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vention would ensure an improvement on readmission rates
which would lead to, as explained by the current metrics, the
number of hospitals being penalized to decrease.

Table 7. Evolution of hospitals’ condition in HRRP

Title FY2013-FY2014 FY2014-FY2015
Got Worse 1,054 2,024

% 31% 59%

Got Better 1,364 680

% 40% 20%

Meanwhile, a consistent decrease in the excess of readmis-
sions is reported for HF throughout FY2013-FY2015. AMI
also shows a decrease in the readmission rate, but just dur-
ing FY2013-FY2014, while in FY2014-FY2015 there is no
improvement. Reductions are found to be inconsistent for

Table 8. Evolution of hospitals’ condition in HRRP

PN, as excess readmissions increased in FY2013-2014, and
then decreased (see Table 8). The approach based on disease-
specific interventions shows an improvement on preventable
readmissions.

Considering the short timeframe that HRRP has been ac-
tive, results show small and inconsistent improvements in
reducing readmissions. Furthermore, it has been said that
economic penalties affect more those hospitals that provide
care to vulnerable patients and institutions that take the re-
sponsibility to teach and train physicians. Results from the
simulation show that an approach based on disease-specific
interventions would be more appropriate than HRRP because:
1) it outperforms HRRP in reducing the readmission rates;
2) by its very nature improves the quality of the delivery of
care; and 3) disease-specific interventions are less costly than
the penalties from HRRP.

AMI HF PN
Fiscal Year rule 2013 2014 2015 2013 2014 2015 2013 2014 2015
Number of cases 500,931 492,346 505,702 1193210 1161629 1154060 955611 951,383 971,906
Average (SD) 0.648 0.644 0.644 0.890 0.888 0.879 0.894 0.897 0.892
(.484) (.484) (.483) (.324) (.328) (.334) (.320) (.315) (.320)
Change - -0.62% 0% - -0.22% -1.01% - +0.34% -0.56%

Additionally, we presented several concerns with the method-
ology used by HRRP. Stone & Hoffman in 2010 point out
that since hospitals bill Medicare for each discharge, there
is an incentive in maximizing the discharges.!'*! Moreover,
reducing readmissions also reduces the hospital’s revenue,
which creates a conflict. A disease-specific intervention not
only leads to better quality care but also translates into sav-
ings for hospitals. Increased quality of care will also lead
to savings for patients as number of hospital readmissions
decreases.

Joynt & Jha in 2013 found that the effects of HRRP penalties
would be more severe for large hospitals, teaching hospitals
and safety net hospitals.*®) Teaching hospitals represent
about 25% of all participating hospitals in the IPPS. There-
fore, it can be argued that the penalty approach may nega-
tively impact the quality of medical education in the US. In-
stead, by applying disease-specific interventions, the quality
of care for these patients improves, and avoids the negative
financial impact on the hospitals. Furthermore, Berenson et
al. in 2012 recognize that AMI, HF and PN represent about
12% of Medicare expenditures.!'®! This means that in the
2013 final rule, the 12% of Medicare admissions affected
the reimbursement of all the admissions billed to Medicare
through the IPPS. Since disease-specific interventions focus
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on improvement, say by targeting excessive preventable read-
missions, it could eliminate the notion of applying across the
board penalties.

Finally, Burgess & Hockenberry in 2013 state that HRRP
penalties will worsen the financial situation for those hospi-
tals likely to be affected the most: large hospitals, teaching
hospitals and safety net hospitals.*” Instead, the authors
advise that a policy targeting the causes of the readmissions
may produce better results. The implementation of disease-
specific interventions has the potential to address preventable
readmissions from the mentioned perspective.

Key limitations of this study are: its short timeframe and the
absence of patient-level data, which forced the use of aggre-
gate data. Consequently, these results are not yet generaliz-
able. However, the study does suggest (and reinforces) that
an approach based on disease-specific interventions should
lead to better results, better quality and less cost than HRRP.
Another limitation of the this study was that the simulated
scenario is applied to all hospitals, neglecting the idea that
different hospitals might require different interventions.?!
However, the authors believe that these initial results encour-
age further work in this direction.

