing of European option contracts requires one time step despite

the assumption of time dependent conditional intensity matrix. It is based on (3.4.16) applied at

(t, y, x) as follows:

C(t, T,K, y, x) = F−1

[
exp

[ ∫ T−t+y

y
M(w, s)ds

]
.Ŝ(w,K).1

]
.

Simulation parameters used for pricing purpose are as follows: m = 3 market states, interest rate

r = .05, spot price S = 100, σ = (.3, .5, .7), α = (−3, 2, 1; 2,−6, 4; .5, 1,−1.5), ϑ = (5, 3, .3),

ε = (0, .2, .1; .4, 0, .1; .1, .3, 0) and the jump and drop probabilities p = (0, .2, .1; .25, 0, .3; .1, 0, 0).

We notice from Figure 4 that SMBS call option prices obtained from FST and Carr and Madan

are identical up to the third decimal as is the case with call option in Markov regime markets [53].

However, the error plot shows that Carr and Madan prices are consistently slightly larger than FST

prices. As for the pricing of American options in semi Markov markets, (3.4.16) allows us to use

the FST method, [60], thus far applied to Markov regime markets. The FST is applied based on the

discretization scheme presented in Remark 3.4.2. American put option prices are larger than their

payoff, as they can be either exercised or held at each time step. The option holder always chooses

the alternative netting the larger benefit. Such a maximum condition is enforced in the design of the
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pricing algorithm as follows:

C?(tn, T,K, y, xn) = F−1

[
exp

[ ∫ y+∆t

y
M(w, s)ds

]
.Ĉ(tn+1, T,K, y, w)

]
,

which is the holding price of the option at time tn, while the price of the option at the same time is

C(tn, T,K, y, xn) = max
(
C?(tn, T,K, y, xn),C(T, T,K, y, xn)

)
,

where the maximum is applied component wise. We simulate prices of European style Digital and
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Figure 4.: The left hand side plot presents comparisons of Semi Markov Back Scholes FST and

Carr and Madan prices of European option in every state of the market while the right hand side

plot exhibits error differences in each regimes.

asset-or-nothing exotic option prices. We recall that at expiry, digital call option contracts pay $1,

if the spot price is at least at large as the strike and nothing otherwise. Digital put options however,

pay nothing if the spot price is larger than the strike and $1 otherwise. Asset-or-nothing option

contracts are similar to digital option contracts with the only difference that they pay the asset price

93



worth or nothing. Their respective payoff functions can be expressed as follows:

S(xT , k) =



1(xT≥K) for digital calls,

1(xT<K) for digital puts,

xT 1(xT≥K) for asset-or-nothing calls,

xT 1(xT<K) for asset-or-nothing puts.

The pricing of this style of path-independent exotic option contracts in semi Markov regime switch-

ing could be done using the FST method with one single time step. The first row of Figure shows

that the effect of the backward recurrence time on European vanilla observed in the preceding sec-

tion carries over to American and exotic option contracts.
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Figure 5.: The first row captures the effect of backward recurrence on American style put, digital

put and asset-or-nothing put option prices while the second and third rows present all three put and

call option prices at each market state.

94



Strikes
0 50 100 150 200 250 300 350 400 450

O
p
ti
o
n
p
ri
ce
s

0

20

40

60

80
Semi Markov vs Markov Black-Scholes: Regime 1

Markov(ϑi = 1)

Semi Markov(ϑi < 1)

Semi Markov(ϑi > 1)

Strikes
0 50 100 150 200 250 300 350 400 450

O
p
ti
o
n
p
ri
ce
s

0

20

40

60

80
Semi Markov vs Markov Black-Scholes: Regime 2

Markov(ϑi = 1)

Semi Markov(ϑi < 1)

Semi Markov(ϑi > 1)

Strikes
0 50 100 150 200 250 300 350 400 450

O
p
ti
o
n
p
ri
ce
s

0

20

40

60

80
Semi Markov vs Markov Black Scholes: Regime 3

Markov(ϑi = 1)

Semi Markov(ϑi < 1)

Semi Markov(ϑi > 1)

Strikes
0 50 100 150 200 250 300 350 400 450

O
p
ti
on

p
ri
ce
s

0

20

40

60

80
Semi Markov vs Markov Black-Scholes: Regime 4

Markov(ϑi = 1)

Semi Markov(ϑi < 1)

Semi Markov(ϑi > 1)

Figure 6.: Comparison of option prices in a Markov switching Black Scholes model and a semi

Markov switching Black Scholes (SMBS) model.
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Figure 7.: Comparison of option prices in a Markov switching Merton Jump diffusion model and

a semi Markov switching Merton Jump diffusion (SMMJD) model.
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Figure 8.: Comparison of option prices in a Markov switching Normal Inverse Gamma model and

a semi Markov switching Normal Inverse Gamma (SMNIG) model.
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Figure 9.: Effects of the backward recurrence time on option price. The first, second and third rows

are simulated with ϑi,j < 1,∀i, j ∈ E, ϑi,j > 1,∀i, j ∈ E and ϑi,j = 1,∀i, j ∈ E, respectively.
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Figure 10.: Effects of the scale parameter α on option prices C.
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Figure 11.: The effects of the shape parameter on option prices. The shape parameter vector in the

simulation is ζkϑ where ζk ∈ {.25, .5, .75, 1}.
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Figure 12.: The effects of the backward recurrence time yt on option prices C from the standpoint

of the strike price K of the option and the model used (SMBS, SMMJD or SMNIG).
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Figure 13.: The effects of the scale parameters α on option prices C is noticeable for all three

models regardless of the option moneyness.
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Figure 14.: The shape parameter vector used is (1/i, (2.1 − B(i))/1, .9B(i), B(i)/2), where i ∈

I(1, 10) and B(i) = .2(i− 1). Effects of the shape parameters ϑ on option prices C are noticeable

for all three models and regardless of the option moneyness.
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Figure 15.: Implied volatility surfaces induced by option prices generated by SMBS (first row),

SMMJD (second row) and SMNIG (third row). Column 1-4 correspond to market regimes 1-4,

respectively.

Figure 16.: Effects of the backward recurrence time yt on the implied volatility.
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Figure 17.: Effects of the shape parameter ϑ on the implied volatility.

Figure 18.: Effects of the scale parameter α on the implied volatility.
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3.4.3 Calibration

In this section, we estimate the risk neutral parameters inducing option prices closest to observed

market option prices in the least square sense. Here the CMEMM is considered to be the risk neu-

tral measure. Hence, the martingale condition (3.4.2) holds. The sojourn time distribution of the

semi Markov process (θs)s∈[0,T ] is assumed to be piecewise exponential with intensity function

defined in (3.4.22). The jump distribution at a regime switch is defined in (1.4.1). Option prices

induced by Levy processes are well known to fit market prices better [66], than BS induced option

prices. It is therefore more appropriate to isolate the effects of market regime by calibrating regime

switching BS parameters to market option prices. On the other hand, in Subsection 3.4.1, we have

concluded that the effects of the backward recurrence and sojourn time distribution parameters in-

crease as time to expiry goes up. Hence, our choice of the time to expiry T = 1.2 years. We will

use 4 data sets to calibrate semi Markov regime switching Black Scholes models. We will show

that in our framework, calibration results provide a fit at least as good as Markov switching models

with the added advantage of more insight into the dynamic of market regimes. Data of interest

are in-the-money and at-the-money European call option contract quotes on the Dow Jones Indus-

trial Average Index (DJX) and the NASDAQ index (NDX), both collected March 2008 and March

2015, respectively. Data is presented in Table 3.4.3. We note that in-crisis DJX quotes of 2008

have been used in [22] to calibrate standard exponential Levy processes and in [53] to calibrate

Markov regime switching exponential Levy processes whereas post crisis data have been retrieved

from the website www.optionseducation.org. The sum of squares (SS) and root mean square error

(RMSE) are reported in Tables 5 and 6. Markov switching models are known to improve the fit of

exponential Levy models discussed in [16, 25, 54]. It appears from Figures 19 and 20 that SMBS

fits the market data at least as well as Markov switching BS and from 19 and 20 visibly better.

Such a feature is hardly unexpected as the theoretical set up developed in [2] and the associated

estimation techniques parallel and extend the results of [16, 26, 34, 53]; showing that Markov BS

model estimation methods are nested inside SMBS. Furthermore, the parameter estimates of the

sojourn time distribution of the semi Markov process shed an additional ray of light on the market

regimes behavior. Although risk neutral parameters are a reflection of market makers perception of

the future, one can still glean a decent insight on the market behavior through calibrated parameters.

One notices that calibrated 2008 DJX Markov regimes have two very similar regimes with nearly
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identically low volatilities (17.5% and 17.6%), which is a reflection of the market widespread panic

observed at the end of the year, hence suggesting that Markov regime models support a one state

market. However, semi Markov parameters calibrated to the same data rather contend that α2 and

ϑ2 are much higher than α1 and ϑ1, hence showing that the market will spend much more time in

regime 2, the regime with the highest probability of price jumps or drops (regime 1, p̂ = .258),

which is in line with the sell-off observed throughout 2008 when the Dow Jones Industrial Average

dropped by nearly 20% from June 2007 to June 2008. Post crisis Markov and semi Markov market

state parameter estimates in Table 5 present the same conundrum as in-crisis parameter estimates.

Indeed, Markov market model parameters describe a market with volatility non reflective of the

easing of the mood observed in the market. In fact, Markov market regime model supports evidence

that volatility is higher in the post crisis market and the regime risks are similar. Another lingering

effect of the financial crisis that has not been captured by Markov regime models is the remnant and

even mounting fear of a market crash or correction which became even more acute since the DJIA

and NASDAQ have reached all time intraday highs May 19 2015 and April 23 2015, respectively.

Both market features are captured by semi Markov parameters which provide a more intuitive in-

terpretation of future behavior of the market regimes and crash fears. In fact, a look at the last line

of Table 5 shows that volatility has decreased (.143 < .173 and .044 < .141) while most of the

remaining fear in the market is centered around unexpected crashes (ε̂1 = 18%, p̂1 = .477). When

the market is in state 1 seldom does it switch to state 2 as ϑ1 < ϑ2 and α1 < α2. However, the

switching rate from state 2 to state 1 grows as ϑ2 is bigger than 1. Hence, the market is expected

to have short stays in state 2 which has low volatility (.044 < .144) and low probability of drop or

jump (.028 < .477) and longer stays in the first state. This is also in line with the notion that the

