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ABSTRACT 

 

 
With the advancements in technology and computing environment capabilities, the number 

of devices that people carry has increased exponentially. This increase initially occurred as a result 

of necessity to monitor the human body condition due to chronic diseases, heart problems etc. 

Later, individuals’ interest was drawn towards self-monitoring their physiology and health care. 

This is achieved by implanting various sensors that can proactively monitor the human body based 

on medical necessity and the health condition of the user. Sensors connected on a human body 

perceive phenomena such as locomotion or heartbeat, and act accordingly to form a Body Area 

Network. The primary concern of these sensors is to ensure a secure way of communication and 

coordination among the devices to form a flawless system. A secondary concern is wireless sensor 

authentication, which ensures trustworthiness and reliable gathering of a user’s data. To address 

this concern, we designed a secure approach using low cost accelerometers to authenticate sensors 

in Body Area Networks. 

To ensure authentication in on-body sensor networks, we need a mechanism which 

intuitively proves all the communicating nodes are trusted ones. In order to achieve sensor 

authentication, we used accelerometer data gathered from sensors to distinguish whether or not the 

devices are carried on waist of same individual’s body. Our approach is focused at analyzing 

walking patterns recorded from smartphone accelerometers placed in the same location of the 

user’s body, and we present results showing these sensors record similar pattern.
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CHAPTER 1: INTRODUCTION 

 

 
Internet of Things(IoT), the latest buzz word in this era, is a result of advancements in 

technology and the coupling of different technologies. It is expected by 2020, IoT will make a 

revenue of around $300 billion. Many software, product based and service based companies are 

coming forward to invest in the IoT market. Several other industries are also trying to make the 

most out of IoTs, one such industry being health care. Due to its ubiquity, it is fundamental to 

understand the fascinating term IoT. In simple words, IoT is a network of physical devices 

implanted with sensors, network connectivity, software programs, etc. with the goal of gathering, 

exchanging and analyzing data over the network. Wireless Body Area Networks (WBAN), which 

provides communication interface between the implanted sensors on human body, is also a part of 

IoT. In today’s scenario, people of different age groups are coming forward to experience the 

advancements of the wearable devices which monitor blood pressure, blood glucose levels, 

heartbeat, sleeping patterns, etc. As the number of medical devices connected to the human body 

increases, so does the amount of clinical data they collect and collaborate. Collection of data from 

the sensors might be of no use, unless the data is analyzed to trigger reactive actions in emergency. 

Limited resources of on-body sensors, fail to analyze the data they sense. Data analysis is thus, 

delegated to the remote cloud services, who continuously analyze the data received from sensors 

to detect emergency, well ahead of time. This raised issues on concerning user trust, privacy and 

data security. Since the data is exchanged over the internet, security becomes a greater concern for 

the end users and the devices connected.  
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A security research team formed by Scott Erven stated in April 2014, after a two-year 

period of study, they could eavesdrop to a deeper level of health and security of the users. They 

concentrated on the activities like monitoring and controlling the dosage levels of drug infusion 

pumps and implanted defibrillators of a few users using medical devices connected through 

wireless medium. A patient with chronic disease, if treated with inappropriate drug dosage levels 

for a long time, might suffer from serious illness or even death in some cases. So one can imagine 

the importance of the security and trust of the wearable sensor devices. In order to gain the trust 

of the end user, manufacturer should ensure implanted devices on a user’s body communicate with 

each other rather than with some random attacker. One way to do this is to establish secret key 

over a secure communication channel among the implanted devices on a patient’s body. This 

produces the need to uniquely identify a communicating entity. We have existing mechanisms, 

like Universally Unique Identifier (UUID) or Unique Device Identifier (UDID), digital 

fingerprinting, MAC address, IP addresses and electronic serial number (ESN), which can act as 

unique identifiers. However, there are some limitations and tampering techniques of these 

identification mechanisms which make them highly vulnerable to attacks. Adding to the existing 

security concern, each of these identifiers can be easily modified using piece of software code [6], 

[7]. For example, UNIX operating system provides us with a unique command called 

“macchanger” which forges the MAC address of an Ethernet wireless device. As a result, using 

these existing fingerprinting techniques poses a serious threat and risk for the users of wireless 

body area networks. 

