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ABSTRACT 

 

Palynological analyses of 13 samples from two sediment cores retrieved from the Sabrina 

Coast, East Antarctica, provide the first information regarding the paleovegetation within the 

Aurora Subglacial Basin. The assemblages, hereafter referred to as the Sabrina Flora, are 

dominated by angiosperms, with complexes of Gambierina (G.) rudata and G. edwardsii 

representing 38–66% of the assemblage and an abundant and diverse Proteaceae component. The 

Sabrina Flora also includes Battenipollis sectilis, Forcipites sp. and Nothofagidites spp. (mostly 

belonging to the N. cf. rocaensis-flemingii complex), along with a few fern spores, including 

Laevigatosporites ovatus, a moderate presence of conifers, and previously undescribed 

morphospecies, two of which are described herein. A majority of the assemblage is interpreted as 

deposited contemporaneously with sedimentation, including Gambierina spp., which is 

traditionally assigned a Cretaceous–earliest Eocene age range. However, our age diagnosis for the 

Sabrina Flora, based on key morphospecies, indicates that sediment was most likely deposited 

between the latest Paleocene to possibly early–middle Eocene, if Gambierina rudata and G. 

edwardsii extended longer than previously thought. Additionally, we observed abundant 

dinoflagellate cysts of Campanian age. The absence of typical Paleocene–middle Eocene 

dinoflagellate cysts suggests that strata recovered were fluvial-dominated or proximal marine, with 

a major contribution of reworking of Campanian marine sediment. This study adds to the available 

East Antarctic palynological data and provides information on regional differences along the East 

Antarctic margin, as well as with southern Australia. The pollen diversity and the large relative 

abundance of Gambierina spp., along with the rarity of Nothofagidities spp., (fusca group), and 
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the lack of megathermal elements (e.g., Arecaceae) separate the Sabrina Flora from those of other 

East Antarctic margin and southern Australian basin sites. 
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INTRODUCTION 

The Sabrina Coast is located on the Wilkes Land continental margin (Figs. 1 and 2) between 

115˚–121°E and 67°S.  The region is marked by the periphery of the East Antarctic Ice Sheet, 

along with floating ice tongues and ice shelves, most notably the Totten Glacier (TG) and Moscow 

University Ice Shelf (MUIS) (Young et al., 2011). Aerogeophysical surveys reveal that the 

TG/MUIS system is the main drainage for the Aurora Subglacial Basin (ASB) (Fretwell et al., 

2013; Rignot et al., 2013; Greenbaum et al., 2015), a large intracratonic basin that contains 

sedimentary and crystalline rock (Ferraccioli et al., 2009; Aitken et al., 2016). As the ASB is the 

likely provenance for sediment deposited seaward of the Sabrina Coast, sediment cores collected 

on the continental shelf adjacent to the ASB drainage basin likely provide insight to the evolution 

of the regional sedimentary layers (Close et al., 2007). Consequently, one of the primary goals of 

the first geological survey of the Sabrina Coast, (United States Antarctic Program cruise NBP 14-

02), was to understand the past and present glacial dynamics of the ASB, as well as the marine 

geology of the region. Previous work on this part of the Antarctic margin has focused farther 

offshore, across the continental rise and abyssal plain, where an abnormally thick sedimentary 

package has been imaged and is postulated to be post early–middle Eocene (Close et al., 2007). 

Such sediment accumulation is thought to represent deposition leading up to and immediately 

following the development of large ice sheets in East Antarctica (Close et al., 2007).  

The first evidence of Cretaceous (Aptian) strata in East Antarctica came from offshore, via a 

40-cm long piston core (DF79-38) collected off the George V-Adelie (GVAL) coast, which 
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provided the first Mesozoic palynological reconstruction of the Wilkes Land region (Domack et 

al., 1980; Fig 1). Subsequent palynological studies related to East Antarctica include, but are not 

limited to: Prydz Bay (e.g., Macphail and Truswell, 2004; Hannah, 2006; Truswell and Macphail, 

2009), the Shackleton Ice Shelf region (Truswell, 1982, 2012), the Wilkes Land margin (Pross et 

al., 2012; Contreras et al., 2013), the McMurdo Erratics (e.g., Mildenhall, 1989; Askin, 2000), the 

Mertz-Ninnis Trough (Schrum, 2004), and the McMurdo Sound area (e.g., Hannah et al., 1998; 

Askin and Raine, 2000; Raine and Askin, 2001; Prebble et al., 2006; Warny et al., 2009; Feakins 

et al., 2012; Griener et al., 2013; Griener and Warny, 2015).  

Our study of terrestrial palynomorphs from the Sabrina Coast is based upon two sediment cores 

recovered from the continental margin and provides a unique opportunity to study a nearshore 

Cenozoic section in a heretofore-unsampled area of East Antarctica (Fig. 1).  Two jumbo piston 

cores (JPC; JPC-54 and JPC-55) retrieved during the NBP 14-02 expedition contain an abundant, 

diverse, and well-preserved terrestrial palynomorph assemblage, providing a rich, paleobotanical 

archive that adds to the available East Antarctic margin sections. Here we report the affinities and 

significance of the palynology recovered in these cores.
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STRATIGRAPHIC CONTEXT 

Core sites were chosen based on high resolution seismic data acquired during the United States 

Antarctic Program RV/IB Nathaniel B. Palmer cruise NBP 14-02, which identified sub-crops near 

the seafloor (Figs. 2 and 3). Two significant windows into the pre-glacial strata were revealed by 

the reflection data (Fig. 3). JPC-54 and JPC-55 were collected above and below a prograding 

clinoform, respectively (Fig. 3). The Jumbo Piston Coring (JPC) system of the ship includes a 

