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Abstract

The dissertation studies about the existence of three different types of attractors of three multi-

component reaction-diffusion systems. These reaction-diffusion systems play important role in

both chemical kinetics and biological pattern formation in the fast-growing area of mathematical

biology.

In Chapter 2, we prove the existence of a global attractor and an exponential attractor for

the solution semiflow of a reaction-diffusion system called Boissonade equations in the L2 phase

space. We show that the global attractor is an (H,E) global attractor with the L∞ and H2 regu-

larity and that the Hausdorff dimension and the fractal dimension of the global attractor are finite.

The existence of exponential attractor is also shown. The upper-semicontinuity of the global at-

tractors with respect to the reverse reaction rate coefficient is proved.

In Chapter 3, the existence of a pullback attractor for non-autonomous reversible Selkov equa-

tions in the product L2 phase space is proved. The method of grouping and rescaling estimation

is used to prove that the L4-norm and L6-norm of solution trajectories are asymptotical bounded.

The new feature of pinpointing a middle time in the process turns out to be crucial to deal with the

challenge in proving pullback asymptotic compactness of this typical non-autonomous reaction-

diffusion system.

In Chapter 4, asymptotical dynamics of stochastic Brusselator equations with multiplicative

noise is investigated. The existence of a random attractor is proved via the exponential transfor-

mation of Ornstein-Uhlenbeck process and some challenging estimates. The proof of pullback

asymptotic compactness here is more rigorous through the bootstrap pullback estimation than a

ii



non-dynamical substitution of Brownian motion by its backward translation. It is also shown that

the random attractor has the L2 to H1 attracting regularity by the flattening method.
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Chapter 1

Introduction

Dynamical system is a ubiquitous and rapidly expanding area in mathematics since its incep-

tion by the founding work of Henri Pioncaré (1854-1912), Alexander Mikhailovich Lyapunov

(1857-1918) and George David Birkhoff (1884-1944). The well known concepts in dynamical

systems include stability, Lyapunov function, Lyapunov exponents and Birkhoff Ergodic Theo-

rem, to name a few. Dynamical system in its infancy was called the qualitative theory of ordinary

differential equations (ODEs). Along with the development of functional analysis and partial dif-

ferential equations (PDEs), the well-posed problem of parabolic or hyperbolic partial differential

equations formulated as abstract evolutionary equations generates a flow (or semiflow) of solution

trajectories in Banach spaces. It then gives rise to the rich theory of an infinite dimensional dy-

namical system. The principal concept depicting the longtime dynamics of infinite dimensional

dynamical system is global attractor of a semiflow.

The first construction of a global attractor for some dissipative PDEs was in the seminal work

of Ladyzhenskaya [28] in 1972, then the theory of global attractors was developed by Foias and

Temam [20], Babin and Vishik [3] and Hale [22]. Generally speaking, global attractor is a com-

paratively smaller and coherent subset in phase space and it captures all the important permanent

structure of the concerned infinite dimensional dynamical systems, including all steady states, pe-

riodic orbits, homoclinic and heteroclinic orbits, and unstable manifolds. In particular, the fractal

dimension of an attractor estimates the number of degrees of freedom for an infinite dimensional

dynamical system. The rigorous definitions of global attractor and relevant concepts are given in

Chapter 2.
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Global attractor is an instrumental tool in the theory of infinite dimensional dynamical sys-

tems to characterize the long-term and asymptotical behavior of the underlying PDEs, delay dif-

ferential equations or lattice equations, such as Navier-Stoks equations, reaction-diffusion sys-

tems and nonlinear wave equations. The existence theory of global attractors for a series of

multi-component reaction-diffusion systems such as the Brusselator equations, Gray-Scott equa-

tions, Schnackenberg equations and Oregonator equations has been established recently by Y.

You [42, 43, 45, 47].

The theory of non-autonomous dynamical systems attracts much attention as it synergizes the

developments on time-dependent differential equations, control systems, random and stochastic

differential equations. In the study of the asymptotical behavior of non-autonomous dynami-

cal system, the concept of pullback attractor was introduced by H. Crauel, F. Flandoli [15] and

B. Schmalfuß [35] to study the dynamics of certain stochastic differential equations within the

framework of the random dynamical systems. The general theory of pullback attractor could

be phrased in the language of cocycles, which will be defined in Chapter 4. The term pullback

attractor became widely accepted after its use by P. Kloeden [26]. For more discussion about

non-autonomous dynamical system, see the recent books by P. Kloeden and M. Rasmussen [27]

and by Alexandre Carvalho, José A. Langa and James Robinson [11].

Global attractor of an autonomous dynamical system is invariant with respect to time transla-

tion. But for time-dependent systems, the starting time is as crucial as the elapsed time. Thus

for non-autonomous dynamical systems we could generalize the concept in two directions. One

is forward attraction, which is less applicable as shown in [11]. The other is pullback attrac-

tion, which means attracting by freezing final time while pulling back the initial time as early as

possible. For more comparison of these concepts, readers are referred to [11].

Since Itô’s stochastic integral was invented in 1944 [23] and stochastic analysis was developed

in 1970s, it is natural to ask how to generate a random dynamical system from stochastic dif-

ferential equations. The theory of random dynamical systems was developed mainly by Ludwig

Arnold and his Bremen Group around 1980s. As L. Arnold pointed out in [1], one of the histor-

ical gates in the development of the theory of stochastic differential equations was the discovery
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that their solution is a cocycle over an ergodic dynamical system which models randomness, i.e.,

a random dynamical system. Since L. Arnord’s classical book [2] appeared in 1998, there have

been rapid progresses in various aspects of random dynamical system in the last two decades, see,

e.g., [4, 5, 13, 25, 41, 48, 49]. One important and fruitful aspect is the theory and applications of

random attractors generated by stochastic/random ordinary/partial differential equations.

In a nutshell, random dynamical system is defined in an environment described by another

metric dynamical system modeling the noise, usually the white noise. The concept of random

attractor was first introduced by H. Crauel and F. Flandoli [14], B. Schmalfuß [35] to study the

asymptotic behaviors of Navier-Stokes equations with multiplicative and additive white noise. For

various stochastic PDEs there have been a great deal of results addressing the random attractors,

see, e.g., [5, 34, 41, 48, 49].

The main contributions of the dissertation can be summarized as follows. In Chapter 2, we

analyses a new reaction-diffusion system called Boissonade equations from biology, and show

the existence of a global attractor and an exponential attractor for the solution semiflow in the L2

phase space. The challenge includes the proof of the H2 regularity and the proof of the upper-

semicontinuity of the global attractors with respect to the reverse reaction rate coefficient. These

results could be useful in explaining the stability and robustness of the underlying models in the

lab of biology.

In Chapter 3, the existence of the pullback attractor for non-autonomous reversible Selkov equa-

tions in the product L2 phase space is proved. The method of grouping and re-scaling estimation

is used to prove that the L4-norm and L6-norm of solution trajectories are asymptotical bounded.

The new feature of pinpointing a middle time in the process turns out to be crucial to deal with the

challenge in proving pullback asymptotic compactness of this typical non-autonomous reaction-

diffusion system.

In Chapter 4, the asymptotical dynamics of stochastic Brusselator equations with multiplicative

white noise is investigated. The existence of random attractor is proved via the exponential trans-

formation of Ornstein-Uhlenbeck process and some challenging estimates. The proof of pullback

asymptotic compactness here is more rigorous through the bootstrap pullback estimation than

3



a non-dynamical substitution of Brownian motion by its backward translation. There are some

novelties in this chapter such as:

First, it is new to use the exponential transformation of Ornstein-Uhlenbeck process to convert

the stochastic terms to random coefficients for reaction-diffusion equations in the multiplicative

white noise case.

Second, we use the rigorous pullback estimates other than the shortcut many authors did by

the non-dynamical substitute of noise shift. The bootstrap method is applied in the light of the

decomposition method used initially for deterministic Brusselator equations in [42].

Next we introduce some common notation in this dissertation.

Let Γ ⊂ Rn(n ≤ 3) be a bounded domain with a locally Lipschitz continuous boundary. Define

the product Hilbert spaces as follows,

H = L2(Γ)× L2(Γ), E = H1
0 (Γ)×H1

0 (Γ), Π = H1
0 (Γ) ∩H2(Γ)×H1

0 (Γ) ∩H2(Γ).

These product spaces are the phase spaces of different regularity for the component functions

u(t, ·), v(t, ·) . We denote the norm and inner-product of H or any component space L2(Γ) by

‖ · ‖ and 〈 ·, · 〉, respectively. The norm of Lp(Γ) or the product space Lp(Γ) = Lp(Γ) × Lp(Γ)

will be denoted by ‖ · ‖Lp , if p 6= 2. By the Poincaré inequality and the homogeneous Dirichlet

boundary condition, there is a constant γ > 0 such that

‖∇ξ‖2 ≥ γ‖ξ‖2, for ξ ∈ H1
0 (Γ) or E, (1.0.1)

and we take ‖∇ξ‖ to be the equivalent norm ‖ξ‖E or ‖ξ‖H1
0 (Γ). We use | · | to denote the Lebesgue

measure of sets as well as the absolute value and the vector norm in Euclidean spaces.

By the Lumer-Phillips theorem and the analytic semigroup generation theorem [37], the linear

operator

A =

d1∆ 0

0 d2∆

 : D(A)(= Π) −→ H (1.0.2)

where d1, d2 are positive constants and ∆ is the Laplacian operator, is the generator of an analytic

and exponentially stableC0-semigroup on the Hilbert spaceH , which will be denoted by {eAt}t≥0.
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Consider an Initial Value Problem for an abstract nonlinear evolutionary equation of the form

∂tu = Au+ F (u, t), t > t0,

u(t0) = u0 ∈ H.
(1.0.3)

on the Hilbert space H . Let I = [t0, t0 + τ) be a time interval on R.

A pair (u, I) is said to be a mild solution of (1.0.3) in the space H on I , provided that u ∈

C(I,H) and u is a solution of the integral equation

u(t) = eA(t−t0)u0 +

∫ t

t0

eA(t−s)F (u(s), s)ds, t ∈ I (1.0.4)

A pair (u, I) is said to be a strong solution of (1.0.3) in the space H on I , provided that

u ∈ C(I,H) , u(t0) = u0 , u is strongly differentiable almost everywhere with ∂tu and Au

in L1
loc(I,H), and u satisfies the differential equation

∂tu(t) = Au(t) + F (u(t), t), a.e. in H, on I.

5



Chapter 2

Global attractor of Boissonade system

2.1 Introduction

Turing pattern is mathematically demonstrated by systems of partial differential equations called

reaction diffusion systems [30, 39]. The chemical reaction kinetics is controlled by two antago-

nistic feedback loops, an activation process and an inhibitory process. The experimental evidence

of Turing pattern was observed in the so-called chlorite-iodine-malonic acid (CIMA) reaction af-

ter almost 40 years since Turing’s paper was published in 1952 [39]. In experimentation, it is a

3D reactor and the Turing structures are found to form one layer after the other, there is a single

layer called “monolayer” beyond the pattern onset [17]. In order to clarify the relation between

the genuine homogeneous 2D systems and the monolayers, V. Dufiet and J. Boissonade studied

the selection of patterns close to onset for the same model in both geometries. They introduced a

simple appropriate reaction-diffusion model that exhibits Turing pattern in [17]. In this chapter,

we explore the long-time global dynamical behavior of this model, which we call the Boissonade

equations,

∂u

∂t
= d1∆u+ u− αv + γuv − u3, (2.1.1)

∂v

∂t
= d2∆v + u− βv, (2.1.2)

for (t, x) ∈ (0,∞) × Γ, where Γ ⊂ Rn(n ≤ 3) is a bounded domain with a locally Lipschitz

continuous boundary, and the coefficients d′is, (i = 1, 2), α, β, γ are positive constants. Given the

homogeneous Dirichlet boundary condition

u(t, x) = v(t, x) = 0, t > 0, x ∈ ∂Γ, (2.1.3)
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and an initial condition

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Γ, (2.1.4)

we shall study the long-time and asymptotical dynamics of semiflow of the weak solutions to this

initial-boundary value problem (2.1.1) – (2.1.4). Specifically, we prove the existence of a global

attractor and show some important properties of it.

Note that the Boissonade system is different from the FitzHugh-Nagumo equations [12] in the

quadratic term uv instead of u2. This difference makes the nonlinear term of Boissanade system

disqualify the dissipative condition, on the other hand it is also the main merit of our work.

