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ABSTRACT

Running, jumping and walking are physical activities that are performed by humans in a simple and

efficient way. However, these types of movements are difficult to perform by humanoid robots. Humans

perform these activities without difficulty thanks to their ability to absorb the ground impact force. The

absorption of the impact force is based on the human ability to vary muscles stiffness.

The principal objective of this dissertation is to study vertical jumps in order to reduce the impact force

in the landing phase of the jump motion of humanoid robots. Additionally, the impact force reduction is

applied to an arm-oriented movement with the objective of preserving the integrity of falling humanoid

robot.

This dissertation focuses on researching vertical jump motions by designing, implementing and testing

variable stiffness control strategies based on Computed-Torque Control while tracking desired trajectories

calculated using the Zero Moment Point (ZMP) and the Center of Mass (CoM) conditions. Variable stiffness

method is used to reduce the impact force during the landing phase. The variable stiffness approach was

previously presented by Pratt et al. in [1], where they proposed that full stiffness is not always required. In

this dissertation, the variable stiffness capability is implemented without the integration of any springs or

dampers. All the actuators in the robot are DC Motors and the lower stiffness is achieved by the design and

implementation of PID gain values in the PID controller for each motor. The current research proposes two

different approaches to generate variable stiffness. The first approach is based on an optimal control theory

where the linear quadratic regulator is used to calculate the gain values of the PID controller. The second

approach is based on Fuzzy logic theory and it calculates the proportional gain (KP ) of the PID controller.

Both approaches are based on the idea of computing the PID gains to allow for the displacement of the DC

motor positions with respect to the target positions during the landing phase. While a DC motor moves from

the target position, the robot CoM changes towards a lower position reducing the impact force. The Fuzzy

viii



approach uses an estimation of the impact velocity and a specified desired soft landing level at the moment

of impact in order to calculate the P gain of the PID controller. The optimal approach uses the mathematical

model of the motor and the factor, which affects the Q matrix of the Linear Quadratic Regulator (LQR), in

order to calculate the new PID values.

A One-legged robot is used to perform the jump motion verification in this research. In addition, re-

peatability experiments were also successfully performed with both the optimal control and the Fuzzy logic

methods. The results are evaluated and compared according to the impact force reduction and the robot

balance during the landing phase. The impact force calculation is based on the displacement of the CoM

during the landing phase. The impact force reduction is accomplished by both methods; however the robot

balance shows a considerable improvement with the optimal control approach in comparison to the Fuzzy

logic method. In addition, the Optimal Variable Stiffness method was successfully implemented and tested

in Falling Robots. The robot integrity is accomplished by applying the Optimal Variable Stiffness control

method to reduce the impact force on the arm joints, shoulders and elbows.
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CHAPTER 1

INTRODUCTION

In the last three decades, research, development and innovation around humanoid robots have increased

exponentially. The improvements of humanoid robots have been evidenced by different organizations

around the world. The roadmap for US Robotics: from Internet to Robotics, the Challenge Initiative for

Europe Robotics (EuRoC), the Defense Advanced Research Projects Agency (DARPA), and organizations

such as RoboCup, have all agreed to focus on the development of humanoid robots as a primary objective

for the next 20 years. Some important future applications of humanoid robots are elder care, search and

rescue of human victims in disaster zones, human-machine interaction and home assistance, among others.

Humanoid robots require advanced motions and appropriate control strategies to accomplish these appli-

cations. RoboCup is a worldwide initiative focused on three main areas: education [2], search & rescue [3]

and soccer [4]. The search & rescue area consists of designing robots to search and rescue human victims

in disaster zones. The education area encourages children and high school students to work in topics related

to science, robotics and technology [5, 6]. Finally, the soccer area focuses in the development of soccer

wheeled [7–9] and humanoid robots [10, 11]. In both wheeled and humanoid cases, solving the challenges

involves three fields of research: artificial vision [12–14], artificial intelligence [15–19] and locomotion

skills [20–22]. The present research work belongs to the third category. Improving jumping movements can

help humanoid robots to perform real soccer player actions, such as heading the ball. Also, DARPA [23]

encourages the development of humanoid robots that collaborate in the rescue of human casualties in haz-

ardous areas.

The DARPA Humanoid Challenge proposes different tasks, which are focused on the design and the

improvement of humanoid robots with new skills and applications related to the real world. To achieve a so-

called humanoid-robot interaction in the real world, improving skills such as walking, running and jumping

is a must. To improve these locomotion skills, it is necessary to keep the robot balanced while it performs
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different movements. With the purpose of keeping balance, Vukobratovic and Borovac introduced in [24]

the use of the Center of Mass (CoM) and Zero Moment Point (ZMP) as reference points to perform balance-

based control. Additionally, Kajita et al. [25] proposed the inverted pendulum model as a reduced dynamic

model for humanoid robots, thus simplifying the design of balance-based control systems for these robots.

However, sometimes the balance-based control fails and the robot falls. Some authors describe different

approaches for possible solutions to this problem. The consensus is that the main goal is to prevent or

reduce damage at the moment of hitting the ground. This research is twofold, first it focuses on the impact

force reduction when the humanoid robot is landing while performing a jumping motion and, second, it

introduces an approach for minimizing catastrophic robot damage due to unexpected forward falling.

1.1 Motivation

This work proposes that the capability of motor controlled stiffness variability can improve the perfor-

mance of the prioritized robot skills mentioned above. By varying the motor stiffness, robot locomotion

processes could be improved through the impact force absorption when the robots feet touch the ground.

To absorb the impact ground force, it is necessary to generate capabilities of variable stiffness in the legs

motors of the humanoid robot.

Another important aspect is the preservation of humanoid robots when they lose balance and fall for-

ward. Since 2012, DARPA has been organizing the contest called DARPA Robotics Challenge (DRC),

where the development of a robot capable of performing complex tasks in dangerous, degraded, human

engineered environments is required. One of the final conclusions of the competition is the necessity of

developing strategies to protect the robots when they lose their balance. Usually, these robots can cost up

to half a million dollars. Therefore when they fall down, it can cause major financial impact. Impact force

reduction can also help emergency movements that aim to protect the robot in an imminent fall. In this

dissertation, the approach of using the arms motors stiffness control to protect the robot from catastrophic

damage when it hits the ground, will also be presented.
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1.2 Problem Statement

According to Pratt [1] full stiffness is not necessary every time. In his work, he proposes the use of

low stiffness. He argues in favor of the benefits of low stiffness, including lower reflected inertia, less

damage during unexpected contact, stable force control, and shock tolerance. During the last decade, many

researchers have focused on the development of variable stiffness using mechanical devices such as springs

and dampers. This strategy has allowed for developing low stiffness performance, however the control

challenges that arise by the use of springs and/or dampers overcome their benefit. This research proposes

the use of low stiffness strategies with the purpose of reducing the impact force during the landing phase

of jumping robots and the impact contact for falling robots. The principal objective is the reduction of

impact force through the displacement of the motor position with respect to the target. The displacement

of the motor positions allows for lowering the robot CoM, which in return decreases the potential and

kinetic energies. The variable stiffness is achieved through the variation of the PID gains of the DC motor

controllers and without the need to use other components such as springs and/or dampers. The research

problem statement is based on the following question: Can variable stiffness approaches using DC motor

control reduce the impact force in the jumping process and falling events for biped robots?

1.3 Contributions

The main contributions of this dissertation are presented next. Each one of these contributions will be

elaborated in depth in subsequent chapters.

• Novel approach to reduce the impact force in the landing phase of jumping motions. The first con-

tribution of this research is proposing a DC motor stiffness control to reduce the impact force in the

landing phase of a humanoid robot in the jumping motion.

• Implementation of an optimal control approach to generation of low stiffness The second contribution

of this dissertation corresponds to a novel implementation of an optimal control strategy to generate

low stiffness through the automatic variation of the PID gains in a One-legged robot. The optimal PID

gains are designed using a Linear Quadratic Regulator (LQR) method. LQR is capable of keeping

balance while reducing the DC Motor stiffness.
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• Low stiffness generation using Fuzzy logic approach. The third contribution of this dissertation corre-

sponds to an original implementation of a method for stiffness reduction using Fuzzy logic approach

in order to optimize computational performance. The method has the aim to estimate the value of

proportional gain in a PID controller according to the impact velocity and the the specified desired

impact force reduction.

• Impact force reduction strategy for falling humanoid robots. The fourth contribution of this disserta-

tion is the proposed control strategy to reduce the impact force when a humanoid robot loses balance

and the fall is inevitable. The strategy is based on the positioning of the robot arms in front of head

and chest with the aim to protect the main components. Then, the stiffness of elbow and shoulder

motors is reduced using a similar approach to the first contribution of this dissertation.

1.4 Structure of the Dissertation

The rest of the dissertation is structured as follows. Chapter 2 contains the related work. Chapter 3

presents basic concepts about the human jumping process, the mathematical model of the robot, and motor

model. Chapter 4 presents a control for vertical jump, Computed-Torque Control, and LQR variable stiffness

method. Chapter 5 presents the performance evaluation of Optimal Variable Stiffness approach. Chapter 6

presents the Fuzzy Variable Stiffness approach. Finally, chapter 7 presents the conclusions and scope for

future research work.
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CHAPTER 2

LITERATURE REVIEW

2.1 Note to the Reader

Part of this chapter was published in the IEEE-SoutheastCon [26] and the proceedings of following

conference: Innovations in Bio-Inspired Computing and Applications 2015 [27].

2.2 Background

Some of the most important humanoid robots developed in the last three decades are shown in the

following section.

2.2.1 Humanoid Robot Developments

In the last three decades, the humanoid robot’s development has increased exponentially. Some of the

expected applications for humanoid robots are: take care of the elder population, play soccer the same way

human beings do, search and rescue of human victims in disaster zones, and home assistance among others.

ASIMO, HRP, KAIST, Wabian, NAO, and DarWin are examples of the most important robots developed

within the last decades.

2.2.1.1 Advanced Step in Innovative Mobility (ASIMO)

The Honda humanoid robots Asimo is a product of the research done by Honda Robotics Company.It

represents one of the most successful examples of a class of bipedal robots. It is built with a design strategy

known as precise joint angle control. This robot is fully actuated, which allows for the relative positions

of their components to be controlled at all times. It has an advanced walking gait that is smooth and very

similar to human walking, turning while walking, running gait, due to its hip joint design. This popular

5



humanoid robot has inspired many researchers, who used the same type of leg structure, sensors in the

feet, and electrical motors with harmonic drives. It has a total of 57 Degrees of Freedom (DoF), Head 3

DoF, Arm 7 DoF x 2, Hands 13 DoF x 2, Hip 2 DoF, and Legs 6 DoF x 2. The robot height is 1.3 m, it

weighs 54 kg [28]. The maximum running speed is approximately 9 km/h. The robot is fully equipped with

accelerometers, gyro sensors, and force sensor to realize the ZMP feedback walking/running scheme. The

robot can predict the next ZMP reference point; which helps to smooth the turning while walking. With

fully charged battery, it can operate for up to 60 minutes.

2.2.1.2 Humanoid Robotics Project (HRP)

The Japanese National Institute of Advanced Industrial Science and Technology (AIST) research center

has produced many humanoid robots, such as HRP series robots. It is 1.54 m tall and it weights 58 kg. It

has 30 DoF. This robot is the first humanoid built close to a human size. It is used by many researchers to

perform research in areas such as walking on uneven surface and operations requiring human interaction.

HRP-3 has 42 DoF, is 1.6 m tall, weighs 68 kg, and can operate for 120 minutes with a single charge with

normal operation. Their last version HRP-4 is 1.54 m tall, weights 39 kg, has 34 DoF, and it can operate for

up to 45 minutes.

2.2.1.3 Kondo Humanoid Robot (KHR)

The Korea Advanced Institute of Science and Technology (KAIST) has designed many humanoid robots.

KHR-1 weights 48 kg and it is 1.2 m tall. It has 21 degrees of freedom. The KHR-2 model has 41 degrees

of freedom, with new sensors such as inertia, tilt, and force torque sensors. The KHR-3 (HUBO) is the

latest model, which is designed with 12 DoF in each leg, 8 DoF in each arm and 1 DoF in the torso, for a

total of 41 DoF. The HUBO weighs 56 kg and is 1.25 m tall. In addition, it has 10 fingers and 2 cameras.

The KHR-3 is built with more human-like features and movements, and the main difference with respect

to the KHR-2 is the mechanical stiffness. According to its specifications, it has 50 minutes of autonomous

operation.
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2.2.1.4 Waseda Bipedal Humanoid (WABIAN)

This humanoid robot is a product of the Waseda University robotics research. Its height is 1.5 m, it

weighs about 64 kg. This robot has very smooth and human-like performance in walking. This humanoid

has a 2 DoF hip, 6 DoF in each leg, it has 1 DoF in each foot which allow for bending during steady walking.