5000-lb bomb and lengths of 3-m long by 10-cm diameter core pipe, which can be added to reach 

27 m maximum length. Since our goal was to recover material from near-seafloor sub-cropping 

units revealed on the seismic reflection data (Fig. 3), we rigged the JPC system with a single 3-m 

barrel and piston release via a trigger core. JPC-54 (121 cm in length) and JPC-55 (170 cm in 

length) recovered ~22 cm and ~40 cm of late Pleistocene to Holocene glaciomarine sediment (Unit 

I) respectively, overlying a partially consolidated, organic-rich interval (Unit II). Unit II in both 

cores consists of black, organic and mica-rich silty sand separated by a clear disconformity, with 

a downcore decrease in water content and overall magnetic susceptibility, and an increase in 

density (Fig. 4). Unit II in JPC-54 contains intervals of gravelly sandy silts to sandy silts, while 

Unit II in JPC-55 contains sandy silt. Furthermore, JPC-54 recovered angular, crystalline and 

sedimentary clasts scattered throughout the core (denoted by high magnetic susceptibility). JPC-

55 contained a large, spherical, calcareous concretion with a 1-cm long plant macrofossil as the 

nucleus.  
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METHODS 

Palynology 

To quantify absolute abundance of terrestrial palynomorphs and to assign an age to Unit II of 

JPC-54 and 55, nine samples from JPC-54 and eight samples from JPC-55 were split and processed 

for terrestrial palynomorphs at Global Geolab Limited (Alberta, Canada), and marine 

palynomorphs at the Laboratory of Paleobotany and Palynology (Utrecht, Netherlands).  For each 

sample preparation, ~5 g of dried sediment was weighed out; the terrestrial palynomorph splits 

were spiked with a known quantity of Lycopodium spores to allow for the quantitative assessment 

of terrestrial palynomorph concentrations. Acid soluble minerals (carbonates and silicates) were 

digested in HCl and HF. For terrestrial palynomorphs, controlled oxidation followed by rinsing to 

neutrality was preformed, while samples for marine palynology were treated separately, without 

the oxidation step. Residues were concentrated by filtration on a 10 μm mesh sieve. The 13 samples 

in Unit II from JPC-54 and JPC-55 allowed tabulation of at least 300 terrestrial palynomorphs per 

sample, counted using a snaking transect method. The four samples from Unit I samples yielded 

an insufficient number of terrestrial palynomorphs, and are excluded from this study. We prepared 

a database of all palynomorphs recovered and key species were documented photographically.  

Identification for terrestrial palynomorphs was done using a Zeiss Axio Vert.A1 inverted 

microscope using a 100x oil immersion lens.  Qualitative dinoflagellate cyst analyses in which all 

of the dinoflagellate cysts encountered in 2 slides were identified using 400x magnification.  
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Taxonomy  

Taxonomic evaluation of palynomorphs utilized established literature (e.g. Cookson, 1950; 

Cookson and Pike, 1954; Couper, 1960; Stover and Partridge, 1973; Jarzen and Dettmann, 1992; 

Macphail and Truswell, 2004; Hou et al., 2006; Truswell and Macphail, 2009; Raine et al., 2011; 

Pross et al., 2012; and Contreras et al., 2013) and collections curated at the Louisiana State 

University Center for Excellence in Palynology (CENEX). Fensome and Williams (2004) was 

used for taxonomical evaluation of dinoflagellate cysts. 

  

Evaluation of Kerogen and Organic Particulates 

A rock plug sample of the concretion found at 125 cm in JPC-55 was processed in the organic 

geochemistry laboratory at Weatherford International (Shenandoah, Texas).  The goal was to 

evaluate the nature of the organic particulates and their thermal-alteration history, and therefore to 

distinguish different palynomorph sources if multiple thermal-alteration periods were represented. 

A portion of the rock plug was dissolved in acid to provide a separate sample for particulate 

mounting, polishing and petrography. Initially, spore and pollen color indices were observed under 

ultraviolet and white light and related to standard indices of thermal alteration of color (e.g., 

Chevron index; Jones & Edison, 1978). Thermal history was also evaluated by quantitative 

measurement of vitrinite and associated maceral reflectance according to ASTM D-7708 

Standards.   

 

Core Physical Properties 

Measurements of magnetic susceptibility (multi-sensor track) and density were acquired after 

the cores were split at the Antarctic Marine Geology Research Facility at Florida State University 

(Tallahassee, FL) using standard protocols on a GEOTEK™ Multi Sensor Core Logger (MSCL). 
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Water content was determined by direct sampling (approximately every 5 cm in the upper 50 cm, 

and approximately every 10 cm below 50 cm), drying and weight determinations after water loss. 
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RESULTS 

Organic Particulate and Thermal Histories 

The detrital organic particulates are of marine (amorphous) and nearshore character with an 

admixture of spores, pollen, and structured humic macerals including vitrinite (both collotelinite 

and collodetrinite), semifusinite, and inertinite (Jones and Edison, 1978). The evaluation of all 

these particles for thermal alteration revealed a bimodal vitrinite reflectance distribution of organic 

particulates with one population clearly reworked from an older, more thermally altered source. 