Future work, in addition to addressing the limitations stated
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above, could also include other disease-specific interventions,
considering the unique reality, characteristics and needs of
specific hospitals (or cluster of hospitals). Granted this re-
quires access to more granular, hospital/patient specific, data.
Additionally, the implementation of disease-specific inter-
ventions should ideally be as patient centered as possible.
It is very likely that to properly design, model and analyze

these efforts researchers will require the development and
implementation of probabilistic models or decision support
systems, which include patient specific data. Consequently,
having access to hospital and patient-level data will enable
more realistic modeling and simulation strategies that would
lead to stronger and more robust implementable conclusions.
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Abstract

A diverse universe of statistical models in the literature aim to help hospitals understand the risk factors of their
preventable readmissions. However, these models are usually not necessarily applicable in other contexts, fail to
achieve good discriminatory power, or cannot be compared with other models. We built and compared predictive
models based on machine learning algorithms for 30-day preventable hospital readmissions of Medicare patients. This
work used the same inclusion/exclusion criteria for diseases used by the Centers for Medicare & Medicaid Services.
In addition, risk stratification techniques were implemented to study covariate behavior on each risk strata. The new
models resulted in improved performance measured by the area under the receiver operating characteristic curve.
Finally, factors such as higher length of stay (LOS), disease severity index, being discharged to a hospital, and primary
language other than English were associated with increased risk to be readmitted within 30 days. In the future, better
predictive models for 30-day preventable hospital readmissions can point to the development of systems that identify
patients at high risk and lead to the implementation of interventions (e.g. discharge planning, follow-up) to those

patients, providing consistent improvement in the quality and efficiency of the healthcare system.
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Comparison of machine learning algorithms for the prediction of preventable hospital
readmissions

Abstract
A diverse universe of statistical models in the literature aim to help hospitals understand the risk factors of their preventable
readmissions. However, these models are usually not necessarily applicable in other contexts, fail to achieve good discriminatory
power, or cannot be compared with other models. We built and compared predictive models based on machine learning algorithms
for 30-day preventable hospital readmissions of Medicare patients. This work used the same inclusion/exclusion criteria for diseases
used by the Centers for Medicare & Medicaid Services. In addition, risk stratification techniques were implemented to study
covariate behavior on each risk strata. The new models resulted in improved performance measured by the area under the receiver
operating characteristic curve. Finally, factors such as higher length of stay (LOS), disease severity index, being discharged to a
hospital, and primary language other than English were associated with increased risk to be readmitted within 30 days. In the future,
better predictive models for 30-day preventable hospital readmissions can point to the development of systems that identify patients
at high risk and lead to the implementation of interventions (e.g. discharge planning, follow-up) to those patients, providing

consistent improvement in the quality and efficiency of the healthcare system.
Keywords

Machine learning, preventable hospital readmissions, readmission risk, predictive models, Medicare, Hospital Readmissions

Reduction Program.
Introduction

The 2010 Affordable Care Act (ACA) established the Hospital Readmissions Reduction Program (HRRP), which, since
fiscal year (FY) 2013, requires the Centers for Medicare and Medicaid Services (CMS) to reduce up to 3% of reimbursements to
hospitals with excessive readmissions.

More than 2,000 hospitals with high readmissions for pneumonia (PN), heart failure (HF), and acute myocardial infarction
(AMI) have been penalized with payment adjustments '. Under the HRRP, the maximum penalty was increased to 3% in 2015 and
new conditions were added > These include chronic obstructive pulmonary disease (COPD), total hip arthroplasty (THA), and total
knee arthroplasty (TKA). Starting in FY2017, coronary artery bypass graft (CABG) will be added to the list of targeted conditions
for the reduction of readmissions.

The preliminary results from some states suggest a decrease in readmissions °, whereas aggregated data does not show a
decreasing pattern over the first three years of HRRP *. Furthermore, the implementation of the HRRP leveraged certain criticisms—
for example, that safety-net hospitals were disproportionally impacted by penalties °, endangering the quality of care for those in

need. The reduction of preventable readmissions has become a priority for hospitals seeking to avoid CMS penalties. It is thus a
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necessity to invest in research and development of systems capable of 1) identifying patients at high risk of readmission and 2)

targeting interventions to reduce readmissions by improving patient discharge, care coordination and ultimately quality of care.
Review of Literature

