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ABSTRACT 

 

Most of the chronic diseases have a well-known natural staging system through which the 

disease progression is interpreted. It is well established that the transition rates from one stage of 

disease to other stage can be modeled by multi state Markov models. But, it is also well known 

that the screening systems used to diagnose disease states may subject to error some times. In 

this study, a simulation study is conducted to illustrate the importance of addressing for 

misclassification in multi-state Markov models by evaluating and comparing the estimates for 

the disease progression Markov model with misclassification opposed to disease progression 

Markov model. Results of simulation study support that models not accounting for possible 

misclassification leads to bias. In order to illustrate method of accounting for misclassification is 

illustrated using dementia data which was staged as no cognitive impairment, mild cognitive 

impairment and dementia and diagnosis of dementia stage is prone to error sometimes. Subjects 

entered the study irrespective of their state of disease and were followed for one year and their 

disease state at follow up visit was recorded. This data is used to illustrate that application of 

multi state Markov model which is an example of Hidden Markov model in accounting for 

misclassification which is based on an assumption that the observed (misclassified) states 

conditionally depend on the underlying true disease states which follow the Markov process. The 

misclassification probabilities for all the allowed disease transitions were also estimated. The 

impact of misclassification on the effect of covariates is estimated by comparing the hazard 

ratios estimated by fitting data with progression multi state model and by fitting data with multi 
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state model with misclassification which revealed that if misclassification has not been addressed 

the results are biased. Results suggest that the gene apoe ε4 is significantly associated with 

disease progression from mild cognitive impairment to dementia but, this effect was masked 

when general multi state Markov model was used. While there is no significant relation is found 

for other transitions.  
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CHAPTER ONE:  

INTRODUCTION 

 

Understanding a disease by its uniquely characterized progression of symptoms and 

pathology plays vital role in correct diagnosis and suitable treatment plan. If a disease can be 

diagnosed or detected at an early state, it may be more responsive to treatment. An effective 

method to reduce mortality due to the disease can be effectively reduced by a systematic 

screening of population. A detailed knowledge of the natural history of a disease is very essential 

in order to develop and establish a systematic screening policy. The risk of onset of disease can 

be used to determine the type of population and time of population to screen but to determine the 

intervals between successive screens should be chosen based on the risk of progression. The risk 

of progression may vary with current stage of disease. Multistate Markov models can be 

effectively used to determine the course of a disease. (Jackson et al, 2003)   

These models are very useful in estimating the transition rates between each disease state 

and simultaneously estimate the misclassification probabilities and also to understand the effect 

of covariates on transitions of disease states. (Andersen and Keiding, 2002; Commenges, 1999) 

Examples of application of multi-state models in medicine are liver cirrhosis (Anderson et al., 

1991), screening for abdominal aortic aneurysm (Jackson et al., 2011), smoking prevention 

(Kalbfleisch and lawless, 1985; Chen et al., 2011), psoriatic arthritis (Chen et al., 2010; Cook et 

al., 2004, Sutradhar and Cook, 2008), screening of breast cancer (Duffy et al., 1995; Chen et al., 
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1996,2000), chronic myelogenous leukemia (Klein et al., 1984), diabetic complications ( 

Kosorok and Chao, 1996; Marshall and Jones, 1995; Anderson, 1988), complications after heart 

transplantation (Sharples, 1993; Klotz and Sharples, 1994), Aquired immune deficiency 

syndrome and Human immunodeficiency virus infection (Longini et al., 1989; Gentleman et al., 

1994; Satten and Longini, 1996; Guihenneuc-Jouyaux et al., 2000; Alioum et al., 2005), hepatitis 

C virus (Sweeting et al., 2010), human papillomavirus (Bureau et al., 2003; Kang and 

Lagakos,2007), hepatocellular carcinoma (kay, 1986) and bronchiolitis obliteron after lung 

transplantation (Jackson and Sharples, 2002). 

The multi-state Markov models are characterized by Markov property which states that 

distribution of forth coming state can be determined by the current state of disease. (The msm 

package, version 0.6.4)   More details of multi state Markov model is described in the subsequent 

sections. For the multi-state Markov model to determine the course of the disease, the current 

stage of disease should be determined without errors. But it is well known that any screening 

method or diagnostic methods are prone to errors which might lead to misclassification of the 

disease state. It is well established that misclassification of the outcome leads to bias in the 

estimates. Even though, similar effects are expected to be observed with misclassification of 

intermittent stages of disease, there are no sufficient studies reported to support the expectation 

that misclassification of the intermittent stages in a multi-state model leads to bias.  

In this study, illustration of application of multi-state model with misclassification in 

screening of dementia is performed and simulation is used to prove that misclassification of the 

intermittent disease states in a multi-state model when misclassification is not addressed leads to 

bias of estimates. In order to account for the misclassification, multi-state model with 

misclassification is fit to the data and the misclassification probabilities are estimated and impact 
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of misclassification on the effect of covariates on the transitions is estimated to fill the space in 

the research addressing misclassification issues in multi-state models. In this study, data from 

subjects at different stages of dementia (brief description of dementia and stages of dementia is 

given under dementia section) is used to illustrate the effect of misclassification shown by 

simulation study and portray the method of correcting the misclassification by fitting the data 

with multi state Markov model without accounting for misclassification initially and then, 

determine the misclassification probabilities by fitting multi state Markov model with 

misclassification which enables to visualize the effect of accounting for misclassification 

compared to not accounting for misclassification.  
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CHAPTER TWO:  

TESTING A PROPORTION IN AN ENVIRONMENT OF MISCLASSIFICATION 

 

A Brief Review  

 