It has a total of 41 DoF. With its flexible pelvis, it has the ability to walk with stretched knees. In addition,

it has flexible toes which enables to lift off its toes and support the leg during walking. This humanoid also

uses ZMP criteria for stability.

2.2.1.5 NAO

Aldebaran Robotics developed the NAO humanoid robot, see Figure 2.1. The NAO weighs 4.5kg, stands

57 cm high and has 25 degrees of freedom (DOF). NAOs sensors include 2 cameras, 4 microphones, sonar

range finders, 2 IR emitters & receivers, 1 inertial board, 9 tactile sensors, and 8 pressure sensors. It has also

various communication devices, including voice synthesizer, LED lights, and 2 high-fidelity speakers [29].

Figure 2.1: NAO of Aldebaran Robotics.

The NAO humanoid has one Intel ATOM 1.6 Ghz CPU, located in the head, that runs a Linux kernel

and supports Aldebarans proprietary middleware (NAOqi) and a second CPU which is located in the torso.

NAOs 27.6-watt-hour battery provides the NAO with up to 30 minutes of autonomy. There are five DOF

in each leg; two in the ankle, two in the hip and one at the knee. An additional degree of freedom exists at

the hip; however, it is shared between both legs; that is, both legs are conjointly rotated outward or inward

using this joint. The NAO uses brushed DC motors with magnetic rotary encoders for position feedback.
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The NAO humanoid also has an open-loop walk capability, where walk patterns can be generated in real-

time from a simple ZMP trajectory which is obtained using users specified step parameters such as step

frequency, step width, and step length. The ZMP trajectory is then transformed into a Center of Gravity

(CoG) based trajectory using an inverted pendulum model.

2.2.1.6 Dynamic Anthropomorphic Robot with Intelligence-Open Platform (DarWin-OP)

DARwIn-OP is a robot designed mainly for research and education purposes at the Robotics & Mecha-

nisms Laboratory (RoMeLa) at Virginia Tech, see Figure 2.2, [30]. It is a completely open source platform;

both the hardware and the software can be customized using various software development tools such as C

++, Python, LabVIEW, MATLAB, among others.

Figure 2.2: Open humanoid platform DARwIn-OP.

2.2.2 Related Work with Jumping Motion in Humanoid Robots

This research extends the original ideas exposed by Kajita et al. in [25], where jumping is used as a first

attempt to run, and by Raibert et al. in [31], where a study about balance and control of a legged hopping

robot that is able to jump and run was presented. Additional related work includes different aspects of

jumping and running models described in [32], [33] and [34]. Reference [32] explains a hopping dynamic

control study through simulations of a 26 DoF virtual robot, in which the proposed control system is based

on the spring-loaded invert pendulum (SLIP) model. The references [33] and [34], describe a 3D SLIP
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model extension, see Figure 2.3, and its model optimization with the aim of enabling the robot to run. These

results were verified by simulation.

Figure 2.3: 3D-SLIP template model for high-speed humanoid running.

Sakka and Yokoi [35] describe how to use the Ground Reaction Force (GRF), and robot inertia to opti-

mize jump height using a virtual version of an HRP robot. They also propose a motion pattern generation

method for vertical jumping in a humanoid robot [36]. In addition, they present a special policy of move-

ment in the landing phase that reduces the impact force. This approach; however, does not use compliant

actuators and tests were performed in simulation only.

Nunez et al. [37] present a comparison between jumping movements with and without compliant capa-

bility using a virtual HRP robot. They obtained the best performance using compliant features.

Goswami and Vadakkepat [38] use a four-link planar biped robot model with a small compliance ca-

pability on the foot plate. They proposed a control model with stable landing, and their compliance was

modeled as a spring-damper system. Figure 2.4 shows the jumping motion phases used to simulate the

planar biped robot model.

Missura and Behnke [39], describe a robot with compliant motor capabilities where they proposed an

algorithm to generate an open-loop walking motion in a bipedal humanoid robot of the RoboCup NimbRo

team. While their work focused on the walking movement, they used comparable motors to those used in

this work to generate compliant actions.
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Figure 2.4: Phases of jumping motion.

A Fuzzy logic control approach applied to a real robot called KURMET is presented in [40] and [41].

This robot is a five-link planar biped using Unidirectional Series-Elastic Actuators (USEAs). The actuator

consists of a DC brushless motor, and a planetary gearhead in series with a spiral torsion spring. This robotic

platform uses a Fuzzy control approach to perform jumping and running movements.

Other types of actuators have been used to perform compliant movements, such as [42] and [43] where

authors used pneumatic actuators to create an artificial muscle with similar mechanical properties to those

of human muscles, see Figure 2.5.

Figure 2.5: Pneumatic artificial muscle.

These papers describe different features of the proposed artificial muscle, including the basic control

system that is employed to develop humanoid robots with compliant movements. Similarly, [44] proposes
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a trajectory generation method to perform jumping and walking movements in the LUCY robot. This robot

was developed using artificial pneumatic muscles as explained previously.

In [45], a torque control method was presented. It performs movements in the LUCY robot using

trajectories generated in previous work [44].

In [46] and [47], the authors present studies about responsibility of gastrocnemius muscles and elastic

tendons in a jumping process. The researchers evaluated the effect of muscles, tendons, and their stiffness in

the height of the vertical jump. This work introduced a robot dynamic model including the stiffness effect,

concluding that there is a dependency between the stiffness of the muscle and the ability to jump. This

work presents an optimized trajectory for jumping movements based on the relation between stiffness and

jumping ability (see Figure 2.6).

Figure 2.6: Initial and optimized vertical jumps for the biarticular robot model.

The idea that full stiffness is not necessary every time is exposed by Pratt et al. [1]. They argue in favor

of the benefits of low stiffness, including lower reflected inertia, less damage during unexpected contact,

stable force control, and shock tolerance. Other works such as Elibol et al. [48] and Calderon et al. [49]

take advantage of stiffness variation to reduce the energy consumption of a humanoid robot. The first paper
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shows the performance variation of a walking process using different joint stiffness values. The second

paper proposes a statistic method to calculate the minimum stiffness value required to perform a stand-up

movement, see Figure 2.7.

Figure 2.7: NAO robot performing stand up movement using reduced stiffness levels.

2.2.3 Related Work with Falling Humanoid Robots

Falling robots have become one of the most interesting research topics recently. It tries to minimize the

damage in the robot joints and the important parts such as chest and head, where the processors, cameras,

and batteries are usually located. Some previous work proposes different ways to reduce the impact force

in falling robots, such as fall prediction, fall sequences generation, reducing the shock force exerted in the

ground impact, mechanical improvements, and manipulation of joint stiffness.

One of the most important steps in the study on the falling robot is to predict and detect when the robot

is falling [50]. Karsen and Wirsen [51] predict fall events using principal component analysis.

The most popular technique to reduce the damage on the robot at the moment of impact is to take

inspiration from what the human reaction would be in different falling scenarios. Fujiwara et al. [52] and [53]

make decisions based on martial arts or more specifically judo techniques, while also trying to reduce the

angular momentum.
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Ruiz-del-Solar [54] uses a similar approach based on Japanese martial arts skills. However he adds

another concept based on the idea of keeping the CoM as low as possible to reduce the impact force on the

joints.

Wilken et al. [55] proposed an algorithm for a diving motion in a goalkeeper robot. This algorithm

optimizes the falling time and defines the movement trajectory according to the direction and velocity of the

ball.

Ha et al. [56] is focused in another interesting approach to the falling motion field. It consists of the use

of technics from animation to reduce impact forces in falling bodies. Figure 2.8 shows an animation where

the landing phase of falling motion is divided into three stages: impact, rolling, and getting up.

Figure 2.8: Sequence of three stages in the landing phase of falling animation.

Hu and Liu et al. [57] also show different research approach to reduce the damage in humanoid falls.

They propose an algorithm focused on the dissipation of the momentum in the initial phase of the fall.

They do so by using multiple contact points with the ground, thus splitting the impact force through various

contact points. They validated their algorithm using physics simulation software and a BioloidGp humanoid

robot.

Wilken et al. [55] study the case of a goalkeeper robot, they proposed to add mechanical improvements

to the more exposed parts, susceptible to damage due to falls, such as the hip and the upper limbs. The goal

is to enlarge the lifespan of the joints. Thus they propose the use of springs to recover the target position of

the joints and the addition of something pads to dampen the shock as well. However, Pratt et al [1] proposed

the idea that full stiffness is not always the best way to work. They make a mathematical study about the

effect of low stiffness in a robotic joint and how to control it. Additionally, they list several cases in which

low stiffness has a good performance, such as stable force control, lowering reflecting inertia, fewer damages
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during unexpected contact and shock tolerance. Shock tolerance and unexpected contact are the two main

arguments in favor of the use of variable stiffness in the present work.

In this research, the use of low stiffness to protect the robot joints during falling motions or in the landing

phase of the jumping process is being proposed. The proposed research introduces a complete framework

to perform jumping motions with biped robots. It is based on the generation of low stiffness in DC motor

joints via PID controller gains computation. The low stiffness is applied to reduce the impact force in the

landing phase of jumping motions and falling strategies for biped robots.
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CHAPTER 3

CONCEPTS ABOUT THE JUMPING PROCESS OF HUMANOID ROBOTS

3.1 Note to the Reader

Part of this chapter was published in the IEEE-SoutheastCon [26] and the proceedings of following

conference: Innovations in Bio-Inspired Computing and Applications 2015 [27].

3.2 Introduction

This chapter introduces the basic concepts about the jumping process in humans and how it can be

applicable to humanoid robots. Additionally, the mathematical model of the humanoid robot and DC motor

are depicted.

3.3 Humanoid Jumping Process

Vertical jumping is the action executed by human beings when the Center of Mass (CoM) is raised over

the normal stand-up human position. This movement has to be performed solely by the muscle actions with-

out the help of any external device. The main criterion to evaluate vertical jump efficiency is the maximum

height reached in the flight phase. The vertical jump is normally divided into four phases: preparatory,

take-off, flight and landing, as depicted in Figure 3.1.

3.3.1 Preparatory Phase

It is when the CoM is moved to a lower position, and the potential energy decreases. The hips and knees

are flexed, and the ankles are dorsiflexed.
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Figure 3.1: Vertical jump phases and CoM trajectory

3.3.2 Take-off Phase

It is when the CoM is moved to a higher position, and the potential energy increases. The hips and knees

are extended and the ankle plantar are flexed. During this phase, the feet stay in contact with the ground.

This phase finishes when the feet are no longer touching the ground.

3.3.3 Flight Phase

The flight phase is when the body is in the air. It starts when the feet are no longer in contact with

the ground, and it finishes when they touch the ground again. The height of the jump depends on the

velocity reached by the CoM at the beginning of the phase. During the flight phase, the body loses control

of the rotation and trajectory, thus the position of the body is determined by the trajectory, velocity, and

acceleration of the previous phase. Acceleration, velocity, position, and maximum height in the flight phase

are described by Eqs. (3.1) through (3.4), respectively.

ÿcom(t) = −g (3.1)

ẏcom(t) = −gt+ Vto (3.2)
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ycom(t) = −
1

2
gt2 + Vtot+ Yto (3.3)

Ymax = −
V 2
to

2g
(3.4)

where g is the gravity force, Vto and Yto are the velocity and position at the end of the take-off phase,

respectively.

3.3.4 Landing Phase

It is when the feet touch the ground again. In this phase, the lower body tries to absorb and reduce the

impact force exerted by the floor. Assuming that the robot velocity before the impact (landing velocity) is

known, the impact force can be estimated as:

Fi−avg =
1
2mV 2

l

d
(3.5)

where m is the mass of the body, Vl is the landing velocity, which can be computed using Eq. (3.2) and

d represents the distance traveled by the robot CoM after the impact. Figure 3.1 shows the position of a

human CoM during a vertical jump movement. The trajectory shows how the CoM is going down in the

landing phase when the legs are trying to damp the impact force exerted by the ground. A similar approach

is employed in this work, where the landing impact is naturally reduced through the use of low stiffness in

the electrical motors driving the ankle and knee joints.

3.4 Robot Falling

The analysis and simulation of falls are very important topics in bio-mechanical research. This type of

research suggests that the arms and legs in a fall do not move randomly and try to execute movements to land

safely. Human fall strategies can inspire bio-mimetic strategies for a humanoid robot. The most common

fall strategies that humans perform are aimed at minimizing injuries and have two major goals:

• Reducing impact velocity.
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• The distribution of impact force in the largest possible area, because fall strategies are a task where

time is critical, its success depends on how quickly it is detected that the fall is inevitable and when

a reaction action must be performed. This indicates that the reaction time is an important factor to

generate safe fall strategies.

Some of the most common strategies to minimize robot damages from falls are:

• Extending the arms to distribute the impact energy.