2008 financial crisis has lingering effects and market makers expect significant market corrections

and are incline to over-reacting to new information. Similar observations are made from Table 6.
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Table 4: European call option quotes written on the DJIA and NASDAQ during and after the

financial crisis. Deep out-of-the-money options have been weeded out as they are of value close to

zero. The spot prices are as follows: Dow Jones Industrial average, $122 and $180 for the 2008 and

the 2015 data sets. NASA Index $1775 and $4323

2008 DJX quotes 2015 DJX quotes 2008 NDX quotes 2015 NDX quotes

Strikes Call prices Strikes Call prices Strikes Call prices Strikes Call prices

98 24.43 50 129.85 1400 334.95 4050 339

99 23.40 55 124.85 1425 311.55 4075 319.1

100 22.50 60 119.875 1450 288.35 4100 299.35

101 21.55 65 114.9 1475 265.5 4125 280.15

102 20.63 70 109.9 1500 242.6 4150 261.3

103 19.68 75 104.925 1525 220.5 4175 242.95

104 18.75 80 99.95 1550 198.95 4200 224.9

105 17.83 85 94.975 1575 178.45 4210 217.9

106 16.90 90 89.95 1600 158.55 4220 210.85

107 15.98 95 85.05 1625 139.60 4225 207.4

108 15.10 100 80.1 1650 121.5 4230 204

109 14.23 105 75.15 1675 104.45 4240 197.1

110 13.33 110 70.225 1700 88.45 4250 190.4

111 12.45 115 65.325 1725 73.8 4260 183.7

112 11.63 120 60.425 1750 60.4 4270 177.7

113 10.78 125 55.575 1775 48.45 4275 174.4

114 9.95 130 50.75 1800 38.05 4280 171.2

115 9.18 135 45.95 1825 29.2 4290 164.75

116 8.40 140 41.25 1850 21.65 4300 158.6

117 7.68 145 36.55 1875 15.65 4310 152.35

118 6.93 150 32.025 1900 10.95 4320 146.25

119 6.23 155 27.475 1925 7.45 4325 143.2

120 5.58 160 23.125 ... ... 4330 139.7

121 4.95 165 18.925 ... ... 4340 134.45

122 4.35 170 15.1 ... ... 4350 128.65

123 3.80 175 11.375 ... ... 4360 123.05

124 3.25 180 8.075 ... ... 4370 117.35

125 2.74 185 5.275 ... ... 4375 114.35

126 2.28 ... ... ... ... 4380 111.95

127 1.90 ... ... ... ... 4390 106.65

128 1.52 ... ... ... ... 4400 101.1
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Figure 19.: Calibration results of the Markov and semi Markov regime switching models to NDX

observed prices in 2008 with the financial crisis in full swing.
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Figure 20.: Calibration results of the Markov and semi Markov regime switching models to NDX

observed prices in 2015 post financial crisis.
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3.4.4 Comparison with Heston model

In this section, we veer away from sequential calibration of option prices for each market maturity

as performed in last section. We rather perform a full implied volatility surface calibration which

we compare with the implied volatility surface generated by Markov regime switching Black Sc-

holes and Heston models. The parameters of interest in Heston model as in most literature are V0

the initial spot price volatility, κ the speed of mean reversion of the spot price volatility, θ the long

term spot price volatility and ρ the correlation of the Brownian motions driving the spot price and

the Brownian motion driving the mean reverting volatility of the spot price. We recall that Heston

volatility and Black Scholes models are two amongst the most used market models by practitioners

in the financial market. Two of the main attractions of both models is their relative tractability as

far as option pricing and the clarity of the economic interpretation of their calibrated parameters

as well as their calibration performances relative to more complex models (Levy models for in-

stance). We look into a full implied volatility surface of the semi Markov Black Scholes model, the

Markov Black Scholes model and Heston model for a data set of option prices on the NASDAQ

index quoted under the handle NDX and obtained from the website optioneducation.org. A sum-

mary of the calibration process is given on Table 7. It appears from rows 1, 2 and 4 of Table 7 that

the semi Markov Black Scholes regime switching model fits a volatility surface as well and even

slightly better than the Heston model (RMSE are 3.8 vs 4.6) and even better than Markov regime

Black Scholes models (RMSE 3.8 vs 7.1). A closer look at the reason why the semi Markov Black

Scholes outperforms Heston volatility surface is because of its ability to reproduce more accurately

short term option prices as evidenced by Figure 21. Given that the basic Black Scholes model only

supports flat volatility surfaces, one can attribute the added flexibility of the volatility surface gen-

erated by the semi Markov Black Scholes model to its switching nature which is in turn modeled

as a semi Markov process. One can note the negligible contribution of the extra jump component

at regime switches as the optimum parameters of the calibration algorithm leaves all four jump pa-

rameters equal to 0 and hence with no effect of option prices. Despite these encouraging model

fit diagnostic of the semi Markov regime switching model, one cannot be oblivious to the lack of

efficiency of its calibration algorithm compared to Heston and the Markov regime Black Scholes.

Much research as been devoted to successfully improving on the efficiency of the Heston calibration

model leading to efficient algorithm while the relative novelty of Semi Markov regime switching
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models in the derivative market is relatively unexplored, hence offering a decent research avenue.

All algorithms used in this sections were implemented in MATLAB version R2016a and the global

optimization tool was extensively used to avoid the additional bias of initial guesses in the compar-

ison. The genetic and the simulated annealing algorithms were used in particular to obtain an initial

guess and find an optimum solution respectively. [h]
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Figure 21.: Comparison of short term NDX prices observed(August 2016), generated from the

SMBS and Heston models .
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Figure 22.: Implied volatility surface of NDX observed prices with the semi Markov regime switch-

ing Black Scholes model in August 2016 as the market still recovers from the 2008 financial crisis

assuming the market in regime 2.
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Figure 23.: Implied volatility surface of NDX observed prices with the semi Markov regime switch-

ing Black Scholes model in August 2016 as the market still recovers from the 2008 financial crisis

assuming the market in regime 1 along with market volatility prices. The market implied volatility

surface is blue-green for short maturities and the SMBS implied volatility surface is yellow for short

maturities.
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3.5 Conclusion

In this chapter, we have extended the ubiquitous Markov market regime model to a semi Markov

market regime model in the context of option pricing. It allows a more accurate description of the

risk neutral market regime dynamics as it assumes a time dependent conditional intensity of state

changes. The main drawback is the increased complexity of the partial differential equation satisfied

by the option price which translated in longer CPU times of calibration algorithms. We considered

semi Markov processes with piecewise constant conditional intensity matrices, which allowed us

to use Carr and Madan and the Fourier time stepping methods for option simulations and calibra-

tions. An analysis of the semi Markov parameters effects on option prices shows that semi Markov

parameters influence option prices to a visible extend, hence legitimizing the use of semi Markov

regimes in derivative pricing. We performed a fit comparison of models with semi Markov and

Markov markets regimes and showed that Black Scholes model under semi Markov regimes shows

a slight improvement in sequential calibration (for each maturity) over Markov regime switching

models and a substantial improvement in the calibration of full implied volatility surface over both

Markov regime switching and Heston models. As previously mentioned, the runtime of the calibra-

tion algorithm is slower than Heston and Markov regime models, and every regime switching model

(Markov or semi Markov) induces an incomplete market. Incompleteness of the market renders the

risk neutral pricing argument more complex as there exist more than one risk neutral measures.

This brings up the issue of choice of the risk neutral measure. In this article we used the minimal

entropy martingale measure which is heuristically the risk neutral measure closest to the historical

measure probability measure in the sense of Kulback Leibler distance, which minimizes the distance

between the risk neutral and the historical view of the market. Another useful risk neutral measure

is the minimal martingale measure which allows the best (with respect to certain risk functions)

replication of option contracts for portfolio risk hedging purpose. Future research may look into

the development of a minimal martingale measure for semi Markov regime switching models along

with improving the calibration algorithm for a more economical CPU time in semi Markov regime

switching models.
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Chapter 4

Non linear multidimensional Levy-Itó semi Markov regime switching models

4.1 Introduction

We introduce a family of semi Markov regime switching multidimensional non linear models ex-

tending the commodity model developed in [56, 57] and the most common stochastic volatility

models and local volatility models, namely, Heston-type models, [20, 40, 58], Constant Elasticity

of Volatility (CEV) type models, Garch models and Cox-Ingerson-Ross (CIR) models [19, 23, 29]

among others. Stochastic volatility models are ubiquitous in financial modeling, as they are a signif-

icant upgrade over Black Scholes model [6] both in derivative pricing and in asset return prediction.

In derivative pricing, stochastic volatility model provide an implied volatility surface in compliance

with many empirical features of the market such as smiles and smirks. As for historical parameter

estimation, Stochastic volatility models provide a log return distribution exhibiting many empiri-

cally observed features (skewness, fatness of tails and high peak). Despite the abundant literature

of Heston models and its well documented reproduction of many stylized empirical facts, a semi

Markov switching market has the potential of adding to the already well documented flexibility of

the model. Semi Markov regime switching market represent a non obvious generalization of the

more common Markov regime switching models. Such models have been studied recently by [2, 3]

who finds a Fourier methods through a characteristic function formula, for pricing derivatives in

Levy driven financial markets.

The families of models introduced also allow the modeling of multi-asset baskets. Financial port-

folios are often divided in sectors (technology, energy, commodity and so on) which are assumed to

show significant intra-sector correlation and little to no inter-sector correlation. Hence prediction of

one specific asset price could be improved when accounting for prices of assets in the same group.

[56, 57] first developed a calibration technique for such a class of model, namely the LLGMM

method, accounting for a unique layer of interaction between asset prices through their diffusion
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coefficients. We extend such a model to semi Markov markets and provide in the same token an

opportunity to assess the unpredictable jumps effects on the calibration results. The rest of the chap-

ter is organized as follows: Section 2 is an introduction to the general multidimensional non linear

model. Section 3 is the special case of a coupled multidimensional stochastic differential equation

model describing commodity prices and an extension of Heston model to account for semi Markov

regime changes. Section 3 is a presentation of numerical results and simulations.

4.2 LLGMM preliminary set up

Let
(
Ω,F

)
and m be the reference measurable space and a whole number, respectively. We de-

note T ∗, T and ψ the market time horizon and the maturity time of some derivative contract, and a

Poisson random measure, respectively. (θt)t∈[0,T ∗] is a semi Markov process with state space E =

{1, 2, ...,m}, state switching times (Tk)k∈N and (βk)k∈N is a discrete sequence of non negative vec-

tor valued numbers with βk =
(
β1
k, β

2
k, ..., β

n
k

)
. We consider n, q, l ∈ N? and x an n-dimensional

vector stochastic process, µ ∈ C
[
R+×R+×E×Rn,Rn

]
, σ ∈ C

[
R+×R+×E×Rn,Rn×Rl

]
,

B is an l dimensional vector of Brownian motions, G,H ∈ C
[
R+ × R+ × E × Rn × R,Rn

]
and

R ∈ B
[
R× R× Rn × Rn,Rn

]
a bounded function.

µ,σ,G and H are assumed smooth enough to ensure existence of a solution of the following sys-

tem of stochastic partial differential equations:

dxt = µ(t, yt− , θk,xt−)dt+ σ(t, yt− , θk,xt−)dBt

+

∫
|z|<1

G(t, yt− , θk,xt− , z)ψ̄(θk, dt, dz)

+

∫
|z|>1

H(t, yt− , θk,xt, z)ψ(θk, dt, dz), (4.2.1)

xk = βkx
−
k , ∀k ∈ I(1,∞) = N, where xTk = xk, ∀k ∈ I(1,∞) = N,∀t ∈ [Tk, Tk+1)

(4.2.2)

ln (βk) ∼ b̄(|θk−1, θk) (4.2.3)

(Ht)t∈[0,T ], (Lt)t∈[0,T ] and Bn are filtrations generated by the semi Markov process θt, Levy pro-

cesses Ljs, s ∈ [0, t], ∀j ∈ E = {1, 2, 3, ...,m} and the discrete vector sequence (βk)k∈N, re-

spectively. We also denote L̄t = Lt ∨ Bn(t), Ḡt = HT ∨ L̄t and Gt = Ht ∨ L̄t,∀t ∈ [0, T ?].

Let P and Q be the historical probability and an equivalent martingale measures [2], respec-
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tively, associated with the price process
(
x(t)

)
t>0

defined on the reference space
(
Ω,F

)
. We

present an extension of Itó’s lemma in [2], for a function V ∈ C1,1,0,2
[
R+ × R+ × E × Rn,Rq

]
.