 Before introducing the misclassification issue in a complex multi-state model, a brief 

introduction about how error rate is addressed to test for a proportion in a misclassification 

environment is depicted in this section. In a binomial experiment, to estimate a population 

proportion ‘p’ from a large homogenous population and through random sampling, the sample 

proportion is a sufficient statistic, is the maximum likelihood estimator and minimum variance 

unbiased estimator of the population proportion ‘p’ in the absence of misclassification. But, in 

reality errors happen. The diagnostic or screening methods or surveys are subject to errors and 

there are many reasons explaining them and errors are inevitable during data collection. Making 

inferences using such data can be inimical. (Bradley & Farnsworth, 2013; Rohatgi, 2003; Hogg 

et al., 2005)  

 

Error Rates in a Binomial Experiment 

 

 Let ‘T’ represent the true disease state of the subject and T=0 if subject is disease free 

and T=1 if subject has the disease. ‘p’ represents the proportion of subjects who have the disease 
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and is given by the probability 𝑝 = Pr⁡(𝑇 = 1). Let ‘O’ represent the observed disease state by 

the screening test and O=1 for disease and O=0 for no disease. 𝑟 = Pr⁡(𝑂 = 1)is the probability 

of subject testing positive for disease. Thus, the false positive rate is given by 𝑟1 = Pr(𝑂 =

1| 𝑇 = 0) and false negative rate is given by 𝑟2 = Pr(𝑂 = 0| 𝑇 = 1)  Therefore, r can be written 

as 

 

𝑟 = Pr⁡(𝑂 = 1) 

⁡⁡⁡= Pr(𝑂 = 1| 𝑇 = 0)Pr⁡(𝑇 = 0) +⁡Pr(𝑂 = 1| 𝑇 = 1)Pr⁡(𝑇 = 0) 

⁡⁡⁡= 𝑟1 ∗ (1 − p) + (1 − 𝑟2) ∗ p 

𝑟 = p(1 − 𝑟1 − 𝑟2) +⁡𝑟1                              (1) 

 

Probabilities 𝑝 and 𝑟 are linearly related for 𝑟1and𝑟2.  

 

                                                     1 − 𝑟1 − 𝑟2 > 0                                        (2) 

The above equation of inequality ensures that ‘r’ increases with increasing ‘p’ and ‘r’ decreases 

with decreasing ‘p’ and 𝑟 > 0 . Given that 𝑟1 and 𝑟2  are error rates, if   

1−𝑟1 − 𝑟2 > 0, then the identifications of disease and no disease state are interchanged so that 

equation (2) is satisfied. (Bradley & Farnsworth, 2013; Rohatgi, 2003; Hogg et al., 2005) For 

example if p=0.30,  𝑟1 = 0.01 and 𝑟2 = 0.10 gives 𝑟 = 0.277 which is less than ‘p’ the true 

proportion, if  𝑟1 = 0.02 and 𝑟2 = 0.08 gives 𝑟 = 0.3 which is equal to ‘p’ and if,  𝑟1 = 0.10 and 

𝑟2 = 0.01 gives 𝑟 = 0.367 which is greater than ‘p’. Thus, based on the error rates, the estimated 

proportions are biased from the true proportion accordingly.  
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CHAPTER THREE: 

 ADDRESSING MISCLASSIFICATION USING MULTI STATE MARKOV MODELS 

 

A Brief Introduction of Multi State Markov Models   

 

Markov chains represent a class of stochastic processes of great interest for the wide 

spectrum of practical applications. The course of disease is modeled often using multi state 

models in continuous time. A general example that illustrates multi state Markov model is shown 

in (Figure 1). (Jackson et al., 2003; the msm package, version 0.6.4) 

                       

Figure 1 Multi state model (General form) 

 

The possible transitions between each disease state are represented by direction of arrow 

marks. The disease state Si (t) is observed for each individual 𝑖 during arbitrary times⁡𝑡 and it 
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may not be same for each individual. The disease state to which the individual moves and the 

time of change will be determined by the transition intensity for each pair of states m & n. The 

instantaneous risk of moving from stage ‘m’ to ‘n’ can be represented by the transition intensity. 

The transition intensity matrix needs to be estimated in order to fit a multi-state model to the data 

and for the general multi state model in (Figure 1) the transition intensity matrix Q takes the 

form as 

 

𝑄⁡ = ⁡(

𝑞11 𝑞12
𝑞21 𝑞22

⁡⁡⁡⁡
𝑞13 𝑞14
𝑞23 𝑞24

𝑞31 𝑞32
𝑞41 𝑞42

⁡⁡⁡⁡
𝑞33 𝑞34
𝑞43 𝑞44

) 

 

The matrix Q represents these transition intensities whose rows sum to zero, so that the 

diagonal entries are given by (equation 3). (Jackson et al., 2003; the msm package, version 0.6.4) 

 

                                𝑞𝑚𝑚 =⁡−∑ 𝑞𝑚𝑛𝑛≠𝑚                                  (3) 

 

The disease progression model which is used in this study is different from the general 

multi state model in terms of possible transitions and depicted in (figure 2), where a series of 

successive states of disease ending with an absorbing stage (death) is represented.  

The subject is expected to progress to adjacent stage or recover to the previous stage or 

move to absorbing stage (die) at any state of disease. (Jackson et al., 2003) Though, the model 

used in this study does not contain an absorbing state as subjects who died at any stage of disease 

were not included into the study.  
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Figure 2 Disease progression model (General form representing k states) 

 

In order to calculate the likelihood for multi-state models, transition probability matrix 

(Pt) is required. Transition probability is the probability of transition of disease from stage 𝑚 at 

time 𝑐 to stage 𝑛 at time 𝑡 + 𝑐 and is given by (equation 4). 