• Bending the elbows to decrease impact force.

• Landing with the knee to reduce the momentum of failure before the arms make contact with the

surface

• Reduce the CoM height to reduce impact velocity and absorb some of the kinetic energy using the

lower extremities during descent.

• Perform similar movements to the Martial Arts athletes executing rolling motions as shown in Figure

3.2.

Figure 3.2: Martial arts athletes executing rolling motions

The strategies used by humans to reduce fall damages provide a good approach to the humanoid robot

falling. However, not all the techniques used by humans can be applied to humanoid robots. Some human

techniques are based on experience and learning. In most cases, humans protect the face and head from the

hit. The robots should protect places in the body where the most expensive components such as cameras,

sensors, and control systems are located. These devices are not always located in the head of the robot.

Another important aspect concerns the differences in the materials human beings and robots are made of.

In the case of human beings, the arms and legs are more susceptible to breakage, since the bones are not so
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resistant to the blows. In contrast, the robots have links built with hard materials that help them to withstand

the blows and the weak points are the unions where the actuators are prone to rupture.

The Simple Linear Inverted Pendulum (SLIP) [25] is the most used model to implement control strate-

gies in humanoid robots. The robot balance is based on maintaining the ZMP and projection of the CoM on

the x-axis within the support surface (usually the feet of the robot) as shown in Figure 3.3.

Figure 3.3: Center of mass projection out of foot support

Some important measures to evaluate the performance of the impact force reduction algorithms are

Impact Force Average described in Eq. (3.5).

Here, the definition of impact force is kept as in the previous section. Where Vl = ẏcom(t) is the landing

velocity or impact velocity according with the case. It is expressed by Eq. (3.6), where Vto can be zero

or some initial velocity value according to the disturbance force causing the falling motion. Finally, d is

the displacement of the robot CoM from the touchdown position in the impact moment. The distance is

inversely proportional to the impact force.

Vl(t) = ẏcom(t) = −gt+ Vto (3.6)
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3.5 Robot Model

In the human vertical jump, both legs are doing the same movements. In accordance to this, a reduced

planar model with three Degrees of Freedom (DoF) is proposed. The proposed model has three joints and

four links. The joints are the ankle, the knee, and the hip. The links are the foot, the shank, the thigh and the

trunk.

3.5.1 Kinematic Robot Model

The kinematic model is used to calculate the position of every link, and to estimate the velocity, accel-

eration, and position of the whole robot’s CoM, as depicted in Figure 3.4.
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Figure 3.4: Robot model

In Figure 3.4 Li denotes the length of link i, θi is the absolute rotation of joint i, qi is the relative rotation

of joint respect to the previous joint i, Lic shows the position of CoM for the corresponding link i, the red

circles represent the CoM of every link, and the black circles are robot joints, ankle, knee, and hip.

20



The Kinematic model of the system is defined by the CoM of each link denoted by xic which is in x the

axis and yic which is in the y axis as shown in Eqs. (3.7) to (3.12).

x1c = L1ccos(θ1) (3.7)

y1c = L1csin(θ1) (3.8)

x2c = L1cos(θ1)− L2ccos(θ2) (3.9)

y2c = L1sin(θ1) + L2csin(θ2) (3.10)

x3c = L1cos(θ1)− L2cos(θ2) + L3ccos(θ3) (3.11)

y3c = L1sin(θ1) + L2sin(θ2) + L3csin(θ3) (3.12)

The CoM coordinates xcom and ycom of the whole robot in general terms is written in Eq. (3.13).

xcom =

∑n
i=1mixi

∑n
i=1mi

, ycom =

∑n
i=1miyi

∑n
i=1mi

(3.13)

where mi is the mass of each link, xi and yi are the absolute position of the link i. The CoM coordinates of

the model can be expanded in the x and y directions as shown in Eqs. (3.14) and (3.15).

xcom =
m1x1c +m2x2c +m3x3c

m1 +m2 +m3
(3.14)

ycom =
m1y1c +m2y2c +m3y3c

m1 +m2 +m3
(3.15)
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The Linear velocity of the CoM for each link can be written as shown in Eqs. (3.16) to (3.18). For link

1, the CoM position was defined by Eqs. (3.7) and (3.8), then the linear velocity for the CoM of the link 1

is:

vc1 =







L1csinθ1

L1ccos(θ1)






θ̇1 (3.16)

For link 2, the position of the CoM was shown by Eqs. (3.9) and (3.10), then the linear velocity of the

CoM of the link 2 is:

vc2 =







L1sin(θ1)

L1cos(θ1)






θ̇1 +







L2csin(θ2)

L2ccos(θ2)






θ̇2 (3.17)

For link 3, the position of the CoM was depicted by Eqs. (3.11) and (3.12), then the linear velocity of

the CoM of the link 3 is:

vc2 =







L1sin(θ1)

L1cos(θ1)






θ̇1 +







L2sin(θ2)

L2cos(θ2)






θ̇2 +







L3csin(θ3)

L3ccos(θ3)






θ̇3 (3.18)

3.5.2 Dynamic Robot Model

The dynamic model is given by the Lagrange-Euler formulation. This equation can be written in the

general form, as shown in Eq. (3.19).

d

dx

(

∂L

∂θ̇i

)

−
∂L

∂θi
= τi (3.19)

where L represents the Lagrangian equation and i represents the torque for each joint, which includes the

control torques, forces and friction effects. The Lagrangian is defined in the following Eq. (3.20).

L = KE − PE (3.20)

where KE represents the kinetic energy and PE represents the potential energy of each link. Substituting

Eq. (3.20) into Eq. (3.19), Eq. (3.21) is obtained:

22



d

dx

(

∂KE − PE

∂θ̇i

)

−
∂KE − PE

∂θi
= τi (3.21)

The final form of the Euler-Lagrange equation is depicted in Eq. (3.22) :

d

dx

(

∂KE

∂θ̇i

)

−
∂KE

∂θi
+

∂PE

∂θi
= τi (3.22)

The kinetic and potential energy can be written in Eqs. (3.23) and (3.28):

KE =
3

∑

i=1

(KEi) =
3

∑

i=1

(
1

2
miv

2
ci +

1

2
Iiθ̇

2
i ) =

3
∑

i=1

(
1

2
miv

2
ci +

1

2
Iiw

2
ci) (3.23)

where Ii represents the inertia of each link, vci is the linear velocity of the CoM for link i, and wci is the

angular velocity of the CoM for link i. The potential energy is defined by Eq. (3.28).

PE =
3

∑

i=1

PEi =

3
∑

i=1

mi · g · yci (3.24)

where g shows the gravitational acceleration. Following equations show the relationship between linear and

angular velocities with the Jacobian matrix as shown by Eqs. (3.25) and (3.26).

vci = J
(i)
L θ̇ (3.25)

wci = J
(i)
A θ̇ (3.26)

where J
(i)
L and J

(i)
A are the Jacobian matrices for linear and angular velocities of link i, respectively. The

total kinetic energy of the 3 link model is found in Eq. (3.27):

KE =
1

2
m1L

2
1cθ̇1

2
+

1

2
I1θ̇1

2
+

1

2
m2L

2
1θ̇1

2
+

1

2
m3L

2
1θ̇1

2

+
1

2
m2L

2
2cθ̇2

2
+

1

2
I2θ̇2

2
+

1

2
m3L

2
2θ̇2

2
+

1

2
m3L

2
3cθ̇3

2

+
1

2
I3θ̇3

2
+m2L1L2ccos(θ1 + θ2)θ̇1θ̇2 +m3L1L2cos(θ1 + θ2)θ̇1θ̇2

+m3L2L3ccos(θ3 + θ2)θ̇2θ̇3 +m3L1L3ccos(θ1 + θ3)θ̇1θ̇3

(3.27)
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The total potential energy of the 3 links is computed using Eq. (3.28):

PE =m1gL1csin(θ1) +m2gL1sin(θ1) +m3gL1sin(θ1)

+m2gL2csin(θ2) +m3gL2sin(θ2) +m3gL3csin(θ3)

(3.28)

The torque formulation for each link is included below, in accordance to calculations by following the

general Lagrange expression in Eq. (3.19).

The torque for link 1 is:

τ1 =(m1L
2
1c + I1 +m2L

2
1 +m3L

2
1)θ̈1 + (m2L1L2ccos(θ1 + θ2)

+m3L1L2cos(θ1 + θ2))θ̈2 +m3L1L3ccos(θ1 − θ3)θ̈3

+ (−m2L1L2csin(θ1 + θ2)−m3L1L2sin(θ1 + θ2) +m2L1L2csin(θ1 + θ2)

+m3L1L2sin(θ1 + θ2))θ̇1θ̇2 + (−m3L1L3csin(θ1 − θ3)

+m3L1L3csin(θ1 − θ3))θ̇1θ̇3 −m2L1L2csin(θ1 + θ2)θ̇2
2

−m3L1L2sin(θ1 + θ2)θ̇2
2
+m3L1L3csin(θ1 − θ3)θ̇3

2

+m1gL1ccos(θ1) +m2gL1cos(θ1) +m3gL1cos(θ1)

(3.29)

The torque for link 2 is:

τ2 =(m2L
2
2c + I2 +m3L

2
2)θ̈2 +m3L2L3ccos(θ3 + θ2)θ̈3

+ (m2L1L2ccos(θ1 + θ2) +m3 + L1L2cos(θ1 + θ2)θ̈1

+ (−m2L1L2csin(θ1 + θ2)−m3L1L2sin(θ1 + θ2) +m2L1L2csin(θ1 + θ2)

+m3L1L2sin(θ1 + θ2)θ̇1θ̇2 + (−m3L2L3csin(θ3 + θ2)

+m3L2L3csin(θ3 + θ2)θ̇2θ̇3 −m3L1L2sin(θ1 + θ2)θ̇1
2

−m2L1L2csin(θ1 + θ2)θ̇1
2
−m3L2L3csin(θ3 + θ2)θ̇3

2

+m2gL2ccos(θ2) +m3gL2cos(θ2)

(3.30)

The torque for link 3 is:
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τ3 =m3L1L3ccos(θ1 − θ3)θ̈1 +m3L2L3ccos(θ3 − θ2)θ̈2

+ (m3L
2
3c + I3)θ̈3 + (−m3L2L3csin(θ3 + θ2) +m3L2L3csin(θ3 + θ2))θ̇2θ̇3

+ (m3L1L3csin(θ1 − θ3) +m3L1L3csin(θ1 − θ3))θ̇1θ̇3

−m3L2L3csin(θ3 + θ2)θ̇2
2
−m3L1L3csin(θ1 − θ3))θ̇1

2
+m3gL3ccos(θ3)

(3.31)

The equations for motion shown in Eq. (3.19) for the model, can be rearranged into the following general

form shown in Eq. (3.32).

D(θ)θ̈ +H(θ, θ̇)θ +G(θ) = Tθ (3.32)

where D(θ) represents the inertia matrix, H(θ, θ̇) represents the matrix of centrifugal and Coriolis forces,

G(θ) represents the matrix of gravitational forces, Tθ represents the vector of external forces and torques ap-

plied at the joints. The vectors θ, θ̇, and θ̈ represent each joints rotational position, velocity and acceleration

respectively. In order to reduce the complexity of this model, the backlash of the joints and friction forces

are not added. The inertia matrix D(θ) is shown below, this matrix is a 3x3 symmetric positive definite

matrix which defines the kinetic energy of the each link.

D(θ)θ̈ =













D11 D12 D13

D21 D22 D23

D31 D32 D33













θ̈ (3.33)

The values of the inertia matrix D(θ) are shown next. From τ1 in Eq. (3.29), D11,D12, and D13 are

shown in Eqs. (3.34), (3.35), and (3.36).

D11 = (m1L
2
1c + I1 +m2L

2
1 +m3L

2
1)θ̈1 (3.34)

D12 = (m2L1L2ccos(θ1 + θ2) +m3L1L2cos(θ1 + θ2)θ̈2 (3.35)
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D13 = (m3L1L3ccos(θ1 − θ3)θ̈3 (3.36)

From τ2 in Eq. (3.30), D21, D22, and D213 are shown in Eqs. (3.37), (3.38), and (3.39).

D21 = (m2L1L2ccos(θ1 + θ2) +m3L1L2cos(θ1 + θ2)θ̈1 (3.37)

D22 = (m2L
2
2c + I2 +m3L

2
2)θ̈2 (3.38)

D23 = (m3L2L3ccos(θ3 + θ2))θ̈3 (3.39)

From τ3 in Eq. (3.31), D31, D32, and D33 are shown in Eqs. (3.40), (3.41), and (3.42).

D31 = (m3L1L3ccos(θ1 − θ3)θ̈1 (3.40)

D32 = (m3L2L3ccos(θ3 + θ2))θ̈2 (3.41)

D33 = (m3L2L3ccos(θ3 + θ2))θ̈3 (3.42)

H(θ, θ̇) matrix groups together Coriolis and centrifugal inertia terms.

