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Abstract 

 

 

In longitudinal studies, the exact timing of an event often cannot be observed, and is 

usually detected at a subsequent visit, which is called interval censoring. Spacing of the visits is 

important when designing study with interval censored data. In a typical longitudinal study, the 

spacing of visits is usually the same across all subjects (balanced design). In this dissertation, I 

propose an unbalanced design: subjects at baseline are divided into a high risk group and a low 

risk group based on a risk factor, and the subjects in the high risk group are followed more 

frequently than those in the low risk group. Using a simple setting of a single binary exposure of 

interest (covariate) and exponentially distributed survival times, I derive the explicit formula for 

the asymptotic sampling variance of the estimate for the covariate effect. It shows that the 

asymptotic sampling variance can be simply reduced by increasing the number of examinations 

in the high risk group. The relative reduction tends to be greater when the baseline hazard rate in 

the high risk group is much higher than that in the low risk group and tends to be larger when the 

frequency of assessments in the low risk group is relatively sparse. Numeric simulations are also 

used to verify the asymptotic results in small samples and evaluate the efficiency of the 

unbalanced design in more complicated settings. Beyond comparing the asymptotic sampling 

variances, I further evaluate the power and empirical Type I error from unbalanced design and 

compare against the traditional balanced design. Data from a randomized clinical trial for type 1 

diabetes are further used to test the performance of the proposed unbalanced design, and the 
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parametric analyses of these data confirmed the findings from the theoretical and numerical 

studies. 
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Chapter 1: Introduction

Longitudinal study can be defined as a study in which each individual is observed on more

than one occasion. In most biomedical researches or epidemiology studies, when designing a

longitudinal study, the same visit or assessment schedule is usually planned for all the participants

in the study. Although due to some practical reasons, the assessment times will not be exactly the

same across all the participants, for example, missed visits, early dropouts, or simply visit times

out of the pre-define windows, however, by study design, all the participants should follow the

same assessment schedule. In this dissertation, I simply name this type of design as “balanced

design” in order to differentiate it from the next design I will introduce here.

In rare occasions, we might also see some longitudinal studies with visit or assessment sched-

ules adaptive to different participants based on their data collected during the studies. In this dis-

sertation, I name this type of design as “unbalanced design”. My study in this dissertation will

focus on a new type of “unbalanced design” with increased frequency of assessment among those

participants who have higher risk for the study outcome, as defined by one or more risk factors

measured in the study, when collecting interval-censored time to event data. I hypothesize that this

type of design can improve the efficiency of parameter estimation and power of the study when

collecting and analyzing interval-censored time to event data.

In this chapter, first, I will review some examples of longitudinal studies with either balanced

or unbalanced design, then, I will explain the rationale on why I intend to study the use of unbal-

anced design when collecting interval-censored time to event data. To help with understanding the

issues associated with interval-censored time to event data and the theoretical derivation process in

Chapter 2, as well as data analyses in Chapter 3, I will also review some basic theories and methods
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associated with survival analysis for interval-censored data. This chapter, by no means, provides

an extensive review for all the analysis methods developed interval-censored time to event data,

instead, I mainly focus on the basic theory for those methods used in the following two chapters.

1.1 Balanced Design

As previously defined, in balanced design, all study participants have the same visit/assess-

ment schedule. The visits/assessments in the longitudinal studies can be either evenly spaced or

unevenly spaced throughout the study follow-up period. Examples for longitudinal studies with

evenly spaced visit/assessment schedule include the well-known long-running Framingham Heart

Study, which identifies common factors that contribute to cardiovascular disease (CVD). This study

started in 1948, and since then, the participants return to the study every two years for a detailed

medical history, physical examination, and laboratory test (Framingham Heart Study, n.d.). An-

other example is the HIV Vaccine Trial in Thai Adults, which is a phase III placebo-controlled

HIV prevention trial conducted at Thailand. This study enrolled more than 16,000 HIV negative

participants, and after the treatments were given, HIV infection was assessed every 6 months for 3

years (ClinicalTrials.gov, 2012).

Examples for longitudinal studies with unevenly spaced visit/assessment schedule include

the Dunedin Multidisciplinary Health and Development Study, an ongoing, longitudinal study of

the health, development and well-being of a general sample of New Zealanders born between April

1, 1972 and March 31, 1973. They were studies at birth, followed up and assessed at age three,

and then at ages 5, 7, 9, 11, 13, 15, 18, 21, 26, 32 and 38 (the most recent assessment) (Dunedin

Multidisciplinary Health & Development Research Unit, n.d.). Another example is the COLON

Study, a currently ongoing longitudinal, observations study on nutrition and lifestyle factors that

may influence colorectal tumour recurrence, survival and quality of life. In this study, at least 1000

incident colorectal cancer patients will be recruited from 11 hospitals in the Netherlands, and data

will be collected at recruitment, after 6 months, 2 years, and 5 years (Winkels et al., 2014).
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Besides above examples from observational longitudinal studies, unevenly spaced visit/assess-

ment schedule is also very common in randomized controlled trials (RCTs). For example, in an

ongoing phase III randomized, placebo-controlled clinical trial for assessing hormone therapy with

or without everolimus in treating patients with breast cancer, participants are treated by either en-

docrine therapy with placebo or endocrine therapy with everolimus for one year. After completion

of study treatment, participants are followed up every 6 months for 2 years and then yearly there-

after for 10 years (ClinicalTrials.gov, 2016).

Among those studies with unevenly spaced visit/assessment schedule, although assessment

times in some studies do not have obvious pattern, a lot of them tend to have more frequent ob-

servations at the beginning of the study than the later phase of the study, because it is expected

that changes will happen faster during the early phase of the study, such as those studies which

enrolled newborns (Dunedin Multidisciplinary Health & Development Research Unit, n.d.), newly

diagnosed patients (Winkels et al., 2014), or a new treatment (ClinicalTrials.gov, 2016).

No matter evenly spaced or unevenly spaced assessment times, in each of above studies, the

follow-up schedule is the same among all subjects in the study when ignoring early dropout and

missed visits. Therefore, they belong to the concept of “balanced design” as I defined previously.

This design is widely used because it is convenience for study management and statistical analysis

is more straightforward (e.g. direct group comparisons can be done at every data collection time

point).

1.2 Unbalanced Design

As previously defined, in unbalanced design, visit/assessment schedule varies across dif-

ferent subjects based on some observed data or simply the assigned treatment groups in RCTs.

For example, in a randomized clinical trial conducted by the Diabetic Retinopathy Clinical Re-

search Network (DRCR.net) for comparing panretinal photocoagulation (PRP) vs. intravitreous

ranibizumab for the treatment of proliferative diabetic retinopathy (PDR), the study eyes were



4

randomly assigned to two treatment arms. One treatment arm received PRP with ranibizumab as

needed for diabetic macular edema (DME) treatment, the other treatment arm received 0.5 mg

ranibizumab by injection with PRP allowed for cases of treatment failure. In the PRP treatment

group, assessment visits occurred every 16 weeks; the ranibizumab group had more frequent visits

than the PRP treatment group – besides the assessment visits at every 16 weeks, the participants

in this group also had additional treatment visits every 4 weeks during the first year and every 4 to

16 weeks during the second year depending on treatment (Diabetic Retinopathy Clinical Research

Network [DRCR.net], 2015).

An another example is also a RCT conducted by the same research group for comparing the

efficacy of ranibizumab plus prompt or deferred laser with triamcinolone plus prompt laser for

DME treatment. In this study, the study eyes were randomly assigned to 1 of 4 treatment groups:

group 1 received sham injection plus prompt laser treatment, group 2 received 0.5 mg intravitreal

ranibizumab plus prompt laser treatment, group 3 received 0.5 mg intravitreal ranibizumab with

deferred laser treatment, and group 4 received 4 mg intravitreal triamcinolone plus prompt laser

treatment. During the first year, the follow-up visits occurred every 4 weeks for all 4 groups, and

after the first year, the follow-up visits occurred every 4 to 16 weeks depending on the treatment

group, disease course, and treatment administered (DRCR.net, 2010).

In above two examples, the follow-up visits schedule was determined by the particular treat-

ment received during the trials. Based on some private conversations with key personnel in the

DRCR.net study group, the reason for such kind of unbalanced design with one treatment group

having more frequent visits than another was mainly due to medical necessity.

Another example of unbalanced design is the TrialNet TN-01 Pathway to Prevention Study

(originally called Natural History Study of the Development of Type 1 Diabetes), which is an on-

going observational longitudinal study to evaluate the development of type 1 diabetes (T1D). This

study includes three phases: screening, baseline risk assessment, and follow-up risk assessments.

In a more recent revision of the study protocol, the study follow-up schedule changed from every 6
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months for all the subjects in the follow-up risk assessment phase (Type 1 Diabetes TrialNet, 2009)

to either annual monitoring or semi-annual monitoring depending on the risk factor measured from

the study (Type 1 Diabetes TrialNet, 2011). In the revised protocol, at screening, participants who

are positive for at least two autoantibodies on the same sample directly enter into semi-annual mon-

itoring; participants with a single autoantibody need to undergo a baseline monitoring visit. The

results of lab tests conducted at baseline monitoring visit determine whether a participant enters

into annual monitoring or semi-annual monitoring. Participants with ≥ 2 autoantibody, abnormal

glucose tolerance, an HbA1c ≥ 6.0%, or a DPT-1 Risk Score ≥ 6.5 enter into semi-annual mon-

itoring, and the others enter into annual monitoring. In subsequent visits, the same lab tests are

conducted among those participants in the annual monitoring group, those who develop ≥ 2 posi-

tive autoantibodies, an HbA1c level ≥ 6.0%, or an increase in the HbA1c level ≥ 0.5% compared

with the previous HbA1c level enter into the semi-annual monitoring stage (Type 1 Diabetes Trial-

Net, 2011). This study is an example that visit schedule depends on certain risk factors measured

during the study, however, it is unknown why this study adopted this type of unbalanced design.

Overall, the longitudinal studies with unbalanced design are much less than the longitudinal

studies with balanced design. Among those limited examples, the main factor determining the un-

balanced visit schedule was based on medical consideration, not on statistical consideration. And

currently, there is no publication systematically evaluating the balanced design and unbalanced

design in statistical perspective (i.e. bias and precision).

1.3 Interval-Censored Time to Event Data and Analysis Methods

1.3.1 Survival Analysis

Survival analysis is a branch of statistics which concerns about failure time, or event time,

i.e., the time elapsed from a specified starting point until a failure or event occurs. In biomedical

or epidemiology research, a failure time could be, for example, the age when a subject develops
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certain disease, the time from a treatment until disease progression, or the time of death after

developing certain disease, etc.

In survival analysis, event time can only be non-negative (T ≥ 0). The basic quantity to

describe time to an event is the survival function, i.e., the probability of an individual surviving

beyond time t. It is defined as S(t) = Pr(X > t). When X is a continuous random variable, we

have S(t) = 1 − F (t) =
∫∞
t
f(u)du, where F (t) is the cumulative density function (CDF) and

f(t) is the corresponding probability density function (PDF).

Another basic quantity in survival analysis is the hazard function. The hazard rate is defined

by h(t) = lim∆t→0 P [t ≤ X < t + ∆t]/∆t. When X is a continuous random variable, the hazard

rate h(t) = f(t)
S(t)

= −d ln[S(t)]/dt, and the cumulative hazard function is defined by H(t) =∫ t
0
h(u)du = − ln[S(t)].

1.3.2 Censored Data

A common feature of the data sets with failure time or time to an event outcome is that they

often contain censored observations. In statistics, the term censoring refer to a condition in which

observed data contain incomplete information. Censored data arises when the event is known to

occur only in a certain period of time.

The most common encountered type of censoring in biomedical or epidemiology research

is right censoring. This type of censoring occurs when a subject leaves the study before an event

occurs, or the study ends before the event has happened. For example, consider a 5-year clinical

trial to study the effect of a treatment on stoke occurrence, for those patients who have had no

strokes by the end of 5 years, then their event time will be estimated by (5,∞).

Another common type of censoring is called interval censoring, where the only information

available is that the event occurs within certain interval. This type of censoring occurs when

patients in a clinical trial or longitudinal study have periodic follow-up and the event time is only
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known to fall in an interval (Li, Ri], where Li is the left endpoint and Ri is the right endpoint of

the censoring interval for the ith subject.

Another type of censoring is left censoring, where the individual already experienced the

event of interest before the first visit in the study. Left-censoring can be treated as a special case

of interval censoring with Li = 0, so the true event time Ti falls in the interval (0, Ri] and Ri is

the period of time from the beginning of the study until the first visit. Right censoring can also be

treated as a special case of interval censoring where Ri = ∞, so Ti falls in the interval (Li,∞)

and Li is the last observation time.

A general assumption in analyzing censored data is the censoring times and event times are

independent (also called noninformative censoring) (Klein and Moeschberger, 2003). The methods

described in below sections and used in this dissertation all imply this assumption.

1.3.3 Parametric Methods

The parametric methods assume that event times follow a specific parametric distribution,

then parameters in the function can be easily estimated by using the on maximum likelihood theory.

For interval censored data, the likelihood function L ∝
∏

i∈I [S(Li)− S(Ri)], where Li is the left

endpoint andRi is the right endpoint of the censoring interval for the ith subject. For right-censored

data, we have S(Ri) = S(∞) = 0, and for left-censored data, we have S(Li) = S(0) = 1.

Exponential Distribution

Since the event time is always positive and the distribution is usually right-skewed, in the

parametric models used for estimation of survival functions, exponential distribution is the simplest

and convenient choice. It only has one parameter to estimate and assumes constant hazard rate. It

can be represented in following way (Klein and Moeschberger, 2003):

T ∼ exp(λ), λ > 0 f(t) = λ exp(−λt)



8

h(t) = λ S(t) = exp(−λt)

Therefore, the likelihood function for a data set which only contains interval-censored data (or in

combination with left- or right-censored data) with exponential distribution of event time can be

written as

L =
n∏
i=1

[exp(−λLi)− exp(−λRi)], (1.1)

where Li = 0 for left-censored observations and Ri =∞ for right-censored observations.

Weibull Distribution

Weibull distribution is another important and commonly used parametric model in estimation

of survival functions. It has two parameters and can be represented in following way (Klein and

Moeschberger, 2003):

T ∼ Wb(α, λ), α, λ > 0 f(t) = αλtα−1 exp(−λtα)

h(t) = αλtα−1 S(t) = exp(−λtα)

where λ is a scale parameter and α is a shape parameter. Therefore, the likelihood function for

interval-censored data with Weibull distribution of event time can be written as

L =
n∏
i=1

[exp(−λLαi )− exp(−λRα
i )], (1.2)

where Li = 0 for left-censored observations and Ri =∞ for right-censored observations.

Weibull distribution has the advantage of being adaptable to many different shapes: when

α = 1, it reduces to the exponential distribution with constant hazard rates; when α < 1, it

represents decreasing hazard rates; and when α > 1, it represents increasing hazard rates. This

property, coupled with the relatively simple hazard, survival and probability density functions,

have made it a very popular parametric model.
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Although there are also other distributions used in parametric survival analysis, such as

Gamma distribution, log normal distribution, log logistic distribution, etc., in this dissertation, I

only use exponential distribution and Weibull distribution to explore the gained efficiency by using

unbalanced design.

Regression Models

When there are covariates present in the data, we need to use regression models to specify

how the covariates affect the failure time of interest. There are multiple choices of regression

models available for survival data with covariates, herein, we only introduce two commonly used

models, with one of them be used in theoretical derivation process in Chapter 2.

One commonly used model is the proportional hazard (PH) model. Let Z be a vector of

covariates, the PH model assumes that the hazard function of T has the form

h(t;Z) = h0(t) exp(Z′β) (1.3)

given covariates Z (Cox, 1972). In the above formula, λ0(t) is an arbitrary baseline hazard func-

tion, and β is the vector of regression parameters. In the parametric case when T follows exponen-

tial distribution, we have h(t) = λ, and thus λ = λ0 exp(Z′β). Therefore, equation (1.1) can be

expressed as

L =
n∏
i=1

[exp(−λ0e
Z′βLi)− exp(−λ0e

Z′βRi)]. (1.4)

This model is used in Chapter 2.

Another commonly used model is the accelerated failure time (AFT) model. In the AFT

model, the effect of covariates directly works on the failure time T instead of hazard function as

above. This model assumes T = T0 exp(Z′β), where T0 is the failure time for the individual with
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covariate value 0. When taking natural logarithms, the AFT model can be expressed as

log(T ) = log(T0) +Z′β.

If we assume that log(T0) = µ + σW , where W is a random variable, then above model can be

written in a linear form:

log(T ) = µ+Z′β + σW. (1.5)

This model is used by PROC LIFEREG module in SAS.

1.3.4 Imputation Based Methods

The purpose of imputation when analyzing interval-censored data is to generate one or multi-

ple sets of right-censored data, then apply the standard methods for the right-censored failure time

data on the imputed data in order to make inference. The imputation approaches include single

point imputation and multiple imputation.

Single Point Imputation Approach

Single point imputation is the simplest imputation approach which is commonly used in

practice. For subject i, if the true failure time Ti is within an interval (Li, Ri], i = 1, . . . , n, a

conventional approach adopted in the industry is to impute the right-point (Ri) of the time interval

as the true failure time. Another commonly adopted approach is to impute the mid-point of the

time interval as the true failure time, and a less frequently adopted approach is to impute the left-

point of the time interval as the true failure time. For intervals with Ri = ∞ or right-censored

observations, the original observations are kept and no imputation is needed. Then we have a set

of right-censored failure time data, and can apply standard survival analysis methods for right-

censored data to the imputed data. To analyze right-censored data, there is a widely accepted

standard by the pharmaceutical industry: the Kaplan-Meier estimator (Kaplan and Meier, 1958) is

used in estimation of survival curve; the log-rank test is used for hypothesis testing of treatment
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effect; and the Cox’s proportional hazards model is used to estimate treatment effect given other

covariates (Cox, 1972).

When all the finite observation time intervals are narrow, above three imputation methods

will give similar results. In addition, when all the assessment intervals are equal for all subjects

(i.e. evenly spaced visits under balanced design), all three imputation methods will yield the same

result because the ordering of event times remains intact no matter which imputation method is

used. The biggest advantage of the single-point imputation approach lies in its simplicity, since

inference can be easily performed using existing software packages. If all the intervals are narrow

or there are only minimal overlapping among the intervals, this approach can provide a reasonable

approximation to the inference based on observed data. However, in general, this approach may

not be reliable, and it can create serious bias especially when the assessment schedule is differ-

ent among treatment groups (e.g. unbalanced design) (Sun and Chen, 2010; Tang, Holland, and

Sridhara, 2008).

Multiple Imputation Approach

For multiple imputations on the true failure times, we need to use some data augmentation

algorithms (Tanner, 1991; Tanner and Wong, 1987) to impute values for Ti several times and get

estimates iteratively. When our interest is to make inference about some unknown parameter θ, the

general steps for multiple imputation are as follows:

Step 0. Given an initial value θ̂(0) and set Ŝ(0)(t) = S(t; θ̂(0)).

step 1. At the lth iteration and kth imputation: let T (k,l)
i = Li and δ(k,l)

i = 0 if Ri =∞, otherwise,

sample T (k,l)
i from Ŝ(l−1) conditional on T (k,l)

i ∈ (Li, Ri] and δ(k,l)
i = 1. This gives M sets of

right-censored data

{T (k,l)
i , δ

(k,l)
i ,Zi; i = 1, ..., n}, (1.6)

k = 1, ...,M .

Step 2. For each of the M sets of right-censored data generated in step 1, obtain an estimate θ̂(k,l)
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and the variance parameter Σ̂(k,l).

Step 3. Determine the updated estimator θ by

θ̂(l) =
1

M

M∑
k=1

θ̂(k,l), (1.7)

and the variance function can be estimated by

Σ̂(l) =
1

M

M∑
k=1

Σ̂(k,l) +

(
1 +

1

M

)∑M
k=1[θ̂

(k,l)
t − θ̂(l)

t ][θ̂
(k,l)
t − θ̂(l)

t ]′

M − 1
. (1.8)

Step 4. Repeat steps 1-3 until converge.

In Step 3, the first term of (1.8) represents the within-imputation estimation and the sec-

ond term represents the between-imputation estimation for variance of θ. For Step 0, the initial

value can be simply obtained by applying the single point imputation approach (e.g. mid-point

imputation) to the observed data and use the resulting estimate.

1.3.5 Nonparametric Methods

Nonparametric Maximum Likelihood Estimation (NPMLE)

In the case of right-censored failure time data, the Kaplan-Meier estimator (Kaplan and

Meier, 1958) provides the NPMLE of a survival function, which is very simple and has been

extensively studied in the literature. However, for the interval-censored failure time data, the non-

parametric inference can be quite complicated and the NPMLE of a survival function usually does

not have a closed form, thus can only be estimated using iterative algorithms.

The first person who proposes a nonparametric method for estimating the survival function

of interval-censored data is Peto (1973), who uses a Newton-Raphson method to estimate the

NPMLE, then Turnbull (1976) formulates an self-consistency algorithm to estimate the NPMLE
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for interval-censored data. This algorithm can be regarded as an application of the expectation-

maximization (EM) algorithm. Consider a failure time study which consists n independent subjects

with survival function S(t), let Ti denote the true failure time of subject i, i = 1, ..., n, and Ti is

censored by interval [Li, Ri] (both Peto (1973) and Turnbull (1976) assume a closed censoring

interval). Then the likelihood function is

L =
n∏
i=1

[S(Li)− S(R+
i )]. (1.9)

where S(R+
i ) means lim∆→0+ S(Ri + ∆).

Since the observed event times only occur within potentially overlapping intervals, the sur-

vival curve can only jump within so-called equivalence sets [qj, pj], j = 1, ...,m, where qj ≤ pj <

qj+1 ≤ .... Between pj and qj+1 the curve is flat. The estimate of S(t) is unique only up to these

equivalence classes, therefore, any function that jumps the appropriate amount within the equiv-

alence class will yield the same likelihood. This estimator has no closed form, and Turnbull’s

algorithm is presented below.

To construct the estimator, define sj = S(qj) − S(pj), 1 ≤ j ≤ m, then the vector s =

(s1, ..., sm)′ where
∑
sj = 1 and sj ≥ 0, defines equivalence classes on the space of the survival

functions which are flat outside these equivalence classes. For 1 ≤ i ≤ n, 1 ≤ j ≤ m, let αij = 1

if Ti ∈ [qi, pi] and 0 otherwise. Then the expected number of events occur within time interval

[qj, pj] is given by

dj =
n∑
i=1

αijsj∑m
k=1 αiksk

, j = 1, ...m. (1.10)

The steps for obtaining Turnbull’s estimator are as follow:

Step 1. Make an initial guess on s0
j(1 ≤ j ≤ m). This can be any set of positive numbers summing

to unity, e.g. sj = 1/m for all j.

Step 2. Compute expected value dj from equation (1.10) and obtain an updated estimator s1
j =



14

dj/n for 1 ≤ j ≤ m.

Step 3. Return to step 1 with s1 replacing s0, etc.