First we formulate the Boissonade system into an evolutionary equation in the abstract func-

tional space. By Sobolev embedding theorem, H1
0 (Γ) ↪→ L6(Γ) is a continuous embedding for

n ≤ 3. Invoking the generalized Hölder inequality, we have

‖uv‖ ≤ |Γ|
1
6‖u‖L6‖v‖L6 , ‖u3‖ ≤ ‖u‖3

L6 , for u, v ∈ L6(Γ).

From these facts we can verify that the nonlinear mapping

f(g) =

u− αv + γuv − u3

u− βv

 : E −→ H, (2.1.5)

where g = (u, v), is a locally Lipschitz continuous mapping defined on E. Thus the initial-

boundary value problem (2.1.1)–(2.1.4) of this Boissonade system is formulated into an initial

value problem in H:

dg

dt
= Ag + f(g), t > 0.

g(0) = g0 = (u0, v0) ∈ H.
(2.1.6)

We consider the weak solutions to the initial value problem (2.1.6), as defined below.

Definition 2.1.1. A function g(t, x), (t, x) ∈ [0, τ ]×Γ, is called a weak solution to the IVP of the

parabolic evolutionary equation (2.1.6), if the following two conditions are satisfied:

(i) d
dt

(g, η) = (Ag, η) + (f(g), η) is satisfied for a.e. t ∈ [0, τ ] and any η ∈ E;
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(ii) g(t, ·) ∈ L2(0, τ ;E) ∩ Cw([0, τ ];H) such that g(0) = g0,

where Cw([0, τ ];H) denotes the space of weakly continuous functions on [0, τ ] valued in H , and

(·, ·) stands for the (E∗, E) dual product.

Next we recall some basic concepts and facts in the theory of infinite dimensional dynamical

systems, cf. [12, 37, 38].

Definition 2.1.2 (Semiflow). Let X be a Banach space, a semiflow in X is a family of maps

S(t) : t ≥ 0 such that the following holds:

1. S(0) = Id,

2. S(t+ s) = S(t)S(s), for all t, s ∈ R+,

3. (t, x) 7→ S(t)x is continuous with respect to t and x, where t ≥ 0, x ∈ X .

Definition 2.1.3 (Absorbing Set). Let {S(t)}t≥0 be a semiflow on a Banach space X . A bounded

subset B0 of X is called an absorbing set in X if, for any bounded subset B ⊂ X , there is some

finite time t0 ≥ 0 depending on B such that S(t)B ⊂ B0 for all t > t0.

Definition 2.1.4 (Asymptotic Compactness). A semiflow {S(t)}t≥0 on a Banach spaceX is called

asymptotically compact in X if for any bounded sequences {xn} in X and {tn} ⊂ (0,∞) with

tn →∞, there exist subsequences {xnk} of {xn} and {tnk} of {tn}, such that limk→∞ S(tnk)xnk

exists in X .

Definition 2.1.5 (Global Attractor). Let {S(t)}t≥0 be a semiflow on a Banach space X . A subset

A ofX is called a global attractor inX for this semiflow, if the following conditions are satisfied:

(i) A is a nonempty, compact, and invariant set in the sense that

S(t)A = A for any t ≥ 0.

(ii) A attracts any bounded set B of X in terms of the Hausdorff distance, i.e.

dist(S(t)B,A ) = sup
x∈B

inf
y∈A
‖S(t)x− y‖X → 0, as t→∞.
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Definition 2.1.6 ((X,Y) Global Attractor). Let {Σ(t)}t≥0 be a semiflow on a Banach spaceX and

let Y be a densely and compactly imbedded subspace of X . A subset A of Y is called an (X, Y )

global attractor for this semiflow if A has the following properties,

(i) A is a nonempty, compact, and invariant set in Y .

(ii) A attracts any bounded set B ⊂ X with respect to the Y -norm, namely, there is a time

τ = τ(B) such that Σ(t)B ⊂ Y for t > τ and distY (Σ(t)B,A)→ 0, as t→∞.

Definition 2.1.7 (Upper Semicontinuity). Suppose that there is a family of semiflows

{{Sλ(t)}t≥0}λ∈Λ on a Banach space X , where Λ ⊂ R is an interval, and that there exists a global

attractor Aλ in X for each semiflow{Sλ(t)}t≥0, λ ∈ Λ. If λ0 ∈ Λ and

dist(Aλ,Aλ0)→ 0, as λ→ λ0 in Λ,

then we say that the family of global attractors {Aλ}λ∈Λ is upper-semicontinuous at λ0 , or that

Aλ has the robustness at λ0.

The following proposition states the basic result on the existence of a global attractor for a

semiflow, cf. [33, 37, 38].

Proposition 2.1.8. Let {S(t)}t≥0 be a semiflow on a Banach space X . If the following conditions

are satisfied:

(i) {S(t)}t≥0 has an absorbing set B0 in X , and

(ii) {S(t)}t≥0 is asymptotically compact in X ,

then there exists a global attractor A in X for this semiflow, which is given by

A = ω(B0)
def
=
⋂
τ≥0

ClX
⋃
t≥τ

(S(t)B0).

Note that a global attractor A does not depends on the particular choice of absorbing set B0.

First we state the main results of this chapter. We emphasize that these results are established

unconditionally, neither assuming initial data or solutions are nonnegative, nor imposing any re-

striction on any positive parameters involved in the equations (2.1.1)–(2.1.2).
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First Main Theorem. For any positive parameters d1, d2, α, β, γ, there exists a global attrac-

tor A in the phase space H for the semiflow {S(t)}t≥0 of the weak solutions generated by the

Boissonade evolutionary equation (2.1.6). Moreover the following properties hold:

(i) A is a bounded set in Π ∩ L∞(Γ), and it is an (H,E) global attractor.

(ii) A has a finite Hausdorff dimension and a finite fractal dimension.

(iii) There exists an exponential attractor for this semiflow {S(t)}t≥0.

Second Main Theorem. Given any positive parameters d1, d2, α, β, the family of global attrac-

tors Aγ, γ ≥ 0, has the upper semi-continuity in E with respect to γ ≥ 0 as it converges to zero,

that is

distE(Aγ,A0)→ 0, as γ → 0+.

The rest of the chapter is organized as follows. In Section 2 we shall prove the global existence

of the weak solutions of the Boissonade evolutionary equation (2.1.6). In Section 3 we show

the absorbing property. In Section 4 we prove the asymptotical compactness of this solution

semiflow. In Section 5 we show the existence of a global attractor for this semiflow and its

properties as being the (H,E) global attractor and the L∞ and H2 regularity. We also prove that

the global attractor has finite Hausdorff dimension and fractal dimension. In Section 6 we show

the existence of exponential attractor. In Section 7 and 8 we prove the upper-semicontinuity of

the global attractors with respect to the reverse reaction rate coefficient as it tends to zero.

2.2 Global Existence of Weak Solutions

We write u(t, x), v(t, x) simply as u(t), v(t) , or even as u, v, etc.

Lemma 2.2.1. For any given initial data g0 ∈ H , there exists a unique local weak solution g(t) =

(u(t), v(t)), t ∈ [0, τ ] for some τ > 0, of the IVP of the Boissonade evolutionary equation (2.1.6),

which satisfies

g ∈ C([0, τ ];H) ∩ C1((0, τ);H) ∩ L2(0, τ ;E). (2.2.1)

The proof of this lemma is by using Galerkin approximations and the Lions-Magenes type

of compactness treatment involving the following a priori estimates for the weak solution. The
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process is standard and can be found in [46].

Lemma 2.2.2. For any initial data g0 = (u0, v0) ∈ H , there exists a unique global weak solution

g(t) = (u(t), v(t)), t ∈ [0,∞), of the IVP of the Boissonade evolutionary equation (2.1.6) and it

becomes a strong solution on the time interval (0,∞).

Proof. Taking the inner products 〈(2.1.1), u(t)〉 and 〈(2.1.2), cv(t)〉 where c is a positive constant

to be determined later, and summing them up, by Young’s inequality we get

1

2

(
d

dt
‖u‖2 + c

d

dt
‖v‖2

)
+ d1‖∇u‖2 + cd2‖∇v‖2

=

∫
Γ

(
u2 + (c− α)uv + γu2v − u4 − aβv2

)
dx

≤
∫

Γ

(
u2 +

(c− α)2u2

cβ
+
cβ

4
v2 +

u4

4
+ γ2v2 − u4 − cβv2

)
dx

=

∫
Γ

(
(1 +

(c− α)2

cβ
)u2 − 3

4
u4 − (cβ − cβ

4
− γ2)v2

)
dx

≤ (1 +
(c− α)2

cβ
)2|Γ| −

∫
Γ

1

2
u4dx− γ2

2

∫
Γ

v2dx.

(2.2.2)

where we take c = 2γ2

β
.

It follows that

1

2

(
d

dt
‖u‖2 + c

d

dt
‖v‖2

)
+

1

2
‖u‖2 +

γ2

2
‖v‖2 + d1‖∇u‖2 + cd2‖∇v‖2

≤1

2

(
d

dt
‖u‖2 + c

d

dt
‖v‖2

)
+

∫
Γ

1

2
u4dx+

1

8
|Γ|+ γ2

2

∫
Γ

v2dx+ d1‖∇u‖2 + cd2‖∇v‖2

≤ (1 +
(c− α)2

cβ
)2|Γ|+ 1

8
|Γ|.

(2.2.3)

Let b1 = min{1, γ2
c
}, M1 = 2(1 + (c−α)2

cβ
)2|Γ|+ 1

4
|Γ|, we end up with

d

dt

(
‖u‖2 + c‖v‖2

)
+ b1

(
‖u‖2 + c‖v‖2

)
≤ M1 (2.2.4)

Thanks to the Gronwall’s inequality, we have

‖u‖2 + c‖v‖2 ≤ e−b1t(‖u0‖2 + c‖v0‖2) +
M1

b1

(2.2.5)
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Let c1 = min{1, c}, c2 = max{1, c}, we get

‖u‖2 + ‖v‖2 ≤ c2

c1

e−b1t(‖u0‖2 + ‖v0‖2) +
M1

b1c1

(2.2.6)

From (2.2.6) we conclude that for any initial data g0 ∈ H , the weak solution g(t) = (u(t), v(t))

is uniformly bounded in [0, Tmax) if Tmax is finite. Therefore, for any g0 ∈ H , the weak solution

g(t) of (2.1.6) will never blow up in H at any finite time. Moreover, by the regularity of weak

solution (2.2.1), any weak solution turns out to be a strong solution on the time interval (0,∞).

The proof is completed.

By the global existence and uniqueness of the weak solutions and their continuous dependence

on initial data, the family of all the global weak solutions {g(t; g0) : t ≥ 0, g0 ∈ H} defines a

semiflow on H ,

S(t) : g0 7→ g(t; g0), g0 ∈ H, t ≥ 0,

which will be called the Boissonade semiflow associated with the Boissonade evolutionary equa-

tion (2.1.6).

Lemma 2.2.3. There exists a constant K1 > 0, such that the set

B0 =
{
g ∈ H : ‖g‖2 ≤ K1

}
(2.2.7)

is an absorbing set in H for the Boissonade semiflow {S(t)}t≥0.

Proof. From (2.2.6) we obtain

lim sup
t→∞

(‖u(t)‖2 + ‖v(t)‖2) < K1 =
2M1

b1c1

, (2.2.8)

For any given bounded set B = {g ∈ H : ‖g‖ ≤ R} in H , there exists a finite time T0 =

1
b1

ln b1c2R2

M1
such that ‖u(t)‖2 + ‖v(t)‖2 < K1 for any g0 ∈ B and all t > T0.

Note that for any t ≥ T0, integration of (2.2.3) implies that∫ t+1

t

2(d1‖∇u(s)‖2ds+ cd2‖∇v(s)‖2)ds

≤M1 + ‖u(t)‖2 + c‖v(t)‖2

≤M1 + max{1, c}K1,

(2.2.9)
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which is useful later.

Next we show the absorbing properties of the (u, v) components of the Boissonade semiflow in

the product Banach spaces [L2p(Γ)]2, for integers p = 2, 3.

