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Abstract

In this thesis, we consider linear extremal problems in the Hp spaces. For many of these extremal

problems, a unique solution can be guaranteed. We will examine some of the classical examples of

extremal problems in these spaces. With this framework in place we will then consider a particular

problem which does not always have a unique solution.

ii



Chapter 1

Introduction to Hp Spaces

In this thesis, we will be examining a linear extremal problem in the Hardy Spaces (Hp), which are

families of spaces of analytic functions. In Chapter 1 we provide necessary background into the

Hardy Spaces, along with some minor historical context. In Chapter 2 we examine the properties of

Hp functions. Having explored the necessary background of HP Spaces, we look at some classic

extremal problems for those spaces in Chapter 3. In Chapter 4, we consider a particular extremal

problem in Hp for 0 < p < 1, which does not have a unique solution. In Chapter 5, we discuss an

algorithm written to provide numerical analysis of the extremal problem, which supports the lack

of uniqueness of the extremal problem under consideration. We conclude this chapter with future

work.

1.1 Background

Let us begin with some background:

DEFINITION 1.1.1 The Lebesgue Space (Lp): Let (X,µ) be a measure space. The Lp(X) space

for a given 0 < p <∞, is the set of complex measurable functions f (on X), such that the following

Lp norm is is finite

‖f‖p :=


∫
X

|f |pdµ


1
p

<∞. (1.1)

For the special case of p =∞ the Lebesgue space is defined in the following way:

DEFINITION 1.1.2 The Lebesgue Space (L∞): Let (X,µ) be a measure space. The L∞(X) space

is the set of complex measurable functions f (on X), such that the essential supremum of |f | is finite.

We define the L∞-norm of the function f , as ‖f‖∞ = esssup|f | = inf{C ≥ 0 : |f(x)| ≤ C for

almost every x}.
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The definition of Lp for 1 ≤ p < ∞ uses the more general Lebesgue integral (as opposed to

the Riemann integral), which was introduced in 1904 by Henri Lebesgue [6]. The Lp space is a

complete normed linear space, in other words, for any 1 ≤ p ≤ ∞, we say that Lp(X) is a Banach

space. (In 1920, Stefan Banach initially formalized this space in his thesis [6], in which he laid out

the axioms that form its basis.)

The Hardy Spaces can be viewed as subspaces of Lp, which we will discuss later, but involve

analytic functions defined on the open unit disk D.

DEFINITION 1.1.3 Analytic Function: An analytic function is a complex valued function of a com-

plex variable which can be represented locally by a convergent power series expansion.

DEFINITION 1.1.4 The Hardy Space (Hp): For functions analytic in the disk and 0 < p <∞, if

‖f‖p := lim
r→1−

Mp (r, f) = lim
r→1−

 1

2π

2π∫
0

∣∣∣f (reiθ)∣∣∣pdΘ


1
p

<∞, (1.2)

then the function is said to be an element of Hp. For the special case p = ∞, we require that

M∞ (r, f) = max
0≤θ≤2π

∣∣f (reiθ)∣∣ <∞ and we write fεH∞.

Note that the Hp Spaces form a decreasing sequence of spaces, i.e. if p < q then Hq ⊂ Hp.

Note that any complex function which is analytic in the closed disk (|z| ≤ 1) is bounded, and

hence will be in Hp for all values of p > 0. Therefore, we can see that polynomial, sin(z), cos(z),

ez , and rational functions with poles outside of the closed disk are all functions ofHp for any p > 0.

However, when a function has singularities on the unit circle, things are not so clear. For example,

the function 1
1−z has a singularity at z = 1.

PROPOSITION 1 The function f(z) = (1 − z)−1 is in Hp for every 0 < p < 1, but is not in H1,

and thus not in any Hp space for any p ≥ 1.

Note: The solution to this problem is well known and illustrates the need for clever estimates in

order to determine the convergence of integrals.

Proof.
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Part 1 Let us first show that f ∈ Hp for 0 < p < 1. That means we need to determine the

convergence of the following integral limit:

lim
r→1−

1

2π

2π∫
0

∣∣∣∣ 1

1− reiθ

∣∣∣∣pdθ. (1.3)

It is not hard to see that the above equals lim
r→1−

1
2π

2π∫
0

1dθ
(
√

1+r2−2rcosθ)p
.

Notice that: 1−2rcos (θ)+r2 = (1− r)2 +4rsin2
(
θ
2

)
. For 0 ≤ x ≤ π

2 we have that sinx ≥ 2
πx

⇒ (1− r)2 + 4rsin2

(
θ

2

)
≥ (1− r)2 +

4r

π2
θ2

⇒ 1

2π

π
2∫
0

1dθ

(1 + r2 − 2rcosθ)
p
2

≤ 1

2π

π
2∫
0

1dθ(
(1− r)2 +

(
4rθ2

π2

)) p
2

≤ 1

2π

π
2∫
0

dθ(
4rθ2

π2

) p
2

=
1

2π

π
2∫
0

dθ(
2θ
π r

1
2

)p =
πp−1

2p+1 · r
p
2

π
2∫
0

dθ

θp
.

Notice that
π
2∫
0

θ−pdθ diverges for p = 1 but converges for p < 1.

Since,

1

2π

π
2∫
0

1dθ

(1 + r2 − 2rcosθ)p
=

1

2π

2π∫
3π
2

1dθ

(1 + r2 − 2rcosθ)p

the previous statement gives the convergence for both of these integrals when p < 1.

Now, we need only show that
3π
2∫
π
2

(
1dθ√

1+r2−2rcosθ

)p
converges, but this is obvious for r close to 1.

So, we have that

lim
r→1

1

2π

2π∫
0

1dθ

(
√

1 + r2 − 2rcosθ)p
<∞ (1.4)

for p < 1.

Next we must show that (1.3) diverges for p = 1.

In this case,

lim
r→1−

1

2π

2π∫
0

∣∣∣∣ 1

1− reiθ

∣∣∣∣pdθ =

2π∫
o

1dθ(√
2 + 2cosθ

)p =

2π∫
0

1dθ

2sin
(
θ
2

) =

π∫
0

dx

sin (x)
(1.5)
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Since sin(x) < x for 0 < x < π
2 , then we have that

π
2∫
0

dx
sin(x) >

π
2∫
0

dx
x and since

π
2∫
0

dx
x diverges which

implies that lim
r→1

1
2π

2π∫
0

∣∣∣ 1
1−eiθ

∣∣∣pdθ =∞ and therefore (1− z)−1 /∈ H1.

Notice that since 1
z−1 /∈ H1, it is not in any Hp space for p ≥ 1.

�

An important preliminary result in Hp spaces began with Hardy’s Convexity Theorem, in 1915,

which states that Mp (r, f) is a non-decreasing function of r and is logarithmically convex [6].

PROPOSITION 2 (Hardy’s Convexity Theorem) For f ∈ Hp,Mp (r, f) is a non-decreasing function

of r and is logarithmically convex.

Below we outline a (known) alternative approach to the classical proof using Littlewood’s Subordi-

nation Theorem. First a definition:

DEFINITION 1.1.5 A function f(z) analytic in |z| < 1 is said to be subordinate to an analytic

function F (z) (f ≺ F ) if f(z) = F (w(z)) for some function w(z) analytic in |z| < 1, satisfying

|w(z)| ≤ |z|. This is notated f ≺ F .

Littlewood’s Subordination Theorem states,

THEOREM 1.1 Let f(z) and F (z) be analytic in |z| < 1, and suppose f ≺ F . Then Mp(r, f) ≤

Mp(r, F ), 0 < p ≤ ∞.