 

𝑝𝑚𝑛(𝑡) = Pr⁡(𝑆𝑖(𝑡 + 𝑐) = 𝑛|𝑆𝑖(𝑐) = 𝑚                (4) 

 

𝑃(𝑡) = e(tQ)⁡               (5) 

 

The information regarding the time of transition from state 𝑚 to 𝑛 is not given and the sampling 

times are assumed to be non-informative. P (t) can be determined from scaled transition intensity 

matrix by taking matrix exponential (equation 5). (Cox and Miller, 1965) 
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Hidden Markov Model        

 

This study involves illustration of methodology involved in addressing for 

misclassification using multi state Markov model with misclassification which works with the 

principle of Hidden Markov model (HMM). There are two process in hidden Markov model, the 

observed process (𝑆(𝑡𝑖)) and the true underlying process(𝑆∗(𝑡𝑖)). The true states of Markov 

model are not observed in a hidden Markov model (HMM). Observed states (𝑆(𝑡𝑖)) of HMM is 

expected to be governed by emission distribution conditionally on underlying true states (𝑆∗(𝑡𝑖)) 

(Figure 3). The underlying states of Markov chain are determined based on the transition 

intensity matrix Q. In Hidden Markov models, observations were evolved based on unknown 

distributions, thus HMM are mixture models but based on the states in HMM the distribution 

involved changes with time. Hidden Markov models are the best option for studies involving 

population with chronic disease with definite interpretation of stages. (The msm package, version 

0.6.4, Jackson et al., 2003). 

 

 

 

Figure 3 : Depicting observed and unobserved states at three time points 
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The above figure indicates that the conditional distribution of (𝑆∗(𝑡2)) is determined only 

by the previous state(𝑆∗(𝑡1)). Similarly, the conditional distribution of (𝑆(𝑡2)) given all the 

process (𝑆∗(𝑡1)), (𝑆
∗(𝑡2)), (𝑆

∗(𝑡3)) and(𝑆(𝑡1)), (𝑆(𝑡3)) , it is determined only by the current 

underlying state(𝑆∗(𝑡2)). 

                                                                                 

Multi State Models with Misclassification 

   

Multi state model with misclassification is a type of Hidden Markov model where 

observed states are expected to be misclassified. Here the observed data are states, assumed to be 

misclassifications of the true, underlying states. The screening process or the diagnostic method 

used to identify disease state may subject to error at times. In such situation the true Markov 

disease process (𝑆∗𝑖(𝑡))  for an individual ‘i’ can only be observed through realizations (𝑆𝑖(𝑡)) 

and cannot be observed directly. Thus, the quality of a screening test or diagnostic test can be 

determined by the probability that the observed disease state and the true underlying states are 

equal.  (The msm package, version 0.6.4) 

 

Pr(Si(t) = m|S
∗
i(t) = m)                (6) 

                                                  

The sensitivity of the test or the probability that the test is a true positive is represented 

by the above equation when m is a positive disease state. If m is a disease free state, then the 
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above equation represents specificity, the probability that the diagnostic test truly identifies 

disease free subjects. (The msm package, version 0.6.4) 

In this study, multi-state model with misclassification is fit to the dementia data in order 

to simultaneously determine the misclassification probabilities and also address for 

misclassification in estimating the parameters. The observed disease states 𝑆𝑖𝑗 for subject i, at 

observation time 𝑡𝑖𝑗 will be determined conditionally on the true underlying states 𝑆∗𝑖𝑗 based on 

misclassification matrix E, where (m, n) entries are given by (equation 7) 

 

𝑒𝑚𝑛 = Pr⁡(𝑆(𝑡𝑖𝑗) = 𝑛|𝑆
∗(𝑡𝑖𝑗) = 𝑚⁡                 (7) 

 

Based on the knowledge of the screening or diagnosis process some of the 𝑒𝑟𝑠 might be 

fixed which is analogous to the entries of Q matrix. The misclassification matrix E governs the 

observed process of the underlying states.  

 

In this study, multi-state model is fit to dementia data to determine if addressing 

misclassification has impact on the effect of covariates on disease progression or regression. In 

order to develop a suitable multi state model that fit’s the data, the natural history of dementia 

and its screening methods should be understood which is briefly explained in next subsection. 
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Misclassification Probabilities using MSM      

 

The unique feature about Multi State Modeling is that the misclassification probabilities 

for transitions from one state to another can be determined when a multi-state model for more 

than 2 states is defined. The methodology involved in determining the misclassification 

probability can be explained by the formula shown in (equation 8). In order to investigate the 

explanatory variables for the misclassification probability for each pair of states, logistic model 

can be used. (The msm package, version 0.6.4) Probability of observing state 2 (mild cognitive 

impairment) given the underlying true state as state1 (no cognitive impairment) or state 3 

(dementia) is illustrated using (equations 10-11). 

 

Pr⁡(Yij = 2|⁡Sij = 1, cij; α) = Pr⁡(Yij = 2|⁡Sij = 3, cij; α) = ⁡
(exp(𝛼0+⁡𝛼1⁡𝑐ij))

1+exp(𝛼0+⁡𝛼1⁡𝑐ij)
    (8) 

 

If the true state is normal or dementia, then the possible misclassification rate is given by 

(equation 9). 

 

∫
exp(𝛼0+⁡𝛼1⁡x)

1+⁡exp(𝛼0+⁡𝛼1⁡x)
dx = ⁡

1

α1
[ln(1 + e𝛼0 + ⁡α1) − ln⁡(1 +⁡e𝛼0)]⁡⁡

1

0
           (9) 

  

This is the unique feature of multi state modeling where the misclassification 

probabilities can be estimated which is an added advantage of MSM. 
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CHAPTER FOUR: 

 SIMULATION STUDIES 

 

Study Design 

 

 Simulation study is conducted to illustrate the importance of addressing for 

misclassification in multi-state Markov models by evaluating and comparing the bias in the 

estimates for the disease progression Markov model with misclassification opposed to disease 

progression Markov model. 

 Simulation setting includes n = 3 states (state1, state2 and state3) and are assumed to 

follow Markov process. The sample size or number of subjects is 500 and 1000 replications are 

used for both models, multi-state model with misclassification and without misclassification. 

Subjects are assumed to start at any state of disease among the defined 3 stages at initial visit 

𝑡𝑖0 = 0  and are observed at 12 follow up visits at equal time intervals, 𝑡𝑖𝑗 where, 𝑗 =

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22⁡𝑎𝑛𝑑⁡24 months. All transitions were allowed for this 

simulation study which follows the general form of multi state Markov model shown in Figure 1. 

