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ABSTRACT 

 

Animal models of ocular hypertension are important for glaucoma research but come 

with experimental costs. Available methods of intraocular pressure (IOP) elevation are not 

always successful, the amplitude and time course of IOP changes are unpredictable and 

irreversible, and IOP measurement by tonometry is laborious. This dissertation focuses on the 

development and implementation of two novel systems for monitoring and controlling IOP 

without these limitations. The first device consists of a cannula implanted in the anterior 

chamber of the eye, a pressure sensor that continually measures IOP, and a bidirectional pump 

driven by control circuitry that can infuse or withdraw fluid to hold IOP at user-desired levels. A 

portable version was developed for tethered use on rats. The system was fully characterized and 

deemed ready for cage- or bench-side applications. The results lay the foundation for an 

implantable version that would give glaucoma researchers unparalleled knowledge and control of 

IOP in rats and potentially larger animals. 

 Moreover, a novel mathematical technique was developed to efficiently analyze IOP 

records obtained using the pressure controlling device. The algorithm successfully yields the 

value of several parameters that influence ocular physiology and are commonly linked to 

glaucoma development. This unique methodology uses information regarding the amount of 

volume necessary to maintain IOP at different levels to quantify the outflow facility of perfused 

eyes. The use of this technology largely simplifies the investigator’s experimental set-up and cuts 

procedural times in half.   
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The second device is an implantable pressure sensor for continuously monitoring IOP. 

The miniature system is equipped with pressure and temperature transducers, on-board 

amplifiers and a powerful microcontroller that ensure data quality. The sensor is able to obtain 

measurements with twice the accuracy and precision of any other IOP sensor used to date, avoid 

electronic drifts commonly seen in commercial sensing devices, and can potentially be used in a 

variety of animal models. The sensor was characterized and tested in alert rats for weeks on end. 

Data obtained with this device showed the presence of previously reported circadian rhythms, 

with IOP significantly increasing during nocturnal cycles. This technology provides researchers 

with an unprecedented tool to analyze IOP dynamics over time. The characterization of the 

amplitude, period and phase of the IOP profiles of normal and glaucomatous eyes may help 

establish a definitive correlation between ocular hypertension and glaucoma progression. 

While implantable systems provide investigators with essential physiological data, their 

implementation can be difficult. Challenges such as reduced operational lifetimes and limited 

data acquisition capabilities are commonly faced by most bio-devices. These limitations are 

frequently linked to small battery capacities, however the implementation of bigger batteries is 

not usually viable due to size requirements. Energy harvesting technologies have surfaced in 

recent years in an attempt to replace battery applications; however, most technologies provide 

low power densities and cannot deliver continuous telemetric operation. An innovative wireless 

powering system was developed to overcome these limitations. The technology uses radio 

frequency (RF) energy transfer to continuously harvest high energy levels. Taking advantage of 

the controlled environment under which most research animals are housed, RF transmitters are 

placed around the cage to form strong, omnidirectional electric fields. An especial antenna was 

designed to be worn by the animal and collect large energy levels, irrespective of animal 
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movements and positioning. The system was tested on the implantable IOP sensor for weeks, 

providing robust performances and allowing the sensor to collect data continuously with high 

precision. The device consistently generated power densities much greater than those required by 

the sensor. The surplus of energy could be used to operate multiple sensors simultaneously, 

greatly increasing the investigator’s leverage. The technology is easily adaptable to other bio-

sensors and has the potential to revolutionize the biomedical field. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Glaucoma is a set of ocular disorders that preferentially targets retinal ganglion cells and 

their axons within the optic nerves, causing a gradual loss of visual sensitivity and eventually 

blindness if left untreated. Glaucoma is the second leading cause of blindness in the world with 

over 2.2 million cases reported in the U.S. (Friedman, 2004). Even more alarming are the 

projections of over 80 million cases worldwide estimated to occur by the year 2020, up from a 

reported 60 million cases in 2010 (Quigley, 2006). The development of glaucoma is often 

associated with elevated intraocular pressure (IOP), which is considered its only modifiable risk 

factor (Sommer, 1989; Sommer 1996). Studies have shown that the risk of retinal and optic 

nerve damage increases with high IOP (Chauhan, 2002; Heijl, 2010), and that medicines which 

lower IOP in glaucoma patients can reduce or arrest disease progression (Kass, 2002; Quigley, 

1982). Thus, IOP remains the focus of most glaucoma research studies and clinical treatments. 

IOP is the result of the dynamic balance between fluid production by the ciliary body 

epithelium, and fluid drainage through pressure dependent and independent pathways in the eye. 

The increase in IOP that leads to glaucoma is caused by ineffective drainage through the outflow 

channels. As the eye is unable to release the extra fluid produced over time, pressure rises. The 

amount and rate of pressure change depends on the form of the disease presented. With angle-

closure glaucoma the IOP increase can be large and rapid due to blockage of aqueous humor 

outflow through the iridocorneal angle by the iris; whereas, with open-angle glaucoma the IOP 
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increase is deceptively subtle and slow due to a gradual decline in outflow facility that can take 

months or years to be noticed. IOP values in a normal human eye range between 12-22mmHg, 

while some glaucoma patients experience ocular pressure levels that fluctuate between 22-

30mmHg (Wilensky, 1991).  

Even after decades of research little is known about the dynamics of IOP. Common 

clinical practices measure IOP during doctor’s appointments every few months. These 

assessments are usually performed during business hours using Goldmann applanation 

tonometry, a tool that provides a snapshot of the patient’s pressure profile. On the other hand, 

research has shown that IOP fluctuates throughout the day (Frampton, 1987; Gautam, 2016) and 

can be affected by ocular pulsations (Katsimpris, 2014) and even body posture (Gautam, 2016). 

The endogenous variability of IOP and the sparsity of data create important challenges when 

studying glaucoma. For instance, clinical studies that investigated the incidence of IOP 

fluctuations on the disease based on inter-visit data have been inconclusive (Bengtsson, 2007; 

Caprioli, 2008; Medeiros, 2007). Even in research settings, the investigator can only obtain 

measurements a few times a week via tonometry and, when used in animals, data tends to be less 

accurate and more variable due to the high corneal curvature of smaller eyes (Abrams, 1996).  

The absence of technology that can provide comprehensive IOP data over time has hampered our 

ability to answer questions regarding glaucoma onset and development. 

To answer these questions researchers have developed several experimental models for 

glaucoma induction. The models aim to recreate the disease in order to study its behavior, as well 

as possible treatments avenues. Numerous animal species have been investigated based on 

accessibility, the proximity of their ocular anatomy to that of humans (Dawson, 1993; Van Der 

Zypen, 1977) and their ability to spontaneously manifest glaucoma (John, 2005; Kolker, 1963). 
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Most induction models work by increasing the hydraulic resistance of the aqueous outflow 

pathways of the eye through anatomical alterations, or by introducing a foreign body that blocks 

fluid channels and impedes normal drainage.  The reduced aqueous fluid outflow leads to 

chronic ocular hypertension and progressive damage of the retina and optic nerve like that seen 

in human glaucoma.  

1.2 Motivation 

While experimental models provide much insight, available methods of glaucoma 

induction and pressure monitoring have important limitations that the field must strive to 

address. Some of these limitations are illustrated in Figure 1.1, which plots the IOP record of a 

rat in which a common experimental model was used. The episcleral veins of one eye were 

injected with hypertonic saline to cause IOP elevation. One limitation, particularly for surgical 

methods of induction, is that the treatment does not always lead to ocular hypertension and 

success may not be apparent for weeks. For instance, this animal required two injections 

(dashes), meaning that a month of effort was ostensibly lost. Our success rate with the saline 

injection procedure is ~50% on the first try and ~80% after the second try, which is typical.  A 

second limitation is that the amplitude and time course of IOP changes are not predictable or 

reproducible. The treated eye of this animal, for example, took a month to settle at a level of ~40 

mmHg while IOP in other animals might plateau at a higher or lower level, reach the plateau at 

different time points, or exhibit other dynamical behaviors. Such differences in IOP profile often 

get obscured when results are pooled across animals, and the detailed pressure history to which 

an eye is exposed could be meaningful to disease pathology. Additionally, during these 

procedures permanent damage is done to the trabecular outflow pathway so IOP changes are 

generally irreversible. As a consequence, comparatively little is known about the ability of the 
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retina and optic nerve to recover from glaucomatous insult. Most of these challenges are 

common across glaucoma induction models.  Another limiting factor is that IOP data are usually 

collected by hand with a tonometer so the measurements are, as previously discussed, sparse, 

variable, and time consuming. The sparsity of data makes it is unclear, for example, whether the 

IOP of this animal rose to a peak then fell slightly or increased monotonically to a sustained 

level.  

 

 

 

Other technologies, besides tonometry, have been explored for more frequent IOP data 

collection; however, they present limitations of their own that makes them non-ideal. 

Commercial sensors used in the field for continuous IOP monitoring are adaptations of systems 

that were designed for other applications. As such, they are not optimized to work in normal IOP 

ranges. For instance, a sensor commonly used in glaucoma research (Li, 2008; McLaren, 1996) 

Figure 1.1 Rat glaucoma model. Mean IOP before and after hypertonic saline injection into one 

eye of a rat (unfilled circles: control eye, filled circles: treated eye). IOP was measured with a 

Tono-Pen XL tonometer. Each point is the average of 10 measurements. Error bars give the 

standard deviation. Dashed line indicates the day of saline injection. 
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was originally designed to measure blood pressure. The accuracy levels of this system are in the 

order of ± 3 mmHg, which are adequate to measure blood pressure signals that normally range 

between 120 and 130 mmHg in rodents (Parasuraman, 2012). However, when used to measure 

IOP signals that oscillate in the teen values, an error of 6mmHg is less than desirable. Moreover, 

these devices are powered by unregulated batteries that have an adverse effect on the sensor’s 

calibration over time. Battery drainage frequently results in electronic artifacts that compromise 

data quality (Downs, 2011) and, in some cases, severely limit the length of the experiments. An 

inclusive review of the available IOP measuring technologies and glaucoma induction methods is 

presented in chapter 2. To conduct effective and comprehensive glaucoma studies, we must aim 

to develop better induction models, as well as more accurate means to continuously monitor IOP. 

1.3 Aims and Objectives 

This dissertation work describes novel IOP sensing and control systems that can 

overcome the limitations of current glaucoma models and pressure measuring technologies. The 

project was focused on the design, development and testing of two devices. The first one consists 

of an autonomous bidirectional pressure-sensing pump, connected to a cannula that is chronically 

implanted in the eye. The device offers closed-loop pressure control, without altering ocular 

anatomy, and aims to serve as a hypertension model for glaucoma studies. The iPump, as we 

have named this device, offers a simple implementation to actively manipulate fluid levels in the 

eye in order to increase or decrease pressure. This feature will allow researchers, for the first 

time, to steadily maintain IOP at different levels and correlate pressure dynamics and mean 

values to specific damage at the ocular nerve. An innovative mathematical technique was 

developed to analyze data obtained using the iPump. The algorithm yields the values of 

important physiological parameters that affect IOP and are often associated with glaucoma 
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development. This technique enables researchers to accurately measure the outflow facility of an 

eye while halving experimental times and reducing the size and complexity of the necessary 

equipment.     

The second device consists of an implantable sensor that continuously measures 

intraocular pressure. The system aims to facilitate the study of IOP dynamics in normal and 

glaucomatous eyes, while serving as a bridge for the future miniaturization of the iPump. The 

device is equipped with an embedded microcontroller and a Bluetooth module for data 

processing and wireless transmission. On board amplifiers ensure clean and accurate data.  A 

unique wireless powering system was designed and implemented to continuously run the sensor 

without batteries. The robust performance of the energy transfer technology provided the sensor 

with unlimited functional lifetime and eliminated electronic artifacts commonly seen in battery-

operated sensors. No other sensor available today offers these capabilities.  Both of these devices 

serve as enabling technology to improve the current state of the art and advance the knowledge 

in the field, potentially affecting the lives of millions of people.  

1.4 Dissertation Outline  

The design, construction and testing of these devices is explained in the subsequent 

chapters as follows: 

 Chapter 2 presents a comprehensive list of the currently available sensors that have been used 

to monitor IOP, as well as the reported techniques for ocular hypertension induction. The 

advantages and disadvantages of each one of them are discussed. 

 Next, chapter 3 covers the development and testing of the iPump. Its individual components 

are described and characterized. Similarly, a careful assessment of the system’s ability to 

accurately measure and regulate IOP in rats is presented. 
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 In chapter 4 we describe a mathematical model to calculate the individual physiological 

parameters that affect IOP. This methodology provides accurate measurements of outflow 

facility in a rat eye in half the time of traditional outflow experiments and avoids the use of 

bulky equipment. 

 Following the iPump implementation, chapter 5 focuses on the development and testing of 

the implantable IOP sensor. An electronic description of the sensor is provided, its properties 

are characterized and its performance is examined in fully awake rats. This chapter also 

presents statistical analysis of the IOP data obtained using the sensor. 

 Chapter 6 presents the construction of a novel system for wirelessly powering biological 

sensors. Its properties were characterized and the system was tested by remotely powering an 

IOP sensor in an alert rat. 

 Lastly, Chapter 7 presents the concluding remarks of the project, as well as recommendations 

for possible future research in glaucoma, and other avenues, using the devices described in 

this document.  
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CHAPTER 2: STATE OF THE ART 

 

This dissertation addresses the need for improved IOP sensing technology and more 

effective glaucoma induction models. In order to truly understand the requirements of both of 

these processes, one must first analyze the current state of the art. The following section details 

the pressure transduction systems that have been employed to continuously measure IOP, as well 

as the glaucoma models that have been reported in the literature. The advantages and 

disadvantages of each are explored. Similarly, a description of the “ideal” system for glaucoma 

research is described to provide a template to which the technology developed in this project 

intended to adhere.  

2.1 IOP Telemetry 

2.1.1 T30-13B by Konigsberg Instruments 

This sensor has been implemented to measure and characterize IOP dynamics in monkeys 

(Downs, 2011). The system allows for continuous data collection of IOP, heart rate and body 

temperature at 500Hz. The device provides excellent accuracy levels of ± 0.5 mmHg and non-

restrictive transmission distances. The high sampling rate allows the user to obtain IOP 

fluctuations due to blinks, saccades and possibly ocular pulsations due to heart beat modulation 

of the venous system (Downs, 2011). The sensor has been extensively implemented to measure 

acute IOP responses to varying conditions such as stress levels (Downs, 2016), eye rubbing 

(Turner, 2016) and anesthesia induction (Jasien, 2016). These studies have yielded important 

results for researchers studying IOP variability. 
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For chronic data collection using this system, some limitations must be considered. One 

concern lies on the device’s unregulated battery supply, which causes artificial drifts in pressure 

measurements over time. These drifts have been documented to be in the order of                                        

-17mmHg/month during the first six week of operation and 6mmHg/month thereafter (Downs, 

2011). Considering that normal IOP levels in monkeys in the order of 12-20 mmHg (Yu, 2009), 

the downward trend exhibited by this system represents an important challenge.  For instance, if 

an implanted animal had an initial IOP baseline of 18 mmHg on day 1, one month after 

implantation pressure readings will have declined to ~1mmHg, even though actual IOP is most 

likely still close to the original value. To counteract the effects of artificial drifts, periodic 

recalibration is necessary. Subcutaneous implantation of the system makes direct troubleshooting 

unviable. Therefore, recalibration is performed by cannulating the eye using a needle connected 

to an additional pressure transducer and digitally adjusting the system’s readings. The steep slope 

of the pressure drifts and their nonlinear behavior require bi-weekly recalibrations. This is not 

only laborious, but recurrent cannulation could be detrimental to the ocular health. Moreover, 

leakage caused by the perforation of the anterior chamber disrupts normal IOP dynamics, forcing 

investigators to avoid data collection on the days following calibration (Downs, 2011). 

Additionally, the system’s manufacturer recommends that data collection be kept in blocks of 24 

hours at a time in order to avoid write-to-disk errors. Following post-recalibration guidelines and 

the data collection requirements, researchers have been limited to collecting data only 6 days per 

month  for up to 9 months (Downs, 2011). The low number of data-available-days may present 

limitations for long term glaucoma studies. Another challenge is the system’s size, which makes 

it unsuitable for smaller, more affordable and easily manageable animal species (e.g. rodents, 

rabbits, etc.).  
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2.1.2 C10/C40 by Data Science International (DSI) 

The C10 and C40 wireless sensors are probably the most widely used IOP telemetry 

systems. The biggest advantage of the DSI sensors is their size, which has granted their 

implantation in rabbits (Akaishi, 2005; McLaren, 1996), and mice (Li, 2008). These sensors 

obtain 15 seconds of pressure data, sampled at 100Hz, every two minutes. While less powerful 

than the Konigsberg system in terms of sampling frequency and multi-parameter monitoring, 

DSI sensors do not suffer from the 24-hour data collection restriction, permitting it to run for 

several consecutive days. The research studies that have employed these sensors have provided 

us with pioneering data on IOP circadian variations (McLaren, 1996) and the effects of certain 

drugs on lowering IOP (Akaishi, 2005). 

DSI sensors are also powered with unregulated supplies, which make them vulnerable to 

artificial pressure drifts similar to those seen in the Konigsberg systems. According to the 

manufacturer’s specifications, the C10 and C40 sensors experience downward trends of 2-

5mmHg/month, can operate continuously for 1-2 months before the batteries are depleted and 

experience accuracy levels of ± 3 mmHg. A window of error of 6mmHg severely compromises 

the validity of IOP data, given that the eye is naturally oscillating in teen values of pressure. 

Lastly, the DSI sensors have a transmission distance of only 18 inches, which can create data 

losses as the animals move away from the receiver. This limitation makes them unsuitable for 

implementations in larger animals that are kept in more spacious cages (e.g. monkeys). 

2.1.3 Triggerfish by Sensimed 

The Sensimed’s triggerfish device is one of the most promising systems available today. 

It consists of a custom designed contact lens with an embedded strain-gauge that is able to 
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measure corneal deformations due to pressure variations (Leonardi, 2009). The electronics are 

inductively powered using a coil attached to a plastic frame that the patient wears. This device 

has been implemented successfully in humans, allowing researchers to continuously track IOP 

variations throughout the day (Mansouri, 2011; Mansouri 2012). The noninvasive nature of the 

technology allows for an easier implementation, however, transcorneal IOP measurements 

present some drawbacks. For instance, corneal properties such as thickness, curvature and 

elasticity are known to vary from subject to subject (Liu, 2005; Luce, 2005), and to accurately 

measure corneal deflections, they must be considered. While these parameters can be estimated 

in general, their variability could compromise the accuracy of the data across individuals (Liu, 

2005; Whitacre, 1993). As a result, the triggerfish is able to track relative changes in IOP but it 

does so in arbitrary units created by the manufacturer, which cannot be easily converted into 

standard pressure units. Additionally, since the lenses are fabricated in standard human size, they 

cannot be implemented in lower level animals that are most commonly used for glaucoma or IOP 

studies. 

2.1.4 WIT by Implant Data 

The WIT sensor is a wireless telemetry system consisting of multiple capacitive-pressure 

cells and a microcoil antenna that are coated in a silicon package and implanted in the anterior 

chamber of the eye. The device couples inductively with an external reader which powers the 

sensor and collects IOP data at 10Hz. System operation requires the reader to be placed within 5 

cm of the eye (Todani, 2011) which limits continuous data collection and requires an operator. 

The sensor’s placement directly in the anterior chamber makes it independent of corneal physical 

properties that affect other IOP transducers (e.g. Triggerfish, tonometers, etc.). Although 

accurate readings have been reported via manometry using the WIT (Todani, 2011), data 
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collected in humans showed significant variability compared to tonometry (Koutsonas, 2015). 

The authors could not identify the source of this variability. Unexpected drifts were also 

observed, presumably due to fibrous reactions of the eye interfering with the sensor’s 

performance (Koutsonas, 2015). The size of the WIT was designed for implantation in humans 

and large animals, but is not suitable for implementation in rodents whose research value has 

been discussed.   

2.2 Animal Models for Glaucoma Induction 

2.2.1 Hypertonic Saline Injection 

As mentioned in chapter 1, this technique injects a hypertonic saline solution into the 

episcleral veins towards the limbus. The solution causes sclerosis of the outflow pathways of the 

eye, resulting in elevation of IOP (Morrison, 1997). This technique can recreate ocular outflow 

obstruction at the site of blockage seen in human glaucoma (Morrison, 2015), but it presents 

certain limitations. First of all, the methodology requires a complex microsurgical technique that 

can result difficult to master, and even the most skilled researchers experience a success rate of 

just around 50-60% (Morrison, 1997). Secondly, this method often needs repeating in order to 

achieve IOP elevations and induction success might not be apparent for weeks after experimental 

treatment (figure1.1; Morrison, 1997; Morrison, 2015). Moreover, in some cases, the procedure 

can result in excessive inflammation that generates IOP levels much higher than desired 

(Morrison, 1997). Lastly, in those animals in which the procedure is successful, the researcher 

has no control over the amount or time course of IOP elevation. The detailed pressure profile of 

the treated eye ranges widely across experiments, making it a challenge to draw definitive 

conclusions of the relationship between IOP dynamics and cell damage. 
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2.2.2 Microbead and Ghost Red Blood Cell (RBC) Injection  

These two methodologies are very similar in nature and use the same principle. A foreign 

body is introduced in the eye through an injection into the anterior chamber. In both cases, the 

microbeads or RBC’s obstruct normal outflow facility and result in IOP elevation. In most 

animals a single RBC injection is needed, however, the viscosity of the RCB’s and the volume 

necessary to achieve IOP elevation can create poor visibility of the optic disk (Quigley, 1980), 

which is a crucial element in the clinical assessment of glaucoma progression. On the other hand, 

microbead occlusion techniques can be more time consuming as periodic injections are necessary 

to achieve chronic IOP elevation (Sappington, 2009; Weber, 2001), but does not compromise the 

visibility of the optic nerve (Weber, 2001). Both of these techniques have the added benefit of 

producing no intraocular inflammation, common in other glaucoma induction models. Although 

the mean IOP elevation can be somewhat adjusted by modifying the volume of 

microbeads/RBC’s injected in the eye (Quigley, 1980; Sappington, 2009; Weber, 2001), these 

models offer no control over the variability if IOP during the experiment, which can limit the 

researchers ability to establish significant correlations between IOP levels and optic disk 

damage.  