Most research studies have concentrated on identifying patients at risk of readmission using predictive models. Kansagara
et al. ® conducted a systematic review of risk prediction models for hospital readmission. The studies vary by readmission timeframe
(i.e., 15 days to 12 months after index discharge), population setting (i.e., age range, Medicare, Medicaid), geographical reach (i.e.,
nationwide, statewide, hospital specific), and source of data (i.e., administrative claims data, real time data and clinical data).
However, only one study attempted to identify potentially preventable readmissions. Furthermore, the majority of the readmission
predictive models perform poorly, measured by the area under the curve (AUC) of the receiver operating characteristic (ROC)
reported values, between 0.5 and 0.7. But, to make inferences an AUC equal to, or greater than 0.8 is preferred.

The three predictive models created for the CMS showed relatively low discriminatory capacity, with an AUC equal to
0.61, 0.63, and 0.63 for HF, AMI, and PN, respectively . Shulan, Gao and Moore '° obtained the highest AUC (0.8) among
published studies in prediction of all-cause readmissions using administrative claims data. This study applied a logistic regression
(LR) model using inpatient data from Veterans Healthcare Network in New York and was validated by a 2 cross-fold method,
obtaining an AUC of 0.79.

Fernandez-Delgado et al.'' studied a wide range of classifiers and predictive algorithms, including LR and machine learning
algorithms, reporting that random forest shows the best results. Kulkarni, Smith and Woeltje > compared decision trees, neural
networks, and LR models to predict risk of readmission using patient administrative data. Their results suggest that machine learning
algorithms can improve the AUC of LR. In addition, Au et al." reported that even simpler models, like LACE (a scoring model
using the length of stay, acuity of admission, comorbidities, and previous emergency department visits), outperform the CMS
models.

More recent studies dig into the application of machine learning algorithms in predicting readmissions. For instance, Yu
et al."* compare time to event modeling (Cox model) with support vector machine (SVM) and LACE model (business standard
model) to predict AMI, PN, HF, and all-cause readmissions, reporting that SVM outperforms the other models. Also, Vedomske,
Brown and Harrison  developed a predictive model for HF readmissions based on random forest, reporting better performance
(AUC = 0.84) using diagnosis and procedures as input variables.

In summary, abundant research explores the use of different predictive models to improve the predictive performance of
readmissions. However, these models use different disease “inclusion/exclusion criteria” than the one specified by CMS.
Furthermore, the use of machine learning models to predict readmission has still not been sufficiently explored.

This research builds and compares different predictive models based on machine learning algorithms for preventable
hospital readmissions, which represents an important milestone in the pursuit of better tools to provide hospitals the necessary means

to advance their understanding and reduction of preventable readmissions.
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Purpose

This study explored the potential of machine learning algorithms to assist in the prediction of 30-day preventable
readmissions. Different predictive models were built based on support vector machine, random forest, gradient-boosted trees, and
neural network. These four techniques/algorithms were chosen based on previous research and are compared with LR in terms of
their predictive power. Additionally, risk stratification techniques were used to identify groups of patients at a high or low risk of

readmission. Finally, patient differences within those groups will be discussed.
Study design and methods

Data source and variables

We used the administrative claims dataset of a network of 11 hospitals from January 2005 to July 2012. The network of
hospitals includes general, teaching, and specialty hospitals located in three adjacent counties in Florida. The initial dataset had
1,093,177 records for hospital admissions from 594,751 patients. Figure 1 shows the steps used to select the cohorts of patients and
eliminate records related to planned and/or unpreventable readmissions. The inclusion/exclusion criteria for ICD-9 codes and
diseases mimics the CMS criteria and also the work done by Rico et al.'%, which we will compare with models built in this work.
The diseases included in the study are AMI, PN, congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD),
and type 2 diabetes (DIA). The disease cohorts were extracted from the raw dataset by using ICD-9 codes. For AMI, the codes used
were those beginning in 410; for CHF, 428.%,402.01, 404.01, 404.03, 404.11, 404.13, 404.91, and 404.93; for COPD, 491.0, 491.1,
491.2, 491.20, 491.21, 490, 496, and 492; for DIA, 410.*; and for PN, 480-483, 485-486, 510, 511.0, 511.1, 511.9, a primary
diagnosis of PN-related symptoms (780.6, 786.00, 786.05, 786.06, 786.07, 786.2, 786.3, 786.4, 786.5, 786.51, 786.52, and 786.7),

and a secondary diagnosis of pneumonia, emphysema, or pleurisy.