The transition intensity matrix Q is supplied with values ( 𝑞12 = 0.1, 𝑞13 = 0.01, 𝑞21 =

0.05, 𝑞23 = 0.1, 𝑞31 = 0.02, 𝑞32 = 0.07)⁡to generate the true states of disease. The diagonal 

values are ignored as each row sums to 1. The observed states are conditionally dependent on the 

true states with misclassification probabilities. The misclassification probability matrix 
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considered for simulation purpose is ⁡(𝑒12 =⁡𝑒13 =⁡𝑒21 = 𝑒23 = 𝑒31 = 𝑒32 = 0.30) . A 

prognostic covariate following binomial distribution is introduced with a proportion of 0.5 and 

the covariate effect on the matrix of transition intensities is considered to be same for all the 

transitions with a value of -0.3. Two scenarios were investigated in this study, model without 

covariates and model with one prognostic covariates to investigate the effect of misclassification 

on estimation of transition probabilities and on covariate effect on transition probabilities. Both 

scenarios follow the same scheme except the inclusion of covariate in which a multi-state 

Markov model addressing for misclassification is fit to the data and a separate multi state 

Markov model is fit to the data without addressing for misclassification using the same 

regression coefficients for the covariate in both models and the average of the estimated 

covariate effect on the transitions from all the simulations is calculated and were compared with 

the true covariate effect in order to examine the performance of both the models in order to 

visualize the effect of misclassification on estimates and show that if misclassification is not 

accounted while estimating the transition probabilities in multi-state models, it might lead to 

bias. A very limited research has been reported on addressing misclassification issue in multi-

state models and proving this concept theoretically is complex, thus simulation study is used to 

show the bias in estimates if misclassification has not been addressed. 

  

Simulation Results 

 

The results from simulation study for the scenario in which covariate is not included are 

compared between misclassification model and the MSM model in Table 1. It is observed that 
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the estimated transition intensities from Multi state model fit to the simulated data without 

addressing for misclassification are biased when compared to the true parameter. Results from 

the model with covariate were shown in Table 2 and the results suggest that the estimates from 

the model without addressing misclassification model were biased. Whereas the results from 

misclassification model in both scenarios (Multi state model is fit to the simulated data 

addressing misclassification) showed minimal or no bias when compared to true transition 

probabilities and true covariate effects. In order to assess the performance, the results were 

compared with the model without addressing for misclassification by reporting their bias from 

the true parameters in Table 1 These results strongly suggest that, there is significant impact of 

misclassification on estimation of the transition probabilities from one state to other state. 

Therefore, multi-state model with misclassification is proved to give unbiased estimates when 

compared to the multi-state model without addressing misclassification, which strengthens the 

argument that if misclassification not addressed in multi-state models, leads to bias and also the 

methodology proposed for addressing misclassification performs better compared to MSM 

without addressing misclassification.  
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Table 1 Results from simulation study – scenario without covariates, comparing the mean estimates from the model addressing 

misclassification and the model without addressing misclassification to the true transition probabilities. 

 

 

 

mean estimate Bias mean estimate Bias

Transitions

State 1 - State 1 0.898 0.899 0.001 0.439 -0.459

State 1 - State 2 0.045 0.043 -0.002 0.287 0.242

State 1 - State 3 0.019 0.02 0.001 0.295 0.276

State 2 - State 1 0.088 0.087 -0.001 0.302 0.214

State 2 - State 2 0.866 0.866 0.000 0.395 -0.471

State 2 - State 3 0.063 0.058 -0.005 0.306 0.243

State 3 - State 1 0.014 0.014 0.000 0.258 0.244

State 3 - State 2 0.089 0.089 0.000 0.319 0.23

State 3 - State 3 0.917 0.921 0.004 0.402 -0.515

True transition 

probability

Model addressing misclassification Model not addressing misclassification
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Table 2 Results from simulation study – scenario with covariate, comparing the mean covariate estimates from the model addressing 

misclassification and the model without addressing misclassification to the true covariate coefficient. 
 

mean estimate Bias mean estimate Bias

Transitions

State 1 - State 2 0.741 0.730 -0.011 0.763 0.022

State 1 - State 3 0.741 0.702 -0.039 0.542 -0.199

State 2 - State 1 0.741 0.605 -0.136 1.143 0.402

State 2 - State 3 0.741 0.785 0.044 1.115 0.374

State 3 - State 1 0.741 0.772 0.031 0.486 -0.255

State 3 - State 2 0.741 0.783 0.042 3.437 2.696

True covariate 

effect (exp(β))

Model addressing misclassification Model not addressing misclassification
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CHAPTER FIVE: 

 ILLUSTRATION USING DEMENTIA DATA 

 

 In this study, the proposed method of accounting for misclassification using hidden 

Markov models (multi state Markov model with misclassification) is illustrated using dementia 

data. 

 

Background on Dementia   

 

Although commonly used to refer to a disease state, the term “dementia” does not refer to 

a disease at all but rather a syndrome characterized by memory loss and impaired activities of 

daily living (ADLs). (American Psychiatric Association, 1994) Alzheimer’s disease is a complex 

neurodegenerative disease characterized by a decline in cognition, behavioral disturbance and 

reductions in daily functioning and independence.  Alzheimer’s disease is the most common 

form of dementia, accounting for 60-80% of all cases in epidemiological studies. (Knopman DS, 

1998)  

Alzheimer’s disease is a progressive brain disorder that slowly destroys memory and 

thinking skills and eventually, the ability to carry out the simplest tasks. In most people with 

Alzheimer’s, symptoms first appear in their mid-60s. Estimates vary, but experts suggest that 
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more than 5 million Americans may have Alzheimer’s. Dementia is the loss of cognitive 

functioning—thinking, remembering, and reasoning—and behavioral abilities to such an extent 

that it interferes with a person’s daily life and activities. (AD fact sheet, 2015)            