Proof. Let F (z) be analytic in |z| < 1. Let 0 < k < 1 and define f(z) = F (kz). Then it is

obvious that f(z) is analytic in |z| < 1 and f ≺ F .

It is also clear that 1
2π

2π∫
0

∣∣F (kreiθ)∣∣pdθ ≤ 1
2π

2π∫
0

∣∣F (reiθ)∣∣pdθ.

Now by the Littlewood Subordination Theorem, we have that
1

2π

2π∫
0

∣∣f (reiθ)∣∣pdθ ≤ 1
2π

2π∫
0

∣∣F (reiθ)∣∣pdθ and therefore 1
2π

2π∫
0

∣∣F (kreiθ)∣∣pdθ ≤ 1
2π

2π∫
0

∣∣F (reiθ)∣∣pdθ.

Since 0 < kr < r ≤ 1 we have that Mp(q, F ) ≤Mp(r, F ) for any q ≤ r.

This shows that Mp(r, F ) is a nondecreasing function of r.

�

Although the seeds had been planted by Hardy years before, it wasn’t until 1923 that the Riesz

brothers coined the term Hδ (later changed to Hp). Furthermore, the Hp Space wasn’t shown to be

4



a Banach Space (for p ≥ 1) until Taylor defined the Hp norm near the end of the 1940’s, over 20

years after the corresponding result for Lp Spaces (See [6] p. 473 and 474).

In fact, it is Hardy’s Convexity theorem that allowed Taylor to define this norm, since, if f ∈

Hp, then lim
r→1−

Mp (r, f) = Mp (1, f). Therefore, we can define a norm on Hp by: ‖f‖p =

lim
r→1−

Mp (r, f).

On the other hand, in the case of p < 1, things are slightly less simple. In 1952 Arthur E.

Livingston showed that for 0 < p < 1, the Hp space is not normable. His argument hinged on

“a theorem of Kolmogoroff, [that] a linear topological space has an equivalent normed topology

if and only if the space contains a bounded open convex set.” Livingston then shows that for ”

0 < p < 1, [Hp] contains no convex neighborhood of the origin; this is clearly sufficient to show

that Hp (0 < p < 1) contains no bounded open convex set, and hence is not normable.” (See [5].)

1.2 Hp as a subspace of Lp

By considering boundary values of functions in Hp we can consider it as a subspace of Lp. But in

order to do this we must first consider a key result.

THEOREM 1.2 (Fatou’s Theorem [2]) If f ∈ Hp, i.e., if ‖f‖p < ∞ then lim
r→1−

f
(
reiθ

)
exists

almost everywhere and we can call this limit f(eiθ), additionally, lim
r→1−

(
1

2π

2π∫
0

∣∣f (reiθ)∣∣p) 1
p

=(
1

2π

2π∫
0

∣∣f (eiθ)∣∣p) 1
p

.

Therefore, we have that if f ∈ Hp, then

‖f‖Hp =

 1

2π

2π∫
0

∣∣∣f (eiθ)∣∣∣p


1
p

. (1.6)

Let π = {z ∈ C : |z| = 1} and D = {z ∈ C : |z| < 1}. Then by applying Fatou’s Theorem,

we see that the Hp and Lp norms for any function in Hp are identical. Of course, if a sequence

of functions fn converge to f in Hp, then ‖f‖Hp < ∞. Therefore, Hp(D) is a closed subspace

of Lp(π). Although not true in general, when X is a compact space, Lp(X) has the property that

Lp(X) ⊃ Lq(X) if 0 < p < q ≤ ∞. Since π is a compact space this property holds for Hp spaces

as well.
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In other words, if we consider the set H p (of boundary functions for Hp), then H p is a vector

subspace of Lp. In fact, for 0 < p < ∞, H p is the Lp closure of the set of polynomials in

eiθ. This means that in a, (perhaps limited) way, we can apply many results for Lp spaces to their

corresponding Hp space, by analyzing the boundary functions for that particular class.

In the following chapter, we will examine the properties of Hp functions more closely. In doing

this, we see that functions f that are elements of Hp possess a particular structure that we will

analyze.
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Chapter 2

Properties of Hp Functions

2.1 Basic Results

Up to this point, we have examined the general properties of the Hp Space. Now we would like

to look more closely at the structure of functions in Hp. We would like to know what kinds of

properties a Hardy Space function has. We will see that the functions in H1 can be characterized as

Poisson, Poisson-Stieltjes, Cauchy, and Cauchy-Stieltjes Integrals, and satisfy a Canonical Factor-

ization Theorem. We will first need some definitions:

DEFINITION 2.1.1 A function f is called harmonic if it is twice continuously differentiable, maps

from an open subset of C to R, and satisfies the Laplace equation:

4f :=
∂2f

∂x2
+
∂2f

∂y2
= 0, (2.1)

where z = x+ iy.

DEFINITION 2.1.2 Poisson Integral: The Poisson integral of a function u defined on the unit circle

is:

1

2π

2π∫
0

P (r, θ − t)u
(
eit
)
dt (2.2)

where

P (r, θ) =
1− r2

1− 2rcosθ + r2
. (2.3)

The space hp is defined similarly toHp, but for harmonic functions. If u is a real valued harmonic

function and if Mp (r, u) is bounded, we say that u ∈ hp. It is important to note that all such h1

functions can be written as Poisson integrals of their boundary functions. This can be combined with
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another useful fact: Every analytic function f(z) is in Hp if and only if both its real and imaginary

parts are in hp. Therefore, all functions in H1 can be recovered from their corresponding boundary

functions (See [1] p. 2). We will explore this characterization further with Theorem 2.1 which is

presented in [1] (p.41), though it is left unproven in this source. We need a few more definitions

before examining and proving this theorem.

DEFINITION 2.1.3 Cauchy Integral: The Cauchy integral of a complex valued integrable function

φ is:

F (z) =
1

2πi

2π∫
0

eitφ(eit)

eit − z
dt. (2.4)

DEFINITION 2.1.4 Cauchy-Stieltjes Integral: The Cauchy-Stieltjes integral with respect to a complex-

valued function µ(t) of bounded variation is:

F (z) =
1

2πi

2π∫
0

eit

eit − z
dµ(t). (2.5)

DEFINITION 2.1.5 Poisson-Stieltjes Integral: The Poisson-Stieltjes integral with respect to a complex-

valued function µ(t) which is of bounded variation on [0, 2π] is:

1

2π

2π∫
0

P (r, θ − t) dµ(t) (2.6)

where

P (r, θ) =
1− r2

1− 2rcosθ + r2
. (2.7)

THEOREM 2.1 If a function f(z) analytic in |z| < 1 can be represented in any one of the following

four ways:

i as a Cauchy-Stieltjes integral with F (z) ≡ 0 in |z| < 1;

ii as a Cauchy integral with F (z) ≡ 0 in |z| < 1;

iii as a Poisson-Stieltjes integral;

iv as a Poisson integral;

8



then it can be represented in each of the other three ways. The class of functions so representable

is H1.

The following three theorems are necessary in the proof of this theorem:

THEOREM 2.2 (See [1] p.34) A function f(z) analytic in |z| < 1 is representable as the Poisson

integral of a function ϕ ∈ L1 if and only if f ∈ H1. In this case ϕ(t) = f(eit) almost everywhere.