∂V
∂x denotes the q × n first derivative matrix of V and ∂2V

∂x2
=
(
∂2Vk
∂xi∂xj

)
n×n×q represents a ten-

sor of rank 3. We use the following notation: G = (G1, ..., Gq)
T , H = (H1, ...,Hq)

T and

Tr
[
aT ∂

2V
∂x2 a

]
=
(
Tr
(
aT ∂

2V1
∂x2 a

)
, ..., T r

(
aT

∂2Vq
∂x2 a

))T
, ∀a ∈ Rn × Rp, ∀p ∈ N∗. We define

the following set E? = E2 − {(i, i), i ∈ E}. We denote N(t, A,B) a stochastic process on

[0, T ]× B(R)× P (E?) into [0,∞) as follows:

N(t, A,B) =
∑
n≥1

1(
t≥Tn,ln (βn)∈A,(θn−1,θn)∈B

). (4.2.4)

N(t, A,B) is the number of regime switches in subset B of E? with corresponding log price jumps

ln (βn) ∈ A ⊂ R by time t. The compensator γ(t, A,B) =
∑

(i,j)∈B
∫ t

0

∫
z∈A b̄(z|i, j)λi,j(ys)dzds

of N(t, A,B) and Itó formula for the function V are derived in [2]:

dV (s, ys, θs,xs) =
∂V

∂t
dt+

∂V

∂y
dy +

∂V

∂x
dxs +

1

2
(dxcs)

T ∂
2V

∂x2
dxcs

+

∫
|z|≤1

[
V (s, ys− , θs− ,xs− +G(s, ys− , θs− ,xs− , z))− V (s, ys− , θs− ,xs−)

− ∂V

∂x
G(s, ys− , θs− ,xs− , z)

]
ψ̄(θs− , dz, ds)

+

∫
|z|>1

[
V (s, ys− , θs− ,xs− +H(s, ys− , θs− ,xs− , z))− V (s, ys− , θs− ,xs−)

− ∂V

∂x
H(s, ys− , θs− ,xs− , z)

]
ψ(θs− , dz, ds)∫

|z|≤1

[
V (s, ys− , θs− ,xs− +G(s, ys− , θs− ,xs− , z))− V (s, ys− , θs− ,xs−)

− ∂V

∂x
G(s, ys− , θs− ,xs− , z)

]
ν(θs− , dz)ds

+
m∑

j=1,j 6=θs−

∫
z∈R

[
V (s, ys, j,xs−e

z)− V (s, ys− , θs− ,xs−)
]
N(dz, ds, {(θs− , j)}) (4.2.5)

=
∂V

∂s
ds+

∂V

∂y
dy +

∂V

∂x
µ(t, θk, ys− ,xs−)ds+ Tr

[1

2
σT (s, ys− , θs− ,xs−)

∂2V

∂x2
σ(s, ys− , θs− ,xs−)

]
ds

+
∂V

∂x
σ(s, θk, ys− ,xs−)dBs

+

∫
|z|≤1

[
V (s, ys− , θs− ,xs− + xs−G(s, ys− , θs− ,xs− , z))− V (s, ys− , θs− ,xs−)

]
ψ̄(θs− , dz, ds)

+

∫
|z|>1

[
V (s, ys− , θs− ,xs− +H(s, ys− , θs− ,xs− , z))− V (s, ys− , θs− ,xs−)

]
ψ(θs− , dz, ds)
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∫
|z|≤1

[
V (s, ys− , θs− ,xs− + xs−G(s, ys− , θs− ,xs− , z))− V (s, ys− , θs− ,xs−)

− ∂V

∂x
G(s, ys− , θs− ,xs− , z)

]
ν(θs− , dz)ds

+
m∑

j=1,j 6=θs−

∫
z∈R

[
V (s, ys, j,xs−e

z)− V (s, ys− , θs− ,xs−)
]
N(dz, ds, {(θs− , j)}) (4.2.6)

= LV (s, θs, ys,xs)ds+
∂V

∂x
σ(s, θk, ys− ,xs−)dBs

+

∫
|z|≤1

[
V (s, ys− , θs− ,xs− +G(s, ys− , θs− ,xs− , z))− V (s, ys− , θs− ,xs−)

]
ψ̄(θs− , dz, ds)∫

|z|>1

[
V (s, ys− , θs− ,xs− +H(s, ys− , θs− ,xs− , z))− V (s, ys− , θs− ,xs−)

]
ψ̄(θs− , dz, ds)

+
m∑

j=1,j 6=θs−

∫
z∈R

[
V (s, ys, j,xs−e

z)− V (s, ys− , θs− ,xs−)
]
N̄(dz, ds, {(θs− , j)}), (4.2.7)

where

LV (s, θs− , ys− ,xs−) =
∂V

∂s
+
∂V

∂y
+
∂V

∂x
µ(t, θk, ys− ,xs−)

+
1

2
Tr
[
σT (s, ys− , θs− ,xs−)

∂2V

∂x2
σ(s, ys− , θs− ,xs−)

]
+

∫
|z|≤1

[
V (s, ys− , θs− ,xs− +G(s, ys− , θs− ,xs− , z))− V (s, ys− , θs− ,xs−) (4.2.8)

− ∂V

∂x
G(s, ys− , θs− ,xs− , z)

]
ν(θs− , dz)

+

∫
|z|>1

[
V (s, ys− , θs− ,xs− +H(s, ys− , θs− ,xs− , z))− V (s, ys− , θs− ,xs−)

]
ν(θs− , dz)

+

∫
z∈R

∑
j∈E−{θs−}

[
V (s, ys, j,xs−e

z)− V (s, ys− , θs− ,xs−)
]
γ(dz, ds, {(θs− , j)}) (4.2.9)

We denote PnMn = {tk}Mn
k=0, 0 = t0 < t1 < ... < tMn = T a partition of the time inter-

val [0, T ]. Using the notations Vk = V (tk, θtk , ytk ,xtk), Gk = G(tk, ytk , θtk ,xtk , z), Hk =

H(tk, ytk , θtk ,xtk , z), V G
k−1(z) = V (tk−1, ytk−1

, θtk−1
, xtk−1

+G(tk−1, ytk−1
, θtk−1

,xtk−1
, z)) and

V H
k−1(z) = V (tk−1, ytk−1

, θtk−1
, xtk−1

+H(tk−1, ytk−1
, ytk−1

,xtk−1
, z)), the first and second mo-

ments are presented below:

E
[
∆Vk

∣∣Gtk−1

]
= LVk−1∆tk

E

[[
∆Vk − E

[
∆Vk

∣∣Gtk−1

]][
∆Vk − E

[
∆Vk

∣∣Gtk−1

]]T ∣∣∣∣Gtk−1

]
(4.2.10)

=
∂V

∂x
σ(s, ys− , θs− ,xs−)σT (s, ys− , θs− ,xs−)

∂V

∂x

T

∆tk−1
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+

∫
|z|≤1

[
V G
k−1(z)− Vk−1

][
V G
k−1(z)− Vk−1

]T
ν(θtk−1

, dz)∆tk

+

∫
|z|>1

[
V H
k−1(z)− Vk−1

][
V H
k−1(z)− Vk−1

]T
ν(θtk−1

, dz)∆tk

+
∑

j∈E−{θtk−1
}

∫
z∈R

[
V (tk−1, ytk−1

, j,xtk−1
ez)− Vk−1

][
V (tk−1, ytk−1

, j,xtk−1
ez)− Vk−1

]T
× γ(dz,∆tk, {(θtk−1

, j)}) (4.2.11)

4.3 Illustrations

In the following, we examine two particular cases of the model in (4.2.1).

4.3.1 Modeling of a basket of interdependent assets

We extend the system of interconnected commodity price process network in [56] by considering

Levy jumps representing shocks specific to each member of the network. We assume that each

asset in the network is affected by independent unpredictable shocks/informations. If the network

considered is a network of financial assets, unpredictable shocks may originate from sudden infor-

mation affecting investors views of the particular financial sector of interest or other unpredictable

change affecting parameters playing a preeminent role on the asset price. Unlike [56, 57], we

assume two layers of interactions of asset prices in the network. We assume asset price interac-

tions in the diffusion coefficient and in the price jumps. Similarly to [56, 57], the i-th asset price

impacts the j-th asset price through cross diffusion coefficients of order (i,j). A second layer of

interaction introduced in this paper is achieved by assuming that a jump of the i-th asset price

impacts the j-th asset price through an appropriately modeled cross dependence parameter of or-

der (i,j). Let us assume that the network entails n ≥ 1 assets. We model these shocks with a

family of Lévy-Itó processes with Poisson measures ψm = (ψm1 , ...ψ
m
n )T having intensity pro-

cesses νm = (νm1 , ...ν
m
n )T and ψp = (ψp1 , ...ψ

p
n)T having intensity processes νp = (νp1 , ...ν

p
n)T .

We also denote ψ̄m = (ψ̄m1 , ...ψ̄
m
n )T = ψm = (ψm1 , ...ψ

m
n )T − νm = (νm1 , ...ν

m
n )T and ψp =

(ψp1 , ...ψ
p
n)T with intensity processes νp = (νp1 , ...ν

p
n)T . We assume that the vector mean process

mm = (mm
1 , ...m

m
n ) and vector price process pm = (pm1 , ...p

m
n ) potentially react differently to mar-

ket shocks through Poisson integrands (Gmi )ni=1, (H
m
i )ni=1, (G

p
i )
n
i=1 and (Hp

i )ni=1. We introduce the

following matrices: Gm = (Gmj )j≤n,G
p = (Gpj )j≤n,H

m = (Hm
j )j≤n,G

p = (Hp
j )j≤n,W =
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(Wi,j)i,j≤n and andZ = (Zi,j)i,j≤n are real numbers ∀i, j ∈ I(1, n). Wi,j and Zi,j are indepen-

dent Brownian motion processes. A coupled system of Levy type stochastic differential equations

under regime changes and subjected to structural perturbations can be expressed as follows:

dmj = (uj −mj)
[∑n

l=1 κlj(t
−)ml(t

−)dt+ δjjdWj,j(t) +
∑n

l=1,l 6=j δljml(t
−)dWl,j(t)

]
+
∫
|z|<1G

m
l (t,mt− , z)ψ̄

m
l (dt, dz) +

∫
|z|>1H

m
l (t,mt, z)ψ

m
l (dt, dz), t ∈ [Tk, Tk+1),mj(t0) = mj,0,

mj(Tk) = mk
j and mk

j = πkjm(T−k , Tk−1,m),∀k ∈ I(1,∞),

dpj = pj

[[
γjj(mj − pj) + βj +

∑n
l=1,l 6=j γlj(t

−)pl(t
−)
]
dt+ σjjdZj,j(t) +

∑n
l=1,l 6=j σljpl(t

−)dZl,j(t)
]

+
∫
|z|<1G

p
l (t,pt− , z)ψ̄

p
l (dt, dz) +

∫
|z|>1H

p
l (t,pt, z)ψ

p
l (dt, dz), t ∈ [Tk, Tk+1), pj(t0) = pj,0,

pj(Tk) = pkj and pkj = ωkj p(T
−
k , Tk−1,p,m),∀k ∈ I(1,∞).

(4.3.1)

We define the following matrices:

κ =


κ11 . . . κ1n

... . . .
...

κn1 . . . κnn

 ,γ =


−γ11 . . . γ1n

... . . .
...

γn1 . . . −γnn

 ,

Σ =


σ11 . . . σ1np1

... . . .
...

σn1pn . . . σnn

 ,Υ =


δ11 . . . δ1nm1

... . . .
...

δn1mn . . . δnn

 ,

W =


W11 . . . W1n

... . . .
...

Wn1 . . . Wnn

 ,Z =


Z11 . . . Z1n

... . . .
...