The classic neuropathological signs of Alzheimer’s disease are amyloid plaques and 

neuro fibrillary tangles.  Plaques consist largely of the protein fragment beta-amyloid. This 

fragment is produced from a "parent" molecule called amyloid precursor protein. The 

accumulation of neurofibrillary tangles and neuronal loss is initially observed in trans-entorhinal 

and entorhinal cortex (ERC), and subsequently in the hippocampus (HPC). (Braak & Braak, 

1991) Atrophy in the ERC and the hippocampus on MRI scans is also predictive of future 

cognitive decline and conversion to AD among individuals with Mild Cognitive Impairment 

(MCI). (Jack et al., 1999, 2000; Rusinek, 2003) 

Dementia cannot be diagnosed by a single test. It is generally diagnosed based on 

medical history, brain scans, physical exams, laboratory tests, characteristics changes in thinking 

and behavior and impact on day to day functions. Dementia can be determined at a high level of 

certainty but determining the exact stage of dementia is difficult because, the symptoms and 

brain changes can overlap. (Alzheimer’s Association) 

Analyzing such data in this context is very complicated and possible challenges in 

screening of stages of dementia are that the subjects are observed intermittently. For example, a 

healthy subject at first visit might die before his follow up visit and he might have transitioned to 

intermittent disease state without diagnosis. Even the exact transition time may not be known in 

most of the situations and it is also important to know the number of transitions occurred to 

determine the course of disease. Thus, for this study, this data is used to illustrate the application 
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of multi state model with misclassification to determine the impact of misclassification on effect 

of covariates in disease progression or regression. 

 

Data Source      

  

Data from subjects who participated in a diagnostic study of Alzheimer’s disease is used 

in this study. All subjects in this study completed subject evaluation which includes full clinical 

history, neurological evaluation, neurophysiologic tests, MRI brain scan, verbal learning test and 

standard blood tests. Consensus screening was performed on all the subjects by multiple 

clinicians as per National Alzheimer’s coordinating center NAAC protocol. The state of disease 

of subjects was determined according to national Institute of neurological and communicative 

Disorders and Stroke (NINCDS), Alzheimer’s disease and Related Disorders Association 

(ADRDA) criteria for AD. Subjects with no cognitive impairment, mild cognitive impairment 

and dementia were included in the study. The normal subjects, participants with no cognitive 

impairment were determined based on the cognitive score of informant interview, where there is 

no decline in cognition. Participants reported with stroke or transient ischemic attack or any 

cerebrovascular events were excluded from the study. 802 Subjects entered the study irrespective 

of their state of disease at first visit. Longitudinal evaluation procedure was used where subjects 

were followed and reevaluated at 1-year where 441 subjects turned out for follow up visit. Each 

subject’s state of disease was recorded at their follow up visit.          
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Specifying a Multi-State Markov Model   

 

 A multi-state Markov model is fit to the data using a progressive three state 

disease model in which a set of states (3 stages of disease) is considered and is shown in Figure 

4. It is well established that dementia is an irreversible disease which means that once if a subject 

is diagnosed with mild cognitive impairment, he/she is supposed to progress to dementia and 

recovery from dementia is not possible without surgical treatment. Thus, in this study transition 

from MCI to no cognitive impairment stage is considered as it is referred to natural recovery but 

recovery from dementia to MCI is not allowed in this study as possible transition unless it is 

misclassified because without surgical treatment, dementia is theoretically not possible to revert 

to lower stages of disease. 

 

                                                            𝑆 = ⁡ [𝑠1, 𝑠2, 𝑠3⁡]                         (6) 

 

Where, 

𝑠1 = Normal or No cognitive impairment,  

𝑠2 = MCI-Mild Cognitive Impairment,  

𝑠3 = Dementia. 

 

Figure 4: Dementia Progression Markov chain model 
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If the subject is at state 𝑆𝑖  and advances to 𝑆𝑗  with a probability 𝑃𝑖𝑗  (Transition 

probability) which is not dependent on the state in which the subject is prior to the present 𝑆𝑖 

state. If the subject remains in the same state, then the transition probability is given by𝑃𝑖𝑖. A 

common initial state is not specified for this study because; the data used for this study was 

collected from a diagnostic technique development study where participants enter the study 

irrespective of state. The demographics of the sample collected are shown in Table 3. 

 

Table 3: Demographics 
 

 

 

The Markov process for this study starts in one of the states mentioned in Figure 4 and 

moves successively from one state to the other. For example, if the subject is diagnosed with a 

mild cognitive impairment at his first visit, then his is screened again for his state of disease 

during his second visit, he might have progressed to next state of disease, reversed or recovered 

to the previous no disease state or might have stayed in the same state. Absorbing state is not 

included in the model. All this information is recorded for all the participants and used to 

determine the frequencies of transitions between the stages of dementia and were shown in Table 

4. Frequencies were reported for the participants who showed up for the follow up visit.  

NCI MCI Dementia

Sample size 258 412 132

Age, means(std) 72.65 (6.61) 75.03 (6.29) 76.53 (7.25)

Female % 69.69 52.42 52.76

Low education % 7.04 19.89 17.82

Apoe 4 % 25.48 30.53 51.85
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It is supposed that the cognitive impairment progresses from no cognitive impairment to 

Mild cognitive impairment and then progress to dementia and recovery to the adjacent previous 

stage are considered possible. Accordingly, a plausible transition intensity matrix is developed 

(equation 10). 

 

Table 4 Frequencies of transitions between stages of dementia 
 

 

 

𝑄⁡ = ⁡

(

 
 
 

−(𝑞12) 𝑞12 0

𝑞21 −(𝑞21 + 𝑞23) 𝑞23

0 𝑞32 −𝑞32)

 
 
 

          (10) 

 

It indicates progression and recovery from one stage to its adjacent stage and direct 

transition from no cognitive impairment to dementia or the reciprocal is not allowed as it is not 

possible medically in 1 year unless there is error in diagnosis. Using this transition intensity 

matrix, multistate model is fit to the data using msm package “R” This matrix is required to 

specify the allowed transitions and the transitions that are not allowed are given a value of 0. 