THEOREM 2.3 (See [1] p.40) For a complex-valued function µ(t) of bounded variation, the follow-

ing three statements are equivalent:

i
2π∫
0

eintdµ (t) = 0, n=1,2,3,...

ii The Cauchy-Stieltjes integral F (z) = 1
2π

2π∫
0

eitdµ(t)
eit−z vanishes identically in |z| < 1.

iii The Poisson-Stieltjes integral f (z) = 1
2π

2π∫
0

P (r, θ − t) dµ (t) is analytic in |z| < 1.

THEOREM 2.4 (The F. and M. Riesz Theorem [7]) Let µ(t) be a normalized complex-valued func-

tion function of bounded variation on [0,2π], with the property
2π∫
0

eintdµ (t) = 0n n=1,2,3,... Then

µ(t) is absolutely continuous with respect to arclength measure dt.

(For more on these theorems see [1].)

Assuming theorems 2.2, 2.3, and 2.4 we now return to the matter of proving Theorem 2.1.

Proof. Theorem 2.1

I (i)⇒ (iii) This is the stated result of Theorem 2.3.

II (i)⇒ (ii) Thm. 2.3 gives the result that
2π∫
0

eintdµ (t) = 0, n=1,2,3,...

This implies µ(t) is absolutely continuous by The F. and M. Riesz Theorem

Therefore, dµ(t) = ϕ(t)dt for some integrable function ϕ(t).

This proves (ii).

III (ii) ⇒ (i) This is due to the fact that the Cauchy-Stieltjes integral is more general than the

Cauchy integral.
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IV (iv) ⇒ (iii) This is due to the fact that the Poisson-Stieltjes integral is more general than the

Poisson integral.

V Theorem 2.3 gives the result that
2π∫
0

eintdµ (t) = 0, n=1,2,3,...

This implies µ(t) is absolutely continuous by the F. and M. Riesz Theorem.

Therefore, dµ(t) = ϕ(t)dt for some integrable function ϕ(t).

This proves (iv).

All other implications follow from combining the above results.

Finally, we have that the functions which are representable in these ways is the space H1, as the

direct result of Thm. 2.2.

�

2.2 Hp Factorization

Next we explore a critical result, the ability to break down any non-zero Hp function uniquely

into 3 factors whose properties fully determine the behavior of the function. These factors are the

Blaschke Product, a Singular Inner Function and an outer function for the class Hp. This Canonical

Factorization allows one to reduce analyzing the original function down to these constituent parts.

We consider now, the properties of these factors:

DEFINITION 2.2.1 Blaschke Product: A function of the following form,

B (z) = zm
∞∏
n=1

|an|
an

an − z

1− −
an z

(2.8)

where 0 < |an| < 1 and
∑∞

n=1 (1− |an|) <∞, is called a Blaschke Product.

This Blaschke Product has the property that |B(eiθ)| = 1 almost everywhere, i.e., it has modulus 1

a.e. on the unit circle.

DEFINITION 2.2.2 Inner Function: An inner function I : D→ C is a function such that |I(z)| ≤ 1

for |z| < 1, and |I(eiθ)| = 1 almost everywhere.

It can be shown that every inner function can be factored into a Blaschke Product and a Singular

Inner Function, which we will now define:
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DEFINITION 2.2.3 Singular Inner Function: Let a function have the following form,

S(z) = Ce
−

2π∫
o

eit+z

eit−z
dµ(t)

(2.9)

where µ is a positive Borel measure for which µ(π) < ∞ and that is singular with respect to the

Lebesgue measure. Additionally, C is a constant of modulus 1. Any function which satisfies these

conditions is called a Singular Inner Function.

Note that |S(eiθ)| = 1 almost everywhere. Now we look at the last remaining factor in the

Canonical Factorization of Hp:

DEFINITION 2.2.4 Outer Function for the Class Hp: A function with the following form,

F (z) = eiγe
1
2π

2π∫
0

eit+z

eit−z
logΨ(t)dt

(2.10)

where γ ∈ R, ψ (t) ≥ 0, logΨ(t) ∈ L1 and Ψ(t) ∈ Lp is called an outer function for the class Hp.

Now we present the “Canonical Factorization Theorem”, due to Smirnov, in its full form:

THEOREM 2.5 (The Canonical Factorization Theorem [8]) Every function f (z) 6≡ 0 of class Hp

(p > 0) has a unique factorization of the form f(z) = B(z)S(z)F (z), where B(z) is a Blaschke

product, S(z) is a singular inner function, and F (z) is an outer function for the class of Hp.

Conversely, every such product B(z)S(z)F (z), with F ∈ Hp, belongs to Hp.

The Blaschke factor serves an interesting role in this factorization. B(z) contains all of the zeros

for f(z) which ensures that the remaining factors for f(z) are nonvanishing functions. Additionally,

since both
∣∣B (eiθ)∣∣ = 1 and

∣∣S (eiθ)∣∣ = 1 almost everywhere we get the result that F (z) has the

same Hp norm as f(z), i.e., ‖F‖p = ‖f‖p. We also have that |F (z)| ≥ |f (z)| in |z| < 1.

The following proposition illustrates the use of this key theorem in identifying outer functions:

PROPOSITION 3 If f(z) is analytic and Re{f(z)} > 0 in |z| < 1, then f is an outer function.
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Note: Theorem 3.16 of [1] states that if f(z) is analytic and schlicht in |z| < 1, then f ∈ Hp for

all p < 1
2 . (A schlicht function f is an analytic function if it does not take any value twice, i.e., it is

one-to-one.)

Proof. Since f is analytic and Re{f(z)} > 0 in |z| < 1 then we have that f ∈ Hp for all p < 1.

(Thm. 3.2 of [1]).

Since f is strictly positive in |z| < 1, we see that 1
f is analytic and one-to-one in |z| < 1.

This implies that 1
f ∈ Hp for p < 1

2 , by Thm. 3.16 of [1], and therefore S (z) ≡ 1 (by the

Canonical Factorization Theorem), since both f and 1
f have canonical factorizations with singular

inner functions that are less than or equal to one.

Finally, this gives that f(z) = B(z)F (z), but since f has no zeros this implies B(z) = 1 and

therefore f(z) = F (z) where F(z) is the outer function given by the canonical representation.

�

In fact, the Hardy Spaces are all subsets of the Nevanlinna class N, and the factorization applies

in general to Nevanlinna functions as well. Every function of class N can be expressed in the form

f (z) = B (z) S1(z)
S2(z)F (z). The canonical factorization theorem gives us a powerful tool in analyzing

the properties of Hp functions.

2.3 Additional Useful Facts

Many useful facts regarding Hp spaces are simple in their statements(though perhaps not in their

derivation).

First a definition:

DEFINITION 2.3.1 A function g(z) is said to have a harmonic majorant in D if there is a function

U(z) harmonic in D such that g(z) ≤ U(z) for any z ∈ D.

Given the preceding definition we can make use of the following theorem ”If f(z) is analytic in

|z| < 1, then f ∈ Hp(0 < p <∞) if and only if |f(z)|p has a harmonic majorant in |z| < 1.”

Another theorem states that every analytic function f(z) with positive real part in |z| < 1 is of

class Hp for all p < 1, which follows from the previous proposition and the fact that every outer

function for Hp is an element of Hp.
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The preceding theorems provide two tools for determining whether a function is in Hp for p <

1. As the calculations for checking a function directly are often tedious or require clever tricks,

theorems of this nature are important tools that can substantially reduce the burden of work when

analyzing a particular function.