Lemma 2.2.4. For p = 2, 3, there exists a positive constant Kp such that the absorbing inequality

lim sup
t→∞

‖(u(t), v(t))‖2p
L2p < Kp (2.2.10)

is satisfied by the (u, v) components of the Boissonade semiflow {S(t)}t≥0 for any initial data

g0 ∈ H .

Proof. According to the solution property (2.2.1) with Tmax = ∞ for all solutions, for any given

initial status g0 ∈ H there exists a time t0 ∈ (0, 1) such that

S(t0)g0 ∈ E = [H1
0 (Γ)]2 ↪→ L6(Γ) ↪→ L4(Γ). (2.2.11)

Then the weak solution g(t) = S(t)g0 becomes a strong solution on [t0,∞) and satisfies

S(·)g0 ∈ C([t0,∞);E) ∩ L2(t0,∞; Π) ⊂ C([t0,∞);L6(Γ)) ⊂ C([t0,∞);L4(Γ)), (2.2.12)

for n ≤ 3. Based on this observation, without loss of generality, we can simply assume that

g0 ∈ L6(Γ) for the purpose of studying the long-term dynamics. Then by the bootstrap argument,

we can assume that g0 ∈ Π ⊂ L8(Γ) so that S(t)g0 ∈ Π ⊂ L8(Γ), t ≥ 0.

For p = 2, 3, we take the L2 inner-product 〈(2.1.1), u2p−1〉 and 〈(2.1.2), v2p−1〉 and sum them

13



up, by Young’s inequality we obtain

1

2p

d

dt

(
‖u(t)‖2p

L2p + ‖v(t)‖2p
L2p

)
+ (2p− 1)d1‖u(t)2p−2∇u(t)‖2 + (2p− 1)d2‖v(t)2p−2∇v(t)‖2

=

∫
Γ

(
u2p + uv2p−1 − αvu2p−1 + γu2pv − u2p+2 − βv2p

)
dx

≤
∫

Γ

(
u2p +

1

2p
(
2(2p− 1)

pβ
)2p−1u2p +

β

4
v2p +

β

4
v2p +

2p− 1

2p
(

2

pβ
)

1
2p−1α

2p
2p−1u2p

)
dx

+

∫
Γ

(
1

p+ 1
(

4p

p+ 1
)pγp+1vp+1 +

1

4
u2p+2 − u2p+2 − βv2p

)
dx

=

∫
Γ

(
A1u

2p + A2v
p+1 − 3

4
u2p+2 − β

2
v2p

)
dx

≤
∫

Γ

(
1

p+ 1
(

4p

p+ 1
)pAp+1

1 +
1

4
u2p+2 +

β

4
v2p

)
dx

+

∫
Γ

(
p− 1

2p
(
4(p+ 1)

2pβ
)
p+1
p−1A

2p
p−1

2 − 3

4
u2p+2 − β

2
v2p

)
dx

=

(
1

p+ 1
(

4p

p+ 1
)pAp+1

1 +
p− 1

2p
(
4(p+ 1)

2pβ
)
p+1
p−1A

2p
p−1

2

)
|Γ| − 1

2

∫
Γ

u2p+2dx− β

4

∫
Γ

v2pdx,

(2.2.13)

where

A1 = 1 +
1

2p
(
2(2p− 1)

pβ
)2p−1 +

2p− 1

2p
(

2

pβ
)

1
2p−1α

2p
2p−1 ,

A2 =
1

p+ 1
(

4p

p+ 1
)pγp+1.

It yields,

1

2p

d

dt

(
‖u(t)‖2p

L2p + ‖v(t)‖2p
L2p

)
+

∫
Γ

u2pdx+
β

4

∫
Γ

v2pdx

≤ 1

2p

d

dt

(
‖u(t)‖2p

L2p + ‖v(t)‖2p
L2p

)
+

1

p+ 1
(

2p

p+ 1
)p|Γ|+ 1

2

∫
Γ

u2p+2dx+
β

4

∫
Γ

v2pdx

≤
(

1

p+ 1
(

4p

p+ 1
)pAp+1

1 +
p− 1

2p
(
4(p+ 1)

2pβ
)
p+1
p−1A

2p
p−1

2

)
|Γ|+ 1

p+ 1
(

2p

p+ 1
)p|Γ|.

(2.2.14)

Putting bp = min{2p, pβ
2
}, and

Mp = 2p

(
1

p+ 1
(

4p

p+ 1
)pAp+1

1 +
p− 1

2p
(
4(p+ 1)

2pβ
)
p+1
p−1A

2p
p−1

2

)
|Γ|+ (

2p

p+ 1
)p+1|Γ|,
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we get
d

dt
‖u(t)‖2p

L2p +
d

dt
‖v(t)‖2p

L2p + bp‖u(t)‖2p
L2p + bp‖v(t)‖2p

L2p ≤ Mp. (2.2.15)

Applying the Gronwall inequality, we have

‖u(t)‖2p
L2p + ‖v(t)‖2p

L2p ≤ e−bpt(‖u0‖2p
L2p + ‖v0‖2p

L2p) +Mp. (2.2.16)

It follows that

lim sup
t→∞

(‖u(t)‖2p
L2p + ‖v(t)‖2p

L2p) < Kp = 2Mp. (2.2.17)

The proof is completed.

2.3 Asymptotic Compactness

In this section, we show that the Boissonade semiflow {S(t)}t≥0 is asymptotically compact through

the following lemma. We shall use the notation ‖(y1, y2)‖2 = ‖y1‖2 + ‖y2‖2 for conciseness.

Lemma 2.3.1. For any given initial data g0 ∈ B0, the (u, v) components of the solution trajecto-

ries g(t) = S(t)g0 of the IVP (2.1.6) satisfy

‖∇(u(t), v(t))‖2 ≤ Q1, for t > T1, (2.3.1)

where Q1 > 0 is a constant depending only on K1 and |Γ| but independent of initial data, and

T1 > 0 is finite and only depends on the absorbing ball B0.

Proof. Taking the inner-products 〈(2.1.2),−∆v(t)〉 to obtain

1

2

d

dt
‖∇v‖2 + d2‖∆v‖2

=

∫
Γ

(
−u∆v − β|∇v|2

)
dx

≤
∫

Γ

(
u2

2d2

+
d2

2
|∆v|2

)
dx− β‖∇v‖2.

It follows that

d

dt
‖∇v‖2 + d2‖∆v‖2 + 2β‖∇v‖2 ≤ ‖u‖

2

2d2

.
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Next, taking the inner-products 〈(2.1.1),−∆u(t)〉, we obtain

1

2

d

dt
‖∇u‖2 + d1‖∆u‖2

=

∫
Γ

(
|∇u|2 + αv∆u− γuv∆u− 3u2|∇u|2

)
dx

≤
∫

Γ

(
|∇u|2 +

α2v2

d1

+
d1

4
|∆u|2 +

γ2u2v2

d1

+
d1

4
|∆u|2

)
dx

≤
∫

Γ

(
|∇u|2 +

α2v2

d1

+
d1

4
|∆u|2 +

γ2

2d1

(
u4 + v4

)
+
d1

4
|∆u|2

)
dx.

It follows that

d

dt
‖∇u‖2 + d1‖∆u‖2

≤ 2‖∇u‖2 +
2α2

d1

‖v‖2 +
γ2

d1

(
‖u‖4

L4 + ‖v‖4
L4

)
.

Adding up the two components gives

d

dt
(‖∇u‖2 + ‖∇v‖2) + d1‖∆u‖2 + d2‖∆v‖2 + 2β‖∇v‖2

≤ 2‖∇u‖2 +
‖u‖2

2d2

+
2α2

d1

‖v‖2 +
γ2

d1

(
‖u‖4

L4 + ‖v‖4
L4

)
.

(2.3.2)

Note that we have taken ‖∇ϕ‖ as the norm of E and there is a positive constant η > 0 associated

with the Sobolev imbedding inequality

‖ϕ‖L4(Γ) ≤ η‖ϕ‖E = η‖∇ϕ‖, for any ϕ ∈ E. (2.3.3)

Since B0 in (2.2.7) is an absorbing ball, there is a finite time T0 > 0 depending only on B0 such

that S(t)B0 ⊂ B0 for all t > T0. In other words, we have the finite time T0 > 0 depending only

on B0 such that

‖u(t)‖2 + ‖v(t)‖2 ≤ K1, for any t > T0, g0 ∈ B0. (2.3.4)

Then (2.3.2) along with these facts shows that for any initial datum g0 ∈ B0 one has

d

dt
‖(∇u,∇v)‖2

≤ γ
2

d1

η4(‖∇u‖4 + ‖∇v‖4) + 2‖∇u‖2 + max{ 1

2d2

,
2α2

d1

}K1

≤‖(∇u,∇v)‖2

(
2 +

γ2η4

d1

‖(∇u,∇v)‖2

)
+ max{ 1

2d2

,
2α2

d1

}K1, t > T0.

(2.3.5)
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The differential inequality (2.3.5) can be written as

d

dt
β ≤ ρ β + h, for t > T0, g0 ∈ B0, (2.3.6)

where

β(t) = ‖(∇u,∇v)‖2, ρ(t) =

(
2 +

γ2η4

d1

‖(∇u,∇v)‖2

)
,

and

h(t) = max{ 1

2d2

,
2α2

d1

}K1.

From (2.2.9) we see that, for any given initial data g0 = (u0, v0) ∈ B0,∫ t+1

t

β(s) ds ≤ M1 + max{1, c}K1

2 min{d1, cd2}
for t > T0, g0 ∈ B0. (2.3.7)

Hence, ∫ t+1

t

ρ(s) ds ≤M , 2 +
γ2η4

d1

(
M1 + max{1, c}K1

2 min{d1, cd2}

)
. (2.3.8)

Then we apply the uniform Gronwall inequality, cf. [37, 38], to (2.3.6) to get

‖(∇u(t, ·),∇v(t, ·))‖2

≤
(
M1 + max{1, c}K1

2 min{d1, cd2}
+ max{ 1

2d2

,
2α2

d1

}K1

)
expM.

(2.3.9)

for any t > T0 + 1, g0 ∈ B0.

Thus we complete the proof by setting T1 = T0 + 1 and

Q1 =

(
M1 + max{1, c}K1

2 min{d1, cd2}
+ max{ 1

2d2

,
2α2

d1

}K1

)
expM.

2.4 Global Attractor and Its Properties

In this section we reach the proof of the First Main Theorem on the existence of a global attractor,

which will be denoted by A , for the Boissonade semiflow {S(t)}t≥0 and we shall show several

properties of this global attractor A , namely, the regularity of A , the property of being an (H,E)

global attractor, and the finite Hausdorff and fractal dimensionality.

17



Proof of the Existence of Global Attractor. In Lemma 2.2.3 we have shown that the Boissonade

semiflow {S(t)}t≥0 has an absorbing set B0 in H . From Lemma 2.3.1 we have that

‖S(t)g0‖2
E ≤ Q1, for t > T2 and for g0 ∈ B0,

which implies that {S(t)B0 : t > T2} is a bounded set in E and consequently a precompact set in

H . Therefore, the Boissonade semiflow {S(t)}t≥0 is asymptotically compact in H . Thus we can

apply Proposition 2.1.8 to reach the conclusion that there exists a global attractor A in H for this

Boissonade semiflow {S(t)}t≥0.

Next we show that the global attractor A of the Boissonade semiflow is an (H,E) global

attractor with the regularity A ⊂ Π ∩ L∞(Γ). First we have

Lemma 2.4.1. Let {gm} be a sequence in E such that {gm} converges to g0 ∈ E weakly in E and

{gm} converges to g0 strongly in H , as m→∞. Then

lim
m→∞

S(t)gm = S(t)g0 strongly in E,

and the convergence is uniform with respect to t in any given compact interval [t0, t1] ⊂ (0,∞).

The proof of this lemma is seen in [45, Lemma 10].

Theorem 2.4.2. The global attractor A in H for the Boissonade semiflow {S(t)}t≥0 is an (H,E)

global attractor and A is a bounded subset in L∞(Γ), i.e.

‖g‖L∞ ≤ C, for any g ∈ A . (2.4.1)

Proof. By Lemma 2.3.1, we can assert that there exists a bounded absorbing set B1 ⊂ E for the

Boissonade semiflow {S(t)}t≥0 on H and this absorbing is in the E-norm. Indeed,

B1 = {g ∈ E : ‖g‖2
E = ‖∇g‖2 ≤ Q1}.