H(θ, θ̇)θ̇ =













0 h12 h13

h21 0 h23

h31 h32 0













θ̇ (3.43)

The values of Coriolis and centrifugal inertia matrix H(θ, θ̇) are shown next.

From τ1 in Eq. (3.29), h12, and h13 are shown in Eqs. (3.44) and (3.45).
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h12 =(−m2L1L2csin(θ1 + θ2)−m3L1L2sin(θ1 + θ2)

+m2L1L2csin(θ1 + θ2) +m3L1L2sin(θ1 + θ2))θ̇1θ̇2

(3.44)

h13 = (−m3L1L3csin(θ1 − θ3) +m3L1L3csin(θ1 − θ3))θ̇1θ̇3 (3.45)

From τ2 in Eq. (3.30), h21, and h23 are shown in Eqs. (3.46) and (3.47).

h21 =(−m2L1L2csin(θ1 + θ2)−m3L1L2sin(θ1 + θ2)

+m2L1L2csin(θ1 + θ2) +m3L1L2sin(θ1 + θ2))θ̇1θ̇2

(3.46)

h23 = (−m3L2L3csin(θ3 + θ2) +m3L2L3csin(θ3 + θ2))θ̇2θ̇3 (3.47)

From τ3 in Eq.(3.31), h31, and h32 are shown in Eqs. (3.48) and (3.49).

h31 = (−m3L1L3csin(θ1 − θ3) +m3L1L3csin(θ1 − θ3))θ̇3θ̇1 (3.48)

h32 = (−m3L2L3csin(θ3 + θ2) +m3L2L3csin(θ3 + θ2))θ̇2θ̇3 (3.49)

The gravitational torques matrix G(θ) Eq. (3.50) represents the terms of gravity for each link of the

model.

G(θ) =













G1

G2

G3













(3.50)

The values of the gravitational torques matrix G(θ) Eq. (3.50) are shown in Eqs. (3.51), (3.52), and

(3.53):

G1 = m1gL1ccos(θ1) +m2gL1cos(θ1) +m3gL1cos(θ1) (3.51)
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G2 = m2gL2ccos(θ2) +m3gL2cos(θ2) (3.52)

G3 = m3gL3ccos(θ3) (3.53)

T is the actuating control torque required by each joint during motions, as depicted in Eq. (3.54):

T (θ) =













Tθ1

Tθ2

Tθ3













(3.54)

Equation (3.55) shows how Eq. (3.19) is actually related to each link by its angular rotational value. Eq.

(3.55) shows the version of Euler general form applied by link 1.

D(θ1)θ̈1 +H(θ1, θ̇1)θ1 +G(θ1) = Tθ1 (3.55)

where θ1 shows the link 1 absolute rotational displacement with respect to the horizontal plane. In the matrix

form, θ is shown in Eq. (3.58):

θ =













θ1

θ2

θ3













(3.56)

In order to model the control properly, the relative angles (q) between each joint need to be used in the

model formulations. With this information, the equation of motions is modified as in Eq. (3.57), see Figure

3.4 for all relative angles q between each link. The equation of motions with relative angles is shown in Eq.

(3.57):

D(q1)q̈1 +H(q1, q̇1)q1 +G(q1) = Tq1 (3.57)

where q, in its matrix form, is shown as following:
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q =













q1

q2

q3













(3.58)

where, q0, q1, and q2 are the relative joint angles between links. The relationship between relative angles

(q) and absolute angles (θ) are formulated in Eqs. (3.59), (3.60), and (3.61):

q1 = θ1 (3.59)

q2 = θ2 − θ1 (3.60)

q3 = θ3 − θ2 − θ1 (3.61)

The final version of Euler formulation is shown by Eq. (3.62) where a new term called τd is added. τd

represents disturbance applied to the real robot.

D(q)q̈ +H(q, q̇)q̇ +G(q) + τd = τ (3.62)

3.6 Motor and Control Model

The proposed algorithm is based on modifying the gain factor of the motor control system. The motor

model used is described in Figure 3.5.

The typical DC Motor model is defined in terms of torque, voltage, and angular velocity according to

Eq. 3.5. The variables θ(t), θ̇(t) y θ̈(t), are position, velocity and angular acceleration respectively. v(t),

i(t) y τ(t), are input voltage, induction current, and output torque. Finally R, L, e, B y J , are induction

resistance, electromotive force, friction coefficient, and inertia moment.

Using Kirchhoff Voltage Law (KVL) is shown in the Eqs. (3.63) and (3.64):

v(t) = Ri(t) + L
di

dt
+ e(t) (3.63)
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Figure 3.5: Electrical circuit of a typical DC motor.

e(t) = Keθ̇(t) (3.64)

where Ke is the FEM. The electric torque of the motor is defined as shown in Eq. (3.65):

τ(t) = Kti(t) (3.65)

The steady state of Eq. (3.63) is defined in Eq. (3.66):

v(t) = Ri(t) + e(t) (3.66)

By replacing Eq. (3.64) in Eq. (3.66) and taking i(t) from Eq. (3.67), the following is obtained:

i(t) =
v(t)

R
−

Ke

R
θ̇(t) (3.67)

Finally, substituting Eq. (3.67) in Eq. (3.65), the torque Eq. (3.68) is obtained:

τ(t) =
Kt

R
v(t)−

KeKt

R
θ̇(t) (3.68)
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Using Ke =
NRJ
TmKt

, where Tm, N is the mechanical time and poles number respectively. Applying Laplace

transform to Eq. (3.63) results in Eq. (3.69).

V (s) = RI(s) + LsI(s) +Keθ̇(s) (3.69)

Eq. (3.69) can be reorganized as Eq. (3.70):

V (s) = I(s)(R+ Ls) +Keθ̇(s) (3.70)

The torque equation shown as a sum of inertial forces and frictions results in Eq. (3.71):

τ(t) = Jθ̈(t) +Bθ̇(t) (3.71)

Replacing Eq. (3.65) in Eq. (3.71) gives an expression in terms of i(t) and θ̇(t), resulting in Eqs. (3.72) and

(3.73) by applying the Laplace transform:

Kti(t) = J
dθ̇(t)

dt
+Bθ̇(t) (3.72)

KtI(s) = θ̇(s)(Js+B) (3.73)

From Eq. (3.73), I(s) is obtained in Eq. (3.74) and V (s) of Eq. (3.75) is obtained from Eq. (3.70):

I(s) = θ̇(s)(
Js

Kt
+

B

Kt
) (3.74)

V (s) = θ̇(s)((
Js

Kt
+

B

Kt
)(R+ Ls) +Ke) (3.75)

Then, using Eq. (3.75) and expressing the input in terms of V (s) and output as θ̇(s), results in the transfer

function G(s) described in Eq. (3.76).

G(s) =
θ̇(s)

V (s)
=

Kt

s2JL+ s(RJ +BL) +BR+KeKt
(3.76)
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From Eq. (3.76) it is possible to consider: B is small as B≈0, then RJ >> BL and KeKt >> BR. Then

the last expression of the transfer function G(s) is obtained as shown by Eq. (3.77):

G(s) =
Kt

JLs2 +RJs+KeKt
(3.77)

Multiplying ( R
KeKt

) ( 1
R
) by (3.77), results in Eq. (3.78).

G(s) =
1
Ke

( RJ
KeKt

)(L
R
)s2 + ( RJ

KeKt

)s+ 1
(3.78)

Finally, if Tm = RJ
KeKt

and Te =
L
R

, the transfer function is depicted by Eq. (3.79).

G(s) =
1
Ke

TmTes2 + Tms+ 1
(3.79)

Next, an example about the effect of reducing the proportional gain of the DC motor PID controller is

depicted. This simple experiment tries to illustrate the idea proposed in this work, where a low stiffness is

reached changing the proportional gain value of the PD or PID controller. The mathematical model used

for the DC motor is described by Eq. (3.77). The control motor system for current example is a simple PD

control as depicted in Figure 3.6.

Figure 3.6 shows the PD motor control scheme, where Kp and Kd are the position and velocity gains

respectively, θ̇d and θd are the desired velocity and position. The proposed work is based on the generation

of variable stiffness through the manipulation of Kp in the feedback loop. The Kp gain affects the control

signal as shown by Eq. (3.80).

u(t) = −kdė(t)− kpe(t) (3.80)

When Kp is small, the control signal is weak and the system is easily displaced from the target position.

On the other hand, when Kp is large, the system tries to keep the target position using all the energy provided

by the control signal. Figure 3.7 shows the effect of varying the Kp value, showing the position displace-
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Figure 3.6: PD control model for DC motor

ment for different values of the constant over a simulation of the control scheme. During the simulation, a

disturbance signal is applied at time t = 10.

Figure 3.7: Step response of motor model with low and high stiffness

Figure 3.7 shows the step response of the motor model using two different values of Kp. The model

control system is exposed to a disturbance input d(t). This is shown as a magenta line in Figure 3.7. The

blue line is the response using a high Kp gain and the green one is the response using a low Kp gain. With
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high Kp values the system is less affected by disturbance input, on the other hand, when the Kp value is

low, the disturbance affects considerably the motor position.

The application of low values in the proportional gain for the previous motor model produces the po-

sition displacement from the target position according to with the gain variation. Generally, the motor

displacement from the target position is an undesired effect, however in this work, the displacement from

target position helps to reduce the impact force in the robot falling event and the landing phase in jumping

movements.
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CHAPTER 4

LOW STIFFNESS GENERATION AND JUMPING CONTROL

4.1 Note to the Reader

Part of this chapter was published in the IEEE-SoutheastCon [26] and the proceedings of following

conference: Innovations in Bio-Inspired Computing and Applications 2015 [27].

4.2 Introduction

This chapter introduces the control system employed to perform vertical jumps with humanoid robots, a

low stiffness generation method based on optimal control approaches.

4.3 Control of the Take-off Phase

This section presents the necessary conditions to perform the take-off phase of vertical jump and the

control strategy to ensure the required trajectories to achieve accelerations of the robot CoM over the gravity.

4.3.1 Vertical Jump Conditions

Using a similar approach from Babič et al. in [46], two primary conditions to achieve a vertical jump

are considered. The first one, the CoM has to move upward and the displacement from the point zero in the

horizontal axes has to be minimal; also, the CoM must stay inside the support polygon, i.e. the foot of the

robot. The second one is related to ZMP [24], where the components in the horizontal axes have to be equal

to zero.

The CoM position is defined by Eq. (4.1), where xcom and ycom are the horizontal and vertical position

of the robot’s CoM, mi is the mass of the i-th link, xi and yi are the coordinates of the CoM of the i-th link.
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xcom =

∑n
i=1mixi

∑n
i=1mi

, ycom =

∑n
i=1miyi

∑n
i=1mi

(4.1)

The ZMP is defined by Eqs. (4.2) and (4.3), where ωi is the angular velocity of the i-th link, and Ii is

the inertial tensor of the i-th link around the CoM.

xzmp =

∑n
i=1mixi(ÿi + g)−

∑n
i=1miyiẍi + τz

∑n
i=1mi(ÿi + g)

(4.2)

τz =
n
∑

i=1

(Iiω̇i + ωi × Iiωi) (4.3)

Using Eq. (4.1), the second derivative of xcom and ycom can be formulated for control purposes, and

xzmp can be computed as shown in the Eqs. (4.4) to (4.6):

ẍcom = α1q̈1 + α2q̈2 + α3q̈3 + d1 (4.4)

ÿcom = β1q̈1 + β2q̈2 + β3q̈3 + d2 (4.5)

xzmp = γ1q̈1 + γ2q̈2 + γ3q̈3 + d3 (4.6)

where αi, βi, γi, and di are functions of joint angles (qi). Finally, in Eq. (4.7) the acceleration of the desired

trajectory (q̈d) can be expressed in terms of αi, βi, γi, and di using Eqs. (4.4), (4.5), and (4.6)

q̈d =













α1 α2 α3

β1 β2 β3

γ1 γ2 γ3













−1























ẍcom

ÿcom

0













−













d1

d2

d3

























(4.7)
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where

q̈d =













q̈1

q̈2

q̈3













(4.8)

4.3.2 Computed-Torque Control

The trajectories to ensure the detachment from the ground were defined in the last section. Those

trajectories are necessaries to achieve a CoM acceleration greater than gravity. To follow those trajectories,

it is crucial to apply a control strategy to guarantee that the robot takes off from the ground. For this reason,

Computed-Torque Control is used as a control strategy to track trajectories necessaries in the takeoff phase.

Computed-Torque Control is a widely used control strategy based on two special approaches [58], [59].

The first one uses feedback linearization of nonlinear systems. The second one is based on a computation

of the robot’s required torque by the use of the nonlinear feedback control law [60]. This kind of control is

based on the concept that there is a desired tracking signal and the system tries to follow it. The main idea

here is to reduce the error through a feedback linearization of the system.