2.2.3 Laser Photocoagulation and Episcleral Vein Cauterization 

Another way to induce ocular hypertension is to mechanically alter the outflow channels 

of the eye instead of blocking them. As aqueous humor leaves the anterior chamber, it flows 

through the trabecular meshwork and into the venous system via the episcleral veins (Tamm, 

2009). The use of lasers (Gaasterland, 1974; Levkovitch-Verbin, 2002; Ueda, 1998) and cautery 

(Grozdanic, 2003; Shareef, 1995) to change the properties of these structures has been explored 

as a glaucoma model. While both techniques result in rapid elevation and less variable IOP 
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(Grozdanic, 2003; Levkovitch-Verbin, 2002; Shareef, 1995), their effect is limited as IOP returns 

to baseline levels within 2-3 weeks after the surgery (Gaasterland, 1974; Grozdanic, 2003; 

Levkovitch-Verbin, 2002; Shareef, 1995), which may not be sufficient for most glaucoma 

studies. Repeating the procedure may result in unwanted damage to the eye. While failure rates 

for photocoagulation models are fairly low, others have reported success rates of just 35% in 

cauterization models (Grozdanic, 2003). 

2.2.4 Genetic Mutations 

This model is the only one to manifest glaucoma spontaneously. Although multiple 

animal species have been studied, mice genetic models are the most widely used. Several strains 

have been identified with high IOP and inbred for research use. The most studied is the DBA/2J 

line which has a genetic mutation that causes iris pigment to slough off and accumulate in the 

trabeculum at 6-8 months of age (John, 2015). The pigment gradually obstructs fluid outflow, 

causing a gradual rise in IOP of moderate amount.  

While the mouse model has the advantage that obstruction happens automatically, 

without the need for surgical interventions, a drawback is that the IOP increase is bilateral and 

the onset time is uncertain. Since both eyes experience hypertensive conditions, there is no 

internal control group for statistical comparisons. Moreover, frequent monitoring is needed to 

determine the duration of pressure exposure, which is difficult given the small size of mouse 

eyes. Induced glaucoma models are more laborious, but present the advantage of having the non-

treated eye serve as a useful control for hypothesis testing. Additionally, the animal is genetically 

normal so any damage inflicted upon the eye can be directly linked to the experimental treatment 

itself. 
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2.3 The Ideal Research Model 

Through this literature review, several characteristics have been identified as desirable for 

an ideal model to induce glaucoma and monitor intraocular pressure. In terms of IOP measuring, 

the technology must provide: i) continuous data, ii) have accuracy levels well-suited for low 

pressure ranges, iii) not present electronic pressure drifts, iv) allow implementation in a variety 

of animal species, iv) provide non-restrictive data transmission distances, v) be independent of 

corneal properties, vi) deliver extensive operational lifetimes, vii) monitor multiple physiological 

functions simultaneously and viii) present data in mmHg. On the other hand, the perfect 

glaucoma induction model should: i) offer high success rates, ii) sustain IOP elevation over time, 

iii) offer IOP controllability, iv) not produce detrimental biological responses, v) be unilateral, 

vi) be reversible and, vii) induce rapid IOP changes. Tables 2.1 and 2.2 compare available 

technologies to the ideal models. 

Feature Ideal 

Sensor 

Tonometer Konigsberg DSI Triggerfish WIT 

Continuous 

data 

Yes No Yes * Yes Yes No 

Accuracy < 1 mmHg ± 3mmHg ± 0.5 ±3mmHg ± 0.4 ± 0.81 

Drift None N/A 6-17 

mmHg/month 

2-5 

mmHg/month 

N/A 0-2 

mmHg/month 

Animal 

species 

Rodents, 

rabbits, 

monkeys 

Rodents, 

rabbits, 

monkeys 

Monkeys Rodents, 

rabbits 

Humans Rabbits, 

monkeys 

Transcorneal No Yes No No Yes No 

Operational 

Life 

> 3 months N/A 9 months  1-2 months Unlimited Unlimited 

Multi-sensor Yes No Yes No No No 

Pressure Unit mmHg mmHg mmHg mmHg Arbitrary mmHg 

* Data only obtained in 24h blocks, 6 days a month. 

Table 2.1 Ideal IOP Sensor vs. Available Technology  
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Feature Ideal Model Saline 

inject. 

Micro  

bead 

Injection 

RBC 

injection 

Photo- 

coagulation 

Vein 

Cautery 

Genetic 

Success 

Rate 

100% 60% 90% 

multiple 

treatments 

100% 85% 

multiple 

treatments 

35% 100% 

Sustained 

elevation 

Yes Yes No No No No Yes 

IOP control Yes No No No No No No 

Bio-

response 

None Inflama-

tion 

None Occlusion Inflammati-

on 

Inflammati-

on 

Mutation 

Unilateral Yes Yes Yes Yes Yes Yes No 

Reversible Yes No No No No No No 

Time 

before 

elevation 

Immediate 2 weeks 1 week 1 day 2 weeks 1 week  

 

6-8 

months 

 

 

 

  

Table 2.2 Ideal vs. Traditional Glaucoma Models 
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CHAPTER 3: IPUMP SYSTEM 

 

3.1 Note to Reader 

This chapter has been previously published as an article in the Annals of Biomedical 

Engineering journal (Bello, 2016) and has been reproduced with permission from the Springer 

editorial. Authorization is included in Appendix A. 

3.2 Introduction 

Elevated intraocular pressure (IOP) has been identified as a major risk factor for 

glaucoma (Leske, 1995; Sommer, 1989), an eye disease that causes gradual loss of vision and 

eventually blindness if left untreated. To better understand the etiology and pathophysiology of 

the disease, several experimental models have been developed in mice, rats, rabbits, pigs, and 

monkeys. The models raise IOP by increasing the resistance of aqueous outflow pathways of the 

eye through a variety of techniques, including laser photocoagulation of trabecular meshwork 

(Gaasterland, 1974; Ueda, 1998) hypertonic saline injection into limbal vessels (Chauhan, 2002; 

Morrison, 1997), cauterization of episcleral veins (Ruiz-Ederra, 2005; Shareef, 1995), and ghost 

red blood cell (Quigley, 1980) or microbead (Sappington, 2010; Weber, 2001) injection into the 

anterior chamber. The reduced aqueous outflow leads to chronic ocular hypertension and 

progressive injury of the retina and optic nerve like that seen in human glaucoma. 

Experimental glaucoma models are widely used by researcher with great success, but it is 

recognized that they have important limitations (Morrison, 2011). Firstly, the failure rate is high 

so many animals do not experience a significant IOP increase. Secondly, some methods need 
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repeating to achieve chronic IOP elevation and induction success might not be apparent for 

weeks after treatment (Chauhan, 2002; Morrison, 1997; Weber, 2001), while other methods 

produce a rapid IOP change that returns to baseline levels over time (Shareef, 1995; Ueda, 1998). 

Thirdly, the researcher has no control over the amplitude or time course of IOP elevation. The 

detailed pressure history to which treated eyes are exposed can range widely across animals, 

making it more difficult to correlate IOP exposure with glaucoma onset and progression. 

Fourthly, damage done to aqueous outflow pathways cannot be experimentally reversed so the 

capacity of the eye to recover from glaucomatous injury cannot be investigated. And fifthly, IOP 

is usually measured by hand with a tonometer. Tonometers can provide only an indirect and 

sporadic record of the pressure history of an eye, which is less accurate and more variable in 

smaller eyes having high corneal curvature (Abrams, 1996). The sparse pressure data hamper 

examination of relationships between glaucoma and IOP dynamics (Asrani, 2000; Bengtsson, 

2000), which have been shown to fluctuate on multiple time scales due to blood pulsation, 

respiration, and endogenous biological rhythms (Akaishi, 2005; Downs, 2011; Li, 2008; 

Mansouri; 2012; McLaren, 1996).    

This chapter describes a novel IOP control system that can overcome limitations of 

existing glaucoma models. We refer to the system as iPump because it consists of an autonomous 

pressure-sensing pump connected to a cannula implanted in the eye. Data are provided on: i) the 

resolution, noise level, and long-term stability of pressure measurements in vitro, ii) and the 

ability of the system to maintain IOP of anesthetized rats at any level desired by the user. The 

results demonstrate that a portable iPump system is ready for tethered use on rats and for 

miniaturization into an implantable device. The technology promises, for the first time, to 

provide researchers complete knowledge and control of IOP in conscious behaving animals. 
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3.3 System Overview 

The iPump system includes a cannula, a pressure sensor, control circuitry, and a fluid 

pump (figure 3.1A). The cannula is implanted in the anterior chamber of the eye using an 

especial surgical technique (Bello, 2016) and conducts IOP to the pressure sensor. The controller 

circuit compares sensor output with a target IOP level specified by the user and commands the 

pump to withdraw or inject fluid through the cannula so as to set and hold IOP at the user-

specified level. A 7-ml reservoir is connected to the pump that can be drained or refilled as 

needed. A portable system was constructed for research use (figure 3.1B). The cannula is a fine 

polyimide tube (ID: 100 µm, OD: 130 µm, MicroLumen, Oldsmar, FL) filled with sterile 

artificial aqueous humor (130 mM NaCl, 5 mM KCl, 5 mM NaHCO3, 1 mM CaCl2, 0.5 mM 

MgCl2, 5 mM glucose, 20 mM HEPES, pH 7.25, McNulty, 2004). The cannula runs subdermally 

to a custom head mount (10 mm) that connects to the iPump via 30G Teflon tubing (length: 

35cm, Zeus, Branchburg, NJ) and prevents animal movements from retracting the cannula tip 

from the eye.  

The system interfaces with a computer via a USB connection, which provides power and 

data lines. A custom LabVIEW program sends the desired IOP set point to the device and 

records IOP and pump command signals at 1 Hz. The sampling rate can be adapted by the used 

through the LabVIEW interface. The iPump can operate in two modes. In open-loop mode, only 

the sensing elements are powered and IOP is reported. In closed-loop mode, the control circuitry 

and pump are also powered and IOP is clamped within a user-specified window of the set point. 

In the experiments describer throughout this chapter a ±2 mmHg window was used. IOP control 

is achieved by varying the pump rate or pump duty cycle. In the latter case, pump rate was fixed 

at 2 µL/min. 
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3.4 Electronic Description 

Figure 3.2 illustrates the electronic schematics of the iPump system. The system is 

equipped with: i) a pressure transducer, ii) a low pass filter, iii) a microprocessor, iv) a pump 

driver, v) a micropump , vi) a flow restrictor and, vii) an optional flow meter. The device 

operates on a single-rail 5V supply that is stepped up or down throughout the circuitry to power 

the different stages. The implanted cannula serves as an interface between the eye and the 

iPump. Each component is described in more detail in the section below.  

 

Figure 3.1 IOP control system. (A) Block diagram of the system. A pressure sensor measures 

IOP via a fine cannula implanted in the anterior chamber of the eye. A controller circuit 

amplifies and filters the pressure signal and compares the result against a user-specified set point. 

If IOP deviates from the desired level, the system produces a command signal that drives a small 

pump to inject or withdraw fluid through the cannula until IOP returns to the set point. (B) 

Picture of portable iPump system. All electronic components are housed in a small plastic box (8 

x 5 x 4 cm) that contains a fluid reservoir which can be filled or drained. The box tethers to the 

animal via tubing that runs inside a protective spring to a plastic head mount which connects 

subdermally to the implanted cannula. Bar: 1 cm. 
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3.4.1 Sensing Elements 

3.4.1.1 Pressure Transducer 

The pressure sensor (TBPDANS005PGUCV, Honeywell, Morristown, NJ) is a 

piezoresistive strain gauge manufactured on an alumina ceramic substrate and covered by a 

silicone gel coating that protects the electronic components from fluid condensation in the line.  

The sensor has an operating range of 0-250mmHg, with an overpressure capacity of 1500mmHg 

in reference to atmospheric pressure. During pressure control experiments IOP will be varied 

between 0-50mmHg. The transducer is equipped with multiple gauges which allow for 

Figure 3.2 Electronic schematics of the iPump. The pressure sensor operates in a temperature 

compensated Wheatstone bridge configuration. The signal is differentially amplified x1000 and 

low pass filtered at a cut-off frequency of 1Hz. The bang-bang controller is implemented 

digitally in the microprocessor and while a dual DC-DC converter circuit drives the actuator 

micropump. Fluid is pulled from the reservoir and injected into the eye until IOP reaches the set-

point. A mechanical flow restrictor helps maintain flow at a constant 2µL/min. A USB port 

provides a 5V supply to the system, which is stepped down to 3.3V in certain parts of the circuit.      
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temperature compensation in the range of 0-85 °C and can operate with power supplies ranging 

from 1.5 to 12V.  In our application the sensors are powered using a constant 3.3V supply and 

draw a nominal 300µA current.  

3.4.1.2 Differential Amplifier 

The sensor is connected to a differential amplifier with a gain of 1000 that ensures data 

accuracy and resolution. The selected microchip (OPG90, Analog Devices, Norwood, MA) is a 

precision operational amplifier that can be powered using a single supply between 1.6 and 36V. 

The single rail and low working voltage were crucial requirements for operation using a standard 

USB port as the system’s supply. 

3.4.1.3 Sallen-Key Low Pass Filter 

IOP readings are influenced by other physiological functions, such as heart palpitations 

and respiration, which can create pressure fluctuations in the anterior chamber. In the rat these 

occur at frequencies of 4-5 Hz (McLaren, 1996). The sensor can also detect vibrations in the 

tethering line between the animal and the system, which can create noise in the data recorded. In 

order to achieve pressure control, however, the system should react only to DC changes in IOP 

and not physiological or mechanical noise. Therefore, a 3rd order low pass filter with a cut-off 

frequency of 1Hz in incorporated during data acquisition, which eliminates noise and allows for 

consistent pressure control. 

3.4.2 Control Elements 

3.4.2.1 Microcontroller 

The system is run by a small programmable microcontroller unit (RFD22301, RFDuino, 

Hermosa Beach, CA), which is equipped with 128kB of flash memory for application space and 
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8kB of RAM memory. The chip is equipped with an 8-bit analog-digital converter and 7 general 

purpose input-output channels (GPIO). The microprocessor has two main functions: i) collecting 

and transferring data and ii) implementing digital control processes. The device is equipped with 

a USB cable that connects directly to the data collection computer. The connection serves as a 

bilateral communication pathway between the data acquisition software and the on-chip 

microprocessor. IOP data is continuously printed to the computer’s communication port, while 

user commands are set at the PC and relayed to the device. Using a custom designed LabView 

program, the user can indicate changes to the set-point, which are read and stored in the 

processor’s memory. The microcontroller then computes the error between the actual and desired 

IOP and uses an analog output channel to activate the pump’s driver when the error is greater 

than the allowed window. The window of error is programmable and is set at a default 2mmHg.  

The same USB cable used for data communication powers the sensor and pump with 5V, while 

an intermediate DC-DC buck converter delivers 3.3V to the microprocessor.  

3.4.2.2 Code 

Bilateral communication between the iPump and the data collection computer was 

stablished using a custom written hand-shaking protocol that links the microcontroller with a 

LabVIEW program via a USB serial port and a special data acquisition add-on library (VISA, 

National Instruments, TX). The LabVIEW program also serves as the user interface, where set-

point, window, open loop and closed loop settings can be changed. Each setting was assigned a 

flag for identification purposes. Loop settings were assigned the letter k, while set-point and 

window variables were identify by the letters s and w, respectively. When any of these settings is 

changed, the LabVIEW program prints the flag, followed by the new setting value, to the serial 

port. (e.g. s30, when changing the set-point to 30mmHg). A special logic algorithm was designed 
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to only print information to the serial port when one or more settings were changed. This 

procedure eliminates the need of continuous reading and writing by the microcontroller, which 

increases efficiency and decreases processing times.  

The microcontroller code was written using C++ and loaded into the microprocessor 

using a stack-on USB-connector and Arduino software (Arduino, Italy). The device is set to use 

serial port communications at a 9600 BAUD rate. The code operates in two main while loops. 

First, the microcontroller checks the serial port for flags indicating that a setting has changed. If 

there is a flag present the code proceeds to remove the ID letter from the string and leave only 

the new set value (e.g. s30 is converted to 30) and the parameter is redefined (e.g. set_point= 30). 

Once this process is completed, the system collects IOP data from the sensor at 50Hz and 

calculates the error between actual and desired IOP. If the error is greater than the allowed 

window and the system is operating in closed-loop, the pump is turned ON. The microfluidic 

elements remain active until the error is reduced to 0 or a setting is changed. A second inner 

while loop is implemented to ignore the window threshold when the pump is active. This allows 

the system to drive IOP to the exact set-point but then allow a window of error before restarting 

perfusion. Once per second the microcontroller prints all settings and current IOP values to the 

serial port where the LabVIEW programs reads and stores them. 

3.4.2.3 Pump Driver 

In order to operate the pump efficiently the system employs a specialized driving circuit. 

The mp6-OEM controller (Servoflo, Lexington, MA) employs a two stage DC-DC voltage 

converter to generate peak-to-peak voltages up to 235V. The driver outputs two pulsating 

voltages at a frequency of 100Hz, which are used to operate the actuators of the mp6 pump 

described in the next section. The pump rate is modulated via an analog voltage ranging from 0.6 
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to 1.3V at the amplitude pin, which is generated by the microprocessor. Due to the high voltages 

generated by the driver, care should be taken when troubleshooting as they can be harmful to the 

body.  

3.4.3 Pumping Elements 

3.4.3.1 Micropump  

The pump (mp6, Servoflo, Lexington, MA) uses two piezoelectric diaphragms in 

combination with passive check valves to move fluid from the reservoir to the eye.  The voltage 

generated by the driver causes a downward deformation of the pump’s piezoelectric membrane, 

resulting in a displacement of fluid out of the pump in the direction defined by the valve. 

Alternatively, when voltage decreases, the membrane experiences and upwards deformation that 

draws fluid from the reservoir into the pump. Oscillation between high and low voltages 

generates steady flow rates. Those flow rates, however, can be affected by external conditions 

such as the backpressure generated by the eye and conducted to the pump via the tethering 

tubing. According to the manufacturer, when operating at maximum performance, the mp6 

generates flow rates of 7000 µL /min at no backpressure. Flow decreases linearly with 

backpressure and stops completely when it reaches 450mmHg (figure 3.3A). In order to 

effectively control IOP, the pumping rate must be kept within 1-4 µL/min (as shown in the 

results section of this chapter). Decreasing the driving voltage of the pump results in slower 

infusion rates, but also decreases the maximum backpressure handled by the device. This voltage 

reduction keeps the slope of the operating line constant at approximately -15 µL/min/mmHg, 

which results in a backpressure sensitivity level not viable for IOP control. In order to decrease 

the system’s flow rate while maintaining maximum backpressure levels, a flow restrictor is 

incorporated between the pump and the eye.  
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3.4.3.2 Flow Restrictor 

A change of slope in the characteristic curve of the pump can be achieved by 

incorporating a flow restrictor, which is a piece of tubing with a reduced lumen that connects the 

outlet of the pump to the cannula. Following Hagen-Poiseuille’s law the volume flow through a 

conductor is: 

𝑄 =
𝛥𝑃

𝑅
      (1)  

and   

𝑅 =
8∙η∙L

π∙𝑟4    (2) 

where Q is the volume flowrate, 𝛥𝑃 is the change is total pressure (e.g. 450mmHg at maximum 

performance for the mp6), R, r and L are the resistance, radius and length of the conductor, 

respectively, and η is the dynamic viscosity of the fluid (8.75 x 10-8 mmHg·min at body 

temperature; Fitt, 2006). To calculate the total flow rate, the inner resistance of the pump 

(5.1429E+11 Pas / m³, per manufacturer indication, must also be taken into consideration, 

making equation (1)):  

𝑄 =
𝛥𝑃

RTubing + RPump
  (3) 

for instance, using a flow restrictor with and inner diameter of 40µm and a length of 10cm while 

operating the pump at maximum performance, results in a maximum flow rate of approximately 

2.3µL/min while handling a maximum backpressure of 450mmHg. The slope of this new 

characteristic curve is 0.005µL/min/mmHg (figure 3.3B), which is negligible in the pressure 

ranges that IOP is expected to be maintained.  
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3.4.3.3 Flow Meter 

In applications in which exact flow rates are required, a flow meter can be incorporated 

between the restrictor and the eye, however this component is optional. The meter (LG16-

0150A, Sensirion, Switzerland) can detect flowrates ranging 0-7µL/min with nL/min resolution. 

The module operates with a 9V power supply, which cannot be achieved via USB powering. 