Zn1 . . . Znn


This coupled system in matrix form becomes:

dmt = a(t, yt, θj ,m)dt+ Υ(t, yt, θj ,m)dW (t) +

∫
|z|<1

Gm(t, yt, θj ,m, z)ψ̄m(θj , dt, dz)

+

∫
|z|>1

Hm(t, yt, θt,m, z)ψ(θj , dt, dz), wherem(t0) = m0, if t ∈ [Tj , Tj+1)

dpt = b(t, y, θj ,p,m)dt+ Σ(t, y, θj ,p)dZ(t) +

∫
|z|<1

Gp(t, y, θj ,p, z)ψ̄p(θj , dt, dz)

+

∫
|z|>1

Hp(t, yt, θj ,p, z)ψ(θj , dt, dz), where p(t0) = p0, if t ∈ [Tj , Tj+1) (4.3.2)

mi = Πimi−1(T−i , Ti−1,m
i−1), (4.3.3)
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pi = Ωipi−1(T−i , Ti−1,p
i−1), (4.3.4)

with

Πi = diag(π1, ..., πn), where ln (πk) ∼ g(|θi, θi−1), ∀k ∈ I(1, n), i ∈ I(1,∞), (4.3.5)

Ωi = diag(ω1, ...ωn), where ln (ωk) ∼ h(|θi, θi−1), ∀k ∈ I(1, n), i ∈ I(1,∞), (4.3.6)

where a(t, y, θj ,m) and b(t, y, θj ,p,m) are n dimensional vectors with a(t, y, θj ,p,m) = κT (t−)p(t−)

and b(t, y, θj ,p,m) = −γdiag(m1, ...,mn) + β + γp; We consider the particular case of (4.3.1)

where,Hp
l (t, yt, θt,pt, z) = Gpl (t, yt, θt,pt, z) = z andHm

l (t, yt, θt,mt, z) = Gml (t, yt, θt,pt, z) =

z. We also consider the following families of Lyapunov functions: V j,q(t, yt, θt,m) = mq
j and

V j,q(t, yt, θt,p) = pqj ∀j ∈ I(1, n), q ∈ I(1,∞). Using the multivariate real valued version of Itó

formula in (4.2.8) and (4.2.10) applied to U , we obtain, respectively:

d(mq
j(t)) = qmq−1

j (t−)(uj −mj(t
−))
[ n∑
l=1

κj,lml(t
−)
]
dt

+
1

2
q(q − 1)mq−2

j (t−)(uj −mj(t
−))2

[ n∑
l=1

δ2
j,lm

2
l (t
−)
]
dt

+

∫
|z|≤1

[[
mj(t

−) +mj(t
−)Gml (t−)

]q −mq
j(t
−)
]
ψ̄mj (θt− , dz)

+

∫
|z|>1

[[
mq
j(t
−) +mj(t

−)Hm
j (t−)

]q −mq
j(t

)
]
ψ̄mj (θt− , dz)∫

|z|≤1

[[
mj(t

−) +mj(t
−)Gml (t−)

]q −mq
j(t
−)− qmq

j(t
−)Gjm

]
νmj (θt− , dz)

+

∫
|z|>1

[[
mq
j(t
−) +mj(t

−)H l
j(t
−)
]q −mq

j(t
)
]
νmj (θt− , dz)

+ qmq−1(t−)(uj −mj(t
−))
[ n∑
l=1

δj,lml(t
−)dWj,l(t)

]
,∀t ∈ [Ts, Ts+1], s ∈ I(1,∞), (4.3.7)

d(pqj(t)) = qpq−1
j (t−)pj(t

−)
[
γj,j(mj(t

−)− pj(t−)) + βj +
n∑
l=1

γj,lpl(t)
]
dt

+
1

2
q(q − 1)pq−2

j (t−)p2
j (t
−)
[ n∑
l=1

σ2
j,lp

2
l (t
−)
]

+

∫
|z|≤1

[[
pj(t

−) + pj(t
−)Gpj (t

−)
]q − pqj(t−)

]
ψ̄pj (θt− , dz)

+

∫
|z|>1

[[
pj(t

−) + pj(t
−)Hp

j (t−)
]q − pqj(t−)

]
ψ̄jp(θt− , dz)∫

|z|≤1

[[
pj(t

−) + pj(t
−)Gpj

]q − pqj(t−)− qpq(t−)Gjp

]
νpj (θt− , dz)
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+

∫
|z|>1

[[
pj(t

−) + pj(t
−)Hp

j

]q − pqj(t−)
]
νjp(θt− , dz)

qpq−1(t−)pj(t
−)
[ n∑
l=1

σj,lpl(t
−)dZj,l(t

−)
]
,∀t ∈ [Ts, Ts+1], s ∈ I(1,∞). (4.3.8)

Applying Euler Maruyama discretization scheme at tk leads to:

E
[
∆mq

j(tk)
∣∣Gtk−1

]
= qmq−1

j (tk−1)(uj −mj(tk−1))
[ n∑
l=1

κj,lml(t
−)
)]

∆tk

+
1

2
q(q − 1)mq−2

j (tk−1)(uj −mj(tk−1))2
[ 2∑
l=1

δ2
j,l(tk−1)

]
+

∫
|z|≤1

[[
mj(tk−1) +mj(t

−)Gmj (tk−1)
]q −mq

j(tk−1)− qmq
j(tk−1)Gmj (tk−1)

]
νmj (θtk−1

, dz)

+

∫
|z|>1

[[
mj(tk−1) +mj(t

−)Hm
j (tk−1)

]q −mq
j(tk−1)

]
νmj (θs− , dz), (4.3.9)

E
[[

∆mq
j(tk)− E

[
∆mq

j(tk)
∣∣Gtk−1

]]2∣∣∣Gtk−1

]
= (uj −mj(tk−1))2

[
q2m

2(q−1)
j (tk−1)

[ n∑
l=1

δ2
j,lpl(tk−1)

]
∆tk

+

∫
|z|≤1

[[
mj(tk−1) +mj(t

−)Gjm(tk−1)
]q −mq

j(tk−1)
]2
νmj (θtk−1

, dz)∆tk

+

∫
|z|>1

[[
mj(tk−1) +mj(t

−)Hj
m(tk−1)

]q −mq
j(tk−1)

]2
νjm(θtk−1

, dz)∆tk

]]
, (4.3.10)

and

E
[
∆pqj(tk)

∣∣Gtk−1

]
= qpq−1

j (tk−1)pj(tk−1)
[
γj,j(mj(t

−)− pj(t−)) + βj +
n∑
l=1

γj,lml(t)
]
∆tk

+
1

2
q(q − 1)pq−2

j (tk)p
2
j (tk−1)

[ n∑
l=1

σ2
j,lp

2
l (tk−1)

]
+

∫
|z|≤1

[[
pj(tk−1) + pj(tk−1)Gpj (tk−1)

]q − pqj(tk−1)− qpqj(tk−1)Gpj (tk−1)
]
νpj (θs− , dz)

+

∫
|z|>1

[[
pj(tk−1) + pj(tk−1)Hp

j (tk)
]q − pqj(tk−1)

]
νlp(θs− , dz), (4.3.11)

E
[[

∆pqj(tk)− E
[
∆pqj(tk)

∣∣Gtk−1

]]2∣∣∣Gtk−1

]
= q2p

2q(tk−1)
j

[ n∑
l=1

σ2
j,l(tk−1)

]
∆tk

+

∫
|z|≤1

[[
pj(tk−1) + pj(tk−1)Gpl (tk−1)

]q − pqj(tk−1)
]2
νjp(θtk−1

, dz)∆tk

+

∫
|z|>1

[[
pj(tk−1) + pj(tk−1)Hp

j (tk−1)
]q − pqj(tk−1)

]2
νjp(θtk−1

, dz)∆tk. (4.3.12)
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We note that Levy jumps sizes of a fixed price process(resp: fixed mean process) are indepen-

dent and identically distributed for a given market regime. The Euler Maruyama discretization

in 4.3.9 and (4.3.11) involve first and second moments of Levy jump sizes which we will es-

timate using Monte Carlo integration. We note from model definition in 4.3.1 that the contri-

bution of small and big Levy jumps in dpj(t)(resp: mj(t)), the price (resp: the mean) change

in asset j at time t are respectively p(t
−)
∫
|z|<1G

p
l (t,pt− , z) and pj(t−)

∫
|z|>1H

p
l (t,pt, z) (resp:

m(t
−)
∫
|z|<1G

m
l (t,mt− , z) and mj(t

−)
∫
|z|>1H

m
l (t,mt, z)). Hence, the Levy Jumps are esti-

mated from the price and mean process return time series in the following manner (see [61]):∫ t
s

∫
z∈R f(η, z)νml (i, dz)dη ≈ 1

nl(i,m,[s,t])

∑n(ml,[s,t])

ζ
ml
i ∈[s,t]

f(ζmli , zζmli
),∀t, s ∈ [0, T ] with θη = i,∀η ∈

[s, t]. (ζmli )i∈N ? is the sequence of Levy time jumps of the mean price process ml. n(ml, [s, t])

denotes the total number of jumps of the l − th mean asset price process while in regime i in the

time interval [s, t] and
(
zζmli

)
i∈N ? represents the corresponding sequence of Levy jump sizes. We

assume that the function f is integrable with respect to the product measure νml (i, )dt in the domain

R × [0, T ]. Throughout the discretization process, the four functions used inside the Levy integral

are f(η, z) = 1(|z|≤1), f(η, z) = 1(|z|≤1)z
2, f(η, z) = 1(|z|>1)z and f(η, z) = 1(|z|>1)z

2. For

convenience of notation, from here on, for each of the preceding functions we denote the Monte

Carlo estimates by M s
1 (ml),M

s
2 (ml),M

b
1(ml) and M b

2(ml), respectively. Approximations of the

exponential in the Levy integrand and estimation of the Levy integrals are performed by Taylor

expansions and Monte Carlo sums respectively. These lead to the following:

E
[
∆mq

j(tk)
∣∣Gtk−1

]
= qmq−1

j (tk−1)(uj −mj(tk−1))
[ n∑
l=1

κj,lml(t
−)
)]

∆tk

+
1

2
q(q − 1)mq−2

j (tk−1)(uj −mj(tk−1))2
[ 2∑
l=1

δ2
j,l(tk−1)

]
+ qmq

j(t
−)M1

j (bm), (4.3.13)

E
[[

∆mq
j(tk)− E

[
∆mq

j(tk)
∣∣Gtk−1

]]2∣∣∣Gtk−1

]
= (uj −mj(tk−1))2

[
q2m

2(q−1)
j (tk−1)

[ n∑
l=1

δ2
j,lm

2
l (tk−1)

]
∆tk

]
+ q2m2q

j (tk)M
2
j (sm) + q2m2q

j (tk)M
2
j (bm), (4.3.14)

and

E
[
∆pqj(tk)

∣∣Gtk−1

]
= qpq−1

j (tk−1)pj(tk−1)
[
γj,j(mj(t

−)− pj(t−)) + βj +
n∑
l=1

γj,lml(t)
]
∆tk
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+
1

2
q(q − 1)pq−2

j (tk)p
2
j (tk−1)

[ n∑
l=1

σ2
j,lp

2
l (tk−1)

]
+ qpqj(tk−1)M1

j (bp), (4.3.15)

E
[[

∆pqj(tk)− E
[
∆pqj(tk)

∣∣Gtk−1

]]2∣∣∣Gtk−1

]
= q2p2q

j (tk−1)
[ n∑
l=1

σ2
j,l(tk−1)p2

j (tk−1)
]
∆tk

+ q2p2q
j (tk−1)M2

j (sp)∆tk + q2p2q
j (tk−1)M2

j (bp)∆tk. (4.3.16)

We note that the particular case q = 1 in (4.3.9) and (4.3.11) yields the following systems:

E
[
∆mj(tk)

∣∣Gtk−1

]
= (uj −mj(tk−1))

[ n∑
l=1

κj,lml(t)
)]