Distribution histograms (Fig. 5) on the vitrinite and associated macerals show two populations, 

one with a mode centered at ~0.59%Ro (mean of 0.58%Ro with negative skewness) and another 

more thermally altered population centered at around 0.70%Ro (mean of 0.72%Ro with a positive 

skewness). Of significance is the data gap between the two modal populations between 0.60%Ro 

and 0.63%Ro, signifying that these are indeed two separate populations and not one large 

continuum. In addition, it is important to note that the lower vitrinite population clearly has an 

associated semifusinite population with a slightly higher reflectance, typically due to the oxidized 

nature of this maceral compared to its paired vitrinite. The more thermally altered vitrinite lacks a 

correlative population of semifusinite, suggesting the removal of this population during erosion 

from an older source. Color indices on spore coloration also indicate two maturation populations, 

one with a Thermal Alteration Index (TAI, Chevron scale) of 2.5–2.6 and another population with 

a TAI of 2.7–2.8, corresponding to maturity estimates of 0.5–0.6% VR/e & 0.7–0.8% VR/e 

respectively. 
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Palynological results from JPC-54 and 55 

Terrestrial Palynology 

The sediment matrix yielded abundant, diverse and well-preserved palynomorphs allowing for 

quantification of flora for the 13 samples processed from Unit II in JPC-54 and JPC-55.  

Palynomorph concentrations (Fig. 7) ranged from 3540 to 6560 grains per gram dry sediment 

(gdw-1) for JPC-54 and from 4200 to 8570 gdw-1 for JPC-55 with a mean of 4330 gdw-1 and 6390 

gdw-1, respectively. These concentrations represent rich assemblages for Antarctic materials and 

therefore provide a thorough documentation of the diversity within previously undescribed floral 

assemblages. These assemblages provide the first glimpse into the terrestrial environment of the 

ASB before the onset of the EAIS.  

 Relative abundances of key (age diagnostic) morphospecies and complexes for JPC-54 and 55 

are summarized in Fig. 7. JPC-54 and JPC-55 can be distinguished by differences in their 

respective palynological assemblages. The JPC-55 assemblage contains 16–23% Battenipollis 

sabrinae sp. nov., a previously undescribed angiosperm similar to Battenipollis sectilis (formally 

described below). Only one sample from JPC-54 (46–47 cm) contains Battenipollis sabrinae (2% 

of the total assemblage). Furthermore, JPC-54 contains a higher total abundance of Nothofagidites 

spp. (5–12%), when compared with JPC-55 (1–3%), and both N. emarcidus and N. cranwelliae, 

while JPC-55 does not.  

There are similarities between the two assemblages. For both JPC-54 and 55, the palynological 

assemblages are dominated by Gambierina rudata and G. edwardsii and related complexes (38–

66%). Proteaceae (7–17%) are diverse, consisting mostly of Proteacidites tenuiexinus. This 

angiosperm-dominated assemblage also includes Battenipollis sectilis, Forcipites spp. and 

Nothofagidites spp. (mostly belonging to the N. cf. rocaensis-cf. flemingii complex). Conifer 
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pollen is present (3–10%), including Phyllocladidites mawsonii, Microcachryidites antarcticus, 

and Microalatidites paleogenicus, as are fern spores [e.g. Laevigatosporites ovatus (1–8%)]. Due 

to similarities between JPC-54 and JPC-55, we refer to these new palynological assemblages as 

the “Sabrina Flora” (SF), named after the Sabrina Coast.   

 

Marine Palynology 

Palynological assemblages of both cores contain, alongside the diverse Paleocene-Eocene 

terrestrial palynomorphs, an abundant and diverse marine palynological component. Marine 

palynological assemblages in the glaciomarine Unit I of both JPC-54 and JPC-55 contain 

protoperidinioid dinoflagellate cysts typical of recent Antarctic sediments (including the modern 

Selenopemphix antarctica, Brigantedinium spp. (e.g., Prebble et al. 2013)] and middle to late 

Eocene reworked dinoflagellate cysts, a common feature in the region (e.g., Truswell et al., 1982; 

Escutia et al., 2011).  

Assemblages in Unit II are remarkably different from those in Unit I described above. Species 

of stratigraphic significance in this interval in JPC-55 include abundant Palaeohystrichophora 

infusorioides, Odontochitina spinosa, Xenascus ceratoide. Dinogymnium sp., Raphidodinium 

furcatum, Vozzhennikovia spinulosa and Heterosphaeridium difficile. In Unit II of JPC-54, 

stratigraphically significant species include abundant Chatangiella victoriense, Isabellidinium 

pellucidum, Vozzhennikovia spinulosa, Epelidosphaeridium sp., Odontochitina spinosa, 

Tanyosphaeridium xanthiopixydes, and Senoniasphaera edenensis. 
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SYSTEMATIC PALEONTOLOGY 

Anteturma POLLENITES H. Potonié 1893 

Turma POROSES Naumova 1937–39 

Subturma TRICOLPORATES Iversen et Troels Smith, 1950 

Genus Battenipollis Jarzen and Dettmann 1992 

Type species. Triporopollenites sectilis Stover in Stover and Partridge 1973 

  

Battenipollis sabrinae sp. nov. 

Plate 1, figures 1–4 

Holotype. Plate 1, figure 1. 

Type locality. Offshore of the Sabrina Coast, East Antarctica (S66˚20.998, E120˚30.454) 

Diagnosis. Pollen tricolporate, amb concavely triangular, apertures broadly rounded to truncate, 

apices smooth. Exine 2-3 µm thick, vaguely to moderately well differentiated, sexine thicker than 

nexine, with sexine smooth at apertures and irregularly roughened between apertures. Scabrate to 

granulate sculpturing. Colpi poorly discernible. Dimensions, equatorial 23 (28) 31 µm, 15 

specimens measured.  