[Figure 1 Procedure to exclude unavoidable and planned admission records]

The dataset originally had 119 fields, but after review of the literature and discussion with hospital experts, 17 independent
variables were selected as predictors in the model. The descriptive statistics of the independent variable candidates are reported in

Table 1. During the data processing, a variable coded as “behavioral health” was included to account for behavioral comorbidities.
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[Table 1. Descriptive statistics for independent candidate variables]

Modeling and analysis

Using the software R and the functions available in the R Package caret ’, we separated each disease cohort dataset into
training and testing sets. We then trained a LR with stepwise variable selection using the training sets. The resultant models were
used to predict in the testing set, and AUC from ROC values were used as baselines for the performance of the machine learning.

Next, using the same training sets, a random forest (RF) model, a stochastic gradient-boosted model (GBM), a support
vector machine (SVM) model, and a neural network (NN) model were trained. To further inspect the performance of each model,
tuning was conducted to seek the best model parameters. To obtain the performance of each of candidate model, we used repeated
10-fold cross validation on the training set.

While training these models, two issues were also explored: the imbalanced nature of the response variable in the cohort
datasets and the harm that “unimportant” variables could produce to models such as SVM and NN. To explore the first concern, the
synthetic minority oversampling technique (SMOTE), introduced by Chawla and Bowyer '* was used to create new balanced
training sets that were used to train models. A feature selection tool called BORUTA " was utilized to assess variable importance,
which led to the use of fewer variables in order to improve the results of the predictive models.

After training all models, a single model was selected for each cohort based on their AUC. The model was used to predict
in the testing set and then compared to the LR models. Figure 2 depicts the process of analysis we followed, and the results are

presented in the next section.

[Figure 2. Predictive model building and selection procedure]

Finally, using the predicted risk of readmission, patients were classified into three clusters of equal size: high risk, moderate

risk, and low risk. The differences in patients belonging to each stratum were determined.
Institutional Review Board Approval

This project was exempted by the Institutional Review Board because it does not meet the definition of research involving human
subjects (IRB# Pro00027173).

Results
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Assessment of the predictive models

First, we fitted the LR model to the different cohorts of diseases. This was performed as a way to replicate the methodology
presented by Rico et al.'®, who used LR models to identify risk factors for the same diseases. The performances from the replicated

LR models were used as baseline in our comparison.

[Table 2. Comparison of models by disease|

Table 2 summarizes the performance (as measured by AUC) of the best models for each family of models by disease. As
shown, SVM models did not outperform any other method in any disease. Furthermore, NN models always outperformed LR in all
diseases, while for PN, the NN model was the only one that outperformed LR. In no case did use of the SMOTE technique lead to
better AUC, whereas in the case of COPD and DIA, the use of BORUTA yielded better results in the prediction. The highest

improvement in terms of AUC was in DIA, while the lowest was for CHF.

[Table 3. Performance of selected models]

Table 3 shows the AUC obtained for each “best” machine learning model and LR model in the testing set. The confidence
intervals obtained through bootstrapping are also provided. For the considered diseases, machine learning models present a small
improvement in the predictive performance measured by the AUC. In general, NN-based models show better performance when

predicting readmission, except for CHF (where GBM outperforms NN).

Risk stratification analysis

Table 4 presents the results for the descriptive and test statistics results for the variables in each risk strata for AMI patients.
The first impression is that the risk of readmission increases by strata, as does the number of admissions, the LOS, and the Charlson

score. In addition, a greater variance can be seen in higher risk groups.

[Table 4. Description of risk strata for AMI]

In terms of the statistical significance of the variables, some lost significance as the risk strata went from low to high. As
an example, in AMI, increased age is found to be significant in the low risk strata, whereas it is not significant in the higher risk

strata. Another example is spoken language; although we know it is considered important, it is not significant in the high risk strata.
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AMI patients at higher risk of readmission present certain characteristics, such as Medicare insured, discharged to the hospital or
non-acute facilities, divorced or widowed, having an increased number of previous admissions, and experiencing longer LOS.