∆tk

+mj(tk−1)M1
j (bm), (4.3.17)

E
[[

∆mj(tk)− E
[
∆mj(tk)

∣∣Gtk−1

]]2∣∣∣Gtk−1

]
= (uj −mj(tk−1))2

∑
l=1

δ2
j,lm

2
l (tk−1)∆tk

+m2
j (tk−1)[M2

j (sm)∆tk +M2
j (bm)∆tk], (4.3.18)

and

E
[
∆pj(tk)

∣∣Gtk−1

]
= pj(tk−1)

[
γj,j(mj(t

−)− pj(t−)) + βj +
∑

l=1,l 6=j
γj,lpl(t)

]
∆tk

+ pj(tk−1)M2
j (bp), (4.3.19)

E
[[

∆pj(tk)− E
[
∆pj(tk)

∣∣Gtk−1

]]2∣∣∣Gtk−1

]
= p2

j (tk−1)

[[ n∑
l=1

σ2
j,lp

2
l (tk−1)

]
∆tk

+M s
2 (pj)∆tk−1 +M b

2(pj)∆tk−1

]
. (4.3.20)

When q = 1, from (4.3.13) we have

(uj −mj(tk−1))2
[∑
l=1

δ2
j,lm

2
l (tk−1)

]
= E

[[
∆mj(tk)− E

[
∆mj(tk)

∣∣Gtk−1

]]2∣∣∣Gtk−1

]
−m2

j (tk)M
2
j (sm)−m2

j (tk)M
2
j (bm). (4.3.21)

Using (4.3.21) in the first moment equation of (4.3.13) yields:

E
[
∆mq

j(tk)
∣∣Gtk−1

]
= qmq−1

j (tk−1)(uj −mj(tk−1))
[ n∑
l=1

κj,lml(t
−)
)]

∆tk

+
1

2
q(q − 1)mq−2

j (tk−1)

[
E
[[

∆mj(tk)− E
[
∆mj(tk)

∣∣Gtk−1

]]2∣∣∣Gtk−1

]
−m2

j (tk)M
2
j (sm)

−m2
j (tk)M

2
j (bm)

]
+ qmq

j(t
−)M1

j (bm), (4.3.22)
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hence,

E
[
∆mq

j(tk)
∣∣Gtk−1

]
− 1

2
q(q − 1)mq−2

j (tk−1)E
[[

∆mj(tk)− E
[
∆mj(tk)

∣∣Gtk−1

]]2∣∣∣Gtk−1

]
+

1

2
q(q − 1)mq

j(tk)M
2
j (sm) +

1

2
q(q − 1)mq

j(tk)M
2
j (bm)− qmq

j(t
−)M1

j (bm)

= κjj

[
qujm

q
j(tk−1)− qmq+1

j (tk−1)
]

+ κjl

[
qujm

q−1
j (tk−1)ml(tk−1)− qmq

j(tk−1)ml(tk−1)
]
.

(4.3.23)

Writing the estimating equations at time tk yields:

s−1∑
k=s−ns

E
[
∆mq

j(tk)
∣∣Gtk−1

]
− 1

2
q(q − 1)

s−1∑
k=s−ns

mq−2
j (tk−1)E

[[
∆mj(tk)− E

[
∆mj(tk)

∣∣Gtk−1

]]2∣∣∣Gtk−1

]

+
1

2
q(q − 1)M2

j (sm)

s−1∑
k=s−ns

mq
j(tk) +

1

2
q(q − 1)M2

j (bm)

s−1∑
k=s−ns

mq
j(tk)− q

s−1∑
k=s−ns

mq
j(t
−)M1

j (bm)

= κjj

[
quj

s−1∑
k=s−ns

mq
j(tk−1)− q

s−1∑
k=s−ns

mq+1
j (tk−1)

]
+ κjl

[
quj

s−1∑
k=s−ns

mq−1
j (tk−1)ml(tk−1)

− q
s−1∑

k=s−ns

mq
j(tk−1)ml(tk−1)

]
(4.3.24)

Let us set:

Aqj,m = q

s−1∑
k=s−ns

mq
j(tk−1)(uj −mj(tk−1)) = aq1u+ aq2

Bq
j,m = q

s−1∑
k=s−ns

mq−1
j (tk−1)(uj −mj(tk−1))ml(tk−1) = bq1u+ bq2

Cqj,m =

s−1∑
k=s−ns

E
[
∆mq

j(tk)
∣∣Gtk−1

]
− 1

2
q(q − 1)

s−1∑
k=s−ns

mq−2
j (tk−1)E

[[
∆mj(tk)− E

[
∆mj(tk)

∣∣Gtk−1

]]2∣∣∣Gtk−1

]

+
1

2
q(q − 1)M2

j (sm)
s−1∑

k=s−ns

mq
j(tk) +

1

2
q(q − 1)M2

j (bm)
s−1∑

k=s−ns

mq
j(tk)− q

s−1∑
k=s−ns

mq
j(t
−)M1

j (bm)

aq1 = q

s−1∑
k=s−ns

mq
j(tk−1), aq2 = q

s−1∑
k=s−ns

mq+1
j (tk−1)

bq1 = q
s−1∑

k=s−ns

mq−1
l (tk−1)ml(tk−1), bq2 = q

s−1∑
k=s−ns

mq
j(tk−1)ml(tk−1).
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For l ∈ {1, 2} with, l 6= j we seek to estimate the parameters uj , κmlj and κmlj . The deterministic

interaction coefficient parameters κlj are estimated using the first moment equation in (4.3.24), for

any three real values q1, q2 and q3 of the parameter q.

Aq1j,mκjj +Bq1
j,mκlj = Cq1j,m

Aq2j,mκjj +Aq2j,mκlj = Cq2j,m,

Aq3j,mκjj +Aq3j,mκlj = Cq3j,m,

yielding the solutions:

u2
j

[
aq31 b

q2
1 c

q1 − aq31 b
q1
1 c

q2 + aq11 b
q3
1 c

q2 − aq21 b
q3
1 c

q1 − aq11 b
q2
1 c

q3 + aq21 b
q1
1 c

q3
]

+ uj
[
aq31 b

q2
2 c

q1 + aq32 b
q2
1 c

q1 − aq31 b
q2
2 c

q2 − aq32 b
q1
1 c

q2 + aq11 b
q3
2 c

q2 + aq12 b
q3
1 c

q2 − aq22 b
q3
1 c

q1 − aq21 b
q3
2 c

q1

− aq11 b
q2
2 c

q3 − aq12 b
q2
1 c

q3 + aq21 b
q1
2 c

q1 + aq11 b
q2
2 c

q3
]

+
[
aq32 b

q2
2 c

q1 − aq32 b
q1
2 c

q2 + aq12 b
q3
2 c

q2 − aq22 b
q3
2 c

q1 − aq12 b
q2
2 c

q3 + aq22 b
q1
2 c

q3
]

= 0

κjj =
Bq2
j,mC

q1
j,m − C

q2
j,mB

q1
j,m

Bq2
j,mA

q1
j,m −A

q2
j,mB

q1
j,m

κlj =
Cq2j,mA

q1
j,m −A

q2
j,mC

q1
j,m

Bq2
j,mA

q1
j,m −A

q2
j,mB

q1
j,m

. (4.3.25)

We estimate δjl, l ∈ {1, 2}, l 6= j the continuous random interaction coefficients of the mean pro-

cesses (ml(t))t∈[0,T ], l ∈ {1, 2} associated with the Brownian motion. We use the second order

moment equation in (4.3.14)

s−1∑
k=s−ns

E
[[

∆mq
j(tk)− E

[
∆mq

j(tk)
∣∣Gtk−1

]]2∣∣∣Gtk−1

]
− q2M2

j (sm)
s−1∑

k=s−ns

m2q
j (tk)

− q2M2
j (bm)

s−1∑
k=s−ns

m2q
j (tk)

= δ2
jj

s−1∑
k=s−ns

(uj −mj(tk−1))2q2m2q
j (tk−1) + δ2

jl

s−1∑
k=s−ns

(uj −mj(tk−1))2q2m
2(q−1)
j (tk−1)ml(tk−1)

(4.3.26)

applied to any two distinct values of q, q1 and q2 as follows:

Aq1,jj,mδ
2
jj +Bq1,l

j,mδ
2
lj = C1

j,m (4.3.27)

Aq2,jj,mδ
2
jj +Bq2,l

j,mδ
2
lj = C2

j,m, (4.3.28)
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where the coefficients are defined as follows:

Aqj,m =

s−1∑
k=s−ns

(uj −mj(tk−1))2q2m2q
j (tk−1)∆tk

Bq
j,m =

s−1∑
k=s−ns

(uj −mj(tk−1))2q2m
2(q−1)
j (tk−1)m2

l (tk−1)∆tk

Cqj,m =

s−1∑
k=s−ns

E
[[

∆mq
j(tk)− E

[
∆mq

j(tk)
∣∣Gtk−1

]]2∣∣∣Gtk−1

]
− q2M2

j (sm)
s−1∑

k=s−ns

m2q
j (tk)

− q2M2
j (bm)

s−1∑
k=s−ns

m2q
j (tk)

this, therefore yields the solutions:

δ2
jj =

Cq1,lj,mB
q2,l
j,m −B

q1,l
j,mC

q2,l
j,m

Aq1,jj,mB
q2,l
j,m −A

q2,j
j,mB

q1,l
j,m

(4.3.29)

δ2
lj =

Aq1,jj,mC
q2,l
j,m − C

q1,l
j,mA

q2,j
j,m

Aq2,jj,mB
q2,l
j,m −A

q2,j
j,mB

q1,l
j,m

. (4.3.30)

We turn our attention to estimating the parameters of the price processes pj , j ∈ {1, 2}. Equation

of (4.3.16) has parameters σ2
lj , l ∈ {1, 2}. From

s−1∑
k=s−ns

E
[[

∆pqj(tk)− E
[
∆pqj(tk)

∣∣Gtk−1

]]2∣∣∣Gtk−1

]
− q2

s−1∑
k=s−ns

p2q
j (tk−1)M2

j (sp)∆tk (4.3.31)

− q2
s−1∑

k=s−ns

p2q
j (tk−1)M2

j (bp)∆tk (4.3.32)

= q2
s−1∑

k=s−ns

p2q
j (tk−1)

[ n∑
l=1

σ2
j,l(tk−1)p2

l (tk−1)
]
∆tk (4.3.33)

The parameters σ2
lj , l ∈ {1, 2} are estimated through the general equation,

Eq,jσ
2
jj + Fq,lσ

2
lj = Dq,l,

where,

Eq,j = q2
s−1∑

k=s−ns

p2q+2
j (tk−1)

Fq,l = q2
s−1∑

k=s−ns

p2q
j (tk−1)p2q

l (tk−1)
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Dq,l =
s−1∑

k=s−ns

E
[[

∆pqj(tk)− E
[
∆pqj(tk)

∣∣Gtk−1

]]2∣∣∣Gtk−1

]
− q2

s−1∑
k=s−ns

p2q
j (tk−1)M2

j (sp)∆tk

− q2
s−1∑

k=s−ns

p2q
j (tk−1)M2

j (bp)∆tk

For two distinct values q1 and q2 of q we form the following system:

Eq1,jσ
2
jj + Fq1,lσ

2
lj = Dq1,l

Eq2,jσ
2
jj + Fq2,lσ

2
lj = Dq2,l,

with solutions;

σ2
jj =

Fq2,lDq1,l −Dq2,lFq1,l
Eq1,jFq2,l − Eq2,jFq1,l

, (4.3.34)

σ2
lj = −

Dq2,lEq1,j −Dq1,lEq2,j
Eq1,jFq2,l − Eq2,jFq1,l

. (4.3.35)