Step 4. Stop when the required accuracy has been achieved.

Besides the self-consistency algorithm developed by Turnbull (1976), an iterative convex

minorant (ICM) algorithm is proposed by Groeneboom and Wellner (1992) to estimate the survival

function, and later, Wellner and Zhan (1997) develop a hybrid algorithm which combines the self-

consistency and ICM algorithms together, named as EM-ICM algorithm. All three algorithms are

implemented in SAS PROC ICLIFETEST module.

Comparison of Survival Functions

Comparison of treatment is usually one of the primary objectives in most biomedical studies

such as clinical trials. In the case of right-censored data, log-rank test is usually applied as a

standard test. The two sample log-rank test statistic can be written as

U =
m∑
j=1

(
d1j −

djn1j

nj

)
,

where m is the number of failure times, d1j is the number of failures in group one and dj is the

number of failures in both groups at time j. Similarly, n1j is the number at risk for a failure in the

first group, and nj is the number at risk in both groups at time j. Then, the statistic U is divided by

its standard error and compared to a standard normal distribution.

For interval-censored data, Finkelstein (1986) derives a score test under continuous propor-

tional hazards model. Based on the discrete logistic model, Sun (1996) proposes a test statistic

which is considered as generalization of the original log-rank test. Fay (1996) obtains another test

under the proportional odds model, he categorizes all three tests as a family of weighted log-rank

tests and attempts to construct a unified framework of comparing survival functions for interval-

censored data (Fay, 1999).



15

For interval-censored data Ti ∈ (Li, Ri], we assume Li, Ri ∈ {s0, ..., sm+1}, where sm+1 =

∞ for right-censored data. Let αij = 1 if Li < sj ≤ Ri, and 0 otherwise. We wish to test for any

difference between k treatments. For the ith subject, let zi be a k × 1 vector of zeros except for

the lth row which is one. Under the null hypothesis, the statistic for the lth treatment group, where

1 ≤ l ≤ k, takes the form

Ul =
m∑
j=1

wj

[
d′jl −

n′jld
′
j

n′j

]
, (1.11)

wherewj is the weight, depending on the particular model specified (Fay, 1999), d′jl is the expected

number of failures in time interval (sj−1, sj] for the lth treatment group, d′j represents the expected

total number of failures in all treatment groups, and similarly, n′jl and n′j represent the expected

numbers at risk. Under the null hypothesis, we have

d′jl =
n∑
i=1

zil
αij(Pj−1 − Pj)∑m+1
j=1 αij(Pj−1 − Pj)

(1.12)

and

n′jl =
n∑
i=1

zil

∑m+1
k=j αik(Pk−1 − Pk)∑m+1
j=1 αij(Pj−1 − Pj)

, (1.13)

where Pj = Pr(T > sj|zi).

Regression Analysis

As I mentioned previously, Cox’s PH model is perhaps the most commonly used method

in regression analysis of right-censored failure time data, because of the availability of the partial

likelihood function derived under the model (Cox, 1972). A key advantage of the partial likelihood

method is that one does not have to deal with the underlying baseline hazard function. In the case of

interval-censored data, several procedures are also developed for regression analysis based on the

proportional hazards model. Different from the PH model for right-censored data, incorporating

of interval censoring into the PH model does not enable cancelling the baseline hazard function,

therefore, estimation of the regression coefficients and derivation of its asymptotic properties are

more challenging.
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One of the pioneering papers is given by Finkelstein (1986), which uses the full likelihood

approach to fit the proportional hazards model to interval-censored data by partitioning the time

axis based on the endpoints of the event time intervals. Among others, Betensky et al. (2002) use

a local likelihood to jointly estimate the regression coefficient and the baseline hazard function.

In order to avoid estimation of baseline hazard function, Glenn (2011) proposes an estimating

equation based method to select event time pairs when the ordering is unambiguous under PH

model; Sun, Feng, and Zhao (2015) propose two simple estimation approaches, motivated by the

imputation approach, that do not need estimation of the baseline cumulative hazard function.

Other procedures have also been proposed, such as those based on the proportional odds

model, the accelerated failure time model, and the logistic model, overall, all the procedures for

regression analysis of interval-censored failure time data are quite complicated and none of them

are currently implemented by standard statistical software packages.

1.4 Influence of Study Design on Parameter Estimation

When designing a biomedical or epidemiology follow-up study with interval-censored out-

come, the assessment schedule is usually decided based on some convenient selection (e.g. semi-

annually, annually or bi-annually) and available budget. There is no theoretical guideline on how

often the assessments should be scheduled. In addition, there are very few studies which evaluate

whether and how the scheduling of assessments can influence the bias and precision of parameter

estimation in interval-censored failure time data.

Alexander (2008) evaluates the influence of number of assessments in fixed study duration

on the precision of event rate estimation. By assuming a constant event rate and uniform interval-

censoring throughout the study, he derives the explicit formula for the Fisher information of the

estimated event rate as below:

I =
nT 2(1− e−λT )

m2(eλT/m − 1)(1− e−λT/m)
, (1.14)
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where λ is the event rate, T is the total study follow-up time, n is number of subjects, and m

is number of evenly spaced assessments within time T . Then the sampling variance of λ̂ can be

obtained by taking the reciprocal of the Fisher information. He studies the relationship between

number of observations and ratio of sampling variance from interval-censored data vs. continuous

surveillance (exact event time from exponential distribution). His study shows that the sampling

variance of λ̂ is always greater than that from the continuous surveillance, and this difference

begin to decrease as number of assessments increase, with ratio close to 1 when m→∞. At fixed

number of assessments, the ratio is bigger when event rate per study duration is higher.

In Glenn (2011), simulation studies results are presented which evaluate the bias and variabil-

ity of a covariate coefficient estimate (β̂) in the PH regression model using the method he proposes

and compare with the results from right-point imputation approach. In his simulation, two types

of monitoring schedule are used: every 12 months and every 24 months. His simulation results

show that bias is minimal in either monitoring schedule, and comparing with the every 12 months

monitoring schedule, the variability of the coefficient estimate is larger from the every 24 months

monitoring schedule. When using the right-point imputation approach followed by the standard

Cox’s PH model, significant positive bias has been observed, which is even higher when subjects

are followed every 24 months than every 12 months. Since it is imputation based approach, the

precision of the estimate is not influenced by the interval width or the monitoring schedule.

Sun and Chen (2010) present the results from their simulation study which compares the per-

formance of conventional imputation-based methods and the nonparametric method by Finkelstein

(1986) when analyzing interval-censored data with two treatment arms. In this study, they assess

the mean and standard deviation (SD) of the regression coefficient for the treatment effect under

both balanced and unbalanced design. In balanced design, patients in the two treatment arms have

equal assessment schedules at every 8 time units or 32 time units; in unbalanced design, patients

in the two arms have unequal assessment schedules with every 8 time units in one arm and every
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16 time units in the other. The results from this study show that under balanced design, Finkel-

sten’s method creates unbiased estimator, the single-point imputation followed by Cox’s PH model

with Breslow’s tie handling method creates biased result, and Efron’s tie handling method works

much better than Breslow’s method. When using the single-point imputation method, larger bias

is observed when the assessment schedule is more sparse (assessment at every 32 time units vs.

every 8 time units). Under unbalanced design, Finkelsten’s method has reasonability well perfor-

mance. When using the single-point imputation method, the right-point imputation approach tends

to overestimate treatment effect when patients in the control arm are more frequently assessed for

events and tends to underestimate otherwise. The mid-point imputation method works better than

right-point imputation, but overall, Finkelsten’s method gives best performance.

1.5 Outline of this Dissertation

Previous studies show that: 1) when appropriate analysis methods are used, we can obtain

unbiased results from interval-censored failure time data regardless the interval length; 2) the vari-

ability of the parameter estimation can be reduced by increasing the frequency of assessments (or

reducing the interval length). Since increasing the frequency of assessments generally leads to in-

creased cost, herein, I mainly evaluate the performance of unbalanced design with only increasing

the frequency of assessments in the high risk group, which is determined by a baseline risk factor

for the study endpoint, and then compare to the results from balanced design with the same fre-

quency of assessments for all subjects. The hypothesis is that this proposed unbalanced design can

help to improve the precision of the parameter estimation in interval-censored time to event data.

This dissertation is organized as follows. Chapter 2 includes the methods and results. In this

chapter, by assuming exponential distribution of the true unobserved survival times, evenly spaced

visit schedule in order to create interval censoring, and a baseline risk factor which separates the

entire study cohort into two strata, I use the maximum likelihood theory to derive the theoreti-

cal formula for sampling variance estimator of a binary covariate under parametric setting. Then
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I compare the sampling variance estimator obtained from unbalanced design against that from

balanced design under various situations. Next, simulation studies are presented to evaluate the

accuracy of the derived sampling variance estimator in small samples. Simulations studies are also

conducted to assess the relative gain of precision for covariate estimation, by using unbalanced

design vs. balanced design, under more complicated situations than those assumed for theoreti-

cal formula derivation. In last section, I apply the derived formula to power estimation for both

balanced and unbalanced design then compare with results from numerical simulations, and I also

evaluate the empirical Type I error rate under both balanced design and unbalanced design.

In Chapter 3, I evaluate the variance estimation of a few covariates effect using data from

a study of metabolic control among patients with T1D, which was conducted by the Diabetes

Research in Children Network (DirecNet) and the Type 1 Diabetes TrialNet, then compare the

results from balanced vs. unbalanced designs using both parametric and nonparametric methods

for analyzing interval-censored time to event data.

In Chapter 4, I give some discussion about current study, and in Chapter 5, I provide the

concluding remarks and the potential further research on this topic.
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Chapter 2: Methods and Results

In this chapter, I only evaluate the parametric case which assume that the time to event out-

come follows the distribution from a parametric family. This chapter is organized as follows. In

Section 2.1, I use the maximum likelihood theory to derive the theoretical formula for sampling

variance estimator of a covariate effect by assuming exponential distribution of event time. In

section 2.2, based on the derived formula, I compare the asymptotic sampling variance estima-

tor obtained from unbalanced design against that from balanced design under various situations.

Numerical studies results are presented to evaluate the accuracy of the derived sampling variance

estimator in small samples. Using simulation samples, I also compare the efficiency of unbalanced

design to balanced design under more complicated situations. In Section 2.3, I apply the derived

formula to power estimation for both balanced design and unbalanced design then compare with

results from numerical simulations. Empirical Type I error is also evaluated in this section.

2.1 Deriving Sampling Variance Estimator of a Covariate Effect

Consider a longitudinal study with evenly spaced visit schedules and time to an event as

primary outcome, and the timing of the event is interval-censored by two consecutive visits. Based

on a baseline risk factor, the study cohort can be separated into two strata: a low risk stratum and

a high risk stratum. The study purpose is to evaluate the common effect of a binary covariate Z

on the time to event outcome in both strata. The study duration is fixed time T . For simplicity, I

assume no skipping of visits or early dropout. In a regular balanced design, every subject has the

same number of visits m within total study duration T , therefore, each interval has length of T/m.

In the unbalanced design, the number of visits depends on the baseline risk factor. Assuming the
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number of visits in the low risk stratum is m and we want to increase the number of visits in the

high risk stratum to c ∗ m, where c is a pre-defined constant and c > 1. The common effect of

covariate Z is exp(β).

To simplify formula derivation process, I also assume the event rate follows exponential dis-

tribution in each stratum. In the lower baseline risk stratum, I assume the baseline event rate when

Z = 0 is λ1, sample size is 2n1 (N = n1 for each category of the covariate Z), and let i = 1, ...,m,

then the probability of remaining free of the event till the ith visit is exp [−iTλ1 exp(βZ)/m], and

the probability for having the event between visits i−1 and i is exp [−(i− 1)Tλ1 exp(βZ)/m] {1−

exp [−Tλ1 exp(βZ)/m]}. Suppose d0i and d1i subjects have events between visits i−1 and iwhen

Z = 0 and Z = 1, respectively, then the likelihood function when Z = 0 among the low risk stra-

tum is

L10 =
n1!

(n1 −
∑m

i=1 d0i)!
exp

[
−λ1T

(
n1 −

m∑
i=1

d0i

)]
m∏
i=1

1

d0i!

{
exp

[
−(i− 1)λ1T

m

] [
1− exp

(
−λ1T

m

)]}d0i
, (2.1)

and the likelihood function when Z = 1 among the low risk stratum is

L11 =
n1!

(n1 −
∑m

i=1 d1i)!
exp

[
−λ1Te

β

(
n1 −

m∑
i=1

d1i

)]
m∏
i=1

1

d1i!

{
exp

[
−(i− 1)λ1Te

β

m

] [
1− exp

(
−λ1Te

β

m

)]}d1i
. (2.2)

In the high baseline risk stratum, assume the baseline event rate when Z = 0 is λ2, sample

size is 2n2 (N = n2 for each category of the covariate Z). Let j = 1, ..., c ∗m, and suppose h0j

and h1j subjects have events between visits j − 1 and j when Z = 0 and Z = 1, respectively, then
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the likelihood functions for Z = 0 subgroup and Z = 1 subgroup are

L20 =
n2!

(n2 −
∑cm

j=1 h0j)!
exp

[
−λ2T

(
n2 −

cm∑
j=1

h0j

)]
cm∏
j=1

1

h0j!

{
exp

[
−(j − 1)λ2T

cm

] [
1− exp

(
−λ2T

cm

)]}h0j
(2.3)

and

L21 =
n2!

(n2 −
∑cm

j=1 h1j)!
exp

[
−λ2Te

β

(
n2 −

cm∑
j=1

h1j

)]
cm∏
j=1

1

h1j!

{
exp

[
−(j − 1)λ2Te

β

cm

] [
1− exp

(
−λ2Te

β

cm

)]}h1j
. (2.4)

Based on above likelihood functions (2.1)-(2.4), the log-likelihood for the low risk stratum

Z = 0 subgroup is (omitting terms not involving λ1)

log(L10) = −

(
n1 −

m∑
i=1

d0i

)
λ1T +

m∑
i=1

[
−d0i(i− 1)λ1T

m
+ d0i log

(
1− exp

(
−λ1T

m

))]
,

(2.5)

and the log-likelihood for the low risk stratum Z = 1 subgroup is (omitting terms not involving λ1

and β)

log(L11) = −

(
n1 −

m∑
i=1

d1i

)
λ1Te

β

+
m∑
i=1

[
−d1i(i− 1)λ1Te

β

m
+ d1i log

(
1− exp

(
−λ1Te

β)

m

))]
. (2.6)
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Similarly, the log-likelihood for the two subgroups in the high risk stratum can be written as below:

log(L20) = −

(
n2 −

cm∑
i=1

h0i

)
λ2T +

cm∑
i=1

[
−h0i(i− 1)λ2T

cm
+ h0i log

(
1− exp

(
−λ2T

cm

))]
,

(2.7)

log(L21) = −

(
n2 −

cm∑
i=1

h1i

)
λ2Te

β

+
cm∑
i=1

[
−h1i(i− 1)λ2Te

β

cm
+ h1i log

(
1− exp

(
−λ2Te

β

cm

))]
. (2.8)

So total log-likelihood is

log(L) = log(L10) + log(L11) + log(L20) + log(L21). (2.9)

There are three parameters to be estimated from the data: β, λ1 and λ2, but the parameter

of interest is β. The first order derivative of the log-likelihood with respect to each of the three

parameters is

∂ log(L)

∂β
= −

(
n1 −

m∑
i=1

d1i

)
λ1Te

β −

(
n2 −

cm∑
j=1

h1j

)
λ2Te

β

+
m∑
i=1

[
−d1i(i− 1)λ1Te

β

m
+
λ1Td1i

m

eβ

exp(λ1Teβ/m)− 1

]
+

cm∑
j=1

[
−h1j(j − 1)λ2Te

β

cm
+
λ2Th1j

cm

eβ

exp(λ2Teβ/cm)− 1

]
, (2.10)

∂ log(L)

∂λ1

= −

(
n1 −

m∑
i=1

d0i

)
T −

(
n1 −

m∑
i=1

d1i

)
Teβ
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+
m∑
i=1

[
−d0i(i− 1)T

m
+
d0iT

m

1

exp(λ1T/m)− 1

]
+

m∑
i=1

[
−d1i(i− 1)Teβ

m
+
d1iTe

β

m

1

exp(λ1Teβ/m)− 1

]
, (2.11)

∂ log(L)

∂λ2

= −

(
n2 −

cm∑
j=1

h0j

)
T −

(
n2 −

cm∑
j=1

h1i

)
Teβ

+
cm∑
j=1

[
−h0j(j − 1)T

cm
+
h0jT

cm

1

exp(λ2T/cm)− 1

]

+
cm∑
j=1

[
−h1j(j − 1)Teβ

cm
+
h1jTe

β

cm

1

exp(λ2Teβ/cm)− 1

]
. (2.12)

The second-order partial derivatives are

∂2 log(L)

∂β2
= −

(
n1 −

m∑
i=1

d1i

)
λ1Te

β −

(
n2 −

cm∑
j=1

h1j

)
λ2Te

β

−
m∑
i=1

d1i(i− 1)λ1Te
β

m
−

cm∑
j=1

h1j(j − 1)λ2Te
β

cm

+
m∑
i=1

[
λ1Td1ie

β

m

exp(λ1Te
β/m)− 1− λ1Te

β exp(λ1Te
β/m)/m

(exp(λ1Teβ/m)− 1)2

]
+

cm∑
j=1

[
λ2Th1je

β

cm

exp(λ2Te
β/cm)− 1− λ2Te

β exp(λ2Te
β/cm)/cm

(exp(λ2Teβ/cm)− 1)2

]
, (2.13)

∂2 log(L)

∂λ2
1

= −
m∑
i=1

d0iT
2

m2

exp(λ1T/m)

[exp(λ1T/m)− 1]2
−

m∑
i=1

d1iT
2e2β

m2

exp(λ1Te
β/m)

[exp(λ1Teβ/m)− 1]2
, (2.14)

∂2 log(L)

∂λ2
2

= −
cm∑
j=1

h0jT
2

(cm)2

exp(λ2T/cm)

[exp(λ2T/cm)− 1]2
−

cm∑
j=1

h1jT
2e2β

(cm)2

exp(λ2Te
β/cm)

[exp(λ2Teβ/cm)− 1]2
, (2.15)
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∂2 log(L)

∂λ1∂β
= −

(
n1 −

m∑
i=1

d1i

)
Teβ −

m∑
i=1

d1i(i− 1)Teβ

m

+
m∑
i=1

[
d1iTe

β

m

1

exp(λ1Teβ/m)− 1
− d1iλ1T

2e2β

m2

exp(λ1Te
β/m)

[exp(λ1Teβ/m)− 1]2

]
, (2.16)

∂2 log(L)

∂λ2∂β
= −

(
n2 −

cm∑
j=1

h1j

)
Teβ −

cm∑
j=1

h1j(j − 1)Teβ

cm

+
cm∑
j=1

[
h1jTe

β

cm

1

exp(λ2Teβ/cm)− 1
− h1jλ2T

2e2β

(cm)2

exp(λ2Te
β/cm)

[exp(λ2Teβ/cm)− 1]2

]
, (2.17)

and

∂2 log(L)

∂λ1∂λ2

= 0. (2.18)

Since the event rate in each subgroup follows exponential distribution, the expectation for

number of events between each consecutive assessment time point is

E(d0i) = n1 exp

(
−(i− 1)λ1T

m

)[
1− exp

(
−λ1T

m

)]
, (2.19)

E(d1i) = n1 exp

(
−(i− 1)λ1Te

β

m

)[
1− exp

(
−λ1Te

β

m

)]
, (2.20)

E(h0j) = n2 exp

(
−(j − 1)λ2T

cm

)[
1− exp

(
−λ2T

cm

)]
, (2.21)

E(h1j) = n2 exp

(
−(j − 1)λ2Te

β

cm

)[
1− exp

(
−λ2Te

β

cm

)]
. (2.22)
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By substitution of above expectations (2.19)-(2.22) into the equation (2.13), this equation

can be written as

−E∂
2 log(L)

∂β2
= n1λ1Te

β

[
1−

(
1− exp

(
−λ1Te

β

m

)) m∑
i=1

exp

(
−(i− 1)λ1Te

β

m

)]

+ n2λ2Te
β

[
1−

(
1− exp

(
−λ2Te

β

cm

)) cm∑
j=1

exp

(
−(j − 1)λ2Te

β

cm

)]

+
n1λ1Te

β

m

[
1− exp

(
−λ1Te

β

m

)] m∑
i=1

(i− 1) exp

(
−(i− 1)λ1Te

β

m

)
+
n2λ2Te

β

cm

[
1− exp

(
−λ2Te

β

cm

)] cm∑
j=1

(j − 1) exp

(
−(j − 1)λ2Te

β

cm

)

− n1λ1Te
β

m

1− λ1Te
β/m− exp(−λ1Te

β/m)

exp(λ1Teβ/m)− 1

m∑
i=1

exp

(
−(i− 1)λ1Te

β

m

)
− n2λ2Te

β

cm

1− λ2Te
β/cm− exp(−λ2Te

β/cm)

exp(λ2Teβ/cm)− 1

cm∑
j=1

exp

(
−(j − 1)λ2Te

β

cm

)
.

(2.23)

Since
∑m

i=1 exp(−(i − 1)λ1Te
β/m) is a geometric progression with m terms, the first of

which is 1, with ratio exp(−λ1Te
β/m), hence

m∑
i=1

exp

(
−(i− 1)λ1Te

β

m

)
=

1− exp(−λ1Te
β)

1− exp(−λ1Teβ/m)
, (2.24)

and

cm∑
j=1

exp

(
−(j − 1)λ2Te

β

cm

)
=

1− exp(−λ2Te
β)

1− exp(−λ2Teβ/cm)
. (2.25)

For
∑m

i=1(i− 1) exp(−(i− 1)λ1Te
β/m), when i = 1, the first term is 0, so it can be treated

as a progression with m− 1 terms and i start with 2. Let k = i− 1, then
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m∑
i=1

(i− 1) exp

(
−(i− 1)λ1Te

β

m

)
=

m−1∑
k=1

k exp

(
−kλ1Te

β

m

)
.

Since the sum of a finite series

n∑
k=1

kzk = z
1− (n+ 1)zn + nzn+1

(1− z)2
,

let z = exp(−λ1Te
β/m), then

m∑
i=1

(i− 1) exp

(
−(i− 1)λ1Te

β

m

)
=

m−1∑
k=1

k exp

(
−kλ1Te

β

m

)
=

1−m exp(−(m− 1)λ1Te
β/m) + (m− 1) exp(−λ1Te

β)

[exp(λ1Teβ/m)− 1][1− exp(−λ1Teβ/m)]
.

(2.26)

Similarly,

cm∑
j=1

(j − 1) exp

(
−(j − 1)λ2Te

β

cm

)
=

cm−1∑
k=1

k exp

(
−kλ2Te

β

cm

)
=

1− cm exp(−(cm− 1)λ2Te
β/cm) + (cm− 1) exp(−λ2Te

β)

[exp(λ2Teβ/cm)− 1][1− exp(−λ2Teβ/cm)]
.