Additionally, size of the sensors and front end electronics hindered the growth of the 

wearable technology ubiquitously in the past. As a result of advancements in sensor technology 

and miniaturization of circuitry, data processing and analysis, wearable sensors are widely used in 
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the recent times. However, authentication of the user is a major concern in wearable sensor 

technology. Most of the wearable sensors lack in high computational power and hardware support 

which makes the usage of existing cryptographic mechanisms difficult to accomplish 

authentication. So, there is a need to come up with some technique which is computationally low 

and easy to embed in these miniature devices. 

Accelerometer, an inexpensive sensor and easy deployable device which is widely used in 

tracking and the classification of human daily activities [1], [2]. Recent study proved 

accelerometers can be used in detecting areas of human body affected by Parkinson disease. 

Another study claimed that low cost sensors can be used in designing a wearable sensor network 

for home monitoring system [5].  

Given examples motivated us to investigate the methods to authenticate on-body wearable 

sensors with low cost accelerometers. Accelerometer sensor measures the acceleration of the 

device in two or three axial dimensions. In today’s scenario most of the smart phones are embedded 

with sensors like accelerometer, gyroscope, magnetometer, light sensor, etc. Android platform 

provides with an interface which can monitor available hardware-based sensors like accelerometer 

and gyroscope in smartphones. An accelerometer app developed for an android mobile can be used 

to record acceleration versus time profile data. We then gathered accelerometer data from two 

different smartphones of similar make from different individuals. According to our expectation if 

the two smartphones are carried on nearby locations of body by a same person, the acceleration 

patterns recorded by them should be similar enough. Here are few aspects to be taken into 

consideration:  

 Can accelerometer data provide us with reliable information to verify, whether the two 

sensors are carried by the same person?  



 

4 
 

 What is the best active motion of an individual to track the similarities in the profile data?  

We present relevant answers for each of these questions and scenarios how placing of the 

smartphones affect the acceleration versus time patterns. From the recorded patterns we find the 

similarities among the two different patterns of an individual, and uniqueness of each pattern 

among the profiles of different individuals. In other words, the acceleration versus time profile of 

each individual would result in a unique pattern. This unique property of each acceleration versus 

time profile can be replicated from the walking motion of an individual. In order to get reliable 

patterns, we placed two smartphones side by side in a fanny bag worn on an individual’s waist. 

We finally posed a scheme of authenticating sensors in Body Area Networks using acceleration 

versus time profiles. 
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CHAPTER 2: RELATED WORK 

 

 
WBAN, consisting of miniature sensor devices provides novel health monitoring 

opportunity ranging from day-to-day activities to chronic diseases. Sensors accomplish monitoring 

activity by collecting and managing sensitive user information, then communicates with the base 

station in order to send the data to the respective health monitoring systems. Typically, 

communication in WBAN is categorized into three types: On-body, In-body and Off-Body 

communication. When the communication is among on-body sensors then it is known as On-body 

communication, In-body communication takes place between implanted devices and an external 

authorized equipment device. Off-body communication happens between a base station and a 

transceiver at user’s end. Our concentration is on On-body communication of Wireless Body Area 

Networks. The deployment requirements of WBAN depends on the domain it is monitoring for, 

such as health monitoring WBAN needs to be very secure and avoid any malicious intervention 

activities. Compromised WBAN can lead to serious risks such as irrevocable condition or even 

death in some user cases. A WBAN is said to be secure if it ensures privacy, confidentiality, 

integrity and authentication. However, to provide a high-level security mechanism is a primary 

challenge to the system designers, due to limited power and infrastructure of the WBAN system. 

Authentication is a very crucial aspect in any network of communicating devices, especially in the 

areas where security compromise lead to serious level of damage. We mainly focus on the 

authentication of on-body nodes or sensor devices in the WBAN.  

Authentication of nodes in the WBAN is of great concern. Suspicious node in WBAN can 

intercept the communication between the legitimate nodes, as a result compromising privacy of 
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the whole network. On this note, secure node and data authentication is crucial for user and WBAN 

security and privacy. Research interest so far on authentication mechanisms for WBAN can be 

divided into cryptographic and non-cryptographic authentication mechanisms. Cryptographic 

authentication mechanism adapts light weight traditional cryptographic schemes. Non-

cryptographic authentication approaches [8] can be divided into biometric-based, channel-based 

and proximity-based authentication systems. 