Next we will examine some general results for extremal problems in the Hp Spaces. We will see

that for certain extremal problems the solutions are unique, and additionally, we will see the forms

of those unique solutions.
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Chapter 3

Extremal Problems

We now turn to a discussion of linear extremal problems in Hardy Space. The Canonical Factoriza-

tion Theorem, provides a key tool for analyzing these problems. Let us begin by examining how

linear functionals on Hp Spaces can be represented.

The well known Riesz-Representation Theorem has a close analogue in the theory of Hp spaces.

We follow the presentation in [1] (p.113) due to A.E. Taylor:

THEOREM 3.1 For 1 < p < ∞, the bounded linear functionals φ on Hp can be expressed in the

form

φ(f) =
1

2π

2π∫
0

f
(
eiθ
)
k
(
e−iθ

)
dθ (3.1)

where k(eiθ) ∈ Hq, (1
p + 1

q = 1) [k(z) is called the kernel of φ.]

The argument used to construct this functional representation breaks down in the case that p < 1,

because the space Hp is not normable when p < 1. In order to find a representation for the case that

p < 1, first, we define A(D) (called the disk algebra) as, the class of functions which are analytic in

|z| < 1 and continuous in |z| ≤ 1.

THEOREM 3.2 (See [1] p.115.) To each bounded linear functional φ on Hp, 0 < p < 1, there

corresponds a unique function g ∈ A such that

φ(f) = lim
r→1−

1

2π

2π∫
0

f
(
reiθ

)
g
(
e−iθ

)
dθ, f ∈ Hp. (3.2)

We will deal initially with the case that 1 ≤ p < ∞, and examine the extremal problem of

finding:

‖φ‖ = sup
f∈Hp,‖f‖p≤1

|φ (f)| . (3.3)
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These functionals are subject to a powerful relation called the duality relation, which, for our

current choice of p values, takes the form:

sup
f∈Hp,‖f‖p≤1

1

2π

∣∣∣∣∣∣∣
∫
|z|=1

f(z)k(z)dz

∣∣∣∣∣∣∣ = min
g∈Hq
‖k − g‖q. (3.4)

As the linear functional is identified uniquely by its kernel k(eiθ), we can frame this duality

relation in the following way: Finding the norm of a functional on Hp is equivalent to finding the

function in Hq that best approximates the kernel (which is a function in Lp, where 1
p + 1

q = 1).

When 1 < p ≤ ∞ the supremum of (12) is attained, and the minimum of (13) is also attained.

Therefore, in these cases a solution to the duality problem is guaranteed. However, in the case

that p = 1 a solution to (12) is guaranteed only in the case that the kernel (k(eit)) is a continuous

function.

The following theorem summarizes the result:

THEOREM 3.3 (The Duality Relation) (See [6] p.132) For each p (1 ≤ p ≤ ∞) and for each

function k(eiθ) ∈ Lq (1
p + 1

q = 1) with k /∈ Hq, the duality relation

sup
f∈Hp,‖f‖p≤1

|φ(f)| = inf
g∈Hq
‖k − g‖q (3.5)

holds, where φ(f) is defined by

φ(f) =
1

2πi

∫
|z|=1

f(z)k(z)dz. (3.6)

If p > 1 then there exists a unique extremal function f for which φ(f) > 0. If p = 1 and k(eiθ) is

continuous, at least one such extremal function exists. If p > 1 (q <∞), the dual extremal problem

has a unique solution. If p = 1 (q = ∞), the dual extremal problem has at least one solution; it is

unique if an extremal function exists.

Now we consider a particular extremal problem, the Carathéodory-Féjer problem.

The Carathéodory-Féjer Problem: Let β1, ..., βm be points in the unit disk and let c1, ..., cm be

complex numbers. Among the functions f ∈ Hp satisfying the interpolation conditions

f(βj) = cj , j = 1, ...,m, (3.7)
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we must find one for which the infimum

inf ‖f‖p = inf


2π∫
0

∣∣∣f (eiθ)∣∣∣pdθ


1
p

(3.8)

is attained. In doing so, we shall consider functionals of the form: φj(f) = f(βj), for j =

1, 2, ...,m, where βj are fixed points in the unit disk.

S. Ya. Khavinson ([4]) shows that this problem has a unique solution f for p ≥ 1 and that the

following equality holds:

min ‖f‖q = max
g∈H1

γ

∣∣∣∣∣∣
m∑
j=1

cjφj (g)

∣∣∣∣∣∣ 2π (3.9)

where H1
γ is the space of functions f whose product with γ = Πm

1 |ζ − βj | is in H1.

The form of this unique solution is:

f∗ (z) = C

k∏
j=1

z − αj
1− −αjz

k∏
j=1

(
1− −αjz

) 2
q

k∏
j=1

(1− βjz)−
2
q (3.10)

S. Ya Khavinson proves that although the methods of proof are necessarily different for the case

p < 1, nonetheless, the solution for the extremal problem (3.8) still has the same form. This is

achieved by associating the extremal function for 0 < p < 1 with a function which is extremal for

some p′ > p, where p′ > 1 [4].

Now we consider another linear extremal problem solved by Macintyre, Rogosinski and S. Ya

Khavinson in 1950.

Theorem: Suppose, given a0, a1, ..., an ∈ C, f is the unique extremal function that solves

inf{‖f‖p : f(0) = a0, f
′(0) = a1, ..., f

(n)(0) = an}. (3.11)

Then f has the form:

f(z) = C
∏
|aj |<1

z − αj
1− −αjz

n∏
j=1

(
1− −

αj z
) 2
p (3.12)

where C is a constant, |aj | ≤ 1, for j = 1, ..., n, and the first product is taken over some or all of

the aj that are contained inside the unit disk.

The following lemma of Kabaila (See [3]) provides the key to showing that the extremal solution

has the same form for the case p < 1.
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Lemma: Given a0, a1, ..., an ∈ C, suppose f∗ is extremal for the problem

inf{‖f‖p : f(0) = a0, f
′(0) = a1, ..., f

(n)(0) = an}. (3.13)

Let B(z) be the Blaschke factor of f∗. Then, for any fixed p′ > p, the function

g∗(z) =

(
f∗(z)

B(z)

) p
p′

B(z) (3.14)

is extremal for the problem

inf{‖g‖p′ : g(0) = c0, g
′(0) = c1, ..., g

(n)(0) = cn}, (3.15)

where the constants Cj , j = 0, ..., n are the first n+ 1 Taylor coefficients of the function g∗.

Since g∗ solves (3.15) for p′ ≥ 1, by the previous theorem we have that

g∗(z) = C
∏
|aj |<1

z − αj
1− −αjz

n∏
j=1

(
1− −

αj z
) 2
p′
. (3.16)

Therefore, f∗ has the form

f∗(z) = C
p
p′
∏
|aj |<1

z − αj
1− −αjz

n∏
j=1

(
1− −

αj z
) 2
p
. (3.17)

We summarize these results in the following theorem,

THEOREM 3.4 Let p > 0. Fix a0, a1, ..., an ∈ C, and consider the extremal problem of finding

inf{‖f‖p : f(0) = a0, f
′(0) = a1, ..., f

(n)(0) = an}. (3.18)

The extremal function f∗ always exists and has the form

f(z) = C
∏
|αj |<1

z − αj
1− −αjz

n∏
j=1

(
1− −

αj z
) 2
p (3.19)

where |αj | ≤ 1, C is a constant, and the first product is taken over some or all of the αj that are

contained inside the unit disk. If p ≥ 1, the extremal function is unique. If p = ∞, 2
p should be

interpreted as being 0.