The error is defined as the difference between the desired trajectory and the actual joint position as

shown in Eq. (4.9). The variables ė(t) and ë(t) can be defined using a similar approach.

e(t) = qd(t)− q(t) (4.9)

ė(t) = q̇d(t)− q̇(t)

ë(t) = q̈d(t)− q̈(t)
(4.10)

where q(t) is the current position of the actuator Eq. (4.12), and it is defined from dynamic robot model

deduced in section 3.5 given by Eq. (4.11).

D(q)q̈(t) +H(q, q̇)q̇(t) +G(q) + τd(t) = τ(t) (4.11)

From Eq. (4.11) q̈(t) can be derived as shown by Eq. (4.12).

37



q̈(t) = D−1(q)(H(q, q̇)q̇(t) +G(q) + τd(t)− τ(t) (4.12)

Now by back substitution of Eq. (4.12) into Eq. (4.9), the second derivative of error is obtained as shown

in Eq. (4.13).

ë(t) = q̈d(t) +D−1(q)(H(q, q̇)q̇(t) +G(q) + τd(t)− τ(t) (4.13)

The variable u(t) is defined as the control input function, and w(t) as the disturbance function, as shown

below.

u(t) = q̈d(t) +D−1(q)(H(q, q̇)q̇(t) +G(q)− τ(t)) (4.14)

w(t) = D−1(q)τd(t) (4.15)

The feedback linearization of Eq. (4.14) can be inverted to yield τ as given in Eq. (4.16).

τ(t) = D(q̈d(t)− u(t)) +H(q, q̇)q̇(t) +G(q) (4.16)

where u(t) is the control signal and it can be selected as P, PD or PID feedback loop control signal.

4.3.3 PID Outer Loop

This research work proposes the use of PID Computed-Torque Controller. The PID design starts includ-

ing an integrator in the feed-forward loop.

ε̇(t) = e(t) (4.17)

u(t) = −kdė(t)− kpe(t)− kiε(t) (4.18)
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To conclude, Eq. (4.18) is back substituted into Eq. (4.16), which yields the final form for τ(t) as shown

in Eq. (4.19). Figure 4.1 depicts the Computed-Torque Control schema with the outer PID loop feedback.

τ(t) = D(q̈d(t) + kdė(t) + kpe(t) + kiε(t)) +H(q, q̇)q̇(t) +G(q) (4.19)

where ε(t) is the integral of the tracking error e(t). Thus additional dynamics have been added to the linear

outer loop compensator.

Figure 4.1: Computed-Torque Control schema with outer PID loop

The Computed-Torque Control is applied during all four jumping phases. The system tracks the desired

trajectory (q̈d(t), q̇d(t), qd(t)) on the take-off phase. For the flight and landing phases, the control system

tries to keep the stand-up position and reject the disturbance produced by the ground impact.

4.4 Landing Phase

One of the principal aims of this work is the generation of soft landing during a vertical jumping move-

ment of a real robot. The approach used to accomplish this objective is the use of variable stiffness in the

ankle and knee joints. The variable stiffness is used to reach values where low stiffness is obtained through
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small changes of the control parameters. Low stiffness values allow for the absorption of impact force in the

landing phase of the jumping movement.

The current work proposes two different approaches to generating low stiffness. The principal approach

uses an optimal control approach based on Linear Quadratic Regulator (LQR). In this research, this method

is labeled Optimal Variable Stiffness. The second approach is inspired by the Fuzzy logic theory and it will

be depicted in chapter 6 of this work.

4.4.1 Low Stiffness Generation

The proposed main approach used to generate variable stiffness is based on optimal control theory. The

variable stiffness is reached using Linear Quadratic Regulator (LQR) calculations. In general terms, this

design is based on the LQR calculation when the DC motor is working with full stiffness (Control feedback

values for normal performance). Once the control feedback values for the motor normal performance has

been calculated, the weighted matrix (Q) between energy consumption and position error is premultiplied

by the ρ factor between 0 and 1. The aim of the ρ factor is to set up a different relation between input energy

and position error. For ρ values below of 1, the position error is increased and stiffness is reduced. Then

the new Q matrix is calculated using the ρ factor. The new Q matrix is then used to redesign for the LQR

to generate low stiffness in order to achieve the complete system performance, i.e. impact force reduction.

The ρ parameter determines the stiffness level for DC Motor control.

As mentioned in the last section, this work bases the impact reduction strategy in the motor stiffness vari-

ation using an LQR approach. Thus, this section is divided into three parts. The first one is the mathematical

model of the electrical motor, stating the restrictions of the used model with respect to the general one pre-

sented above. The second one is the formulation of the optimal control approach, and third the calculation

of the PID constants from the LQR, according to the requirements of the robotic platform dynamics.

4.4.1.1 Electrical Motor Model

Since most of the actual robot actuators are electric motors, the present work uses the mathematical

model of a DC electric motor for the controller design. The transfer function for a DC Motor is presented

by Eq. (4.20)
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ω(s)

Vin(s)
=

Kt

(Js+ b)(Ls+R) +KtKb

(4.20)

where, Vin(s) is the input voltage, ω(s) is angular velocity, L is the armature inductance, R is the armature

resistance, b is the motor viscous friction constant, J is the moment of the inertia of the rotor, Kt is the

motor torque constant, and Kb is the electromotive force constant.

The motor transfer function is depicted by Eq. (4.20) as the relation between velocity and input voltage.

This model can be extended to a position model adding an integrator and gear ratio (Gr) to the output. The

new function model looks as shown by Eq. (4.21).

θ(s)

Vin(s)
=

KtGr

s
(

(Js+ b)(Ls+R) +KtKb

) (4.21)

Finally, the state space representation is depicted by Eq. (4.22).
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y =

[

1 0 0

]
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
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
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

(4.23)

4.4.1.2 Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) based optimal control has been widely studied over decades

with a broad range of applications. It minimizes the error in the state variable trajectories of a system while

requiring the minimum control energy. The objective to use LQR is to generate a variable stiffness effect

in the actuator, DC electric motor, as it will be explained later. LQR is based on the minimization of the

performance index, J , as shown by Eq. (4.24) below.
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J =

∫

∞

0

[

xT (t)Qx(t) + uT (t)Ru(t)
]

dt (4.24)

where Q and R are the penalization matrices for state variables error and control signal, respectively. The

relation between Q and R determines what is more important between the minimization of state error or

the control energy. Thereby, the present work proposes to determine the stiffness of the motors using the Q

matrix. When Q has large values, the motor position error is penalized. Then, the motor tries to keep the

position against any disturbance, high stiffness. Otherwise, if Q has small values, a certain position error is

allowed, generating low stiffness in the motor. The feedback control law is defined by Eq. (4.25).

u(t) = −R−1BTPx(t) = −Kx(t) (4.25)

where, K is the Kalman gain and it is defined as K = R−1BP and P is a symmetric positive definite matrix

and it is a solution of the Continuous Algebraic Riccati equation defined by Eq. (4.26).

ATP + PA− PBR−1P +Q = 0 (4.26)

here, A and B are the matrices of the state space description of the plant, i.e. motor, Q is symmetric positive

semi-definite weighted matrix, and R is a positive constant diagonal matrix. Using the Riccati equation,

the feedback gains can be calculated and the design of the control system can be performed. However, the

system performance depends on the adequate selection of the Q matrix. The next section explains how to

calculate Q based on the desired model and how to tune a PID using the LQR approach.

4.4.1.3 Optimal PID Design

PID is a control system widely used around the world. This work tries to provide a method to vary the

stiffness in a motor using PID control, using an optimal approach. The variable stiffness is used to reduce

the impact force in falling robots, as previously mentioned. The design of optimal PID controller is based in

the works presented by [61] and [62]. They first proposed a PID design using an LQR approach, however

the selection of the Q matrix was not defined. The second one design the PID using LQR and provides
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a method to determine the Q values, based on the characteristic polynomial of the desired behavior. The

current work assumes the design of the PID controller as an LQR optimal control design, where the error is

described as a function of state variables and the optimal state feedback gains are the PID parameters (Kp,

Ki, and Kd). Figure 4.2 shows the typical PID configuration, where r(t) is the desired actuator position.

Figure 4.2: PID controller for second order system

The PID transfer function and the second order plant (motor) are defined by Eq. (4.28) and Eq. (4.27)

respectively.

U(s) = E(s)

(

Ki

s
+Kp +Kds

)

(4.27)

G(s) =
c

s2 + as+ b
=

Y (s)

U(s)
(4.28)

Now, the state variables are defined in Eq. (4.29).

x1(t) =

∫

e(t)dt, x2(t) = e(t), x3(t) =
de(t)

dt
(4.29)

For the feedback design, the external desired set-point does not affect the controller design and it is

possible to assume r(t) = 0, thus e(t) = −y(t). This is a common assumption in the standard regulator

design. Assuming r(t) = 0 the transfer function can be expressed as shown in Eq. (4.30).

Y (s)

U(s)
=

c

s2 + as+ b
=

−E(s)

U(s)
(4.30)
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Now the relation between U(s) and E(s) is written in the time domain and shown in Eq. (4.31).

ë(t) + aė(t) + be(t) = −cu(t) (4.31)

replacing Eq. (4.30) in Eq. (4.31) the relation between u(t) and y(t) is expressed in terms of the state

variables as depicted in Eq. (4.32).

ẋ3(t) + ax3(t) + bx2(t) = −cu(t) (4.32)

Finally, using Eqs. (4.29) and (4.32) the state space formulation is depicted in Eq. (4.33).












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(4.33)

Now it looks as a standard state-space representation ẋ(t) = Ax(t) + Bu(t), where A and B are shown in

Eq. (4.33).
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
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(4.34)

Then, using Eq. (4.26) the Riccati equation Solution can be applied using A and B from Eq. (4.33) and P is

defined as a 3x3 symmetric matrix as depicted in Eq. (4.35).

P =













P11 P12 P13

P21 P22 P23

P31 P32 P33













(4.35)

Using the results of P matrix, the K gains are obtained using Eq. (4.25) where K1 = Ki, K2 = Kp, and

K3 = Kd.
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4.4.1.4 Optimal Variable Stiffness Design Using Optimal PID

In order to develop variable stiffness in a motor using an optimal PID design, it is necessary to establish

the desired transfer function according to the desired performance. Usually, the desired function is deter-

mined according to requirements of settling time, overshoot and rise time, among others. However, for the

present case, those parameters can be defined according to the normal performance of the motor in common

robot activities like walking.

The idea is to set up an operating point where the motor stiffness will be defined as a normal stiffness.

Starting from this point a low and high stiffness will be defined. Thus, the desired function is defined as a

third order system, where the characteristic polynomial has three roots labeled by −α1, −α2, and −α3.

The objective of this section is to design a PID controller, starting from the desired performance using

an optimal approach. The PID transfer function is defined as shown in Eq. (4.36).

GPID(s) = kp +
ki
s
+ kds (4.36)

Following the method described by [62], Q and P matrices are defined as shown in Eqs. (4.37) and

(4.35), respectively.

Q =













q1 0 0

0 q2 0

0 0 q3













(4.37)

According to the optimal conditions, where P has to be a solution of the Riccati Eq. (4.26). The values

of Q can be set in terms of the motor transfer function coefficients and the roots of the desired polynomial

characteristic equation. The Q values are depicted in Eqs. (4.38)-(4.40).

q1 =
Rα2

1
α2

2
α2

3

c2
(4.38)

q2 =
R
(

α2

1
α2

2
+ α2

1
α2

3
+ α2

3
α2

2
− b2

)

c2
(4.39)

q3 =
R
(

α2

1
+ α2

2
+ α2

3
− a2 + b2

)

c2
(4.40)
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Once Q matrix has been defined, the Riccati equation is applied using Eq. (4.26) and then P matrix

is obtained. The solution of the Riccati equation can be found using numerical methods or mathematical

software, such as Matlab. Now, the optimal PID constants are computed using Eq. (4.41).

Ki = R−1cP13; Kp = R−1cP23; Kd = R−1cP33 (4.41)

Because the optimal PID gains were calculated using a characteristic polynomial of the desired transfer

function with the usual performance parameters, the stiffness in the motor is assumed as the usual stiffness.

However, based on this design, it is possible to calculate a new set of optimal PID gains. These new gains

can produce a high or low stiffness from the usual stiffness perspective. The low and high stiffness can be

designed scaling the Qusual matrix by a ρ factor as shown by Eq. (4.42).

Qnew = ρQusual (4.42)

where ρ is a scalar parameter, for ρ > 1 a high stiffness is obtained and 0 < ρ < 1 the low stiffness will be

reached by the motor. Finally, with the Qnew defined, it is necessary to solve the Riccati equation for Qnew

and get the P values to calculate the new PID control gains.