2.1 Traditional Authentication Mechanisms 

We have existing cryptography based authentication mechanisms in past research, such as 

pre-distribution of secret keys among the wireless nodes, MAC based authentication etc. Research 

in the past [9], 10] used the pre-distribution of keys among the nodes in a Wireless Sensor 

Networks. There are few limitations when this key distribution technique is applied to WBAN, 

such as prior trust among the nodes and secrecy of pre-shared keys. More over cryptographic based 

authentication methods are computationally high which makes them infeasible for constrained 

WBAN. In addition, key management techniques are of high cost. 

An identity-based cryptographic authentication [11] is developed for Wireless Body Sensor 

Networks, also known as light-weight cryptographic scheme. This scheme provides a secure 

WBAN with high flexibility in managing and accessing data. However, it involves high user-

intervention which is not a suitable attribute for WBAN.   

A public key cryptography based system called elliptical curve cryptography [12] has been 

successfully deployed in wireless sensor networks. Though these systems are feasible for WBAN, 

elliptical curve cryptosystems consume higher levels of energy when compared to symmetric 

cryptosystems.  



 

7 
 

TinySec [13] is an approach for providing authentication in WBAN. In this scheme, every 

sensor is programmed with a common key before the deployment of the sensor network. For 

further communication in the network, like message or packet encryption is done using this 

common key. A key drawback of this system is a compromised sensor can cause the leakage of 

complete information of the sensor network, hence whole system will be in risk. 

So, the traditional authentication schemes mentioned above either lack security or requires 

high computational power which makes them infeasible for WBAN. 

2.2 Biometric-Based Authentication Mechanisms 

Biometric-based authentication schemes are aimed at finding a unique feature from human 

body and then using these traits as an authentication identity. Unique features are derived from 

behavioral or physiological characteristic exhibited by a human, which helps in identifying a 

person. Common primitives used by biometrics systems are fingerprint, face, hand geometry, iris, 

voice etc. These systems overcome the problem of distributing pre shared keys among sensors, 

which was a common drawback in most of the traditional cryptosystems. The principle of 

biometric-based mechanisms is to measure and compare the physiological signals at both sender 

and receiver end. Researchers [14], [15], [16] have exploited physiological parameters such as 

electrocardiogram (ECG) and photoplethysmogram (PPG), heartbeats, fingerprint etc. Efficiency 

of these authentication mechanisms lies in the correlation coefficient of physiological parameters 

calculated at sender and receiver. Reason for dissimilar physiological signals is due to the position 

of sensors at different parts of human body. Restricting the position of sensors in WBAN would 

be a strong assumption. Moreover, biometric based systems require specialized sensing hardware 

which is an overhead for the miniature on-body sensors. 
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2.3 Channel Characteristic-Based Authentication Mechanisms 

 Channel Characteristic-based Authentication mechanisms are also known as location-

based authentication systems, is built on the basis of variations in Received Signal Strength (RSS). 

Researchers have leveraged the variations in RSS over time to authenticate WBAN. Zeng [18] 

proposed a secure device pairing scheme using differential RSS for proximity detection. However, 

this system relies on two receiver antennas which is an additional hardware overhead. Patwari [19] 

by using channel impulse response generated a temporal link signature for each device in the 

wireless channel, but the system requires additional hardware such as GNU Radio and an extensive 

learning stage. BANA [17], a light weight authentication scheme is built on the observation that 

RSS variations are distinct for on-body and off-body communication channels. They found a way 

to differentiate the signals from legitimate node and an attacker by performing clustering analysis 

on average RSS variation. This system takes around 12seconds to authenticate the on-body 

sensors. In most of the WBAN systems, authentication and key extraction need to be perceived 

simultaneously with wireless channel characteristics alone. However, BANA when combined with 

existing key generation mechanisms, it is tough to extract an authenticated secret key even with 

minor adjustments. An extended version ASK-BAN [28], with wireless channel alone works 

concurrently to generate a key and node authentication. They have employed static channel for 

authentication and dynamic channel for key generation. This system takes around 12seconds for 

authentication and 15.9seconds for key generation. However, ASK-BAN requires additional nodes 

between the Central Unit (CU) and the sensor node. Additionally, on-body sensor nodes are to be 

deployed half wavelength apart from each other to check the feasibility of Multi hop relay node 

security system. On the other hand, during the authentication phase of the system subjects are 

restricted from making any body movements. 
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2.4 Proximity-Based Authentication Mechanisms 