Now we show that this semiflow {S(t)}t≥0 is asymptotically compact with respect to the strong

topology in E. For any time sequence {tn}, tn →∞, and any bounded sequence {gn} ⊂ E, there

exists a finite time t0 ≥ 0 such that S(t){gn} ⊂ B0, for any t > t0. Then for an arbitrarily given
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T > t0 + T1, where T1 is the time specified in Lemma 2.3.1, there is an integer n0 ≥ 1 such that

tn > 2T for all n > n0. According to Lemma 2.3.1 ,

{S(tn − T )gn}n>n0 is a bounded set in E.

Since E is a Hilbert space, there is an increasing sequence of integers {nj}∞j=1 with n1 > n0, such

that

lim
j→∞

S(tnj − T )gnj = g∗ weakly in E.

By the compact imbedding E ↪→ H , there is a further sebsequence of {nj}, but relabeled as the

same as {nj}, such that

lim
j→∞

S(tnj − T )gnj = g∗ strongly in H.

Then by Lemma 2.4.1, we have the following convergence with respect to the E-norm,

lim
j→∞

S(tnj)gnj = lim
j→∞

S(T )S(tnj − T )gnj = S(T )g∗ strongly in E.

This proves that {S(t)}t≥0 is asymptotically compact in E.

Therefore, by Proposition 2.1.8, there exists a global attractor AE for the semiflow {S(t)}t≥0

in E. According to Definition 2.1.6 and the fact that B1 attracts B0 in the E-norm due to Lemma

2.3.1 , we see that this global attractor AE is an (H,E) global attractor. Moreover, the invariance

and the boundedness of A in H and in E imply that

AE attracts A in E, so that A ⊂ AE;

A attracts AE in H, so that AE ⊂ A .

Therefore, A = AE and we proved that the global attractor A in H is indeed an (H,E) global

attractor for this Boissonade semiflow.

Next we show that A is a bounded subset in L∞(Γ). By the (Lp, L∞) regularity of the analytic

C0-semigroup {eAt}t≥0 stated in [37, Theorem 38.10], one has eAt : Lp(Γ) −→ L∞(Γ) for t > 0,

and there is a constant C(p) > 0 such that

‖eAt‖L(Lp,L∞) ≤ C(p) t−
n
2p , t > 0, where n = dim Γ. (2.4.2)
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By the variation-of-constant formula satisfied by the mild solutions (of course strong solutions),

for any g ∈ A (⊂ E), we have

‖S(t)g‖L∞ ≤ ‖eAt‖L(L2,L∞)‖g‖+

∫ t

0

‖eA(t−σ)‖L(L2,L∞)‖f(S(σ)g)‖ dσ

≤ C(2)t−
3
4‖g‖+

∫ t

0

C(2)(t− σ)−
3
4L(Q1)‖S(σ)g‖E dσ, t ≥ 0,

(2.4.3)

where C(2) is in the sense of (2.4.2), and L(Q1) is the Lipschitz constant of the nonlinear map f

restricted on the closed, bounded ball centered at the origin with radiusQ1 inE. By the invariance

of the global attractor A , we have

{S(t)A : t ≥ 0} ⊂ B0 (⊂ H) and {S(t)A : t ≥ 0} ⊂ B1 (⊂ E).

Then from (2.4.3) we get

‖S(t)g‖L∞ ≤ C(2)K1t
− 3

4 +

∫ t

0

C(2)L(Q1)Q1(t− σ)−
3
4 dσ

= C(2)[K1t
− 3

4 + 4L(Q1)Q1t
1
4 ], for t > 0.

(2.4.4)

Specifically one can take t = 1 in (2.4.4) and use the invariance of A to obtain

‖g‖L∞ ≤ C(2)(K1 + 4L(Q1)Q1), for any g ∈ A .

Thus the global attractor A is a bounded subset in L∞(Γ).

Now we show the global attractor A is bounded in H2(Γ)×H2(Γ).

Theorem 2.4.3. The global attractors A for the Boissonade semiflow {S(t)}t≥0 is bounded in

H2(Γ)×H2(Γ).

Proof. Due to the homogeneous Dirichlet boundary condition and the fact that C∞0 (Γ) is dense in

H2(Γ) as well as

‖∇ϕ‖2 = |〈ϕ,∆ϕ〉| ≤ 1

2
(‖∆ϕ‖2 + ‖ϕ‖2)

we have a constant % > 0 such that

‖ϕ‖2
H2 ≤ %(‖∆ϕ‖2 + ‖ϕ‖2)
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Since A is bounded in H , we only need to estimate ‖∆u‖2 and ‖∆v‖2. Below we write ut to be

the partial derivative with respect to time t of u(t, x), etc. Taking inner-product 〈(2.1.1), ut〉 and

〈(2.1.1), vt〉 respectively and summing up, we get

‖ut‖2 + ‖vt‖2 +
1

2

d

dt

(
d1‖∇u‖2 + d2‖∇v‖2

)
=

∫
Γ

(
uut − αutv + γuvut − u3ut + uvt − βvvt

)
dx

≤
∫

Γ

(
C + αC + γC2 + C3

)
|ut|dx+

∫
Γ

(C + βC) |vt|dx

=
1

2

(
C + αC + γC2 + C3

)2 |Ω|+ 1

2
‖ut‖2 +

1

2
(C + βC)2 |Ω|+ 1

2
‖vt‖2,

(2.4.5)

where C comes from (2.4.1).

It follows that

‖ut‖2 + ‖vt‖2 +
d

dt

(
d1‖∇u‖2 + d2‖∇v‖2

)
≤
(
C + αC + γC2 + C3

)2 |Ω|+ (C + βC)2 |Ω|.

(2.4.6)

Integrating (2.4.6) over time interval [0, 1], we have, for (u, v) ∈ A ,∫ 1

0

(‖ut‖2 + ‖vt‖2)ds ≤ d1‖∇u(0)‖2 + d2‖∇v(0)‖2

+
(
C + αC + γC2 + C3

)2 |Ω|+ (C + αC)2 |Ω|

≤ (d1 + d2)Q1 +
(
C + αC + γC2 + C3

)2 |Ω|+ (C + αC)2 |Ω|.

(2.4.7)

Differentiate (2.1.1) and (2.1.2) to obtain

utt = d1∆ut + ut − αvt + γ(utv + uvt)− 3u2ut, (2.4.8)

vtt = d2∆vt + ut − βvt. (2.4.9)

Taking the inner products 〈(2.4.8), t2ut〉 and 〈(2.4.9), t2vt〉 and adding up, we have

− t‖ut‖2 − t‖vt‖2 +
1

2

d

dt

(
‖tut‖2 + ‖tvt‖2

)
+ t2d1‖∇ut‖2 + t2d2‖∇vt‖2

=

∫
Γ

t2
(
u2
t − αutvt + γutvut + γuvtut − 3u2u2

t + utvt − βv2
t

)
dx

≤
∫

Γ

t2
(
u2
t +

α

2
(u2

t + v2
t ) + Cγu2

t +
Cγ

2
(u2

t + v2
t ) + (u2

t + v2
t )

)
dx

=t2
(

2 +
α

2
+

3Cγ

2

)
‖ut‖2 + t2

(
1 +

α

2
+
Cγ

2

)
‖vt‖2.

(2.4.10)
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Integrating the above inequality on [0, t], we have

1

2

(
‖tut‖2 + ‖tvt‖2

)
≤
∫ t

0

s2

(
2 +

α

2
+

3Cγ

2

)
‖ut(s)2‖ds

+

∫ t

0

s2

(
1 +

α

2
+
Cγ

2

)
‖vt(s)2‖ds+

∫ t

0

s(‖ut(s)‖2 + ‖vt(s)‖2)ds.

(2.4.11)

Putting t = 1, we have

‖ut(1)‖2 + ‖vt(1)‖2

≤2

∫ 1

0

(
2 +

α

2
+

3Cγ

2

)
‖ut(s)2‖ds+ 2

∫ t

0

(
1 +

α

2
+
Cγ

2

)
‖vt(s)2‖dx

+ 2

∫ t

0

(‖ut(s)‖2 + ‖vt(s)‖2)ds

≤M4.

(2.4.12)

where

M4 = 2 (4 + α + 2Cγ)
((
C + αC + γC2 + C3

)2 |Ω|+ (C + αC)2 |Ω|
)

Next, due to the invariance of A , for any g ∈ A , there exists a g̃ ∈ A , such that g = S(1)g̃, thus

from (2.1.1) and (2.1.2) we have

d1‖∆u‖+ d2‖∆v‖ ≤‖ut‖+ ‖vt‖+ ‖u‖+ β‖v‖+ ‖u‖+ α‖v‖+ γ‖uv‖+ ‖u3‖

=‖ũt(1)‖+ ‖ṽt(1)‖+ (2 +
γ

2
)‖u‖+ (α +

γ

2
)‖v‖+ ‖u‖3

L6

≤M
1
2

4 + (2 +
γ

2
+ α +

γ

2
)K

1
2
1 +K

1
2
3 .

(2.4.13)

Therefore A is bounded in H2(Γ)×H2(Γ).

Next we consider the Hausdorff and fractal dimensions of the global attractor A . The back-

ground concepts and results can be seen in [38, Chapter V]. Let qm = lim supt→∞ qm(t), where

qm(t) = sup
g0∈A

sup
gi∈H,‖gi‖=1
i=1,··· ,m

(
1

t

∫ t

0

Tr [(A+ f ′(S(τ)g0))Pm(τ)] dτ

)
, (2.4.14)

in which Tr [(A + f ′(S(τ)g0))Γm(τ)] is the trace of the linear operator (A + f ′(S(τ)g0))Pm(τ),

f ′(g) is the Fréchet derivative of the Nemytskii map f in (2.1.6), and Pm(t) stands for the orthog-

onal projection of the space H on the subspace spanned by G1(t), · · · , Gm(t), with

Gi(t) = L(S(t), g0)gi, i = 1, · · · ,m. (2.4.15)
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Here f ′(S(τ)g0) is the Fréchet derivative of the map f defined by (2.1.5) at S(τ)g0, andL(S(t), g0)

is the Fréchet derivative of the map S(t) at g0, with t fixed.

We use the following proposition [38, Chapter V] to show the finite upper bounds of the Haus-

dorff and fractal dimensions of this global attractor A .

Proposition 2.4.4. If there is an integerm such that qm < 0, then the Hausdorff dimension dH(A )

and the fractal dimension dF (A ) of A satisfy

dH(A ) ≤ m, and dF (A ) ≤ m max
1≤j≤m−1

(
1 +

(qj)+

|qm|

)
≤ 2m. (2.4.16)

It can be shown that for any given t > 0, S(t) is Fréchet differentiable in H and uniformly

Fréchet differentiable in A . Its Fréchet derivative at g0 is the bounded linear operator L(S(t), g0)

given by

L(S(t), g0)G0
def
= G(t) = (U(t), V (t)),

for G0 = (U0, V0) ∈ H , where (U(t), V (t)) is the weak solution of the following extended

Boissonade variational equation

∂U

∂t
= d1∆U + U − αV + γUv + γuV − 3u2U,

∂V

∂t
= d2∆V − βV + U

U(0) = U0, V (0) = V0.