Therefore, the flowmeter is not incorporated within the iPump case and it is rather used as an 

add-on accessory.  

 

 

3.4.4 Circuit Board and Packaging 

Figure 3.4 shows the circuit board of the iPump with hand soldered elements and a 

schematic of its custom designed case. The circuit is organized in two vertical levels that 

Figure 3.3 Backpressure vs. flow rate operating curve of the mp6. (A) When the system is 

operated at maximum performance (black line) it can pump at 7mL/min when opened to air and 

can withstand a maximum backpressure of 450mmHg. When the driver circuit is set to operate 

the pump at 50% of max performance, max flowrate decreases to 3.5mL/min and the max 

backpressure becomes 225mmHg. (B) When fluid is pumped through a flow restictor (ID:40μm, 

length: 10cm) the mp6 can move fluid at 2.3µL/min when opened to air and endure a mximum 

pressure of 450mmHg.   
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separate the electronic and fluidic elements. A plastic case was designed using CAD software 

(SolidWorks, Waltham, MA) and machined in acetal homopolymer (Derlin, Interstate plastics, 

Sacramento, CA). The bottom part of the case houses the electronic circuitry, while the pump 

and restrictor are placed on a plastic shelf that rest on four beams built on the box’s corners. The 

flow restrictor is connected to the sensor and the exit port via 16G tubing and a 3-way connector. 

The pump is connected to the driver using a special flexible connector (Molex FCC 39532045, 

Lisle, IL) that is routed to the circuit board and soldered in placed.  

 
 

 

3.5 Materials and Methods 

3.5.1 Animal Preparation 

Experiments were performed on adult Brown-Norway rats (300-400 g, Harlan 

Laboratories Inc.) housed under a 12hr-12hr (6am - 6pm) light-dark cycle and fed a standard 

Figure 3.4 iPump system circuit board and case.  Plastic case was designed using CAD software 

(left). The bottom of the case houses all electronic elements (bottom right). The USB connector 

and the microprocessor are stacked up using a 12 pin built-in connector. A custom shelf holds 

the micropump and restrictor in place (top right). A plastic lid is held in place using 4 screws.  
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daily diet. Animals were kept in a temperature controlled room (22°C) and were under regular 

veterinarian supervision. All procedures were approved by the Institutional Animal Care and Use 

Committee of the University of South Florida in accordance with NIH guidelines. 

3.5.2 Calibration and Bench Testing 

The iPump system was calibrated by connecting the cannula (length: 10 mm) to a saline 

reservoir and mercury manometer via a three-way stopcock. Reservoir height was varied, and the 

offset voltage and gain of the pressure transducer were mapped to mmHg. Long-term stability 

was evaluated by fixing reservoir height and recording pressure continually for 90 days. The 

reservoir was covered to prevent evaporation, and fluid level was regularly checked to verify that 

hydrostatic pressure stayed constant. Room temperature was concurrently monitored with a 

thermistor. Drift in transducer output was approximately linear and quantified by regression. 

System accuracy was evaluated by recording IOP in dead rats with an independent commercial 

pressure transducer (5110, Stoelting, Wood Dale, IL). Animals were anesthetized with a mixture 

of ketamine and xylazine (50 and 7 mg/kg, IP), and an eye was cannulated with two 33G needles 

mounted on micromanipulators. One needle was connected to the iPump cannula (length: 10 

mm) and the other to the commercial transducer. Animals were then euthanized with Euthasol 

(>50 mg/kg, IP), and sensor outputs were digitized to computer. After IOP fell to 0 mmHg the 

system was run at pump rates of 1-4 µL/min for several minutes each, and sensor differences in 

IOP onset and amplitude were quantified. System dynamics were separately evaluated by 

measuring the time needed for each rate setting to raise IOP by 20 mmHg.  

3.5.3 System Testing in Anesthetized Animals 

The in vivo performance of the complete iPump system was assessed in 5 rats. After 

implanting a cannula (length: 20 mm) for >3 days to allow for wound closure, animals were 
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anesthetized with the ketamine-xylazine mixture. A catheter was inserted in the femoral vein, 

and anesthesia was maintained for remainder of the experiment via intravenous infusion of 

ketamine (30 mg/kg/hr), dextrose (600 mg/kg/hr), and physiological saline. The head was 

mounted in a stereotaxic, and the body was rested on a heating blanket under temperature control 

via a rectal thermometer. Needle electrodes were inserted to record the ECG. Eyes were instilled 

with mydriatic and fitted with clear contact lenses to prevent corneal drying. The scalp was 

opened to expose the implanted cannula, which was then connected to a fluid-filled 30G needle 

tethered by PTFE tubing and a three-way stopcock to the iPump system. The third port was 

closed except to extract bubbles in the line or null the system to atmospheric pressure. Data were 

collected while vitals (heart rate, ECG waveform, body temperature) remained at healthy levels. 

The system was run in open-loop mode for two animals and closed-loop mode for three animals. 

Before activating feedback control the implanted eye was undisturbed for 15 minutes to 

determine baseline IOP. Afterwards, the system was programmed to step IOP to levels ranging 

from 5-35 mmHg and hold IOP within ±2 mmHg of the target level for 2-4 hours. 

3.5.4 Data Analysis 

Statistical significance was assessed by a two-sample t-test with an alpha level of 0.05 

using SigmaPlot software (San Jose, CA). Results are expressed in terms of mean ± standard 

deviation. 

3.6 Results 

3.6.1 Specification of System Properties 

The IOP control system was calibrated by connecting the cannula to a variable-height 

fluid reservoir and mercury manometer. Figure 3.5A plots the recorded pressure as hydrostatic 
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pressure was raised from 0 to 100 mmHg in steps of 20 mmHg and then released. It can be seen 

that the iPump system responds instantly to pressure changes with a step-like waveform as well. 

Figure 3.5B plots the average pressure reading for each pressure step. Sensor output is linear 

over the range tested, which more than spans normal and glaucomatous IOP levels. Sensor 

output is also very accurate. The standard deviation of the noise in the pressure record is <0.5 

mmHg for all applied pressures. Long-term stability was evaluated by applying constant 

hydrostatic pressure to the system for several weeks via a water column (n = 3). Figure 3.5C 

shows the output of an iPump system exposed to 40 mmHg for 90 days. Linear regression of the 

data yielded an average pressure reading of 40.4 ± 0.4 mmHg. The regression slope was -0.05 

mmHg/week for this prototype and +0.04 and -0.02 mmHg/week for two others, amounting to a 

total pressure drift of <1 mmHg over 3 months. Throughout the recording the ambient room 

temperature was monitored. Figure 3.5C (inset) shows that sensor output was insensitive to 

temperature changes between 22 to 26 °F (R2 = 0.003). Sensor output was not examined for 

temperatures outside the range in which the system would normally operate. These results 

indicate that the iPump system can record pressure with high accuracy for months on end. 

       IOP measurement accuracy was evaluated by cannulating the anterior chamber of rat eyes 

in situ with two needles, one of which was connected to the cannula and the other to a calibrated 

commercial pressure transducer. The animal was euthanized prior to data collection to eliminate 

biological disturbances. Figure 3.6A shows the IOP signals recorded by the sensors as the iPump 

system perfused the eye at different rates, each of which increased IOP by 10 mmHg. Between 

the steps in perfusion rate the pump was turned off until IOP declined naturally by 5 mmHg. It 

can be seen that the system accurately tracked pump-induced changes in IOP level, as measured 

directly and independently by the commercial sensor. Figure 3.6B shows the average 
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discrepancy in the IOP records across a group of animals (n = 4). The difference was virtually 

zero at rest and when the pump was off (0.2 ± 0.2 mmHg). It grew linearly with pump rate, with 

the system overestimating IOP by 1.4 ± 0.4 mmHg for a rate of 4 µL/min (p < 0.05). The rate 

dependence reflects the hydraulic impedance of the cannula and tether tubing, which causes a 

hydrodynamic pressure drop between the eye and iPump sensor. Figure 3.6C shows that IOP 

dynamics scale nonlinearly with pump rate. It took the system nearly 30 min to raise IOP by 20 

mmHg at 1 µL/min and just 5 min at 2 µL/min. The exact dynamics depend on aqueous volume, 

outflow facility, ocular compliance, and system tubing compliance. These parameters are 

analyzed in more detail in the next chapter. A tradeoff thus exists between accuracy of IOP 

measurement and speed of IOP alteration, so the pump rate of the iPump system was fixed at 2 

µL/min to achieve maximum speed with minimal loss of accuracy. 

 

 
 

 

Figure 3.5 iPump sensor system properties. (A) System output as applied pressure was raised in 

steps of 20 mmHg. (B) Mean (symbols) and standard deviation (bars) of pressure readings for 

each step in applied pressure. (C) Signal recorded with applied pressure set at 40 mmHg. Data 

were fit by the regression line: f(x) = 40.7 - 0.0077x. Inset, segment of the pressure record during 

which room temperature fluctuated greatest 
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3.6.2 System Performance on Anesthetized Animals 

Once device electronics were tested and cannulation procedure was developed, the 

performance of the complete system was evaluated in vivo from anesthetized rats in a sound- and 

light-proof room. Figure 3.7A shows the IOP record of an implanted eye over a 28-hour period 

recorded with the iPump in open-loop mode. After cannula insertion at noon, IOP settled at a 

daytime level of ~16 mmHg as resting aqueous outflow and fluid volumes were restored. IOP 

later increased to ~22 mmHg after daytime lighting would normally have turned off at 6PM, and 

it remained at this level until the following morning when IOP decreased to ~14 mmHg after 

daytime lighting would normally have turned on at 6AM. The nighttime elevation is consistent 

with prior observations of circadian IOP rhythms in rodents (McLaren, 1996; Moore, 1996). It 

can be seen that IOP also fluctuated at faster time scales, especially at night in this recording, 

although the animal was anesthetized for the entire experiment. Figure 3.7B shows that the 

Figure 3.6 iPump perfusion properties. (A) Top: Time course of pump rates applied by the 

system to a dead rat eye in situ. The rate was stepped on and off to 1, 1.5 and 2uL/min. Bottom: 

Pump-induced IOP changes recorded simultaneously by the iPump (thick line) and a second 

pressure sensor (thin line) independently connected to the eye. (B) Mean and standard deviation 

of the difference record obtained by subtracting the simultaneously-recorded IOP signals for 

pump rates of 1 to 4uL/min. (C) IOP dynamics following the perfusion rate steps. 

A B C 
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fluctuations are irregular and ranged 2-4 mmHg in amplitude in this rat. The in vivo variability 

averaged 2.1 ± 1.5 mmHg across all IOP recordings (n = 5). This is significantly greater than the 

ex vivo variability (figure 3.5), which implies that the IOP noise is produced by the animal. 

Figure 3.8A shows the IOP record of an implanted eye in which the iPump was programmed to 

hold pressure for 2 hours at 25, 45, and 35 mmHg. Upon activation of closed-loop control 

(asterisk), IOP increased from its resting level of ~15 mmHg to ~25 mmHg as the system 

injected fluid into the eye. Figure 3.8B shows that, once target IOP was reached, the system 

ceased pumping and IOP slowly decreased as the eye cleared the excess fluid. When IOP fell 2 

mmHg below the target level, the system resumed pumping and returned IOP to ~25 mmHg. The 

cycle repeated until the target level was switched, at which time the system adjusted the pump 

duty cycle and IOP was maintained at ~45 and ~35 mmHg. Figure 3.8C summarizes the 

distribution of measured IOP values across animals for an iPump control window of ±2 mmHg. 

The distribution was comparable to the window size for all target IOP levels. For example, IOP 

was kept between 22.4 to 27.8 mmHg over a 2-hr period when the system set point was 25 

mmHg. 
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Figure 3.7 IOP monitoring with the iPump system. (A) IOP record of the implanted eye of an 

anesthetized rat. Asterisks mark data periods that were excluded because IOP was manipulated to 

examine system behavior. (B) Short (30-min) segment of the IOP record at midnight.  
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Figure 3.8 IOP control with the iPump. (A) IOP controlling with the iPump system record of the 

implanted eye of an anesthetized rat during which the system was programmed to hold pressure 

at 25, 45, and 35 mmHg for 2 hours each. (B) Top, record of pump action (I: injection, A: Stop) 

for a 30-min period. Bottom, IOP dynamics over the same period. (C) Box-and-whiskers plot of 

the distribution of IOP readings for each IOP step. Center line: mean IOP, lower and upper 

edges: 25% to 75% range, lower and upper whiskers: 10th and 90th data percentiles. 

 

3.7 Discussion 

This study introduces a portable telemetric system that can continuously monitor and 

autonomously control IOP in rats, and potentially larger animals. The iPump system was 

extensively tested and its performance specifications were quantified. We show that:  

i)  The system can accurately read pressure for months without drift while compensating 

for ambient fluctuations in barometric pressure and room temperature. 

ii)  The system can measure and hold IOP of rat eyes within a programmable window of 

any set point desired by the user. 
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3.7.1 Broader Applications of the Technology 

The iPump system was conceived as a tool for reliably inducing ocular hypertension or 

for restoring hypertensive eyes to normal IOP levels. Recent work has indicated that glaucoma 

onset and progression may depend not just on IOP but more specifically on the pressure gradient 

across the lamina cribrosa (Berdahl, 2008; Nusbaum, 2015; Ren, 2010), a web-like collagenous 

structure through which optic nerve fibers exit the eye. The translaminar gradient is a function of 

IOP and intracranial pressure (ICP), raising interest in a possible role of ICP dynamics in the 

disease. By implanting the cannula in cerebral ventricles, the iPump system can also be used to 

monitor and control ICP. It could even be used to set the translaminar gradient. Since the system 

has two pressure sensors, it could simultaneously measure IOP and ICP while controlling one of 

them so as to hold the gradient at a user-specified amount.  

Abnormal pressure level is a symptom of not just glaucoma. For example, Meniere’s 

disease is associated with chronically high endolymphatic pressure, which distends fluid 

compartments of the cochlea and compresses the neurosensory organ (Mateijsen, 2001; Salt, 

2010; Takumida, 2008). As with glaucoma, animal models of Meniere’s disease attempt to 

induce cochlear hypertension via surgical, mechanical, or pharmacological methods oftentimes 

with inconsistent and irreversible results. The iPump system could thus provide a useful tool for 

investigating the etiology and pathophysiology of a myriad of pressure-induced 

neurodegenerative diseases. 

3.7.2 Comparison to Existing Technologies 

Several noninvasive and invasive technologies are commercially available for IOP 

measurement. Noninvasive technologies like the gold-standard applanation tonometer and 

cutting-edge wireless contact lens sensors (Leonardi, 2009; Mansouri, 2011; Mansouri, 2012) are 
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appealing because data can be obtained quickly with minimal subject preparation or trauma. 

However, the IOP readings are indirect and thus not absolute (Abrams, 1996). With tonometers 

they are also sparse and sporadic since readings are made by hand. Invasive technologies exist 

that can be placed inside the eye (Ha, 2012; Koutsonas, 2015; Todani, 2011; Walter, 2000) or 

connected to the eye via a tube (Akaishi, 2005; Downs, 2011; Liu, 2003; McLaren, 1996). They 

require surgical training and open the eye to surgical complications but also give round-the-clock 

streams of IOP data with little need for experimenter involvement. The iPump system measures 

IOP with open-loop accuracy of 0.2 mmHg and closed-loop accuracy of 0.7 mmHg, which meets 

or exceeds commercial systems (Konigsberg and DSI) that have been used for chronic IOP 

recording (Akaishi, 2005; Downs, 2011; Liu, 2003; McLaren, 1996). The iPump is not yet 

implantable like those systems, but it is only available technology that can automatically regulate 

IOP. Traditional ocular hypertension induction models are difficult to master, not always 

effective, time consuming and in many cases fail to maintain pressure elevated for extended 

periods of time. Table 3.1 shows a comparison between the most commonly used animal models 

and the iPump.  Our system offers the most comprehensive tool for IOP manipulation and 

glaucoma studies. 

Feature iPump Hypertonic 

saline injection 

Microbead 

injection 

RBC 

injection 

Photo- 

coagulation 

Vein 

cauterization 

Success rate 100% 60% 5 90% 

(multiple 

treatments)1 

100% 85% 

(multiple 

treatments)2 

35% 

IOP Control Yes No No No No No 

Time before 

elevation 

Minutes 2 weeks 1 week1 1 day3 2 weeks2 1 week 4 

 

Remains 

elevated 

Yes Yes No No No No 

Records 

Pressure 

Yes No No No No No 

1 Urcola (2006); Sappington (2010); 2Ueda (1998); 3Quigley (1979); 4Grozdanic (2003); 5Morrison (1997). 

Table 3.1 iPump vs. Ocular Hypertension Models 
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3.7.3 Current Limitations of the Technology 

The iPump system is intended for use on conscious animals, which presents design issues 

for consideration. One is reservoir size. The aqueous humor volume and outflow facility of rat 

eyes is ~10 µl3 and ~0.05 µl/min/mmHg (Kee, 1997; Mermoud, 1996), respectively, meaning 

that a sustained IOP increase of 10 mmHg translates to an outflow of ~0.7 ml/day or ~7 eye 

volumes/day. The reservoir will thus need weekly refilling and perhaps resizing for other 

research applications or animals. Another is system tethering. Since the iPump sensor is outside 

the eye, vertical animal movement can cause hydrostatic pressure differences between the eye 

and sensor and introduce motion artifacts into the IOP record. Rats are small and live mostly in 

one horizontal plane, so the artifacts would be a few mmHg at most and minimally affect iPump 

operation. They would get filtered by control circuitry and the programmable window about 

which the system holds IOP. Larger animals also used in glaucoma (e.g. primates) present a 

significant challenge for iPump implementation, as their mobility is greater than that exhibited 

by their smaller counterparts. The use of our system in such animals may require miniaturization 

of the device to make it suitable for implantation, which is part of the future scope of this project. 

Bacterial growth in the line over time is a possibility and while the periodic operation of the 

pump should clear the tubing and avoid clogging, this is not the case when operating in open-

loop conditions. 
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CHAPTER 4: OUTFLOW FACILITY 

 

4.1 Introduction 

IOP is the result of aqueous humor movement into and out of the eye (figure 4.1). The 

ciliary body continuously produces fluid, which flows from the posterior into the anterior 

chamber. Once there, fluid exits the eye via two main pathways: i) through the trabecular 

meshwork and into Schlemm’s canal and the episcleral veins (Tamm, 2009). The resistance of 

the trabecular tissue opposes fluid flow, creating a pressure drop which we identify as IOP. The 

reciprocal of this resistance, or conductance, is defined as conventional outflow facility. ii)  

Through the ciliary muscle and other tissues (Barany, 1962; Johnson, 2016). This drainage is 

independent of IOP (Johnson, 2016) and is defined as the uveoscleral or unconventional outflow 

facility. These dynamics are modeled using the Goldmann equation: 

𝐼𝑂𝑃 =
𝐹𝑖𝑛−𝑈

𝐶
+ 𝐸𝑉𝑃        (1) 

where Fin is the ocular fluid production, EVP is the episcleral venous pressure, U and C are the 

unconventional and conventional outflow facility, respectively. Understanding the dynamics of 

these parameters is crucial for glaucoma research since ocular hypertension is frequently traced 

to an abnormality in one of them, making outflow facility and fluid production the target of most 

IOP-lowering drugs and surgical treatments. To study outflow facility several methods have been 

reported in mouse (Aihara, 2003; Lei, 2011; Millar, 2011), rat (Mermoud, 1996) and human eyes 

(Karyotakis, 2015), most of which act by injecting additional fluid into the eye and analyzing the 

IOP response. These procedures have provided researchers with valuable data for decades. 
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Nevertheless, such experiments require several pieces of equipment that can be bulky and hard to 

set up, which renders the user’s ability to easily transport it. Equipment transportation becomes 

particularly important in research facilities where animals are housed in a dedicated vivarium 

outside of the investigator’s laboratory, where space can be survival experiments are conducted 

but space is usually limited. Moreover, several of the traditional outflow facility methodologies 

require a skilled operator to correctly assess IOP dynamics during the experiment and can be 

lengthy to perform. Therefore, a more compact and easy-to-use system would greatly facilitate 

chronic outflow facility studies.  

 This chapter presents the implementation of the iPump system described previously, in 

combination with a novel mathematical technique, to overcome the limitations of traditional 

outflow measuring techniques. Data are presented on the ability of the methodology to accurately 

measure outflow facility, as well as length of experiments. The results show that the iPump can 

effectively measure the flow through conventional and unconventional drainage pathways.  

 

Figure 4.1 Diagram of the outflow facility of an eye. Fluid is produced by the ciliary body, 

flowing into the anterior chamber. Fluid exists the eye conventionally via pressure dependent 

channels or unconventionally through pressure independent pathways. Adapted from Shields 

(2004) 
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4.2 Materials and Methods 

Experiments were performed on rats anesthetized with a ketamine-xylazine mixture (50 

and 7 mg/kg, IP). A catheter was inserted in the femoral vein, and anesthesia was maintained for 

remainder of the experiment via intravenous infusion of ketamine (30 mg/kg/hr), dextrose (600 

mg/kg/hr), and physiological saline. The head was fixed in a stereotaxic mount, and the body 

was rested on a heating blanket under temperature control via a rectal thermometer. Needle 

electrodes were inserted to record the electrocardiogram (ECG). A 33G needle mounted on a 

micromanipulator was used to cannulate the anterior chamber of the eye. The needle was 

connected to the iPump via 25G tubing (length: 25cm). Two different techniques were used to 

measure outflow facility. In 5 animals aqueous drainage was measured using a commonly used 

technique termed the constant rate perfusion method. In other 4 animals we measured outflow 

using our innovative procedure which we named the constant pressure perfusion method. 