Initial values are supplied to all other possible transitions leaving the diagonal values in Q matrix 

Stage 1 Stage 2 stage 3

Stage 1 No Cognitive impairment 143 18 0

Stage 2 Mild Cognitive impairment 30 176 11

Stage 3 Dementia 0 7 56

Frequency of transitions
Initial stage

NCI MCI Dementia

Sample size 258 412 132

Age, means(std) 72.65 (6.61) 75.03 (6.29) 76.53 (7.25)

Female % 69.69 52.42 52.76

Low education % 7.04 19.89 17.82

Apoe 4 % 25.48 30.53 51.85
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as they are the negative value of the sum of all other transitions in that row and each row sums to 

1. Then, multi-state model is fit to the data by supplying the Q matrix with allowed transitions 

and appropriate initial values using msm package in R. (Jackson (2011); msm package R) 

 

Results from Fitting Multi State Model to Dementia Data 

 

Multi state model was fit to the data using three transition states and using apoe ε4 and 

low education as covariates without addressing for misclassification. Where transition 

probabilities and hazard ratios for disease progression and disease regression at one-year follow-

up were obtained and presented in Table 6. There is no significant effect in both disease 

progression and regression shown by gene Apoe ε4 and low education. 

According to the results from model-1 (model without accounting for misclassification), 

Apoe ε4 gene and low education do not show and significant effect on transition of disease from 

no cognitive impairment (state1) to mild cognitive impairment (state 2), mild cognitive 

impairment (state2) to dementia (state3) or the recovery from any state to its adjacent previous 

state. Therefore, claiming that positive Apoe ε4 gene and low education does not have effect on 

disease progression or disease regression 

 

Fitting Multi State Markov Model with Misclassification 

 

 Fitting general multi state Markov model to that data might lead to biased estimates as 

the screening or diagnosis of dementia states are subject to error. It should be noted that though 



 

25 

 

the transition from dementia to lower states is not theoretically possible, there are subjects 

showing transition from dementia to MCI which is possible only in case of misclassification. 

Therefore, the resulting model without addressing misclassification is compared with hidden 

Markov model to determine the transition misclassification rates. 

As stated before, for multi-state Markov model with misclassification it is assumed that 

the underlying true states follow Markov process with the matrix Q (transition intensity matrix) 

and the observed disease states are assumed to depend on the corresponding underlying true 

states with misclassification probability. Considering the irreversible nature of the dementia 

without surgical procedures and it is also known that only in rare situations recovery is possible, 

so the above mentioned model might be medically not realistic for majority of population. Thus, 

it is required to fit a multi-state Markov model with misclassification (Hidden Markov model) in 

order to account for misclassification. For that, the previous two intensity matrix is replaced by a 

one-way transition intensity matrix (equation 11) where recovery from any state is not 

considered. 

 

𝑄⁡ = ⁡

(

  
 

−𝑞12 𝑞12 0

0 −𝑞23 𝑞23

0 0 0 )

  
 

           (11) 

 

It is assumed that, state 1 (no cognitive impairment could be classified as either mild 

cognitive impairment or no cognitive impairment (state 1 or state 2). similarly, state 2 (mild 

cognitive impairment could be classified as no cognitive impairment or dementia or mild 
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cognitive impairment (state1, state2 or state3) and likewise, dementia (state 3) could be classified 

as state 2 (mild cognitive impairment) or state 3. Possible observed states for each underlying 

true state is depicted in Table 5 Based on these possibilities; the misclassification matrix is given 

below (equation 12) where rows represent underlying states and columns represent observed 

states. 

 

Table 5: Possible observed states for each underlying state for this study 
 

 

  

𝐸⁡ = ⁡

(

 
 
 

1 − 𝑒12 𝑒12 0

𝑒21 1 − 𝑒21 − 𝑒23 𝑒23

0 𝑒32 1 − 𝑒32)

 
 
 

       (12) 

 

The E matrix is defined in order to model the observed states with misclassification and 

the value is given as zero if there is no misclassification permitted and this is determined using 

Table 5 and all other misclassification probabilities (𝑒12⁡, 𝑒21, 𝑒23⁡𝑎𝑛𝑑⁡𝑒32)⁡were given an initial 

Underlying true state Possible observed state

State 1 

State 2

State 1 

State 2

State 3

State 2

State 3

State 1

State 2

State 3
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value of 0.1. Similar to the Q matrix, the diagonal values were ignored as the rows sum to 1. A 

Hidden Markov model is fit to the data along with the new Q matrix and E matrix to determine 

the misclassification probabilities. It is also investigated whether the misclassification 

probabilities depend on covariates by using the ‘misccovariates’ argument in msm. (Jackson 

(2011); msm package R)  

 

Results from Fitting Hidden Markov Model (Multi State Model with Misclassification) to 

Dementia Data 

 

 The results from model-2 (Hidden Markov model) to dementia data are contrary to that 

obtained from fitting multi state Markov model to dementia data for one of the disease 

progression transition. Though estimates for remaining transitions were in line with the estimates 

from model-1. Results from model-2 were shown in Table 6 which suggests that Apoe ε4 gene is 

significantly associated with the disease transition from mild cognitive impairment to dementia. 

There is no significant effect shown by Apoe ε4 gene for rest of the disease state transitions and 

also there is no significant association shown by low education on any of the disease state 

transitions related to neither disease progression or in the regression of the disease. The 

misclassification probabilities for each disease transition mentioned in the Q matrix were also 

estimated using this model. 
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Table 6 Comparing results from fitting dementia data with progressive multi state model and Hidden Markov model (multi state 

Markov model with misclassification) 
 

 

*Notes: HR is the estimated hazard ratio; 95% CI is the 95% confidence interval.    