(2.4.17)

Here g(t) = (u(t), v(t)) = S(t)g0 is the weak solution of (2.1.6) with the initial condition g(0) =

g0. The initial value problem (2.4.17) can be written as

dG

dt
= (A+ f ′(S(t)g0))G, G(0) = G0. (2.4.18)

As we have shown, the invariance of A implies A ⊂ B0 ∩B1, so that

sup
g0∈A

‖S(t)g0‖2 ≤ K1 and sup
g0∈A

‖S(t)g0‖2
E ≤ Q1. (2.4.19)

Theorem 2.4.5. The global attractors A for the Boissonade semiflow {S(t)}t≥0 has a finite Haus-

dorff dimension and a finite fractal dimension.
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Proof. By Proposition 2.4.4, we shall estimate Tr [(A + f ′(S(τ)g0))Pm(τ)]. At any given time

τ > 0, let {ζj(τ) : j = 1, · · · ,m} be an H-orthonormal basis for the subspace

Pm(τ)H = Span {G1(τ), · · · , G,(τ)},

where G1(τ), · · · , Gm(τ) satisfy (2.4.18) and, without loss of generality, assuming that the ini-

tial vectors G1,0, · · · , Gm,0 are linearly independent in H . Let d0 = min{d1, d2}. Denote the

components of ζj(τ) by ζ ij(τ), i = 1, 2. Then we have

Tr [(A+ f ′(S(τ)g0)Pm(τ)] =
m∑
j=1

(〈Aζj(τ), ζj(τ)〉+ 〈f ′(S(τ)g0)ζj(τ), ζj(τ)〉)

≤ −d0

m∑
j=1

‖∇ζj(τ)‖2 + J1 + J2 + J3,

(2.4.20)

where

J1 =
m∑
j=1

∫
Γ

(
|ζ1
j (τ)|2 + ζ1

j (τ)ζ2
j (τ)− αζ2

j (τ)ζ1
j (τ)− β|ζ2

j (τ)|2
)
dx,

≤ (2 + α + β)m

(2.4.21)

J2 =
m∑
j=1

∫
Γ

(
γv(τ)|ζ1

j (τ)|2 + γu(τ)ζ1
j (τ)ζ2

j (τ)
)
dx

≤
m∑
j=1

(
‖γ‖L4‖v(τ)‖L4‖ζ1

j (τ)‖L4‖ζ1
j (τ)‖L4 + ‖γ‖L4‖u(τ)‖L4‖ζ1

j (τ)‖L4‖ζ2
j (τ)‖L4

)
,

J3 =
m∑
j=1

∫
Γ

(
−3u2(τ)|ζ1

j (τ)|2
)
dx

≤
m∑
j=1

3
(
‖u(τ)‖L4‖u(τ)‖L4‖ζ1

j (τ)‖L4‖ζ1
j (τ)‖L4

)
.

By the generalized Hölder inequality, the embedding H1
0 (Γ) ↪→ L4(Γ) (for n ≤ 3) and (2.4.19),
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we get

J2 + J3

≤
m∑
j=1

(
γ|Γ|

1
4‖v(τ)‖L4‖ζ1

j (τ)‖2
L4 + γ|Γ|

1
4‖u(τ)‖L4‖ζ1

j (τ)‖L4‖ζ2
j (τ)‖L4

)
+

m∑
j=1

(
3‖u(τ)‖2

L4‖ζ1
j (τ)‖2

L4

)
,

≤
m∑
j=1

(
2γ|Γ|

1
4‖S(τ)g0‖L4‖ζj(τ)‖2

L4 + 3‖S(τ)g0‖2
L4‖ζj(τ)‖2

L4

)
,

≤
(

2γ|Γ|
1
4η‖∇S(τ)g0‖+ 3η2‖∇S(τ)g0‖2

) m∑
j=1

‖ζj(τ)‖2
L4

≤ (2γη|Γ|
1
4Q

1
2
1 + 3η2Q1)

m∑
j=1

‖ζj(τ)‖2
L4 ,

(2.4.22)

where η is the embedding coefficient given in (2.3.3). Now we invoke the Garliardo-Nirenberg

interpolation inequality for Sobolev spaces [37, Theorem B.3],

‖ζ‖Wk,p ≤ C̃‖ζ‖θWm,q‖ζ‖1−θ
Lr , for ζ ∈ Wm,q(Γ), (2.4.23)

provided that p, q, r ≥ 1, 0 < θ ≤ 1, and

k − n

p
≤ θ

(
m− n

q

)
− (1− θ)n

r
, where n = dim Γ.

Here with W k,p(Γ) = L4(Γ),Wm,q(Γ) = H1
0 (Γ), Lr(Γ) = L2(Γ), and θ = n/4 ≤ 3/4, it follows

from (2.4.23) that

‖ζj(τ)‖L4 ≤ C̃‖∇ζj(τ)‖
n
4 ‖ζj(τ)‖1−n

4 = C̃‖∇ζj(τ)‖
n
4 , j = 1, · · · ,m, (2.4.24)

since ‖ζj(τ)‖ = 1, where C̃ is a universal constant. Substitute (2.4.24) into (2.4.22) to obtain

J2 + J3 ≤ (2γη|Γ|
1
4Q

1
2
1 + 3η2Q1)C̃2

m∑
j=1

‖∇ζj(τ)‖
n
2 . (2.4.25)
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Substituting (2.4.21) and (2.4.25) into (2.4.20), we obtain

Tr [(A+ f ′(S(τ)g0)Γm(τ)] ≤ − d0

m∑
j=1

‖∇ζj(τ)‖2

+ (2γη|Γ|
1
4Q

1
2
1 + 3η2Q1)C̃2

m∑
j=1

‖∇ζj(τ)‖
n
2 + (2 + α + β)m.

(2.4.26)

By Young’s inequality, for n ≤ 3, we have

(2γη|Γ|
1
4Q

1
2
1 + 3η2Q1)C̃2

m∑
j=1

‖∇ζj(τ)‖
n
2 ≤ d0

2

m∑
j=1

‖∇ζj(τ)‖2 +mQ3(n),

where Q3(n) is a universal positive constant depending only on n = dim (Γ). Hence,

Tr [(A+ f ′(S(τ)g0)Γm(τ)] ≤ −d0

2

m∑
j=1

‖∇ζj(τ)‖2 +m(Q3(n) + b+ k), τ > 0, g0 ∈ A .

According to the generalized Sobolev-Lieb-Thirring inequality [38, Appendix, Corollary 4.1],

since {ζ1(τ), · · · , ζm(τ)} is an orthonormal set in H , there exists a universal constant Q∗ > 0

only depending on the shape and dimension of Γ, such that
m∑
j=1

‖∇ζj(τ)‖2 ≥ Q∗
m1+ 2

n

|Γ| 2n
.

Therefore,

Tr [(A+ f ′(S(τ)g0)Γm(τ)] ≤ − d0Q
∗

2|Γ| 2n
m1+ 2

n +m(Q3(n) + b+ k), τ > 0, g0 ∈ A . (2.4.27)

Then we can conclude that

qm = lim sup
t→∞

qm(t)

= lim sup
t→∞

sup
g0∈A

sup
gi∈H,‖gi‖=1
i=1,··· ,m

(
1

t

∫ t

0

Tr [(A+ f ′(S(τ)g0)) Γm(τ)] dτ

)

≤ − d0Q
∗

2|Γ| 2n
m1+ 2

n +m(Q3(n) + b+ k) < 0,

(2.4.28)

if the integer m satisfies the following condition,

m− 1 ≤
(

2(Q3(n) + 2 + α + β)

d0L1

)n/2
|Γ| < m. (2.4.29)
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According to Proposition 2.4.4, we have proved that the Hausdorff dimension and the fractal

dimension of the global attractor A are finite and their upper bounds are given by

dH(A ) ≤ m and dF (A ) ≤ 2m,

where m satisfies (2.4.29).

2.5 Existence of An Exponential Attractor

In this section, we show the existence of an exponential attractor for the Boissonade semiflow

{S(t)}t≥0.

Definition 2.5.1. Let {S(t)}t≥0 be a semiflow on a Banach space X . A subset E of X is called

an exponential attractor in X for this semiflow, if the following conditions are satisfied:

• E is a nonempty, compact, and positively invariant set in the sense that

S(t)A ⊆ A for any t ≥ 0.

• E has a finite fractal dimension, and

• E attracts any bounded set B of X exponentially, in other words, there exist positive constants

µ and C(B) which depends on B, such that

dist(S(t)B,E ) ≤ C(B)e−µt, for t ≥ 0.

The basic theory and construction of exponential attractor was established by A.Eden, C.Foias,

B.Nicolaenko and R.Temam in [18] for discrete and continuous semiflows on Hilbert spaces.

Another important concept in the area of infinite dimensional dynamical systems is the inertial

manifold M defined as follows.

Definition 2.5.2. Let {S(t)}t≥0 be a semiflow on a Banach space X . An inertial manifold M for

this semiflow is a subset in X such that the following conditions are satisfied:

(i) M is a finite dimensional Lipschitz continuous manifold.
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(ii) M is positively invariant under the semiflow S(t).

(iii) M attracts all the trajectories of the semiflow at a uniform exponential rate, i.e., there exists

a positive constant ν such that for any bounded set B in X , there exist a constant K(B) such that

dist(S(t)B,M ) ≤ K(B)e−νt, for t ≥ 0.

For a continuous semiflow, if all the three objects(a global attractor A , an exponential attractor

E , and an inertial manifold M of the same exponential attraction rate) exist, then the following

inclusion relationship holds,

A ⊆ E ⊆M .

Here we prove the existence of an exponential attractor for the Boissonade semiflow by using

the following lemma, which is a modified version of the result shown in [46, Lemma 6.3], whose

proof was based on the squeezing property [18,29] and the constructive argument in [29, Theorem

4.5]. This lemma provides a way to directly check the sufficient conditions for the existence of

an exponential attractor of a semiflow on a positively invariant cone in a Hilbert space. First we

introduce the concept of squeezing property.

Definition 2.5.3. Let Ψ : D(Ψ) → H be a nonnegative, self-adjoint, linear operator with a

compact resolvent, let PN be a spectral (orthogonal) projection with respect to Ψ, in other words,

PN maps the Hilbert space H onto the N -dimensional subspace HN spanned by a set of the first

N eigenvectors of the operator Ψ, we defined a cone

CPN = {y ∈ H : ‖(I − PN) (y)‖H ≤ ‖PN(y)‖H} .

A continuous mapping S∗ satisfies the discrete squeezing property relative to a set B ⊂ H if there

exist a constant κ ∈ (0, 1/2) and a spectral projection PN on H such that for any pair of points

y0, z0 ∈ B, if

S∗ (y0)− S∗ (z0) /∈ CPN ,

then

‖S∗ (y0)− S∗ (z0)‖H ≤ κ ‖y0 − z0‖H .
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The following lemma and its proof can be seen in [46, Lemma 6.3].

Lemma 2.5.4. Let X be a Hilbert space and X ⊂ X be an open cone with the vertex at the origin

and Xc be the closure of X in X. Consider an evolutionary equation

dϕ

dt
+ Ψϕ = Φ(ϕ), t > 0, (2.5.1)

where Ψ : D(Ψ) → X is a nonnegative, self-adjoint, linear operator with compact resolvent,

and Φ : Y = D(Ψ1/2) → X is a locally Lipschitz continuous mapping, where Y is a compactly

imbedded subspace of X. Suppose that the weak solution of (2.5.1) for each initial point ϕ(0) =

ϕ0 ∈ Xc uniquely exists and is confined in Xc for all t ≥ 0, which turn out to be a strong solution

for t > 0. All these solutions in Xc form a semiflow denoted by {Σ(t)}t≥0. Assume that the

following conditions are satisfied:

(i) There exist a compact, positively invariant, absorbing set Bc inXc with respect to the topology

of X.

(ii) There is a positive integer N such that the norm quotient Γ(t) defined by

Γ(t) =

∥∥Ψ1/2 (ϕ1(t)− ϕ2(t))
∥∥2

X

‖ϕ1(t)− ϕ2(t)‖2
X

(2.5.2)

for any distinct trajectories ϕ1(·) and ϕ2(·) starting from the set Bc\CPN satisfies

dΓ

dt
≤ ρ (Bc) Γ(t), t > 0,

where ρ (Bc) is a positive constant only depending on Bc.

(iii) For any given finite T > 0 and any given ϕ ∈ Bc, Σ(·)ϕ : [0, T ] → Bc is Hölder continuous

with exponent θ = 1/2 and the coefficient of Hölder continuity, Kθ(ϕ) : Bc → (0,∞), is a

bounded function.

(iv) For any t ∈ [0, T ] where T > 0 is arbitrarily given, Σ(t)(·) : Bc → Bc is Lipschitz continuous

and the Lipschitz constant L(t) : [0, T ]→ (0,∞) is a bounded function.

Then there exists an exponential attractor E in Xc for this semiflow {Σ(t)}t≥0.
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Using this lemma, we can prove

Theorem 2.5.5. Given any positive parameters in the Boissonade system (2.1.1)–(2.1.2), there

exists an exponential attractor E in H for the Boissonade semiflow {S(t)}t≥0.

Proof. By Theorem 2.4.2, there exists an (H,E) global attractor A for the Boissonade semiflow

{S(t)}t≥0. Hence by Corollary 5.7 of [46], there exists a compact, positively invariant, absorbing

set BE in H , which is a bounded set in E for this semiflow.