Dimensions. Overall diameter of 15 specimens from JPC-55: 23 (28) 31 µm 

The mean distal exospore thickness is 2.5 µm. 
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Remarks. Battenipollis sabrinae sp. nov. is distinguished from Battenipollis sectilis by a thicker 

(2–3 µm vs 2 µm), a highly irregular exine between apertures, and scabrate to granulate 

sculpturing. Specimens vary in oblateness and thickness of legs.  Battenipollis sabrinae is slightly 

smaller in size than Battenipollis sectilis (mean diameter is 28 µm vs. 31 µm) 

Derivation of name. Battenipollis sabrinae is named for the Sabrina Coast of East Antarctica 

where this morphospecies is first described. 

 

Anteturma POLLENITES H. Potonié 1893 

Turma POROSES Naumova 1937-39 

Subturma TRICOLPORATES Iversen et Troels Smith 1950 

Genus Gambierina Harris 1972 emend. Stover and Partridge 1973 

Type species. Gambierina rudata Stover in Stover and Partridge 1973 

 

Gambierina truswelliae sp. nov. 

Plate 1, figures 5–8 

Holotype. Plate 1, figure 5. 

Type locality. Offshore of the Sabrina Coast, East Antarctica (S66˚20.998, E120˚30.454) 

Diagnosis. Pollen tricolpate, amb triangular to concavely triangular, apertures rounded, apertures 

smooth. Exine 1–2.5 µm thick, vaguely differentiated, sexine thicker than nexine, with sexine 

smooth at apertures and slightly to drastically irregularly roughened between apertures. Scabrate 
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to granulate sculpturing. Colpi poorly discernible. Distinguishable nick point within the apertures.  

Dimensions, equatorial 23 (25) 30 µm, 15 specimens measured. 

Dimensions. Overall diameter of 10 specimens from JPC-55: 23 (25) 30 µm 

The mean distal exospore thickness is 1.5 µm. 

Remarks. Gambierina truswelliae is distinguished from Gambierina rudata by its scabrate to 

granulate sculpturing and irregular exine between the apertures. Gambierina truswelliae differs 

from Gambierina edwardsii by having less concave sides, rounder apertures and smaller 

diameters. Gambierina truswelliae compares to Gambierina sp. A from Jarzen and Dettmann 

(1992) by having distinctive sculpturing, however Gambierina sp. A is rugulate and has a slightly 

thicker mean exine than Gambierina truswelliae. 

Derivation of name. Gambierina truswelliae is named for Elizabeth Truswell, whose work in 

Prydz Bay and southern hemisphere palynology significantly influenced our modern view of 

Eocene climate in East Antarctica. 
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AGE INTERPRETATION AND SIGNIFICANCE 

Reworking is characteristic of palynological assemblages (Traverse, 2007). But it is a 

particularly difficult issue to deal with when working in Antarctic sequences where normal 

maturation schemes cannot always be used, as extreme polar conditions have tempering and 

preserving effects on palynomorphs. For example, Warny et al. (2016) recovered a diverse 

assemblage from a Miocene outcrop on King George Island with reworked species ranging from 

Permian to Paleogene in age, showing minimal differences in thermal maturation. Thus, extreme 

caution must be taken when assigning ages to sedimentary sequences based on palynomorphs 

alone, especially in these mixed glacial and marine environments. JPC-54 and JPC-55 contain 

sediments representative of the ASB and its tributaries. Therefore, this assemblage represents flora 

that could be derived from the ASB, as these palynomorphs and sediments were funnelled to the 

Sabrina Coast shelf from nearly the entire catchment.  The ASB likely served as a large interior 

seaway during later parts of the Mesozoic (similar to the Great Australian Basin; Fig. 1), into 

portions of the Paleogene (Young et al., 2011, Scherer et al., 2016). Therefore, we would expect 

to see a diversity of ages within any palynological preparation from these sediments.  

We make the case that we have two age-diagnostic assemblages; one with reworked 

palynomorphs of Late Cretaceous age, which is a mixed marine and terrestrial assemblage, and an 

autochthonous, terrestrial assemblage of latest Paleocene to potentially as young as middle Eocene 

age. This argument is based on the spore and pollen identifications, key dinoflagellate-cyst 

identifications, and the thermal maturation character of the amorphous organic matter and 

palynomorphs, recognizing that this scheme is not straight forward for Antarctic sequences. 
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Based on the review of known ranges of all pollen and spore species recovered, an age 

assignment is provided. The age-diagnostic species are presented in the biostratigraphic chart (Fig. 

8). Because studies from the East Antarctic margin are limited, we incorporate age constraints 

from southern Australian basins (e.g., Stover and Partridge, 1973; Jarzen and Dettmann, 1992; 

Partridge, 2006), the Antarctic Peninsula (e.g., Francis et al., 2008; Warny and Askin, 2011), and 

McMurdo Sound erratics (e.g., Askin, 2000; Francis, 2000; Levy and Harwood, 2000). Therefore, 

the ages assigned to certain morphospecies on the East Antarctic margin should be considered with 

caution. For instance, there are a number of new species in the SF assemblage (two of which we 

formally describe here), which present challenges when assigning an age to the assemblage. Also, 

many morphospecies vary slightly from the holotypes of previously described species, and many 

of them were thus assigned to complexes and are thus not useful for biostratigraphic purposes. 

While some may be new species, some might represent new stages in a morphological continuum. 

This is particularly true for the species of Gambierina and Nothofagidites recovered from the two 

cores studied. Therefore, we were conservative in assigning new species names and take an 

approach similar to that used in Prydz Bay (Truswell and Macphail, 2009). 