 Amigo [8] with the help of Diffie-Hellman key exchange and device co-location 

verification authenticates the devices. This system uses Diffie-Hellman algorithm to establish a 

shared-secret key among two devices. This key exchange might not be sufficient to ensure trusted 

communication. Therefore, each device in the communication range monitors the radio channel 

for a short span of time. Later, each device generates a signature by measuring the variations in 

the signal strength and exchanges it with the other. Each device without any intervention of other 

devices carries out a comparison of received signature with the self-generated one. If both the 

signatures are similar enough then the system infers the devices are legitimate to communicate 

further. Ensemble [29] used trusted on-body personal devices as receivers and devices for pairing 

as transmitters of the signals. After reception phase, personal devices conclude the proximity by 

monitoring the received transmissions. In similar fashion, Mathur [30] by using environment 

signals developed a pairing scheme based on device co-location. However, these systems require 

on-body sensor nodes to be deployed half wavelength apart from each other. As a result, sensors 

are restricted in their positioning.  

 Recent breakthrough [20] by a private IT security firm, provides proximity-based 

authentication collaborated with hands-free approach for healthcare domain. This technology is 

very user friendly, fast and operates on wireless channel to verify One-Time-Pad (OTP) from 

user’s mobile device. Verification process does not require user’s interaction as the system 

leverages wireless Bluetooth connectivity to automatically acquire and verify the OTP from a 

mobile device. However, Bluetooth technology [21] allows only eight devices to be connected 

simultaneously. 
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 Existing techniques for authenticating body area network discussed above have limitations 

either in terms of security or requires high computational power and hardware. In order, to address 

the aforementioned concerns of WBAN, we investigate an approach that uses low cost 

accelerometers to determine whether or not the two sensors are carried on the waist by the same 

person. Accelerometers are low cost electromagnetic devices and consumes low power for 

computation. Researchers exploited the benefits of accelerometers and used them in device 

association and gesture recognition. Our method measures the acceleration forces experienced by 

the two sensor nodes and then correlates them using coherence estimate. A detailed overview of 

our work is given in further sections of the document.  
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CHAPTER 3: ACCELEROMETER SENSORS 

 

 
 Accelerometer is an electromagnetic device with vast sensing capabilities and measures 

acceleration, which is the rate of change of velocity. It can measure acceleration in one, two or 

three orthogonal axes and its units can be expressed in terms of meters per second squared or g. g 

is a gravitational force and it is equivalent to 9.8m/s2 on earth. They are generally low-power 

consuming devices and their current consumption falls in the range of milli or micro ampere. Three 

different types are accelerometers are being used in the commercial domain such as piezoelectric, 

piezoresistive and capacitive ones [22]. High temperature, high frequency and easy mounting are 

the suitable conditions for piezoelectric accelerometers. Piezoresistive accelerometers are used in 

applications with sudden and acute vibrations. Applications built on silicon-micro machined 

sensor material and suits low frequency range as 1 kilohertz prefer capacitive accelerometers. 

 At the present time, accelerometers with simple, reliable and cost effective attributes are 

preferred. Micro Electro-Mechanical System (MEMS) accelerometers are manufactured with the 

above mentioned features and are widely used nowadays. Our study makes use of smartphones to 

measure the acceleration of a person carrying it, so we give brief details on the working principle 

of accelerometers in smart devices. 

 Smartphone accelerometer consists of a circuit with seismic mass, which is made from 

silicon and it is the heart of the sensor. With a change in the orientation of the device, seismic mass 

changes its position. As a result, sensor records the changes in the capacitance or equivalent 

current, when the smart phone changes its orientation or tilts. Following figures depicts the 

working. 
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Figure 1. Internal Structure of Smart Phone Accelerometer  

 

 

Figure 2. Seismic Mass Tilt  

 Therefore, smartphone accelerometer is simply a MEMS based circuit which senses and 

records the acceleration due to the gravity of motion or a change in orientation. Our basic idea is 

to use smartphone accelerometers to verify if the sensors are attached to the same person’s waist. 

Our approach is explained in detail in the following sections. 
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CHAPTER 4: PROPOSED METHOD 

 

 
 As discussed in the previous sections, authentication in body area networks should occur 

with minimal human or user interaction. So we analyzed few activities performed by the user 

carrying the sensors on his/her body. Activities included walking, jogging, running and exercising. 