The last parameters of the price processes are the deterministic interaction coefficient parameters

γjj , βj and γlj , l 6= j. In order to estimate them, we assume the parameters σjl, l ∈ {1, 2} known

from the estimation equations (4.3.34). We use the first moment equation in (4.3.15).

s−1∑
k=s−ns

E
[
∆pqj(tk)

∣∣Gtk−1

]
− 1

2
q(q − 1)

s−1∑
k=s−ns

pqj(tk)
[
σ2
j,l + σ2

j,lp
2
l (tk−1)

]
− q

s−1∑
k=s−ns

pqj(tk−1)M1
j (bp)

= q
s−1∑

k=s−ns

pqj(tk)
[
γjj(mj(tk−1)− pj(tk−1)) + βj +

n∑
l=1,l 6=j

γjlpl(tk−1)
]
∆tk (4.3.36)

Equation (4.3.36) could also be written

Kq,jγjj +Qqβj +Oq,lγlj = Sq,l,

where the equation coefficients are expressed as follows,

Sq,l =
s−1∑

k=s−ns

E
[
∆pqj(tk)

∣∣Gtk−1

]
− 1

2
q(q − 1)

s−1∑
k=s−ns

pqj(tk)
[ n∑
l=1

σ2
j,lp

2
l (tk−1)

]

− q
s−1∑

k=s−ns

pqj(tk−1)M1
j (bp)

Oq,l = q
s−1∑

k=s−ns

pqj(tk)
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Qq = q
s−1∑

k=s−ns

pqj(tk)

Kq,j = q
s−1∑

k=s−ns

pqj(tk)(mj(tk−1)− pj(tk−1))

For three distinct values q1, q2 and q3 of q, we form the system:

Kq1,jγjj +Qq1βj +Oq1,lγlj = Sq1,l,

Kq2,jγjj +Qq2βj +Oq2, lγlj = Sq2,l,

Kq3,jγjj +Qq3βj +Oq3,lγlj = Sq3,l.

Solutions are expressed in closed form through Cramer rule

γjj =

∣∣∣∣∣∣∣∣∣
Sq1,l Qq1 Oq1,l

Sq2,l Qq2 Oq2,l

Sq3,l Qq3 Oq3,l

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Kq1,j Qq1 Oq1,l

Kq2,j Qq2 Oq2,l

Kq3,j Qq3 Oq3,l

∣∣∣∣∣∣∣∣∣

βj =

∣∣∣∣∣∣∣∣∣
Kq1,j Sq1,l Oq1,l

Kq2,j Sq2,l Oq2,l

Kq3,j Sq3,l Oq3,l

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Kq1,j Qq1 Oq1,l

Kq2,j Qq2 Oq2,l

Kq3,j Qq3 Oq3,l

∣∣∣∣∣∣∣∣∣

γlj =

∣∣∣∣∣∣∣∣∣
Kq1,j Qq1 Sq1,l

Kq2,j Qq2 Sq2,l

Kq3,j Qq3 Sq3,l

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Kq1,j Qq1 Oq1,l

Kq2,j Qq2 Oq2,l

Kq3,j Qq3 Oq3,l

∣∣∣∣∣∣∣∣∣

.
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4.3.2 Modeling of asset prices with a regime switching Heston model

This illustration extends [27] and presents how vanilla option pricing could be performed using a

model with stochastic volatility in a market with semi Markov regimes. However, the results and

proofs in this second illustration of the general model of coupled stochastic dynamics will rely on

a different but equivalent notation for market regimes. We first introduce the new notation for the

semi Markov process and a few necessary results.

DEFINITION 4.3.1 1. The semi Markov process (θt)t∈[0,T ] is now represented by a vector process

denoted (Θt)t∈[0,T ] with Θt = (1(θt=1), 1(θt=2), ..., 1(θt=m)),

2. Λ(yt) = (λij(yt))i,j≤m denotes the conditional matrix of intensities of the semi Markov process

(Θt)t∈[0,T ],

3. the notation ΛT denotes the matrix transposed of Λ,

4. we denote the states of the semi Markov process (Θt)t∈[0,T ], e1, ...em, where ei = (0, ...0, 1, 0, ...0)︸ ︷︷ ︸
i−th

and I represents the identity matrix.

We establish a martingale theorem for the vector valued semi Markov process as a particular case

of [8].

LEMMA 4.3.1 Let Θt = (1(θt=1), 1(θt=2), ..., 1(θt=m)) and Λ(t) = (λij(yt))i,j≤m as in Definition

4.3.1, be the vector carrying instantaneous states of the semi Markov process Θt and the conditional

intensity matrix of Θt. There exists an Rm vector valued martingale process Mt, right continuous

with left limits such that:

Θt = Θ0 +

∫ t

t0

Λ
′
(yu−)Θ−u du+Mt. (4.3.37)

Proof. From Definition 4.3.1 and the intensity theorem for general marked point processes in [8],

the conditional intensity process λi of 1(θt=i) could be expressed as follows:

λi(t) =
∑
n≥0

pθni
fθni(t− Tn)dt

SΘn(t− Tn)
1(Tn≤t<Tn+1)1(Tn<∞)

=
∑
j∈E

∑
n≥0

pji
fji(t− Tn)dt

SΘn(t− Tn)
1Tn≤t<Tn+11Tn<∞

=
∑
j∈E

λj,i(t− Tn)1θt=j , where, λj,i =
∑
n≥0

pji
fji(t− Tn)dt

SΘn(t− Tn)
1Tn≤t<Tn+11Tn<∞.
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Hence from [8], there exists real valued cádlág martingale processes M i(t), ∀i = 1, ...,m such that

M i(t) = 1(θt=i) −
∫ t

0
λi(ys−)ds.

We set M(t) = (M1(t), ...,Mm(t)) and rewrite

d(1(θt=i)) =
∑
j∈E

λj,i(yt−)1(θt−=j)dt+ dM i(t)

d(1(θt=i)) =
(
λ1,i(yt−), λ2,i(yt−), ..., λm,i(yt−)

)
.Θ−t dt+ dM i(t)

hence:

dΘt = Λ(yt−)
′
Θ−t dt+ dM(t),

hence proving a martingale decomposition of the vector process (Θt)t∈[0,T ]. �

We consider the particular case where the asset price and its volatility follow the risk neutral Heston

Model:

dxt =
(
r(t,Θt, yt)− .5σ(t,Θt, yt)

)
dt+ xt

√
σ(t,Θt, yt)dW

1
t (4.3.38)

dσ(t,Θt, yt) = a(t,Θt, yt)
(
b(t,Θt, yt)− σ(t,Θt, yt)

)
dt+ υ(t,Θt, yt)

√
σ(t,Θt, yt)dW

2
t

(4.3.39)

with: dW 1
t dW

2
t = ρtdt, and σ(0,Θ0, y0) = σ0 > 0, (4.3.40)

where r is the risk free interest rate, x is the log asset price model, σ is the asset volatility, a is the

speed of the mean reversion of the asset volatility, b is the long term asset volatility and υ determines

the variance of the volatility which is referred to as the volatility of volatility.

We make the following simplifying assumptions on the model parameters:

1. A sufficient condition for the volatility remains non negative we assume: 2a(t,Θt, yt)b(t, θt, yt) >

υ2(t,Θt, yt), ∀t ∈ [0, T ],

2. The only parameter subjected to mean reversion is the long term volatility: r(t,Θt, yt) = r(t),

ρ(t,Θt, yt) = ρ(t), υ(t,Θt, yt) = υ(t)

3. the speed of mean reversion of the volatility, the interest rate and the volatility of volatility are

assumed to be positive and constant: a(t) = a > 0,r(t) = r > 0,υ(t) = υ > 0.

4. The correlation between asset price and volatility is assume to be constant: ρ(t) = ρ.
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The main goal is to derive a general formula for the vanilla European call option prices both from the

perspective of Carr and Madan’s algorithm and as an extension of the formula derived in [? ]. Both

problems are simplified if one can derive an expression for the following conditional expectation:

E
(
eiwxu

∣∣Ft), for a fixed u ≥ t.

We first present a useful Lemma providing a general conditional expectation formula needed in this

illustration.

LEMMA 4.3.2 We denote I , 1 =
T

(1, ..., 1)︸ ︷︷ ︸
m

, f , Λ(s) =
(
λi,j(s)

)
1≤i,j≤m and Φ the m ×m identity

matrix, an m × 1 vector of real numbers, a real valued process continuous in its second and third

variables, the m × m real valued conditional intensity matrix of the semi Markov process Θ and

the m × m matrix of real numbers satisfying the linear matrix partial differential equation with

terminal condition:

∂Φ

∂t
+
∂Φ

∂y
+A(t, yt)Φ(T, t, yt) = 0, with Φ(T, T, yT ) = I (4.3.41)

where:

A(T, t, yt) = Λ
′
(yt)− diag

(
f(t, yt)

)
,

f(t, y) =
(
f(t, yt, e1), f(t, yt, e2), ..., f(t, yt, em)

)
.

We assume that the following conditions are satisfied:

E
[
e−

∫ T
0 f(u,yu− ,Θu− )du

∣∣Ht ∨ LT
]
<∞,∀t ∈ [0, T ] (4.3.42)∫ T

0
λi,j(s)ds <∞ (4.3.43)

We define a real valued function F and a vector valued function F as follows:

F (T, t, yt,Θt) = E
(
e−

∫ T
t f(u,yu− ,Θu− )du

∣∣Ht ∨ LT
)
, (4.3.44)

F (T, t, yt) =
(
F (T, t, yt, e1), F (T, t, yt, e2), ..., F (T, t, yt, em)

)
, . (4.3.45)

Let K be a m × m real matrix function. M is said to satisfy the bracket condition if ∀t1, t1 ∈

R+,
[
K(t1),K(t2)

]
= 0, where [, ] denotes Lie matrix bracket.
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1. The vector valued function F and the real valued function F can be respectively expressed as

follows:

F (T, t, yt) = Φ(T, t, yt)1, (4.3.46)

F (T, t, yt,Θt) =
〈
Φ(T, t, yt)1,Θt

〉
=
〈
Φ(T, t, yt)Θt,1

〉
, (4.3.47)

2. If A satisfies the bracket condition, a closed form expression for the fundamental matrix of

(4.3.41) could be expressed as follows:

Φ(T, t, yt) = exp
[ ∫ T−t+y

y
A(v − y + t, v)dv

]
, (4.3.48)

Proof. We define the following product of processes,

Pt = e−
∫ t
0 f(u,yu− ,Θu− )duF (T, t, yt, θt) (4.3.49)

= e−
∫ t
0 f(u,yu− ,Θu− )duE

[
e−

∫ T
t f(u,yu− ,Θu− )du

∣∣∣Ht ∨ LT
]

(4.3.50)

= E
[
e−

∫ T
0 f(u,yu− ,Θu− )du

∣∣∣Ht ∨ LT
]
. (4.3.51)

In addition to being integrable as per assumption (4.3.42), the process
(
(P )t∈[0,T ]

)
satisfies the

following properties:

E
[
Pt
∣∣Hs ∨ LT

]
= E

[
E
[
e−

∫ T
0 f(u,yu− ,Θu− )du

∣∣∣Ht ∨ LT
]∣∣Hs ∨ LT

]
= E

[
e−

∫ T
0 f(u,yu− ,Θu− )du

∣∣Hs ∨ LT
]

= Ps, ∀s < t with s, t ∈ R.