(2.27)

Therefore, by substituting above (2.24)-(2.27) into equation (2.23), this equation can be writ-

ten as

−E∂
2 log(L)

∂β2
= n1λ1Te

β exp(−λ1Te
β) + n2λ2Te

β exp(−λ2Te
β)

+
n1λ1Te

β

m

1−m exp[−λ1T (m− 1)eβ/m] + (m− 1) exp(−λ1Te
β)

exp(λ1Teβ/m)− 1

− n1λ1Te
β

m

[1− λ1Te
β/m− exp(−λ1Te

β/m)][1− exp(−λ1Te
β)]

[exp(λ1Teβ/m)− 1][1− exp(−λ1Teβ/m)]
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+
n2λ2Te

β

cm

1− cm exp[−λ2T (cm− 1)eβ/cm] + (cm− 1) exp(−λ2Te
β)

exp(λ2Teβ/cm)− 1

− n2λ2Te
β

cm

[1− λ2Te
β/cm− exp(−λ2Te

β/cm)][1− exp(−λ2Te
β)]

[exp(λ2Teβ/cm)− 1][1− exp(−λ2Teβ/cm)]
. (2.28)

Through similar steps, I can also calculate the expectations of other second-order partial

derivatives, and finally, the Fisher information matrix can be expressed below:

I =


I11 I12 I13

I21 I22 I23

I31 I32 I33

 , (2.29)

where

I11 = −E∂
2 log(L)

∂β2

= n1λ1Te
β exp(−λ1Te

β) + n2λ2Te
β exp(−λ2Te

β)

+
n1λ1Te

β

m

1−m exp[−λ1T (m− 1)eβ/m] + (m− 1) exp(−λ1Te
β)

exp(λ1Teβ/m)− 1

− n1λ1Te
β

m

[1− λ1Te
β/m− exp(−λ1Te

β/m)][1− exp(−λ1Te
β)]

[exp(λ1Teβ/m)− 1][1− exp(−λ1Teβ/m)]

+
n2λ2Te

β

cm

1− cm exp[−λ2T (cm− 1)eβ/cm] + (cm− 1) exp(−λ2Te
β)

exp(λ2Teβ/cm)− 1

− n2λ2Te
β

cm

[1− λ2Te
β/cm− exp(−λ2Te

β/cm)][1− exp(−λ2Te
β)]

[exp(λ2Teβ/cm)− 1][1− exp(−λ2Teβ/cm)]
,

I22 = −E∂
2 log(L)

∂λ2
1

=
n1T

2[1− exp(−λ1T )]

m2[exp(λ1T/m)− 1][1− exp(−λ1T/m)]

+
n1T

2e2β[1− exp(−λ1Te
β)]

m2[exp(λ1Teβ/m)− 1][1− exp(−λ1Teβ/m)]
,
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I33 = −E∂
2 log(L)
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2
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+
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,

I12 = I21 = −E∂
2 log(L)
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= n1Te
β exp(−λ1Te
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β

m

1− exp(−λ1Te
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β

m
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exp(λ1Teβ/m)− 1

+
n1λ1T
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m2

1− exp(−λ1Te
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[exp(λ1Teβ/m)− 1][1− exp(−λ1Teβ/m)]
,

I13 = I31 = −E∂
2 log(L)

∂λ2∂β

= n2Te
β exp(−λ2Te

β)− n2Te
β

cm

1− exp(−λ2Te
β)

exp(λ2Teβ/cm)− 1

+
n2Te

β

cm

1− cm exp[−λ2T (cm− 1)eβ/cm] + (cm− 1) exp(−λ2Te
β)

exp(λ2Teβ/cm)− 1

+
n2λ2T

2e2β

(cm)2

1− exp(−λ2Te
β)

[exp(λ2Teβ/cm)− 1][1− exp(−λ2Teβ/cm)]
,

and I23 = I32 = 0.

From above formula for calculating Fisher information matrix, the sampling variance for β̂

can be simply obtained by taking the corresponding component in the inversed Fisher information

matrix I−1
11 . Therefore, the sampling variance of β̂ can be expressed as a function of multiple

parameters

V (β̂) = f(λ1, λ2, β̂,m, c, n1, n2). (2.30)
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When c = 1, this formula provides the sampling variance of β̂ for regular balanced design. When

c > 1, this formula provides the sampling variance of β̂ for proposed unbalanced design.

2.2 Comparing Sampling Variance from Unbalanced Design to Balanced Design

2.2.1 Theoretical Results

To assess whether this unbalanced design with increased frequency of examinations in the

high risk stratum can help to reduce the sampling variance of β̂ when comparing to regular bal-

anced design and to quantify the degree of reduction, I calculate the ratios of V (β̂) for this unbal-

anced design vs. balanced design at different situations using the derived formula above.

In Figure 2.1, I assume fixed sample size n1 = n2 = 50 (total sample size 200), fixed study

duration T = 1, and fixed baseline event rate in the low risk stratum λ1 = 1, then I assess the the

ratios of V (β̂) for two unbalanced designs (c = 2&3) vs. balanced design (c = 1) under various

baseline event rates in the high risk stratum (λ2 = 2, 3, 4, 5) and covariate effects (β = −1, 1)). In

Figure 1A and 1B, β = 1, which denotes a positive covariate effect. In Figure 1C and 1D, β = −1,

which denotes a negative covariate effect. In Figure 1A and 1C, the frequency of visits in the high

risk stratum doubles the frequency of visits in the low risk stratum, and in Figure 1B and 1D, the

frequency of visits in the high risk stratum triples the frequency of visits in the low risk stratum.

As shown in Figure 2.1, using unbalanced design can reduce the sampling variance of β̂

compared to using balanced design. The reduction of sampling variance from using unbalanced

design tends to be greater when visits are relatively sparse (i.e. only 1 or 2 exams conducted in the

low risk group), then this benefit begins to decline when m increases. The reduction of variance

also tends to be greater when the event rate in the high risk group is much higher than the low

risk group, and when the covariate effect (β̂) is positive compared to negative (at fixed baseline

event rate). Compared to the unbalanced design which doubles the frequency of visits in the high

risk stratum (Figure 2.1A and 2.1C), the unbalanced design which triples the frequency of visits in



31

1 2 3 4 5

Number of Visits in Low Risk Group

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
at

io
 o

f S
am

pl
in

g 
V

ar
ia

nc
e

U
nb

al
an

ce
d 

D
es

ig
n/

B
al

an
ce

d 
D

es
ig

n

λ2 = 2
λ2 = 3
λ2 = 4
λ2 = 5

A)

1 2 3 4 5

Number of Visits in Low Risk Group
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

R
at

io
 o

f S
am

pl
in

g 
V

ar
ia

nc
e

U
nb

al
an

ce
d 

D
es

ig
n/

B
al

an
ce

d 
D

es
ig

n

B)

1 2 3 4 5

Number of Visits in Low Risk Group

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
at

io
 o

f S
am

pl
in

g 
V

ar
ia

nc
e

U
nb

al
an

ce
d 

D
es

ig
n/

B
al

an
ce

d 
D

es
ig

n

C)

1 2 3 4 5

Number of Visits in Low Risk Group

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
at

io
 o

f S
am

pl
in

g 
V

ar
ia

nc
e

U
nb

al
an

ce
d 

D
es

ig
n/

B
al

an
ce

d 
D

es
ig

n

D)

FIGURE 2.1: The precision for unbalanced design compared to balanced design in
estimating a binary covariate effect. The vertical axis is sampling variance of β̂ from
unbalanced design (c = 2, 3)/balanced design (c = 1). The horizontal axis is the
number of evenly spaced visits in the low risk group throughout the study. In all 4
plots,assume λ1 = 1, n1 = n2 = 50, T = 1, and the 4 lines in each plot represent
different baseline event rates in the high risk stratum (λ2). Plot A) β = 1, c =

2;B)β = 1, c = 3;C)β = −1, c = 2;D)β = −1, c = 3.
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the high risk stratum (Figure 2.1B and 2.1D) leads to larger increase of precision for β̂, especially

when m is relatively small. The calculated variances from both balanced and unbalanced designs

for selected data points are shown in Table 2.1.

Since in Figure 2.1, I assume equal sample size between the low risk stratum and high risk

stratum, however, this may not be true in real data. Thus, in Figure 2.2, I evaluate the influence

of different ratios of sample size between high risk stratum vs. low risk stratum on the ratio of

V (β̂) from unbalanced design vs. balanced design. Let n1 = 50, and n2 = 25, 50, 100 to represent

different ratios of sample size between the two strata. As shown in Figure 2.2, higher ratio of

subjects in high risk stratum vs. low risk stratum results in larger reduction of sampling variance

for β̂ from using unbalanced design compared to balanced design.

The unbalanced design evaluated in Figure 2.1 and 2.2 has increased frequency of visits

in high risk stratum. Let mH denote the number of visits in the high risk stratum, and let mL

denote the number of visits in the low risk stratum, in previously mentioned unbalanced design,

mH = c ∗ mL, where c > 1. However, another question naturally rising up is how about the

efficiency of a "reversed unbalanced design" with increased frequency of visits in the low risk

stratum (mL > mH).

In Figure 2.3, I compare the efficiency of covariate estimation from an unbalanced design

with mH = 2mL and a reversed unbalanced design with mL = 2mH relative to that from balanced

design. Same as previous figures, I assume λ1 = 1, β = 1, n1 = n2 = 50, T = 1, and let

λ2 = 2, 3, 4, 5 for plot A to D. As shown in Figure 2.3, both unbalanced design with increased

number of visits in the high risk stratum and reversed unbalanced design with increased number of

visits in the low risk stratum can help to reduce the sampling variance of β̂, however, unbalanced

design generally leads to much larger reduction of sampling variance compared to the reversed

unbalanced design. Especially when λ2 is much bigger than λ1, this difference tends to be greater.

These results reveal that event rate plays an important role in the gained efficiency from using

unbalanced design given the same number of visits are increased.
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FIGURE 2.2: The precision of covariate effect estimation from unbalanced design
compared to balanced design at different sample sizes. Assume λ1 = 1, λ2 = 2, β =

1, n1 = 50, T = 1, and c = 2 in unbalanced design.
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FIGURE 2.3: The efficiency of unbalanced design and reversed unbalanced design
against balanced design. Assume λ1 = 1, β = 1, n1 = n2 = 50, T = 1.
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2.2.2 Numerical Results

Besides above results based on the derived theoretical formula for V (β̂), I also conduct nu-

merical simulation studies. The first objective of numerical studies is to evaluate the performance

of above derived formula in section 2.1 on small samples, and the second objective of numerical

studies is to evaluate the efficiency of the proposed unbalanced design against balanced design in

more complicated situations where deriving of theoretical formula could be difficult.

In order to evaluate the performance of above derived formula on small samples, first, nu-

merical simulation samples are generated and used to calculate sampling variances of β̂ under each

parameter setting for above theoretical results in Table 2.1. One thousand simulations are drawn

on each parameter setting, and β̂ is obtained using nlminb() function in R. The empirical sampling

variances for β̂ are also shown in Table 2.1 to compare with the asymptotic results from the derived

theoretical formula.

As shown in Table 2.1, it is obvious that large discrepancy exists between asymptotic and

empirical sampling variances when is mL very small (i.e. mL = 1) and the discrepancy is more

pronounced when the event rate is higher. However, when mL ≥ 2, the discrepancies between

asymptotic results and empirical results become much smaller. The plots for relative discrepancies

between the asymptotic and empirical variances are shown in Appendix A Figure A.1 to A.6.

I also evaluate the discrepancy between asymptotic and empirical sampling variances (from

1,000 simulations) of β̂ when total sample size (N = 2(n1 + n2)) varies. Let’s define relative

discrepancy between asymptotic and empirical sampling variances of β̂ as (Ve−Va)/[(Ve+Va)/2],

where Ve is the empirical variance of β̂ and Va is asymptotic variance of β̂. Assuming λ1 = 1, λ2 =

4, β = 1, n1 = n2, T = 1,mL = 3 and mH = 2mL, the relative discrepancy between the two

variances can be reduced to < 10% when total sample size is ≥ 100 (Figure 2.4).
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TABLE 2.1: Asymptotic and empirical sampling variances of β̂ for a binary covariate
under balanced and unbalanced design. Assuming n1 = n2 = 50, λ1 = 1, T = 1,

and mH = 2mL for unbalanced design.

mL Asymptotic Variance Empirical Variance

Balanced Unbalanced Balanced Unbalanced
Design Design Design Design

(β, λ2) = (1, 2)
1 0.0523 0.0332 0.1471 0.0396
2 0.0295 0.0258 0.0304 0.0253
3 0.0262 0.0247 0.0274 0.0247
4 0.0251 0.0243 0.0266 0.0253
5 0.0247 0.0241 0.0269 0.0257

(β, λ2) = (1, 3)
1 0.0681 0.0410 0.2540 0.1234
2 0.0356 0.0267 0.0403 0.0280
3 0.0283 0.0247 0.0313 0.0256
4 0.0260 0.0240 0.0284 0.0263
5 0.0249 0.0237 0.0276 0.0264

(β, λ2) = (1, 4)
1 0.0721 0.0520 0.1975 0.1468
2 0.0435 0.0288 0.0454 0.0315
3 0.0321 0.0254 0.0330 0.0245
4 0.0280 0.0243 0.0294 0.0246
5 0.0261 0.0238 0.0267 0.0236

(β, λ2) = (−1, 2)
1 0.0419 0.0390 0.0415 0.0387
2 0.0386 0.0379 0.0390 0.0385
3 0.0380 0.0377 0.0391 0.0393
4 0.0378 0.0377 0.0392 0.0391
5 0.0378 0.0376 0.0383 0.0379

(β, λ2) = (−1, 3)
1 0.0430 0.0359 0.0511 0.0363
2 0.0356 0.0340 0.0338 0.0331
3 0.0343 0.0336 0.0350 0.0341
4 0.0339 0.0335 0.0345 0.0339
5 0.0337 0.0335 0.0362 0.0356

(β, λ2) = (−1, 4)
1 0.0495 0.0356 0.0564 0.0343
2 0.0353 0.0323 0.0374 0.0339
3 0.0330 0.0318 0.0345 0.0337
4 0.0323 0.0316 0.0341 0.0330
5 0.0319 0.0315 0.0342 0.0335
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FIGURE 2.4: Relative discrepancy between asymptotic and empirical variances at
different sample sizes. Assume λ1 = 1, λ2 = 4, β = 1, n1 = n2, T = 1,mL = 3

and mH = 2mL.

When deriving the theoretical formula for sampling variance of β̂, I assume a binary covariate

of interest Z, here I also use numerical simulations to calculate the sampling variance of β̂ for a

continuous covariate under balanced design and unbalanced design. Assuming the continuous

covariate Z is i.i.d. normal with mean 1 and SD 0.5, and the effect on event rate is also exp(βZ),

other parameter settings are similar to Table 2.1, I evaluate the efficiency of unbalanced design

vs. balanced design in estimating of β̂ for the continuous covariate and present the results (from

1,000 simulations on each parameter setting) in Table 2.2. The results are similar to what I obtain

above for the binary covariate (Table 2.1 and Figure 2.1). Clearly, using unbalanced design helps

to reduce the sampling variance β̂ compared to balanced design, and the relative reduction of
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sampling variance is more pronounced when mL is relatively small, when λ2 is bigger, and when

β is positive.

For all above results, I assume the exponential distribution of time to event outcome with

constant event rate in each subgroup, however, this seldom happens in reality. In order to evaluate

the performance of unbalanced design against balanced design in other situations in terms of im-

proving precision, I also generate 1,000 numerical simulation samples from Weibull distribution

of event times and calculate the sampling variance of β̂. Two types of Weibull distribution are

evaluated: W (1.5) with event rate increasing with time and W (0.8) with event rate decreasing

with time. Assuming the baseline event rate in the low risk stratum λ1 = 1, and the number of

visits in the high risk stratum is twice as many as that in the low risk stratum (c = 2), I calculate

the sampling variance under balanced design V (β̂)1 and unbalanced design V (β̂)2 for several case

scenarios: β = (1,−1), λ2 = (2, 4) and m = (1, 2, 3, 4, 5) (Table 2.3). The ratios of the sampling

variances from the two types of design V (β̂)2/V (β̂)1 under different parameter settings (Table 2.3)

reveal similar trends to those observed from exponential distribution (Figure 2.1).

Another assumption I make when deriving theoretical formula is that visits are evenly spaced

throughout the whole study duration T , however, this is not true in many situations. In a lot of clin-

ical trials studies, scheduled visits are usually more intense in the early phase of the study than the

later phase of the study, especially in those trials when the investigators expect quicker changes in

the earlier phase of the trial. To assess the efficiency of parameter estimation using unbalanced de-

sign vs. balanced design in above situation, I generate 1,000 simulation samples based on Weibull

distribution of event times. Assuming the event time follows W (0.8) distribution (i.e. event rate

decreases with time), and same as previous tables, let n1 = n2 = 50, λ1 = 1, T = 1. For the bal-

anced design, I assume there are three visits (mL = mH = 3) at t = (0.2, 0.5, 1.0); for unbalanced

design, the number of visits in the low risk stratum is the same as balanced design, but the high

risk stratum has six visits (mH = 2mL = 6) at t = (0.1, 0.2, 0.35, 0.5, 0.75, 1.0). Then I assess
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TABLE 2.2: Empirical sampling variances of β̂ for a continuous co-
variate under balanced and unbalanced design. Assuming total N =
200 with equal N ′s in high risk and low risk groups,λ1 = 1, T = 1,

and mH = 2mL for unbalanced design.

mL V (β̂)∗1 V (β̂)∗∗2 V (β̂)∗∗2 /V (β̂)∗1
(β, λ2) = (1, 2)

1 0.1741 0.0817 0.47
2 0.0516 0.0356 0.69
3 0.0359 0.0280 0.78
4 0.0309 0.0267 0.86
5 0.0276 0.0250 0.90

(β, λ2) = (1, 3)
1 0.2499 0.1474 0.59
2 0.0644 0.0445 0.69
3 0.0454 0.0316 0.69
4 0.0337 0.0256 0.76
5 0.0304 0.0243 0.80

(β, λ2) = (1, 4)
1 0.2364 0.1674 0.71
2 0.0738 0.0508 0.69
3 0.0531 0.0371 0.70
4 0.0415 0.0301 0.73
5 0.0343 0.0266 0.78

(β, λ2) = (−1, 2)
1 0.0607 0.0540 0.89
2 0.0563 0.0556 0.99
3 0.0489 0.0492 1.00
4 0.0558 0.0555 0.99
5 0.0521 0.0521 1.00

(β, λ2) = (−1, 3)
1 0.0573 0.0478 0.83
2 0.0491 0.0468 0.95
3 0.0436 0.0433 0.99
4 0.0467 0.0463 0.99
5 0.0420 0.0418 1.00

(β, λ2) = (−1, 4)
1 0.0584 0.0486 0.83
2 0.0487 0.0448 0.92
3 0.0428 0.0411 0.96
4 0.0438 0.0424 0.97
5 0.0466 0.0459 0.98

*Variance of β̂ for balanced design (mH = mL)
**Variance of β̂ for unbalanced design (mH = 2mL)



40

TABLE 2.3: Empirical sampling variances of β̂ under balanced and unbalanced design based on
Weibull models. Assuming n1 = n2 = 50, λ1 = 1, T = 1.

mL W(1.5) W(0.8)

V (β̂)∗1 V (β̂)∗∗2 V (β̂)∗∗2 /V (β̂)∗1 V (β̂)∗1 V (β̂)∗∗2 V (β̂)∗∗2 /V (β̂)∗1
(β, λ2) = (1, 2)

1 0.1923 0.0369 0.19 0.1654 0.0585 0.35
2 0.0315 0.0287 0.91 0.0361 0.0302 0.84
3 0.0281 0.0267 0.95 0.0331 0.0306 0.92
4 0.0266 0.0258 0.97 0.0295 0.0281 0.95
5 0.0271 0.0261 0.96 0.0261 0.0254 0.97

(β, λ2) = (1, 4)
1 0.2029 0.0842 0.41 0.2358 0.2059 0.87
2 0.0419 0.0308 0.73 0.0597 0.0410 0.69
3 0.0299 0.0270 0.90 0.0429 0.0327 0.76
4 0.0281 0.0266 0.95 0.0378 0.0315 0.83
5 0.0279 0.0259 0.93 0.0372 0.0307 0.83

(β, λ2) = (−1, 2)
1 0.0420 0.0391 0.93 0.0441 0.0408 0.92
2 0.0428 0.0423 0.99 0.0422 0.0416 0.98
3 0.0391 0.0388 0.99 0.0382 0.0382 1.00
4 0.0403 0.0402 1.00 0.0403 0.0399 0.99
5 0.0394 0.0394 1.00 0.0400 0.0399 1.00

(β, λ2) = (−1, 4)
1 0.0584 0.0387 0.66 0.0590 0.0391 0.66
2 0.0388 0.0363 0.94 0.0391 0.0364 0.93
3 0.0384 0.0373 0.97 0.0369 0.0344 0.93
4 0.0378 0.0366 0.97 0.0353 0.0337 0.96
5 0.0345 0.0340 0.99 0.0355 0.0353 0.99

*Variance of β̂ for balanced design (mH = mL)
**Variance of β̂ for unbalanced design (mH = 2mL)

the empirical sampling variance of β̂ for a binary covariate Z under balanced and unbalanced

design when β = (−1, 1) and λ2 = (2, 3, 4). As shown in Table 2.4, when examination times are

unevenly spaced across the study, unbalanced design also can help to increase the precision of the

parameter estimation.
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TABLE 2.4: Empirical sampling variances of β̂ under balanced and
unbalanced design with unevenly spaced visits. Assuming n1 = n2 =
50, λ1 = 1, T = 1,mL = 3, and event time follows W (0.8) distribu-

tion.

V (β̂)∗1 V (β̂)∗∗2 V (β̂)∗∗2 /V (β̂)∗1
(β, λ2) = (1, 2) 0.0321 0.0302 0.94
(β, λ2) = (1, 3) 0.0298 0.0274 0.92
(β, λ2) = (1, 4) 0.0340 0.0287 0.84

(β, λ2) = (−1, 2) 0.0400 0.0398 1.00
(β, λ2) = (−1, 3) 0.0351 0.0343 0.98
(β, λ2) = (−1, 4) 0.0354 0.0334 0.94

*Variance of β̂ for balanced design (mH = mL)
**Variance of β̂ for unbalanced design (mH = 2mL)

2.3 Power and Type I Error Estimation

An important application for above results is power estimation. Under H0 : β = 0, under

HA : β = βA. For a two-sided test with type I error α, power can be estimated by

1− P
(
−zα/2 − β̂A/

√
V (β̂A) < Z < zα/2 − β̂A/

√
V (β̂A)|HA

)
= 1− Φ

(
zα/2 − β̂A/

√
V (β̂A)

)
+ Φ

(
−zα/2 − β̂A/

√
V (β̂A)

)

where V (β̂A) is the estimated asymptotic variance of β̂A using the formula derived in section 2.2.