4.4.2 Control of Landing Phase

The requirements to perform a vertical jump with a One-legged robot, up to this point, have been imple-

mented and tested from the take-off to the landing stages, including the stiffness reduction to preserve the

DC motor integrity for the particular joint.

The stiffness reduction is based on the trade-off between position error and energy consumption. The

low stiffness causes the position error to increase. This error generates the displacement of the robots CoM

with respect to the point zero. When the CoM goes out of the contact support area, usually the feet area, the

robot falls down.

The main objective of this section is to present the design of the control system to keep the robots CoM

close to the point zero within the support area. This system is called the landing control strategy. The

landing control strategy has as the aim to preserve the CoM close to the zero point as explained previously.
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To achieve this objective, the control strategy is composed of different computational function blocks such

as body inclination, forward kinematic, calculation and correction of the CoM, delta ρ calculation, PID

controller with Computed-Torque Control. The landing control strategy is depicted by Figure 4.3 and each

unit of the control system is explained in the next paragraphs.

Figure 4.3: General schema control landing strategy

4.4.2.1 Body Inclination Sensor

In order to keep the balance in the robot, it is necessary to have information about the trunk inclination,

since sometimes in the landing moment, the feet dont make full contact with the ground as shown in Figure
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4.4. Figure 4.4 shows the moment when the robot is touching the ground for the first time and the contact

is done just in one corner of the foot. This is a problem because in order to calculate the CoM one must

Figure 4.4: Foot angle error in landing phase

know the absolute angle of each link θi, which is not possible if the foot is not parallel to the ground. This

problem is produced by small rotations of the CoM in the flight phase. This small rotation is usually a

consequence of a poor trajectory tracking done by the motors in the take-off phase. Thus, it is necessary

to calculate θi for every link using information from the robots sensors. Usually, humanoid robots have

an Inertial Measurement Unit (IMU) embedded into the body, which is usually located in the trunk. The

information that is generated at the IMU is processed by a Kalman Filter. The outcome of the filter is θ3,

which is the angle between the trunk and horizontal axis, i.e. the absolute inclination of the trunk.
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4.4.2.2 Forward Kinematics

This functional block is in charge of computing θ2 and θ1. These calculations are done using the values

of θ3, q3, q2, and q1, where θ3 is provided by the IMU and qi is the relative angles between links. The

qi values are obtained through the use of rotational encoders in every joint. The values of θ1 and θ2 are

calculated using Eqs. (4.43) and (4.44).

θ2 = θ3 − q3 (4.43)

θ1 = θ2 − q2 (4.44)

4.4.2.3 Calculation and Correction of Center of Mass

It is important to keep the CoM position close to the point zero to prevent the robot from falling when

in the landing phase. The CoM is defined by Eq. (4.45) as a summation of the CoM of each link multiplied

by the mass of each link and divided by total mass. Figure 4.5 shows the CoM for every link in red circles,

total robot CoM in the blue circle and the position of the point zero in the foot support in the green circle.

xcom =

∑n
i=1mixi

∑n
i=1mi

, ycom =

∑n
i=1miyi

∑n
i=1mi

(4.45)

The CoM is depicted by Eq. (4.45), where i goes from 1 to 3 according to the number of robot links.

Then, xcom and ycom can be expressed as shown by Eqs. (4.46) and (4.47).

xcom =
m1x1 +m2x2 +m3x3

m1 +m2 +m3
(4.46)

ycom =
m1y1 +m2y2 +m3y3

m1 +m2 +m3
(4.47)

where x1, x2, and x3 are the global position of CoM for every link. Lic are the positions of the CoM of each

link. Eqs. (4.48), (4.49), and (4.50) depict the global position in X axis of the CoM for each link.
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Figure 4.5: CoM and zero point

x1 = L1ccos(θ1) (4.48)

x2 = L1cos(θ1) + L2ccos(θ2) (4.49)

x3 = L1cos(θ1) + L2cos(θ2) + L3ccos(θ3) (4.50)

where Li is the longitude of each link, Lci is the relative position of CoM of each link, and θi is the angle

between each link and the X axis. The relative angle between each link is denoted by qi, where the relation

of θi and qi is depicted by Eqs. (4.51), (4.52), and (4.53).

θ1 = q1 (4.51)

θ2 = q1 + q2 (4.52)
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θ3 = q1 + q2 + q3 (4.53)

The correction of the CoM is performed through position adjustment of q2 and q3. The correction of q2

is performed by equating to zero the sum of the CoM of x1 and x2 as shown by Eq. (4.54)

Lc1cos(θ1) + L1cos(θ1) + L2ccos(θ̂2d) = 0 (4.54)

where θ̂2d is the position of the joint required to accomplish Eq. (4.54). Likewise, the correction of q3 is

calculated doing the sum of x1, x2, and x3 then equating it to zero, as shown by Eq. (4.55).

Lc1cos(θ1) + L1cos(θ1) + L2ccos(θ2) + L1cos(θ1) + L2cos(θ2) + L3ccos(θ̂3d) = 0 (4.55)

where θ̂3d is the position required for the trunk to solve the Eq. (4.55). Using these values, then the relative

angles between links are calculated. Eqs. (4.56) and (4.57) show the relationship between the current angles

and the desired angles.

q̂2d = θ̂2d − θ1 (4.56)

q̂3d = θ̂3d − θ2 (4.57)

where q̂3d and q̂2d are the angles required by joints 2 and 3 to make the robot CoM go to zero.

4.4.2.4 ρ Adjustment Calculation

This unit computes the rate of change for the stiffness factor defined as ρ in the section 4.4.1.4. When

the robot is falling, the stiffness is decreased to absorb the impact force. However once the robot has landed,

is necessary to keep the balance and set the CoM close to the zero point.

In order to perform the position correction of the links, the joint stiffness must be increased again. The

stiffness factor should slowly return to its maximum value equal to one. To do this, ∆ρ is defined as the
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correction factor as shown in Eq. (4.58).

∆ρ = α(q − q̂d)/qd (4.58)

where α is the proportional factor according to the desired correction. Usually 0 6 α < 1. With α = 1, the

correction can be strong and with α close to 0, the correction could be soft and slow. This correction depends

on the speed required to compensate the CoM. The final value of ρ is defined by ρnew = ρcurrent +∆ρ. In

practical terms, ∆ρ is between 0 and 0.2; however it will depend on how often ρ is updated.

4.4.2.5 Optimal PID Recalculation

This functional blocl makes the calculation of the PID gains for every joint according to section 4.4.1.4,

using the updated values of ρ. The final control system is composed by the ρ adjustment and the Computed-

Torque Control for the new desired position (q̂id) as shown by Figure 4.6.

Figure 4.6 shows the complete schema of the landing control system strategy. Every stage of the control

system is depicted including the Computed-Torque Control. The Computed-Torque Control is actuating

over the robot and dealing with the non-linear effect of the inertial and friction components of the robot.

Figure 4.6 shows the inputs and outcomes of every stage. Next section shows simulations of the complete

control landing system strategy.

4.4.3 Simulation of the Control Landing System Strategy

The performance of the jumping movement depends on the absorption of the impact force and on main-

taining balance in the landing phase.

The landing control system strategy was designed taking into account the impact absorption and balance

of the robot. The simulation focuses on the study of the CoM trajectory in the landing phase. In order to

observe the CoM trajectory, joint trajectories for the knee, ankle, and hip are previously studied.

Figure 4.7 shows the trajectory of each joint, ankle, knee, and hip, with low stiffness conditions without

control feedback and error correction. This figure depicts the robot behavior without applying the landing

control system strategy, i.e. open loop control The blue line shows the trajectory of the link with low stiffness

52



Figure 4.6: Complete schema control landing

after the impact moment with the dashed orange line as the desired trajectory. The figure shows how the

joint position is displaced from the desired position. The desired position is set up previous to the landing

phase and it is the value necessary to keep the CoM close to the zero point.

Figure 4.8 shows the joint positions for the ankle, knee, and hip joints. This case shows the performance

of the stiffness control system strategy during the landing phase. One should take into account the low

stiffness of every joint at beginning of the landing stage. Once the robot makes contact with the ground, the

impact force produces a displacement of every joint from the desired position. The landing control system

tries to reduce the difference between the real joint position and desired position during the landing phase.
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The blue line is the current position of the joint after the impact and the orange dashed line is the recal-

culated desired position for the joint. The desired position is recalculated by the ”Calculation and correction

of CoM” functional block. This part of the process is necessary because the low stiffness allows for the

increment of the error between the joint position and the pre-calculated desired position. It is necessary to

recalculate the desired positions since the total error is a combination of the errors of every joint. Because

of it, the new desired position is calculated using Eqs. (4.54) and (4.55).

Figure 4.8 shows how these desired positions are varying through time. Also, at the end of this phase,

the position of the joints reach the desired position, due to the control system is actuating and reducing each

link error between its current and desired positions.

Figure 4.9 shows a comparison between the desired trajectory, dashed yellow line, for each joint, the

current joint position with stiffness control strategy, blue line, and the joint position for low stiffness without

control position adjustment, orange line.

Figure 4.9 shows how at the end of the landing phase the joint position reaches the recalculated desired

position when the stiffness control is applied, as opposed to the joint positions without stiffness control

where the error remains high in steady-state.

Error comparison is depicted in Figure 4.10 where the blue line is the error position of joints with

stiffness controller strategy, the orange line depicts the error joint position without any control action. The

blue line shows how the error is driven to zero in steady-state , the Figure 4.10 illustrates how the stiffness

control helps to reduce error position.

Finally, Figure 4.11 illustrates the position of the CoM through the landing phase. The principal aim of

stiffness control system is to keep CoM close to the zero point within the contact base.

This figure shows how the CoM is displaced from the zero position in the landing stage. However,

the stiffness control system drives the CoM close to the zero point. Also, it reduces oscillations and large

displacements from the zero point. In Figure 4.11, the blue line depicts the CoM with stiffness control and

the orange line is the CoM without control actions.
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4.5 Falling Forward Motion

As mentioned in the introduction of this dissertation, during the last three decades the research and

development of humanoid robots have increased exponentially. One of the most outstanding advances has

been the use of the linear pendulum model for balance walking control. This advance has had excellent

outcomes, however sometimes balance control can fail and the robot falls. Therefore, it is necessary to

answer a new question: what must the robot do when falling is inevitable? Some authors describe different

kinds of a possible solution to this problem. The consensus is that the main goal is to prevent or minimize

damage to the robot at the moment of hitting the ground.

Taking into account a bio-inspired approach, when humans are falling, they try to protect their chest

and head using their hands and arms. Consequently, the most common fractures in human fall accidents

are the wrist, arm, or clavicle. According to Ruiz-del Solar [54], it is very common for humans to break

their bones due to falling, however for humanoid robots, the links are particularly strong and the impact

force affects the joints which in turn damage the motors. Using this last idea, once the robot detects that it

is falling, it moves its arms to the front position trying to protect the head and chest from the impact force.

However, this movement puts the integrity of the arm motors at risk. To protect the motors, the stiffness of

every arm motor is decreased, affecting the gains of the motor control system. The PID control gains are

then calculated using the Optimal Low Stiffness approach and these values are programmed into the PID

controller of the robot motors. The falling impact reduction strategy is based on reducing the motor stiffness

immediately before the robot impacts the ground. In the next section the falling strategy is explained.

4.5.1 Fall Strategy

The aim of the fall algorithm is to reduce the damage in the humanoid robot due to falling. Once the fall

is detected, the robot moves its arms to the front position. The stiffness of the arm motors is then reduced

trying to absorb the impact force in order to protect the robot and the arms. Rather than relying on a complex

kinematic model and an accurate estimate of the robot global position to plan a trajectory that reduces the

impact forces, the proposed algorithm is based on reducing the stiffness to trade off position displacement

for damping capabilities.
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Figure 4.12: Flow diagram of fall algorithm

4.5.1.1 Fall Detection

The robot has an Inertial Measurement Unit (IMU), which is normally composed of an accelerometer

and a gyroscope. With the IMU it is possible to measure the inclination angle and acceleration of the body

of the robot. The limit falling angle is the minimum angle that takes the projection of the CoM out of the

foot support area. If the inclination angle is larger than the minimum angle it is assumed that the robot is

starting to fall, see Figure 4.13. The limit angle of inclination can be calculated experimentally or by using

the projection of the CoM.
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Figure 4.13: CoM projection

4.5.1.2 Arms Position

Once it is determined that the robot is falling, the robot arms move to the safe position, that is, to impact

the ground first, protecting the more expensive components, such as the main processing board or sensors

located in the head and torso.