4.2.1 Constant Rate Perfusion Method (CRP) 

When the eye is perfused at a fixed rate, its steady state is disturbed causing IOP 

elevation. The additional fluid infusion modifies the Goldmann equation, becoming: 

𝐼𝑂𝑃 =
𝐹𝑝𝑢𝑚𝑝+𝐹𝑖𝑛−𝑈

𝐶
 + 𝐸𝑉𝑃   (2) 

where Fpump is the pump’s perfusion rate. Over time IOP will settle at a new level. When the rate 

of IOP change falls by 90%, IOP is considered to have stabilized and, at this plateau level, the 

amount of fluid entering and exiting the eye are equal. That is: 

𝐹𝑝𝑢𝑚𝑝 = 𝐹𝑜𝑢𝑡  (3) 

where Fout is the total fluid outflow via conventional and unconventional pathways. Solving 

equation (2) for Fpump and setting it equal to equation (3) we obtain: 

𝐹𝑜𝑢𝑡 = 𝐹𝑝𝑢𝑚𝑝 =  𝐶 ∙  𝐼𝑂𝑃 + (𝑈 −  𝐹𝑖𝑛 −  𝐶 ∙ 𝐸𝑉𝑃)  (4) 
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plotting equation (4) we find that C is the slope of the line, while the y-intercept is the sum of 

IOP independent flows from U, Fin and EVP.  

When using this methodology, eyes were perfused with 0.9% saline solution using at 

least 5 different rates ranging from 0.1 to 1.5 μL/min, while a Labview program recorded IOP. 

After data were collected, the pump was turned OFF and IOP was allowed to decay to its normal 

baseline. Pressure data was averaged for every plateau level and conventional outflow facility 

was calculated as the slope of the IOP vs. Perfusion Rate curve. 

4.2.2 Constant Pressure Perfusion Method (CPP) 

This novel technique was developed using the unique functions of the iPump to modify 

IOP levels. The iPump systematically maintains IOP within 2 mmHg of a user specified set-

point. When the set point is manually changed, the system dispenses fluid into the eye at a 

constant rate (Fpump, 2μL/min) until IOP reaches the desired value, at which point the pump 

stops. The system remains idle until aqueous drainage lowers IOP by 2mmHg below the set-

point, at which point the pump automatically resumes perfusion. This cycle is repeated until the 

set-point is changed or the system is turned OFF. The CPP technique analyzes volume dynamics 

during each individual pressure cycle. The fluid volume change during the rise phase of the cycle 

must equal the volume change during its fall phase. For instance, the volume of fluid injected by 

the pump to elevate IOP from 24 to 26mmHg must be equal to the volume of fluid drained by the 

eye (outflow facility) to lower IOP from 26 back to 24mmHg (figure 4.2). Additionally, we must 

consider the volumetric changes of the eye itself as its biomechanical properties allow the ocular 

globe to expand or contract as fluid moves in and out of the anterior chamber. Equation (5) 

illustrates this relationship. 

(𝑇1 ∙  𝐹𝑝𝑢𝑚𝑝)  +  𝛥𝑉𝑟𝑖𝑠𝑒 = (𝑇1 ∙  𝐹𝑜𝑢𝑡) + (𝑇2 ∙  𝐹𝑜𝑢𝑡) + 𝛥𝑉𝑓𝑎𝑙𝑙   (5) 
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where T1 is the perfusion time and T2 is the idle time of the pump. In other words, T1 is the 

amount of time required to raise IOP by 2mmHg while T2 is the amount of time that it takes the 

outflow facility to lower IOP by 2mmHg at each level (figure 4.2).  This equation accounts for 

the amount of fluid delivered to the eye, as well as the fluid drained while the pump was active 

and after it stopped. Assuming that the changes in eye volume during the rise and fall phases are 

equal for small IOP variations (ΔVrise = ΔVfall), equation (5) becomes: 

(𝑇1 ∙  𝐹𝑝𝑢𝑚𝑝) = (𝑇1 ∙  𝐹𝑜𝑢𝑡) + (𝑇2 ∙  𝐹𝑜𝑢𝑡)  (6) 

 
 

 

solving equation (6) for Fout we obtain that: 

𝐹𝑜𝑢𝑡 =
𝑇1

𝑇1+𝑇2
∙ 𝐹𝑝𝑢𝑚𝑝  (7) 

Figure 4.2 Constant pressure perfusion methodology. The iPump was used to maintain IOP 

within 2 mmHg of the set-point (26mmHg) using a 2µL/min perfusion rate. T1 is the amount of 

time required for the pump to drive IOP from 24 to 26mmHg. T2 is the amount of time needed 

by the eye to lower IOP from 26 to 24mmHg. This cycle is repeated until the iPump is disabled 

or the set-point is changed.   



44 

Note that in the case of the CPP technique, total outflow is equal to the perfusion-rate 

times the fraction of time that the pump was active.  Modifying equation (4) to reflect this 

relationship we obtain:  

𝐹𝑜𝑢𝑡 = 𝐹𝑝𝑢𝑚𝑝 ∙
𝑇1

𝑇1+𝑇2
=  𝐶 ∙  𝐼𝑂𝑃 +  (𝑈 −  𝐹𝑖𝑛 −  𝐶 ∙ 𝐸𝑉𝑃) (8) 

in a dead eye, cessation of vascular flow eliminates EVP as well as aqueous humor production. 

Therefore, repeating the same procedure on a dead eye yields equation:  

𝐹𝑜𝑢𝑡 = 𝐹𝑝𝑢𝑚𝑝 ∙
𝑇1

𝑇1+𝑇2
=  𝐶 ∙  𝐼𝑂𝑃 +  𝑈   (9) 

in the new curve, the slope is equal to the conventional outflow facility, while the y-intercept 

indicates the value of the unconventional drainage.  

During CPP experiments eyes were perfused with a 0.9% saline solution at 2μL/min. The 

iPump was used to set IOP to 5 different levels on each animal, ranging from 20 to 80mmHg. 

Each level was maintained for at least 5 full cycles. Outflow facility was calculated for each 

cycle (equation 8) and averaged across the same IOP level. In 3 animals the CPP method was 

perform before and after death. After the live data was obtained, the animals were euthanized via 

intraperitoneal euthasol injection (>50 mg/kg, IP) and the procedure was repeated in-situ. 

4.2.3 Characterization of the Perfusion System 

Outflow facility measurements calculated using any methodology are affected by the 

physical characteristics of the perfusion system. For instance, the hydraulic resistance of the 

perfusion needle, as well as the resistance and compliance of the tubing used to connect it to the 

iPump, could influence outflow facility measurements and, therefore, must be taken into 

consideration. The length (25 cm) and diameter (ID: 700μm) of the tubing and was standardized 
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and maintained across experiments. Tubing and needle resistance were calculated using 

Poiseuille’s law which stated that: 

𝑅 =
8𝜂𝐿

𝜋𝑟4
 

where R is the resistance of the tubing, r is its radius, L its length and 𝜂 is the dynamic viscosity 

of the fluid. System compliance was determined by sealing the needle tip and injecting known 

fluid volumes into the line while recording pressure. The slope of the injected volume vs. change 

in pressure graph corresponds to the compliance of the tubing system. Ocular compliance can be 

measured by repeating this procedure with the needle tip open and inside the anterior chamber. 1, 

2, 3 and 4 µL were systematically delivered into the eye while IOP was monitored and recorded. 

This procedure yields the compliance of the tubing and eye together. Ocular compliance is 

therefore the difference between total compliance and tubing compliance. 

4.2.4 Data Analysis 

Statistical significance was assessed by a two-sample t-test with an alpha level of 0.05 

using SigmaPlot software (San Jose, CA). Linearity was assessed by fitting data to a curve of the 

form f (x) = f0 + ax. Results are expressed in terms of mean ± standard deviation. 

4.3 Results 

4.3.1 System Characterization and Ocular Compliance 

Needle resistance was calculated using Poiseuille’s Law of fluid flow. The 33G needle 

had an inner diameter of 108μm and a length of 13mm. The dynamic viscosity of a saline 

solution is 8.75 x 10-8 mmHg·min at body temperature (Fitt, 2006). Using these values, needle 

resistance has a value of 0.340 mmHg∙min/μL. On the other hand the rest of the tubing had an 

inner radius of 350 µm and a length of 25cm. The resistance of the tubing was 5.30x10-3 
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mmHg∙min/μL. Since the needle and tubing are connected in series, the values of their 

resistances can be added, summing a total system impedance of 0.345 mmHg∙min/μL. This 

resistance is negligible compared to the expected ocular resistance of a rat eye (Mermoud, 1996) 

and can therefore be ignored when analyzing outflow results. System compliance was measured 

to be 0.120 ± 0.010µL/mmHg (n=3; data not shown). Figure 4.3 shows an experiment in which 

total compliance was measured. 1, 2, 3 and 4 µL were systematically delivered into the eye, 

causing pressure changes that ranged from 7 to 40 mmHg. The compliance of the eye-tubing 

bundle was calculated to be 0.1401 ± 0.0107 µL/mmHg (n=3). Ocular compliance is therefore in 

the order of 0.020 µL/mmHg. 

 

 

 

Figure 4.3 Ocular and system compliance. (A) IOP profile resulting from the injection of 1, 2, 3 

and 4 µL saline boluses into a single rat eye. Pressure increases after each injection, followed by 

a slow pressure decrease as fluid exits the eye. (B) Linear regression of the volume vs. pressure 

relationship. Each data point was calculated as the injected volume divided by the resulting 

pressure change. The slope of the line yielded a compliance of 0.1476 µL/mmHg. Note that this 

is the equivalent compliance of the eye and the perfusion system bundled together.  
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4.3.2 Outflow Facility Using CRP 

Outflow facility of the rat eye was evaluated via constant rate perfusion in 5 animals. 

Figure 4.4A shows one of these experiments. IOP had an original baseline of ~16mmHg. The 

eye was perfused at 0.1, 0.3, 0.5, 0.7 and 0.9 µL/min for 10 to 35 minutes until IOP stabilized. 

The lower perfusion rates generated the slowest IOP responses, taking almost 40 minutes to 

settle when perfusing at 0.1 μL/min (asterisk). During these slow IOP stages, assessment of 

plateau levels can be difficult. When all five levels were completed and the pump was turned off, 

IOP returned to the original baseline. In this experiment linear regression analysis of outflow 

data yielded a conventional outflow (C) value of 0.027μL/min/mmHg with a y-intercept of -0.64 

µL/min (figure 4.4B). 

 
 

Figure 4.4 Outflow facility measurement via CRP. (A) Perfusion rates are set to a certain value 

for an extended period of time (top) causing an IOP response at each step (bottom). IOP must 

settle at one value before the perfusion rate is changed. The asterisk marks a level in which IOP 

may not have settled properly before the level was changed. (B) Linear regression of the IOP vs. 

outflow curve. Conventional outflow was 0.027µL/min/mmHg with an intercept of   -0.64 

µL/min. 
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4.3.3 Outflow Facility Using CPP 

To test the ability of the iPump to measure outflow facility, experiments were performed 

in 4 rats. Figure 4.5 illustrates one experiment done using the CPP methodology. IOP had an 

original baseline around 16 mmHg, the set-point was varied between 5 and 30 mmHg above the 

baseline in steps of 5mmHg (figure 4.5A). After data were collected, the iPump was operated in 

open-loop, allowing IOP to return to its normal baseline. The simplicity of the procedure allows 

any user to conduct the experiment without previous training. Real time assessment of IOP is not 

necessary when using CPP and the operator is only responsible for switching set-point values 

when enough pressure cycles have elapsed. The linear regression of the data obtained revealed a 

conventional outflow facility of 0.0268 µL/min/mmHg with a y-intercept of -0.311 µL/min 

(figure 4.5B). These results are comparable to those obtained using the CRP method (see next 

section). 

 
 

Figure 4.5 Outflow facility measurement via CPP. (A) The iPump was used to vary IOP in steps 

of 5mmHg. Once the experiment was finished IOP return to its initial baseline. (B)  Linear 

regression of the IOP vs. Outflow curve. Conventional outflow was 0.0268 µL/min/mmHg with 

an intercept of -0.311 µL/min. 
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4.3.4 Comparison Between Methodologies 

Several experiments were conducted using both the constant-rate (CRP) and the constant 

pressure (CPP) perfusion methods for outflow facility measurement. Figure 4.6 shows the 

regression data of all animals (n=9). The black circles represent data obtained using the 

traditional CRP technique, while the red circles show the outflow facility measured using our 

novel CPP methodology. CRP data revealed a conventional outflow facility of 0.0247 ± 

0.003µL/min/mmHg and a y-intercept of -0.31 ± 0.34 (n = 5, mean ± SD). On the other hand, 

animals that underwent CPP showed a conventional outflow facility of 0.0243 ± 0.002  

µL/min/mmHg and a y-intercept of -0.52 ± 0.17 µL/min (n=4, mean ±  SD). Unconventional 

outflow facility was measured to be 0.1 ± 0.0533 µL/min (n=3, data not shown). No statistically 

significant difference was found between the slopes (P=0.832) and the y-intercepts (P=0.340) of 

the outflow data obtained using CRP and CPP. Similarly, conventional outflow facility in a live 

and dead rat eye was not statistically different (P=0.227). The results of all experiments are 

summarized in table 4.1.  These data show that our novel methodology, CPP, is a reliable way of 

obtaining outflow facility measurements and its results are comparable to those obtained using 

traditional procedures. 

Parameter Mean Standard Deviation 

Conventional outflow, live (n=9) 

Unit: µL/min/mmHg 

0.024 0.003 

Conventional outflow, dead (n= 3) 

Unit: µL/min/mmHg 

0.022 0.002 

y-intercept, live (n=9) 

Unit: µL/min 

-0.49 0.18 

Unconventional outflow (n= 3) 

Unit: µL/min 

0.10 0.053 

Table 4.1 Ocular Physiological Parameters 
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Figure 4.7 shows a side by side comparison between the CRP and CPP methods. Figure 

4.7A illustrates a CRP experiment in which IOP was set to 5 different levels. This experiment 

needed approximately two hours for completion and required subjective assessment of the IOP 

plateau levels, which can result in less accurate data. For instance, note that in the first stage IOP 

may not have properly settled before the next stage was started (asterisk). In some cases, 

correctly assessing IOP plateau levels during the experiment can be difficult and it is not until the 

data is processed that such conclusions can be made. Such evaluations often require an expert 

user and long waiting periods to ensure pressure equilibrium, which may result in even longer 

times for completion. For experiments that require outflow data in both the live and dead eye, 

experiments could last over 4 hours, not including preparation and euthanization times. On the 

other hand, as shown in figure 4.7B, experiments conducted using CPP allow for faster 
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Figure 4.6 Outflow facility summary. Red lines denote experiments in which the constant 

pressure perfusion method was used. Five animals were analyzed using this technique. Black 

lines represent linear regressions of experiments done via constant rate perfusion. 4 animals were 

subjected to this method. Both methodologies yielded similar results. 
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completion, as the same five levels of IOP can be achieved in just an hour. Additionally, IOP can 

be systematically controlled by any user, regardless of experience, by adjusting the desired set-

point in the iPump’s user interface. 

 

 

 

 

The differences between CRP and CPP methods are not only related to data quality. 

Figure 4.8 shows a comparison between the equipment necessary to perform CRP experiments 

(figure 4.8A) and the iPump, which is the only device needed for CPP procedures (figure 4.8B). 

CRP experiments require: i) a syringe pump (1000, New Era Pump Systems, NY; Dimensions: 

22.86 cm x 14.60 cm x 11.43 cm; Weight: 3.6 lbs), which may require a controller box to be 

digitally operated (Ana-Box, New era Pump Systems, NY; Dimensions: 10cm x 6.1cm x 2.6cm; 

Figure 4.7 CRP vs. CPP. (A) IOP manipulation via constant rate perfusion. Experimental 

procedure lasts around 2 hours before completion of 5 IOP levels. Dash lines mark the beginning 

of a new pressure level. Asterisk denotes a level in which IOP plateau might not have been 

achieved. (B) IOP manipulation via constant pressure perfusion. Experiment takes around 1 hour 

to complete without the need of IOP plateau. 
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Weight: 0.35 lbs). ii) A commercial pressure sensor (56360, Stoelting, IL; Dimensions: OD: 

2.5cm, height: 3cm; Weight: 0.7 lbs). iii) A signal amplifier (50110, Stoelting, IL; Dimensions: 

22cm x 15cm x 10cm; Weight: 2.8 lbs) and iv) a data acquisition card (6008, National 

Instruments, TX; Dimensions: 8.51cm x 8.18 cm x 2.21cm; Weight: 0.4 lbs). All components 

total a volume of 7442 cm3 and a weight of 7.85 lbs, which can make equipment hard to 

transport. Conversely, the iPump consists of a single unit with a volume of 628 cm3 and weighs 

only 0.5 lbs, making the system easily moveable and requiring minimal set-up.  

 

 

 

4.4 Discussion 

This chapter outlines a novel methodology to measure ocular outflow facility, a set of 

physiological parameters that affect IOP dynamics. The iPump was used to regulate IOP levels 

Figure 4.8 Equipment comparison CRP vs. CPP. (A) CRP methodologies require a commercial 

pump and controller, a pressure sensor, signal amplifier and a data acquisition card. The total 

volume of the items shown in the picture is 7442 cm3 with a total a weight of 7.85 lbs. (B) 

Equipment necessary to perform CPP experiments. The only device required is the iPump 

system, which has a volume of 628 cm3 and a weight of 0.5 lbs. 
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and an innovative mathematical model was developed to accurately calculate drainage rates 

based on volume variations. Our constant pressure perfusion (CPP) methodology empirically 

measured conventional and unconventional outflow facility of a rat eye to be 0.0243 ± 0.002 

µL/min/mmHg and 0.1 ± 0.0533 µL/min, respectively. Although not explored in this study, other 

ocular parameters of the Goldmann equation can also be estimated using this technique. The 

difference between the live and dead y-intercepts is dependent only on EVP and Fin.  EVP values 

have been reported to be in the order of 5 mmHg in mice (Aihara, 2003). Assuming such values 

mirror to rats, it could be possible to estimate Fin.  

While our methodology yields similar results to those obtained using traditional 

techniques, CPP allows the user to overcome various limitations. Firstly, our methodology can 

cut experimental times in half when compared to commonly used constant-rate-perfusion 

models, which can take several hours for completion. Secondly, CPP procedures allow virtually 

any user to perform the experiments. The iPump system allows for precise controllability of IOP 

at every level, removing any subjectivity at the time of data collection and ensure data accuracy. 

Thirdly, another important advantage featured by the iPump is portability. Most of the equipment 

necessary to conduct outflow facility studies is bulky and require multiple components. On the 

other hand, the iPump provides a compact system with all necessary parts integrated in one easy-

to-carry unit. These features are of increased interest since, due to most funding agencies’ 

guidelines, many researchers are required to permanently house their animals in facilities others 

than their laboratories, such as specialized animal vivaria.   

Moreover, the iPump provides the possibility of performing outflow facility 

measurements in awake animals through a tethered connection. This capabilities are possible due 

to our unique ocular implant and cannot be achieved using any other commercial equipment. 
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Although outflow measurements in awake animals have not been acquired to date, and its 

implementation is certain to bring unexplored challenges, the technology provided by the iPump 

opens the door for countless outflow studies that would certainly help advance our knowledge of 

glaucoma.  
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CHAPTER 5: IMPLANTABLE SENSOR 

 

5.1 Introduction 

The current gold standard for measuring intraocular pressure (IOP) is the Goldmann 

applanation tonometry (GAT), which has been proven a useful tool for monitoring glaucoma 

patients. GAT relies on corneal contact and requires an operator to obtain measurements, 

resulting in limited data collection. On the other hand, numerous studies have shown the 

dynamic behavior of IOP in normal (Frampton, 1987; Wilensky, 1991) and glaucomatous eyes 

(Asrani, 2000; Bengtsson, 2007; Gautam, 2015) due to circadian light cycles and body posture. 

The known variability of IOP and the sparsity of information available via tonometry makes this 

method unappealing for long term, comprehensive studies of ocular hypertension.  

To overcome the limitations of tonometric measurements, researchers have focused their 

efforts on developing devices for continuous intraocular pressure measurements, most of which 

are intended for animal use. Continuous IOP telemetry has been reported in rabbits (Akaishi, 

2005; McLaren, 1996) and mice (Li, 2005) using commercially available implantable pressure 

sensors. The devices used in these projects (DSI, St. Paul, MN) are battery powered, which 

severely limits their operational lifetime and introduces significant artificial pressure drifts into 

the recordings due to unregulated voltage levels draining overtime (McLaren, 1996). The 

presence of such drifts requires researchers to perform recurrent invasive recalibration 

procedures that are time consuming and can be damaging to the eye. Another study managed to 

implant a telemetric device in non-human primates (Downs, 2011), successfully recording IOP 



56 

and other physiological parameters simultaneously. The device used in this study was also 

subjected to battery related pressure drifts and its overall size makes it not suitable for 

implantation in smaller animal species, which are more commonly used in glaucoma research. 

The use of a pressure-measuring contact lens (Leonardi, 2009; Mansouri, 2011; Mansouri, 2012) 

has also surfaced in recent years, showing great potential for human glaucoma studies. To date, 

this technology has only been able to record IOP dynamics in arbitrary units that cannot be 

converted to conventional pressure units (Mansouri, 2013) and can only be implemented in 

animals with larger eyes, such as pigs or humans.  