For a hypothetic study with two groups parallel design, assuming total follow up time of

10 units, event times follow exponential distribution, baseline event rate in the low risk stratum

λ1 = 0.3, and baseline event rate in the high risk stratum λ2 = 0.6, for a two-sided test at α level

of 0.05, the asymptotic power and empirical power (from 1,000 simulations) for various sample

sizes (N) and effect sizes (β) are shown in Table 2.5. For unbalanced design, I simply assume

that the numbers of visits in the high risk group doubles the numbers of visits in the low risk group

(mH = 2mL). Due to the large discrepancy from theoretical results and numerical results when

mL = 1, this condition is not evaluated here.
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TABLE 2.6: Empirical Type I error rate at α = 0.05 (2-
sided) for balanced design and unbalanced design. Assum-
ing N = 200, T = 10, λ1 = 0.3, λ2 = 0.6,mH = 2mL for

unbalanced design. The unit is percent.

mL Balanced Design Unbalanced Design
Exp.

2 4.6 4.3
3 5.3 4.6
4 4.9 4.9
5 5.1 5.0

W (1.5)
2 6.4 2.4
3 5.3 4.0
4 5.4 5.2
5 5.7 5.3

W (0.8)
2 5.2 5.1
3 4.7 4.5
4 5.4 5.6
5 5.2 5.4

Another important consideration is how this unbalanced design can influence the empiri-

cal Type I error rate compared to balanced design. Assuming total sample size N = 200, T =

10, λ1 = 0.3, λ2 = 0.6 and mH = 2mL, the empirical Type I error rates at α = 0.05 from three

parametric distributions: exponential, W (1.5), and W (0.8) are calculated from 1,000 simulation

samples and the results are presented in Table 2.6. When comparing unbalanced design to balanced

design, some improvement of empirical Type I error rate is observed when the number of visits are

relatively small (mL = 2 or 3) in each parametric model.
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Chapter 3: Applications

In Chapter 2, both the theoretical and numerical studies results show that the unbalanced de-

sign with increased frequency of assessments in high risk stratum can help to reduce the sampling

variance of covariate effect estimation, and thus to increase the power of the study for interval-

censored data. In this chapter, the efficiency of unbalanced design vs. balanced design is compared

using real data that were collected for a T1D study in order to further test the hypothesis in this

dissertation.

3.1 Metabolic Control Study

Pancreatic islets are the regions of the pancreas that contain its hormone-producing cells.

Among the different types of cells in the pancreas islets, β-cells are responsible for producing

insulin, which has important effects on the metabolism of carbohydrates, fats and protein. The

pancreatic β-cells are sensitive to the glucose concentration in the blood. When the glucose levels

are high they secrete insulin into the blood; otherwise, when the glucose levels are low they stop

producing insulin.

Among patients diagnosed with type 1 diabetes mellitus, the pancreatic β-cells are usually

destroyed by an autoimmune process, and thus, insulin can no longer be synthesized or be secreted

into the blood. Therefore, exogenous insulin is required for daily diabetes management among

those diagnosed with T1D. However, at the clinical diagnosis of T1D, most patients still have

residual pancreatic β-cells which can continue to secrete insulin for several additional years. Re-

tention of β-cell function in patients with T1D has been associated with lower HbA1c levels and

reductions in short-term and long-term complications (Steffes et al., 2003; The Diabetes Control
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and Complications Trial Research Group, 1998). The Diabetes Control and Complications Trial

(DCCT) also show that assignment to the intensive managed group reduced the risk for loss of C-

peptide (a biomarker for β-cell function) by 57% over the mean 6.5 years of study (The Diabetes

Control and Complications Trial Research Group, 1998).

Therefore, the DirecNet study group and Type 1 Diabetes TrialNet study group jointly em-

barked on a RCT study in 2009 to assess the effect of metabolic control at onset of diabetes on

progression of T1D. The study protocol is listed on www.clinicaltrials.gov (NCT00891995). This

study has been finished and the de-identified data are publicly available at http://direcnet.jaeb.org/Studies.aspx.

The study was conducted at five clinical centers, and 71 participants were enrolled between May

2009 and October 2011. Major eligibility criteria included age 6 to <46 years, clinical diagnosis of

type 1 diabetes and initiation of insulin therapy within the prior 7 days. Eligible participants were

randomized to the intensive group or usual care group in a 2:1 ratio, stratified by clinical center

and the presence of diabetic ketoacidosis.

Participants in the intensive-treatment group received hybrid closed-loop control using the

Medtronic MiniMed system for 72-96 hours as inpatients followed by home use of sensor-augmented

pump therapy. The Medtronic MiniMed system consists of a subcutaneous glucose sensor and

insulin pump which communicate wirelessly with a bedside computer running a proportional-

integral-derivative algorithm. The details of the HCLC treatment were described in previous pub-

lication (Diabetes Research in Children Network [DirecNet] and Type 1 Diabetes TrialNet Study

Groups, 2013). Participants in the usual-care group received standard diabetes management as

practiced at the participating centers.

Both treatment groups had a 90-min mixed-meal tolerance test (MMTT) at baseline, and

then, 2-h MMTTs were performed at 2 and 6 weeks and at 3, 6, 9, 12, 18, and 24 months. MMTT

is a method for stimulating C-peptide response. C-peptide is a byproduct when the pancreatic β-

cells produce insulin. Measuring C-peptide can help to determine how much insulin a person can

produce since C-peptide is secreted in equimolar amounts to insulin. C-peptide levels are measured
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instead of insulin levels because by measuring C-peptide, we can assess a person’s own insulin

secretion even if the person receives insulin therapy, and because C-peptide is not metabolized by

the liver which makes it a more stable measure of insulin secretion than insulin itself. Therefore,

the measurement of C-peptide in response to a stimulus can provide a direct measure of the β-cell

function in patients with T1D. During MMTT, a liquid meal (boost) is ingested by the patient in

fasting state then C-peptide levels are measured over the subsequent 2-4 hours. In the 90-min

abbreviate MMTT conducted in this study, C-peptide levels were measured at 0 and 90 minutes.

In the 2-h MMTT conducted in this study, C-peptide levels were measured at -10 and/or 0 min, 15

min, 30 min, 60 min, 90 min, and 120 min.

The primary outcome of each participant in this study was area under the stimulated C-

peptide curve from the 2 hour MMTT conducted at 12 month visit. The primary analysis results

of this study were previously published with no significant difference found between the two treat-

ment groups (Buckingham et al., 2013).

Among the secondary outcomes of this study, the incidences of the loss of the 2 hour peak

C-peptide <0.2 pmol/mL were also assessed (data not published). Peak C-peptide is the maximum

value of stimulated C-peptide levels measured over the 2 hour period. In the DCCT study (The

Diabetes Control and Complications Trial Research Group, 1998), patients with stimulated peak

C-peptide < 0.2 pmol/mL was defined as C-peptide nonresponders which is biomarker for loss

of β-cell function. However, early works also used cutpoint of <0.3 pmol/mL to define insulin-

requiring diabetes (Jones and Hattersley, 2013). Therefore, in this dissertation, when comparing

the efficiency of unbalanced design vs. balanced design using data from this metabolic control

study, both time until stimulated peak C-peptide < 0.2 pmol/mL and time until stimulated peak

C-peptide <0.3 pmol/mL are used as study endpoints. Since MMTT was done repeatedly at each

visit, there might be chances that stimulated peak C-peptide went below 0.2 pmol/mL then bounced

back to above 0.2 pmol/mL at the next visit when MMTT was conducted again. In this case, only

the time until first incidence of peak C-peptide < 0.2 pmol/mL or <0.3 pmol/mL is assessed.
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In this metabolic control study, 68 out of 71 enrolled newly diagnosed T1D patients were

tested as autoantibody positive (the factor that differentiates type 1 diabetes with type 2 diabetes)

in the first year, only data from these 68 participants were reported in previous publications. In this

dissertation, data from the same cohort are used.

3.2 Statistical Methods

The metabolic control study described above used balanced design where every subject had

the same visit schedule. In order to create unbalanced design data out of this study, a baseline risk

factor is needed. Previous study show that age at onset is a significant predictor for the time of

disappearance of the β-cell function (Schiffrin et al., 1988), therefore, in this dissertation, two risk

strata are created based on age at T1D onset. Stratum 1 is high risk stratum with age at onset <12

years (N=31); Stratum 2 is low risk stratum with age at onset ≥12 years (N=37).

For balanced design, it is assumed that every participant has stimulated C-peptide tested at

6, 12, and 24 months. Two types of unbalanced design are evaluated in this chapter: the first

type is the unbalanced design that I proposed previously - for those age of onset <12 years, it is

assumed that the participants have stimulated C-peptide tested at 3, 6, 9, 12, 18 and 24 months,

otherwise, the participants have C-peptide tested at 6, 12, and 24 months; the second type is the

reversed unbalanced design as mentioned in Chapter 2 – for those in the low risk group, assume

the participants have stimulated C-peptide tested at 3, 6, 9, 12, 18 and 24 months, and for those in

the high risk group, assume the participants have C-peptide tested at 6, 12, and 24 months. Since

in the original study, the C-peptide data were collected at 2 and 6 weeks, 3, 6, 9, 12, 18, and 24

months after treatment started, the censor intervals can be manipulated based on original data. For

example, if an event was observed at 12 month visit, based on the balanced design, the event is

censored at (6, 12] months; based on the first unbalanced design, if the participant is in the high

risk stratum, the event is censored at (9, 12] months, otherwise, the event is censored at (6, 12]

months; for the reversed unbalanced design, the censor interval is reversed based on the risk factor.
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To compare the efficiency of unbalanced designs vs. balanced design, both parametric meth-

ods and nonparametric methods are used in this chapter. Among the parametric methods, both

exponential distribution and Weibull distribution of survival times are evaluated here. The main

variable of interest for parameter estimation or comparing survival functions is the treatment group.

Besides this, I also evaluate a few additional variables, including a binary variable Gender and a

continuous variable HbA1c, in order to further testing the efficiency of the three types of designs.

Stratum variable is adjusted as a covariate in the parametric regression models. Standard error (SE)

for the covariates effect are compared among different models. For nonparametric methods, sur-

vival functions between the subgroups are compared within strata using the generalized log-rank

statistics based on three different weight functions: Finkelstein (1986), Sun (1996) and Fay (1999).

All the analyses are performed using SAS version 9.4 (SAS Institute, Cary, NC).

3.3 Results and Discussion

Among the 68 participants, 48 were assigned to the intensive treatment group and 20 were

assigned to the usual-care group. Participants ranged in age from 7.8 to 45.7 years, with all but

three <18 years old. Sixty-five percent were male and 92% were white.

The number of events for both stimulated peak C-peptide <0.2 pmol/mL and <0.3 pmol/mL

and the number of censored subjects at the original observed time points are summarized in Table

3.1. Overall, 28 out of 68 (41%) ever had peak C-peptide drop below 0.2 pmol/mL and 39 out of

68 (57%) ever had peak C-peptide drop below 0.3 pmol/mL during the 24-month follow-up period.

Among those without an event (either peak C-peptide dropping below 0.2 pmol/mL or below 0.3

pmol/mL), most participants were censored at the end of study (24 months).
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TABLE 3.1: Summary of events for peak C-peptide <0.2 pmol/mL and <0.3 pmol/mL in
the metabolic control study (N=68)

Months Peak C-peptide <0.2 pmol/mL Peak C-peptide <0.3 pmol/mL

Events Censors Events Censors
3 1 0 1 0
6 2 0 7 0
9 7 0 4 0

12 5 2 10 1
18 10 0 11 0
24 3 38 6 28

Total 28 40 39 29

TABLE 3.2: Summary of events for peak C-peptide <0.2 pmol/mL by age groups

Months Age 7-11 years (N=31) Age 12 years and above (N=37)

Events Censors Events Censors
3 0 0 1 0
6 2 0 0 0
9 5 0 2 0

12 4 1 1 1
18 4 0 6 0
24 2 13 1 25

Total 17 14 11 26

TABLE 3.3: Summary of events for peak C-peptide <0.3 pmol/mL by age groups

Months Age 7-11 years (N=31) Age 12 years and above (N=37)

Events Censors Events Censors
3 0 0 1 0
6 7 0 0 0
9 1 0 3 0

12 6 0 4 1
18 7 0 4 0
24 2 8 4 20

Total 23 8 16 21
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TABLE 3.4: Covariate effect estimation using parametric models under balanced and unbalanced
design for peak C-peptide <0.2 pmol/mL event time

Effect Model Number of Tests Estimate SE Chi-square
Exp mL = mH = 3 -0.3039 0.4666 0.42

mH = 6,mL = 3 -0.3245 0.4658 0.49
Treatment mH = 3,mL = 6 -0.2963 0.4663 0.40

Intensive vs. Standard Weibull mL = mH = 3 -0.2183 0.3045 0.51
mH = 6,mL = 3 -0.2290 0.2978 0.59
mH = 3,mL = 6 -0.2274 0.3309 0.47

Exp mL = mH = 3 0.1382 0.4061 0.12
mH = 6,mL = 3 0.1472 0.4053 0.13

Gender mH = 3,mL = 6 0.1431 0.4060 0.12
Female vs. Male Weibull mL = mH = 3 0.0735 0.2679 0.08

mH = 6,mL = 3 0.0764 0.2619 0.09
mH = 3,mL = 6 0.0893 0.2909 0.09

Exp mL = mH = 3 -0.7339 0.3080 5.68
mH = 6,mL = 3 -0.7257 0.3035 5.72

HbA1c at 3 Months mH = 3,mL = 6 -0.7540 0.3083 5.98
Weibull mL = mH = 3 -0.5099 0.2116 5.80

mH = 6,mL = 3 -0.5099 0.2034 6.28
mH = 3,mL = 6 -0.5631 0.2288 6.06

mL: number of MMTT tests in the low risk stratum; mH : number of MMTT tests in the high risk
stratum

The number of events for stimulated peak C-peptide <0.2 pmol/mL and <0.3 pmol/mL by

age strata are summarized in Table 3.2 and 3.3 respectively. Among those participants of age

7-11 years at diagnosis (Stratum 1, N=31), 17 (55%) had peak C-peptide <0.2 pmol/mL and 23

(74%) had peak C-peptide <0.3 pmol/mL during the 2-year follow-up period. Among those age

12 years and above at diagnosis (Stratum 2, N=37), 11 (30%) had peak C-peptide <0.2 pmol/mL

and 16 (43%) had peak C-peptide <0.3 pmol/mL during the 2-year follow-up period. Apparently,

the event rates in Stratum 1 are higher than those in Stratum 2, which agree with the findings in

Schiffrin et al. (1988).
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TABLE 3.5: Covariate effect estimation using parametric models under balanced and unbalanced
design for peak C-peptide <0.3 pmol/mL event time

Effect Model Number of Tests Estimate SE Chi-square
Exp mL = mH = 3 -0.2801 0.3865 0.53

mH = 6,mL = 3 -0.2930 0.3851 0.58
Treatment mH = 3,mL = 6 -0.2745 0.3861 0.51

Intensive vs. Standard Weibull mL = mH = 3 -0.2175 0.2839 0.59
mH = 6,mL = 3 -0.2121 0.2454 0.75
mH = 3,mL = 6 -0.2173 0.2889 0.57

Exp mL = mH = 3 0.5309 0.3688 2.07
mH = 6,mL = 3 0.5364 0.3677 2.13

Gender mH = 3,mL = 6 0.5285 0.3687 2.06
Female vs. Male Weibull mL = mH = 3 0.3978 0.2754 2.09

mH = 6,mL = 3 0.3535 0.2392 2.18
mH = 3,mL = 6 0.4032 0.2802 2.07

Exp mL = mH = 3 -0.6896 0.2670 6.67
mH = 6,mL = 3 -0.6374 0.2641 5.82

HbA1c at 3 Months mH = 3,mL = 6 -0.6900 0.2659 6.73
Weibull mL = mH = 3 -0.5487 0.1948 7.94

mH = 6,mL = 3 -0.4783 0.1689 8.02
mH = 3,mL = 6 -0.5562 0.1972 7.95

mL: number of MMTT tests in the low risk stratum; mH : number of MMTT tests in the high risk
stratum

The results from parametric analyses of selected covariates effect under balanced design and

unbalanced designs are shown in Table 3.4 and 3.5. In both tables, mH represents the number of

MMTT tests in the high risk stratum and mL represents the number of MMTT tests in the low

risk stratum. The rows with mH = mL = 3 represent the balanced design with all individuals

having 3 MMTTs in 24 months; the rows with mH = 6,mL = 3 represents the unbalanced design

with increased testing frequency in the high risk stratum; and the rows with mH = 3,mL = 6

represents the reversed unbalanced design with increased testing frequency in the low risk stratum.

As shown in both tables, the unbalanced design with increased testing frequency in the high risk

stratum generates the smallest standard error (SE) for the covariate effect among all three designs

evaluated here. The reduction of SE tends to be greater when Weibull model is used rather than

when exponential model is used, also tends to be greater when the study endpoint is failure time
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for peak C-peptide drop below 0.3 pmol/mL compared to drop below 0.2 pmol/mL, which means

that the event rate is relatively higher.

TABLE 3.6: Summary of results from nonparametric comparisons under balanced and unbal-
anced design for peak C-peptide <0.2 pmol/mL event time

Effect Weight Number of Tests Generalized Variance Chi-square
Log-rank

Finkelstein mL = mH = 3 1.4602 5.2487 0.4063
mH = 6,mL = 3 1.5636 5.4335 0.4499
mH = 3,mL = 6 1.4094 5.2530 0.3782

Treatment: Sun mL = mH = 3 1.0699 4.0980 0.2793
Intensive vs. mH = 6,mL = 3 1.3259 4.5622 0.3853

Standard mH = 3,mL = 6 1.0642 4.2101 0.2690
Fay mL = mH = 3 0.5400 3.2694 0.0892

mH = 6,mL = 3 0.7012 3.3705 0.1459
mH = 3,mL = 6 0.4572 3.2778 0.0638

Finkelstein mL = mH = 3 -0.9806 6.6312 0.1450
mH = 6,mL = 3 -1.2079 6.6637 0.2189
mH = 3,mL = 6 -0.9479 6.6445 0.1352

Gender: Sun mL = mH = 3 -1.0779 5.1000 0.2278
Female vs. mH = 6,mL = 3 -1.1291 5.5895 0.2281

Male mH = 3,mL = 6 -1.1178 5.2242 0.2392
Fay mL = mH = 3 -1.3300 4.0564 0.4361

mH = 6,mL = 3 -1.6848 4.1258 0.6880
mH = 3,mL = 6 -1.2751 4.0696 0.3995

mL: number of MMTT tests in the low risk stratum; mH : number of MMTT tests in the high risk
stratum

The results from nonparametric comparison of survival curves between the subgroups of

selected binary variables under balanced and unbalanced designs are summarized in Table 3.6 and

3.7 (same notations used for mL and mH as in Table 3.4 and 3.5). Since the theoretical results

derived in Chapter 2 as well as all the simulation results are based on assumption for parametric

models, and the hypothesis of this dissertation is that unbalanced design can help to improve the

precision of the parameter estimation, therefore, the nonparametric analysis results in this Chapter

are more exploratory rather than confirmatory in nature.
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TABLE 3.7: Summary of results from nonparametric comparisons under balanced and unbal-
anced design for peak C-peptide <0.3 pmol/mL event time

Effect Weight Number of Tests Generalized Variance Chi-square
Log-rank

Finkelstein mL = mH = 3 2.0777 7.7424 0.5576
mH = 6,mL = 3 2.3213 7.9114 0.6811
mH = 3,mL = 6 2.0624 7.7924 0.5458

Treatment: Sun mL = mH = 3 1.6941 5.4724 0.5245
Intensive vs. mH = 6,mL = 3 1.8779 5.9237 0.5953

Standard mH = 3,mL = 6 1.7756 5.8976 0.5346
Fay mL = mH = 3 1.3379 3.9677 0.4511

mH = 6,mL = 3 1.5314 4.0214 0.5832
mH = 3,mL = 6 1.3109 4.0200 0.4275

Finkelstein mL = mH = 3 -4.4883 9.0834 2.2178
mH = 6,mL = 3 -4.4065 9.1948 2.1118
mH = 3,mL = 6 -4.4730 9.1545 2.1855

Gender: Sun mL = mH = 3 -3.7779 6.4072 2.2276
Female vs. mH = 6,mL = 3 -3.8875 6.8806 2.1964

Male mH = 3,mL = 6 -4.0499 6.8588 2.3913
Fay mL = mH = 3 -3.1024 4.6520 2.0689

mH = 6,mL = 3 -3.1024 4.7046 2.0458
mH = 3,mL = 6 -3.0754 4.7129 2.0068

mL: number of MMTT tests in the low risk stratum; mH : number of MMTT tests in the high risk
stratum

From Table 3.6 and 3.7 we can see that results from three types of weight functions depend on

particular variable and endpoint. When the endpoint is time until stimulated C-peptide drop below

0.3 pmol/mL, Finkelstein’s method tends to give the highest score and Fay’s method tend to give

the lowest score for both variables evaluated (Table 3.7). However, when the endpoint is time until

stimulated C-peptide drop below 0.2 pmol/mL, the direction is the same for Treatment variable,

but is reversed for the Gender variable. When comparing balanced design vs. unbalanced designs,

in Table 3.6, the unbalanced design with increased testing frequency in the high risk stratum tends

to give the largest score in generalized log-rank statistics (in absolute value) among all three types

of designs, and thus have the largest power. However, when comparing the reversed unbalanced

design with increased testing frequency in the low risk stratum with the balanced design, it does

not generate higher score for generalized log-rank statistic. In Table 3.7, the same trends are
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observed for comparing treatment groups, however, when comparing female vs. male, the benefit

of unbalanced design previously shown is not observed here. It is unclear why this happens for the

peak C-peptide <0.3 pmol/mL end point but not for the peak C-peptide <0.2 pmol/mL end point.

One possible explanation is the relatively small sample size and large variation. And more studies

are warranted for the nonparametric comparisons of these different designs.
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Chapter 4: Discussions

In longitudinal studies, especially those study endpoints can be influenced by the follow-up

time and assessment frequency, how to decide and balance the number of follow-up visits/assess-

ments, the total length of the follow-up, and the number of subjects recruited is always a difficult

task for researchers. These choices can influence both the statistical power and the study cost.

As an important aspect of longitudinal study design, however, the sampling time of measure-

ments, or temporal design, usually only receive the briefest attention in research reports, such as

"measurements took yearly (or semi-annually) from 2010 to 2015". The scientific or theoretical

reasons, as opposed to the logistic reasons, for the choice of temporal design are rarely mentioned.

And the discussion of how this choice might have affected the study results are equally rare.

The temporal design of a longitudinal study includes two main factors. One is the duration

of the total follow-up time. The study must extend long enough in duration to allow the effect

of interest to occur. For example, in a clinical trial for investigation drugs, the study must follow

enough duration for the drugs to take effect (if they are slow reaction drugs). In a longitudinal study

with time to event outcome, we often need to follow enough duration in order to obtain adequate

number of events for enough statistical power.