HR* 95% CI p-value HR* 95% CI p-value HR* 95% CI p-value HR* 95% CI p-value

Progression of disease

NCI-MCI     1.094 (0.512-1.619) 0.772 1.732 (1.242-1.924) 0.375 1.122 (0.362-3.479) 0.101 2.43E-07 (0-1.428) 0.217

MCI-Dementia  1.973 (1.451-1.999) <0.0001 1.745 (0.469-1.986) 0.651 2.234 (0.772-6.466) 0.977 0.582 (0.129-2.624) 0.96

Regression of disease

MCI-NCI 0.104 (0.0001-1.967) 0.768 1.745 (0.469-1.987) 0.769 0.443 (0.167-1.172) 0.841 0.547 (0.208-1.427) 0.994

Dementia-MCI  1.35E-07 (0 - Inf) 0.6514 0.732  (0.101-1.724) 0.2244 4.63E-07 (0-Inf) 0.138 0.0004 (0-Inf) 0.481

Model addressing misclassification

Apoe ε4 Low education Apoe ε4 

Model not addressing misclassification

Low education
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Misclassification Probabilities  

 

Misclassification probabilities for the defined transitions in the Q matrix were estimated 

and shown in Table 7. The probability of observing no disease state given the underlying true 

state is no disease state is found to be 0.816, which is considered as 81.6% specificity of 

classifying a subject with no cognitive impairment as disease state 1. The probability of 

misclassifying Normal state as MCI is found to be 0.183(0.091, 0.334) and the probability of 

misclassifying MCI as Normal is found to be 0.0157(9.25e-12, 1.0). The probability of observing 

MCI given MCI state is found to be 0.984(2.24e-08, 1.0) which can be considered as sensitivity of 

observing MCI as 98.4%. Similarly, the probability of observing dementia given dementia is found to be 

0.997(1.42e-109, 1.0) which can also be considered as sensitivity of diagnosing dementia as 99.7%. The 

probability of misclassifying MCI as dementia is found to be 0.00012((2.88e-07, 0.049) and the 

probability of misclassifying Dementia as MCI is found to be 0.0028(1.12e-114, 1.0). Thus, the false 

positive rate for mild cognitive impairment stage is found to be 18% and false positive rate for dementia 

is found to be 0.012 %. 

 

Table 7 Misclassification probabilities 
 

 

                        

Underlying true state  Observed state Misclassification probability 95% CI

State 1 State 2 0.1834 (0.0914, 0.334)

State 1 0.0157 (9.25e-12, 1.0)

State 3 0.00012  (2.88e-07, 0.049)

State 3 State 2 0.0028  (1.12e-114, 1.0)

State 2
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DISCUSSION 

 

Most of the chronic diseases have a well-known natural staging system through which the 

disease progression is interpreted. It is well established that the transition rates from one stage of 

disease to other stage can be modeled by multi state Markov models. But, it is also well known 

that the screening systems used to diagnose disease states may subject to error some times. In 

this study simulation is used to illustrate the importance of addressing for misclassification in 

multi-state Markov models by evaluating and comparing the estimates for the disease 

progression Markov model with misclassification opposed to disease progression Markov model. 

These results from simulation study strongly suggest that the estimates from multi state model 

without addressing for misclassification lead to significant bias when compared to the true 

parameters and suggest better performance of multi state models with misclassification. The 

application of hidden Markov model (multi state model with misclassification) to real data is 

illustrated using dementia data and impact of misclassification on effect of covariates on disease 

transition is evaluated. 

It is well established that apoe ε4 is associated with Alzheimer’s disease but its 

association with Dementia is inconsistent. (Yi-Fang Chuang et al., 2010) There was minimal 

research on examining the association of apoe ε4 gene on transition of disease from one stage to 

the other. A general hidden Markov model was presented for estimating transition rates and 

probabilities of misclassification of stages of disease and concluded that regression of disease 

can be explained by misclassification. This is because even though Markov processes were well 
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established method of estimating rates of transition between each stage of disease, diagnosis of 

disease stages might be subject to error. (Jackson, Christopher H., et al, 2003) Results based on 

data from the Biologically Resilient Adults in Neurological Studies (BRAiNS) cohort, a 

longitudinal study of aging and cognition at the University of Kentucky Alzheimer’s Disease 

Center (UK ADC), demonstrated that well established risk factors for dementia (i.e., age, 

education, family history of dementia, apolipoprotein ε-4 status) were also risk factors for 

transitions from normal cognition to transient MCI states. (Kryscio et al, 2006, Salazar et al, 

2007) In this study we examined the association of apoe ε4 in disease incidence or progression 

from no cognitive impairment to mild cognitive impairment or from mild cognitive impairment 

to dementia and also examined the association of apoe ε4 in disease regression from mild 

cognitive impairment to no cognitive impairment after accounting for misclassification.  

To test this hypothesis, data with subjects at different stages of dementia who were 

followed up for 1 year was used. Multi state model with misclassification was fit to the data to 

test the mentioned hypothesis. This idea is supported by other studies where the impact of 

misclassification of age-related macular degeneration(AMD) on baseline intensity and estimated 

effects of age, sex on incidence, progression and regression of AMD. (Ronald E. Gangnon et al, 

2014) and employing hidden Markov model allowing for misclassification is well suited to 

analysis of health service databases to determine the transition probabilities between two states, 

and of misclassification and capture bias due to the fact that the quality and accuracy of the 

available information are not always optimal. (Nicola Bartolomeo et al, 2011)  

 It is well established that apoe-4 protein levels contribute to the risk of Alzheimer’s 

disease (Laws, Simon M., et al, 2003) and the association between apoe-4 and vascular dementia 

in a large population based cohort was examined for ten years and concluded that the apoe-4 
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allele is associated with increased risk of vascular dementia in a dose dependent fashion. 

(Chuang, Y-F., et al. 2010) There are several other studies which proved association of apoe-4 

with Alzheimer’s disease but there is lack of evidence through studies showing effect of apoe-4 

in disease progression and regression which is addressed in this study. 