The problem of uniqueness is a key difference for the case p < 1. In this case the extremal

problem does not necessarily have a unique solution. This is shown by Kabaila when he considered

the following, more simple, “model” problem:
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LEMMA 3.1 Fix 0 < p < 1 and a > 0. For the problem of finding the extremal functions for

inf{‖f‖p : f(0) = 1, f ′(0) = a}, (3.20)

we have that the extremal function has 1 of 2 forms:

f∗1 (z) = C
z − α

1− −α z

(
1− −α z

) 2
p
, (3.21)

where |α| < 1, or

f∗2 (z) = C

(
1−

−
β z

) 2
p

(3.22)

where |β| ≤ 1. We call the first function an extremal of type I and the second an extremal function

of type II.

We conclude that for each 0 < p < 1, there exists a unique value a > 0 such that

inf{‖f‖p : f(0) = 1, f ′(0) = a} (3.23)

has exactly two extremal solutions, one having a zero and the other being non-vanishing.

Now we will turn to the main extremal problem of this thesis. We will see that the solutions to

the “model” problem are the key to analyzing our next extremal problem.
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Chapter 4

An Extremal Problem With Non-Unique Solutions

We consider the following extremal problem: for a fixed 0 < p < 1 and 0 < c < 1, to find

sup
{
Re(f ′ (0)) : f (0) = c, ‖f‖p ≤ 1

}
. (4.1)

It may seem initially that this problem is distinctly different from the extremal problems we’ve

just considered. In fact, this is not the case, as the following lemma will show. But first, we note

that if f is extremal, so is the function f(eitz), therefore, without loss of generality we can consider

f to be normalized so that f ′(0) > 0.

LEMMA 4.1 If 0 < p < 1 and 0 < c < 1 and if f is extremal for the problem

m := sup{Re(f ′(0)) : f(0) = c, ‖f‖p ≤ 1}, (4.2)

then f is also extremal for the problem

inf{‖f‖p : f(0) = c, f ′(0) = m} (4.3)

Proof. Suppose f is extremal for (4.2). Then f(0) = c and f ′(0) = m, and ‖f‖p ≤ 1. Now

suppose there were a function g such that g(0) = c and and g′(0) = m but ‖g‖p < ‖f‖p ≤ 1. Pick

ε > 0 small enough such that

‖g(z) + εz‖pp ≤ ‖g‖pp + ‖εz‖pp = ‖g‖pp + εp < 1 (4.4)

Then the function gε(z) := g(z) + εz satisfies g(0) = c and ‖gε‖p ≤ 1, but g′ε(0) = m + ε > m

which is a contradiction. Therefore, f is also extremal for (4.3). �

We have seen in lemma 3.1 that this problem has two potential forms for its solutions, and we

will see that for each 0 < p < 1 the extremal solution is dependent upon the interval in which c lies.

These two potential forms are as follows:
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f1 (z) = A
z − α

1− −α z

(
1− −α z

) 2
p
, (4.5)

for |α| < 1 and A > 0, or

f2 (z) = B

(
1−

−
β z

) 2
p

, (4.6)

where |β| ≤ 1.

In order to determine which form will be extremal and for what values of p and c, we will need to

make use of the given constraints. First we note that if f is a solution to the problem, then 1 = ‖f‖pp

(Otherwise, one can construct a function f(z) + ε and argue as in the previous lemma.) This leads

to the following result for each potential equation:

1 = ‖f1‖pp = Ap‖
(

1− −α z
) 2
p ‖pp = Ap‖1− −α z‖22 = Ap

(
1 + |α|2

)
, and (4.7)

1 = ‖f2‖pp = Bp(1 + |β|2). (4.8)

The second equality in (4.7) follows because the Blaschke product z−α
1−−αz

has modulus 1 on the

unit circle.

We will now examine each of the functions more closely, beginning with f1(z). In order to

determine where f1(z) is the extremal solution we will need to derive some useful facts first.

Since 0 < c < 1, f1(0) = −Aα = c and |α| < 1, we see that α is real and −1 < α < 0. Using

α = − c
A we can rewrite the constraint from (4.7) as follows:

Ap
(

1 +
c2

A2

)
= 1. (4.9)

The fact that −Aα = c and |α| < 1 imply that A > c. Additionally, using constraint (4.9)

we see that if A ≤ 2
− 1
p then Ap

(
1 + |α|2

)
≤ 2−1

(
1 + |α|2

)
≤ 1

2

(
1 + |α|2

)
< 1 which is a

contradiction, and therefore, A > 2
− 1
p .

Using these constraints, we will see the form of f ′(z) at the point z = 0.
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LEMMA 4.2 For 0 < p < 1 and 0 < c < 1 the derivative of f1(z) at zero is:

f ′1 (0) = A+
c2

A

(
2− p
p

)
. (4.10)

Proof. Using the fact that α is real valued and rewriting f1(z) we have that

f1(z) = A(z − α)(1− αz)
2−p
p . Calculating the derivative, we find that

f ′1(z) = A[(1− αz)
2−p
p + (z − α)(−α)(2−p

p )(1− αz)
2−2p
p ].

Taking z = 0, f ′1(0) = A[1+α2(2−p
p )]. Using the constraint that α = −c

A , we get the desired result.

�

Now we see that multiplying each side of (4.9) by A2 results in the equation:

A(p+2) +Apc2 −A2 = 0 (4.11)

Applying these facts leads to the following lemma:

Lemma

i Let 0 < p < 1. If 0 < c ≤ 2
− 1
p , then there exists a unique solution x in the interval (2

− 1
p , 1) to

the equation

xp+2 + xpc2 − x2 = 0. (4.12)

ii If 2
− 1
p < c < cp :=

(
2−p

2

) 1
p
√

p
2−p , then there are 2 solutions to the equation (4.12) in the

interval (c, 1).

iii If c = cp then there exists a unique solution to (4.12).

iv If cp < c < 1, then there are no solutions to (4.12) in the interval (c,1).

Proof. Let 0 < p < 1 and 0 < c < 1. Then there exists a solution x in (0, 1) to (4.12) if and

only if c2 = x2−p − x2. We wish to see in what intervals the equation g(x) := x2−p − x2 satisfies

g(x) = c2. Clearly g is continuous on [0, 1], and infinitely differentiable on (0, 1). Since x2−p > x2

on (0, 1) we see that g(x) > 0 for x ∈ (0, 1). Additionally, g(0) = g(1) = 0. By taking the

derivative of g(x) we get:

g′ (x) = (2− p)x1−p − 2x > 0. (4.13)
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It is easy to see that g′ (x) is continuous on (0, 1). Solving the equation g′ (x) = 0 on (0, 1),

for x, gives the solution x =
(

2−p
2

) 1
p

=: ap. From these facts we can conclude that g is strictly

increasing on (0, ap) and strictly decreasing on (ap, 1), therefore, g has its maximum at

c2
p := g (ap) =

(
2− p

2

) 2
p
(

p

2− p

)
. (4.14)

This implies that if cp < c < 1, then there is no solution to (4.12), which proves (iv). If c = cp,

then ap is the unique solution to (4.12), which proves (iii). This also shows that for 0 < c < cp,

there are 2 solutions for (4.12) in (0, 1). In order to prove (i) and (ii) we must examine the equation

more closely. If
√
g (x) = x then x2−p − x2 = x2, when restricted to (0,1), then we see that

x−p = 2 and therefore x = 2
− 1
p . Now we want to show that g(x) > x2 only when 0 < x < 2

− 1
p .