Apart from walking, other activities were found to be unsuitable for the analysis. The periodic 

nature of walking activity makes it suitable as an input to the system aimed at distinguishing the 

users of the sensors. In addition to the high periodicity, human walking motion is regular in nature 

and does not require any external factors to simulate the action.  

 

Figure 3. Acceleration Versus Time Data Representing Walking, Jogging and Exercising 

Activities 

 Human locomotion highly depends on the body geometry, moreover its repeated behavior 

contributes for the analysis in frequency domain and also overcomes the necessity for expensive 

analytical models. Graphical representation of different human activities is presented in the above 

figure.  



 

14 
 

 Two android platform smartphones of similar configuration were used for our experiments. 

We examined smartphones from different manufacturers like Samsung, Motorola and opted to 

perform experiments on Samsung make. Below table shows the specifications of the accelerometer 

sensors in these android devices. 

Table 1. Accelerometer Specifications in Two Different Android Devices 

Accelerometer 

Name 

Vendor Resolution Max Range Power 

K330 3-axis 

Accelerometer 

STMicroelectronics 5.985504E-4 19.6133 0.25mW 

LIS3DH 3-axis 

Accelerometer 

ST Micro 0.009810001 39.24 0.25mW 

 

4.1 Accelerometer App 

 An accelerometer app is developed to record the acceleration measured by the 

accelerometer sensor. In order to find the acceleration applied on a device, accelerometer sensor 

measures the forces that are experienced by itself. This relation can be shown as below: 

Acceleration of the device = - Force experienced by the sensor/ Mass of the device 

However, the measured acceleration also includes the force of gravity (g = 9.8m/s2). In order to 

eliminate the effect of earth’s gravity, we subtract the magnitude of g from the acceleration 

measured. The Android platform provides an interface to access the hardware-based sensor, 

accelerometer. SensorManager class provided by Android SDK helps to access the accelerometer 

sensor. SensorEvent is associated with the sensor and it returns multi-dimensional array of sensor 

values. As a result, the accelerometer returns acceleration data in three axes (X-axis, Y-axis and 

Z-axis) for a single sensor event. When the sensor is in moving state, onSensorChanged event is 

triggered and acceleration values can be saved.  
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 Our app exploits the above mentioned existing android classes and events to capture the 

acceleration data along with the time. Accelerometer app home screen displays measured 

acceleration in X, Y and Z axes. In addition, start and stop buttons helps in saving the recorded 

data into an excel file. Clicking start button initiates the saving operation, and stop button quits the 

save operation. Contents saved in the excel file are acceleration forces in X-axis, Y-axis, Z-axis 

and the timestamp at which the forces are measured. To efficiently track the change in the 

magnitude of the acceleration, values are captured with a recording interval of 5ms. Home screen 

of the accelerometer app is shown in Figure 4. 

4.2 Supported Functions 

 This section presents a list of functions used in our study. Functions include Square Root, 

Fast Fourier Transform (FFT) and Magnitude-Squared Coherence. 

4.2.1 Square Root 

 Smartphone accelerometers used in our study provide the measured acceleration forces in 

3-dimensional axes. This data can be processed in two ways, one is to consider each axis 

independently and second is to consider three axes as a single entity. In order, to eliminate the 

randomness, effect of orientation changes, we prefer calculating the magnitude of the acceleration 

forces of all three axes by using Square Root function as presented below. This derives a resultant 

acceleration independent of orientation.  

𝑨𝒅 = √𝑨𝒅𝒙
𝟐 + 𝑨𝒅𝒚

𝟐 +  𝑨𝒅𝒛
𝟐  

4.2.2 Fast Fourier Transform (FFT) 

 Data recorded by the accelerometer app is represented using time domain. Fourier 

Transform converts the time domain input signal to output signal in frequency domain. FFT [23] 

efficiently estimates the component frequencies in the output data from a discrete set of input. The 
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MATLAB tool provides with inbuilt functions for Fourier analysis. Different variations of FFT 

function are available in MATLAB. Since our input data is magnitude of acceleration force which 

is one dimensional in nature, we use FFT in its simplest form. fft function [23] takes an input 

vector x and returns Direct Fourier Transform (DFT) y using a fast Fourier Transform algorithm.  