4.5.1.3 Optimal Variable Stiffness Approach

Once the safe position is reached, new PID gains are calculated using the Optimal Variable Stiffness

approach presented in this dissertation in section 4.4.1.4. These new PID gain values reduce the stiffness of

the elbow and shoulder motors. The small stiffness allows the absorption of the impact force by the arms.
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CHAPTER 5

OPTIMAL VARIABLE STIFFNESS PERFORMANCE EVALUATION

5.1 Note to the Reader

Part of this chapter was published in the IEEE-SoutheastCon [26] and the proceedings of the following

conference: Innovations in Bio-Inspired Computing and Applications 2015 [27].

5.2 One-legged Jumper Robot Platform

The One-legged jumper robot platform is a three DoF robot as shown by Figure 5.1. The actuator of

every joint is an MX-28 motor by Robotis Inc. The actuator’s weight is 72g, and it can provide a maximum

torque of 3.1 Nm. The motor runs in ”endless turn” mode.

The motor provides feedback about the angular position with a 0.088◦ resolution, the velocity, and the

joint torque. Additionally, the motor has a 32-bit Cortex-M3 microcontroller unit, where a programmable

PID controller is implemented. The Controller is implemented using a CM-2 board with an Atmega128

CPU. This board communicates with the PC via the RS232 serial interface, and with the motors via the

RS485 serial protocols. Table 5.1 shows the robot link parameters used in the kinematic and dynamic

model.

Table 5.1: Parameters of One-legged Robot

Length Mass Center of Mass

Li(m) mi(Kg) Lic(m)

Foot 0.010 0.051 0.045

Shank 0.098 0.051 0.072

Thing 0.098 0.051 0.072

Trunk 0.080 0.153 0.063
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Figure 5.1: One-legged jumper robot platform

5.3 Experiments for Basic Jumping Motion in the Robotic Platform

In order to perform experiments to validate vertical jumping movements in the robotic platform, the

Computed-Torque Control and Optimal Variable Stiffness were implemented in a CM-2 board and external

PC. The experiments consist on the execution of two different movements. The first one consists of a vertical

jump, and the second one consists of a free falling motion from different heights. Each experiment consists

of several trials with different values for desired landing and impact velocity in the Fuzzy logic approach

and with different values for ρ for the optimal control approach. Figure 5.2 shows the robot performing the

vertical jump.

5.3.1 Take-Off Phase

Another important aspect to analyze is the CoM displacement during the takeoff and landing phases.

The CoM displacement on the take-off phase is one of the jump requirements as explained in section 4.3.1.

The idea is to keep the projection of the CoM close to the point zero within the contact surface. The zero
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Figure 5.2: Vertical jump performed in the first experiment

point of the contact surface is basically the central point of the robot foot. The zero point is shown in Figure

5.3.
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Figure 5.3: Point zero of foot support

The CoM displacement in the take-off phase indicates that there is an error in the DC motor trajectory.

The trajectory error can be produced by two factors. The first factor could be due to errors in the calculation

of the desired trajectory (section 4.3.1). The second factor is the error in the trajectory tracking of the DC

motor. This can occur because some DC motor does not have the capability to track this kind of trajectories.

The trajectory tracking sometimes is affected by some acceleration limitations of the DC motor.

Figure 5.4 shows the deviation of the CoM from the zero point in the take-off phase. Several trials were

performed with the average deviation of the CoM values equal to 0.38 cm. This means that the Computed-

Torque Control has a good performance following the original trajectory.

Figure 5.4: CoM in take-off phase
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5.3.2 Landing Phase

The goal of this section of the basic jump experiment is to test the impact force reduction through the

variation of motor stiffness in the landing phase. The impact force is estimated using Eq. (5.1), where d is

assumed to be the difference between the touchdown position and the lowest position reached by the CoM

during the landing phase. Vl is the impact velocity or the velocity at the moment of the impact and m is the

robot mass.

Fi−avg =
1
2mV 2

l

d
(5.1)

Large values of the displacement (d) in the y axis of CoM in the landing phase correspond to the

soft landing and a low impact force, whereas small values of d correspond to a hard landing and a high

impact force. Figure 5.5 shows the comparison between the CoM positions of two different jumps attempts.

The first one uses a low stiffness, blue line, resulting in a significant displacement of the CoM from the

touchdown position. The second one uses full stiffness, red line, and shows how the CoM stays near the

touchdown position throughout the entire landing phase.

0.2 0.4 0.6 0.8 1 1.2
0.06

0.08

0.1

0.12

0.14

0.16

Time(sec)

H
e
ig

h
t(

m
) 

 

 

Low Stiffness (soft contact)

Full Stiffness

Touchdown

Position

d

Figure 5.5: CoM position in a vertical jump using low and full stiffness

The landing velocity is calculated using Eqs. (5.2) and (5.3), since both the takeoff velocity and the

maximum height are known previously to the motion.

ycom(t) = −
1

2
gt2 + Vtot+ Yto (5.2)
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ymax = −
V 2
to

2g
(5.3)

5.3.2.1 Landing Phase with Different Values of ρ

The vertical basic jump experiment described previously were implemented using the Optimal Variable

Stiffness approach. The experiment was executed using different values of ρ while trying to keep the impact

velocity constant. The impact velocity remains largely similar, thanks to fact that the Computed-Torque

Control is performing the jump with the same set of parameters in every attempt. The CoM position for

different levels of ρ is shown in Figure 5.6.

Figure 5.6: CoM position in vertical jump with different values of ρ.

Figure 5.6 depicts the CoM position during the whole vertical jump motion. Every phase of the vertical

jump is clearly recognized, especially the landing phase. Figure 5.6 shows several trials with different ρ

values. According to Figure 5.6, lower values of ρ increase the distance d, which means the impact force

average was reduced. The results obtained by the average impact force, impact velocity, maximum height

reached and desired landing are shown in Table 5.2. Table 5.2 shows how the impact force is reduced

according to the ρ level, while the impact velocity is held almost constant. Additionally, results show that

the Computed-Torque Control is allowing experiment repeatability, as the values of landing velocity and

maximum height have a low variance between trials.
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Table 5.2: Parameters of Figure 5.6

ρ Max. High Impact Velocity d Impact Force Average

(cm) (m/s) (cm) (Kg ∗m/s2)

1 2.61 1.280828 N.A. N.A.

0.6 2.21 1.256105 0.46 52.7877

0.3 2.23 1.241982 0.921 25.7756

0.2 2.65 1.288456 1.607 15.8987

0.05 2.25 1.257665 2.048 11.8861

5.4 Free Fall Experiment

The second experiment consists of a free fall movement. The objective of this experiment is to test

the impact force reduction using different values of impact velocity and ρ parameter. The main reason to

implement a free fall was to test the proposed method with greater impact velocities, as the impact velocity

is limited by the maximum height reached by the robot in the vertical jump.

5.4.1 Free Fall Experiment with Different ρ Values

This experiment was performed with the aim of testing the effect of different impact velocities on the

Optimal Variable Stiffness method. Figure 5.7 shows the CoM position in a free fall from 25 cm of height

with different values of ρ.

Figure 5.7: CoM position in free fall with different values of ρ.
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Figure 5.7 shows a similar system behavior to the one shown by the first experiment of the vertical jump.

The free fall height starts from 25 cm and the reached impact velocity is 1.78 m/s. Figure 5.7 shows how

the distance d increases with small values of ρ, which means the impact force average was decreased.

5.4.2 Free Fall Experiment with Different Height Values

The second part of the experiment is shown in Figures 5.8 and 5.9, where the free fall is performed using

different heights for the same ρ value. Figure 5.8 shows free fall motions from 20cm, 25cm, and 30cm of

height using a ρ value of 0.15 and Fig. 5.9 shows the same experiment using a ρ value of 0.5.

Figure 5.8: CoM position in free fall movement with ρ = 0.15.

Figure 5.9: CoM position in free fall movement with ρ = 0.5.
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Figures 5.8 and 5.9 show how the distance d increases when the height and impact velocity are large.

The results of the second experiment using different values of ρ and heights are shown in Table 5.3.

Table 5.3: Parameters of Free Fall Experiment with Optimal Approach

ρ Height=20cm Height=25cm Height=30cm

Imp. Vel.=15.4m/s Imp. Vel.=17.8m/s Imp. Vel.=21.32m/s

- d Imp. Force d Imp. Force d Imp. Force

0.08 2.35 15.34 2.80 17.19 3.31 20.93

0.15 1.04 34.66 1.10 43.78 1.30 53.14

0.3 0.81 44.50 1.00 48.15 1.25 55.27

0.5 0.61 59.09 0.70 68.79 0.93 74.29

5.5 Fall Forward Experiment with Humanoid Robot

A Darwin-Op Humanoid Robot was chosen to perform experiments to test the falling strategy, This robot

is one of the most popular humanoid robots used by many research labs around the world. Additionally, the

Darwin-OP uses Dynamixel MX-28 motor actuators. This motor actuator has some special features such

as absolute encoder resolution of 4,096, stall torque of 31.6 Kg-cm and a programmable PID control. The

last capability is the most important because the present work proposes the design of an optimal PID gain

controller in order to generate variable stiffness.

The experiment consists of running several trials of the falling robot with different values of ρ. The robot

is standing up and it is pushed from the back to fall forward. The control strategy will then command the

movement of the arms to the front safe position. The new PID gain values according to ρ are programmed

for the elbow and shoulder motors. Figure 5.10 shows a motion sequence of the experiment.

Figure 5.10: Motion sequence of the experiment

At the end of the motion sequence shown in Figure 5.10, the arms are displaced from the front safe

position in order to reduce the impact force between the robot body and the ground. Figure 5.11 shows the
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position of the CoM of the robot in five different trials. Every trial has different values of ρ, ρ = 0.05, 0.1,

0.3, 1, and 3.

Touch Down

Figure 5.11: CoM position with different ρ values

Another important parameter used to measure the ground impact force is the displacement (d) of the

CoM at the moment of impact. Figure 5.11 shows how d increases as ρ is reduced. The average impact

force can be estimated using Eq. (3.5) , where d is inversely proportional to the impact force.

The results of the impact force, impact velocity, and CoM displacement are depicted in Table 5.4.

Table 5.4: Experiment Results

ρ Impact Velocity Distance (d) Average Impact Force Impact Reduction

(m/s) (cm) (N ) (%)

0.05 1.78 7.61 60.44 86.8

0.1 1.72 4.34 98.84 78.52

0.3 1.75 1.79 248.07 41.60

1 1.72 1.54 278.55 39.46

3 1.69 0.9 460.14 0

Table 5.4 depicts the results of the five trials shown in Figure 5.10. Results show how the displacement

(d) increases according to the decrements of ρ. The impact force is reduced with smaller values of ρ and

it increases with large values of ρ. This highlights the importance of the stiffness variation to reduce the

impact force. The low stiffness generates large values of displacement and a significant reduction of the

impact force.
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CHAPTER 6

FUZZY VARIABLE STIFFNESS APPROACH

6.1 Note to the Reader

Part of this chapter was published in the IEEE-SoutheastCon [26] and the proceedings of the following

conference: Innovations in Bio-Inspired Computing and Applications 2015 [27].

This chapter will depict the second approach to generate variable stiffness based on Fuzzy logic theory .

6.2 Variable Stiffness with Fuzzy Logic Approach

The Fuzzy logic strategy uses two input parameters based on the impact velocity and desired impact

force variables. The output of the Fuzzy logic system is the value of the proportional gain to be used in the

control loop of the DC motor.

The variable stiffness capability is produced through the variation of the KP gain of the PID controller.

Small KP gain value implies low stiffness in the DC motors. The derivative constant gain value, KD, of the

PID controller is calculated for a critical damping response where D = 2
√
P .

The impact force is proportional to the squared velocity reached by the robot at contact, in accordance

with Eq. (3.5). Based on the KP gain effect on the stiffness and the impact force, a Fuzzy system is proposed

in order to estimate the adequate KP value to implement a soft fall contact capability.

The proposed control approach is a Mamdani Fuzzy inference system [63], composed by two inputs

and one output using min and max T-norm operators as shown in Figure 6.1. The inputs of the Fuzzy logic

strategy are Desired-Impact force and Impact-Velocity. The output is the stiffness level which is proportional

to the KP gain value. The Fuzzy logic strategy is explained in terms of the fuzzifier, the set of rules and the

defuzzifier.
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Figure 6.1: Fuzzy logic system

6.2.1 The Fuzzifier

The fuzzifier has two inputs. The first one is the Desired Impact Force input which is related to the

impact force exerted by the ground on the robot at landing. Desired impact force values close to 1 imply a

big impact forces, and values close to 0 are associated to small impact forces. Desired impact force is not a

measurable input variable; however it is a preset value according to the desired reduction of the impact force

at the end of the movement.

The impact force is calculated using Eq. (3.5), and it is used to evaluate the system performance. Thus,

when a low value of ”Desired impact force is set up, a low level of Impact Force is expected. The universe of

discourse of this variable has values between 0 and 1. This input is divided in 5 triangular member function

distributed symmetrically through the universe of discourse as depicted in Figure 6.2. The membership

functions are Soft, Very Soft, Medium, Hard and Very Hard.