In this chapter we present the development of a wireless telemetry system for continuous 

IOP monitoring. We evaluated its performance in rats, however, the size and transmission 

distances of the device make it suitable for implantation in several animal species. The system is 

equipped with Bluetooth data transmission and voltage supply regulation that eliminates battery-

related pressure drifts.  The purpose of this section is to report the initial performance of the 

device in fully awake rats. 

5.2 System Overview 

The telemetry system used to measure IOP was custom designed for the application. The 

device consists six major components: i) a pressure transducer, ii) a differential amplifier, iii) a 

temperature sensor, iv) a microcontroller, v) a power circuit and vi) a Bluetooth module for data 

transmission (figures 5.1A and 5.1B). A head-mount was designed using CAD software 

(SolidWorks, Waltham, MA) and machined in acetal homopolymer (Derlin, Interstate plastics, 

Sacramento, CA). The head-mount is secured to the skull of the rat using four stainless steel 

miniature screws (#303, J.I. Morris, Southbridge, MA) and bone cement solution (figure 5.1C). 

The back of the head mount connects to the sensor (TBPDANS005PGUCV, Honeywell, 
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Morristown, NJ) via clear 16G PTFE tubing, surrounded by a metal spring that prevents kinking 

(figure 5.1D). The cannula (material: polyimide, ID: 100 m, OD: 140 m, MicroLumen, 

Oldsmar, FL) is inserted through a hole drilled in the front of the head-mount and sealed in place 

with cyanoacrylate (figure 5.1C). The other end of the cannula is implanted in the eye using a 

special surgical technique. Prior to implantation, the cannula and tubing are filled with 0.9% 

saline solution, which allows pressure waves inside of the eye to be conducted along the line and 

to the pressure transducer. Once the head mount is secured and the cannula is in place, skin 

sutures are used to close the scalp. The sensor, along with the rest of the system, is encased in a 

25x25x10mm plastic box that attaches to a custom-designed vest worn by the animal (figure 

5.1D).   

The sensor is powered by a 3.3V coin-cell battery (CR2032, Duracell, Indianapolis, IN) 

which was located at the top of the system’s case and held tightly in a battery socket. This 

positioning was designed to facilitate battery replacement while not allowing the animal to get a 

hold of the system. A DC-DC boost converter maintains a constant voltage supply to the system 

as the batteries drain. The microcontroller (RFD22301, RFDuino, Hermosa Beach, CA) runs the 

device in two modes: sleep and active. While in sleep mode the sensor and amplifier are OFF 

and the system consumes minimum power. During active mode circuitry becomes active, IOP 

data is collected and transmitted along with the system’s temperature. The device alternates 

between active and sleep mode and the duration of each cycle can be adjusted depending on the 

application. The sensor’s sampling rate can also be programmed up to 250Hz. A data receiver 

located within one meter of the animal’s cage collects the information sent wirelessly and feeds 

it to a computer where it is displayed and stored using a custom LabVIEW program (National 

Instruments, Austin, TX). Though greater distances between the telemetric device and the data 
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receiver can be achieved, it may result in increased power consumption. One data receiver can 

synchronize with up to eight telemetric devices simultaneously. The individual electronic 

components of the system are described next. 

 

 

 

5.3 Electronic Description 

Figure 5.2 illustrates the electronic schematics of the telemetric system. The device is 

equipped with:  i) powering circuitry. ii) a microcontroller. iii) pressure and temperature sensing 

Figure 5.1 Implantable IOP sensor. (A) Block diagram of the implantable sensor. (B) Picture of 

the device. (C) Illustration of the head-mount connector. The head-mount is fixed to the skull 

using 4 stainless steel miniature screws. Cannula is inserted through a hole in the front of the 

mount and sealed in place. The other end of the cannula is implanted in the eye. The back of the 

mount is connected to the sensor via 16G tubing. (D) Picture of an implanted rat. The tubing 

connector is covered by a metal spring to prevent kinking, while the sensor is attached to the 

back of the animal using a custom designed vest.    
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elements and iv) a Bluetooth module and antenna for data transmission. All components were 

carefully selected and customized in order to provide high accuracy, low power consumption and 

operate with a single power supply. Each component is described in detail in the following 

section.  

 

 

 

5.3.1 Power Elements 

The system is powered by a 3VDC coin-cell battery with a 220mAh capacity (CR2032, 

Duracell, Indianapolis, IN). As the battery drains with time, fluctuations in the voltage supply 

Figure 5.2 Electronic schematics of the implantable sensor. The system is powered with a 3.3V 

battery. A boost converter maintains voltage supply constant as the batteries drain. Two pressure 

transducers and a temperature sensor interact with the microcontroller to periodically obtain data 

and send it to a computer via Bluetooth. 
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can create artificial drifts in the data obtained. To avoid these artifacts a DC-DC boost converter 

(MCP1640DT, Microchip Technology, Chandler, AR) is implemented. The converter steps-up 

any voltage ranging between 0.65 and 3V to a stable 3V. Since a single battery is implemented, 

all electronics must operate with a single voltage rail. 

5.3.2 Microprocessor 

The system is run by a small programmable microcontroller unit (RFD22301, 

RFDUINO, Hermosa Beach, CA), which is equipped with 128kB of flash memory for 

application space and 8kB of RAM memory. The chip has a built-in, 8-bit analog-digital 

converter and 7 general purpose input-output channels (GPIO), 4 of which can be configured as 

pulse-width modulation (PWM) channels. The chip counts with an embedded 2.4GHz radio, 

compatible with Bluetooth 4.0 low power technology. To maximize battery efficiency, the 

sensors and amplifiers of the device are only ON when data is being collected. To achieve this, 

the microcontroller operates the system in alternating active and sleep cycles. During sleep 

mode, all sensors and amplifiers are OFF and current consumption is decreased to 4µA. The 

amount of time between data collection events is fully programmable and can be customized to 

the application. The data receiver consists of a second identical microcontroller connected to a 

computer via a USB port. After the receiver collects the wirelessly sent data, it prints it to the 

serial port of the computer, where it is read, plotted and stored by a custom-written LabVIEW 

program. Up to 8 different sensors can communicate with a single receiver. 

5.3.3 Code 

The data transmission and reception codes were written in C++ and loaded into the 

microprocessors using a stack-up USB module and an open source prototyping software 
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(Arduino, Italy).  The sensor and receiver communicate wirelessly via Bluetooth using a wireless 

transmission protocol (Gazelle, Nordic Semiconductor, Norway). An especial library 

(RFduinoGZLL.h) is loaded into the code to allow protocol implementation. Device ID, IOP and 

Temperature data are sent using a single packet of information every second. A custom structure 

(struct) is defined using 17 bytes. On the transmitter side, data is collected and incorporated into 

the struct according to the sampling rate defined by the user. The analog-to-digital converter is 

disabled via coding after every data collection action and restored before the next cycle. This 

step is a redundant safety measure to preserve data quality in case of a write-to-disk error. After 

data collection, the system enters a low power consumption stage until the next data transmission 

cycle is active. In another safety measure, the Bluetooth module is disabled and restored in 

between transmission cycles. This action preserves battery life in case of an error in the hand-

shaking protocol between the transmitter and receiver.  

On the receiver side, the code maintains the device in a continuous listening mode. When 

communication is initiated by a transmitter, the receiver uses device ID information to identify 

what sensor is generating the signal (one receiver can interact with up to 8 implanted sensor 

simultaneously). IOP and temperature data are then copied into the receiver’s internal memory 

before being converted from ASCII into voltage values and printed to the serial port. (e.g. 

rat:1;cap:3; IOP: 2.5; temp: 30). A custom LabVIEW program reads the serial port continuously 

at a BAUD rate of 9600 using a special add-on data acquisition library (VISA, National 

Instruments,TX). As data becomes available, the LabVIEW code reads the string and breaks it 

into different sub-strings based on the identifiers rat , cap , IOP and temp (note that the cap value 

is not used in this application, but was coded to facilitate transition between applications). Each 

data subset is plotted in an individual graph, in real time, and saved into a text file. 



62 

5.3.4 Sensing Elements 

5.3.4.1 Pressure Transducer 

One of the key components of this system is the pressure transducer used to measure IOP. 

The printed circuit board (PCB) has two 4-pin connections set up for any sensor that operates in 

a Wheatstone bridge configuration. In cases when only one sensor is necessary (e.g. IOP 

measurements) a single transducer is connected, which makes the system more power efficient. 

The pressure sensors (TBPDANS005PGUCV, Honeywell, Morristown, NJ) are piezoresistive 

strain gauges manufactured on an alumina ceramic substrate and covered by a silicone gel 

coating that protects the electronic components from fluid condensation in the line.  The sensors 

have an operating range of 0-250mmHg, with an overpressure capacity of 1500mmHg. IOP 

variations are expected to be between 12-22mmHg in normal eyes, and reach 30-40mmHg in 

glaucomatous eyes. Each transducer is equipped with multiple gauges which allow for 

temperature compensation in the range of 0-85 °C and can operate with power supplies ranging 

from 1.5 to 12V.  In our application the sensors are powered using a 3V supply and draw a 

nominal 300µA current. A key characteristic of any low-voltage system is a low initial voltage 

(offset) from the sensing elements. The PCB has integrated connections for shunt resistors that 

allow for external biasing of the sensing bridges in order to reduce their offset and maximize data 

resolution.  

5.3.4.2 Differential Amplifiers 

Each sensor is connected to a differential amplifier that maximizes data accuracy and 

resolution. The amplifier selection was based on two main features, the ability to operate using a 

single rail (e.g. single power supply) and low power consumption. The selected op-amp 

(LPV521, Texas Instruments, Dallas, TX) was specially designed for remote sensor nanopower 
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applications, consuming 350nA when powered by a single 3V cell. Moreover the amplifier has 

integrated electromagnetic interference (EMI) protection, which attenuates RF noise picked up 

by the PCB and running through the pins of the op-amp. The amplifier attenuates RF waves 

resonating at 2.4GHz by more than 120dB. Since this frequency is used for data transmission, the 

EMI rejection properties of the amplifier ensure cleaner data. While the PCB allows for 

customizable amplifier gain, the IOP data was collected using a gain of 1000. 

5.3.4.3 Temperature Sensor 

The on-chip temperature sensor has a resolution of 0.25°C and can operate in a range of 

0-85°C. Temperature data is sampled and transmitted along with IOP order to monitor the chip’s 

temperature. Although the temperature sensor is not subcutaneously placed, it can serve as an 

indirect monitor of body temperature. The readings obtained with the system could be rescaled to 

obtain accurate rises and falls in core animal temperature. 

5.4 Materials and Methods 

5.4.1 System Properties 

The existence of artificial pressure drifts due to power supply fluctuations were evaluated 

by monitoring the hydrostatic pressure exerted by a reservoir of physiological saline kept at a 

constant height for the lifetime of the battery. The reservoir was covered to prevent evaporation 

and fluid levels were periodically checked to ensure the pressure applied to the sensor remained 

constant. The supply voltage was also recorded for the duration of the experiment. Pressure drifts 

were statistically evaluated using linear regression techniques. The operational lifetime of the 

battery was assessed by repeating the experiment using several sampling rates. 20 pressure data 

points were recorded at 50Hz every 1, 2 and 4 seconds and the length of battery life was 
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compared between experiments. Experiments were repeated in regulated and unregulated (no 

step-up converter) systems. 

5.4.2 System Performance in Rats 

The performance of the system was evaluated in 8 rats. The average of 20 data points 

sampled at 50Hz was transmitted every 20 seconds. In 3 experiments IOP readings were 

crosschecked hydrostatically using a reservoir of physiological saline and an in-line pressure 

sensor (5110, Stoelting, Wood Dale, IL) connected to a 33G needle via a three-way stopcock. 

The animals were anesthetized with an IP injection of ketamine (50 mg/kg) and xylazine (7 

mg/kg), supplemented as needed, the head was secured in a stereotactic mount and the implanted 

eye was cannulated with the needle. The reservoir height was varied from 5 to 45mmHg while 

IOP was recorded using the telemetric system. In other animals IOP was also monitored using a 

handheld tonometer (Tono-Pen XL, Medtronic, Sarasota, FL). Measurements were taken, in both 

eyes, twice a week around noon-time with the animal under isoflurane anesthesia, while on a 

thermal blanket. On each session, 6-10 IOP measurements were taken and averaged. Tonometric 

pressure means and standard deviations were compared to those of data obtained using the 

telemetric system.  

The correlation between chip temperature and core body temperature was also examined. 

A rat implanted with our sensor was anesthetized using a 2% isoflurane gas chamber and hose 

and placed on a temperature-controlled heating blanket. A rectal thermometer was used to 

continuously monitor core temperature while the sensor recorded IOP and chip temperature. The 

blanket settings were varied to modulate the animal’s temperature between 35 and 39°C. 

Similarly, the effects of core temperature on IOP were also explored.  The IOP and temperature 

records were plotted in the same time scale and the mean value of IOP was computed for every 
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1°C change. To serve as a control, the same procedure was repeated in a second animal after 

cutting the cannula at limbus and exposing it to atmospheric pressure. The difference of IOP 

values at every temperature level was computed between groups. 

5.4.3 Data Analysis 

In some animals daily data was divided into 1 hour blocks and the means and standard 

deviation of every hour were calculated. The means were averaged across several days to 

analyze highest and lowest IOP times. In other animals data was dived into 12 hour blocks. IOP 

data was averaged from 6am-5:59pm and from 6pm to 5:59am to obtain mean IOP day and night 

values. Statistical significance was evaluated with a two-sample t-test using SigmaPlot software 

(San Jose, CA). Results are expressed in terms of mean ± standard deviation.   

5.5 Results 

5.5.1 System Specifications 

Artificial pressure drifts due to variability in the sensor’s power supply were evaluated by 

connecting the sensor to different power sources while applying constant hydrostatic pressure to 

the sensor via a water column. Figure 5.3A shows the pressure recorded by a sensor exposed to 

40mmHg for 90 days (bottom), while powered by a constant 3V line voltage (top). Data was 

obtained every 4 seconds. Regression data showed an average slope of -0.01 ± 0.046 

mmHg/week (n=3). Figure 5.3B illustrates the same process while powering the sensor with a 

3.3V coincell battery and using special circuitry to rectify the battery output to a constant 3.3V 

over time (top) (see power elements section). Under these conditions regression analysis 

indicated a mean drift of 0.01 ± 0.024 mmHg/week (n=3). The drift observed using our powering 

system is negligible and similar to that seen when powering the sensor with a 3V power supply 
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(figure 5.3A, p = 0.541). When sampling pressure every 4 seconds, the sensor was able to 

operate for 28 ± 2.65 days (n=3). Increasing the sampling rate to 1Hz decreased battery life to 

7.33 ± 0.56 days (n=3). For most glaucoma studies, having IOP data available every 4 seconds is 

more than sufficient as the focus remains on mean IOP levels over time. Increasing the time 

between samples results in increased operational lifetimes and can be adjusted depending on the 

application. Other commonly used sensors can only record IOP every 2 minutes (McLaren, 

1996) or 6 days per month (Downs, 2011).  

 Powering the sensor directly from the battery (bypassing the DC-DC step-up conversion) 

increases battery life but exposes the sensor to electronic drifts. Figure 5.3C shows the 

hydrostatic pressure data obtained every 2 seconds with a sensor of unregulated battery supply. 

The system was able to operate for 39 days at this increased sampling rate. Most batteries exhibit 

a three-phasic behavior (5.3C, top). First, a rapid voltage decay that settles at the nominal battery 

value (i.e. from 3.3 to 3V for a 3V coin-cell battery). Second, a period of slow drainage and 

stable power delivery. Finally, a stage in which power delivery is diminished and voltage supply 

is more variable. The last stage ends in a sudden drop of voltage when the battery can no longer 

deliver the power required by the circuitry. These stages result in an overall non-linear drift in 

pressure records (5.3C, bottom). The drift, however, can be analyzed piece-wise linearly. During 

the first two stages of battery drainage, pressure readings are stable and present noise levels of 

0.23mmHg and a linear drift of -0.3 mmHg/week. This is followed by a sudden rise in pressure 

readings of 2.26 ± 0.49 mmHg (n=6), after which data stabilizes but experiences an increased 

noise level of 0.33 mmHg. The total drift and noise levels did not vary when the experiment was 

run at different sampling rates, but it did result in variations in the amount of time before the 

pressure increase. The results of multiple experiments are summarized in table 5.1.  
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5.5.2 IOP Measurements on Awake Rats 

Sensor accuracy was evaluated by manometric manipulation of IOP via anterior chamber 

cannulation (figure 5.4A). IOP was varied between 5 and 45mmHg, in steps of 5mmHg, and 

compared to the sensor readings. Manometric variations yielded a robust fit to the regression line 

(R2=0.99, n=3), with a standard deviation of ± 0.27 mmHg across all pressure levels. The data 

ensures that the sensor readings are linear and highly accurate over this range, which is greater 

than normal IOP and glaucoma levels. Noise levels due to bending of the tubing system as the 

animal moves its head were evaluated in some animals by cutting the cannula at the entry point 

to the eye and exposing it to atmospheric pressure. Figure 5.4B shows two days of IOP data in 

one animal before the cannula was cut (black line) and two days of pressure data after it was cut 

(red line). With the system implanted in the eye, IOP measurements ranged from 7.4 to 25.6 

Figure 5.3 Pressure drift assessment of the implantable sensor. (A) Pressure record with applied 

pressure of 40mmHg (bottom). System was powered with a constant 3VDC (top). Data were fit 

by f(x) = 40.1 – 0.014x.0 (B) Signal recorded by the battery regulated implantable sensor when 

hydrostatic pressure was set at 40mmHg (bottom). Voltage supply was kept constant at 3.3V 

(top) using a DC-DC converter. Regression was fitted as f(x) = 40.05 +0.017x. (C) Hydrostatic 

pressure measurements using an unregulated battery powered sensor. Pressure records 

experience non-linear variations that results in a total drift of 2.26 ± 0.49 mmHg (n=6). 
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mmHg with a mean value of 15.4 ± 4.1 mmHg. On the other hand, when the tube was out of the 

eye the system recorded a mean pressure of -0.03 ± 1.07 mmHg. This record indicates that 

pressure variations due to hydrostatic differences between the sensor and the eye, as well as 

bending of the tubing when the animal moves are much smaller than those seen when IOP is 

recorded. While some larger spikes are seen sporadically, presumably due to sharp movements 

of the head or changes in height while feeding, their duration is short and the mean values of IOP 

are preserved. This experiment demonstrates that the tubing connections employed in our sensor 

are adequate and allow accurate readings of IOP over time, even in an alert animal. 
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Sampling Rate (Hz) Lifetime (days) Total drift (mmHg) Time to pressure rise (days) 

1 (n=3) 23 ± 2 1.78 ± 0.33 9.33 ± 0.58 

0.5 (n=3) 39 ±1 2.02 ±0.55 18.33 ± 1.52 

0.25 (n=1) 91 2.1 40 

Table 5.1 Sensor Specifications (Unregulated Supply) 

Figure 5.4 Accuracy and noise evaluation of implantable sensor. (A) IOP measurement with 

implantable sensor while pressure was set by manometry. The transducer’s relationship was 

linear. (B) IOP measured with implantable sensor in an awake animal for 48 hours (black line). 

IOP showed pressure variations of ± 4.1 mmHg about the baseline. Pressure readings after the 

tube was pulled from the eye (red line) showed a decreased variability of ± 1.07 mmHg.  
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Once the electronics were tested and the system’s accuracy was verified, long-term IOP 

data was recorded in several animals. Data was successfully acquired for 2 to 8 weeks in 6 of the 

implanted rats.  In 2 other animals, fibrotic tissue grew around and inside the tip of the cannula, 

causing IOP readings to decrease after 4-6 days and eventually becoming negative.  A crucial 

step to prevent clogging of the cannula was to flush the line with 50% moxifloxacin HCI 

ophthalmic solution (Vigamox, Alcon, Fort Worth, TX) daily during the first 3 post-operatory 

days. Fluid flow through the line, otherwise not present when measuring IOP, prevented tissue 

from adhering to the inside of the tube. After this period, physiological healing processes cease 

and fibrotic growth is less likely. Vigamox also prevented bacterial formation in the line. The 

positioning of the sensor facilitated flushing of the cannula and the whole procedure lasted just a 

couple of minutes with the animal under isoflurane anesthesia. After the flushing procedure was 

implemented, stable, long-term measurements were achieved in most animals.  

Figures 5.5A and 5.5C show the IOP record of two rats for 4 and 8 weeks, respectively. 

In the first one, IOP fluctuated between 9.3 and 26.6 mmHg with a mean level of 16.5 ± 2.7 

mmHg throughout the experiment. The second rat showed IOP values ranging from 11.9 to 25.9 

mmHg with a mean value of 17.7 ± 1.8 mmHg. The IOP values read by the sensor were 

compared with tonometry data in both animals. The first animal (figures 5.5B) showed a mean 

IOP level of 18.46 ± 4.20 mmHg when measured with the Tono-Pen. On the other hand, the 

second rat (5.5D) had a mean IOP value of 19.40 ± 3.68 mmHg when using this method. The 

variability of IOP obtained via tonometry was much greater than that seen with the implantable 

sensor, even more so when normalizing data based on the time of day. Figure 5.6 shows a 1 hour 

record of IOP measured on a rat between 12:00 and 1:00 pm (a similar time of day in which 

tonometry data was acquired). Data shows a smooth pressure profile with a variability of ± 0.53 
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mmHg. The average variability in this animal between noon and 1pm across several days was 

±0.42 mmHg (n=6). While tonometry measurements often yield variability values > 7mmHg (± 

3.5 mmHg, figure 5.5), data demonstrates that the implantable sensor presented in this document 

offers a greatly more precise alternative.  