The second main factor of temporal design is the measurement interval, which is the time

allowed to elapse between two consecutive measurements in a longitudinal study. There have been

only a few studies which evaluated the measurement interval in different types of longitudinal

studies. Gollub and Reichardt (1987) evaluated the influence of time lags when using latent longi-

tudinal approach on casual modeling. They stated that: ". . . effect sizes can vary as a function of
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the length of the time lag between a cause and the time for which its effect is assessed. That is,

different time lags typically have different effect sizes." (p.82)

Other authors such as Cohen (1991) and Collins (1996) have pointed out that when chang-

ing phenomena are the object of a longitudinal study, the relation between two variables can be

different with different measurement intervals.

The measurement interval in the temporal design is usually evaluated in terms of the planned

number of measurements in each subject (like this dissertation). A few studies have been published

on balancing the number of subjects (n) and number of measurements (m) in terms of power and

total costs in longitudinal studies with continuous outcome. Galbraith and Marschner (2002) derive

theoretical formula for the relationship between number of subjects and number of measurements,

based on mixed-effects linear models, in terms of power and total study costs when the objective

of the longitudinal study is to compare rates of changes in a continuous response variable between

two groups. Based on their derived formula, they provide some practical guidelines on how to

minimize the cost of the study by balancing n and m when both quantities are flexible.

Tekle, Tan, and Berger (2008) evaluate optimal design problems for logistic mixed effects

models for binary longitudinal responses. Unlike the study of Galbraith and Marschner (2002) and

this dissertation which assume evenly spaced measurements, this study try to optimize the timing

of measurements when both number of measurements and total study duration are fixed, which is

another aspect of the temporal design. There are also a wide range of literature on optimal designs

for longitudinal studies with continuous responses.

Given that some studies have been published on the timing and spacing of measurements

in longitudinal studies with continuous responses or even binary responses, the publication on

the timing and spacing of measurement intervals in longitudinal study with survival outcome is

lacking. One main reason is that most survival endpoints studied are known exactly, such as

death, diagnosis of a disease based on symptoms, in this case, timing and spacing of repeated



57

measurements are not related to the study endpoint (although maybe related to other secondary

outcomes). However, the timing and spacing of measurements issue can be related to those survival

endpoints which are interval censored by two consecutive measurements.

Alexander (2008) is the first and the only person, to the author’s knowledge, to systematically

and theoretically assess how the temporal design (in terms of number of measurements in fixed

study duration) can influence the precision of the risk estimator from interval-censored survival

data. The most important reason for the lacking of publications on this temporal study design

issue in interval-censored survival data is probably the under-development of methodology and

lagged-behind application for the analysis methods. Currently, when analyzing interval-censored

survival data, most statisticians still use the simple imputation based methods (e.g. right-point

imputation or mid-point imputation) then apply standard methods for right-censored survival data.

Although the likelihood based parametric methods for interval-censored survival data are easy to

understand and implement, unlike other type of response variables, parametric methods are much

less used when analyzing survival data since it is difficult to know which parametric distribution

the survival function will follow in advance. On the other hand, despite of some development on

the nonparametric comparison and regressions having been made in recent years, the application

of such methods has been lagged far behind.

The publication from Alexander (2008) only evaluates the relationship between number of

measurements in fixed study duration and the precision of event rate estimation from interval-

censored data, this dissertation extends that research by evaluating the influence of changing num-

ber of measurements on precision of the covariate effect estimation from interval-censored survival

data, and further proposes a new unbalanced design in which the number of measurements in each

individual varies according to certain risk factor(s) measured from the study. To the author’s knowl-

edge, this is the first study which proposes and systematically evaluates this type of design when

collecting interval-censored survival data. As a pioneer work in this particular field, I try to keep

the theoretical derivation and numerical studies within parametric scope.
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Although the parametric results are within expectation and prove the hypothesis of this dis-

sertation, the nonparametric analyses in Chapter 3 show some contradictory results. Since the

nonparametric methods are not within the main scope of this study, it is unclear why the patterns

are quite different from parametric results. Obviously, more studies are needed in this field.

When applying the unbalanced design proposed by this dissertation, one important issue need

be emphasized here. Since one of major assumptions for current survival analysis methods is that

the censor time is not related to the data (non-informative censoring), using of unbalanced design

will result in violation of this important assumption since the censor intervals depend on observed

data. In order to correct this, the stratum variable which is used to determine the measurement

schedule will need to be adjusted in the regression model. This can be easily achieved in parametric

regression models by adding a covariate for stratum, and the nonparametric comparison can be

performed within stratum.

One limitation of this study is that losses to follow-up and accrual times are not considered.

For the simplicity of formula derivation, I assume every subject has the same fixed total follow-up

time. But this is seldom true for many studies. Another limitation is that I only consider a risk

factor measured at baseline which is used to determine the assessments frequency, however, risk

factor may changes during the follow-up, therefore, this stratum variable can also be allowed to

change when designing the study. In these kind of complicated conditions, developing a theoretical

formula is not feasible and we need to rely on extensive simulations to estimate the sampling error

and power under unbalanced design.

The unbalanced design evaluated in this dissertation can be applied in both longitudinal

observational studies and clinical trials. Based on the results, this design can help to improve the

efficiency and power of the study. In another perspective, adopting this type of design can help to

reduce the number of subjects needed at fixed power. This is particularly valuable for some RCTs

which involve tremendous cost on the treatment of each subject.
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Chapter 5: Concluding Remarks and Future Research

5.1 Summary and Conclusions

In Chapter 1 of this dissertation, I first introduced the definition of "balanced design" vs.

"unbalanced design" in longitudinal studies. In this chapter, the longitudinal study design in which

all the participants have the same visit/assessment schedule is defined as "balanced design"; the

opposite is "unbalanced design", in which different participants have different visit/assessment

schedule depending on certain data collected from the study. In this chapter, I provided some

examples for different types of balanced design and unbalanced design.

Next, I provided a brief review on the theoretical background for the interval-censored time

to event data and associated analysis methods. Last, I reviewed the current limited literatures which

study the influence of study design on parameter estimation from interval-censored time to event

time data, then based on these findings, I proposed an unbalanced design with only increasing

the frequency of assessments in the high risk group based certain baseline risk factor(s) when

collecting interval-censored time to event data.

In Chapter 2, first, I provided theoretical proof in parametric scope (assuming the actual event

time follows exponential distribution) that the unbalanced design I proposed has better efficiency

than the common balanced design in terms of parameter estimation. In the second part, the results

from numerical studies under different parameter settings were presented.

As previous literature show that the sampling error of the event rate could be reduced by

increasing the number of assessments in fixed study period when collecting interval-censored time
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to event data (Alexander, 2008), the results from Chapter 2 show similar trends when estimating

the sampling variance of covariate effect on event rate. This study also show that the reduction of

sampling variance can be mostly achieved by simply increasing the number of assessments in the

high risk stratum based on a baseline risk factor (unbalanced design) without having to increase

the number of assessments in the whole study cohort. I also show that this unbalanced design has

better efficiency than a "reversed unbalanced design" in which the number of assessments in the

low risk stratum rather than the high risk stratum are increased.

In Chapter 3, I applied this unbalanced design into the data which were collected for a new

onset T1D metabolic control study by DirecNet and TrialNet study groups, and compared the

efficiency of the balanced design with two types of unbalanced designs (one with increased test-

ing frequency in the high risk stratum, and the other in reversed direction with increased testing

frequency in the low risk stratum) on two study endpoints: the failure time of stimulated peak

C-peptide drop below 0.2 pmol/mL and below 0.3 pmol/mL in the first time as measured by lab

data. In the unbalanced designs, age at T1D diagnosis was used to separate the study cohort into

two risk strata. In this Chapter, when using the parametric analysis methods for analyzing selected

covariate effects, the results show that generally, the unbalanced design with increased testing

frequency in the high risk stratum gives the smallest SE of the covariate effect estimate (β̂) and

largest power (as reflected by Chi-squares in Table 3.4 and 3.5) among all three designs evalu-

ated. The results from nonparametric comparison of the survival curves were also presented for

exploratory purpose, since the generalized log-rank statistics calculated from the nonparametric

methods are in totally different scope with the parametric parameter estimation in Chapter 2. The

results show that mostly the calculated generalized log-rank statistics from the unbalanced design

with increased testing frequency in the high risk stratum is higher than the generalized log-rank

statistics calculated from the balanced design, however, in some occasions, some minor reduction

in the calculated generalized log-rank statistics from this unbalanced design was also observed.

Meanwhile, it was also observed that the reversed unbalanced design with increased testing fre-

quency in the low risk stratum tends to generate generalized log-rank statistics even lower than
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that from the balanced design quite often. The reason for this behavior is unclear and need further

investigation.

In Chapter 4, first some discussions on the current status of researches related to tempo-

ral design of longitudinal studies are provided. Second, the contributions and limitations of this

particular research are discussed.

5.2 Future Research

This dissertation mainly points to a new direction when designing longitudinal studies with

interval-censored time to event outcomes, more studies are needed in order to apply this type of

design when collecting longitudinal data. 1) As I discussed before, more studies need be done to

evaluate the efficiency of this unbalanced design in the nonparametric scope. 2) Since the sample

size of the metabolic control study that I use in Chapter 3 is relatively small, it is better to able to

evaluate this proposed design in larger samples. 3) In future research studies on this topic, some

factors not considered in this dissertation can be incorporated, such as accrual time, early drop-out,

and time-dependent risk factor for defining strata. 4) Since increasing the testing frequency in the

high risk group still lead to increased total cost, another direction for future researches can be that,

while keeping the total number of testing for all subjects constant, evaluating the efficiency of an

unbalanced design with decreased testing frequency in the low risk stratum and increased testing

frequency in the high risk stratum at the same time. 5) Study on either optimizing the power by

adjusting different assessment schedules based on risk group at fixed cost or optimize the cost by

adjusting different assessment schedules based on risk group at fixed power.
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Appendix B: Selected R Codes for Chapter 3

# ###########################################################
# Tab le 2 . 1 A s y m p t o t i c v a r i a n c e ( E x p o n e n t i a l d i s t r i b u t i o n ) #
# ###########################################################

rm ( l i s t = l s ( a l l =T ) )

# c a l c u l a t e v a r i a n c e r a t i o o f i n b a l a n c e d d e s i g n : b a l a n c e d d e s i g n
n1<−50
n2<−50
beta<−−1 # change be tween 1 and −1
T<−1
lambda1<−1
lambda2<−5 # change among 2 ,3 ,4
# c r e a t e an empty v e c t o r f o r v a r i a n c e s and r a t i o
v1<−rep (NA, 5 )
v2<−rep (NA, 5 )
v3<−rep (NA, 5 )
r a t i o 2 . 1<−rep (NA, 5 )
r a t i o 3 . 1<−rep (NA, 5 )

f o r (m i n 1 : 5 ) {
# v a r i a n c e from b a l a n c e d d e s i g n
c<−1
temp1<−n1∗ lambda1∗T∗exp ( beta ) ∗exp(− lambda1∗T∗exp ( beta ) )
temp2<−n2∗ lambda2∗T∗exp ( beta ) ∗exp(− lambda2∗T∗exp ( beta ) )

temp3<−n1∗ lambda1∗T /m∗exp ( beta )

temp4<−1−m∗exp(− lambda1∗T∗ (m−1) /m∗exp ( beta ) ) +(m−1)∗exp(− lambda1∗T
↪→ ∗exp ( beta ) )

temp5<−exp ( lambda1∗T /m∗exp ( beta ) )−1

temp6<−(1− lambda1∗T /m∗exp ( beta )−exp(− lambda1∗T /m∗exp ( beta ) ) ) ∗(1−
↪→ exp(− lambda1∗T∗exp ( beta ) ) )
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temp7<− ( exp ( lambda1∗T /m∗exp ( beta ) )−1)∗(1−exp(− lambda1∗T /m∗exp (
↪→ beta ) ) )

temp8<−n2∗ lambda2∗T / ( c∗m) ∗exp ( beta )

temp9<−1−c∗m∗exp(− lambda2∗T∗ ( c∗m−1) / ( c∗m) ∗exp ( beta ) ) +( c∗m−1)∗exp
↪→ (− lambda2∗T∗exp ( beta ) )

temp10<−exp ( lambda2∗T / ( c∗m) ∗exp ( beta ) )−1

temp11<−(1− lambda2∗T / ( c∗m) ∗exp ( beta )−exp(− lambda2∗T / ( c∗m) ∗exp (
↪→ beta ) ) ) ∗(1−exp(− lambda2∗T∗exp ( beta ) ) )

temp12<− ( exp ( lambda2∗T / ( c∗m) ∗exp ( beta ) )−1)∗(1−exp(− lambda2∗T / ( c∗m
↪→ ) ∗exp ( beta ) ) )

# f i s h e r i n f o r m a t i o n m a t r i x
I . 1 1<−temp1+temp2+temp3∗ temp4 / temp5−temp3∗ temp6 / temp7+temp8∗ temp9

↪→ / temp10−temp8∗ temp11 / temp12
I . 1 2<−temp1 / lambda1 +( temp3 / lambda1 ) ∗ ( temp4 / temp5 )−( temp3 / lambda1 )

↪→ ∗(1−exp(− lambda1∗T∗exp ( beta ) ) ) / temp5+temp3∗T∗exp ( beta ) /m∗
↪→ ((1− exp(− lambda1∗T∗exp ( beta ) ) ) / temp7 )

I . 1 3<−temp2 / lambda2 +( temp8 / lambda2 ) ∗ ( temp9 / temp10 )−( temp8 / lambda2
↪→ ) ∗(1−exp(− lambda2∗T∗exp ( beta ) ) ) / temp10+temp8∗T∗exp ( beta ) / ( c
↪→ ∗m) ∗ ((1− exp(− lambda2∗T∗exp ( beta ) ) ) / temp12 )

I . 2 1<−I . 1 2
I . 2 2<−n1∗T^2∗(1−exp(− lambda1∗T ) ) / (m^2∗ ( exp ( lambda1∗T /m)−1)∗(1−exp

↪→ (− lambda1∗T /m) ) ) +n1∗T^2∗exp (2 ∗beta ) ∗(1−exp(− lambda1∗T∗exp (
↪→ beta ) ) ) / (m^2∗ temp7 )

I . 2 3<−0
I . 3 1<−I . 1 3
I . 3 2<−I . 2 3
I . 3 3<−n2∗T^2∗(1−exp(− lambda2∗T ) ) / ( ( c∗m) ^2∗ ( exp ( lambda2∗T / ( c∗m) )

↪→ −1)∗(1−exp(− lambda2∗T / ( c∗m) ) ) ) +n2∗T^2∗exp (2 ∗beta ) ∗(1−exp(−
↪→ lambda2∗T∗exp ( beta ) ) ) / ( ( c∗m) ^2∗ temp12 )

I<−matrix ( c ( I . 1 1 , I . 1 2 , I . 1 3 , I . 2 1 , I . 2 2 , I . 2 3 , I . 3 1 , I . 3 2 , I . 3 3 ) , 3 , 3 )
I . i n v<− s o l v e ( I )
v1 [m]<−I . i n v [ 1 , 1 ]

# f o r unba lanced d e s i g n 2:1
c<−2
temp1<−n1∗ lambda1∗T∗exp ( beta ) ∗exp(− lambda1∗T∗exp ( beta ) )
temp2<−n2∗ lambda2∗T∗exp ( beta ) ∗exp(− lambda2∗T∗exp ( beta ) )

temp3<−n1∗ lambda1∗T /m∗exp ( beta )



76

temp4<−1−m∗exp(− lambda1∗T∗ (m−1) /m∗exp ( beta ) ) +(m−1)∗exp(− lambda1∗T
↪→ ∗exp ( beta ) )

temp5<−exp ( lambda1∗T /m∗exp ( beta ) )−1

temp6<−(1− lambda1∗T /m∗exp ( beta )−exp(− lambda1∗T /m∗exp ( beta ) ) ) ∗(1−
↪→ exp(− lambda1∗T∗exp ( beta ) ) )

temp7<− ( exp ( lambda1∗T /m∗exp ( beta ) )−1)∗(1−exp(− lambda1∗T /m∗exp (
↪→ beta ) ) )

temp8<−n2∗ lambda2∗T / ( c∗m) ∗exp ( beta )

temp9<−1−c∗m∗exp(− lambda2∗T∗ ( c∗m−1) / ( c∗m) ∗exp ( beta ) ) +( c∗m−1)∗exp
↪→ (− lambda2∗T∗exp ( beta ) )

temp10<−exp ( lambda2∗T / ( c∗m) ∗exp ( beta ) )−1

temp11<−(1− lambda2∗T / ( c∗m) ∗exp ( beta )−exp(− lambda2∗T / ( c∗m) ∗exp (
↪→ beta ) ) ) ∗(1−exp(− lambda2∗T∗exp ( beta ) ) )

temp12<− ( exp ( lambda2∗T / ( c∗m) ∗exp ( beta ) )−1)∗(1−exp(− lambda2∗T / ( c∗m
↪→ ) ∗exp ( beta ) ) )

# f i s h e r i n f o r m a t i o n m a t r i x
I . 1 1<−temp1+temp2+temp3∗ temp4 / temp5−temp3∗ temp6 / temp7+temp8∗ temp9

↪→ / temp10−temp8∗ temp11 / temp12
I . 1 2<−temp1 / lambda1 +( temp3 / lambda1 ) ∗ ( temp4 / temp5 )−( temp3 / lambda1 )

↪→ ∗(1−exp(− lambda1∗T∗exp ( beta ) ) ) / temp5+temp3∗T∗exp ( beta ) /m∗
↪→ ((1− exp(− lambda1∗T∗exp ( beta ) ) ) / temp7 )

I . 1 3<−temp2 / lambda2 +( temp8 / lambda2 ) ∗ ( temp9 / temp10 )−( temp8 / lambda2
↪→ ) ∗(1−exp(− lambda2∗T∗exp ( beta ) ) ) / temp10+temp8∗T∗exp ( beta ) / ( c
↪→ ∗m) ∗ ((1− exp(− lambda2∗T∗exp ( beta ) ) ) / temp12 )

I . 2 1<−I . 1 2
I . 2 2<−n1∗T^2∗(1−exp(− lambda1∗T ) ) / (m^2∗ ( exp ( lambda1∗T /m)−1)∗(1−exp

↪→ (− lambda1∗T /m) ) ) +n1∗T^2∗exp (2 ∗beta ) ∗(1−exp(− lambda1∗T∗exp (
↪→ beta ) ) ) / (m^2∗ temp7 )

I . 2 3<−0
I . 3 1<−I . 1 3
I . 3 2<−I . 2 3
I . 3 3<−n2∗T^2∗(1−exp(− lambda2∗T ) ) / ( ( c∗m) ^2∗ ( exp ( lambda2∗T / ( c∗m) )

↪→ −1)∗(1−exp(− lambda2∗T / ( c∗m) ) ) ) +n2∗T^2∗exp (2 ∗beta ) ∗(1−exp(−
↪→ lambda2∗T∗exp ( beta ) ) ) / ( ( c∗m) ^2∗ temp12 )

I<−matrix ( c ( I . 1 1 , I . 1 2 , I . 1 3 , I . 2 1 , I . 2 2 , I . 2 3 , I . 3 1 , I . 3 2 , I . 3 3 ) , 3 , 3 )
I . i n v<− s o l v e ( I )
v2 [m]<−I . i n v [ 1 , 1 ]

r a t i o 2 . 1 [m]<−v2 [m] / v1 [m]
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}

v1
v2
r a t i o 2 . 1

# ###########################################
# Tab le 2 . 1 E m p i r i c a l R e s u l t s #
# ###########################################
rm ( l i s t = l s ( ) )
# l o g l i k e l i h o o d f u n c t i o n f o r unba lance des ign , use −logL f o r

↪→ n lminb
l i k e l i h o o d 1<− f u n c t i o n ( par ) {

b e t a 1<−par [ 1 ]
b e t a 2<−par [ 2 ]
b e t a 3<−par [ 3 ]
temp1<−exp(−L1 [ 1 : 1 0 0 ] ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : 1 0 0 ] ) )
temp2<−exp(−R1 [ 1 : 1 0 0 ] ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : 1 0 0 ] ) )
temp3<−exp(−L1 [ 1 0 1 : 2 0 0 ] ∗exp ( b e t a 2 + b e t a 3 ∗Z [ 1 0 1 : 2 0 0 ] ) )
temp4<−exp(−R1 [ 1 0 1 : 2 0 0 ] ∗exp ( b e t a 2 + b e t a 3 ∗Z [ 1 0 1 : 2 0 0 ] ) )

−sum ( l o g ( temp1 − temp2 ) )−sum ( l o g ( temp3 − temp4 ) )
}

# l o g l i k e l i h o o d f u n c t i o n f o r b a l a n c e des ign , use −logL f o r n lminb
l i k e l i h o o d 2<− f u n c t i o n ( par ) {

b e t a 1<−par [ 1 ]
b e t a 2<−par [ 2 ]
b e t a 3<−par [ 3 ]
temp1<−exp(−L2 [ 1 : 1 0 0 ] ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : 1 0 0 ] ) )
temp2<−exp(−R2 [ 1 : 1 0 0 ] ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : 1 0 0 ] ) )
temp3<−exp(−L2 [ 1 0 1 : 2 0 0 ] ∗exp ( b e t a 2 + b e t a 3 ∗Z [ 1 0 1 : 2 0 0 ] ) )
temp4<−exp(−R2 [ 1 0 1 : 2 0 0 ] ∗exp ( b e t a 2 + b e t a 3 ∗Z [ 1 0 1 : 2 0 0 ] ) )

−sum ( l o g ( temp1 − temp2 ) )−sum ( l o g ( temp3 − temp4 ) )
}

# s i m u l a t i o n
n1<−50
n2<−50
beta<−−1 # change be tween 1 and −1
lambda1<−1
lambda2<−5 # change among 2 ,3 ,4
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c<−2
m<−seq ( 1 : 5 )
v1<−rep (NA, 5 )
v2<−rep (NA, 5 )

# v a r i a b l e f o r group
group1 . 1<−rep ( 0 , n1 )
group1 . 2<−rep ( 1 , n1 )
group2 . 1<−rep ( 0 , n2 )
group2 . 2<−rep ( 1 , n2 )
Z<−c ( group1 . 1 , group1 . 2 , group2 . 1 , group2 . 2 )

# c r e a t e an empty v e c t o r f o r r a t i o
r a t i o <−rep (NA, 5 )
f o r (m i n 1 : 5 ) {

r e s u l t . u<−rep (NA, 1 0 0 0 )
r e s u l t . b<−rep (NA, 1 0 0 0 )

f o r ( sim i n 1 : 1 0 0 0 ) {
# c r e a t e e x p o n e n t i a l d i s t r i b u t i o n w i t h d i f f e r e n t r a t e s
exp1 . 1<−rexp ( n1 , r a t e =lambda1 )
exp1 . 2<−rexp ( n1 , r a t e =lambda1∗exp ( beta ) )
exp2 . 1<−rexp ( n2 , r a t e =lambda2 )
exp2 . 2<−rexp ( n2 , r a t e =lambda2∗exp ( beta ) )
t<−c ( exp1 . 1 , exp1 . 2 , exp2 . 1 , exp2 . 2 )