Based on the biostratigraphic data common to both JPC-54 and JPC-55, such as the first 

appearance datum (FAD) of Proteacidites tenuinexinus in the upper Lygistepollenites balmei Zone 

(Stover and Partridge, 1973), and the most abundant genus (Gambierina spp.), the assemblages 

could fit within the latest Paleocene upper L. balmei Zone to early Eocene Malvacipollis diversus 

Zone. However, we caution that the assigned age zonations were established in southern Australia, 

and there is a lack of comparable data from the East Antarctic margin. Most of the pollen recovered 

are light in color and well-preserved, suggesting that these derive from penecontemporaneous 
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vegetation consistent with the population of thermally less mature organic macerals with a TAI of 

2.5–2.6 and a vitrinite reflectance of 0.58% Ro. 

Furthermore, the presence of Proteacidites spp. and small numbers of Nothofagidites spp. 

(fusca), in addition to age-diagnostic morphospecies, suggest a late Paleocene/early to middle 

Eocene age. Notably, many typical late Eocene flora are missing or rare, such as abundant 

Podocarpidites spp. and Nothofagidites lachlaniae. Also absent or rare are palm pollen 

(Arecaceae) and other paratropical vegetation elements recorded from an early Eocene assemblage 

from eastern Wilkes Land (IODP 318 Site U1356) only 600 km from the source of our cores (Pross 

et al., 2012; Contreras et al., 2013). Megathermal forest elements such as Arecaceae are typically 

underestimated in pollen assemblages due to low pollen production (Pross et al., 2012). Therefore, 

even the small relative abundance of Arecaceae at Site U1356 is significant and thus differentiates 

Site U1356 from our localities, suggesting either an age difference or major environmental 

gradient between the sites.  

However, Site U1356 sediments were dated using dinoflagellate biostratigraphy. The 

dinoflagellate cysts examined in our sediments are narrowly defined as mid-Campanian (JPC-55) 

and Campanian–Maastrichtian (JPC-54) in age. No in situ dinoflagellate species of Paleocene–

Eocene age were identified  (Bijl et al., 2011; Bijl et al., 2013; Crouch et al., 2014). This suggests 

that the dinoflagellate cysts in our record are reworked into the Paleocene–Eocene deposits and 

that the Paleocene–Eocene sequence could represents a very restricted marine or fluvial-dominated 

deposit that would be unfavourable for dinoflagellate cysts. The dinoflagellate cyst assemblages 

are likely reworked from marine sediments within the ASB, as they correlate to the more thermally 

altered TIA values of 2.7–2.8 and vitrinite Ro of 0.7–0.8% VR/e. The reworked marine sediments 

at JPC-55 can be dated to the mid-Campanian, ranges of species encountered converge to an age 
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between around 85 and 81 million years  (Williams et al., 2004). Because the spread of age ranges 

for the species encountered is limited, and all dinoflagellate cysts co-occur within the mid-

Campanian, we suggest that an erosion of a specific mid-Cretaceous marine deposit contributed 

the dinoflagellate cysts in JPC-55. Interestingly, JPC-54 has a reworked component of slightly 

younger age close to the Campanian-Maastrichtian Boundary (Williams et al., 2004). Unit I of 

both cores contain middle Eocene dinoflagellate cysts, suggesting middle Eocene marine deposits 

occurred in the vicinity of the site. 
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INSIGHTS ON GAMBIERINA SPP. 

Gambierina spp., the most abundant (38–66%) genus in JPC-54 and JPC-55, presents certain 

issues when determining our age assignment and paleoenvironmental interpretation. Most of the 

Gambierina spp. specimens in JPC-54 and JPC-55 are light in color and well preserved, suggesting 

that these Gambierina specimens were deposited in situ. Furthermore, there are clusters of both G. 

rudata and G. edwardsii species, with up to 40 specimens per cluster, in JPC-54 and JPC-55 (Fig. 

6). These clusters indicate that these specimens were deposited close to the anther of the 

angiosperm parent plant, indicating most Gambierina specimens are not reworked (Fig. 6).  

Therefore, Gambierina spp. grains are contemporaneous with sedimentation, and constitute a 

major component of the assemblages.   

Stover and Partridge (1973) classified Gambierina rudata as a new species, and renamed 

Triorites edwardsii (Cookson and Pike, 1954) Gambierina edwardsii. Stover and Partridge (1973) 

also classified G. edwardsii and G. rudata as Late Cretaceous–late Paleocene from Gippsland 

Basin sections. However, Partridge (1999) later noted that these species became extinct in the 

earliest early Eocene in the Gippsland Basin. Cookson and Pike (1954) originally assigned 

Gambierina spp. a Paleocene to early Eocene range, as do studies in New Zealand (e.g., Wanntorp 

et al., 2011). Finally, Gambierina spp. is found in Late Cretaceous sediments from Seymour Island 

(Askin 1990, Bowman et al., 2014) and Vega Island (Jarzen and Dettmann, 1992), but is absent 

from the McMurdo erratics of Eocene age (Askin, 1990). 
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Although south Australian and New Zealand reports (referenced above) define the age range of 

Gambierina spp. to Late Cretaceous–late Paleocene/earliest early Eocene, Truswell and Macphail 

(2009) suggested that Gambierina spp. likely extended through the late Eocene in Prydz Bay. Pross 

et al. (2012) also suggested that the parent plant for Gambierina edwardsii survived during the 

early and middle Eocene along the Wilkes Land coast at Site U1356. Pross et al. (2012) used a 

climate argument, stating that longevity of Gambierina spp. could be due to perennially cool-cold 

climates in East Antarctica persisting through the late Paleocene to early-middle Eocene, while a 

rapidly warming climate in southern Australia during the Paleocene–Eocene Thermal Maximum 

could have eliminated Gambierina spp. parent plants (Macphail et al., 1994; Truswell and 