To see this, assume that x < 2
− 1
p , then xp < 2−1, which gives x−p > 2, therefore x2−p > 2x2,

x2−p − x2 > x2 and finally g(x) > x2. Similarly, if we assume x > 2
− 1
p then we will get that

g(x) < x2. Additionally, since 0 < p < 1, 2−p
2 > 1

2 and therefore ap > 2
− 1
p .

This leads to the conclusion that if 0 < c ≤ 2
− 1
p , then there exists one solution to (4.12) in the

interval (0, 2
− 1
p ] and one in the interval (2

− 1
p , 1) which proves (i).

On the other hand if 2
− 1
p < c < cp, then there are two solutions to (4.12) in the interval (c, 1),

which proves (ii). Now we have that every part of the lemma has been shown.

�

Now that we have examined f1(z) and its constraints more closely, we shall examine f2(z).

LEMMA 4.3 For 0 < p < 1 and 0 < c < 1 the derivative of f2(z) at zero is:

f ′2(0) =
2c

p

√
1

cp
− 1 (4.15)

and if 0 < c < 2
− 1
p , then there is no solution of type II.

Proof. We already have that f2(z) = B(1−
−
β z)

2
p .

Since f2(0) = c it follows immediately that B = c so that f2 (z) = c

(
1−

−
β z

) 2
p

and hence

f ′2 (z) = c
2

p

(
1−

−
β z

) 2
p
−1(
−
−
β

)
. (4.16)
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Then we get that

f ′2 (0) = −
−
β 2c

p
. (4.17)

By normalizing f2 such that f ′2 (0) > 0, we see that β is real and negative. If f2 is a solution to (1)

then we have that

1 = ‖f2‖pp = cp(1 + β2). (4.18)

Since |β| ≤ 1 we get that cp ≥ 1
2 . Therefore, we can conclude that if 0 < c < 2

− 1
p then there is no

solution of type f2. On the other hand if c ≥ 2
− 1
p , then

β = −
√

1

cp
− 1, (4.19)

which gives the desired result. �

Now some conclusions can be drawn about problem (4.1), and thus we formulate the following

theorem:

THEOREM 4.1 Let 0 < p < 1. For each 0 < c < 1, there exists a solution to the problem of finding

sup
{∣∣f ′ (0)

∣∣ : f (0) = c, ‖f‖p ≤ 1
}
. (4.20)

i If 0 < c < 2
− 1
p , then

f1 (z) = A
(z − α)(
1− −α z

)(1− −α z
) 2
p
, (4.21)

is extremal, where α = − c
A and A is the unique solution to

xp+2 + xpc2 − x2 = 0 (4.22)

in the interval (2
− 1
p , 1).

ii If 2
− 1
p < c < cp then the solution could be of either form f1(z) or f2(z). Additionally, for

at least some fixed p, there exists some 2
− 1
p < c < cp such that f1(0) = f2(0) and hence the

extremal solution is not unique.

iii If cp < c < 1 then f2 is extremal.

iv If c = 2
− 1
p or c = cp then a solution exists, though the type has not been conclusively deter-

mined.
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Proof. (i) This follows immediately from the previous conclusions that there is no solution of type

f2 for 0 < c < 2
− 1
p and that the value for the constant A must be greater than 2

− 1
p .

(ii) We will consider the particular case where p = 1
2 . We will show 2 different values for c

(2−
1
p < c < cp) which result in f1 being the extremal function for the first chosen value, c1, while

f2 is the extremal function for the second value, c2. This combined with a continuity argument

proves the result. We will now examine our first choice of c.

For c1 = 13
50 : We first note that since p = 1

2 we have that 2
− 1
p = 1

4 and cp =
√

3
4 and therefore

c1 ∈ (2
− 1
p , cp). 2 simple calculations show that for this value of c we get that f ′1(0) = A + 507

2500A

and f ′2(0) = 52
50

√
(50

13)
1
2 − 1. In order to solve A(p+2) +Apc2 −A2 = 0 for A, we have turned to a

computer algebra system. In particular, we have used the Matlab solve function, which returns exact

solutions to the equations. However, the expression of these solutions would be highly impractical

to list here, so we have opted to express the following values rounded to 4 decimal places. As

previously shown, there are 2 solutions to this equation in (c, 1) and in this particular case we get

that A1 ≈ .2709 and A2 ≈ .8289. When evaluating with A1 we see that f ′1(0) ≈ 1.0196 and with

A2 we see that f ′1(0) ≈ 1.0735. From our previous result we have that f ′2(0) ≈ 1.0196. Therefore

f1 is extremal with the constant A2.

For c2 = 8
25 : We note that c2 ∈ (2

− 1
p , cp). In this case 2 simple calculations show that that

f ′1(0) = A + 192
625A and f ′2(0) = 32

25

√
(25

8 )
1
2 − 1. In this case our CAS returns A1 ≈ .2709 and

A2 ≈ .8289. When evaluating with A1 we see that f ′1(0) ≈ 1.1190 and with A2 we see that

f ′1(0) ≈ 1.1200. From our previous result we have that f ′2(0) ≈ 1.1216. Therefore f2 is extremal

for this case.

Note that f ′1(0) and f ′2(0) are both continuous, as functions of c (for 0 < c < 1), and therefore,

their difference is also continuous as a function of c. We see that [f ′1(0)−f ′2(0)] > 0 for c1, and that

[f ′1(0) − f ′2(0)] < 0 for c2. Since [f ′1(0) − f ′2(0)] is continuous as a function of c for (0 < c < 1)

there must exist some c0 such that for c0, [f ′1(0)− f ′2(0)] = 0 (by the Intermediate Value Theorem)

and therefore f ′1(0) = f ′2(0) for c0. Hence, the solution to the extremal problem is not unique.

[Although we haven’t been able to find a proof for general choice of p and c here, it is probably

true that for each value of 0 < p < 1 there exists a c (2−
1
p < c < cp) such that both functions are

extremal.]

(iii) The case for cp < c < 1 follows immediately from the result that there is no solution for the
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constant A of the first function f1 when cp < c < 1.

(iv) The fact that a solution exists at these points is trivial, since both potential extremal solutions

are defined at these points. We have not been able to find a general proof for these particular cases,

although, as we will discuss in Chapter 5, our numerical approach suggests each case has a unique

extremal solution. [The results suggest that f1 is extremal in the case that c = 2
− 1
p and that f2 is

extremal in the case that c = cp.] We examine these situations further, in the next two lemmas. �

LEMMA 4.4 In the case that c = 2
− 1
p , the problem of determining whether f1 or f2 is extremal,

reduces to the problem of determining if the expression

Ap2
1−p
p +

2
− 1
p

A
− p · 2

−(p+1)
p

A
(4.23)

is greater than 1 or less than 1, respectively.

Proof. When c = 2
− 1
p We can write:

f ′1(0) = A+

(
2
−2
p

A

)(
2− p
p

)
(4.24)

and

f ′2(0) =
2
p−1
p

p
. (4.25)

Taking the quotient of these derivatives gives

f ′1(0)

f ′2(0)
=

AP

2
p−1
p

+
2
− 2
p p

A2
p−1
p

(
2− ρ
p

)
(4.26)

= Ap2
1−p
p +

2
− (p+1)

ρ (2− ρ)

A
(4.27)

= Ap2
1−p
p +

2
− 1
p

A
− p · 2

−(p+1)
p

A
. (4.28)

Since, both f ′1(0) and f ′2(0) are positive terms, we have that if Ap2
1−p
p + 2

− 1
p

A −
p·2
−(p+1)

p

A > 1, then

f1 is extremal and if Ap2
1−p
p + 2

− 1
p

A − p·2
−(p+1)

p

A < 1 then f2 is extremal. �
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LEMMA 4.5 In the case that c = cp, the problem of determining whether f1 or f2 is extremal

reduces to the problem of showing that the function

h(p) =

√
2p
−p−2

2 (2− p)
p−4
2 − p−1(2− p)−1 (4.29)

is either strictly less than or strictly greater than 1 for 0 < p < 1 respectively. Equivalently, one

can show that h′(p) < 0 or h′(p) > 0 for 0 < p < 1.