Secondly, we prove that the second condition in Lemma 2.5.4 is satisfied by this Boissonade

semiflow. Consider any two points g1(0), g2(0) ∈ BE and let gi(t) = (ui(t), vi(t)), i = 1, 2,

be the corresponding solutions of (2.1.6) , respectively. Let y(t) = g1(t) − g2(t), t ≥ 0, where

g1(0) 6= g2(0). The associated norm quotient of (g1(t), g2(t)) is given by

Γ(t) =

∥∥(−A)1/2y(t)
∥∥2

‖y(t)‖2
, t ≥ 0.

For t > 0, we can calculate
1

2

d

dt
Γ(t) =

1

‖y(t)‖4

[
〈(−A)1/2y(t), (−A)1/2yt〉‖y(t)‖2 − ‖(−A)1/2y(t)‖2〈y(t), yt〉

]
=

1

‖y(t)‖2
[〈(−A)y(t), yt〉 − Γ(t)〈y(t), yt〉]

=
1

‖y(t)‖2
〈(−A)y(t)− Γ(t)y(t), Ay(t) + f (g1(t))− f (g2(t))〉

=
1

‖y(t)‖2
〈(−A)y(t)− Γ(t)y(t), Ay(t) + Γ(t)y(t) + f (g1(t))− f (g2(t))〉

=
1

‖y(t)‖2

[
−‖Ay(t) + Γ(t)y(t)‖2 − 〈Ay(t) + Γ(t)y(t), f (g1(t))− f (g2(t))〉

]
≤ 1

‖y(t)‖2

[
−1

2
‖Ay(t) + Γ(t)y(t)‖2 +

1

2
‖f (g1(t))− f (g2(t))‖2

]
≤ ‖f (g1(t))− f (g2(t))‖2

2‖y(t)‖2

(2.5.3)

where we used the identity −〈Ay(t) + Γ(t)y(t),Γ(t)y(t)〉 = 0. Note that the compact, positively

invariant, H-absorbing set BE described earlier in this proof is a bounded set in E . Hence there

is a constant R1 > 0 only depending on BE such that

‖(u, v)‖ ≤ R1, for any (u, v) ∈ BE. (2.5.4)
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We have

‖f(g1(t))− f(g2(t))‖

=
∥∥(u1 − u2)− α(v1 − v2) + γ(u1v1 − u2v2)− (u3

1 − u3
2)
∥∥+ ‖(u1 − u2)− β(v1 − v2)‖

≤ 2‖u1 − u2‖+ (α + β)‖v1 − v2‖+ γ‖u1(v1 − v2)‖+ γ‖v2(u1 − u2)‖+ 3R2
1‖u1 − u2‖

≤ (2 + α + β + 2γR1 + 3R2
1)‖y(t)‖

≤λ(2 + α + β + 2γR1 + 3R2
1)‖∇y(t)‖,

(2.5.5)

for t > 0. Let

N(R1) = λ(2 + α + β + 2γR1 + 3R2
1). (2.5.6)

In view of (1.0.2), from (2.5.3) and (2.5.5) it follows that

d

dt
Γ(t) ≤ ‖f(g1(t))− f(g2(t))‖

‖y(t)‖2
≤ N2(R1)

‖∇y(t)‖2

‖y(t)‖2

≤ ρ(BE)
‖(−A)1/2y(t)‖2

‖y(t)‖2
= ρ(BE)Γ(t), t > 0,

(2.5.7)

where

ρ(BE) =
N2(R1)

d0

.

where d0 = min{d1, d2}. Thus the second condition in Lemma 2.5.4 is satisfied.

Thirdly we check the Hölder continuity of S(·)g : [0, T ] → BE for any given g ∈ BE and any

given compact interval [0, T ]. Pick any 0 ≤ t1 < t2 ≤ T , we have

‖S (t2) g − S (t1) g‖ ≤
∥∥(eA(t2−t1) − I

)
eAt1g

∥∥+

∫ t2

t1

∥∥eA(t2−σ)f(S(σ)g)
∥∥ dσ

+

∫ t1

0

∥∥(eA(t2−t1) − I
)
eA(t1−σ)f(S(σ)g)

∥∥ dσ. (2.5.8)

Since BE is positively invariant with respect to the Boissonade semiflow {S(t)}t≥0 and BE is

bounded in E, there exists a constant KBE > 0 such that for any g ∈ BE , we have

‖S(t)g‖E ≤ KBE , t ≥ 0.

Recall that f : E → H is locally Lipschitz continuous, there is a Lipschitz constant LBE > 0 of

f relative to this positively invariant set BE . Moreover, by [37, Theorem 37.5], for the analytic,
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contracting, linear semigroup {eAt}t≥0, there exist positive constants N0 and N1 such that∥∥eAtg − g∥∥
H
≤ N0 t

1/2‖g‖E, for t ≥ 0, g ∈ E,

and ∥∥eAt∥∥
L(H,E)

≤ N1 t
−1/2, for t > 0.

It follows that ∥∥(eA(t2−t1) − I
)
eAt1g

∥∥ ≤ N0 (t2 − t1)1/2KBE

and ∫ t2

t1

∥∥eA(t2−σ)f(S(σ)g)
∥∥ dσ ≤ ∫ t2

t1

N1LBEKBE√
t2 − σ

dσ = 2KBELBEN1 (t2 − t1)1/2 .

Moreover,∫ t1

0

∥∥(eA(t2−t1) − I
)
eA(t1−σ)f(S(σ)g)

∥∥ dσ ≤ N0 (t2 − t1)1/2

∫ t1

0

N1LBEKBE√
t1 − σ

dσ

= 2KBELBEN0N1

√
T (t2 − t1)1/2 .

Substituting the above three inequalities into (2.5.8), we obtain

‖S (t2) g − S (t1) g‖ ≤ KBE

(
N0 + 2LBEN1(1 +N0

√
T )
)

(t2 − t1)1/2 , (2.5.9)

for 0 ≤ t1 < t2 ≤ T . Thus the third condition in Lemma 2.5.4 is satisfied. For the forth condition,

we can use Theorem 47.8 (specifically (47.20) therein) in [37] to confirm the Lipschitz continuity

of the mapping S(t)(·) : BE → BE for any t ∈ [0, T ] where T > 0 is arbitrarily given. Finally,

we can apply Lemma 2.5.4 to reach the conclusion that there exists an exponential attractor E in

H for the Boissonade semiflow {S(t)}t≥0.

2.6 Uniform Dissipativity and Uniform E-Bound of Global Attractors

In the section, we shall prove the upper semi-continuity(also called robustness) of the global

attractors for the family of Biossonade semiflows with respect to γ as it converges to zero. Let

{{Sγ(t)}t≥0} denote the weak solution semiflow of (2.1.6) with γ > 0 and {{S0(t)}t≥0} denote

the solution semiflow of (2.1.6) with γ = 0 .
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Definition 2.6.1. A family of semiflow {{Sλ(t)}t≥0}λ∈Λ on a Banach space X is called uniformly

dissipative at λ0 ∈ Λ, where Λ is an interval of R, if there is a neighborhood U of λ0 in Λ and

there is a bounded set B ⊂ X such that B is an absorbing set for each semiflow Sλ(t), λ ∈ U .

Lemma 2.6.2. The family of semiflow {{Sγ(t)}t≥0}γ≥0 on H is uniformly dissipative at γ = 0.

Specifically, there exists a constant KH > 0 such that the ball BH(0, KH) in H is a common

absorbing set for the semiflows {Sγ(t)}t≥0 for all γ ∈ [0, 1].

Proof. Taking the inner products 〈(2.1.1), u(t)〉 and 〈(2.1.2), zv(t)〉where z is a positive adjusting

parameter to be determined later, and summing them up, by Young’s inequality and γ ∈ [0, 1] we

get

1

2

(
d

dt
‖u‖2 + z

d

dt
‖v‖2

)
+ d1‖∇u‖2 + zd2‖∇v‖2

=

∫
Γ

(
u2 + (z − α)uv + γu2v − u4 − zβv2

)
dx

≤
∫

Γ

(
u2 +

(z − α)2u2

zβ
+
zβ

4
v2 +

u4

4
+ γ2v2 − u4 − zβv2

)
dx

≤
∫

Γ

(
(1 +

(z − α)2

zβ
)u2 − 3

4
u4 − (

3zβ

4
− 1)v2

)
dx

≤ (1 +
(z − α)2

zβ
)2|Γ| − 1

2

∫
Γ

u4dx− 1

4

∫
Γ

v2dx

= (1 + (
1

β
− α)2)2|Γ| − 1

2

∫
Γ

u4dx− 1

4

∫
Γ

v2dx.

(2.6.1)

where the uniformly adjusting parameter z = 5
3β

.

It follows that

1

2

(
d

dt
‖u‖2 +

5

3β

d

dt
‖v‖2

)
+

1

2
‖u‖2 +

1

4
‖v‖2 + d1‖∇u‖2 +

5d2

3β
‖∇v‖2

≤1

2

(
d

dt
‖u‖2 +

5

3β

d

dt
‖v‖2

)
+

∫
Γ

1

2
u4dx+

1

8
|Γ|+ 1

4

∫
Γ

v2dx+ d1‖∇u‖2 +
5d2

3β
‖∇v‖2

≤ (1 + (
1

β
− α)2)2|Γ|+ 1

8
|Γ|.

(2.6.2)
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Putting b̃ = min{1, 3β
10
}, M̃ = 2(1 + ( 1

β
− α)2)2|Γ|+ 1

4
|Γ|, we obtain

d

dt

(
‖u‖2 +

5

3β
‖v‖2

)
+ b̃(‖u‖2 +

5

3β
‖v‖2)

≤ d

dt

(
‖u‖2 +

5

3β
‖v‖2

)
+ ‖u‖2 +

1

2
‖v‖2

≤ M̃.

Applying the Gronwall’s inequality, we have

‖u‖2 +
5

3β
‖v‖2 ≤ e−b̃t(‖u0‖2 +

5

3β
‖v0‖2) +

M̃

b̃
. (2.6.3)

which implies

‖u‖2 + ‖v‖2 ≤
max{1, 5

3β
}

min{1, 5
3β
}
e−b̃t(‖u0‖2 + ‖v0‖2) +

M̃

b̃min{1, 5
3β
}
. (2.6.4)

From (2.6.4) we obtain

lim sup
t→∞

(‖u(t)‖2 + ‖v(t)‖2) ≤ K2
H =

2M̃

b̃min{1, 5
3β
}
, (2.6.5)

Now KH is a universal constant independent of both γ ∈ [0, 1] and initial data. In other words,

for any given bounded set BH = {g0 : ‖g0‖ ≤ R} in H , there exists a finite time T3 =

1
b̃

ln
b̃max{1, 5

3β
}R2

M̃
such that ‖u(t)‖2 + ‖v(t)‖2 ≤ K2

H for any g0 ∈ BH and all t ≥ T3. There-

fore, we have shown that the ball BH(0, KH) is a common absorbing set for the semiflow {Sγ}

for each γ ∈ [0, 1].

Let

U =
⋃

0≤γ≤1

Aγ.

The following corollary shows that the bundles of trajectories through U =
⋃

0≤γ≤1 Aγ under the

semiflows {Sγ} for any γ ∈ [0, 1] are uniformly bounded in H .

Corollary 2.6.1. There exists a constant MH > 0 such that

sup
0≤γ≤1

sup
t≥0

Sγ(t)U ⊂ BH(0,MH),

where BH(0,MH) is the closed ball in H centered at the origin with radius MH .
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Proof. From (2.6.4) we have M2
H =

max{1, 5
3β
}

min{1, 5
3β
}K

2
H + 2M̃

min{1, 5
3β
} .

Next we show that the family of global attractors Aγ are bounded in E.

Lemma 2.6.3. There is a constant KE > 0 such that

U =
⋃

0≤γ≤1

Aγ ⊂ BE(0, KE),

where BE(0, KE) is the closed ball in E centered at the origin with radius KE .

Proof. For any t ≥ 0, (2.2.3) implies that∫ t+1

t

2(d1‖∇u(s)‖2ds+
5d2

3β
‖∇v(s)‖2)ds ≤ M̃ + ‖u(t)‖2 +

5

3β
‖v(t)‖2

≤ M̃ + max{1, 5

3β
}K2

H .