 

 
 

Figure 5.5 Long-term IOP measurements in live rats. (A, C) IOP measured with implantable 

sensor for 4 and 8 weeks in rats j26 and rat j22, respectively. IOP had values of 16.5 ± 2.7 

mmHg (j26) and 17.7 ± 1.8mmHg (j22). Data was averaged in 10 minutes blocks. (B ,D) IOP 

measured by tonometry in rats j26 and j22. Black dots correspond to the implanted eye, while 

white dots illustrate the control (non-implanted) eye. Each data point is the average of 10 

tonometer measurements. Data showed a mean value of 18.46 ± 4.20 mmHg (j26) and 19.40 ± 

3.68 mmHg (j22).  
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The effect of corneal applanation during tonometry on IOP was also explored. A rat 

implanted with our sensor was placed under isoflurane anesthesia and fixed on a heating pad to 

maintain body temperature. Once IOP readings were stable, tonometric readings were taken on 

the implanted eye. Figure 5.7 shows two IOP records obtained using this procedure. Red dots 

indicate tonometer data points (corneal tapping), while the black line indicates IOP measured by 

the sensor. In both cases, IOP rose considerably after the procedure began. Similar results have 

been reported in rabbits (McLaren, 1996). The length of experiments using tonometry can vary. 

In the first rat (left), 10 measurements were taken in approximately 3 minutes causing and 

elevation of around 4mmHg. In the second rat, the experiment lasted around 7 minutes and only 

6 measurements were obtained. The change in pressure was 8mmHg in this animal. The non-

systematic procedure makes it impossible to estimate how much IOP will vary every time. The 

results indicate that, although tonometers can be useful due to their non-invasiveness, they lack 
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Figure 5.6 One hour IOP record of a rat. To recreate tonometric measurements conditions, data 

was obtained between 12:00 and 1:00pm using the implantable sensor on rat j26. Data was 

averaged every minute. Over this period, data oscillated around 15mmHg, with a variability of 

±0.53 mmHg. 
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precision and can create unwanted pressure increases during the procedure which may further 

compromise the accuracy of the data. 

 

 

Circadian rhythms of IOP were present in most animals a couple of days post-surgery. 

Figure 5.8A shows a 24 hour IOP record of an implanted eye averaged every minute. During the 

light portion of the cycle, IOP had a mean level of 15.77 ±1.47 mmHg. Once the lights were 

turned off, IOP gradually increased and remained elevated through the night, exhibiting a mean 

pressure value of 19.91 ± 2.01 mmHg in this stage. Moreover, figure 5.8B illustrates the hourly 

averages of IOP for six consecutive days in this animal. IOP elevation patterns during periods of 

darkness were consistent from day to day, showing peak IOP values between 3 and 4 hours 

following the beginning of the dark cycle. IOP reached its lowest daily values between 4 and 6 

hours after the lights were restored. The difference between IOP levels during the light and dark 

cycles across multiple animals was 5.02 ± 0.75 mmHg (n=5, figure 5.8C). These results are 

Figure 5.7 Effect of tonometry on IOP. Pressure was measured in two animas using both 

tonometry and the implantable sensor simultaneously while under isoflurane anesthesia. Core 

temperature was maintained at 37°C using a heating pad. Red dots indicate a single tonometer 

measurement. Solid black line indicated IOP measured via the implantable sensor. Dashed lines 

mark the beginning and end of tonometry measurements. In both cases IOP rose from its original 

baseline after tonometry started and decreased once it ended. 
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consistent with previously reported light-induced IOP cycles in mice (Li, 2008) and rabbits 

(McLaren, 1996), showing that our sensor is able to detect physiological changes in pressure.       

 

  

5.5.3 Temperature Measurements 

Another benefit of our sensor is its ability to record temperature. Body temperature is an 

important physiological indicator of health and plays a significant role in IOP homeostasis. 

However, since the device is placed on the back of the rat, and not subcutaneously, the 

temperature read by the sensor’s chip does not directly correspond to body temperature. The 

relationship between chip and core temperatures was explored by placing a heating blanket under 

an anesthetized rat and varying its settings while monitoring the animal’s status with a rectal 

thermometer and the implantable sensor simultaneously. Figure 5.9 shows the temperature 

calibration of 3 sensors using linear regression analysis. The mean slope of the curves was 1.39 ± 

0.059 with an offset of -4.77 ± 2.16. The linearity of every curve allows the user to estimate body 
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Figure 5.8 Circadian rhythm of IOP in awake rats. (A) 24 hour IOP record of rat j26. Data was 

averaged every minute. During the light cycle IOP: 15.77 ±1.47 mmHg. Dark cycle IOP: 19.91 ± 

2.01 mmHg. (B) Hourly IOP average of 6 consecutive days of animal j26. (C) Day vs. night IOP 

of 5 different animals. Average difference in dark vs light IOP was 5.02 ± 0.75. 
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temperature based on the chip’s temperature. While the slopes did not considerably differ 

between sensors, the offsets presented greater variability, probably due to slight differences in 

sensor placement and fitting of the vest across animals. Although this conversion may not yield 

absolute temperatures in every animal, the similarity in slopes indicates that relative variations in 

body temperature can be obtained. More exact pressure records for a particular rat could be 

obtained by calculating the mean temperature of an implanted sensor over time and setting it 

equal to a mean body temperature of 37°C. Since the curve’s slope does not change, it is possible 

to solve for the offset of that particular sensor, which provides a complete calibration curve. For 

instance, if a sensor reads an average of 30°C while the animal is awake, setting this 

equal to a body temperature of 37°C and using a slope of 1.39, the offset of the sensor 

comes out to be   -4.7 °C. 

Temperature fluctuations had a noticeable effect on IOP. Figure 5.10A shows an 

experiment in which an implanted animal was placed under isoflurane anesthesia while its 

temperature was varied using a heating blanket. In the first stage, the animal was awake and IOP 

oscillated around 14mmHg, with temperature readings at 37.6 °C. After anesthesia was induced 

(first dashed line), core temperature dropped to 36.3 °C while IOP levels decreased to 

9.50mmHg. When a heating pad (HP) was placed under the animal (second dashed line), body 

temperature rose to its original awake level but IOP remained low. However, when a small 

heating pad was place on top of the implanted eye (EP), IOP quickly rose to ~13.5mmHg. To 

serve as a control experiment, the same procedure was repeated in a rat in which the cannula had 

been pulled out of the anterior chamber and was exposed to atmospheric pressure (figure 5.10B). 

In this case, pressure readings had a mean value of -0.71 ± 0.60 mmHg with the animal on the 

core heating pad only and 0.46 ± 0.78mmHg when both pads were on. Although pressure 
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readings experienced an increase of ~1mmHg when the eye pad was used, the same action 

resulted in a 4mmHg IOP in the implanted animal. Pressure increase in the control experiment 

may be due to heating of the fluid line or a small electronic response to the heating source. Such 

device-dependent fluctuation should be further characterized and taken into account when 

performing future research. Commonly used anesthetic agents have been reported to have a 

lowering effect on intraocular pressure (Jia, 2000).  To our knowledge, however, the effects of 

ocular temperature on IOP while under anesthesia have not been explored.  These results are 

preliminary and further experimentation is necessary to draw definitive physiological 

conclusions. Nevertheless, the data shows the added value of the system when providing 

temperature data and its relationship to IOP, which could be an important research tool.   
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Figure 5.9 Sensor temperature vs. body temperature. Body temperature of 3 implanted animals 

was varied using a heating blanket, while core temperature was monitored using a rectal 

thermometer and sensor temperature was transmitted wirelessly to a computer. Data was fitted to 

the signal f(x) = f0 +ax. Regression analysis showed that all sensors presented a slope of ~1.39, 

but offsets varied between devices.  
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5.6 Discussion 

In this chapter we presented the development of an implantable sensor to continuously 

monitor intraocular pressure in rats. IOP remains one of the most studied factors in glaucoma 

research, but as has been discussed throughout this manuscript, fully integrated commercial 

sensors present several limitations. Our device was designed specifically for glaucoma 

applications and aims to provide the researcher with the most accurate and reliable IOP data. 

Commonly used IOP sensors present accuracy levels of ± 3 mmHg (McLaren, 1996), which in 

most cases is problematic when compared to normal IOP values ranging between 12-22mmHg. 

Sensors with better accuracy levels are available (Downs, 2011) but their size limits their use to 

*A: isoflurane anesthesia; HP: heat pad; EP: eye pad.  

 

Figure 5.10 Temperature effects on IOP. (A) Body temperature determined based on sensor 

temperature of a rat (top). IOP record of an implanted rat before and after anesthesia (bottom). 

Dashed lines indicate a change in anesthesia or heating of the animal. IOP was at 14mmHg while 

awake and decreased to 9.5mmHg with anesthesia. IOP remained low until a warming eye pad 

was used. (B) Control experiment. Animal was implanted but the cannula was pulled out of the 

eye. Temperature effects on pressure readings were diminished.  
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higher order animals. Our system presents accuracy levels of ± 0.2mmHg when implanted in a 

rat eye.  Similarly, other systems are subjected to electronically induced pressure drifts ranging 

from 2 (Akaishi, 2005; McLaren, 1996) to 17mmHg/month (Downs, 2011), which may require 

recurrent and invasive calibrations procedures. The special voltage-regulating circuitry we 

employ prevents such drifts from occurring, keeping the sensor’s performance stable and 

comparable to a line-powered sensor (figures 19A and 19B). The installation of our device in a 

wearable vest makes the sensor easily accessible to the user and allows for simple 

troubleshooting and battery replacement, which extends the operational lifetime of the device to 

meet the needs of the researcher. Moreover, the system’s circuitry is equipped with a second 

pressure sensor which can be used to record other physiological parameters (e.g. blood or 

intracranial pressure) simultaneously. Table 5.2 compares the characteristics of the implantable 

sensor to that of other available technologies. In all, we believe that our sensor is the most 

complete IOP sensor ever designed for use in rats.  

Feature Our Sensor DSI Konigsberg Implant Data Tonometer 

Accuracy (mmHg) ± 0.27 ± 3 ± 0.5 ± 0.81 ± 3.94 

Drift 

(mmHg/month) 

0.07 2-5 6-17 0-2 N/A 

Temperature Yes No Yes No No 

Volume (cc) 6.25 4.5 70 N/A** N/A 

Multi-channel 

Sensing 

Yes No Yes No No 

Transmission 

Distance 

500cm 45 cm 300cm 5cm* N/A 

Animal Feasibility 

(size) 

Rodents, rabbits, 

monkeys 

Rodents, 

rabbits, 

monkeys 

Monkeys Rabbit, 

monkeys 

Any 

* requires an operator; ** system is inside the eye  

Table 5.2 Implantable Sensor vs. Other Technologies 
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5.6.1 Current Limitations of the Technology 

To ensure the proper functioning of the implantable sensor some issues must be 

considered. The most common cause of system failure is clogging of the cannula tip due to 

bacterial or fibrotic growth. Although such complications can be prevented, special care must be 

taken in maintaining aseptic condition during implantation. Additionally, flushing of the cannula 

in consecutive post-operatory days is crucial to preserve the cannula’s integrity over time. 

Additional actions are sometimes required to replace the wearable vest when significant signs of 

wear-and-tear appear. Switching vests can be done under isoflurane anesthesia and does not 

affect the functioning of the sensor. Placement of the sensing elements in the back of the animal 

creates a small hydrostatic pressure difference between the transducer and the eye. This error can 

be corrected during calibration, but movement of the animal’s head can create acute pressure 

changes. The protective spring that surrounds the connecting tubing diminishes the amplitude of 

these changes. However, natural IOP variations are greater than those seen by just tubing 

dynamics (figure 5.4B), which ensures the validity of the data. Lastly, implementation of the 

implantable sensor in bigger animals, in which the use of the vest is not viable, may require a 

redesign of the attachment elements and sensor placement.   
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CHAPTER 6: WIRELESS POWERING OF MOVING BIOLOGICAL SENSORS 

 

6.1 Introduction 

Telemetry has been become vastly popular in the medical field as a tool to wirelessly 

monitor or alter physiological functions. Its implementation extends from hospital patient 

monitoring, to clinical treatments and research applications. Implantable biomedical devices 

have been reported in areas such as: pacemakers (Wong, 2004), hearing aids (Kin, 2006; 

Neuteboom, 1997), intraocular pressure measurement (Downs 2011; McLaren, 1996) and body 

area examination (Gyselinckx , 2005), among others. However, most biomedical sensor nodes 

available today operate with batteries, which presents substantial drawbacks. Firstly, they add 

significant size and weight to the overall system, which in most cases are critical requirements.  

Secondly, the lifetime of the device depends on the capacity of the battery and can severely limit 

their usage. Lastly, when lacking electronic compensation, battery drainage can result in 

electronic artifacts that compromise data reliability (Downs 2011; McLaren, 1996). These 

limitations can diminish the effectiveness of the systems and, in some cases, hinder technological 

and medical advances. 

To overcome the limitations of battery-powered devices, research efforts have shifted 

towards developing self-powering telemetry. Energy harvesting technology has been used to 

transduce optical (Paradiso, 2005), vibrational (Amirtharajah, 2000; Roundy, 2005), 

thermoelectric (Leonov, 2007), piezoelectric (Xu, 2010), glucose (Chaudhuri, 2003; Rapoport, 

2012) and bio-potential (Mercier, 2012) energy into usable power. In most cases, these methods 
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are application-specific and generate low power densities. Alternatively, several others have 

employed near-field inducting coupling techniques to power their devices (Leonardi, 2009; 

Wang, 2006; Weiland, 2004; Wu, 2008). This approach works by using an external coil to 

induce a magnetic field that transfers energy to a built-in receiver. Electromagnetic coupling is 

highly useful in compliant patients, but can be hard to implement on animal research due to 

range limitations between the transmitting and receiving coils. Additionally, magnetic coupling 

often requires and operator to obtain measurements, which impedes around-the-clock data 

collection (Leonardi, 2009; Todani, 2011). 

This chapter focuses on the development and implementation of a novel system to 

wirelessly power biomedical devices in a moving animal. The system employs radio frequency 

(RF) energy transfer to generate and maintain high power levels regardless of animal movements 

and positioning. The powering system was integrated into the implantable sensor described in 

chapter 6, enhancing its research applications even further.   Data is presented on: i) stability, ii) 

power reception and iii) the ability of the system to maintain energy over time. 

6.2 System Overview 

The wireless powering system consists of: i) a radio frequency (RF) energy harvester,   ii) 

an energy storage unit, iii) a battery monitor, iv) a voltage regulator and v) a custom power 

antenna. These components are integrated with the microcontroller, sensors and data 

transmission module described in chapter 5 (figure 6.1A). Two RF transmitters (TX91501, 

1Watt at 915MHz, Powercast, Pittsburg, PA) are strategically placed orthogonal to each other on 

top of the animal’s cage to serve as a remote power source. The RF waves emitted by the 

transmitters are collected by the specially designed power antenna, and converted to a DC 

voltage using the energy harvester (RFD102, RF Diagnostics LLC, Albany, NY). The custom 
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shape of the antenna and the arrangement of the transmitters allow the system to collect adequate 

amounts of energy at all times, regardless of the positioning and movement of the animal. The 

resulting DC voltage is redirected to the energy storage unit, where special circuitry regulates the 

amount of voltage delivered to the rest of the system, maintaining a constant 3V power supply. 

The same sleep/active alternating cycle described in chapter 5 is used for this version of the 

device. During active mode circuitry becomes active, IOP data is collected and transmitted along 

with the system’s temperature and the voltage level currently stored in the system (sampled by 

the battery monitor). The receiver displays and stores collected data using a custom Labview 

program (figure 6.1B).  

 

 

Figure 6.1 Wireless powering system. (A) Block diagram of the device. RF waves are collected 

with a power antenna and transduced to a DC voltage using an energy harvester. An energy 

storage unit maintains energy levels and regulates supplied voltage. IOP data is collected and 

amplified, along with temperature readings, before being digitized by the microcontroller. Data 

is transmitted wirelessly using Bluetooth technology. (B) System set-up. The powering and 

telemetric systems are worn by the rat. Two RF transmitters set at 1W and 915MHz are placed 

orthogonal to each other on top of the animal’s cage. A single receiver can synchronize with up 

to 8 telemetric systems at a time. Data is displayed and stored in a PC.  
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6.3 Electronic Description 

Figure 6.2 shows the schematics of the wirelessly-powered telemetric system. The system 

is equipped with i) wireless power transmission circuitry. ii) a microprocessor. iii) pressure and 

temperature sensing elements. All components were carefully selected or customized in order to 

provide high accuracy, low power consumption and operate with a single power supply. The 

following section covers the function of each component individually. 

 

 

 

Figure 6.2 Electronic schematics of the wirelessly powered IOP sensor. A specially designed 

dipole antenna collects RF waves at 915MHz. Energy is converted to DC using a harvester, 

stored in two supercapacitors and linearly regulated to 3V. The microcontroller is digitally 

programmed to activate one or two pressure sensors in a smart cycle. A battery monitor 

continuously samples the amount of energy stored in the supercapacitors. Pressure signals are 

amplified x1000. IOP and temperature data are wirelessly transmitted using low power 

Bluetooth. 
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6.3.1 Wireless Power Transmission 

6.3.1.1 RF-DC Converter 

The energy harvester (RFD102A, RF Diagnostics LLC, Niskayuna,NY) is a small unit 

capable of turning RF waves ranging from 60Hz to 6GHz into a DC voltage. A 915MHz power 

signal was selected in this application due to increased efficiency of the module at this 

frequency. Optimization tests for matching network values were performed using specialized 

software (Advanced Design System, Keysight Tech., Santa Rosa, CA), but the results yielded 

output values similar to that of the stand-alone harvester (data not shown). The lack of a 

matching network reduces the number of components and overall size of the PCB. Additionally, 

operation in the 915MHz band prevents interference with the data transmission frequency 

(2.4GHz) due to the overall difference in wavelength between the two. According to the 

manufacturer, the harvester is able to deliver up to 18mA and offers a 53% peak efficiency when 

the input power reaches 11dBm or higher. The input power should be kept under 32dBm for 

reliable operation. For optimal performance, the harvester is paired with a Schottky diode, a 

custom-designed dipole antenna and stimulated using two RF transmitters. 

6.3.1.2 Schottky Diode 

 The diode is connected between the DC output of the RF-module and the voltage 

regulator. The schottky diode (PMEG2005AEA, 115, NPX Semiconductor, Netherlands) is 

designed to increase efficiency and counts with a low forward voltage of 150mV, which allows 

for most of the voltage generated by the RF-DC converter to be stored. Under ideal conditions all 

energy stored in the capacitor would remain there until it is needed. However, under real 

conditions, current could flow backwards, enter the RF-DC module and dissipate energy through 
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the reverse leakage resistance present in most electronic components. The diode acts as a switch 

that prevents current from flowing towards the harvester, thus avoiding any losses. 

6.3.1.3 Power Receiving Antenna 

The antenna is a custom-designed, half-wavelength, dipole that attaches directly to the 

input and ground pins of the harvester. The antenna is made with a coated, thin copper wire. 

Each leg of the dipole must be precisely cut to match the receiving frequency following the 

equation: 

𝜆 =
𝑐

𝑓
 

where λ is the wavelength, c is the speed of light and f is the desired frequency. For a half 

wavelength antenna, each leg must be 8.2cm long. Further trimming of the legs to achieve a 

length of 0.48λ creates a fully resistive antenna with an impedance of 70Ω, which increases 

efficiency. The antenna works best when it is completely straight and aligned with the RF field. 

The length of the poles, however, creates a challenge for implantation. In most biological 

applications, an 8.2cm long straight wire is not suitable to be placed subcutaneously and leaving 

the wire exposed can lead to unwanted bending of the antenna that could disrupt energy 

reception or overall damage of the wire. Therefore, a second challenge is presented when the 

shape of the poles is modified to allow them to fit within the dimensions of the system. In order 

to secure the antenna to the animal, a custom vest was designed to fit tightly around the back and 

chest of the animal. An innovative 3D architecture pattern (figure 6.3A) was developed to bend 

the antenna in such a way that it creates maximum alignment of sections of the antenna with the 

two RF fields being generated by the transmitters, while staying within the confines of the vest. 

The antenna connects to the rest of the circuitry, encased in a small plastic box that attaches 

firmly to the vest (figure 6.3B). From there, there are routed out of the box and embedded within 



85 

the fabric of the vest in order to protect it from contact and maintain the original shape. 

Originally the antenna was simulated using ADS, but an experimentally based design was 

necessary due to the software’s inability to simulate the animal’s presence, which greatly affects 

the antenna’s performance. Other antenna patterns are possible, however the one presented here 

generated outstanding results. 

 

 

 

Figure 6.3 Power antenna design. (A) Antenna architecture. Top view of the antenna (left). 3D 

diagram of the antenna and circuitry box (right). (B) Antenna placement in the animal’s vest. 