Table 5 in the Appendix contains the risk stratification analysis for the rest of the conditions considered in this article.
Generally speaking, the risk of readmission increases following the same pattern found for AMI. Specifically, in COPD patients,
the number of previous admissions is statistically significant, and the variance is less than that reported for the rest of the conditions.
The Charlson score matches the previous behavior for PN, DIA, COPD, and CHF.

Being discharged to a non-acute facility was associated with higher readmission risk for COPD, PN, and COPD. Patients
with DIA and PN presenting as non-commercial payers were also found to be at high risk. PHLOTE was associated with increased

risk of readmission for COPD, CHF, PN, and DIA. Finally, a higher disease severity index was associated with readmission.

Discussion

To summarize, we developed and compared predictive models using machine learning algorithms that can improve the
prediction of readmission for specific diseases. Depending on the disease, various factors increasing the risk of readmission were
determined from the proposed models. Such factors were LOS, Charlson score, PHLOTE, type of insurance, and disease severity
index.

Some of the risk factors found in this work could be used as targets for disease-specific interventions. For example,
improved care coordination for patients with multiple conditions, specific follow-up for the most severe patients, and improved
discharge instructions for non-native English speaker patients could reduce the risk of readmission. Additionally, although there
may be some debate about this, the significance of type of insurance could be interpreted as a socioeconomic factor influencing the
risk of readmission '°?°. This insight can provide support to the claim that HRRP should consider a specific adjustment that accounts

. . . . . P - 21,22
for the various socioeconomic factors influencing readmission risk = .

In terms of predictive power, our work can be compared with other published models reporting better results 10,1223
However, these models consider either fewer admissions, fewer years of data and/or less recent data, or fewer collection sites; these
factors make these models less generalizable than those proposed in this article. Even in the case of Vedomske el at. '3 who achieved
an AUC of 0.84, only used one ICD-9 code (428.0) for inclusion in the study cohort , whereas our model considers the
inclusion/exclusion criteria released by CMS to include patients in the cohort of heart failure (eight different ICD-9 codes).®
Furthermore, our model uses 2.5 years more of data, which also is two years more recent.

In conclusion, this work built and compared prediction models based on four heavily used machine learning algorithms,

ranking them by performance (AUC) and significantly improving upon the CMS models. We found NN models to perform better

when predicting readmissions. Additionally, the risk stratification analysis yielded the finding that, in general, disease severity,
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higher number of previous admissions, having PHLOTE, being insured by a non-commercial agency, and being discharged to a
non-acute facility were factors that increased the risk of readmission. These insights can be used to design disease-specific

interventions to decrease the readmission of high-risk patients.
Limitations

Some limitations of this work are acknowledged. For the predictive model training, we used data collected for seven years
(until 2012) from 11 institutions in Florida, while current CMS models consider more years of nationwide data. Also, because of
the nature of readmissions, the occurrence of this event in the dataset has a low frequency compared to the other class (non-
readmitted). Therefore, prediction of readmission becomes a difficult problem and requires further exploration. Finally, although
the healthcare community is slowly moving into the data science world, machine learning algorithms are still out of reach for most

practitioners, which could present a challenge when implementing these models.

Directions for Future Research

Further research will include the validation of the models in a cross-sectional setting. Additionally, we recommend to use
more heterogeneous and high dimensional data, seeking for the inclusion of more variables in the model that could yield better
results. Finally, in this work we addressed the issue of unbalanced data by applying the SMOTE algorithm, although without
improving the prediction. In future research, the readmission prediction could be considered as an anomaly detection problem,

which lends itself to exploration by other statistical methods that could yield even better results.
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Appendix

[Table 5: Results by risk strata for COPD, CHF, PN, and DIA]
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[Table 1 - Descriptive statistics for independent candidate variables]