(2.6.6)

Since any trajectories started from any (u0, v0) ∈ U ⊂ E are strong solution in E, we have

‖∇u(s)‖2 + ‖∇v(s)‖2 ∈ C([t, t+ 1];R), for any t > 0. By (2.6.6) and the Mean Value Theorem,

for any given t > 0 there is a time τ ∈ [t, t+ 1] such that

‖Sγ(τ)(u0, v0)‖2
E = ‖∇u(τ)‖2 + ‖∇v(τ)‖2

≤
M̃ + max{1, 5

3β
}K2

H

2 min{d1,
5d2
3β
}

,
(2.6.7)

for any (u0, v0) ∈ U and any λ ∈ [0, 1].

By the invariance of every global attractor Aγ for γ ∈ [0, 1], namely, Sγ(t)Aγ = Aγ for any

t > 0, we have proved that

Aγ ∈ BE(0, KE), for all γ ∈ [0, 1]

where BE(0, KE) is the closed ball in E centered at the origin with radius

KE =

(
M̃ + max{1, 5

3β
}K2

H

2 min{d1,
5d2
3β
}

,

) 1
2

.

So the union of Aγ , where γ ∈ [0, 1], is bounded in BE(0, KE).
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2.7 Upper Semi-continuity of Global Attractors

We have shown in Lemma2.6.3 that the union of the family of global attractors U =
⋃

0≤γ≤1 Aγ is

bounded inE, but it does not automatically imply that the trajectories Sγ(t)U, t ≥ 0, are uniformly

E-bounded with respect to all γ ∈ [0, 1], since the union set U is not an invariant set with respect

to each particular semiflow {Sγ}for a given γ.

The following theorem shows that the bundles of trajectories through U =
⋃

0≤γ≤1 Aγ under

the semiflows {Sγ} for any γ ∈ [0, 1] are uniformly bounded in E.

Theorem 2.7.1. There exists a constant ME > 0 such that

sup
0≤γ≤1

sup
t≥0

Sγ(t)U ⊂ BE(0,ME), (2.7.1)

where BE(0,ME) is the closed ball in E centered at the origin with radius ME .

Proof. Taking the inner-products 〈(2.1.2),−∆v(t)〉 to obtain

1

2

d

dt
‖∇v‖2 + d2‖∆v‖2

=

∫
Γ

(
−u∆v − β|∇v|2

)
dx

≤
∫

Γ

(
u2

2d2

+
d2

2
|∆v|2

)
dx− β‖∇v‖2.

It follows that

d

dt
‖∇v‖2 + d2‖∆v‖2 + 2β‖∇v‖2 ≤ ‖u‖

2

2d2

By the Gronwall inequality and uniform boundedness of U in H and E, we have

‖∇v‖2 ≤ e−2βt‖∇v0‖2 +
1

2d2

(
c2

c1

K2
H +

2M1

b1c1

)
≤ D1, (2.7.2)

for any t ≥ 0, g0 ∈ U and γ ∈ [0, 1], where

D1 = K2
E +

1

2d2

(
c2

c1

K2
H +

2M1

b1c1

)
.
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Next, take the inner-products 〈(2.1.1),−∆u(t)〉, we obtain

1

2

d

dt
‖∇u‖2 + d1‖∆u‖2

=

∫
Γ

(
|∇u|2 + αv∆u− γuv∆u− 3u2|∇u|2

)
dx

≤
∫

Γ

(
|∇u|2 +

α2v2

d1

+
d1

4
|∆u|2 +

γ2u2v2

d1

+
d1

4
|∆u|2

)
dx

≤
∫

Γ

(
|∇u|2 +

α2v2

d1

+
d1

4
|∆u|2 +

1

2d1

(
u4 + v4

)
+
d1

4
|∆u|2

)
dx

where note γ ∈ [0, 1]. It follows that

d

dt
‖∇u‖2 + d1‖∆u‖2 (2.7.3)

≤ 2‖∇u‖2 +
2α2

d1

‖v‖2 +
1

d1

(
‖u‖4

L4 + ‖v‖4
L4

)
(2.7.4)

Now we use the Garliardo-Nirenberg interpolation inequality again [37, Theorem B.3],

‖ζ‖Wk,p ≤ C‖ζ‖θWm,q‖ζ‖1−θ
Lr , for ζ ∈ Wm,q(Γ), (2.7.5)

provided that p, q, r ≥ 1, 0 < θ ≤ 1, and

k − n

p
≤ θ

(
m− n

q

)
− (1− θ)n

r
, where n = dim Γ.

Here with W k,p(Γ) = L4(Γ),Wm,q(Γ) = H2(Γ) ∩H1
0 (Γ), Lr(Γ) = L2(Γ), θ = 3/8 and n ≤ 3,

we have

‖ϕ‖L4 ≤ C2‖ϕ‖
3
8

H2∩H1
0
‖ϕ‖

5
8 (2.7.6)

where C2 > 0 is constant. Due to the Dirichlet boundary condition and the operator interpolation

property, we can take the equivalent norm

‖φ‖2
H2∩H1

0
= ‖∆φ‖2 + ‖∇φ‖2 for φ ∈ H2 ∩H1

0 .

Thus we deduce that

1

d1

‖u‖4
L4 ≤ d−1

1 C4
2 [‖u‖

3
8

H2∩H1
0
‖u‖

5
8 ]4

= d−1
1 C4

2‖u‖
3
2

H2∩H1
0
‖u‖

5
2

≤ 3d1

4
‖u‖2

H2∩H1
0

+
1

4
d−7

1 C16
2 ‖u‖10

≤ 3d1

4
(‖∆u‖2 + ‖∇u‖2) +

1

4
d−7

1 C16
2 ‖u‖10
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From the embedding H1
0 (Γ) ↪→ L4(Γ) (for n ≤ 3), we get

‖v‖4
L4 ≤ η4‖∇v‖4, since v(t) ∈ E t > 0.

Substitute the above two estimates into (2.7.3), we have

d

dt
‖∇u‖2 + d1‖∆u‖2

≤ 2‖∇u‖2 +
2α2

d1

‖v‖2 +
3d1

4
(‖∆u‖2 + ‖∇u‖2) +

1

4
d−7

1 C16
2 ‖u‖10 +

η4

d1

‖∇v‖4

≤ 8 + 3d1

4
‖∇u‖2 +

2α2

d1

M2
H +

3d1

4
‖∆u‖2 +

1

4
d−7

1 C16
2 M

5
H +

η4

d1

D2
1

To proceed, we note that

‖∇u‖2 =

∫
Γ

|u∆u|dx ≤
∫

Γ

(
1

2(8 + 3d1)
|∆u|2 +

(8 + 3d1)

2
u2

)
dx

Hence we have

d

dt
‖∇u‖2 +

d1

8
‖∆u‖2

≤ (8 + 3d1)

2
M2

H +
2α2

d1

M2
H +

1

4
d−7

1 C16
2 M

5
H +

η4

d1

D2
1

Thus we get

d

dt
‖∇u‖2 +

d1

4
‖∇u‖2 ≤ d

dt
‖∇u‖2 +

d1

8
(‖∆u‖2 + ‖u‖2) ≤ D2, t > 0, g0 ∈ U, γ ∈ [0, 1]

(2.7.7)

where D2 is universal constant given by

D2 =
d1

8
M2

H +
(8 + 3d1)

2
M2

H +
2α2

d1

M2
H +

1

4
d−7

1 C16
2 M

5
H +

η4

d1

D2
1

Apply the Gronwall inequality to (2.7.7), we have

‖∇u‖2 ≤ e
−d1t

4 ‖∇u0‖2 +
4D2

d1

≤ K2
E +

4D2

d1

(2.7.8)

for any t ≥ 0, g0 ∈ U and γ ∈ [0, 1]. Sum up (2.7.2) and (2.7.8), we conclude that

‖Sγ(t)g0‖2
E ≤ D1 +K2

E +
4D2

d1

. t > 0, g0 ∈ U, γ ∈ [0, 1] (2.7.9)

Therefore, (2.7.1) is valid with ME = (D1 +K2
E + 4D2

d1
)1/2. The proof is complete.
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Corollary 2.7.1. The global attractor A0 for the Boissonade semiflow {S0} attracts the union set

U =
⋃

0≤γ≤1

Aγ

with respect to E-norm.

Next we present the Gronwall-Henry inequality [37] in detail, which will be utilized to prove

the uniform convergence theorem in the next step.

Lemma 2.7.2. Let ψ(t) be a nonnegative function in L∞loc([0, T ), R) and ζ(·) ∈ L1
loc([0, T )) such

that the inequality

ψ(t) ≤ ζ(t) + µ

∫ t

0

(t− s)r−1ψ(s)ds, t ∈ (0, T )

where 0 < T ≤ ∞ and r > 0 is satisfied. Then it holds that

ψ(t) ≤ ζ(t) + κ

∫ t

0

Φ(κ(t− s))ψ(s)ds, t ∈ (0, T )

where κ = (µΓ(r))
1
r , Γ(·) is the Gamma function, and the function Φ(t) is given by

Φ(t) =
∞∑
n=1

1

Γ(nr)
tnr−1

Theorem 2.7.3. For any given t ≥ 0, it holds that

sup
g0∈U
‖Sγ(t)g0 − S0(t)g0‖E → 0, as γ → 0+ (2.7.10)

where U =
⋃

0≤γ≤1 Aγ .

Proof. For any given g0 = (u0, v0) ∈ U ⊂ BH(0,MH)
⋂
BE(0,ME), let (u(t), v(t)) = Sγ(t)(u0, v0)

and (ũ(t), ṽ(t)) = S0(t)(u0, v0) be the two trajectories starting from the same initial point g0 under

the semiflows {Sγ} and {S0}, respectively. Define

w(t) = Sγ(t)g0 − S0(t)g0, t ≥ 0,

and we have w(0) = 0. Since both Sγ(t)g0 and S0(t)g0 are strong solutions in E, they are the

mild solution, so that they satisfy the integral equation

w(t) =

∫ t

0

eA(t−σ)[f0(Sγ(σ)g0)− f0(S0(σ)g0)]dσ + γ

∫ t

0

eA(t−σ)h(Sγ(σ)g0)dσ, t ≥ 0.

(2.7.11)
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where eA, t ≥ 0, is the C0-semigroup generated by A : D(A)→ H ,

f0(u, v) =

u− αv − u3

u− βv

 , and h(u, v) =

uv
0

 . (2.7.12)

Obviously f0(u, v) : E → H is locally Lipschitz continuous. Thus there is a Lipschitz constant

L(ME) > 0 depending only on ME given in (2.7.1), such that

‖f0(g1)− f0(g2)‖ ≤ L(ME)‖g1 − g2‖E, for any g1, g2 ∈ BE(0,ME).

By Theorem 2.7.1 we see that sup0≤γ≤1 supt≥0 Sγ(t)U ⊂ BE(0,ME). Hence,

‖w(t)‖E ≤
∫ t

0

‖eA(t−σ)‖L(H,E)L(ME)‖Sγ(σ)g0 − S0(σ)g0‖Edσ

+ γ

∫ t

0

‖eA(t−σ)‖L(H,E)‖h(Sγ(σ)g0)‖dσ, t ≥ 0.

(2.7.13)

where, we have, cf. [37, Theorem 38.10],

‖eA(t−σ)‖L(H,E) ≤M5 (t− σ)−
1
2 , t > σ ≥ 0, (2.7.14)

and

‖h(Sγ(σ)g0)‖ =

(∫
Ω

u(σ, x)v(σ, x)dx

) 1
2

≤ 1

2
(‖u‖2 + ‖v‖2) ≤ 1

2
KH , t ≥ 0, (2.7.15)

for any g0 = (u0, v0) ∈ U. Substitute these two inequalities into (2.7.13) to obtain

‖w(t)‖E ≤
γ

2
M5KH

∫ t

0

(t− σ)−
1
2dσ +

∫ t

0

(t− σ)−
1
2L(ME)‖w(σ)‖Edσ

=γM5KHt
1
2 + L(ME)

∫ t

0

(t− σ)−
1
2‖w(σ)‖Edσ, t ≥ 0.