# c r e a t e empty v e c t o r f o r l e f t and r i g h t bound o f t h e v i s i t
↪→ window

L1<−rep (NA, 2∗n1+2∗n2 )
R1<−rep (NA, 2∗n1+2∗n2 )
L2<−rep (NA, 2∗n1+2∗n2 )
R2<−rep (NA, 2∗n1+2∗n2 )

# f o r s t r a t a 1 w i t h low r i s k , l e t L1=L2 R1=R2
f o r ( i i n 1 : 1 0 0 ) {

i f ( t [ i ] >1) {
L1 [ i ]<−1
R1 [ i ]<− I n f
L2 [ i ]<−1
R2 [ i ]<− I n f }

e l s e { f o r ( j i n 1 :m) {
i f ( t [ i ] >( j −1) /m & t [ i ] <= j /m) {
L1 [ i ]<− ( j −1) /m
R1 [ i ]<− j /m
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L2 [ i ]<− ( j −1) /m
R2 [ i ]<− j /m }}}

} # c l o s e f o r ( i i n 1 : 1 0 0 )

# f o r s t r a t a 2 w i t h h igh r i s k , use c∗m v i s i t s f o r L1 & R1 , use
↪→ m v i s i t s f o r L2 & R2

f o r ( i i n 1 0 1 : 2 0 0 ) {
i f ( t [ i ] >1) {

L1 [ i ]<−1
R1 [ i ]<− I n f
L2 [ i ]<−1
R2 [ i ]<− I n f }

e l s e {
f o r ( j i n 1 : ( c∗m) ) {

i f ( t [ i ] >( j −1) / ( c∗m) & t [ i ] <= j / ( c∗m) ) {
L1 [ i ]<− ( j −1) / ( c∗m)
R1 [ i ]<− j / ( c∗m) }}

f o r ( j i n 1 :m) {
i f ( t [ i ] >( j −1) /m & t [ i ] <= j /m) {
L2 [ i ]<− ( j −1) /m
R2 [ i ]<− j /m}}} # c l o s e e l s e

} # c l o s e f o r ( i i n 1 0 1 : 2 0 0 )
r e s u l t . sim1<−nlminb ( s t a r t =c ( 0 . 8 , 1 . 8 , 1 . 5 ) , o b j = l i k e l i h o o d 1 )
r e s u l t . u [ sim ]<− r e s u l t . sim1 $par [ 3 ]

r e s u l t . sim2<−nlminb ( s t a r t =c ( 0 . 8 , 1 . 8 , 1 . 5 ) , o b j = l i k e l i h o o d 2 )
r e s u l t . b [ sim ]<− r e s u l t . sim2 $par [ 3 ]

} # c l o s e f o r ( s im i n . . . )

v1 [m]<−var ( r e s u l t . b )
v2 [m]<−var ( r e s u l t . u )
r a t i o [m]<−v2 [m] / v1 [m] } # c l o s e f o r (m i n 1 : 5 )

# p r i n t r e s u l t s
v1
v2
r a t i o
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# ###########################################
# Tab le 2 . 3 E m p i r i c a l R e s u l t s − W e i b u l l #
# ###########################################

rm ( l i s t = l s ( ) )
# l o g l i k e l i h o o d f u n c t i o n f o r unba lance des ign , use −logL f o r

↪→ n lminb
l i k e l i h o o d 1 .w<− f u n c t i o n ( par ) {

b e t a 1<−par [ 1 ]
b e t a 2<−par [ 2 ]
b e t a 3<−par [ 3 ]
b e t a 4<−par [ 4 ]
temp1<−exp (−(L1 [ 1 : 1 0 0 ] ∗∗ b e t a 4 ) ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : 1 0 0 ] ) )
temp2<−exp (−(R1 [ 1 : 1 0 0 ] ∗∗ b e t a 4 ) ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : 1 0 0 ] ) )
temp3<−exp (−(L1 [ 1 0 1 : 2 0 0 ] ∗∗ b e t a 4 ) ∗exp ( b e t a 2 + b e t a 3 ∗Z [ 1 0 1 : 2 0 0 ] ) )
temp4<−exp (−(R1 [ 1 0 1 : 2 0 0 ] ∗∗ b e t a 4 ) ∗exp ( b e t a 2 + b e t a 3 ∗Z [ 1 0 1 : 2 0 0 ] ) )

−sum ( l o g ( temp1 − temp2 ) )−sum ( l o g ( temp3 − temp4 ) )
}

# l o g l i k e l i h o o d f u n c t i o n f o r b a l a n c e des ign , use −logL f o r n lminb
l i k e l i h o o d 2 .w<− f u n c t i o n ( par ) {

b e t a 1<−par [ 1 ]
b e t a 2<−par [ 2 ]
b e t a 3<−par [ 3 ]
b e t a 4<−par [ 4 ]
temp1<−exp (−(L2 [ 1 : 1 0 0 ] ∗∗ b e t a 4 ) ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : 1 0 0 ] ) )
temp2<−exp (−(R2 [ 1 : 1 0 0 ] ∗∗ b e t a 4 ) ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : 1 0 0 ] ) )
temp3<−exp (−(L2 [ 1 0 1 : 2 0 0 ] ∗∗ b e t a 4 ) ∗exp ( b e t a 2 + b e t a 3 ∗Z [ 1 0 1 : 2 0 0 ] ) )
temp4<−exp (−(R2 [ 1 0 1 : 2 0 0 ] ∗∗ b e t a 4 ) ∗exp ( b e t a 2 + b e t a 3 ∗Z [ 1 0 1 : 2 0 0 ] ) )

−sum ( l o g ( temp1 − temp2 ) )−sum ( l o g ( temp3 − temp4 ) )
}

# s i m u l a t i o n
n1<−50
n2<−50
beta<−−1 # change be tween 1 and −1
lambda1<−1
lambda2<−4 # change be tween 2 and 4
a l p h a<−0 . 8 # change be tween 1 . 5 and 0 . 8
c<−2
m<−seq ( 1 : 5 )
v1<−rep (NA, 5 )
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v2<−rep (NA, 5 )

# v a r i a b l e f o r group
group1 . 1<−rep ( 0 , n1 )
group1 . 2<−rep ( 1 , n1 )
group2 . 1<−rep ( 0 , n2 )
group2 . 2<−rep ( 1 , n2 )
Z<−c ( group1 . 1 , group1 . 2 , group2 . 1 , group2 . 2 )

# c r e a t e an empty v e c t o r f o r r a t i o
r a t i o <−rep (NA, 5 )
f o r (m i n 1 : 5 ) {

r e s u l t . u<−rep (NA, 1 0 0 0 )
r e s u l t . b<−rep (NA, 1 0 0 0 )

f o r ( sim i n 1 : 1 0 0 0 ) {
# c r e a t e e x p o n e n t i a l d i s t r i b u t i o n w i t h d i f f e r e n t r a t e s
w1 . 1<−r w e i b u l l ( n1 , shape = a lpha , s c a l e =lambda1∗∗(−1 / a l p h a ) )
w1 . 2<−r w e i b u l l ( n1 , shape = a lpha , s c a l e =( lambda1∗exp ( beta ) ) ∗∗(−1

↪→ / a l p h a ) )
w2 . 1<−r w e i b u l l ( n2 , shape = a lpha , s c a l e =lambda2∗∗(−1 / a l p h a ) )
w2 . 2<−r w e i b u l l ( n2 , shape = a lpha , s c a l e =( lambda2∗exp ( beta ) ) ∗∗(−1

↪→ / a l p h a ) )
t<−c ( w1 . 1 , w1 . 2 , w2 . 1 , w2 . 2 )

# c r e a t e empty v e c t o r f o r l e f t and r i g h t bound o f t h e v i s i t
↪→ window

L1<−rep (NA, 2∗n1+2∗n2 )
R1<−rep (NA, 2∗n1+2∗n2 )
L2<−rep (NA, 2∗n1+2∗n2 )
R2<−rep (NA, 2∗n1+2∗n2 )

# f o r s t r a t a 1 w i t h low r i s k , l e t L1=L2 R1=R2
f o r ( i i n 1 : 1 0 0 ) {

i f ( t [ i ] >1) {
L1 [ i ]<−1
R1 [ i ]<− I n f
L2 [ i ]<−1
R2 [ i ]<− I n f }

e l s e { f o r ( j i n 1 :m) {
i f ( t [ i ] >( j −1) /m & t [ i ] <= j /m) {
L1 [ i ]<− ( j −1) /m
R1 [ i ]<− j /m
L2 [ i ]<− ( j −1) /m
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R2 [ i ]<− j /m }}}
} # c l o s e f o r ( i i n 1 : 1 0 0 )

# f o r s t r a t a 2 w i t h h igh r i s k , use c∗m v i s i t s f o r L1 & R1 , use
↪→ m v i s i t s f o r L2 & R2

f o r ( i i n 1 0 1 : 2 0 0 ) {
i f ( t [ i ] >1) {

L1 [ i ]<−1
R1 [ i ]<− I n f
L2 [ i ]<−1
R2 [ i ]<− I n f }

e l s e {
f o r ( j i n 1 : ( c∗m) ) {

i f ( t [ i ] >( j −1) / ( c∗m) & t [ i ] <= j / ( c∗m) ) {
L1 [ i ]<− ( j −1) / ( c∗m)
R1 [ i ]<− j / ( c∗m) }}

f o r ( j i n 1 :m) {
i f ( t [ i ] >( j −1) /m & t [ i ] <= j /m) {
L2 [ i ]<− ( j −1) /m
R2 [ i ]<− j /m}}} # c l o s e e l s e

} # c l o s e f o r ( i i n 1 0 1 : 2 0 0 )
r e s u l t . sim1<−nlminb ( s t a r t =c ( 0 . 8 , 1 . 8 , 1 . 5 , 1 ) , o b j = l i k e l i h o o d 1 .w)
r e s u l t . u [ sim ]<− r e s u l t . sim1 $par [ 3 ]

r e s u l t . sim2<−nlminb ( s t a r t =c ( 0 . 8 , 1 . 8 , 1 . 5 , 1 ) , o b j = l i k e l i h o o d 2 .w)
r e s u l t . b [ sim ]<− r e s u l t . sim2 $par [ 3 ]

} # c l o s e f o r ( s im i n . . . )
v1 [m]<−var ( r e s u l t . b )
v2 [m]<−var ( r e s u l t . u )
r a t i o [m]<−v2 [m] / v1 [m] } # c l o s e f o r (m i n 1 : 5 )

# p r i n t r a t i o
v1
v2
r a t i o

# ###############################################
# Tab le 2 . 4 Uneven ly spaced v i s i t s #
# ###############################################

rm ( l i s t = l s ( a l l =T ) )
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# l o g l i k e l i h o o d f u n c t i o n f o r unba lance des ign , use −logL f o r
↪→ n lminb

l i k e l i h o o d 1 .w<− f u n c t i o n ( par ) {
b e t a 1<−par [ 1 ]
b e t a 2<−par [ 2 ]
b e t a 3<−par [ 3 ]
b e t a 4<−par [ 4 ]
temp1<−exp (−(L1 [ 1 : 1 0 0 ] ∗∗ b e t a 4 ) ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : 1 0 0 ] ) )
temp2<−exp (−(R1 [ 1 : 1 0 0 ] ∗∗ b e t a 4 ) ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : 1 0 0 ] ) )
temp3<−exp (−(L1 [ 1 0 1 : 2 0 0 ] ∗∗ b e t a 4 ) ∗exp ( b e t a 2 + b e t a 3 ∗Z [ 1 0 1 : 2 0 0 ] ) )
temp4<−exp (−(R1 [ 1 0 1 : 2 0 0 ] ∗∗ b e t a 4 ) ∗exp ( b e t a 2 + b e t a 3 ∗Z [ 1 0 1 : 2 0 0 ] ) )

−sum ( l o g ( temp1 − temp2 ) )−sum ( l o g ( temp3 − temp4 ) )
}

# l o g l i k e l i h o o d f u n c t i o n f o r b a l a n c e des ign , use −logL f o r n lminb
l i k e l i h o o d 2 .w<− f u n c t i o n ( par ) {

b e t a 1<−par [ 1 ]
b e t a 2<−par [ 2 ]
b e t a 3<−par [ 3 ]
b e t a 4<−par [ 4 ]
temp1<−exp (−(L2 [ 1 : 1 0 0 ] ∗∗ b e t a 4 ) ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : 1 0 0 ] ) )
temp2<−exp (−(R2 [ 1 : 1 0 0 ] ∗∗ b e t a 4 ) ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : 1 0 0 ] ) )
temp3<−exp (−(L2 [ 1 0 1 : 2 0 0 ] ∗∗ b e t a 4 ) ∗exp ( b e t a 2 + b e t a 3 ∗Z [ 1 0 1 : 2 0 0 ] ) )
temp4<−exp (−(R2 [ 1 0 1 : 2 0 0 ] ∗∗ b e t a 4 ) ∗exp ( b e t a 2 + b e t a 3 ∗Z [ 1 0 1 : 2 0 0 ] ) )

−sum ( l o g ( temp1 − temp2 ) )−sum ( l o g ( temp3 − temp4 ) )
}

# s i m u l a t i o n
n1<−50
n2<−50
beta<−−1 # change be tween 1 and −1
lambda1<−1
lambda2<−4 # change among 2 ,3 ,4
a l p h a<−0 . 8

# v a r i a b l e f o r group
group1 . 1<−rep ( 0 , n1 )
group1 . 2<−rep ( 1 , n1 )
group2 . 1<−rep ( 0 , n2 )
group2 . 2<−rep ( 1 , n2 )
Z<−c ( group1 . 1 , group1 . 2 , group2 . 1 , group2 . 2 )

r e s u l t . u<−rep (NA, 1 0 0 0 )
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r e s u l t . b<−rep (NA, 1 0 0 0 )

f o r ( sim i n 1 : 1 0 0 0 ) {
# c r e a t e e x p o n e n t i a l d i s t r i b u t i o n w i t h d i f f e r e n t r a t e s
w1 . 1<−r w e i b u l l ( n1 , shape = a lpha , s c a l e =lambda1∗∗(−1 / a l p h a ) )
w1 . 2<−r w e i b u l l ( n1 , shape = a lpha , s c a l e =( lambda1∗exp ( beta ) ) ∗∗(−1

↪→ / a l p h a ) )
w2 . 1<−r w e i b u l l ( n2 , shape = a lpha , s c a l e =lambda2∗∗(−1 / a l p h a ) )
w2 . 2<−r w e i b u l l ( n2 , shape = a lpha , s c a l e =( lambda2∗exp ( beta ) ) ∗∗(−1

↪→ / a l p h a ) )
t<−c ( w1 . 1 , w1 . 2 , w2 . 1 , w2 . 2 )

# c r e a t e empty v e c t o r f o r l e f t and r i g h t bound o f t h e v i s i t
↪→ window

L1<−rep (NA, 2∗n1+2∗n2 )
R1<−rep (NA, 2∗n1+2∗n2 )
L2<−rep (NA, 2∗n1+2∗n2 )
R2<−rep (NA, 2∗n1+2∗n2 )

# Assume t h e r e are 3 v i s i t s i n b a l a n c e d d e s i g n : 0 . 2 , 0 . 5 , 1 . 0 and
↪→ i n unba lanced

# d e s i g n t h e r e are 6 v i s i t s i n h igh r i s k group :
↪→ 0 . 1 , 0 . 2 , 0 . 3 5 , 0 . 5 , 0 . 7 5 , 1 . 0

# f o r s t r a t a 1 w i t h low r i s k , l e t L1=L2 R1=R2
f o r ( i i n 1 : 1 0 0 ) {

i f ( t [ i ] >0 & t [ i ] <= 0 . 2 ) {
L1 [ i ]<−0
R1 [ i ]<−0 . 2 }

e l s e i f ( t [ i ] >0 .2 & t [ i ] <= 0 . 5 ) {
L1 [ i ]<−0 . 2
R1 [ i ]<−0 . 5 }

e l s e i f ( t [ i ] >0 .5 & t [ i ] <= 1 . 0 ) {
L1 [ i ]<−0 . 5
R1 [ i ]<−1 . 0 }

e l s e i f ( t [ i ] > 1 . 0 ) {
L1 [ i ]<−1 . 0
R1 [ i ]<− I n f }

L2 [ i ]<−L1 [ i ]
R2 [ i ]<−R1 [ i ] } # c l o s e f o r ( i i n 1 : 1 0 0 )

# f o r s t r a t a 2 w i t h h igh r i s k , use 6 v i s i t s f o r L1&R1 , use 3
↪→ v i s i t s f o r L2&R2

f o r ( i i n 1 0 1 : 2 0 0 ) {
i f ( t [ i ] >0 & t [ i ] <= 0 . 2 ) {

L2 [ i ]<−0
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R2 [ i ]<−0 . 2
i f ( t [ i ] >0 & t [ i ] <= 0 . 1 ) {

L1 [ i ]<−0
R1 [ i ]<−0 . 1 }

e l s e {
L1 [ i ]<−0 . 1
R1 [ i ]<−0 . 2 } }

e l s e i f ( t [ i ] >0 .2 & t [ i ] <= 0 . 5 ) {
L2 [ i ]<−0 . 2
R2 [ i ]<−0 . 5
i f ( t [ i ] >0 .2 & t [ i ] <= 0 . 3 5 ) {

L1 [ i ]<−0 . 2
R1 [ i ]<−0 . 3 5 }

e l s e {
L1 [ i ]<−0 . 3 5
R1 [ i ]<−0 . 5 } }

e l s e i f ( t [ i ] >0 .5 & t [ i ] <= 1 . 0 ) {
L2 [ i ]<−0 . 5
R2 [ i ]<−1 . 0
i f ( t [ i ] >0 .5 & t [ i ] <= 0 . 7 5 ) {

L1 [ i ]<−0 . 5
R1 [ i ]<−0 . 7 5 }

e l s e {
L1 [ i ]<−0 . 7 5
R1 [ i ]<−1 . 0 } }

e l s e i f ( t [ i ] > 1 . 0 ) {
L1 [ i ]<−1 . 0
R1 [ i ]<− I n f
L2 [ i ]<−1 . 0
R2 [ i ]<− I n f }} # c l o s e f o r ( i i n 1 0 1 : 2 0 0 )

r e s u l t . sim1<−nlminb ( s t a r t =c ( 0 . 8 , 1 . 8 , 1 . 5 , 1 ) , o b j = l i k e l i h o o d 1 .w)
r e s u l t . u [ sim ]<− r e s u l t . sim1 $par [ 3 ]

r e s u l t . sim2<−nlminb ( s t a r t =c ( 0 . 8 , 1 . 8 , 1 . 5 , 1 ) , o b j = l i k e l i h o o d 2 .w)
r e s u l t . b [ sim ]<− r e s u l t . sim2 $par [ 3 ]

} # c l o s e f o r ( s im i n . . . )

v1<−var ( r e s u l t . b )
v2<−var ( r e s u l t . u )
r a t i o <−v2 / v1

# p r i n t r e s u l t s
v1
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v2
r a t i o

# ############################################
# Tab le 2 . 5 . T h e o r e t i c a l Power #
# ############################################
rm ( l i s t = l s ( a l l =T ) )

# c a l c u l a t e v a r i a n c e r a t i o o f i n b a l a n c e d d e s i g n : b a l a n c e d d e s i g n
n1<−30 # change be tween 30 and 40
n2<−30 # change be tween 30 and 40
beta<−0 . 6 # change be tween 0 . 5 and 0 . 6
T<−10
lambda1<−0 . 3
lambda2<−0 . 6
# c r e a t e an empty v e c t o r f o r v a r i a n c e and power
v1<−rep (NA, 5 )
v2<−rep (NA, 5 )
p1<−rep (NA, 5 )
p2<−rep (NA, 5 )

f o r (m i n 2 : 5 ) {
# v a r i a n c e from b a l a n c e d d e s i g n
c<−1
temp1<−n1∗ lambda1∗T∗exp ( beta ) ∗exp(− lambda1∗T∗exp ( beta ) )
temp2<−n2∗ lambda2∗T∗exp ( beta ) ∗exp(− lambda2∗T∗exp ( beta ) )

temp3<−n1∗ lambda1∗T /m∗exp ( beta )

temp4<−1−m∗exp(− lambda1∗T∗ (m−1) /m∗exp ( beta ) ) +(m−1)∗exp(− lambda1∗T
↪→ ∗exp ( beta ) )

temp5<−exp ( lambda1∗T /m∗exp ( beta ) )−1

temp6<−(1− lambda1∗T /m∗exp ( beta )−exp(− lambda1∗T /m∗exp ( beta ) ) ) ∗(1−
↪→ exp(− lambda1∗T∗exp ( beta ) ) )

temp7<− ( exp ( lambda1∗T /m∗exp ( beta ) )−1)∗(1−exp(− lambda1∗T /m∗exp (
↪→ beta ) ) )

temp8<−n2∗ lambda2∗T / ( c∗m) ∗exp ( beta )

temp9<−1−c∗m∗exp(− lambda2∗T∗ ( c∗m−1) / ( c∗m) ∗exp ( beta ) ) +( c∗m−1)∗exp
↪→ (− lambda2∗T∗exp ( beta ) )

temp10<−exp ( lambda2∗T / ( c∗m) ∗exp ( beta ) )−1
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temp11<−(1− lambda2∗T / ( c∗m) ∗exp ( beta )−exp(− lambda2∗T / ( c∗m) ∗exp (
↪→ beta ) ) ) ∗(1−exp(− lambda2∗T∗exp ( beta ) ) )

temp12<− ( exp ( lambda2∗T / ( c∗m) ∗exp ( beta ) )−1)∗(1−exp(− lambda2∗T / ( c∗m
↪→ ) ∗exp ( beta ) ) )

# f i s h e r i n f o r m a t i o n m a t r i x
I . 1 1<−temp1+temp2+temp3∗ temp4 / temp5−temp3∗ temp6 / temp7+temp8∗ temp9

↪→ / temp10−temp8∗ temp11 / temp12
I . 1 2<−temp1 / lambda1 +( temp3 / lambda1 ) ∗ ( temp4 / temp5 )−( temp3 / lambda1 )

↪→ ∗(1−exp(− lambda1∗T∗exp ( beta ) ) ) / temp5+temp3∗T∗exp ( beta ) /m∗
↪→ ((1− exp(− lambda1∗T∗exp ( beta ) ) ) / temp7 )

I . 1 3<−temp2 / lambda2 +( temp8 / lambda2 ) ∗ ( temp9 / temp10 )−( temp8 / lambda2
↪→ ) ∗(1−exp(− lambda2∗T∗exp ( beta ) ) ) / temp10+temp8∗T∗exp ( beta ) / ( c
↪→ ∗m) ∗ ((1− exp(− lambda2∗T∗exp ( beta ) ) ) / temp12 )