𝑜𝑝 = 𝑓𝑓𝑡(𝑖𝑛) 

 The equation for fft function is shown above, where in is the input vector and op is the 

DFT form of the output vector. The window length for the transformation is obtained from the size 

of the input vector, and same length is applied to the output as well. 

4.2.3 Magnitude-Squared Coherence 

 For acceleration versus time series signals depicted in figure 1, it is required to find a 

reliable method to analyze the data and draw a conclusion from the analysis. A research work by 

Ben-Pazi [25] examined the origin of real tremors in a Parkinson’s patient by using biological 

accelerometer data, and analyzing the data with coherence estimate. This motivated us to extend 

the usage of coherence function to time series acceleration signals. As we measure the acceleration 

data from two smartphone accelerometers for our experiments, we find how well the two input 

sets are co-related with the help of magnitude-squared coherence function.  

 Magnitude-Squared Coherence function is an estimate function of frequency range 

between 0 and 1. This Coherence estimate demonstrates how well an input set relates to the other 

at each frequency. Let, the acceleration data from two smartphones be represented by x and y, then 

the magnitude-squared coherence function is denoted by Cxy(f) [24]. Cxy(f) function depends on 

power spectral densities, Pxx(f) and Pyy(f), of x and y respectively and also the cross power spectral 

density, Pxy(f) of x and y as shown below. 

𝑪𝒙𝒚(𝒇) =  
|𝑷𝒙𝒚(𝒇)|

𝟐

𝑷𝒙𝒙(𝒇)𝑷𝒚𝒚(𝒇)
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 The MATLAB inbuilt function mscohere [24] uses Welch’s averaged modified 

periodogram method to obtain the magnitude-squared coherence estimate, Cxy, of the given input 

signals x and y as presented below. 

𝐶𝑥𝑦 = 𝑚𝑠𝑐𝑜ℎ𝑒𝑟𝑒(𝑥, 𝑦) 

 The above equation produces high coherence value (nearly equal to 1), if the two signals 

are highly correlated and low coherence value (nearly equal to 0) for uncorrelated signals at each 

frequency value. Since coherence estimate is a function of frequency, we need an approach to 

compute a scalar quantity from the coherence curve to determine the similarity. Integral of 

coherence curve can be a simple approach to obtain a scalar quantity. By using the MATLAB, 

trapz [26] function the scalar measure of similarity is calculated for our experiments as shown 

below. 

𝐶𝑠 = 𝑡𝑟𝑎𝑝𝑧(𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑢𝑟𝑣𝑒) 

 The trapz function returns the appropriate integral of the given input using trapezoidal 

method. In the above equation, Cs represents the similarity measure of two different acceleration 

inputs. We made use of integration method which is fast and computationally inexpensive when 

compared to other complex methods to quantify the coherence outcome.  
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Figure 4. Acceleration App Home Screen 
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CHAPTER 5: ACCELEROMETER DATA COLLECTION 

 

 
 The outline of this section provides a description of the process of data collection and the 

analysis done on the acceleration signals. Experiments were carried in two different ways on three 

subjects, single-subject walking experiment and two-subjects walking experiment. 

5.1 Experimental Setup and Data Collection 

 In this section we describe the experimental setup for the data collection. Throughout the 

process of accelerometer data collection, smartphones were carried in a fanny bag which is 

wrapped around the subject’s waist. In the first type of experiment, each subject carried two 

smartphones and performed walking activity for approximately 20seconds. In each smartphone, 

accelerometer app is opened before starting the walking activity. Once the walking activity is 

initiated by the subject, start button in the app screen is clicked explicitly in order to start the saving 

operation. After 20seconds of the activity, stop button is clicked to end the save operation. 5 trails 

are made for each subject, and each trail produces two accelerometer signals from two smartphones 

respectively. So, with 3 subjects and 5 trails for each one, gave 30 time-variant acceleration signals 

for further analysis in the single-subject walking experiment. 

 The process of gathering the accelerometer data is same for two-subjects walking 

experiment as well. However, in this experiment two subjects walk simultaneously with a 

smartphone carried by each of them. In this experiment, each subject walked with other two 

subjects forming a total of 3 pairs. Each pair of subjects performed 5 trails of walking activity for 

approximately 20seconds. So, with 3 pairs of subjects and 5 trails for each pair, gave 30 time-

variant acceleration signals for further analysis in the two-subjects walking experiment. 
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 Due to the manual triggering of save operation using start and stop buttons in the app, there 

might be some latencies in the data collection. In order to reduce the effect of latencies, we 

manually trim the recordings so that all the recordings would be of equal length. The following 

sections provide more details on the analysis of two types of experiments. 