Variable Levels AMI (11,205) CHF(9,586) COPD (7,911) DIA (6,145) PN (12,123)
Readmitted Yes 2,003 (18%) 1,532 (16%) 1,155 (15%) 751(12%) 1,361 (11%)
No 9,202(82%) 8,054 (84%) 6,756 (85%) 5,394(88%) 10,762 (89%)
Admission
Number: mean
{sd) 1.87(1.85) 2.79 (2.69) 3.31(3.61) 3,10 (4.50) 2.4 (3.00)
Year H 1,669 (15%) 1,847 (19%) 1,050 (13%) 881(14%) 1,949 (16%)
I 1,492(13%) 1,537 (16%) 959 (12%) 826(13%) 1,765 (15%)
| 1,745(16%) 1,269 (13%) 952 (12%) 819(13%) 1,664 (14%)
K 1,830(16%) 1,313 (14%) 1,169 (15%) 905 (15%) 1,706 (14%)
L 1,680 (15%) 1,189 (12%) 1,350 (17%) 957 (16%) 1,819 (15%)
M 1,634(15%) 1,398 (15%) 1,369 (17%) 976(16%) 1,870 (15%)
N&O 1,155(10%) 1,033 (11%) 1,062 (13%) 781(13%) 1,350 (11%)
Length of Stay:
mean(sd) 4,09 (4,05) 4,57 (4.61) 3.81(3.48) 3,85 (4.89) 5.16 (4,73)
Admission Type Emergency 8,659(77%) 8,024 (84%) 6,501 (82%) 4,267(69%) 10,597 (87%)
Other 233( 2%) 430 ( 4%) 720( 9%) 1,115(18%) 369 ( 3%)
Routine 1,034 ( 9%) 634 ( 7%) 288 ( 4%) 327( 5%) 513 ( 4%)
Urgent 1,279 (11%) 498 ( 5%) 402 ( 5%) 436 ( 7%) 644 ( 5%)
Behavioral Health
Comorbidity
index Yes 2,232(20%) 2,250 (23%) 2,749 (35%) 1,550(25%) 3,606 (30%)
No 8,973 (80%) 7,336 (77%) 5,162 (65%)  4,595(75%) 8,517 (70%)
Marital Status Divorced or Separated 1,173(10%) 1,019 (11%) 1,565 (20%) 960 (16%) 1,440 (12%)
Legally Married 5,739(51%) 3,851 (40%) 2,800 (35%) 2,185(36%) 5,043 (42%)
Single 2,547 (23%) 2,071(22%) 1,857 (23%) 2,230(36%) 3,279 (27%)
Widowed 1,746 (16%) 2,645 (28%) 1,689 (21%) 770(13%) 2,361 (19%)
Discharge
Disposition Non Acute Facility 2,959 (26%) 4,126 (43%) 2,341 (30%)  2,001(33%) 4,099 (34%)
Routine 6,413(57%) 5,054 (53%) 5,306 (67%) 3,933 (64%) 7,689 (63%)
Hospital or Specialist 1,680 (15%) 277 ( 3%) 79 ( 1%) 61( 1%) 107 ( 1%)
No Treatment or other 153 ( 1%) 129 ( 1%) 185 ( 2%) 150( 2%) 228 ( 2%)
Age [18,45) 853 ( 8%) 480 ( 5%) 364 ( 5%) 1,472 (24%) 2,018 (17%)
[45,55) 1,988 (18%) 920 (10%) 1,163 (15%) 1,407 (23%) 1,785 (15%)
[55,65) 2,573(23%) 1,267 (13%) 1,880 (24%) 1,166(19%) 1,813 (15%)
[65,75) 2,262 (20%) 1,659 (17%) 1,993 (25%) 915 (15%) 1,861 (15%)
[75,85) 2,289(20%) 2,744 (29%) 1,773 (22%) 763(12%) 2,639 (22%)
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Variable Levels AMI (11,205)  CHF (9,586) COPD (7,911) DIA (6,145) PN (12,123)
185,) 655( 6%) 1,417 (15%) 479 (6%) 245 ( 4%) 1,118 { 9%)
Null 585( 5%) 1,099 (11%) 259 (3%) 177( 3%) 889 ( 7%)
Payer Class Commercial 2,972 (27%) 910 ( 9%) 868 (11%) 1,228(20%) 2,229 (18%)
Medicaid 923 ( 8%) 988 (10%) 1,143 (14%) 1,301(21%) 1,522 (13%)
Medicare 6,274(56%) 7,277 (76%) 5,337 (67%) 2,747 (45%) 7,275 (60%)
Self-Payment or other 1,036 ( 9%) 411 ( 4%) 563 | 7%) 869 (14%) 1,097 ( 9%)
Race Black 699( 6%) 1,467 (15%) 696 ( 9%) 1,714(28%) 1,403 (12%)
White 9,211(82%) 7,198 (75%) 6,734 (85%) 3,497 (57%) 9,444 (78%)
Hispanic 924 ( 8%) 781 ( 8%) 380 ( 5%) 809 (13%) 1,055 ( 9%)
Other or Null 371( 3%) 140 ( 1%) 101 ( 1%) 125( 2%) 221 ( 2%)
Language English 8,814(79%) 6,729 (70%) 6,295 (80%) 4,814 (78%) 9,112 (75%)
Other or Null 2,391(21%) 2,857 (30%) 1,616 (20%) 1331(22%) 3,011 (25%)
Sex Female 4,635(41%) 4,953 (52%) 4,566 (58%) 3,039(49%) 6,753 (56%)
Male 6,570(59%) 4,633 (48%) 3,345 (42%) 3,106(51%) 5,370 (44%)