Figure 6.2: Desired-impact force
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The second input is called Impact Velocity. This variable is calculated by Eqs. (3.2) and (3.3) immedi-

ately after the take-off phase using the value of the take-off velocity when the movement is a vertical jump.

When the movement is a free fall the impact velocity can be calculated using the height where the robot

is starting to fall. Additionally, an Inertial Measurement Unit (IMU) can be used to measure the velocity

for both types of movements. This input has five triangular membership functions called Very Low, Low,

Medium, High, and Very high. They are spread uniformly between 0 and 3m/s as depicted in Figure 6.3.

The maximum limit of the Impact Velocity input is 3m/s and it corresponds to the velocity reached by the

robot in free fall from 0.5 m of height.

Figure 6.3: Impact-velocity input

Finally, the output Stiffness estimates the KP gain value that will be applied to the ankle and knee

motors. It is divided into five triangular membership functions uniformly distributed called: Very Low,

Low, Medium, High, and Full. This output has values between 0 and 32 as shown in Figure6.4. These

limits correspond to the minimum and maximum KP gain value applied to the motor without oscillations

(overshot).

Figure 6.4: Stiffness output (Kp gain-value)
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6.2.2 Fuzzy Set of Rules

The Fuzzy set of rules determines the relation between output to the inputs. In this case, these rules take

the input set and make calculations to find the adequate output set. Every rule has the form depicted by Eq.

(6.1). The rules calculate the min-product between the Fuzzy value of two inputs, the Desired impact force

and the Impact Velocity, and it projects this value over the assigned Fuzzy output set. The outcome of the

rule is the area of the output set below of the min value of the inputs, i.e. min-product between output and

min value of inputs. The final outcome is the max-product among all outputs of the complete set of rules.

The complete set of rules is composed of 25 rules. At the end, the general outcome of the Fuzzy set rules is

an area composed by the max-products of the partial output of every rule of the complete set.

if (Input(1) is mf(i)) and (Input(2) is mf(i)) then Output is mf(i) (6.1)

The complete set of rules is described in Table 6.1.

Table 6.1: Set of Rules

Impact-Velocity

Very-Low Low Medium High Very-High

Very-Soft Low Low Very-Low Very-Low Very-Low

Desired Soft Medium Medium Low Low Low

Imp-Force Medium Hard Hard Medium Medium Medium

Hard Full Hard Hard Hard Hard

Very-Hard Full Full Full Hard Hard

6.2.3 Defuzzifier

The defuzzifier is used to calculate the final value of a general output of the Fuzzy logic system. The

input for the defuzzifier is the area calculated by the Fuzzy set rules. The aim of the defuzzifier is to calculate

final value of the output. For the current case, the output is the proportional gain of the control loop.

The centroid method is used by the defuzzifier to estimate the final value of the KP gain value. The

general formulation of the centroid method is depicted by Eq. (6.2).
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K∗

P =

∫

µB(kp)dkp
∫

µBdkp
(6.2)

where K∗

P is the centroid value representing the proportional gain of the PID controller; µB is the member-

ship value, in this case the value of the area in the point kp; kp is one point into the universe of the variable

KP , see Figure 6.5.

Figure 6.5: Centroid method

Finally, Figure 6.6 shows the Fuzzy surface. This surface shows the relation between inputs and the final

output value. This is the result of calculation for every possible input value combination. The surface shows

how all possible output values are into the range of usual proportional gain, values between 0 and 32 for the

One-legged robot motor.

Figure 6.6: P-Gain value estimation surface
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6.3 Experiments for Vertical Jump and Free Fall Motions Using Fuzzy Logic Approach

This section shows experiments focused on the landing phase of the jumping motion using just the

Fuzzy approach. The Fuzzy approach has the same objective of the optimal approach, it is focused on the

generation of variable stiffness to reduce the impact force. According to the last statement, the take-off

phase and fall forward experiments are not studied in this chapter.

Vertical jump and free fall experiments described in chapter 5 were implemented using Fuzzy variable

stiffness approach. For every attempt, the inputs to the Fuzzy variable stiffness system were established

according to the desired impact force and impact velocity estimated as previously explained.

6.3.1 Experiments for Vertical Jump with Constant Impact Velocity and Variable Desired Impact

Force

The experiment was executed using different values for the desired impact force while trying to keep the

impact velocity constant. The impact velocity is kept fairly fixed thanks to the Computed-Torque Control

applied in the take-off phase, similar to that explained in Chapter 5. The CoM position for the different

Desired Impact Force values is shown in Figure 6.7.

Figure 6.7: CoM position in vertical jump with different values of desired impact force input.

Figure 6.7 shows several trials with different desired impact force values. According to Figure 6.7, lower

values of desired impact force increase the distance d, which means the impact force average was reduced.
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Table 6.2: Parameters of Figure 6.7

Desired Max. High Impact Velocity d Impact Force Average

Imp-Force (cm) (m/s) (cm) (Kg ∗m/s2)

1 2.66 1.298307 N.A. N.A.

0.7 2.34 1.273923 0.6 41.38344

0.5 2.16 1.260041 0.855 28.40968

0.3 2.79 1.308083 1.528 17.13320

0 2.35 1.274692 2.009 12.37434

The results are very similar to those obtained with the Optimal Variable Stiffness approach, previously

shown.

The obtained average impact force, impact velocity, and maximum height reached are shown in Table

6.2. Table 6.2 shows how the impact force is reduced according to the desired impact level, while the impact

velocity is held almost constant.

6.3.2 Experiment for Free Fall Motion Using Fuzzy Variable Stiffness

The second experiment is a free fall motion. This experiment is performed with the objective to test

the impact force reduction effect according to variations of the Impact Velocity and Desired impact input

variables.

6.3.2.1 Experiment for Free Fall Motion with Variation of Desired Impact Force Input

It was performed with the aim to test the effect of different impact velocities on the Fuzzy Variable

Stiffness method. Figure 6.8 shows the CoM position in a free fall from 25 cm of height with different

Desired Impact Force input values.

Figure 6.8 shows similar experiments to those on section 5.4, where the robot falls from 25 cm with an

impact velocity of 1.78 m/s. This figure shows how the distance d increases with small values of the Desired

Impact Force, this means that the impact force average is decreased.
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Touchdown

Position

Figure 6.8: CoM position in a free fall with different values of desired impact force.

6.3.2.2 Experiment for Free Fall Motion with Variation of Impact Velocity

The second part of the free fall experiment tests the effect that different Impact Velocity values have over

the impact force reduction. The results are shown in Figures 6.9 and 6.10, where the free fall is performed

using different heights and the same Desired Impact Force input value. Figure 6.9 shows free fall motions

from 20cm, 25cm, and 30cm of height using a Desired Impact Force value of 0.3. Figure 6.10 shows the

same experiment using a Desired Impact Force Value of 0.7.

Touchdown

Position

Figure 6.9: CoM position in free fall movement with desired impact force = 0.3.
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Touchdown

Position

Figure 6.10: CoM position in free fall movement with desired impact force = 0.7.

Figures 6.9 and 6.10 show how the distance d increases when the height and impact velocity are large.

The results of the second experiment using different values of Desired Impact Force and Impact Velocity

are shown in Table 6.3.

Table 6.3: Parameters of Free Fall Experiment with Fuzzy Approach

Desired Height=20cm Height=25cm Height=30cm

Imp-Force Imp. Vel.=15.4m/s Imp. Vel.=17.8m/s Imp. Vel.=21.32m/s

- d Imp. Force d Imp. Force d Imp. Force

0.3 2.6 13.95 3.40 14.25 4.9 14.19

0.5 2.0 18.14 2.70 17.95 4.3 16.17

0.7 1.0 36.28 1.68 28.50 2 34.7

0.9 0.5 72.5 0.70 71.21 0.96 74.1
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the most relevant findings and results of this dissertation and includes a number

of ideas for future research in low stiffness generation.

7.1 Summary of Results and Findings

The current research proposes a framework to perform jumping motions with legged robots and reduce

the impact force during the landing phase. The different stages of the jumping process were studied. In

order to be able to perform the movement, the most important properties for each stage were analyzed.

• For the take-off phase, the acceleration of the robot CoM must be greater than gravity in order

to detach from the ground. To ensure acceleration greater than gravity, the proposed system uses

a trajectory generator based on the CoM and ZMP. A Computed-Torque Control approach is used to

track the desired trajectories while reaching the required CoM acceleration. The use of the Computed-

Torque DC motors Control approach and the trajectories based on ZMP and CoM conditions, allow

the robot to jump. The jump motion was performed on a One-legged robot conformed by three DC

motors located in the ankle, the knee, and the hip, without any mechanical devices, such as springs or

dampers.

• The most important jumping stage is the landing phase, since it is the moment where it is mandatory

to reduce the impact force to preserve the balance and the integrity of the robot. For the landing

phase, two different approaches were proposed, both aiming to generate variable stiffness in the joint

motors. The first approach is called Optimal Variable Stiffness and is based on an optimal control

strategy. For this method, a ρ parameter was defined with the purpose of pre-multiplying the Q matrix

and producing new PID gain values. With this method, low stiffness is reached with values of ρ
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between zero and one. Additionally, this approach uses a control feedback loop to reduce the CoM

displacement with respect to the zero point on the contact surface. This feedback keeps the CoM

close to the zero point while improving the balance of the robot in the moment of landing. Several

experiments were performed using a One-legged robot. The optimal method was tested performing

several trials with different values for ρ. In all test cases, this method reduced the impact force

according to the ρ parameter as shown in table 5.2.

The second approach used was labeled Fuzzy Variable Stiffness method. In this second method, the

Fuzzy system estimates the KP gain value of the PID controller for the landing phase allowing for

displacement of the CoM at the touchdown position. The estimation of the KP value was done using

information from the impact velocity and the desired impact force. The proposed method based on

Fuzzy logic theory allows for the reduction of the impact force when the robot lands on the ground.

This method was tested performing several trials using different values for the desired impact force

and the impact velocity. The desired impact force and the impact velocity are the two inputs of the

Fuzzy logic system. The variation of these inputs can generate different levels of stiffness while

generating different levels of impact force reduction as shown in table 6.2.

• Another important result obtained carrying out this research pertains to the robot balance during the

landing phase. The robot balance is measured according to the displacement of the CoM with respect

to the zero point of the foot support. For this performance metric, the Fuzzy approach presents a

strong drawback, since this method does not include a feedback loop to reduce the displacement of

the CoM with respect to the zero point of the contact zone. On the other hand, the optimal approach

performed better while keeping the CoM close to the zero point. Although both methods can be

used to reduce the impact force, the optimal approach has better balance performance than the Fuzzy

method. However, the Fuzzy approach depends less on the motor model.

• Another result from this research is the application of the Optimal Variable Stiffness method to

falling robots. In some cases, the balance control fails and it is inevitable for the robot to fall. It is

then necessary to preserve the integrity of the robot and its components such as processors, motors,

and sensors. An algorithm to protect the robot when it is falling was proposed. The robot integrity is
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accomplished by applying the Optimal Variable Stiffness control method to reduce the impact force

on the arm joints, shoulders and elbows as depicted in section 4.5.

7.2 Future Work

The future work is divided on two sections. The first section contains possible improvements to the

implemented control strategies, and the second section depicts other applications for the Optimal Variable

Stiffness and Fuzzy Variable Stiffness methods.

7.2.1 Control Strategies

The use of adaptive control theory to generate an automatic method to set up the α and ρ values in the

Optimal Variable Stiffness method is expected to improve the applicability of the algorithm to more diverse

platforms and external operating conditions.

In addition, the idea of incorporating three independent factors that modify the KP , KI and KD gains

of the PID controller. This would improve the systems sensitivity of the PID parameters.

The design and integration of a feedback loop control system to keep the robot balance during the Fuzzy

Variable Stiffness approach, is expected to improve the performance of this method, without increasing its

implementation complexity.

7.2.2 Applications

The Optimal Variable Stiffness approach could also be applied to reduce lateral disturbances and un-

even terrain effects in the standing position of humanoid robots. Hence, the robot would be able to avoid

oscillations created by the combination of disturbances and the rigidity of the robot body.

The Optimal Variable Stiffness could also be applied to the generation of compliance capabilities in the

legs and arms prosthetic devices. This could make the use of the prosthetic devices seem more natural. Also

these new capabilities would allow for the use of different stiffness values throughout a physical therapy.

Furthermore, the stiffness values could be dynamically be adjusted within a session to perform personalized

therapy.
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Finally, the Optimal Variable Stiffness method could be used to generate soft contact in the walking

motion of biped robots. Similar to the standing situation, soft contact would allow for the robot to cope with

disturbances and uneven terrain. It would also protect the joints in the long term, by minimizing the peak

impact force produced in each contact with the ground.
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