Macphail, 2009). Becauase Gambierina spp. was likely deposited penecontemporaneously in JPC-

54 and 55, and because we find at least one morphospecies in our assemblage with a FAD in the 

early Eocene (Nothofagidites emarcidus) only in JPC-54, we suggest that Gambierina edwardsii 

and G. rudata could extend into the early Eocene (based on our data), possibly to the middle–late 

Eocene if Truswell and Macphail (2009) and Pross et al. (2012) are correct. We are thus extending 

our potential range to the middle Eocene to take these two studies in consideration (Fig. 8).   

Additional morphospecies with of unknown paleobotanical affinity include Battenipollis 

sectilis [renamed by Jarzen and Dettmann (1992) from Triporopollenites sectilis in Stover and 

Partridge (1973)] and Forciptes spp. Gambierina spp., Battenipollis sectilis and Forcipites spp. 

have all been found in the Otway Basin within upper Cretaceous sequences, where the authors 

compared them to pollen produced by Northern Hemisphere Normapolles (Jarzen and Dettmann, 

1992). Although there are similar morphological characteristics with the Normapolles, which are 

breviaxial, transcolpate and have a triangular amb (Batten, 1981; Batten and Christopher 1981), 

closer analyses revealed that these genera evolved separately, and thus any paleobotanical affinity 
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is speculative. These three genera (Gambierina, Battenipollis and Forcipites) likely grew within 

forest communities adjacent to, or fringing, an estuary (Dettmann and Jarzen, 1988); however, 

their parent plants and affinities are still unknown. Although specimens of Battenipollis sectilis, 

as well as Battenipollis sabrinae sp. nov. might be in situ, the lack of additional in situ evidence, 

such as clusters like those of Gambierina spp., prevents a similar age extension for Battenipollis 

spp. And it is possible that these species are indeed strictly restricted to the Cretaceous.  Additional 

study of this region is needed to define whether Battenipollis sabrinae sp. nov. has a range that 

extends to the Eocene. Furthermore, Forcipites longus specimens are dark in color and often 

broken, and therefore we believe this species to be reworked from Cretaceous or early Paleocene 

sources.   
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SABRINA COAST FLORA: A COMPARISON 

As the Sabrina Flora is a new, unique floristic assemblage, it is important to compare its 

elements to proximal and distal Southern Hemisphere locations. First, there are both similarities 

and differences when compared with the two previously documented Eocene sedimentary sections 

from the East Antarctic margin: Wilkes Land (Site U1356) and Prydz Bay (Site 1166).  At Site 

U1356, the early Eocene assemblage is dominated by pteridophyte spores (40%) compared to a 

much smaller percentage of spores (<10%) at the Sabrina Coast.  Furthermore, at Site U1356, 

angiosperms only represent 25% of the total assemblage, with Nothofagidites spp. (mostly fusca 

group) dominating the angiosperm assemblage, and tropical elements, such as Arecaceae, present, 

thereby greatly differing from the Sabrina Flora. At Wilkes Land, the middle Eocene assemblage 

is dominated by Nothofagidites spp. (50%), Proteacidites spp. and Malvacipollis spp., and 

gymnosperms (30%), mostly represented by Dilwyinites granulatus and Araucariacites spp., 

indicating a cool temperate forest environment, while the Sabrina Flora have very few of these 

elements.  

Although Prydz Bay sediments are late Eocene in age, the Sabrina Coast and Prydz Bay 

assemblages share a number of similar morphotaxa. For example, the spore (e.g., 

Laevigatosporites ovatus) and gymnosperm assemblages at Prydz Bay (e.g., Dilwynites 

granulatus, Cupressacites, and Phyllocladidites mawsonii) are very similar to those of the Sabrina 

Coast, except that the podocarp abundances (e.g., Podocarpidites spp.) are much higher at Prydz 

Bay (14–22%), which is consistent with late Eocene sediments on the Antarctic Peninsula (Warny 

and Askin, 2011; Feakins et al., 2014). The angiosperm assemblage differs, however, between the 
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Sabrina Coast and Prydz Bay. For example, Proteacidites spp. are much less abundant at Prydz 

Bay (<5%) compared to the Sabrina Coast (7–17%), although both assemblages contain diverse 

Proteaceae morphospecies. The Nothofagidites spp. abundance, especially of the N. fusca group, 

is much higher at Prydz Bay (52–60%), again consistent with late Eocene sections from the 

Antarctic Peninsula, and discussed further below.  

Other East Antarctic sites include the McMurdo erratics (middle–late Eocene; Askin, 2000), 

dredges from the Mertz Glacier region (Early Cretaceous and Paleogene; Schrum et al., 2004), and 

sedimentary sections from the Shackleton Ice Shelf region (Late Cretaceous–Eocene; Truswell 

1982, 2012) and from George V Land (Cretaceous; Domack et al., 1980). The dredges collected 

offshore of the Shackleton Ice Shelf contain a qualitatively similar assemblage to the Sabrina Coast 

sedimentary sections. Similar morphotaxa include Gambierina edwardsii and G. rudata, 

Proteacidites spp. and Nothofagidites spp. (N. fusca and N. brassii types), however percentages 

and species are not specified, and therefore caution is taken when comparing this site to the Sabrina 

Flora (Truswell, 1982). The McMurdo erratics share more similarities with Prydz Bay samples 

(Truswell and Macphail, 2009), such as a dominance of Nothofagidites fusca due to the middle-

late Eocene age, yet they do not contain Gambierina spp. (Askin, 1990). The Mertz dredges consist 

of trilete spores, Nothofagidites flemingii-rocaensis complex specimens and diverse Proteaceae, 

however these dredges were not quantitatively analysed (Schrum et al., 2004). The George V Land 

palynomorphs contained mostly spores and saccate pollen, with no morphospecies overlap with 

the SF palynomorphs, attributed to the Early Cretaceous (Aptian) (Domack et al., 1980).   