Disease Severity
Index Minor 2,826 (25%) 897 ( 9%) 1,605 (20%)  1,330(22%) 1,315 (11%)
Moderate 4,589(41%) 4,343 (45%) 3,424 (43%) 2,086 (34%) 5,872 (48%)
Severe 2,548(23%) 3,388 (35%) 1,921 (24%) 1,430 (23%) 3,827 (32%)
Extreme 1,014 ( 9%) 529 ( 6%) 241 ( 3%) 185 ( 3%) 740 ( 6%)
Null 228( 2%) 429 ( 4%) 720( 9%) 1,114 (18%) 369( 3%)’

1 Because of rounding, some percentages might not add to 100%.
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[Table 2 - Comparison of predictive models]

AMI PN CoprD CHF DIA
LR 0.7328 0.6461** 0.684 0.6237***  0.6702***
NN  0.7518* 0.6546* 0.6988* 0.6248%* 0.6957*
SVM 07074 0.5598 0.611 0.5728 0.6123
GBM  0.7510** 0.6442*** 0.6850** 0.6314* 0.6829**
RF  0.747*** 0.6325 0.6686*** 0.6 0.6699

(* Best model, ** Second Best model, *** Third best model).
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[Table 3 — Performance of selected models]

Disease
cohort

LR replication
Auc(c)

Model Chosen

Characteristics

Proposed model AUC (Cl)

AMI
COPD

PN
DIA

0.7328 (0.7044-0.7604)
0.6840 (0.6494-0.7173)

0.6237 (0.5944-0.6537)

0.6461 (0.6149-0.6758)
0.6702 (0.6285-0.7131)

NN (size=5, decay=0.1)

NN (size=10, decay=2)
GBM (n.trees=100,
interaction.depth=1,

shrinkage=0.1,
n.minobsinnode=10)

NN (size=1, decay=0.1)
NN (size=2, decay=2)

61

Raw (no SMOTE),
no BORUTA
Raw, BORUTA

Raw, no BORUTA

Raw, no BORUTA
Raw, BORUTA

0.7518 (0.7247-0.7782)
0.6988 (0.6669-0.7291)

0.6314 (0.6001-0.6622)

0.6546 (0.6246-0.6859)
0.6957 (0.6569-0.7359)
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[Table 4 - Description of risk strata for AMI]