Hence, Pt has the martingale property with respect to the filtration (Ht ∨ LT )t∈[0,T ]. Writing Itó

differential formula for Pt from [1] yields:

d
[
e−

∫ t
0 f(u,yu− ,Θu− )duF (T, t, yt,Θt)

]
= −f(t−, yt− ,Θt−)e

∫ t
0 f(u,yu− ,Θu− )duF (T, t, yt,Θt)dt

+ e−
∫ t
0 f(u,yu− ,Θu− )dudF (T, t, yt,Θt)dt

− f(t−,Θt−, yt−)e−
∫ t
0 f(u,Θu− )duF (T, t, yt,Θt)dt

= −f(t−, yt− ,Θt−)e−
∫ t
0 f(u,Θu− )duF (T, t, yt,Θt)dt+ e−

∫ t
0 f(u,Θu− )dudF (T, t, yt,Θt)

Applying a particular case of Itó rule for semi Markov regime switching processes developed in [2]

yields:

dF (T, t, yt, θt) =
∂F

∂t
dt+

∂V

∂y
dt+

〈
F (T, s, ys−), dΘs

〉
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Hence,

d
[
e−

∫ t
0 f(u,Θu− )duF (T, t, yt,Θt)

]
= −f(t−,Θt− , yt−)e−

∫ t
0 f(u,Θu− )duF (T, t, yt,Θt)dt

+ e
∫ t
0 f(u,Θu− )du

[∂F
∂t
dt+

∂F

∂y
dt+

〈
F (T, t, yt−), dΘs

〉]
(4.3.52)

= −f(t−,Θt− , yt−)e−
∫ t
0 f(u,Θu− )duF (T, t, yt,Θt)dt

+ e−
∫ t
0 f(u,Θu− )du

[∂F
∂t

+
∂F

∂y
+
〈
F (T, t, yt−),Λ(yt−)TΘt−

〉]
dt

+ e−
∫ t
0 f(u,Θu− )du

〈
F (T, t, yt−), dMt−)

〉
(4.3.53)

= −e−
∫ t
0 f(u,Θu− )du

〈
diag

(
f(t−, yt−)

)
F (T, t, yt),Θt−

〉
dt

+ e−
∫ t
0 f(u,Θu− )du

[〈∂F
∂t
,Θt−

〉
dt+

〈∂F
∂y

,Θt−
〉
dt+

〈
Λ(yt−)F (T, t, yt−),Θt−

〉]
dt

+ e−
∫ t
0 f(u,Θu− )du

〈
F (T, t, yt−), dMt−)

〉
. (4.3.54)

As e
∫ t
0 f(u,yu− ,Θu− )duF (T, t, yt,Θt) is a martingale process, the bounded variation term of Itó for-

mula in (4.3.52) is identically zero. It reads:

∂F

∂t
+
∂F

∂y
+A(t−, yt−)F (T, t, yt) = 0, withA(t, yt) = −diag

(
f(t, yt)

)
+ Λ

′
(yt). (4.3.55)

Assuming matrixA has continuous components with respect to both t and y there exists Φ a funda-

mental solution of (4.3.55), ie Φ satisfies the matrix ODE

∂Φ

∂t
+
∂Φ

∂y
+A(t−, yt−)Φ(T, t, yt) = 0, withA(t, yt) = −diag

(
f(t, yt)

)
+ Λ

′
(yt). (4.3.56)

Hence, the solution of the ODE (4.3.55) with terminal condition F (T, T, yT ) = 1 is:

F (T, t, yt) = Φ(T, t, yt)1,

where Φ is solution of the matrix partial differential equation (4.3.56), with terminal condition

Φ(T, T, yT ) = I . This therefore proves (4.3.46). We establish (4.3.47) as follows:

F (T, t, yt,Θt) = E
(
e
∫ T
t f(u,yu− ,Θu− )du

∣∣Ht ∨ LT
)

=
〈
F (T, t, yt),Θt

〉
, From (4.3.45)

=
〈
Φ(T, t, yt)1,Θt

〉
Since the ej , j = 1, ...,m form an orthonormal basis

=
〈
Φ(T, t, yt)Θt,1

〉
.
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The proof of part (2) proceeds from the result in part (1). Indeed, assuming the bracket condition

is satisfied one can derive a closed form expression for the solution of (4.3.55). We first use the

method of characteristic to solve the system of PDEs (4.3.55). We consider the variable transforms:

η = t− y and ζ = t+ y. (4.3.57)

Based on (4.3.57), we define the transforms F̃ and Ã from F and A, respectively, as functions of

(η, ζ): 
F̃ (T, η, ζ) = F (T, η+ζ

2 , −η+ζ
2 )

Ã(η, ζ) = A(η+ζ
2 , −η+ζ

2 ).

(4.3.58)

Simple algebra shows that the system of PDEs (4.3.55) becomes :

∂F̃ (T, η, ζ)

∂ζ
= −1

2
Ã(η, ζ)F̃ (T, η, ζ) . (4.3.59)

Assuming continuity of the components of the matrix Ã, the ODE (4.3.59) has general solution

F̃ (T, η, ζ) = exp
[
− 1

2

∫ ζ

0
Ã(η, s)ds

]
.c(η), (4.3.60)

where c is a vector function of η only. Assuming the terminal condition F (T, T, y) = 1, the

function c becomes

c(T − y) = exp
[1

2

∫ T+y

0
Ã(T − y, s)ds

]
,

which leads to ,

c(η) = exp
[1

2

∫ 2T−η

0
Ã(η, s)ds

]
.

Hence, the solution of the system of PDEs (4.3.55) becomes

F (T, t, y) = exp
[1

2

∫ 2T−t+y

t+y
A(T,

t− y + s

2
,
y − t+ s

2
)ds
]
.1

= exp
[ ∫ T−t+y

y
A(v − y + t, v)dv

]
.1,

where v = y−t+s
2 . Hence, one can verify that the fundamental matrix of the matrix system is:

Φ(T, t, yt) = exp
[ ∫ T−t+y

y
A(v − y + t, v)dv

]
. (4.3.61)

�
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We note that the semi Markov process θt paired with its corresponding backward recurrence time

yt form a Markov process. This important fact allows to claim that the preceding conditional char-

acteristic function is a function of only the current values of the variables. Next Lemma review

the characteristic function formula of the log price in the context of Heston model with no market

regime.

LEMMA 4.3.3 If a log asset price (xt)t∈[0,T ] and its volatility process (σt)t∈[0,T ] follow the dynamic

of the model in (4.3.38) and (4.3.39), with one single market regime (that is no regime change), the

characteristic function of the log price is expressed as follows:

E
(
eiwxu

∣∣Ft) = eAt+Btσt+iwxt , ∀u ≥ t (4.3.62)

At = irw(u− t) + a

∫ u

t
Bsbsds (4.3.63)

Bt =
a− iρυw + η

υ2

( 1− eη(u−t)

1− γeη(u−t)

)
(4.3.64)

where,

η =
√

(a− iρυw + η)2 + υ2w(w + i) (4.3.65)

γ =
a− iρυw + η

a− iρυw + η
, (4.3.66)

where, i =
√
−1.

Proof. The Markov property of the pair (Θt, yt) implies that the quadruplet (Θt, yt, xt, σt) is

Markovian as well. Therefore, we can use the notation:

h(u, θt, yt, σt, xt) = E
(
eibxu

∣∣Ft), for a fixed u > t.

We derive the system of partial differential equations satisfied by h when the market has one single

state θt = j,∀t ∈ [0, T ]. From 4.2.8 Itó Lemma applied to h yields:

dh(t, j, σt, xt) =
∂h(t, j, σt, xt)

∂t
dt+

∂h(t, j, σt, xt)

∂x
dxt +

∂h(t, j, σt, xt)

∂σ
dσt

+
1

2

∂2h(t, j, σt, xt)

∂x2
dxtdxt +

1

2

∂2h(t, j, σt, xt)

∂σ2
dσtdσt +

1

2

∂2h(t, j, σt, xt)

∂σ∂x
dxtdσt
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From (4.3.38), we have:

dh(t, j, σt, xt) =
∂h(t, j, σt, xt)

∂t
dt+ (r(t, j)− 1

2

√
σ(t, j))

∂h(t, j, σt, xt)

∂x
dt

+ a(t, j)(b(t, j)− σ(t, j)
∂h(t, j, σt, xt)

∂σ
dt+

1

2
σt
∂2h(t, j, σt, xt)

∂x2
dt

+
1

2
υ2(t, j)σ(t, j)

∂2h(t, j, σt, xt)

∂σ2
dt+

1

2
υ(t, j)σ(t, j)

∂2h(t, j, σt, xt)

∂σ∂x
dt

+
√
σ(t, j)

∂h(t, jσt, xt)

∂x
dW 1

t + υ(t, j)
√
σ(t, j)

∂h(t, j, σt, xt)

∂σ
dW 1

t . (4.3.67)

As h is defined through the means of conditional expectations, it is easy to prove that h is therefore

a martingale process with respect to (P, (Ft)t∈[0,T ]). Therefore, the bounded variation terms of the

right hand side of equation (4.3.67) reduce to 0.

∂h(t, j, σt, xt)

∂t
+ (r(t, j)− 1

2

√
σ(t, j))

∂h(t, j, σt, xt)

∂x

+ a(t, j)(b(t, j)− σ(t, j))
∂h(t, j, σt, xt)

∂σ
+

1

2
σt
∂2h(t, j, σt, xt)

∂x2

+
1

2
υ2(t, j)σ(t, j)

∂2h(t, j, σt, xt)

∂σ2
+

1

2
ρυ(t, j)σ(t, j)

∂2h(t, j, σt, xt)

∂σ∂x

= 0 (4.3.68)

with boundary condition :

h(u, j, y0, σ0, x0) = eiwx0 . (4.3.69)

From [27], we assume that the the characteristic function is of the form:

h(t, j) = e(At+Btσt+iwxt).

We apply substitution in (4.3.68) and from [27, 40] the following system of ODE is obtained:

irw + a(t, j)b(t, j)Bt + Ȧt = 0 (4.3.70)

− .5w2 + iwρυBt + .5υ2B2
t − .5w − aBt + Ḃt = 0 (4.3.71)

Solutions of such a coupled system are found in [40] and [27].

Bt =
a− iρυw + η

υ2

( 1− eη(u−t)

1− γeη(u−t)

)
(4.3.72)

At = irw(u− t) + a

∫ u

t
Bsbsds (4.3.73)

where,

η =
√

(a− iρυw + η)2 + υ2w(w + i) and γ =
a− iρυw + η

a− iρυw − η
(4.3.74)
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We systematically extend the main result derived in [27] by considering semi Markov regimes. We

find a similar but more general formula for vanilla call prices.

LEMMA 4.3.4 Let M(t, yt, u), u ≥ t, Θt, K and Λ be an m × m real valued matrix function, a

semi Markov process, the strike price of an option contract and the conditional intensity matrix of

Θt. We assume thatM is solution of the matrix PDE:

∂M

∂t
+
∂M

∂y
+A(t, y)M(t, y, u) = 0, withM(u, yu, u) = I. (4.3.75)

1. The Vanilla European Heston call price from Carr and Madan algorithm is given by the semi

analytic formula

C(0,Θ0, y0, x0, υ0) =
e−αk

π
Re
(∫ t

0
eiφk

e−rTψ(φ− (1 + α))

α2 + α− v2 + i(2α+ 1)φ

)
, (4.3.76)

with k = log(K) and α the Carr and Madan parameter. ψ is the characteristic function of the

log asset price x, given by the following expression:

ψ(u,Θ0, y0, x0, υ0, w) = E(eiφxu |F0) = eirφu+B0σ0+iwx0
〈
Φ(u, 0, y)Θ0,1

〉
, (4.3.77)

where Φ satisfies the equation (4.3.75) with A(t, y) = −diag
(
f(0, y0)

)
+ ΛT (y0) and with

f(t, yt) = aBtb(t, yt).