West Antarctica and Antarctic Peninsula palynomorphs have been studied, mostly addressing 

the Cretaceous–Paleocene (Askin, 1990; Bowman et al., 2014) and the late Eocene (e.g., Batten, 

1981; Warny and Askin, 2011), some of which is summarized in Francis et al. (2008). These sites 
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differ more from the SF than the more proximal East Antarctic margin sites described above. These 

differences are attributed to the distance from the Sabrina Coast, and age, as these sections either 

preceded the age attributed to the Sabrina Coast sediments, or succeeded them in the late Eocene, 

directly prior to the expansion of Antarctic ice sheets (e.g., Zachos et al., 2001, 2008). 
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PALEOBOTANICAL GRADIENT 

Differences between assemblages from the Sabrina Coast and the Antarctic margin, and also 

with the south Australian margin, provide insights into diverse paleoenvironments in this Southern 

Hemisphere sector. One example, Nothofagidites spp. is more abundant in southeastern Australia 

and at Site U1356 in Wilkes Land, suggesting a paleobotanical gradient. The relatively low 

abundances of Nothofagidites spp. in JPC-54 and 55, especially in both the N. fusca and N. 

menziesii (N. asperus) groups, are comparable to early Eocene eastern Eucla Basin sediments (6% 

in early Eocene, 16–42% in middle Eocene) (Hou et al., 2006).  In Wilkes Land sediments, 

Nothofagidites spp. (mostly fusca group) dominates both assemblages (5–35% in early Eocene, 

25–60% in middle Eocene). Stover and Partridge (1982) note that the absence of the N. menzesii 

group in the western Australian basins (e.g., Bremer sub-basin, Eucla Basin) compared to the 

Victoria basins (e.g., Gippsland, Bass and Otway basins), is paleobotanically significant. The 

Nothofagidites spp. relative abundance is high at Prydz Bay (52–60%), but this is in a late Eocene 

section and therefore we would expect a higher concentration of Nothofagidites spp. than we see 

at the Sabrina Coast. When comparing early–middle Eocene sections along the East Antarctic 

margin and with their respective conjugate margin sections, the palynological differences suggest 

more similarities between north–south relations between Australia and Antarctica than east–west 

along the East Antarctic margin. The palynological assemblages from the Sabrina Coast and Eucla 

Basin sediments share more similarities than the Sabrina Coast and Site U1356 palynological 

assemblages.  This could be attributed to a complex current system in the proto-Leeuwin Gulf at 

this time, such as gyres allowing for north–south circulation compared to east–west, for example. 
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Another group that can be compared among East Antarctic sites and south Australian sites is 

Arecaceae, or palm pollen, and other megathermal elements such as Bombacoideae. As previously 

mentioned, even small relative abundances of these morphotaxa indicate paratropical paleoflora 

(Pross et al., 2012, Contreras et al., 2013).  Although Arecipites spp. is found in Prydz Bay samples, 

Truswell and Macphail (2009) note that these morphospecies most likely do not represent palms, 

as this is a megathermal element and not expected to be found in a Nothofagus shrub-dominated 

forest. However, megathermal elements are absent from the SF. Therefore, assuming a latest 

Paleocene–middle Eocene age for the SF assemblage, the lack of megathermal elements and a low 

percentage of Nothofagidities spp., especially the N. fusca group, differentiates the SF from the 

Wilkes Land early and middle Eocene assemblages. This suggests a paleoenvironmental gradient 

between these sites, as there must have been environmental factors allowing for the predominance 

of the Gambierina spp. parent plant at the Sabrina Coast, and the predominance of Nothofagidities 

spp. and megathermal elements at Wilkes Land during the early–middle Eocene.  

The absence of palm pollen and low numbers of Nothofagidites spp. in JPC-54 and JPC-55 

compared to recently documented sites from this same margin would suggest either a significant 

paleoenvironmental difference from east to west along the East Antarctic margin and/or restriction 

to a middle Eocene age for the assemblage we describe herein. A early–middle Eocene age 

diagnosis would be consistent with the interpretation that the crystalline clasts scattered throughout 

JPC-54 are ice-rafted, and corroborate suggestions of small to moderate ice sheets in East 

Antarctica, commencing possibly as early as the Maastrichtian (Miller at al., 1999) or the middle 

Eocene (Villa et al., 2014).   
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CONCLUSIONS 

The terrestrial palynomorphs preserved in JPC-54 and JPC-55 collected offshore of the Sabrina 

Coast are well-preserved and diverse, and are suggested to be deposited contemporaneously with 

sedimentation (likely Paleocene/Eocene), but include a minor reworked component of Cretaceous 

age. The marine palynomorphs in JPC-55 and JPC-54 are strictly reworked from the Late 

Campanian and Campanian–Maastrichtian, respectively. The palynomorphs recovered appear to 

have been deposited with sediments funnelled from the ASB through the Sabrina Coast and into 

the collecting basin. The reworked palynomorph component of Cretaceous age agrees with two 

different thermally altered populations illustrated via vitrinite reflectance analysis.  The diverse 

and abundant terrestrial palynomorph assemblages, paired with a lack of in situ dinoflagellate cysts 

could be explained by a fluvial-dominated or proximal marine setting that could be uninhabitable 

by dinoflagellates.   