Low (N=881) pvalue Moderate (N=881) pvalue High (N=881) p value

Admission number: Mean(Sd)  1.304 (0.689)  1.09E-6 1.736(1.047) 7.27E-15 2.763 (3.567) 2E-16
Charlson score 0.79(1.021) 1.10E-10 1.347(1.419) 0.000816 1.911(1.830) 0.819249
Length of Stay 2914 (2.201) 092254 4.118 (2.992) 2E-16  5.006 (5.039) 2E-16
Marital Status: n (%) 2.41E-7 0.000119 2.75E9
Divorced or separated 70 (8%) 104 (12%) 125 (14%)
Married 466 (53%) 481 (55%) 426 (48%)
Single 279 (32%) 184 (21%) 166 (19%)
Widowed 66 (7%) 112 (13%) 164 (19%)
Admission type 2.60E-9 8.12E-7 3.91E-3
Emergency 613 (70%) 668 (76%) 747 (85%)
Other 16 (2%) 9(1%) 25 (3%)
Routine 102 (12%) 98 (11%) 35 (4%)
Urgent 150 (17%) 106 (12%) 74 (8%)
Discharge dispasition 2E-16 2E-16 2E-16
Haspital 0 (0%) 37 (4%) 384 (44%)
Non Acute Facility 54 (6%) 242 (27%) 324 (37%)
Null 0 (0%) 0(0%) 1 (0%)
Routine 827 (94%) 591 (67%) 143 (16%)
Specialized Facility 0(0%) 2(0%) 1 (0%)
Without Treatment 0 (0%) 9(1%) 28 (3%)
Age 3.27€-7 0.053324 0.014162
[18,45) 67 (8%) 62(8%) 46 (5%)
[45,55) 194 (22%) 134 (15%) 131 (15%)
[55,65) 277 (31%) 195 (22%) 170 (19%)
[65,75) 179 (20%) 208 (24%) 227 (26%)
[75,85) 127 (14%) 201 (23%) 228 (26%)
[85,) 37 (4%) 81(9%) 79 (9%)
NULL 0(0%) 0(0%) 0 (0%)
Payer class 5.18E-12 0.1905 1.65E-7
Commercial 320 (36%) 209(23%) 170 (19%)
Medicaid 79 (8%) 71(8%) 72 (8%)
Medicare 346 (39%) 511(58%) 585 (66%)
Null Payer 12 (1%) 4(0%) 7 (0%)
Pending 98 (11%) 78(8%) 38 (4%)
Self pay 26 (2%) 8(0%) 9 (1%)
Race 1.65E-11 9.61E-10 5.99E-1
Black 48 (5%) 68(7%) 67 (7%)
White 735 (83%) 693 (78%) 697 (79%)
Hispanic 59 (6%) 88(9%) 92 (10%)
Other or Null 39 (4%) 32(3%) 25 (2%)
Primary Language 2.74E-15 2E-16 0.213687
English 801 (90%) 671(76%) 627 (71%)
Other or Null 80 (9%) 210(23%) 254 (28%)
Gender 4.20E-16 2E-16 0.060555
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NULL

Payer class
Commercial
Medicaid

Medicare
Null,
Pending or
Self Payer

Race
Black
White

Hispanic
Other or
Null

Language

English
Other or
Null

Gender
Male

Female
Disease
severity
index

Minor
Moderate
Major
Extreme

Null

PN DIA

Low (N=1,010) pvalue Moderate (N=1,010) pvalue High(N=1,010) pvalue Low(N=511) pvalue Moderate (N=511) pvalue High (N=511) p value
36(3) 30(8) 96(9) 17(3) 10(1) &(1)

2E-16 2E-16 2E-16 2E-16 6.65E-15 0.000125
396(39) 99(9) 55(5) 163(31) 73(14) 71(13)
68(6) 145(14) 174(17) 82(16) 89(17) 139(27)
348(34) 718(71) 745(73) 132(25) 294(57) 267(52)
198(19) 48(4) 36(3) 134(26) 55(10) 34(6)

2E-16 2E-16 4.44E-5 0.431 0.5005 0.037051
132(13) 119(11) 124(12) 169(33) 117(22) 129(25)
722(71) 807(79) 811(80) 258(50) 308(60) 332(64)
116(11) 75(7) 68(6) 68(13) 73(14) 48(9)
40(3) 9(0) o) 16(3) 13(2) 2(0)

1.75E-7 6.85E-8 0.4956 2E-16 4.60E-5 4.10E-6

825(81) 722(71) 731(72) 440(86) 386(75) 388(75)
185(18) 288(28) 279(27) 71(13) 125(24) 123(24)

2£-16 2£-16 2E-16 0.771 0.5612 0.939978
392(38) 412(40) 525(51) 268(52) 255(49) 240(46)
618(61) 598(59) 485(48) 243(47) 256(50) 271(53)

2E-16 2E-16 2E-16 2E-16 1.09E-8 0.075632
190(18) 90(8) 43(4) 168(32) 91(17) 78(15)
628(62) 549(54) 323(31) 120(23) 208(40) 190(37)
121(11) 338(33) 493(a8) 72(14) 133(26) 161(31)
3(0) 21(2) 145(14) 2(0) 14(2) 39(7)
68(6) 12(1) 6(0) 149(29) 65(12) 43(8)
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