5.2 Single-Subject Walking Trail 

 

 The aim of single-subject walking experiment is to demonstrate the high coherence of the 

two recorded patterns of a single subject. 

 Figure 5 represents the data collected from subject A. Acceleration magnitude data from 

two smartphone accelerometers recorded for approximately 20seconds is used to obtain the FFT 

spectra using fft function. Later, coherence measure is calculated using mscohere function.  

 The two signals presented in the figure 5 are recorded on the same subject, during the same 

trail of walking activity. One important observation to be noted from the figure 6 of this experiment 

is, the two FFT spectra of the input signals look similar as the patterns are of same subject waist. 

 The coherence plot depicted in figure 7, shows the two acceleration signals are highly 

correlated at majority of frequency values.  

5.3 Two-Subjects Walking Trail 

 The aim of single-subject walking experiment is to demonstrate the low coherence of the 

two recorded patterns of two different subjects. 

 Figure 8 represents the data collected from subject A and subject B. Acceleration 

magnitude data from two smartphone accelerometers recorded for approximately 20seconds is 

used to obtain the FFT spectra using fft function. Later, coherence measure is calculated using 

mscohere function. The two signals presented in the figure are recorded on two different subjects, 

during the same trail of walking activity.  



 

21 
 

 One important observation to be noted from the figure 9 of this experiment is, the two FFT 

spectra of the input signals are not similar as the patterns are of two different subjects. 

 The coherence plot depicted in figure 10, shows the two acceleration signals are slightly 

correlated at majority of frequency values. 

 

Figure 5. Acceleration Data of Subject A 
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Figure 6. FFT Spectra of Subject A’s Acceleration Data 

 
Figure 7. Coherence Curve of Subject A’s Acceleration Data 
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Figure 8. Acceleration Data of Subject A and Subject B 

 

Figure 9. FFT Spectra of Subject A and Subject B’s Acceleration Data 
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Figure 10. Coherence Curve of Subject A and Subject B’s Acceleration Data 

 
5.4 Experimental Results 

 Figure 11 shows the coherence measure calculated from two signals recorded on Subject 

A, B and C. In a trail, only one subject performed walking activity for 20seconds, carrying two 

smartphones in a fanny bag. Each subject performed five walking trails. Twenty seconds of 

acceleration data is given as input to FFT function, which results in FFT spectra as output. 

Magnitude squared coherence is calculated from FFT spectra. In order to find a scalar measure of 

coherence, we integrate magnitude squared coherence curve.  

 Coherence measure is greater than hundred for most of the walking trails as shown below. 

The two signals in this experiments are highly correlated at most of the frequencies, therefore the 

scalar coherence measure is high.  Hence, we conclude the two sensors are carried on same 

individual’s waist, if the coherence measure is greater than hundred.  
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 Figure 12 shows the coherence measure calculated from two signals recorded on Subject 

A, B and C. In a trail, only two subjects performed walking activity for 20seconds, each of them 

carrying a smartphone in a fanny bag. Each pair of subjects performed five walking trails. Twenty 

seconds of acceleration data is given as input to FFT function, which results in FFT spectra as 

output. Magnitude squared coherence is calculated from FFT spectra. In order to find a scalar 

measure of coherence, we integrate magnitude squared coherence curve. Coherence measure is 

less than hundred for most of the walking trails as shown below. The two signals in this 

experiments are slightly correlated at most of the frequencies, therefore the scalar coherence 

measure is low.  Hence, we conclude the two sensors are not carried by the same individual, if the 

coherence measure is less than hundred.  

 
Figure 11. Coherence Measure of Single-Subject Walking Trails 
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Figure 12. Coherence Measure of Two-Subjects Walking Trails 
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CHAPTER 6: PRACTICAL CONSIDERATIONS 

 

 
 The experimental results considered so far were generated from the walking activity for 

20sec. Throughout the study, data is collected using accelerometer app, which needs manual 

operation for saving the acceleration data. This results in uneven window sized data, for example 

22sec of data. In order to find a common measure, we manually trim the recorded data to obtain a 

window size of 20seconds. We also considered different small sized walking data to check if they 

provide enough details. However, small sized windows can also be a measure for coherence, but 

longer sized windows provide more information for analysis.  