The telemetric system is attached to the vest using Velcro (left) and the antenna is embedded 

within the fabric of the vest (right). 
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6.3.1.4 RF Transmitters  

 Two RF transmitters (TX91501, Powercast, Pittsburg, PA) are placed, orthogonal to each 

other, on top of the animal cage. The transmitters operate with a fixed output of 1W (30dBm) at 

915MHz.  Each transmitter has dimensions of 6.75x6.25x1.63 inches, occupying approximately 

half of the rat’s cage. The orthogonal positioning ensures that there is an energy field oriented 

along the width and the length of the cage at all times, which maximizes the alignment 

opportunities between the antenna and the field, this increasing power reception. The transmitters 

are approved by the Federal Communications Commission (FCC) and are equipped with a 

proximity detection system. If at any point the animal is at within harmful distance from the 

transmitter (e.g. while feeding or exploring roof of the cage), power output is momentarily 

paused until the animal returns to a safe distance. This instances are few, if any, at the 

dimensions employed in our cages, and guarantee the safety of the animal regarding energy 

radiation.  

6.3.1.5 Energy Storage Unit 

After energy is collected and transformed into a DC voltage it must be stored and 

regulated to drive the rest of the electronics. The unit consists of two super capacitors and a 

linear voltage regulator (figure 6.2) .The first supercapacitor, C1, serves to store most of the 

voltage generated by the harvester so that is it available for the active cycle of the system. It has 

a capacitance of 0.47F, an internal resistance of 50Ω and a voltage rating of 5.5V. The large 

capacitance in combination with the small leakage resistance allows the system to store charge 

for long periods of time. Smart circuitry adjusts the power consumption of the system to regulate 

the voltage across C1 to a maximum of 85% of its rating capacity, as discussed later in this 

chapter, in order to extend the life of the capacitor. The linear voltage regulator (LVR) serves to 
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rectify the supply voltage delivered to the microprocessor, which ensures data accuracy and 

eliminates electronically induced drifts in the pressure records. When the VC1 > 3V, the LVR 

outputs a constant 3V signal. For the system to operate effectively, the voltage across VC1 must 

be kept above 3V. The LVR has a low drop out voltage of 10mV and can output a currents up to 

100mA. The second super capacitor, C2, serves to stabilize the output signal of the LVR, 

eliminating noise created by voltage fluctuations in the first capacitor. C2 has a capacitance of 

0.33F and an internal resistance of 20Ω. 

6.3.2 Microcontroller 

The same microprocessor described in chapter 5 is used in this instantiation of the device. 

Once again the system is run in alternating active/sleep mode cycles. During sleep mode, all 

sensors and amplifiers are turned off and the stand-by current consumption of the device is 

decreased to 4µA, allowing for most of the energy harvested to be stored. During the active 

cycle, the controller uses one of its GPIOs to output an analog voltage that turns the sensors and 

amplifiers ON, data is then collected and transmitted wirelessly to a nearby computer. To further 

ensure data accuracy, the active cycle is split into data collection and data transmission and the 

microcontroller runs the device in a 4 step looping cycle: i) sleep mode ii) data collection iii) 

sleep mode and iv) data transmission. By splitting the active cycle the system avoids large spikes 

in current consumption that could pull the system’s voltage below the lower operating threshold 

of 3V.  

Additionally, the microprocessor runs the telemetric system in a smart power cycle, 

which uses the information provided by the battery monitor to automatically adapt the data 

sampling rate according to the amount of energy available. When VC1 ≤ 3V, the system goes into 

continuous sleep mode, preventing the device from falling below operating levels. When 3.1> 
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VC1 ≥ 4.5V the system samples IOP at a low frequency (e.g. 1 data point every 4 seconds). 

Finally, when VC1 = 4.5V, the system continuously samples IOP at 250Hz for 10 seconds. Each 

high frequency reading decreases VC1 by approximately 100mV, ensuring that VC1 never goes 

above 4.5V (approximately 85% of the maximum voltage rating of VC1). Maintaining the 

capacitor’s voltage below 85% of maximum capacity at all times extends its operating life and 

avoids overcharging that can damage the unit. The sampling rates as well as the unused GPIO 

ports are fully programmable and can be adapted depending on the application. The data receiver 

consists of a second identical microcontroller connected to a computer via a USB port. After the 

receiver collects the wirelessly sent data, it prints the low frequency information to the serial port 

of the computer, where it is read, plotted and stored by a custom-written LabVIEW program. The 

high frequency data is saved to a microSD memory card stacked to the receiver. High frequency 

data is not printed to the serial port to avoid data losses due to timing discrepancies (data is 

received faster than data is printed). A receiver must always be present to ensure system 

operation. If at any point the receiver is disconnected or absent, handshaking protocols are 

disrupted and the sensor is unable to regulate power consumption, causing the voltage stored in 

the system to deplete rapidly. 

6.3.3 Code 

The data transmission and reception codes were written in C++ and loaded into the 

microprocessors using a stack-up USB module and an open source prototyping software 

(Arduino, Italy).  The sensor and receiver communicate wirelessly via Bluetooth using a wireless 

transmission protocol (Gazelle, Nordic Semiconductor, Norway). An especial library 

(RFduinoGZLL.h) is loaded into the code to allow protocol implementation. Data is transmitted 

following two different protocols: i) low-frequency information is sent using a single packet of 
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data. An especial structure (struct) is defined using 12 bytes. As IOP, voltage levels and 

temperature are sampled, they are assigned to a section of the struct. ii) high-frequency data are 

sent byte-by-byte when available. On the transmitter side, the code begins by turning the system 

ON and sampling the voltage level stored in the supercapacitor. If the voltage is < 3.2V, the 

sensor sends a low-power flag (lp, 2 bytes) to notify the user that energy is scarce and enters into 

sleep mode for 4 seconds. The process is then repeated. Otherwise, if voltage is between 3.2 and 

4.5V, 20 IOP data points are collected at 50Hz and its sum is calculated (average is calculated at 

the receiver to optimize transmission speed). IOP sum, temperature, voltage stored and the 

device’s ID are then sent in a single packet, as previously described. Else, if voltage levels are 

>4.5V, a high frequency flag (hf_flag, 7 bytes) notifies the receiver that single byte data will 

soon be sent. A 100ms delay is implemented to allow time for the receiver to prepare for high 

frequency data reception. The sensor then samples IOP at 250Hz for 10 seconds. Each data point 

is sent individually.  The number of data points (N_DATA_POINTS) and the delay between 

points can be modified to change the length of data collection and sampling frequency. After 

high frequency is collected all antennas are digitally disabled to avoid battery depletion in case 

of hand-shaking errors. The antennas settings are restored before the next cycle.  

On the receiver end a special library (SPI.h) was coded to allow for optimal data 

processing when collecting high frequency information. This library is different from the 

traditional SPI library included in the coding software, therefore is a new version of Arduino is 

installed the SPI library must be replaced. Similarly, another library (SD.h) is loaded to allow the 

microprocessor to access the external memory. The system uses the length of the data received to 

identify if any flags are present. If the length of data available is 2 bytes, the device identifies it 

as a low power flag and prints a string containing the device’s ID and the notification to the 
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serial port (e.g. Rat:1 LP). A LabVIEW program records the date and time at which the flag was 

received. Conversely, if the data length is 12 bytes, the receiver identifies it as a packet of data 

(low frequency), copies it to the internal memory and prints information to the serial port (e.g. 

rat:1 cap:3.8 iop:300 temp:30). In this case the LabVIEW interfaces computes the average IOP 

and uses the markers (rat, cap, iop and temp) to break the data into substrings that are 

individually plotted and saved into a text file. Otherwise, if data length equals 7 bytes, the system 

closes any open files and creates a new file on the SD memory card. File names are assigned 

based on a counter that increases the file index every cycle (e.g. HF_data_1).  Every time a new 

file is created in the card a bogus “0” is printed to it. This entry initializes the data file and the 

writing algorithm of the microcontroller. Initialization prior to data arrival minimizes data losses 

due to mismatches between the internal clock of the processor and data frequency.  The receiver 

then prints the ID and file name to the serial port where a LabVIEW programs saves the file 

name and time received to a text file. Once the file is created and opened, the receiver prepares 

for byte-by-byte reception. As individual data points arrive they are printed into the SD’s opened 

file. This remains true until the length of data is not equal to 1 byte (a different flag was 

received).  LabVIEW records low power and high frequency flags, with their respective dates 

and times, into a single text file, while low frequency measurements are saved into a different 

text file. To read high frequency data, files must be transferred from the SD card to the computer 

and opened using a byte-reader LabVIEW program.  

6.3.4 Sensing Elements 

6.3.4.1 Pressure Transducer 

The same pressure sensors used in chapter 5 are employed in this system. The printed 

circuit board (PCB) has two 4-pin connections set up for any sensor that operates in a 
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Wheatstone bridge configuration. In cases when only one sensor is necessary (e.g. IOP 

measurements) a single transducer is connected, which makes the system more power efficient. 

The pressure sensors (TBPDANS005PGUCV, Honeywell, Morristown, NJ) are piezoresistive 

strain gauges with a range of 0-250mmHg, an overpressure capacity of 1500mmHg and 

temperature compensation between 0-85 °C. The sensors are powered using a 3V supply and 

draw a nominal 300µA current. The PCB has integrated connections for shunt resistors that 

allow for external biasing of the sensing bridges in order to reduce their offset and maximize data 

resolution.  

6.3.4.2 Differential Amplifiers 

Each sensor is connected to a differential amplifier that maximizes data accuracy and 

resolution. The amplifier selection was based on two main features, the ability to operate using a 

single rail (e.g. single power supply) and low power consumption. The selected op-amp 

(LPV521, Texas Instruments, Dallas, TX) was specially designed for remote sensor nanopower 

applications, consuming 350nA when powered by a single 3V cell. Moreover the amplifier has 

integrated electromagnetic interference (EMI) protection, which attenuates RF noise picked up 

by the PCB and running through the pins of the op-amp. The amplifier attenuates RF waves 

resonating at 900MHz and 2.4GHz by more than 120dB. Since both of these frequencies are 

used for power transfer and data transmission, the EMI rejection properties of the amplifier 

ensure cleaner data. A gain of 1000 was used for data amplification.  

Stored voltages are expected to oscillate between 3.2 and 4.5 V, which is out of the input 

range of the microprocessor (0-3V). The battery monitor consists of a factional amplifier with a 

gain of 0.3. The positive input of the amplifier is connected to the storage supercapacitor (C1), 
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while the negative input is grounded. The output is transmitted and rescaled at the receiver to 

display actual voltage levels. 

6.3.5 Printed Circuit Board (PCB) 

Figure 6.4 shows the especially designed multilayer PCB for implementation of the 

wirelessly powered IOP sensor. The bottom layer (figure 6.4A) provides metal pads for surface 

mount versions of all the necessary components, with the exception of the microprocessor, which 

is located in the top layer. The metal free area marked on the PCB corresponds to the region 

underneath the data transmission antenna, which must be kept free of electronics to ensure 

proper data transfer. The PCB has 2 other middle layers. The first one is fully covered by a 

copper sheet that occupies the whole extent of the PCB (except for the metal free portion) and it 

is used as a floating ground to which all components are referenced. The second one contains 

routing vias for component interconnections.  

Components were reflowed in placed using a programmable oven (T962a, Sanvn, China). 

Since the PCB contains components on multiple layers, the reflow process must be done in two 

stages. The bottom layer is assembled before the top layer to avoid double heating of the 

microprocessor. In order to avoid component detachment during the second round of reflow, two 

different soldering pastes are used. The first one, used in the bottom layer, has a melting 

temperature of 250°C. The second one liquefies at 160°C. In each case, the oven is programmed 

to follow the reflow profile of each paste. Figure 6.4B shows a picture of the assembled PCB.  

The sensor is manually soldered to the pins located on the side of the board.  The supercapacitors 

and antenna pins are positioned on the upper side of the bottom layer (figure 6.4A). In cases of 

high energy reception (>25dBm) an RF diode can be placed in the metal pads between the 

antenna pins to limit the amount of RF energy that enters the harvester.   
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6.4 Materials and Methods 

6.4.1 Characterization of the Wireless Powering Technology 

Similarly to the procedure described in chapters 3 and 5, a hydrostatic source was used to 

apply constant pressure to the sensor in order to assess the existence of artificial pressure drifts 

while the sensor was wirelessly powered. The system was fixed ~15cm away from an RF 

transmitter while pressure and energy stored in the unit were recorded. Once again fluid levels 

were maintained constant throughout the experiment. Drifts in data were calculated by linear 

regression and compared to the results obtained when the sensor was powered by a battery or 

Figure 6.4 Printed circuit board of the telemetric system. (A) Unassembled bottom layer of the 

PCB. It includes all elements except for the microprocessor and Bluetooth module. Sensors and 

capacitors are manually soldered to the indicated pins. Programming pins are used to load digital 

algorithm to the microcontroller. (B) Assembled picture of the bottom (left) and top (right) layers 

of the PCB. Elements at set in place under a microscope and reflowed using a specialized oven. 
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line voltage. The ability of the system to collect energy in different locations and positions within 

the cage was evaluated by mapping power reception inside the cage and its surroundings. The 

system was mounted on a cadaver rat to recreate actual operating conditions.  A 60x60cm work 

area was divided into 36 squares of 10x10cm, the two transmitters were placed in the center of 

the grid, first at a height of 60 cm and then at 20cm.  The telemetric system was moved along the 

grid, rotating the animal until a full revolution was completed at each location. The power 

received by the antenna was monitored using a portable spectrum analyzer (N9915A, Agilent 

Technologies, Santa Clara, CA).  The maximum and minimum power received at each location 

were recorded. 

6.4.2 Performance of the System in Awake Animals 

The ability of the system to continuously power the sensor was evaluated in 3 awake rats 

for 7-15 days. The sensor was exposed to atmospheric pressure for the duration of the 

experiment. The average of 20 pressure points sampled at 50Hz were transmitted every 4 

seconds with occasional transmissions of data sampled at 250Hz for 10 seconds. Each data 

transmission also included temperature and voltage stage stored readings.  

6.4.3 Animal Housing and Training 

Animals were kept in adapted plastic cages that featured an all-plastic feeding rack and 

water bottle (RS1-H, Innovive Inc. San Diego, CA). Standard metal feeding racks would cause 

reflection of the RF signal and impede wireless powering.  

6.4.4 Data Analysis 

Statistical significance was assessed by a two-sample t-test with an alpha level of 0.05 

using SigmaPlot software. Results are expressed in terms of mean ± standard deviation. 
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6.5 Results 

Repeating the experiments conducted in chapters 3 and 5, electronic drifts were assessed 

by hydrostatic pressure exertion. Figure 6.5A shows the pressure recorded by a sensor exposed to 

40mmHg for 90 days, while powered by a constant 3V line voltage. Regression data showed an 

average slope of -0.01 ± 0.046 mmHg/ week (n=3). Figure 6.5B illustrates the same process 

while powering the sensor with the battery regulated technology outlined in chapter 5. Data was 

obtained every 4 seconds. As previously discussed, the experiment presented a regression slope 

of 0.01 ± 0.024 mmHg/week (n=3).  At this sampling rate the average battery life was 28 ± 2.65 

days (n=3). Lastly, figure 6.5C shows a plot of a wirelessly powered sensor exposed to 40mmHg 

for 90 days. In this case data was again collected every four seconds. Regression analysis yielded 

a slope of 0.0021 ± 0.001 mmHg/week (n=3). The data indicated that the wirelessly powered 

sensor presented negligible drift over 90 days, not significantly different from line powered 

(p=0.672) or battery regulated (p=0.599) pressure sensors.  However, the system did offer 

substantially longer operational lifetime than a battery powered version of the sensor (figure 

6.5B) while avoiding the wiring of the line powered device. 

The key to avoiding drift artifacts lies in harvesting more energy than the sensor 

consumes at any point in time. Figure 6.6 shows the power received by a static antenna when 

located ~15cm directly below the source. When the antenna is perfectly aligned with the RF 

field, the power received is 13.43dBm (22mW) at a center frequency of 914.8MHz. On the other 

hand, the sensor consumes ~12mW while active (data collection and transmission) and just 

12µW during sleep mode (figure 6.7).  This is equal to 1.7 mJ of energy consumption during 

every active cycle. The static harvester can generate 8.8mJ over the same period of time. This 

surplus of energy is what allows system to maintain voltage levels well above minimum levels, 
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yielding stable pressure records (figure 6.5C). Under these conditions (fixed and aligned), the 

system could power the sensor continuously without the need of a sleep mode.  

 
 

 

 
 

Figure 6.5 Pressure drift assessment of wirelessly powered sensor. (A) Hydrostatic pressure 

signal recorded using a line powered sensor. Data was fit to the line f(x) = 40.1 – 0.0014x. (B) 

Hydrostatic signal obtained using the battery regulated implantable sensor described in chapter 5. 

Regression yielded the equation f(x) = 40.05 + 0.0014x (C) Constant pressure signal measured 

using wirelessly powered sensor. Regression of this experiment revealed a fit 

f(x)=40.43+0.0003x. The wirelessly powered performed as well as the battery and line powered 

sensors but offers increased operational lifetime and full implantation. 

Figure 6.6 Antenna power reception. Power levels were monitored and recorded using a portable 

spectrum analyzer. When aligned with the RF field, and located at a distance of 15cm from the 

transmitter, the antenna receives 13.43dBm (22mW) of power at a center frequency of 915MHz.  

A B C 
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While the system is able to easily power a static sensor, a moving device presents 

additional challenges. The presence of the rat can attenuate power reception as animal tissue can 

absorb RF waves, reducing their availability. Moreover, animal movements along the length and 

width of the cage continuously alter antenna alignment, which plays a major role in power 

reception. Power distribution was tested by dividing the cage and its surroundings in blocks and 

moving an animal wearing the system along the grid, while recording the antenna’s reception. 
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Figure 6.7 System’s current consumption profile. (A) Data collection, data transmission split 

cycle. The device enters sleep mode between data collection and data transmission actions to 

avoid large current draws that may drop the capacitor’s voltage below the operating thresholds. 

(B) Current consumption during data collection. 20 IOP data points are collected at 50Hz. Each 

data point draws approximately 4.2mA. Current consumption drops to 0.5mA in between data 

points. (C) Current consumption during data transmission. Bluetooth connectivity draws a steady 

4.3mA for 30ms. 
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Figure 6.8A shows the minimum power detected at each location when the transmitters are 

located 60cm away from the bottom of the cage. Power levels under these conditions varied 

between 0.150 and 1.5mW. Conversely, the maximum power levels at this distance (figure 6.8B) 

ranged from 0.5 to 5mW. The weakest points were located in the surroundings of the cage, while 

the strongest energy locations corresponded to instances directly underneath the transmitters, 

where the animal’s cage is located (black square).  Figures 6.8C and 6.8D show the minimum 

and maximum power reception when the distance between the transmitters and the bottom of the 

cage is reduced to 20cm. Under these conditions, the antenna received minimum power levels 

between 1 and 4.5mW and maximum ratings ranging from 2.5 to12mW within the dimensions of 

the cage. 

 Based on these results, our system must be placed within 20cm of the RF- transmitters in 

order to ensure continued operation of the sensors. While the 60 cm separation between the 

transmitting and receiving antennas may not be adequate to run the system at the sampling rates 

proposed in this study, the power reception attained at this distance is comparable to previously 

reported wirelessly powered sensors (Ho, 2014). This distance may be suitable for research in 

which slower sampling rates can be used or for adaptation to sensors with a lesser power 

demand.  Animal movements and positioning are unpredictable, which makes it impossible to 

determine the minimum sampling rate at which the sensor would operate continuously. 

Nevertheless, based on the minimum power reception at a distance of 20cm, obtaining a data 

point every 2.5 seconds (minimum of ~2.5mJ harvested) should provide the sensor unlimited 

battery life. The smart power cycle programmed into the device will increase the sampling rate 

when high energy levels are available and decrease it when the animal is located in a reduced 

energy location.  
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Further testing of the system’s ability to continuously record pressure while wirelessly 

powered was performed by monitoring the voltage stored in a device implanted in a fully awake 

rat. Pressure data was recorded every 4 seconds while voltage levels oscillated between 3.2 and 

4.5V and at a rate of 250Hz when they exceeded 4.5V. If at any point voltage levels drop below 

3.2V, the system sends a low-power notification to the computer and enters in sleep mode 

configuration until energy levels once again surpass this lower threshold. During sleep mode no 

 
 

Figure 6.8 Power availability around a rat’s cage. Black square represents the cages location in 

every figure. Measurements were taken with system mounted on a dead rat using a network 

analyzer. (A) Minimum power levels when sensor is located 60cm away from the RF source. 

Power levels ranged from 0.150 and 1.5mW. (B) Maximum power levels when sensor is located 

60cm away from the RF source. Power levels ranged from0.5 to 5mW (C) When distance is 

reduced to 20 cm, minimum power levels increased to 1- 4.5mW. (D) Maximum power levels at 

20 cm ranged between 2.5 and 12mW.   
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data is collected. Figure 6.9A shows a 2 week record of the voltage stored in an implanted 

sensor. The mean voltage level through the two weeks was 4.4 ± 0.06V, never reporting low-

power status during the experiment. On the other hand, the device was able to obtain high-

frequency pressure measurements approximately every 2 minutes, on average. This experiment 

was repeated in 2 other animals and the results are summarized in Table 6.1. Only one of the 

tested animals was ever subjected to low energy levels. In this case the average voltage stored in 

the system was 4.3V but two instances of low-power were reported in the course of 1 week. The 

longest time the device stayed under sleep mode operation was 33 minutes. Along with IOP and 

voltage measurements, temperature of the device was also recorded. Figure 6.9B shows a 

comparison between the temperature record of a wirelessly-powered and a battery-powered 

sensor while mounted on an alert animal for 2 weeks. The two records superimposed each other, 

ranging between 29 and 32 °C. The wirelessly powered version of the device exhibited a mean 

temperature of 30.3 ± 0.6°C, while the battery powered prototype showed values of 29.3 ± 0.6 

°C. In a group of 6 rats there was no statistically significant difference between the temperature 

records of battery and wirelessly-powered sensors (p=0.480), which indicates that the use of RF 

microwaves for wireless powering is not causing overheating of the device and should not have 

an effect in the core body temperature of the rat. 