Although the palynomorph assemblage is representative of the larger region of the ASB, they 

provide valuable insight on the paleoflora of this region of East Antarctica not studied previously. 

Furthermore, these palynomorphs provide a comparison to the few East Antarctic palynological 

studies of Paleocene to Eocene age. The terrestrial assemblage is angiosperm-dominated, and 

about half of the assemblage is composed of Gambierina spp., a tricolporate angiosperm of 

unknown paleobotanical affinity. The large percentage of diverse Proteaceae, rarity of 

Nothofagidites spp. and lack of megathermal elements differentiates this assemblage from 

proximal Wilkes Land and Prydz Bay assemblages.  These new palynomorph assemblages is 

herein referred to as the Sabrina Flora. 
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The terrestrial palynological samples from JPC-54 and 55 allowed us to provide an age for the 

organic-rich sub-cropping Unit II in both cores. We suggest a latest Paleocene–middle Eocene as 

the age range for both cores. Although the palynological assemblages bear many similarities, there 

are subtle differences between JPC-54 and JPC-55 that allow for an age distinction between the 

two cores.  Nothofagidites emarcidus, with an FAD in the early Eocene, is only present in JPC-54, 

therefore suggesting a likely early–middle Eocene for JPC-54. Clearly stratigraphic principle 

dictates that JPC-55 is older, and the two cores are separated by 150 m of strata, including a 

clinoform, Overall, the assemblage fits in the late Paleocene–early Eocene biostratigraphic range 

zones from southern Australia (Stover and Partridge, 1973; Partridge, 2006).  However, we are 

cautious in limiting our age diagnosis exclusively to these zones, in corroboration with the limited 

studies from proximal East Antarctic margin sites, and in consideration of the disparity in diversity 

between Antarctic and Australian palynological assemblages from this time. 

Regional contrasts, such as the differences in Gambierina spp., Nothofagidites spp., and 

Arecaceae (palm pollen) suggest a potential paleobotanical gradient that existed in the Australo-

Antarctic region during the latest Paleocene to middle Eocene.  We suggest that this illustrates 

complexity in the proto-Leeuwin system, such as local north–south gyres allowing for more similar 

palynological assemblages between the Sabrina Coast and the Eucla Basin than with proximal East 

Antarctic margin sites. Lastly, the SF could differ from proximal East Antarctic margin sites if it 

was the first region with ice present at sea-level, evidenced by ice-rafted debris in JPC-54, which 

we have assigned an early-middle Eocene age range. Therefore, the SF and its palynomorphs 

provide valuable insight to the paleoenvironment during the latest Paleocene-middle Eocene at the 

Sabrina Coast, and elucidate regional climatic details along the East Antarctic margin.  
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FIGURES 

 

Figure 1. Paleogeographic reconstruction for the Australian-Antarctic margins at 50 ma 

including sedimentary basins. Paleogeographic charts obtained from the Ocean Drilling 

Stratigraphic Network (ODSN). 
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Figure 2. Locations of cores JPC-54 and 55 are denoted by blue circles. Bathymetry data was 

collected on NBP 14-02 using a Kongsberg EM 120 multibeam system. The ASB catchment area 

is modified from Pierce et al. (2011). Black line represents seismic line 17 collected on NBP 14-

02. 
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Figure 3. Seismic image collected on NBP 14-02 utilized to target JPC-54 and 55 sites.  The composite seismic line illustrates 

erosional and onlapping surfaces, which denote clinoforms. JPC-54 and JPC-55 are above and below these clinoforms, respectively. 

Modified after Gulick et al. (in prep).  
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Figure 4. Physical properties of JPC-54 and 55. Lithology log, water content, and magnetic 

susceptibility shown. Dotted line separates Unit IA and Unit IB, solid line separates Unit I from 

Unit II. 
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Figure 5. Histograms showing vitrinite reflectance and thermal maturity history. The original 

analysis is displayed as an inset. The collotelinite group represents the less thermally altered 

source and correlates to the autochthonous palynomorph population, and the reworked vitrinite 

represents the more thermally altered source, correlating to the reworked/allochthonous 

palynomorphs population. 

 

  



41 

 

 

Figure 6. Plate 1. Pollen morphospecies of age significance for JPC-54 and 55. 1-4) Battenipollis 

sabrinae sp. nov. 5-8) Gambierina truswelliae sp. nov. 9-10) Gambierina spp. clusters 11) 

Forcipites longus 12) Phyllocladidites mawsonii 13) Laevigatosporites ovatus 14) Battenipollis 

sectilis 15) Gambierina edwardsii 16) Gambierina rudata 17) Proteacidites tenuiexinus 18) 

Nothofagidites flemingii-rocaensis complex 19) Nothofagidites emarcidus  
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Figure 7. Palynological diagram summarizing relative abundances and concentrations for select intervals in JPC-54 and 55, 

organized by botanical affinity. Palynomorph concentrations were measured in concentration per gram of dried sediment (gdw-1). 
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Figure 8. Biostratigraphic range chart including age diagnostic morphospecies.  

 


	An Early Paleogene Palynological Assemblage from the Sabrina Coast, East Antarctica: New Species and Implications for Depositional History
	Scholar Commons Citation

	tmp.1483554610.pdf.lhxh5