In this study multi state model with misclassification is used to account for the 

misclassification and found that after addressing for misclassification, apoe ε4 gene explains the 

disease progression from mild cognitive impairment to dementia. Apoe ε4 gene is found to have 

significant association with the transition of disease state from mild cognitive impairment to 

dementia which was masked when multi state model was fit to the data without addressing for 

misclassification. 

There is no significant association of Apoe ε4 gene found with other transitions. In this 

study we also estimated if there is any association of low education with disease incidence, 

progression or regression with and without addressing for misclassification and found there is no 

significant association of low education. The unique ability of multi state modeling is portrayed 

in a well explainable manner in this study where the methodology behind the ability of the multi-

state model to determine the misclassification probabilities of the disease state even in situation 

where gold standard is not available. As an improvement to the general multi state modeling, 

multi-state model with misclassification is fit to the data in order to address misclassification 

issues in an effective method. The misclassification probability of diagnosing normal subjects as 

mild cognitive impairment subjects is 18.3% and probability of misclassifying MCI subjects as 

normal is 1.57% and probability of misclassifying MCI subjects as dementia patients is 0.012% 

and probability of misclassifying Dementia patients as subjects with MCI is 0.28%. This proves 

that misclassification of the disease state has occurred during diagnosis.  
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Following up the subjects for only 1 year is one of the limitations of this study and 

following up for at least 5 years is recommended in order to capture the disease transitions 

involving intermittent stages. While this study focused on three state models for analysis, further 

analysis is recommended by considering amnestic MCI and non-amnestic MCI to be more 

specific in terms of disease transitions and also transition from dementia to MCI can be 

considered if the treatment involved in recovery is included in to the model. As recovery from 

dementia is being made possible due to recent advancements in treatment it could be considered 

in future research. In simulation study including different rates of misclassification in increasing 

fashion like 10%, 20% and 30% is recommended to determine the effect of misclassification at 

different rates to study the misclassification impact in more detailed perspective. 
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APPENDICES 

 

The R code used for simulation is shown below. 

 

#Simulation study without covariate 

 

sim_misdf = vector("list", 1000) 

test.mis = vector("list", 1000) 

test_mis.msm = vector("list", 1000) 

ti.mis = vector("list", 1000) 

test.msm = vector("list", 1000) 

ti = vector("list", 1000) 

 

for (i in 1:1000) { 

  

sim_misdf[[i]] <- data.frame(subject = rep(1:500, rep(13,500)), time = rep(seq(0, 24, 2), 500)) 

 

qmatrix <- rbind(c(-0.11, 0.1, 0.01 ), 

                 c(0.05, -0.15, 0.1 ), 

                 c(0.02, 0.07, -0.09)) 

 

ematrix <- rbind(c(0, 0.3, 0.3 ), 

                 c(0.3, 0, 0.3 ), 

                 c(0.3, 0.3, 0 )) 

 

test.mis[[i]] <-simmulti.msm(sim_misdf[[i]], qmatrix,ematrix =ematrix ,death = FALSE) 

 

Q1  <- rbind(c(1,1,1),c(1,1,1),c(1,1,1)) 

 

test_mis.msm[[i]] <- msm(obs~time,subject=subject,data=test.mis[[i]],qmatrix= Q1) 

 

ti.mis[[i]]<- test_mis.msm[[i]]$Qmatrices 

 

write.csv(ti.mis[[i]], file=paste0('timis', i, '.csv'), row.names=FALSE) 

 

test.msm[[i]]  <- msm(state~time,subject=subject,data=test.mis[[i]],qmatrix= Q1) 

 

ti[[i]]<- test.msm[[i]]$Qmatrices 
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write.csv(ti[[i]], file=paste0('newsim', i, '.csv'), row.names=FALSE) 

 

} 

 

#simulation study including covariate  

 

sim_cov_truedf = vector("list", 1000) 

cov_true = vector("list", 1000) 

cov_true.msm = vector("list", 1000) 

cov_true_hr = vector("list", 1000) 

cov_mis.msm = vector("list", 1000) 

cov_mis_hr = vector("list", 1000) 

 

for (i in 1:1000) { 

     

sim_cov_truedf[[i]] <- data.frame(subject = rep(1:500, rep(13,500)), time = rep(seq(0, 24, 2), 

500), x=rep(rbinom(500,1,0.5),rep(13,500))) 

 

qmatrix <- rbind(c(-0.11, 0.1, 0.01 ), 

                 c(0.05, -0.15, 0.1 ), 

                 c(0.02, 0.07, -0.09)) 

ematrix <- rbind(c(0, 0.3, 0.3 ), 

                 c(0.3, 0, 0.3 ), 

                 c(0.3, 0.3, 0 )) 

 

cov_true[[i]] <-simmulti.msm(sim_cov_truedf[[i]], qmatrix,covariates=list(x = c(-0.3,-0.3,-0.3,-

0.3,-0.3,-0.3)),ematrix = ematrix) 

 

Q  <- rbind(c(1,1,1),c(1,1,1),c(1,1,1)) 

 

cov_true.msm[[i]] <- msm(state~time,subject=subject,data=cov_true[[i]],qmatrix= Q,covariates 

= ~x, method='BFGS') 

 

cov_true_hr[[i]] <-hazard.msm(cov_true.msm[[i]]) 

 

write.csv(cov_true_hr[[i]], file=paste0('hrcov_t', i, '.csv'), row.names=FALSE) 

 

cov_mis.msm[[i]] <- msm(obs~time,subject=subject,data=cov_true[[i]],qmatrix= Q,covariates = 

~x,method='BFGS') 

 

cov_mis_hr[[i]] <-hazard.msm(cov_mis.msm[[i]]) 

 

write.csv(cov_mis_hr[[i]], file=paste0('hrcov_mis', i, '.csv'), row.names=FALSE) 

 

} 
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