Proof. In the case that c = cp :=
(

2−p
2

) 1
p
√

p
2−p , we have already shown that A = ap := (2−p

2 )
1
p .

In this case we can rewrite both f ′1(0) and f ′2(0) in terms of p alone. We get that,

f ′1(0) = A+
c2

A

(
2− p
p

)
=

(
2− p

2

) 1
p

+

(
2− p

2

) 1
p

= 2

(
2− p

2

) 1
p

and

f ′2 (0) =
2c

p

√
1

cp
− 1

=
2

p

(
2− p

2

) 1
p
√

p

2− p

√(
2

2− p

)(
2− p
p

) p
2

− 1

=
2

1− 1
p (2− p)

1
p
− 1

2

p
1
2

√
2p−

p
2 (2− p)

p
2
−1 − 1

=
2
p−1
p (2− p)

2−p
2p

p
1
2

√
2p−

p
2 (2− p)

p−2
2 − 1.

Now we take the quotient and define h(p) =
f ′2(0)
f ′1(0)

. We get that

h(p) =
(2− p)−

1
2

p
1
2

√
2p−

p
2 (2− p)

p−2
2 − 1 (4.30)

=

√
2p−

p
2 (2− p)

p−2
2 − 1

p (2− p)
(4.31)

=

√
2p
−p−2

2 (2− p)
p−4
2 − p−1(2− p)−1. (4.32)
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Since, both f ′1(0) and f ′2(0) are positive, we see that if h(p) < 1 then f1 is extremal and if

h(p) > 1 then f2 is extremal. This proves our first claim. Looking at (4.30) it is easy to see that

the term inside of the radical is strictly greater than or equal to 0. Then, clearly we have that h(p) is

continuous for 0 < p ≤ 1. Furthermore, it is easy to see that h(1) = 1 and therefore, if h′(p) < 0

then as p decreases from 1, we get that h(p) > 1. Similarly, if h′(p) > 0, then as p decreases from

1, we get that h(p) < 1. Now our second claim has been shown.

�

We have now seen that the extremal problem (4.1) does not have a unique solution for all values of

p and c, although we can determine that it has a unique solution for certain values of c. Furthermore,

we have examined some conditions which would guarantee the uniqueness of solutions for the

special cases c = 2
− 1
p and c = cp. In the next chapter we will examine the use of computer

programming and how it assisted in determining the non-uniqueness of solutions to the extremal

problem.
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Chapter 5

Numerical Analysis

5.1 Our Approach

Now we turn to a discussion of numerical analysis. In this research, we have seen that modern

programming provides powerful tools that can be used in approaching rigorous mathematical prob-

lems. In the principle problem of this thesis, these tools were extremely helpful in directing the

early efforts towards solving this problem. The numerical analysis was focused on the particular

cases c = 2
− 1
p , c = cp, and the interval c ∈ (2

− 1
p , cp). In fact, it was the use of this programming

that led to the proof that our extremal problem did not have a unique solution. It is very important to

note, in the programming examples that follow, we have used the vpasolve function in Matlab. This

is because it runs much more quickly than the solve function, which was important for testing large

numbers of values. However, vpasolve only provides numerical estimates, rather than exact values.

As such, when constructing our argument for the main theorem, we instead used the solve function

to calculate exact values for those two values of c.

Pseudocode

The program worked by testing individual values of p and c in the formulas for f ′1(0) and f ′2(0)

with the goal of comparing their values to determine the extremal function.

The following is pseudocode that represents the MATLAB code used to analyze this extremal

problem (following the pseudocode we provide a more in depth description of the algorithms steps):

For p from .01 till .98 do

for c from 2− 1
p till cp do

Solve for constant A using (Ap+2) + (Ap)(c2)− (A2) = 0

Evaluate f ′1(0) and f ′2(0) using p, c, and A.

Check max{f ′1(0), f ′2(0)}
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Output 1 if f1 is extremal. Output 2 if f2 is extremal.

After fixing an individual p value, the program would then start by testing a particular value for

c. Using p and c the program solves Ap+2 + Apc2 − A2 = 0 for the constant A which is needed in

f1. Using the values for p,c, and A the program can now compute both f ′1(0) and f ′2(0).

After comparing the results for this case of p and c the program moves on to the next value of

c. Once the program has checked the designated range of c values for a fixed p then a new loop

starts for the next value of p. This continues until the sampled values for p have all been tested,

at which time the results for the program are printed. The values of c are separated into the three

cases mentioned above because the values c = 2
− 1
p and c = cp are interesting special cases and, in

particular, the functions can be rewritten and simplified for these cases.

Interpretation of Results

For the case c = 2
− 1
p numerical analysis indicated that f1(z) function was extremal, while for

the second case (c = cp) the numerical analysis indicated that f2(z) was extremal for the problem.

For c ∈ (2
− 1
p , cp) (with p fixed) the numerical analysis often indicated that the extremal function

changed between functions 1 and 2. There was no clear pattern to the shift, however, this did

indicated the likely possibility that there are values of p and c for which both functions are extremal,

which would show that the problem does not always have a unique solution. Although, we were

able to provide a proof that for at least one value of p there exists a c such that the solution was not

unique, it would be interesting to prove this fact for all values of p.

5.2 The Code

The programs used were written in MATLAB R2015b. Although the pseudocode describes how the

algorithm operated, we also provide the precise code. The code used for each of the 3 cases follows:

(Its formatting has been adjusted slightly, so as to be more friendly to the LaTeX environment.)

Case c = 2
− 1
p

for p=0.1:0.02:0.98

c1=2(−1)/p;
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syms x

A1=vpasolve((xp+2) + (xp) ∗ ((c1)2)− (x2) == 0, x, [c1, 1]);

f1=vpa(A1+(((c1)2)/A1)*((2-p)/p));

f2=vpa((2*(c1))/p)*(((1/((c1)p))-1)(1/2));

B=[f1,f2];

[M, I] = max(B);

[p, c1, f1, f2, I]

end

Case c = cp

for p=0.1:0.02:0.98

c1 = ((((2− p)/2)(1/p)) ∗ ((p/(2− p))(1/2)));

syms x

A1 = ((2− p)/2)(1/p);

f1 = vpa(A1 + ((c12)/A1) ∗ ((2− p)/p));

f2 = vpa((2 ∗ c1)/p) ∗ (((1/((c1)p))− 1)(1/2));
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B=[f1,f2];

[M,I]=max(B);

p; c1; M; I; A1 ;

[p, c1, f1, f2, I]

end

Case c ∈ (2
− 1
p , cp)

for p = 0.1 : 0.02 : 0.98

c1 = round(2((−1)/p), 3);

c2 = floor(((((2− p)/2)(1/p)) ∗ ((p/(2− p))(1/2))) ∗ 1000)/1000;

c3 = ((2− p)/2)(1/p);

for c = c1 : 0.005 : c2

F = [c1, c]

[N, J ] = max(F )

syms x

A1=vpasolve((x(p+2)) + (xp) ∗ (c2)− (x2) == 0, x, [N, c3]);
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A2=vpasolve((x(p+2)) + (xp) ∗ (c2)− (x2) == 0, x, [c3, 1]);

f1=vpa(A1 + ((c2)/A1) ∗ ((2− p)/p));

f2=vpa(A2 + ((c2)/A2) ∗ ((2− p)/p));

f3=vpa((2 ∗ c)/p) ∗ (((1/(cp))− 1)(1/2));

B = [f2, f3];

[M, I] = max(B);

[p, c,M,A1, A2, f2, f3, I]

Result Samples

For the program c = 2
− 1
p , the formatting is [p, c, f ] where p and c represent the values for each

variable, and f indicates whether the first or second function is extremal. Thus, one sees that the

following numerical results indicate that f1 is extremal.