 Another consideration, during the app development is how often the values are to be 

captured while recording the walking activity. After analyzing data over three different recording 

intervals, we captured acceleration values for every 5millseconds. This recording interval gave us 

the most accurate changes in the acceleration values with the time. 

 In addition, one important consideration is the communication latencies between the two 

accelerometer sensors. It is better to have a system which is insensitive to the delays, but the 

available wireless synchronization methods are too power consuming ones. The work similar to 

ours [4] depicted their simulation results, which states even with a 500ms communication delay 

and with large-sized windows the success rate is greater than 95%. So, delays to some extent still 

produce reliable results. Likewise, our approach has some communication delay of 20msec to 

25msec. However, it exhibits some insensitivity towards the coherence values which makes our 

approach tolerant enough for communication latencies. 
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 We also present a theoretical algorithm to show the authentication of On-body sensors 

using accelerometer sensors. Authentication can happen in two ways: Centralized and peer-to-

peer. In centralized authentication, the two communicating sensors record the acceleration data 

individually, then sends their data to the centralized node or a controller. The controller then, 

applies FFT on the raw data received from the two sensor nodes. Then, it calculates the coherence 

measure to determine if the two sensors are authenticated ones to communicate. 

 In peer-to-peer communication, series of steps occur during the process of authentication. 

In the first place, the sensors should agree upon a time duration and then collect the raw 

acceleration versus time data. Next, FFT is applied on the recorded data by each sensor. Either of 

the sensor nodes can perform the calculation of coherence measure. For example, if sensor2 agrees 

upon calculating the coherence, sensor1 should share its FFT curve with sensor1. Then, sensor1 

calculates coherence measure and determines whether to proceed the communication process with 

sensor2. In both the scenarios, a complex coordination process ensures a complete secure scheme. 
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

 

 
 Our study primarily concentrates on two aspects of On-body sensors. First, to determine if 

accelerometer sensors can be used to authenticate on-body sensors. Second, to show low-cost 

accelerometers are sufficient to accomplish the task. The experimental results presented provides 

us with positive conclusions for both the aspects. By recording 20sec of acceleration data, we could 

reliably determine the probability of two sensors carried by the same individual is high. There by, 

we present an answer for our question posed earlier: Can accelerometer data provide us with 

reliable information to verify, whether the two sensors are carried on waist by the same person? 

We also examined few human daily activities to find the answer for our second question: What is 

the best active motion of an individual to track the similarities in the profile data? Experiments 

showed that walking motion is the most suitable activity to track the similarities, as the two sensors 

carried by an individual on waist records similar profile data.  

 As the frequency of human locomotion lies in the frequency range of 0-10Hz and 

accelerometer can sample the data with a frequency lower than 20Hz. This capability of 

accelerometer makes them suitable for small and lower power devices. 

 Since our focus is on walking activity, we used low frequency levels to determine the 

coherence measure, by calculating the area under magnitude squared coherence curve. This 

provided us with a rough likelihood and this estimate gave us good results to determine whether 

the two sensors are carried by same individual or not. Our first type of experiment gave us a success 

rate of 86.6%, which exhibits the sensors if carried on same individual’s waist exhibit high 

coherence value.  
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 Similarly, our second type of experiment presented a success rate of 93%, which shows the 

sensors if carried by different individuals exhibit very low coherence values. 

 We also present a theoretical algorithm to authenticate on-body sensors. It determines 

whether the two sensors are authentic enough to communicate. However, we have to perform an 

extensive study to show that are approach best suites the wireless body area network.  

 The major limitations of our approach: one the subject is required to perform walking 

activity. Second, the sensors are placed in a fanny bag worn around the subject’s waist for 

conducting the experiments. Other human activities require advanced tools for analysis, as a result 

the devices need high computational capabilities.  

 In future, we would like to extend our study to other daily life activities like sitting, typing 

etc. Also, to the sensors located or worn on different parts of human body. Once sensors are known 

to be on same individual, next step in authentication process is to share a secret key among the 

sensors. We plan to explore the secret key extraction from the coherence curve derived from our 

experimental results in future work. 
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