I . 2 1<−I . 1 2
I . 2 2<−n1∗T^2∗(1−exp(− lambda1∗T ) ) / (m^2∗ ( exp ( lambda1∗T /m)−1)∗(1−exp

↪→ (− lambda1∗T /m) ) ) +n1∗T^2∗exp (2 ∗beta ) ∗(1−exp(− lambda1∗T∗exp (
↪→ beta ) ) ) / (m^2∗ temp7 )

I . 2 3<−0
I . 3 1<−I . 1 3
I . 3 2<−I . 2 3
I . 3 3<−n2∗T^2∗(1−exp(− lambda2∗T ) ) / ( ( c∗m) ^2∗ ( exp ( lambda2∗T / ( c∗m) )

↪→ −1)∗(1−exp(− lambda2∗T / ( c∗m) ) ) ) +n2∗T^2∗exp (2 ∗beta ) ∗(1−exp(−
↪→ lambda2∗T∗exp ( beta ) ) ) / ( ( c∗m) ^2∗ temp12 )

I<−matrix ( c ( I . 1 1 , I . 1 2 , I . 1 3 , I . 2 1 , I . 2 2 , I . 2 3 , I . 3 1 , I . 3 2 , I . 3 3 ) , 3 , 3 )
I . i n v<− s o l v e ( I )
v1 [m]<−I . i n v [ 1 , 1 ]

# f o r unba lanced d e s i g n 2:1
c<−2
temp1<−n1∗ lambda1∗T∗exp ( beta ) ∗exp(− lambda1∗T∗exp ( beta ) )
temp2<−n2∗ lambda2∗T∗exp ( beta ) ∗exp(− lambda2∗T∗exp ( beta ) )

temp3<−n1∗ lambda1∗T /m∗exp ( beta )

temp4<−1−m∗exp(− lambda1∗T∗ (m−1) /m∗exp ( beta ) ) +(m−1)∗exp(− lambda1∗T
↪→ ∗exp ( beta ) )

temp5<−exp ( lambda1∗T /m∗exp ( beta ) )−1

temp6<−(1− lambda1∗T /m∗exp ( beta )−exp(− lambda1∗T /m∗exp ( beta ) ) ) ∗(1−
↪→ exp(− lambda1∗T∗exp ( beta ) ) )

temp7<− ( exp ( lambda1∗T /m∗exp ( beta ) )−1)∗(1−exp(− lambda1∗T /m∗exp (
↪→ beta ) ) )
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temp8<−n2∗ lambda2∗T / ( c∗m) ∗exp ( beta )

temp9<−1−c∗m∗exp(− lambda2∗T∗ ( c∗m−1) / ( c∗m) ∗exp ( beta ) ) +( c∗m−1)∗exp
↪→ (− lambda2∗T∗exp ( beta ) )

temp10<−exp ( lambda2∗T / ( c∗m) ∗exp ( beta ) )−1

temp11<−(1− lambda2∗T / ( c∗m) ∗exp ( beta )−exp(− lambda2∗T / ( c∗m) ∗exp (
↪→ beta ) ) ) ∗(1−exp(− lambda2∗T∗exp ( beta ) ) )

temp12<− ( exp ( lambda2∗T / ( c∗m) ∗exp ( beta ) )−1)∗(1−exp(− lambda2∗T / ( c∗m
↪→ ) ∗exp ( beta ) ) )

# f i s h e r i n f o r m a t i o n m a t r i x
I . 1 1<−temp1+temp2+temp3∗ temp4 / temp5−temp3∗ temp6 / temp7+temp8∗ temp9

↪→ / temp10−temp8∗ temp11 / temp12
I . 1 2<−temp1 / lambda1 +( temp3 / lambda1 ) ∗ ( temp4 / temp5 )−( temp3 / lambda1 )

↪→ ∗(1−exp(− lambda1∗T∗exp ( beta ) ) ) / temp5+temp3∗T∗exp ( beta ) /m∗
↪→ ((1− exp(− lambda1∗T∗exp ( beta ) ) ) / temp7 )

I . 1 3<−temp2 / lambda2 +( temp8 / lambda2 ) ∗ ( temp9 / temp10 )−( temp8 / lambda2
↪→ ) ∗(1−exp(− lambda2∗T∗exp ( beta ) ) ) / temp10+temp8∗T∗exp ( beta ) / ( c
↪→ ∗m) ∗ ((1− exp(− lambda2∗T∗exp ( beta ) ) ) / temp12 )

I . 2 1<−I . 1 2
I . 2 2<−n1∗T^2∗(1−exp(− lambda1∗T ) ) / (m^2∗ ( exp ( lambda1∗T /m)−1)∗(1−exp

↪→ (− lambda1∗T /m) ) ) +n1∗T^2∗exp (2 ∗beta ) ∗(1−exp(− lambda1∗T∗exp (
↪→ beta ) ) ) / (m^2∗ temp7 )

I . 2 3<−0
I . 3 1<−I . 1 3
I . 3 2<−I . 2 3
I . 3 3<−n2∗T^2∗(1−exp(− lambda2∗T ) ) / ( ( c∗m) ^2∗ ( exp ( lambda2∗T / ( c∗m) )

↪→ −1)∗(1−exp(− lambda2∗T / ( c∗m) ) ) ) +n2∗T^2∗exp (2 ∗beta ) ∗(1−exp(−
↪→ lambda2∗T∗exp ( beta ) ) ) / ( ( c∗m) ^2∗ temp12 )

I<−matrix ( c ( I . 1 1 , I . 1 2 , I . 1 3 , I . 2 1 , I . 2 2 , I . 2 3 , I . 3 1 , I . 3 2 , I . 3 3 ) , 3 , 3 )
I . i n v<− s o l v e ( I )
v2 [m]<−I . i n v [ 1 , 1 ]

p1 [m]<−1−(pnorm (1.96− beta / s q r t ( v1 [m] ) )−pnorm(−1.96− beta / s q r t ( v1 [m
↪→ ] ) ) )

p2 [m]<−1−(pnorm (1.96− beta / s q r t ( v2 [m] ) )−pnorm(−1.96− beta / s q r t ( v2 [m
↪→ ] ) ) )

}

p1
p2
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# ###################################################
# Tab le 2 . 5 E m p i r i c a l Power #
# ###################################################

rm ( l i s t = l s ( a l l =T ) )

# l o g l i k e l i h o o d f u n c t i o n f o r unba lance des ign , use −logL f o r
↪→ n lminb

l i k e l i h o o d 1<− f u n c t i o n ( par ) {
b e t a 1<−par [ 1 ]
b e t a 2<−par [ 2 ]
b e t a 3<−par [ 3 ]
temp1<−exp(−L1 [ 1 : ( 2 ∗n1 ) ] ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : ( 2 ∗n1 ) ] ) )
temp2<−exp(−R1 [ 1 : ( 2 ∗n1 ) ] ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : ( 2 ∗n1 ) ] ) )
temp3<−exp(−L1 [ ( 2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ] ∗exp ( b e t a 2 + b e t a 3 ∗Z [ ( 2 ∗n1

↪→ +1) : ( 2 ∗n1+2∗n2 ) ] ) )
temp4<−exp(−R1 [ ( 2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ] ∗exp ( b e t a 2 + b e t a 3 ∗Z [ ( 2 ∗n1

↪→ +1) : ( 2 ∗n1+2∗n2 ) ] ) )

−sum ( l o g ( temp1 − temp2 ) )−sum ( l o g ( temp3 − temp4 ) )
}

# l o g l i k e l i h o o d f u n c t i o n f o r b a l a n c e des ign , use −logL f o r n lminb
l i k e l i h o o d 2<− f u n c t i o n ( par ) {

b e t a 1<−par [ 1 ]
b e t a 2<−par [ 2 ]
b e t a 3<−par [ 3 ]
temp1<−exp(−L2 [ 1 : ( 2 ∗n1 ) ] ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : ( 2 ∗n1 ) ] ) )
temp2<−exp(−R2 [ 1 : ( 2 ∗n1 ) ] ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : ( 2 ∗n1 ) ] ) )
temp3<−exp(−L2 [ ( 2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ] ∗exp ( b e t a 2 + b e t a 3 ∗Z [ ( 2 ∗n1

↪→ +1) : ( 2 ∗n1+2∗n2 ) ] ) )
temp4<−exp(−R2 [ ( 2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ] ∗exp ( b e t a 2 + b e t a 3 ∗Z [ ( 2 ∗n1

↪→ +1) : ( 2 ∗n1+2∗n2 ) ] ) )

−sum ( l o g ( temp1 − temp2 ) )−sum ( l o g ( temp3 − temp4 ) )
}

# s i m u l a t i o n
T<−10
n1<−30 # change be tween 30 and 40
n2<−30 # change be tween 30 and 40
beta<−0 . 6 # change be tween 0 . 5 and 0 . 6
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lambda1<−0 . 3
lambda2<−0 . 6
p . b<−rep (NA, 5 )
p . u<−rep (NA, 5 )

# v a r i a b l e f o r group
group1 . 1<−rep ( 0 , n1 )
group1 . 2<−rep ( 1 , n1 )
group2 . 1<−rep ( 0 , n2 )
group2 . 2<−rep ( 1 , n2 )
Z<−c ( group1 . 1 , group1 . 2 , group2 . 1 , group2 . 2 )

f o r (m i n 2 : 5 ) {

beta . hat . u<−rep (NA, 1 0 0 0 )
beta . hat . b<−rep (NA, 1 0 0 0 )

f o r ( sim i n 1 : 1 0 0 0 ) {
# c r e a t e e x p o n e n t i a l d i s t r i b u t i o n w i t h d i f f e r e n t r a t e s
exp1 . 1<−rexp ( n1 , r a t e =lambda1 )
exp1 . 2<−rexp ( n1 , r a t e =lambda1∗exp ( beta ) )
exp2 . 1<−rexp ( n2 , r a t e =lambda2 )
exp2 . 2<−rexp ( n2 , r a t e =lambda2∗exp ( beta ) )
t<−c ( exp1 . 1 , exp1 . 2 , exp2 . 1 , exp2 . 2 )

# c r e a t e empty v e c t o r f o r l e f t and r i g h t bound o f t h e v i s i t
↪→ window

L1<−rep (NA, 2∗n1+2∗n2 )
R1<−rep (NA, 2∗n1+2∗n2 )
L2<−rep (NA, 2∗n1+2∗n2 )
R2<−rep (NA, 2∗n1+2∗n2 )
c<−2
# f o r s t r a t a 1 w i t h low r i s k , l e t L1=L2 R1=R2
f o r ( i i n 1 : ( 2 ∗n1 ) ) {

i f ( t [ i ] >T ) {
L1 [ i ]<−T
R1 [ i ]<− I n f
L2 [ i ]<−T
R2 [ i ]<− I n f }

e l s e { f o r ( j i n 1 :m) {
i f ( t [ i ] >T∗ ( j −1) /m & t [ i ] <= T∗ j /m) {
L1 [ i ]<−T∗ ( j −1) /m
R1 [ i ]<−T∗ j /m
L2 [ i ]<−T∗ ( j −1) /m
R2 [ i ]<−T∗ j /m }}}
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} # c l o s e f o r ( i i n 1 : ( 2 ∗n1 ) )

# f o r s t r a t a 2 w i t h h igh r i s k , use c∗m v i s i t s f o r L1 & R1 , use
↪→ m v i s i t s f o r L2 & R2

f o r ( i i n (2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ) {
i f ( t [ i ] >T ) {
L1 [ i ]<−T
R1 [ i ]<− I n f
L2 [ i ]<−T
R2 [ i ]<− I n f }

e l s e {
f o r ( j i n 1 : ( c∗m) ) {

i f ( t [ i ] >T∗ ( j −1) / ( c∗m) & t [ i ] <= T∗ j / ( c∗m) ) {
L1 [ i ]<−T∗ ( j −1) / ( c∗m)
R1 [ i ]<−T∗ j / ( c∗m) }}

f o r ( j i n 1 :m) {
i f ( t [ i ] >T∗ ( j −1) /m & t [ i ] <= T∗ j /m) {
L2 [ i ]<−T∗ ( j −1) /m
R2 [ i ]<−T∗ j /m}}} # c l o s e e l s e

} # c l o s e f o r ( i i n (2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) )
r e s u l t . sim1<−nlminb ( s t a r t =c ( 0 . 8 , 1 . 8 , 1 . 5 ) , o b j = l i k e l i h o o d 1 )
lambda1 . hat . u<−exp ( r e s u l t . sim1 $par [ 1 ] )
lambda2 . hat . u<−exp ( r e s u l t . sim1 $par [ 2 ] )
beta . hat . u [ sim ]<− r e s u l t . sim1 $par [ 3 ]

r e s u l t . sim2<−nlminb ( s t a r t =c ( 0 . 8 , 1 . 8 , 1 . 5 ) , o b j = l i k e l i h o o d 2 )
lambda1 . hat . b<−exp ( r e s u l t . sim2 $par [ 1 ] )
lambda2 . hat . b<−exp ( r e s u l t . sim2 $par [ 2 ] )
beta . hat . b [ sim ]<− r e s u l t . sim2 $par [ 3 ]

} # c l o s e f o r ( s im i n . . . )

v . u<−var ( beta . hat . u )
v . b<−var ( beta . hat . b )
z . b<−beta . hat . b / s q r t ( v . b )
z . u<−beta . hat . u / s q r t ( v . u )

p . b [m]<−mean ( z . b< −1.96 | z . b > 1 . 9 6 )
p . u [m]<−mean ( z . u< −1.96 | z . u > 1 . 9 6 )
} # c l o s e f o r (m i n 2 : 5 )

# p r i n t r e s u l t s
p . b
p . u
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# #############################################
# Tab le 2 . 6 E m p i r i c a l t y p e 1 e r r o r #
# #############################################

# ######## E x p o n e n t i a l d i s t r i b u t i o n ##############

rm ( l i s t = l s ( a l l =T ) )

# l o g l i k e l i h o o d f u n c t i o n f o r unba lance des ign , use −logL f o r
↪→ n lminb

l i k e l i h o o d 1<− f u n c t i o n ( par ) {
b e t a 1<−par [ 1 ]
b e t a 2<−par [ 2 ]
b e t a 3<−par [ 3 ]
temp1<−exp(−L1 [ 1 : ( 2 ∗n1 ) ] ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : ( 2 ∗n1 ) ] ) )
temp2<−exp(−R1 [ 1 : ( 2 ∗n1 ) ] ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : ( 2 ∗n1 ) ] ) )
temp3<−exp(−L1 [ ( 2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ] ∗exp ( b e t a 2 + b e t a 3 ∗Z [ ( 2 ∗n1

↪→ +1) : ( 2 ∗n1+2∗n2 ) ] ) )
temp4<−exp(−R1 [ ( 2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ] ∗exp ( b e t a 2 + b e t a 3 ∗Z [ ( 2 ∗n1

↪→ +1) : ( 2 ∗n1+2∗n2 ) ] ) )

−sum ( l o g ( temp1 − temp2 ) )−sum ( l o g ( temp3 − temp4 ) )
}

# l o g l i k e l i h o o d f u n c t i o n f o r b a l a n c e des ign , use −logL f o r n lminb
l i k e l i h o o d 2<− f u n c t i o n ( par ) {

b e t a 1<−par [ 1 ]
b e t a 2<−par [ 2 ]
b e t a 3<−par [ 3 ]
temp1<−exp(−L2 [ 1 : ( 2 ∗n1 ) ] ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : ( 2 ∗n1 ) ] ) )
temp2<−exp(−R2 [ 1 : ( 2 ∗n1 ) ] ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : ( 2 ∗n1 ) ] ) )
temp3<−exp(−L2 [ ( 2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ] ∗exp ( b e t a 2 + b e t a 3 ∗Z [ ( 2 ∗n1

↪→ +1) : ( 2 ∗n1+2∗n2 ) ] ) )
temp4<−exp(−R2 [ ( 2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ] ∗exp ( b e t a 2 + b e t a 3 ∗Z [ ( 2 ∗n1

↪→ +1) : ( 2 ∗n1+2∗n2 ) ] ) )

−sum ( l o g ( temp1 − temp2 ) )−sum ( l o g ( temp3 − temp4 ) )
}

# s i m u l a t i o n
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T<−10
n1<−50
n2<−50
beta<−0
lambda1<−0 . 3
lambda2<−0 . 6
a l p h a . b<−rep (NA, 5 )
a l p h a . u<−rep (NA, 5 )

# v a r i a b l e f o r group
group1 . 1<−rep ( 0 , n1 )
group1 . 2<−rep ( 1 , n1 )
group2 . 1<−rep ( 0 , n2 )
group2 . 2<−rep ( 1 , n2 )
Z<−c ( group1 . 1 , group1 . 2 , group2 . 1 , group2 . 2 )

f o r (m i n 2 : 5 ) {

beta . hat . u<−rep (NA, 1 0 0 0 )
beta . hat . b<−rep (NA, 1 0 0 0 )

f o r ( sim i n 1 : 1 0 0 0 ) {
# c r e a t e e x p o n e n t i a l d i s t r i b u t i o n w i t h d i f f e r e n t r a t e s
exp1 . 1<−rexp ( n1 , r a t e =lambda1 )
exp1 . 2<−rexp ( n1 , r a t e =lambda1∗exp ( beta ) )
exp2 . 1<−rexp ( n2 , r a t e =lambda2 )
exp2 . 2<−rexp ( n2 , r a t e =lambda2∗exp ( beta ) )
t<−c ( exp1 . 1 , exp1 . 2 , exp2 . 1 , exp2 . 2 )

# c r e a t e empty v e c t o r f o r l e f t and r i g h t bound o f t h e v i s i t
↪→ window

L1<−rep (NA, 2∗n1+2∗n2 )
R1<−rep (NA, 2∗n1+2∗n2 )
L2<−rep (NA, 2∗n1+2∗n2 )
R2<−rep (NA, 2∗n1+2∗n2 )
c<−3
# f o r s t r a t a 1 w i t h low r i s k , l e t L1=L2 R1=R2
f o r ( i i n 1 : ( 2 ∗n1 ) ) {

i f ( t [ i ] >T ) {
L1 [ i ]<−T
R1 [ i ]<− I n f
L2 [ i ]<−T
R2 [ i ]<− I n f }

e l s e { f o r ( j i n 1 :m) {
i f ( t [ i ] >T∗ ( j −1) /m & t [ i ] <= T∗ j /m) {
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L1 [ i ]<−T∗ ( j −1) /m
R1 [ i ]<−T∗ j /m
L2 [ i ]<−T∗ ( j −1) /m
R2 [ i ]<−T∗ j /m }}}

} # c l o s e f o r ( i i n 1 : ( 2 ∗n1 ) )

# f o r s t r a t a 2 w i t h h igh r i s k , use c∗m v i s i t s f o r L1 & R1 , use
↪→ m v i s i t s f o r L2 & R2

f o r ( i i n (2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ) {
i f ( t [ i ] >T ) {
L1 [ i ]<−T
R1 [ i ]<− I n f
L2 [ i ]<−T
R2 [ i ]<− I n f }

e l s e {
f o r ( j i n 1 : ( c∗m) ) {

i f ( t [ i ] >T∗ ( j −1) / ( c∗m) & t [ i ] <= T∗ j / ( c∗m) ) {
L1 [ i ]<−T∗ ( j −1) / ( c∗m)
R1 [ i ]<−T∗ j / ( c∗m) }}

f o r ( j i n 1 :m) {
i f ( t [ i ] >T∗ ( j −1) /m & t [ i ] <= T∗ j /m) {
L2 [ i ]<−T∗ ( j −1) /m
R2 [ i ]<−T∗ j /m}}} # c l o s e e l s e

} # c l o s e f o r ( i i n (2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) )
r e s u l t . sim1<−nlminb ( s t a r t =c ( 0 . 8 , 1 . 8 , 1 . 5 ) , o b j = l i k e l i h o o d 1 )
lambda1 . hat . u<−exp ( r e s u l t . sim1 $par [ 1 ] )
lambda2 . hat . u<−exp ( r e s u l t . sim1 $par [ 2 ] )
beta . hat . u [ sim ]<− r e s u l t . sim1 $par [ 3 ]

r e s u l t . sim2<−nlminb ( s t a r t =c ( 0 . 8 , 1 . 8 , 1 . 5 ) , o b j = l i k e l i h o o d 2 )
lambda1 . hat . b<−exp ( r e s u l t . sim2 $par [ 1 ] )
lambda2 . hat . b<−exp ( r e s u l t . sim2 $par [ 2 ] )
beta . hat . b [ sim ]<− r e s u l t . sim2 $par [ 3 ]

} # c l o s e f o r ( s im i n . . . )

v . u<−var ( beta . hat . u )
v . b<−var ( beta . hat . b )
z . b<−beta . hat . b / s q r t ( v . b )
z . u<−beta . hat . u / s q r t ( v . u )

a l p h a . b [m]<−mean ( z . b< −1.96 | z . b > 1 . 9 6 )
a l p h a . u [m]<−mean ( z . u< −1.96 | z . u > 1 . 9 6 )
} # c l o s e f o r (m i n 2 : 5 )

# p r i n t r e s u l t s
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a l p h a . b
a l p h a . u

# ############# W e i b u l l d i s t r i b u t i o n ###################

rm ( l i s t = l s ( ) )
# l o g l i k e l i h o o d f u n c t i o n f o r unba lance des ign , use −logL f o r

↪→ n lminb
l i k e l i h o o d 1 .w<− f u n c t i o n ( par ) {

b e t a 1<−par [ 1 ]
b e t a 2<−par [ 2 ]
b e t a 3<−par [ 3 ]
b e t a 4<−par [ 4 ]
temp1<−exp (−(L1 [ 1 : ( 2 ∗n1 ) ] ∗∗ b e t a 4 ) ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : ( 2 ∗n1 ) ] )

↪→ )
temp2<−exp (−(R1 [ 1 : ( 2 ∗n1 ) ] ∗∗ b e t a 4 ) ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : ( 2 ∗n1 ) ] )

↪→ )
temp3<−exp (−(L1 [ ( 2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ] ∗∗ b e t a 4 ) ∗exp ( b e t a 2 + b e t a 3 ∗

↪→ Z [ ( 2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ] ) )
temp4<−exp (−(R1 [ ( 2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ] ∗∗ b e t a 4 ) ∗exp ( b e t a 2 + b e t a 3 ∗

↪→ Z [ ( 2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ] ) )

−sum ( l o g ( temp1 − temp2 ) )−sum ( l o g ( temp3 − temp4 ) )
}

# l o g l i k e l i h o o d f u n c t i o n f o r b a l a n c e des ign , use −logL f o r n lminb
l i k e l i h o o d 2 .w<− f u n c t i o n ( par ) {

b e t a 1<−par [ 1 ]
b e t a 2<−par [ 2 ]
b e t a 3<−par [ 3 ]
b e t a 4<−par [ 4 ]
temp1<−exp (−(L2 [ 1 : ( 2 ∗n1 ) ] ∗∗ b e t a 4 ) ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : ( 2 ∗n1 ) ] )