0.1000 0.0010 1.0000

0.1200 0.0031 1.0000

0.1400 0.0071 1.0000

0.1600 0.0131 1.0000

0.1800 0.0213 1.0000

0.2000 0.0313 1.0000

0.2200 0.0428 1.0000

0.2400 0.0557 1.0000

0.2600 0.0695 1.0000

0.2800 0.0841 1.0000

0.3000 0.0992 1.0000
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0.3200 0.1146 1.0000

0.3400 0.1302 1.0000

0.3600 0.1458 1.0000

0.3800 0.1614 1.0000

0.4000 0.1768 1.0000

0.4200 0.1920 1.0000

0.4400 0.2069 1.0000

0.4600 0.2216 1.0000

0.4800 0.2360 1.0000

0.5000 0.2500 1.0000

0.5200 0.2637 1.0000

0.5400 0.2770 1.0000

0.5600 0.2900 1.0000

0.5800 0.3027 1.0000

0.6000 0.3150 1.0000

0.6200 0.3269 1.0000

0.6400 0.3386 1.0000

0.6600 0.3499 1.0000

0.6800 0.3608 1.0000

0.7000 0.3715 1.0000

0.7200 0.3819 1.0000

0.7400 0.3919 1.0000

0.7600 0.4017 1.0000

0.7800 0.4112 1.0000

0.8000 0.4204 1.0000

0.8200 0.4294 1.0000

0.8400 0.4382 1.0000

0.8600 0.4466 1.0000

0.8800 0.4549 1.0000
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0.9000 0.4629 1.0000

For the program c = cp, one sees that the following numerical results indicate f2 is extremal for

the problem.

0.1000 0.1374 2.0000

0.1200 0.1509 2.0000

0.1400 0.1634 2.0000

0.1600 0.1751 2.0000

0.1800 0.1862 2.0000

0.2000 0.1968 2.0000

0.2200 0.2070 2.0000

0.2400 0.2168 2.0000

0.2600 0.2263 2.0000

0.2800 0.2354 2.0000

0.3000 0.2444 2.0000

0.3200 0.2531 2.0000

0.3400 0.2616 2.0000

0.3600 0.2700 2.0000

0.3800 0.2782 2.0000

0.4000 0.2862 2.0000

0.4200 0.2941 2.0000

0.4400 0.3019 2.0000

0.4600 0.3096 2.0000

0.4800 0.3172 2.0000

0.5000 0.3248 2.0000

0.5200 0.3322 2.0000

0.5400 0.3396 2.0000

0.5600 0.3469 2.0000

0.5800 0.3541 2.0000

0.6000 0.3613 2.0000
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0.6200 0.3684 2.0000

0.6400 0.3755 2.0000

0.6600 0.3826 2.0000

0.6800 0.3896 2.0000

0.7000 0.3966 2.0000

0.7200 0.4035 2.0000

0.7400 0.4105 2.0000

0.7600 0.4174 2.0000

0.7800 0.4243 2.0000

0.8000 0.4312 2.0000

0.8200 0.4380 2.0000

0.8400 0.4449 2.0000

0.8600 0.4518 2.0000

0.8800 0.4587 2.0000

0.9000 0.4655 2.0000

0.9200 0.4724 2.0000

0.9400 0.4793 2.0000

0.9600 0.4862 2.0000

0.9800 0.4931 2.0000

For the program c ∈ (2
− 1
p , cp), we have only included a small but relevant portion of the results,

as we had tested hundreds of combinations of p and c. Additionally the format we use here is

slightly different as we are including more data. In this case, the format is [p, c, A1, A2, f ′1(0) using

A1, f ′2(0) using A2, extremal function].

[ 1/2, 51/200, 1.07044, 0.26020, 0.83752, 1.070442312935, 1.00990, 1]

[ 1/2, 13/50, 1.07353, 0.27085, 0.82885, 1.07353, 1.01960, 1]

[ 1/2, 53/200, 1.07671, 0.28198, 0.81970, 1.07671, 1.02911, 1]

[ 1/2, 27/100, 1.08, 0.29366, 0.81, 1.08, 1.03843, 1]

[ 1/2, 11/40, 1.08338, 0.30595, 0.79967, 1.08338, 1.04755, 1]

[ 1/2, 7/25, 1.08687, 0.31894, 0.78864, 1.08687, 1.05650, 1]

[ 1/2, 57/200, 1.09048, 0.33276, 0.77679, 1.09048, 1.06525, 1]
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[ 1/2, 29/100, 1.09422, 0.34754, 0.76397, 1.09422, 1.07383, 1]

[ 1/2, 59/200, 1.09808, 0.36349, 0.74997, 1.09808, 1.08222, 1]

[ 1/2, 3/10, 1.10209, 0.38092, 0.73448, 1.10209, 1.09044, 1]

[ 1/2, 61/200, 1.10625, 0.40028, 0.71707, 1.10625, 1.09848, 1]

[ 1/2, 31/100, 1.11060, 0.42235, 0.69694, 1.11060, 1.10635, 1]

[ 1/2, 63/200, 1.11516, 0.44865, 0.67258, 1.11516, 1.11404, 1]

[ 1/2, 8/25, 1.12156, 0.48316, 0.64, 1.12, 1.12156, 2]

5.3 Conclusion

In this thesis, we have examined the basics of the theory of Hp Spaces. Using this framework, we

considered classic linear extremal problems on Hp. We have seen, that for the problems that were

considered in Chapter 3, there exists a unique solution whenever p > 1. In Chapter 4, we have

proven that the extremal problem of finding f such that

sup
{∣∣f ′ (0)

∣∣ : f (0) = c, ‖f‖p ≤ 1
}

(5.1)

for a fixed 0 < p < 1 and 0 < c < 1, does not always have a unique extremal solution. However,

for any fixed p, we can place constraints on c which do in fact guarantee uniqueness.

We were able to come to strong conclusion regarding the cases that 0 < c < 2
− 1
p , 2
− 1
p < c < cp,

and cp < c < 1. However, a definitive conclusion for the cases c = 2
− 1
p and c = cp eluded us. We

did provide two lemmas which may guide future attempts at completing this aspect of the problem.

Additionally, our numerical analysis strongly suggests that f1 is extremal if c = 2
− 1
p , while f2 is

extremal if c = cp. As such, we would suggest that any future attempts be aimed at proving these

statements conclusively.

In conclusion, although many extremal problems have unique solutions for p > 1, these same

problems may not have unique solutions when 0 < p < 1. This failure of uniqueness gives oppor-

tunities for interesting research into the solutions of such extremal problems.
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