Animal Mean voltage 

level (Volts) 

Low power 

(times/week) 

Maximum down 

time (minutes) 

Ave. time between 

HF data (minutes) 

Max time between HF 

data (minutes) 

Rat 1 4.4 ± 0.06 0 0 1:51 65 

Rat 2 4.3 ± 0.2 2 33 9:56 209 

Rat 3 4.4 ± 0.1 0 0 2:16 43 

 

Table 6.1 Wirelessly Powered Sensor Performance on Awake Rats 
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6.6 Discussion 

Powering of electronics is a major focus of the engineering process that takes place 

during the design phase of biological sensors. Most of the time, data reliability and success of 

experiments depend on a stable power source. While traditional batteries can provide adequate 

results in some cases, they add significant restrictions regarding size, lifetime and electronic 

drifts. Moreover, commonly used powering techniques, such as energy harvesting and 

electromagnetic coupling, often yield low power densities and are subjected to range limitations. 

Figure 6.9 Wirelessly powered sensor performance on an awake rat. (A) Record of the voltage 

stored in the system for 2 weeks while mounted on a fully awake animal. Pressure data was 

obtained every 4 seconds at 50Hz when the voltage stored ranged between 3.1 and 4.49V. 

Additionally, 10 seconds of data were sampled at 250Hz when the voltage stored reached 4.5V. 

The device was programmed to enter sleep mode when voltage levels dropped below 3.1V. For 

14 days the device never entered sleep mode and maintained an average voltage of 4.4 ± 0.06V, 

obtaining high frequency measurements every 1:51 minutes, on average. (B) Temperature record 

of a wirelessly powered sensor (black line) and a battery powered sensor (dotted line) for two 

weeks. The temperature difference between the two was not statistically significant (p=0.480), 

indicating that the presence of the RF transmitter is not causing a rise of body temperature in the 

animal.  

A B 
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This chapter introduces a novel system that allows for the operation of moving biomedical 

sensors without the use of batteries. The device harvests RF waves and transforms them into a 

regulated DC voltage that keeps sensors running continuously while obtaining reliable data. The 

innovative power-antenna design, in combination with specialized circuitry, allows for collection 

and transduction of large amounts of energy, unlike any technology available today. This chapter 

presented the implementation of this technology to run an adaptation of the intraocular pressure 

sensor described in chapter 5.   

6.6.1 Comparison to Existing Technologies 

Remote power transfer has been explored by several research groups, many of which 

have specialized in operating biological sensors. Most of these technologies are based on 

electromagnetic or inductive coupling. When two coils are placed in close proximity to each 

other, energy can be transferred between them. The use of microcoils that operate in the near-

field to power electronic implants have been reported. However, these technologies can only 

provide significant power when located at a maximum of ~ 3 cm away from the transmitting coil 

(RamRakhyani , 2011; Wang, 2006; Wu, 2008). Such distance limitations impede their use on 

implants embedded on freely moving animals. Mid-field coupling, which is less sensitive to 

distance attenuation (Kim, 2013), has been employed in awake rodents. Power levels of these 

devices range from a few hundred μWatts of power (Ho, 2014) to 1-3 mW when driven by a 1W 

transmitter (Montgomery, 2015). On the other hand, our device is able to generate 2-12 mW of 

power at all times, consistently staying in the upper edge of that range. The size of our device is 

considerably bigger than the implantable microcoils employed in mid-field coupling devices, 

which allows their systems to be fully implantable while ours remains wearable. The large 

amount of energy available when using our technology provides the user with additional 
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benefits. For instance, the excess power can be used to run multiple sensors simultaneously, 

operate electrical stimulators or drive electromechanical components. No other technology can 

provide such capabilities.       
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CHAPTER 7: CONCLUSIONS  

 

7.1 Summary 

This dissertation describes the design, development and characterization of two electronic 

devices for intraocular pressure (IOP) sensing and control. IOP is, to date, the only modifiable 

risk of glaucoma, a disease that claims the sight of millions of people worldwide. In most clinical 

cases, this disorder presents ocular hypertensive conditions that, over time, damage the cells 

responsible for relaying visual information to the brain. IOP is therefore fundamental in the 

diagnosis and management of the disease. Yet, little is known about the dynamics of IOP and its 

relationship to the onset and progression of glaucoma. Tonometry, the most commonly used IOP 

monitoring tool, lacks the accuracy and continuity necessary to carry out comprehensive 

research. Likewise, commercially available pressure sensors are subjected to unregulated battery 

drainage that compromises data accuracy and length of experiments. On the other hand, 

experimental models that aim to replicate the disease in animals offer limited controllability of 

IOP and are frequently ineffective in causing pressure elevation. The work presented throughout 

this document offers a solution to these problems.  

The first device presented (iPump) employed a unique, patented, methodology to regulate 

pressure levels in the eye via a small cannula chronically implanted in the eye. The line 

continuously conducts pressure waves from the eye to a customized transducer. An especially 

designed control system uses microfluidic elements to manipulate intraocular volume levels 

based on the actual and desired pressure signals. The prototype built is tethered to the animal 
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using connecting tubing and sits next to the animal’s cage. This process is the first glaucoma 

induction model to offer full controllability, nearly perfect success rate, and around the clock 

IOP measurements. The second device is an implantable IOP sensor for animal research. The 

system is attached to the animal’s back and uses the same eye-cannulation procedure as the 

iPump to obtain measurements. The sensor can monitor IOP in a 24 hour basis with greater 

accuracy than any commercial sensor ever used to measure ocular pressure. Our design also 

eliminates commonly reported electronic drifts and offers, when paired with an innovative 

wireless powering technology (patent pending), unlimited operational lifetimes. The inventions 

developed in this project provide researchers with unique, pioneering tools that serve as enabling 

technologies to pave the way for future glaucoma research. 

7.2 Original Contributions 

The contributions of this project to the state of the art are summarized as follows: 

 The iPump is the only ocular-hypertension induction mechanism available that offers the user 

full controllability over IOP. While traditional techniques to elevate IOP result in significant 

pressure variability throughout the experiments, the iPump maintains IOP within a 

programmable window of the set-point. By setting IOP to specific levels and exploring their 

correlation to glaucoma progression, researchers will be able to create more comprehensive 

glaucoma studies than ever before. Moreover, ocular hypertension induction using the iPump 

is effective 100% of the time, with pressure elevation seen within minutes. On the other hand 

traditional models are effective around 40% of the time and can take weeks to show signs of 

elevation. 

 The mathematical model created to calculate ocular outflow parameters using the iPump 

provides accurate data while significantly shortening the duration of experiments. The 
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portability offered by the device also facilitates outflow measurements in any location 

without transporting the otherwise bulky and hard-to-set-up equipment traditionally used in 

these experiments. This becomes increasingly useful in laboratories where animals are 

housed in external vivaria and cannot be removed for survival experiments.  

 The implantable sensor provides the user with continuous, accurate IOP measurements. Data 

obtained using this system is not subjected to artificial pressure drifts commonly seen in 

commercially available biomedical devices. These drifts generally require recurrent, invasive 

recalibration procedures. Unlike other IOP sensors, our system is fully programmable, which 

allows the user to collect data in a wide range of sampling rates.  

 The wireless powering system for moving biological sensors (patent pending) developed to 

run the implantable sensor is able to produce 4-12mWatts at all times, regardless of the 

animal’s movements. This power-availability level, in combination with the low power 

consumption of the implantable sensor, creates a surplus of energy that can be used to 

incorporate multiple sensors into the device, while providing unlimited battery life. 

7.3 Recommendations for Future Research 

7.3.1 Advancing this Technology 

The most desirable system for glaucoma research is an implantable version of the iPump. 

The implantable sensor was developed with this in mind and should serve as an important 

stepping stone towards the final iPump iteration. The components of the current device were 

picked to provide a seamless transition towards miniaturization, yet the biggest challenge 

remains the efficient use of energy to power the pump, even with the wireless powering 

technology. Running the pump at full performance, as it is done in the experiments shown in this 

document, requires power levels beyond the capabilities of our energy harvesting system. The 
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pump’s performance depends on two factors, the amplitude and the frequency of the PWM 

signal that is delivered to the pump’s driver. Decreasing the signal’s amplitude reduces the 

power consumption of the module, but also increases the sensibility of the pump to back pressure 

(e.g. IOP). As a result, IOP changes will cause a change in the flowrate, which in the current 

version is maintained constant. These changes may result in slower response times and could 

limit the maximum pressure level to which the system can raise pressure. A varying pumping 

rate would also impair the use of the constant-pressure perfusion method to calculate outflow 

facility.  Changes in flow rate could be avoided by implementing a second closed-loop control 

system that regulates the voltage delivered to the pump’s driver based on IOP levels. Along with 

the added controller, a new pump driver may be necessary to create the necessary power 

fluctuation to modulate flowrate. If the additional components resulted in an overall size beyond 

the requirements of the system, the mp6 pump could be substituted by the mp5 model. The mp5 

is about half the size of the mp6, but it is only equipped with a single piezo-actuator, which 

further increases its susceptibility to backpressure.     

7.3.2 Glaucoma Research 

While much has been accomplished to this point using the iPump and the implantable 

IOP sensor, there is still work to be done. The next step towards advancing glaucoma knowledge 

is to utilize these devices to fully characterize IOP dynamics, as well as the correlation between 

ocular hypertension and glaucoma development. The study of IOP’s natural fluctuations is 

essential for clinical assessment of the disease. To implement adequate medical treatments we 

must first thoroughly understand the healthy physiology and behavior of the parameters that we 

wish to modify.  Extensive statistical analysis of an increased number of animals implanted with 

our sensor can begin to create a comprehensive picture of the natural behavior of IOP. These 
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experiments will help define the amplitude and time scales of circadian rhythms to which the eye 

is exposed. Following the work done in rabbits by McLaren and his colleagues (McLaren, 1996), 

light cycles of the housing rooms can be altered to analyze its effect on the previously observed 

variations, which are underexplored in rats. Once normal IOP dynamics have been fully 

characterized, the iPump can be used to systematically bring IOP levels to different values to 

later correlate them to ocular cell damage. For instance, IOP can be kept at 25mmHg in one 

cohort of rats for several weeks, while other groups are maintained at 30 and 35mmHg. After the 

experiments are terminated, histological processing of the eyes can provide a comparison of final 

ganglion cell counts between the groups. The untreated eye can also be processed to serve as a 

control and provide information regarding the original cell count. The length of hypertension 

exposure can also be modulated to provide further characterization. Alternatively, in some 

animals pressure can remain unaltered throughout the day, except for periodic systematic 

elevations using ramp or see-saw inputs that can be coded into the device. The amplitude and 

time course of these functions can provide definitive answers about the damage induced by acute 

spikes vs mean elevations of pressure. 

Not all forms of glaucoma are associated with elevated IOP. Some individuals have 

glaucoma even though their pressure falls within a normal range, while others have abnormally 

high pressure yet show no clinical sign of retinal or optic nerve damage based on optic disc 

inspection and visual field measurement (Klein, 1992; Shiose, 1991). The reasons for this are not 

yet understood. It is suspected that intracranial pressure (ICP) might play a role (Berdahl, 2008). 

Retinal ganglion cell axons exit the eye through the lamina cribosa at the optic nerve head. Since 

the optic nerve is bathed in cerebrospinal fluid, the lamina is subjected to a tonic pressure 

gradient that is driven on the anterior side by IOP and the posterior side by ICP. An abnormally 
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low ICP could thus conceivably cause glaucoma as well. The implantable sensor could 

potentially be used to continuously monitor ICP, simply by implanting the cannula in the 

intracranial space instead of the eye. Alternatively, the second pressure transducer of the system 

can be implemented to obtain IOP and ICP measurements in parallel. Such experiments could 

provide researchers, for the first time, with continuous data of the pressure gradient to which the 

ocular nerve is exposed. Once the normal IOP-ICP relationship has been characterized, the 

iPump can be used to chronically control the gradient at will. IOP can be lowered or raised while 

ICP remains unchanged, or vice versa. Then specific damage to the ocular nerve could then be 

fully mapped out to compression levels of the lamina cribosa based on pressure values. 

Glaucoma has also been linked to other conditions. Several studies have shown a strong 

correlation between diabetes and increased IOP (Lee, 2002; Memarzadeh, 2008; Mitchell, 1997), 

suggesting that diabetic patients may be at higher risk for glaucoma. These findings, however, 

remain controversial as other studies have found no such correlation (Quigley, 2001; Tielsch, 

1995). Some experts suggest that the increased number of glaucoma diagnoses among diabetic 

patients is due to the greater scrutiny to which they are subjected given their risk for other ocular 

conditions, such as retinopathy (Klein, 1984). These contradictory findings have left a gap in 

knowledge between the two diseases. However, the use of the implantable sensor could provide 

useful insight into this matter. For years, researchers have developed experimental animal 

models to study diabetic disorders (King, 2008; King, 2012; Kim, 2005; Vickers, 2011), and the 

implantable sensor has been proven to collect IOP data much more effectively than tonometry 

techniques, like those used during clinical studies (chapter 5). Researchers could, for example, 

use these models to correlate weight and insulin levels to IOP changes over time. The 
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implementation of our system in combination with controlled diabetic models could provide a 

definitive picture regarding the relationship between diabetes and glaucoma onset. 

7.3.3 Other Medical Applications 

Injection and drainage are common occurrences in the medical field. Several conditions 

require physicians or nurses to extract fluid out of the body or inject a substance into it. In most 

cases the fluid in question is enclosed within a compartment in the body, which is subjected to 

pressure changes as the fluid volume is altered. The ability to move fluid in and out of a chamber 

based on pressure readings is the idea around which the iPump was built. This opens a world of 

possibilities to the technology presented in this dissertation. A few of them are explored next. 

 For instance, survey studies have found an increased incidence of shoulder bursitis 

among elderly members of the general population (Bosworth, 1941). The condition is 

characterized by inflammation of the sac located between tissues in our joints (bursa).  It can 

present itself in the shoulder, elbow, hip and knee due to chronic injuries or as a natural part of 

the aging process (Ghelman, 2008). The symptoms range from joint stiffness to acute pain in the 

area (Fauci, 2010). In chronic conditions where extreme inflammation is experienced by the 

patient, periodic drainage of the joint may be necessary. This process can be painful and requires 

recurrent visits to the doctor’s office (Ghelman, 2008). Cortisone shots are often administered to 

treat the condition, offering significant relief. However, in most cases the symptoms return over 

time (Ghelman, 2008). In chronic cases, the symptoms could be potentially eased with the use of 

the iPump. The small cannula could be permanently implanted in the affected bursa to 

continuously monitor pressure in the joint. The controller would then use pressure information to 

infer when there is an excess of fluid and use the pump to progressively drain the area. The fluid 

could be dumped into a small disposable reservoir taped to the outside of the skin. The draining 
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process would be gradual so that fluid levels never reach the point of pain receptor stimulation. 

The patient could replace the reservoir daily, avoiding time consuming trips to the doctor and, 

more importantly regaining full mobility without pain.   

Another potential application for the iPump is found in patients that experience urinary 

retention syndrome, or ischuria. Patients who suffer from this condition are partially or 

completely unable to empty their bladder. This condition is especially common among men, with 

studies concluding that 4.5 to 6.8 per 1,000 men over 40 years old present urinary retention 

(Jacobsen, 1997; Meigs, 1999). Statistical incidence significantly increases with age, as men over 

70 present a 10% chance of developing the condition, while a man over 80 sees his odds increase 

to 30% (Jacobsen, 1997; Meigs, 1999).  The condition presents an important clinical challenge as 

its management practices are poorly defined (Carlo, 2012) and most prospective trials are not 

properly inclusive in their subject selection (Doll, 1993), possibly due to high risk of 

complications (Carlo, 2012). These issues have left numerous patients across the globe without a 

viable solution. The condition occurs when an obstructive or inflammatory process impedes 

normal fluid flow through the urinary track (Rosenstein, 2004). The most common cause of 

urinary retention is benign prostatic hyperplasia (BPH), which accounts for 53% of the cases 

(Curtis, 2001; Rosenstein, 2004). In most chronic cases, patients must self-catheter multiple 

times a day in order to release the urine produced by their bodies (Rosenstein, 2004). This 

process can be highly uncomfortable and time consuming.  

In these cases the iPump can serve as a clinical treatment rather than a research tool. Two 

cannulas can be chronically implanted: the first cannula is placed inside the bladder, while the 

second cannula is inserted in the urinary track passed the site of obstruction. The system 

effectively bypasses the portion of the pathway that is nonfunctional and allows the patient to 
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urinate normally. The circuitry can be worn on the patient’s belt around the clock. The sensor 

continually monitors intra-bladder pressure to assess the urine volume levels. When values reach 

a certain level the iPump can be programmed to send a signal to a phone app or fitness tracker to 

notify the user. The patient can then go to the restroom and activate the pump to pull fluid from 

the bladder and pump it into the urinary track, effectively emptying it. This procedure is more 

effective than simply implanting a shunt between the bladder and the urethra, as only the iPump 

can offer full controllability as to when the drainage process is started. Similarly, patients with 

urinary incontinence can implement the iPump as a way to bypass the urinary track and prevent 

fluid from leaving the bladder involuntarily. The urethra can be surgically blocked during 

implantation to allow the iPump to have full control over fluid levels. As this process is 

implemented some design considerations must be acknowledged. Some of the original 

specifications of the pump may need redefining to allow for higher flowrates that would empty 

the bladder within an appropriate timeframe.  

Note that the both the urinary retention and the bursitis drainage applications require an 

implantable system rather than a tethered version like the one presented in chapter 3. 

Nevertheless, the only impediment that we have faced for system miniaturization, in animal 

research applications, deal with power demands. The device requires greater energy harvesting 

capabilities or batteries whose size is not viable for implantation in a rodent. However, the 

specific sensing components have already been miniaturized for their application on the 

implantable sensor and pumping elements are manufactured in small sizes. For human 

applications, rechargeable batteries with much bigger capacities do not represent a challenge. 

These batteries are not bigger or heavier than those commonly found in small portable 

electronics and can be recharged daily in the same fashion as cellphones. 
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Other urological conditions can also be addressed using our technology. For instance, 

Conditions such as bladder cancer can permanently damage the ability of the bladder to perform 

as a urine reservoir (Porter, 2005). The disease requires patients to go through a surgical 

procedure to replace the bladder with an artificial reservoir or one made out of bowel tissue 

(Hautmann, 2003).  An internal conduct, called a stoma, is implanted to provide external access 

to the new fluid pool. In most cases the patient is required to self-intubate through the stoma and 

manually empty the pouch every 4-6 hours (Skinner, 1989). Failure to do so can result in leakage 

or infection, which could lead to kidney failure and pouchitis (inflammation of the reservoir) 

(Skinner, 1989). To avoid these complications the patient must ensure that drainage is done in a 

timely manner, preferably before fluid levels reach high values. The implantable sensor 

developed in this project can be used to monitor fluid levels and notify the user when fluid 

drainage is necessary. A cannula could be implanted in the artificial reservoir to measure in 

pressure and estimate fluid levels. Once those reach a user defined threshold, the system can 

wirelessly transmit a signal to a phone app or fitness tracker to notify the patient. This procedure 

would avoid common complications and improve the quality of life of patients that have been 

subjected to the insidious consequences of cancer. Some considerations should be taken to 

ensure sterility of the conducts and cannulas. However, urinary diversion techniques have been 

employed for over 160 years as a mean to bypass nonfunctional urinary organs (Simon, 1852). 

These common practices have provided physicians with innumerable hours of experience 

regarding catheter implantation and management of aseptic conditions.  

7.4  Concluding Remarks 

The systems developed throughout this project have met the originally proposed aims. 

This technology has successfully met the requirements outlined in chapter 2 for an ideal 
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glaucoma research model, table 7.1 illustrates this comparison. The accuracy, continuity and 

reliability of the pressure readings obtained with our devices projects our systems to be the finest 

IOP monitoring technology ever made for animal research. Similarly, the robust pressure control 

obtained with iPump makes it the most complete glaucoma induction model ever designed. The 

applications of these devices extend well beyond glaucoma studies, with the potential to affect 

several areas of the medical field and positively affect the lives of millions of people. In all, the 

contributions made in this thesis could the change the current paradigms of glaucoma research.     

 

 

 

 

  

Feature Ideal 

Sensor 

Our Sensor  Feature Ideal Model iPump 

Continuous data Yes Yes  Success Rate 100% 100% 

Accuracy < 1 

mmHg 

0.2 mmHg  Sustained 

elevation 

Yes Yes 

Drift None None  IOP 

controllability 

Yes Yes 

Animal species Rodents, 

rabbits, 

monkeys 

Rodents, rabbits, 

monkeys 

 Bio-response None None 

Transcorneal No No  Unilateral Yes Yes 

Operational 

Life 

> 3 

months 

Unlimited*  Reversible Yes Yes 

Multi-sensor Yes Yes  Time before 

elevation 

Immediate Minutes 

Pressure Unit mmHg mmHg     

Table 7.1 Our Systems vs. The Ideal Systems 
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