↪→ )
temp2<−exp (−(R2 [ 1 : ( 2 ∗n1 ) ] ∗∗ b e t a 4 ) ∗exp ( b e t a 1 + b e t a 3 ∗Z [ 1 : ( 2 ∗n1 ) ] )

↪→ )
temp3<−exp (−(L2 [ ( 2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ] ∗∗ b e t a 4 ) ∗exp ( b e t a 2 + b e t a 3 ∗

↪→ Z [ ( 2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ] ) )
temp4<−exp (−(R2 [ ( 2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ] ∗∗ b e t a 4 ) ∗exp ( b e t a 2 + b e t a 3 ∗

↪→ Z [ ( 2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ] ) )

−sum ( l o g ( temp1 − temp2 ) )−sum ( l o g ( temp3 − temp4 ) )
}
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# s i m u l a t i o n
T<−10
n1<−50
n2<−50
beta<−0
lambda1<−0 . 3
lambda2<−0 . 6
a l p h a<−0 . 8 # change be tween 1 . 5 and 0 . 8
c<−2
m<−seq ( 1 : 5 )
a l p h a . b<−rep (NA, 5 )
a l p h a . u<−rep (NA, 5 )

# v a r i a b l e f o r group
group1 . 1<−rep ( 0 , n1 )
group1 . 2<−rep ( 1 , n1 )
group2 . 1<−rep ( 0 , n2 )
group2 . 2<−rep ( 1 , n2 )
Z<−c ( group1 . 1 , group1 . 2 , group2 . 1 , group2 . 2 )

# c r e a t e an empty v e c t o r f o r r a t i o
r a t i o <−rep (NA, 5 )
f o r (m i n 2 : 5 ) {

beta . hat . u<−rep (NA, 1 0 0 0 )
beta . hat . b<−rep (NA, 1 0 0 0 )

f o r ( sim i n 1 : 1 0 0 0 ) {
# c r e a t e e x p o n e n t i a l d i s t r i b u t i o n w i t h d i f f e r e n t r a t e s
w1 . 1<−r w e i b u l l ( n1 , shape = a lpha , s c a l e =lambda1∗∗(−1 / a l p h a ) )
w1 . 2<−r w e i b u l l ( n1 , shape = a lpha , s c a l e =( lambda1∗exp ( beta ) ) ∗∗(−1

↪→ / a l p h a ) )
w2 . 1<−r w e i b u l l ( n2 , shape = a lpha , s c a l e =lambda2∗∗(−1 / a l p h a ) )
w2 . 2<−r w e i b u l l ( n2 , shape = a lpha , s c a l e =( lambda2∗exp ( beta ) ) ∗∗(−1

↪→ / a l p h a ) )
t<−c ( w1 . 1 , w1 . 2 , w2 . 1 , w2 . 2 )

# c r e a t e empty v e c t o r f o r l e f t and r i g h t bound o f t h e v i s i t
↪→ window

L1<−rep (NA, 2∗n1+2∗n2 )
R1<−rep (NA, 2∗n1+2∗n2 )
L2<−rep (NA, 2∗n1+2∗n2 )
R2<−rep (NA, 2∗n1+2∗n2 )

# f o r s t r a t a 1 w i t h low r i s k , l e t L1=L2 R1=R2
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f o r ( i i n 1 : ( 2 ∗n1 ) ) {
i f ( t [ i ] >T ) {

L1 [ i ]<−T
R1 [ i ]<− I n f
L2 [ i ]<−T
R2 [ i ]<− I n f }

e l s e { f o r ( j i n 1 :m) {
i f ( t [ i ] >T∗ ( j −1) /m & t [ i ] <= T∗ j /m) {
L1 [ i ]<−T∗ ( j −1) /m
R1 [ i ]<−T∗ j /m
L2 [ i ]<−T∗ ( j −1) /m
R2 [ i ]<−T∗ j /m }}}

}

# f o r s t r a t a 2 w i t h h igh r i s k , use c∗m v i s i t s f o r L1 & R1 , use
↪→ m v i s i t s f o r L2 & R2

f o r ( i i n (2 ∗n1 +1) : ( 2 ∗n1+2∗n2 ) ) {
i f ( t [ i ] >T ) {

L1 [ i ]<−T
R1 [ i ]<− I n f
L2 [ i ]<−T
R2 [ i ]<− I n f }

e l s e {
f o r ( j i n 1 : ( c∗m) ) {

i f ( t [ i ] >T∗ ( j −1) / ( c∗m) & t [ i ] <= T∗ j / ( c∗m) ) {
L1 [ i ]<−T∗ ( j −1) / ( c∗m)
R1 [ i ]<−T∗ j / ( c∗m) }}

f o r ( j i n 1 :m) {
i f ( t [ i ] >T∗ ( j −1) /m & t [ i ] <= T∗ j /m) {
L2 [ i ]<−T∗ ( j −1) /m
R2 [ i ]<−T∗ j /m}}} # c l o s e e l s e

}
r e s u l t . sim1<−nlminb ( s t a r t =c ( 0 . 8 , 1 . 8 , 1 . 5 , 1 ) , o b j = l i k e l i h o o d 1 .w)
beta . hat . u [ sim ]<− r e s u l t . sim1 $par [ 3 ]

r e s u l t . sim2<−nlminb ( s t a r t =c ( 0 . 8 , 1 . 8 , 1 . 5 , 1 ) , o b j = l i k e l i h o o d 2 .w)
beta . hat . b [ sim ]<− r e s u l t . sim2 $par [ 3 ]

} # c l o s e f o r ( s im i n . . . )
v . u<−var ( beta . hat . u )
v . b<−var ( beta . hat . b )
z . b<−beta . hat . b / s q r t ( v . b )
z . u<−beta . hat . u / s q r t ( v . u )

a l p h a . b [m]<−mean ( z . b< −1.96 | z . b > 1 . 9 6 )
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a l p h a . u [m]<−mean ( z . u< −1.96 | z . u > 1 . 9 6 )
} # c l o s e f o r (m i n 2 : 5 )

a l p h a . b
a l p h a . u
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Appendix C: SAS Codes for Chapter 3

/ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
A n a l y s i s f o r C h a p t e r 3 i n D i s s e r t a t i o n

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

o p t i o n s l s =100 n o d a t e nonumber o r i e n t a t i o n = p o r t r a i t ;
l i bname cpep "H : \ Met c o n t " ;
ods l i s t i n g g p a t h = ’H : \ F i g u r e s ’ ;
ods g r a p h i c s on ;

d a t a s u b j e c t s ;
s e t cpep . s u b j e c t s ;

run ;

p roc t a b u l a t e d a t a = s u b j e c t s f o r m a t =6 .0 m i s s i n g ;
c l a s s eventMos03 eventMos02 e v e n t 0 3 e v e n t 0 2 ;
t a b l e a l l eventMos02 , e v e n t 0 2 ∗n ;

t a b l e a l l eventMos03 , e v e n t 0 3 ∗n ;
t i t l e ’ Tab le 1 ’ ;

run ;

p roc t a b u l a t e d a t a = s u b j e c t s f o r m a t =6 .0 m i s s i n g ;
c l a s s eventMos02 e v e n t 0 2 ageGrp ;
t a b l e a l l eventMos02 , ageGrp∗ e v e n t 0 2 ∗n ;
t i t l e ’ Tab le 2 ’ ;

run ;

p roc t a b u l a t e d a t a = s u b j e c t s f o r m a t =6 .0 m i s s i n g ;
c l a s s eventMos03 e v e n t 0 3 ageGrp ;
t a b l e a l l eventMos03 , ageGrp∗ e v e n t 0 3 ∗n ;
t i t l e ’ Tab le 3 ’ ;

run ;

d a t a s u b j e c t s ;
s e t s u b j e c t s ( keep=PtID ageGrp TxGroup Gender a1c3 e v e n t 0 3

↪→ eventMos03
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e v e n t 0 2 eventMos02 ) ;
/ ∗ r i g h t−c e n s o r e d s u b j e c t s ∗ /
i f e v e n t 0 3 =0 t h e n do ;

L1=eventMos03 ; R1 = . ;
L2=eventMos03 ; R2 = . ;
L3=eventMos03 ; R3 = . ;
L3r=eventMos03 ; R3r = . ;

end ;
/ ∗ s u b j e c t s w i th e v e n t s ∗ /
e l s e i f e v e n t 0 3 =1 t h e n do ;

/ ∗ assume e v e r y s u b j e c t has 6 v i s i t s , c r e a t e i n t e r v a l s
↪→ based on 6 v i s i t s ∗ /

R1=eventMos03 ;
i f eventMos03 =3 t h e n L1 = 0 . 0 1 ;
e l s e i f eventMos03 i n ( 6 , 9 , 1 2 ) t h e n L1=R1−3;
e l s e i f eventMos03 i n ( 1 8 , 2 4 ) t h e n L1=R1−6;

/ ∗ assume e v e r y s u b j e c t has 3 v i s i t s , c r e a t e i n t e r v a l s
↪→ based on 3 v i s i t s ∗ /

i f eventMos03 i n ( 3 , 6 ) t h e n do ;
L2 = 0 . 0 1 ; R2 =6;

end ;
e l s e i f eventMos03 i n ( 9 , 1 2 ) t h e n do ;

L2 =6; R2=12;
end ;
e l s e i f eventMos03 i n ( 1 8 , 2 4 ) t h e n do ;

L2 =12; R2=24;
end ;
/ ∗ c r e a t e i n t e r v a l s based on age group ∗ /
i f ageGrp= ’A)7−<12 y r s ’ t h e n do ; ∗ h igh r i s k group ;

L3=L1 ; R3=R1 ;
end ;
e l s e i f ageGrp= ’B) >=12 y e a r s ’ t h e n do ; ∗ low r i s k group

↪→ ;
L3=L2 ; R3=R2 ;

end ;
/ ∗ r e v e r s e t h e d i r e c t i o n o f u n b a l a n c e d d e s i g n ∗ /

i f ageGrp= ’A)7−<12 y r s ’ t h e n do ; ∗ h igh r i s k group ;
L3r=L2 ; R3r=R2 ;

end ;
e l s e i f ageGrp= ’B) >=12 y e a r s ’ t h e n do ; ∗ low r i s k group

↪→ ;
L3r=L1 ; R3r=R1 ;

end ;
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end ;

/ ∗Repea t f o r e v e n t 0 2 outcome∗ /
i f e v e n t 0 2 =0 t h e n do ;

L4=eventMos02 ; R4 = . ;
L5=eventMos02 ; R5 = . ;
L6=eventMos02 ; R6 = . ;
L6r=eventMos02 ; R6r = . ;

end ;
/ ∗ s u b j e c t s w i th e v e n t s ∗ /
e l s e i f e v e n t 0 2 =1 t h e n do ;

/ ∗ assume e v e r y s u b j e c t has 6 v i s i t s , c r e a t e i n t e r v a l s
↪→ based on 6 v i s i t s ∗ /

R4=eventMos02 ;
i f eventMos02 =3 t h e n L4 = 0 . 0 1 ;
e l s e i f eventMos02 i n ( 6 , 9 , 1 2 ) t h e n L4=R4−3;
e l s e i f eventMos02 i n ( 1 8 , 2 4 ) t h e n L4=R4−6;

/ ∗ assume e v e r y s u b j e c t has 3 v i s i t s , c r e a t e i n t e r v a l s
↪→ based on 3 v i s i t s ∗ /

i f eventMos02 i n ( 3 , 6 ) t h e n do ;
L5 = 0 . 0 1 ; R5 =6;

end ;
e l s e i f eventMos02 i n ( 9 , 1 2 ) t h e n do ;

L5 =6; R5=12;
end ;
e l s e i f eventMos02 i n ( 1 8 , 2 4 ) t h e n do ;

L5 =12; R5=24;
end ;
/ ∗ c r e a t e i n t e r v a l s based on age group ∗ /
i f ageGrp= ’A)7−<12 y r s ’ t h e n do ; ∗ h igh r i s k group ;

L6=L4 ; R6=R4 ;
end ;
e l s e i f ageGrp= ’B) >=12 y e a r s ’ t h e n do ; ∗ low r i s k group

↪→ ;
L6=L5 ; R6=R5 ;

end ;

/ ∗ r e v e r s e t h e d i r e c t i o n o f u n b a l a n c e d d e s i g n ∗ /
i f ageGrp= ’A)7−<12 y r s ’ t h e n do ; ∗ h igh r i s k group ;

L6r=L5 ; R6r=R5 ;
end ;
e l s e i f ageGrp= ’B) >=12 y e a r s ’ t h e n do ; ∗ low r i s k group

↪→ ;
L6r=L4 ; R6r=R4 ;



102

end ;
end ;

run ;

∗macro f o r c a t e g o r i c a l v a r i a b l e s ;
%macro l i f e r e g 1 ( L= , R= , v a r = , D=) ;

p roc l i f e r e g d a t a = s u b j e c t s ;
c l a s s &v a r ageGrp ;
model (&L , &R) = &v a r ageGrp /D= &D;

run ;
%mend ;

%l i f e r e g 1 ( L=L5 , R=R5 , v a r =TxGroup , D= E x p o n e n t i a l ) ;
%l i f e r e g 1 ( L=L6 , R=R6 , v a r =TxGroup , D= E x p o n e n t i a l ) ;
%l i f e r e g 1 ( L=L6r , R=R6r , v a r =TxGroup , D= E x p o n e n t i a l ) ;

%l i f e r e g 1 ( L=L5 , R=R5 , v a r =TxGroup , D= Weibu l l ) ;
%l i f e r e g 1 ( L=L6 , R=R6 , v a r =TxGroup , D= Weibu l l ) ;
%l i f e r e g 1 ( L=L6r , R=R6r , v a r =TxGroup , D= Weibu l l ) ;

%l i f e r e g 1 ( L=L5 , R=R5 , v a r =Gender , D= E x p o n e n t i a l ) ;
%l i f e r e g 1 ( L=L6 , R=R6 , v a r =Gender , D= E x p o n e n t i a l ) ;
%l i f e r e g 1 ( L=L6r , R=R6r , v a r =Gender , D= E x p o n e n t i a l ) ;

%l i f e r e g 1 ( L=L5 , R=R5 , v a r =Gender , D= Weibu l l ) ;
%l i f e r e g 1 ( L=L6 , R=R6 , v a r =Gender , D= Weibu l l ) ;
%l i f e r e g 1 ( L=L6r , R=R6r , v a r =Gender , D= Weibu l l ) ;

%l i f e r e g 1 ( L=L2 , R=R2 , v a r =TxGroup , D= E x p o n e n t i a l ) ;
%l i f e r e g 1 ( L=L3 , R=R3 , v a r =TxGroup , D= E x p o n e n t i a l ) ;
%l i f e r e g 1 ( L=L3r , R=R3r , v a r =TxGroup , D= E x p o n e n t i a l ) ;

%l i f e r e g 1 ( L=L2 , R=R2 , v a r =TxGroup , D= Weibu l l ) ;
%l i f e r e g 1 ( L=L3 , R=R3 , v a r =TxGroup , D= Weibu l l ) ;
%l i f e r e g 1 ( L=L3r , R=R3r , v a r =TxGroup , D= Weibu l l ) ;

%l i f e r e g 1 ( L=L2 , R=R2 , v a r =Gender , D= E x p o n e n t i a l ) ;
%l i f e r e g 1 ( L=L3 , R=R3 , v a r =Gender , D= E x p o n e n t i a l ) ;
%l i f e r e g 1 ( L=L3r , R=R3r , v a r =Gender , D= E x p o n e n t i a l ) ;

%l i f e r e g 1 ( L=L2 , R=R2 , v a r =Gender , D= Weibu l l ) ;
%l i f e r e g 1 ( L=L3 , R=R3 , v a r =Gender , D= Weibu l l ) ;
%l i f e r e g 1 ( L=L3r , R=R3r , v a r =Gender , D= Weibu l l ) ;
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%macro l i f e r e g 2 ( L= , R= , v a r = , D=) ;
p roc l i f e r e g d a t a = s u b j e c t s ;

c l a s s ageGrp ;
model (&L , &R) = &v a r ageGrp /D= &D;

run ;
%mend ;

%l i f e r e g 2 ( L=L5 , R=R5 , v a r =a1c3 , D= E x p o n e n t i a l ) ;
%l i f e r e g 2 ( L=L6 , R=R6 , v a r =a1c3 , D= E x p o n e n t i a l ) ;
%l i f e r e g 2 ( L=L6r , R=R6r , v a r =a1c3 , D= E x p o n e n t i a l ) ;
%l i f e r e g 2 ( L=L5 , R=R5 , v a r =a1c3 , D= Weibu l l ) ;
%l i f e r e g 2 ( L=L6 , R=R6 , v a r =a1c3 , D= Weibu l l ) ;
%l i f e r e g 2 ( L=L6r , R=R6r , v a r =a1c3 , D= Weibu l l ) ;

%l i f e r e g 2 ( L=L2 , R=R2 , v a r =a1c3 , D= E x p o n e n t i a l ) ;
%l i f e r e g 2 ( L=L3 , R=R3 , v a r =a1c3 , D= E x p o n e n t i a l ) ;
%l i f e r e g 2 ( L=L3r , R=R3r , v a r =a1c3 , D= E x p o n e n t i a l ) ;

%l i f e r e g 2 ( L=L2 , R=R2 , v a r =a1c3 , D= Weibu l l ) ;
%l i f e r e g 2 ( L=L3 , R=R3 , v a r =a1c3 , D= Weibu l l ) ;
%l i f e r e g 2 ( L=L3r , R=R3r , v a r =a1c3 , D= Weibu l l ) ;

%macro i c t e s t ( v a r = , we ig h t = , L= , R=) ;
p roc i c l i f e t e s t d a t a = s u b j e c t s p l o t s = s u r v i v a l ( c l ) impute ( s eed

↪→ =1234) ;
s t r a t a ageGrp ;

t e s t &v a r / we ig h t =&we ig h t ;
t ime (&L , &R) ;

run ;
%mend ;

%i c t e s t ( v a r =TxGroup , we ig h t =FINKELSTEIN , L=L5 , R=R5 ) ;
%i c t e s t ( v a r =TxGroup , we ig h t =FINKELSTEIN , L=L6 , R=R6 ) ;
%i c t e s t ( v a r =TxGroup , we ig h t =FINKELSTEIN , L=L6r , R=R6r ) ;

%i c t e s t ( v a r =TxGroup , we ig h t =SUN, L=L5 , R=R5 ) ;
%i c t e s t ( v a r =TxGroup , we ig h t =SUN, L=L6 , R=R6 ) ;
%i c t e s t ( v a r =TxGroup , we ig h t =SUN, L=L6r , R=R6r ) ;

%i c t e s t ( v a r =TxGroup , we ig h t =FAY, L=L5 , R=R5 ) ;
%i c t e s t ( v a r =TxGroup , we ig h t =FAY, L=L6 , R=R6 ) ;
%i c t e s t ( v a r =TxGroup , we ig h t =FAY, L=L6r , R=R6r ) ;

%i c t e s t ( v a r =Gender , we ig h t =FINKELSTEIN , L=L5 , R=R5 ) ;
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%i c t e s t ( v a r =Gender , we ig h t =FINKELSTEIN , L=L6 , R=R6 ) ;
%i c t e s t ( v a r =Gender , we ig h t =FINKELSTEIN , L=L6r , R=R6r ) ;

%i c t e s t ( v a r =Gender , we ig h t =SUN, L=L5 , R=R5 ) ;
%i c t e s t ( v a r =Gender , we ig h t =SUN, L=L6 , R=R6 ) ;
%i c t e s t ( v a r =Gender , we ig h t =SUN, L=L6r , R=R6r ) ;

%i c t e s t ( v a r =Gender , we ig h t =FAY, L=L5 , R=R5 ) ;
%i c t e s t ( v a r =Gender , we ig h t =FAY, L=L6 , R=R6 ) ;
%i c t e s t ( v a r =Gender , we ig h t =FAY, L=L6r , R=R6r ) ;

%i c t e s t ( v a r =TxGroup , we ig h t =FINKELSTEIN , L=L2 , R=R2 ) ;
%i c t e s t ( v a r =TxGroup , we ig h t =FINKELSTEIN , L=L3 , R=R3 ) ;
%i c t e s t ( v a r =TxGroup , we ig h t =FINKELSTEIN , L=L3r , R=R3r ) ;

%i c t e s t ( v a r =TxGroup , we ig h t =SUN, L=L2 , R=R2 ) ;
%i c t e s t ( v a r =TxGroup , we ig h t =SUN, L=L3 , R=R3 ) ;
%i c t e s t ( v a r =TxGroup , we ig h t =SUN, L=L3r , R=R3r ) ;

%i c t e s t ( v a r =TxGroup , we ig h t =FAY, L=L2 , R=R2 ) ;
%i c t e s t ( v a r =TxGroup , we ig h t =FAY, L=L3 , R=R3 ) ;
%i c t e s t ( v a r =TxGroup , we ig h t =FAY, L=L3r , R=R3r ) ;

%i c t e s t ( v a r =Gender , we ig h t =FINKELSTEIN , L=L2 , R=R2 ) ;
%i c t e s t ( v a r =Gender , we ig h t =FINKELSTEIN , L=L3 , R=R3 ) ;
%i c t e s t ( v a r =Gender , we ig h t =FINKELSTEIN , L=L3r , R=R3r ) ;

%i c t e s t ( v a r =Gender , we ig h t =SUN, L=L2 , R=R2 ) ;
%i c t e s t ( v a r =Gender , we ig h t =SUN, L=L3 , R=R3 ) ;
%i c t e s t ( v a r =Gender , we ig h t =SUN, L=L3r , R=R3r ) ;

%i c t e s t ( v a r =Gender , we ig h t =FAY, L=L2 , R=R2 ) ;
%i c t e s t ( v a r =Gender , we ig h t =FAY, L=L3 , R=R3 ) ;
%i c t e s t ( v a r =Gender , we ig h t =FAY, L=L3r , R=R3r ) ;
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Appendix D: IRB Letter

  

11/2/2016  

Yougui Wu, PhD 

Epidemiology and Biostatistics 

13201 Bruce B. Downs Blvd. MDC56 

Tampa, FL  33612 

 

RE: 

 

Not Human Subjects Research Determination 

IRB#: Pro00028176 

Title: Efficiency of an Unbalanced Design in Collecting Time to Event Data with Interval 

Censoring 

 

Dear Dr. Wu: 

 

The Institutional Review Board (IRB) has reviewed your application and determined the 

activities do not meet the definition of human subjects research. Therefore, this project is not 

under the purview of the USF IRB and approval is not required. If the scope of your project 

changes in the future, please contact the IRB for further guidance. 

 

All research activities, regardless of the level of IRB oversight, must be conducted in a manner 

that is consistent with the ethical principles of your profession. Please note that there may be 

requirements under the HIPAA Privacy Rule that apply to the information/data you will utilize.  

For further information, please contact a HIPAA Program administrator at 813-974-5638. 

 

We appreciate your dedication to the ethical conduct of research at the University of South 

Florida. If you have any questions regarding this matter, please call 813-974-5638. 

 

Sincerely,  

   

E. Verena Jorgensen, M.D., Chairperson 

USF Institutional Review Board 
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