2. A semi closed expression for vanilla option prices with Heston model in a market with semi

Markov regimes is as follows:

C(u,Θ0, y0, x0, υ0) =e−ru
(1

2
+

1

π

∫ ∞
0
Re
[eiwru+iwx0+B0σ0

〈
Φ(u, 0, y0)Θ0,1

〉
iw

]
dw
)

+Ke−ru
(1

2
+

1

π

∫ ∞
0
Re
[e−iwlog(K)+irwu+ibx0+B̄0σ0+iwx0

〈
Φ̄(u, 0, y0)Θ0,1

〉
iw

]
dw
)
,

(4.3.78)

where Φ (respectively, Φ̄) are solutions of the system of matrix partial differential equations

(4.3.75) when A(t, yt) = −diag
(
f(t, yt)

)
+ ΛT (yt) with f(t, yt) = aBtb(t, yt) (respectively,
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f(t, yt) = aB̄tb(t, yt)) with At,Bt,ηt and γt defined as in Lemma 4.3.3 for any t > 0.

B̄t =
a− ρυ − iρυw + η̄

υ2

( 1− eη̄(u−t)

1− γ̄eη̄(u−t)

)
,

where,

η̄ =
√

(a− ρυ − iρυw + η̄)2 + υ2w(w + i) and γ̄ =
a− ρυ − iρυw + η̄

a− ρυ − iρυb− η̄

Āt = irw(u− t) + a

∫ u

t
B̄sbsds.

Proof. We note that (4.3.76) is a well known formula derived in [11]. The critical issue is to prove

(4.3.77). The first part of the lemma boils down to deriving an expression for the characteristic

function of the log asset price of Heston model in a regime switching market.

E
[
eiwxt |F0

]
= E

[
E
[
eiwxu |HT ∨ L0

]
|F0

]
= eiwru+iwxu+B0σ0E

[
ea

∫ u
0 Bsb(s,θ

−
s ,ys− )ds|F0

]
= eibru+ibx0+B0σ0

〈
Φ(u, 0, y0)Θ0,1

〉
, From Lemma 4.3.2, with Φ satisfying (4.3.75)

where, f(t, yt) = aBtb(t, yt). This proves the first part of the lemma.

In order to complete the proof of the second part of the lemma, we recall the risk neutral pricing

formula for a vanilla call option with initial cost C, strike price K and in the context of a regime

switching Heston driven market:

C(u,Θ0, y0, x0, υ0) = E
[
e−ru(ex

u −K)+|F0

]
= e−ruE

[
ex

u
1xu≥logK |F0

]
−Ke−ruE

[
xu ≥ log (K)|F0

]
= e−ruE

[
ex

u
1xu≥logK |F0

]
−Ke−ruP

(
xu ≥ logK|F0

)
The second term of the last equation has been expressed as a conditional survival probability. We

will express the first term in similar fashion. We first define P̄ for any A ∈ Fu as follows:

P̄(A) =
1

ex0
E
[
e−ru+xu1A|F0

]
=

1

ex0
E
[
e−.5

∫ u
0 σsds+

∫ u
0

√
σsdBs1A|F0

]
, from (4.3.38).

It is easy to prove via Itó formula that the process

Lt = e−.5
∫ u
0 σsds+

∫ u
0

√
σsdBs , (4.3.79)
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which satisfies the differential form of Itó lemma

dLt = Lt

∫ u

0

√
σsdBs, (4.3.80)

is a martingale process [44] and consequently is an appropriate density process. Hence, from Gir-

sanov theorem [1], P̄ is a probability measure absolutely continuous with respect to the conditional

probability measure P
(
|F0

)
. The pricing formula can therefore be rewritten:

C(u,Θ0, y0, x0, υ0) = e−ruP̄
(
1xu≥logK

)
−Ke−ruP

(
xu ≥ logK|F0

)
(4.3.81)

We first derive an expression for the second survival probability of (4.3.81). Under the probability

measure P, the model follows the dynamic in (4.3.38). Hence,

E
[
eibxu |HT ∨ L0

]
= eA0+B0σ0+ibx0

where,

Bt =
a− iρυb+ η

υ2

( 1− eη(u−t)

1− γeη(u−t)

)
where,

η =
√

(a− iρυb+ η)2 + υ2b(b+ i) and γ =
a− iρυb+ η

a− iρυb− η

At = irb(u− t) + a

∫ u

t
Bsbsds,

therefore from Lemma 4.3.3, the characteristic function has the form,

E
[
eiwxu |HT ∨ L0

]
= eiwru+iwx0+B0σ0+a

∫ u
t Bsb(s,θ

−
s ,ys− )ds

The only regime switching term involved is b. Hence,

E
[
eiwxt |F0

]
= E

[
E
[
eiwxu |HT ∨ L0

]
|F0

]
= eiwru+iwxu+B0σ0E

[
ea

∫ u
0 Bsb(s,θ

−
s ,ys− )ds|F0

]
The characteristic function problem now boils down to deriving an expression for F (u, θ0, y0) =

E
[
ea

∫ u
0 Bsb(s,θ

−
s ,ys− )ds|F0

]
. From Lemma (4.3.2) we have:

F (u, θt, yt) =
〈
Φ(u, t, yt)Θt,1

〉
, with Φ solution of the PDE:

∂Φ

∂t
+
∂Φ

∂y
+A(t, yt)Φ(u, t, yt) = 0, with Φ(u, u, yu) = I, ∀u ≥ t ≥ 0

where:

A(t, yt) = ΛT (yt)− aBtdiag
(
b(t, yt)

)
.
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Therefore the characteristic function and the survival probability sought are:

E
[
eibxu |HT ∨ L0

]
= eibru+ibx0+B0σ0E

[
ea

∫ u
0 Bsb(s,θ

−
s ,ys− )ds|F0

]
= eibru+ibx0+B0σ0

〈
Φ(u, 0, y0)Θ0,1

〉
P
(
xu ≥ logK|F0

)
=

1

2
+

1

π

∫ ∞
0
R
[eibru+ibx0+B0σ0

〈
Φ(u, 0, y0)Θ0,1

〉
iw

]
dw.

We turn our attention to deriving a semi closed expression for the first term of (4.3.81). We note

that from Girsanov theorem [44], under the probability P̄, the standard Brownian motion in (4.3.38)

become

dB̄t = dBt −
√
σtdt.

The new dynamic of the Heston model under the probability measure P̄ is as follows:

dxt = (r + .5σt)dt+
√
σtdB̄t

dσt =
(
atbt − (at − ρυt)σt

)
+ υt
√
σtdWt.

In a derivation similar to that of the first characteristic function and default probability, we obtain:

E
[
eibxu |F0

]
= e−iwlog(k)+irwu+ibx0+B̄0σ0+iwx0

〈
Φ̄(u, 0, y0)Θ0,1

〉
P̄
(
xu ≥ logK|F0

)
=

1

2
+

1

π

∫ ∞
0
R
[e−iwlog(k)+irwu+ibx0+B̄0υ0+iwx0

〈
Φ̄(u, 0, y0)Θ0,1

〉
iw

]
dw

∂Φ̄

∂t
+
∂Φ̄

∂y
+A(t, yt)Φ̄(u, t, yt) = 0, with Φ̄(u, u, yu) = I

where:

A(t, yt) = ΛT (yt)− aB̄tdiag
(
b(t, yt)

)
,

B̄t =
a− ρυ − iρυw + η̄

υ2

( 1− eη̄(u−t)

1− γ̄eη̄(u−t)

)
,

where,

η̄ =
√

(a− ρυ − iρυw + η̄)2 + υ2w(w + i) and γ̄ =
a− ρυ − iρυw + η̄

a− ρυ − iρυb− η̄

Āt = irw(u− t) + a

∫ u

t
B̄sbsds.

Hence, (4.3.81) yields the result to be proved. �
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4.4 Conclusion

This chapter aimed at calibrating the historical parameters and the risk neutral parameters of two

nonlinear semi Markov regime switching coupled system of stochastic differential equations, re-

spectively representing a basket of commodity prices and the risk neutral dynamic of a stock price.

In the former case, we obtained closed form parameter estimates and in the latter case we obtained a

couple of semi closed form formulas for European call option prices, hence proving the tractability

of both model when the market is assumed to follow a semi Markov dynamic.
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Chapter 5

Conclusion and future Research

Semi Markov regime switching financial models prove to be a generalization of Markov switching

processes preserving the economic interpretability of the regime switching parameters. One of

the downside of semi Markov switching models is the challenging nature of solving the system

of partial integro differential equations (PIDE) of call option prices. The PIDE is usually solved

using finite difference methods in a rectangular domain. However, in semi Markov models, the

backward recurrence is a variable in the derived pricing PIDE. Given that the current time is always

at least equal to the backward recurrence time, the rectangular structure of the variables involved

in the PIDE does not hold anymore. Which result in a more challenging finite difference scheme.

Our approach for solving the pricing problem throughout this work is based on the characteristic

function formula of the log asset price. The tractability of the formula obtained depends highly on

the choice of the intensity matrix. For computational simplicity and tractability of the results in this

work, we opted to work with piecewise constant Weibull intensities as they are flexible enough to

encompass upward trending, downward trending and constant instantaneous switching propensities.

The comparative results obtained showed that calibrating Markov and semi Markov regime models

to observed data, lead to substantial model fit improvement and preserved the ease of interpretation

of parameters.

However we are still looking into possible improvements of the model. In order to benefit from the

full scale semi Markov regime models, one will need to drop the piecewise constant assumption and

pick a smoother model for conditional intensity. This of course will leave us with only the finite

difference method for option pricing.

Another application of interest is in fixed income derivatives and in structured finance. Credit default

swap, collateralized debt obligation are interest rate sensitive products more likely to be affected by

regime changes than options. Although in this work we have shown that the effect of regimes could

be substantial, there are reasons to believe that fixed income and structured finance products are
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more sensitive to regime changes and therefore semi Markov switching models would provide a

substantially better avenue for modeling asset dynamics.

Finally, we are working at comparing what was referred to in this work as the pseudo-infinite number

of regimes of semi Markov Markets, with the explicit infinite number of regimes in hidden Markov

model with Dirichlet priors. The purpose of such a comparison would be to determine if there is a

parallel between the estimated regimes in both models and to determine if one has a more realistic

interpretation.
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[8] Pierre Brémaud. Point processes and queues, volume 30. Springer, 1981.

[9] John Buffington and Robert J Elliott. American options with regime switching. International

Journal of Theoretical and Applied Finance, 5(05):497–514, 2002.

145



[10] Ingo Bulla. Application of hidden Markov models and Hidden Semi Markov models to finan-

cial time series. PhD thesis, Georg-August-University of Gottingen, 2006.

[11] Peter Carr and Dilip Madan. Option valuation using the fast fourier

transform. Journal of computational finance, 2(4):61–73, 1999. URL

http://dx.doi.org/10.21314/JCF.1999.043.

[12] Leunglung Chan and Song-Ping Zhu. An explicit analytic formula for pricing barrier options

with regime switching. Mathematics and Financial Economics, pages 1–9, 2014a.

[13] Leunglung Chan and Song-Ping Zhu. An exact and explicit formula for pricing asian options

with regime switching. arXiv preprint arXiv:1407.5091, 2014b.

[14] Kyriakos Chourdakis. Continuous time regime switching models and applications in esti-

mating processes with stochastic volatility and jumps. U of London Queen Mary Economics

Working Paper, (464), 2002.

[15] Kyriakos Chourdakis. Option pricing using the fractional fft. Journal of Computational Fi-

nance, 8(2):1–18, 2004. URL http://dx.doi.org/10.21314/JCF.2005.137.
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