(2.7.16)

To apply the Gronwal-Henry inequality (Lemma 2.7.2), put

ψ(t) = ‖w(t)‖E, ζ(t) = γM5KHt
1
2 , µ = L(ME), and r =

1

2
.

it yields the estimate

‖Sγ(t)g0 − S0(t)g0‖E = ‖w(t)‖E ≤ γ

(
ξ(t) + ϕ

∫ t

0

Φ(κ(t− s))ξ(s)ds
)
, t ∈ (0, T ). (2.7.17)
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Here we have ξ(t) = M5KHt
1
2 , ϕ = (L(ME)Γ(1

2
))2 = L2(ME)π, and

Φ(t) =
∞∑
n=1

1

Γ(n
2
)
t
n
2
−1 =

1√
π
t
−1
2 + 1 +

∞∑
n=1

2

nΓ(n
2
)
t
n
2 ,

thus we conclude that∫ t

0

Φ(κ(t− s))ξ(s)ds = M5KH

∫ t

0

Φ(κ(t− s))s
1
2ds

is a nonnegative continuous function of t ∈ [0,∞).

The inequality (2.7.17) confirms that, for each fixed t ≥ 0, the uniform convergence (2.7.10)

holds:

sup
g0∈U
‖Sγ(t)g0 − S0(t)g0‖E → 0, as γ → 0+.

The proof is completed.

Finally we come to the second main theorem.

Theorem 2.7.4. Given any positive parameters d1, d2, α, β, the family of global attractors Aγ, γ ≥

0, has the upper semi-continuity in E with respect to γ ≥ 0 as it converges to zero, that is

distE(Aγ,A0)→ 0, as G→ 0+.

Proof. Given an arbitrarily small ε > 0, by Corollary 2.7.1 the global attractor A0 attracts the

union set

U =
⋃

0≤γ≤1

Aγ

with respect to the Hausdorff semi-distance in E-norm under the action of the semiflow {S0}. In

other words, there is a finite time t0 > 0 such that

S0(t0)U ⊂ N (A0,
ε

2
), (2.7.18)

where N (A0,
ε
2
) is the neighborhood of A0 in the space E. Then by Theorem 2.7.3, there exists

a γ0 ∈ (0, 1] such that

‖Sγ(t)g0 − S0(t)g0‖E <
ε

2
, for any γ ∈ (0, γ0). (2.7.19)
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Since every global attractor Aγ is an invariant set, from (2.7.18) and (2.7.19) one has

Aγ = Sγ(t0)Aγ ⊂ Sγ(t0)U ⊂ N (S0(t0)U,
ε

2
) ⊂ N (A0, ε),

for any 0 < γ < γ0. Therefore, the upper semi-continuity of this family of global attractors in the

space E, which is

distE(Aγ,A0)→ 0, as γ → 0+.

is proved.
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Chapter 3

Pullback attractor of non-autonomous Selkov system

3.1 Introduction

The Selkov system was originally a system of ODEs proposed by E.E. Selkov [36] as a simplified

model of a biochemical process called glycolysis, through which living cells get energy from

breaking down sugar. It is a prototype of cubic-autocatalytic chemical and biochemical reactions

that include the chlorite-iodide-malonic-acid (CIMA) reaction. The reversible cubic-autocatalytic

Selkov equations can be derived from the following schemes of reversible chemical reaction:

A�k1
k−1

S, S + 2P �k2
k−2

3P, P �k3
k−3

B (3.1.1)

These reactions involve non-zero reaction rates, which implies “reversible”.

In this chapter, we are concerned with the following non-autonomous reversible Selkov system,

∂u

∂t
= d1∆u+ ρ− au+ u2v −Gu3 + h(t, x), (3.1.2)

∂v

∂t
= d2∆v + β − bv − u2v +Gu3 + k(t, x), (3.1.3)

for (t, x) ∈ R×Γ, where Γ ⊂ Rn(n ≤ 3) is a bounded domain with a locally Lipschitz continuous

boundary, and the coefficients d1, d2, ρ, β, a, b are positive constants. h(t, x), k(t, x) are time-

dependent perturbation terms. We shall study the asymptotic dynamics of the weak solutions to

this reaction diffusion system (3.1.2) – (3.1.3) coupled with the homogeneous Dirichlet boundary

condition

u(t, x) = v(t, x) = 0, t ∈ R, x ∈ ∂Γ, (3.1.4)

and an initial condition at τ − t ∈ R,

u(τ − t, x) = uτ−t(x), v(τ − t, x) = vτ−t(x), (3.1.5)
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The existence and properties of global attractors for the autonomous reversible Selkov system

was studied by Y. You [47]. The main difficulty of proving the absorbing property and asymptotic

compactness lies in the signed quadratic±uv and cubic terms±Gu3. It is nontrivial to generalize

the autonomous system to the non-autonomous case. The challenge includes carefully handling

the initial time and pinpointing a middle time in the process in order to prove the pullback asymp-

totic compactness.

First we formulate the problem into mathematical setting. By Sobolev embedding theorem,

H1
0 (Γ) ↪→ L6(Γ) is a continuous embedding for n ≤ 3. Via the generalized Hölder inequality, we

have

‖u2v‖ ≤ ‖u‖2
L6‖v‖L6 , ‖u3‖ ≤ ‖u‖3

L6 , for u, v ∈ L6(Γ).

Hence the nonlinear mapping

f(g) =

ρ− au+ u2v −Gu3

β − bv − u2v +Gu3

 : E −→ H, (3.1.6)

where g = (u, v), is a locally Lipschitz continuous mapping defined on E. Thus the initial-

boundary value problem (3.1.2)–(3.1.5) of the non-autonomous Selkov system is formulated into

an initial value problem:

dg

dt
= Ag + f(g) + P (t), t ∈ R.

g(τ − t) = gτ−t = (uτ−t, vτ−t) ∈ H,
(3.1.7)

where P (t) = (h(t), k(t)). We have the standing assumptions for the non-autonomous perturba-

tion terms:

1. ∫ τ

−∞
eγξ(‖h(ξ)‖2p + ‖k(ξ)‖2p)dξ <∞, ∀ τ ∈ R, (3.1.8)

2.

sup
t∈R

∫ t+1

t

(‖h(ξ)‖2 + ‖k(ξ)‖2)dξ = H <∞, (3.1.9)
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where p = 1, 2, 3 and γ = min{a, b}.

We point out that the second assumption is necessary to prove the asymptotic pullback compact-

ness, which needs additional treatment than the reaction diffusion equation in [40]. The second

assumption implies the first one for p = 1. It is not uncommon to impose the second assumption

since it was assumed in proving the existence of uniform attractors [12].

The rest of the chapter is organized as follows. In Section 2 we shall prove the global existence

of the weak solutions of the non-autonomous reversible Selkov equation (3.1.7). In Section 3

we show the pullback absorbing property of this non-autonomous reversible Selkov process. We

show the pullback asymptotic compactness and the existence of the pullback attractor for this

process in Section 4.

3.2 Preliminaries and Formulation

In this section we present some basic concepts in the theory of pullback attractors of non-autonomous

dynamical systems. The readers are referred to [11] for a detailed introduction.

Definition 3.2.1. LetX be a Banach space, a process inX is a family of maps S(t, s) : t ≥ s such

that the following holds:

1. S(t, t) = I , for all t ∈ R,

2. S(t, s) = S(t, τ)S(τ, s), for all t ≥ τ ≥ s,

3. (t, s, x) 7→ S(t, s)x is continuous with respect to t, s, x, where t ≥ s, x ∈ X .

In the sequel, we shall denote a process by {S(τ, τ − t)}τ∈R,t≥0 or simply by {S(τ, τ − t)}t≥0

to highlight the “pullback” action. In other words, we freeze the final time at τ and pullback the

initial time as early as possible by sending t→ +∞. For simplicity, we write “ the process S(·, ·)”

if the time parameters are not stressed.

Definition 3.2.2. Let S(·, ·) be a process on X . A bounded subset B0 of X is called a pullback

absorbing set in X at time τ if, for any bounded subset B ⊂ X , there is some finite time t0 ≥ 0
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depending on B such that S(τ, τ − t)B ⊂ B0 for all t > t0. A family of bounded subsets B(·)

pullback absorbs bounded sets if B(τ) pullback absorbs bounded set for any time τ ∈ R.

Definition 3.2.3. A process {S(τ, τ − t)}t≥0 on a Banach space X is called pullback asymptot-

ically compact in X if for any bounded sequences {xn} in X and {tn} ⊂ (0,∞) with tn → ∞,

there exist subsequences {xnk} of {xn} and {tnk} of {tn}, such that limk→∞ S(τ, τ − tnk)xnk

exists in X .

Definition 3.2.4. Let S(·, ·) be a process on a Banach space X . A family {A (τ) : τ ∈ R} in X

is called a pullback attractor in X for this process, if the following conditions are satisfied:

(i) A (τ) is nonempty, compact for each τ ∈ R,

(ii) A (·) is invariant in the sense that

S(τ, s)A (s) = A (τ) for any τ ≥ s.

(iii) For each fixed τ ∈ R, A (τ) pullback attracts any bounded set B of X in terms of the

Hausdorff semi-distance, i.e.,

dist(S(τ, s)B,A (τ)) = sup
x∈B

inf
y∈A (τ)

‖S(τ, s)x− y‖X → 0, as s→ −∞.

(iv)A (·) is the minimal family of closed sets with property(iii).

The following proposition states the basic result on the existence of a pullback attractor for a

process, cf. [11, 40].

Proposition 3.2.5. Let {S(τ, τ − t)}t≥0 be a process on a Banach space X . If the following

conditions are satisfied:

(i) {S(τ, τ − t)}t≥0 has a family of absorbing sets B(τ)in X , and

(ii) {S(τ, τ − t)}t≥0 is asymptotically compact in X ,

then there exists a pullback attractor A (τ) in X for this process, which is given by

A (τ) =
⋂
l≥0

ClX
⋃
t≥l

S(τ, τ − t)B(τ − t).
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3.3 Pullback Absorbing Property

In this section we prove the global existence of weak solution to (3.1.7) and the pullback absorbing

properties of the generated process.

Lemma 3.3.1. For every τ ∈ R and any initial data g0 = (u0(τ− t), v0(τ− t)) ∈ H , there exists a

unique global weak solution g(τ, τ−t, g0(τ−t)) = (u(τ, τ−t, u0(τ−t)), v(τ, τ−t, u0(τ−t))), t ∈

[0,∞), of the IVP of the non-autonomous reversible Selkov equation (3.1.7) and it becomes a

strong solution on the time interval (τ − t,∞). Moreover, there exists a constant Kτ > 0, such

that the set

Bτ =
{
g ∈ H : ‖g‖2 ≤ Kτ

}
(3.3.1)

is a pullback absorbing set in H for the non-autonomous reversible Selkov process {S(τ, τ −

t)}t≥0.

Proof. The proof of the local existence of weak solution is similar with the autonomous case by

conducting a priori estimates on the Galerkin approximations of the initial value problem (3.1.7)

and the argument of the weak/weak* convergence, see [47] for details. We conduct a priori

estimates as follows.

Multiplying (3.1.2) with Gu(t), (3.1.3) with v(t) respectively, integrating on Γ, and summing

them up, we get

1

2

d

dt

(
G‖u‖2 + ‖v‖2

)
+ d1G‖∇u‖2 + d2‖∇v‖2

=

∫
Γ

(ρGu+ βv) dx−
(
aG‖u‖2 + b‖v‖2

)
−
∫

Γ

(
G2u4 − 2Gu3v + u2v2

)
dx

+

∫
Γ

(Ghu+ kv) dx

≤ρG|Γ|
1
2‖u‖+ β|Γ|

1
2‖v‖ −

(
aG‖u‖2 + b‖v‖2

)
+G‖h‖‖u‖+ ‖k‖‖v‖

≤ρ
2G|Γ|
a

+
aG

4
‖u‖2 +

β2|Γ|
b

+
b

4
‖v‖2

−
(
aG‖u‖2 + b‖v‖2

)
+
aG

4
‖u‖2 +

G

a
‖h‖2 +

1

b
‖k‖2 +

b

4
‖v‖2.

(3.3.2)

47



It follows that

d

dt

(
G‖u‖2 + ‖v‖2

)
+ 2d1G‖∇u‖2 + 2d2‖∇v‖2 +

(
aG‖u‖2 + b‖v‖2

)
≤ 2ρ2G|Γ|

a
+

2β2|Γ|
b

+
2G

a
‖h‖2 +

2

b
‖k‖2.

(3.3.3)

Let γ = min{a, b} , d0 = min{d1, d2},M1 = 2ρ2G|Γ|
a

+ 2β2|Γ|
b

, we end up with

d

dt

(
G‖u‖2 + ‖v‖2

)
+ 2d0(G‖∇u‖2 + ‖∇v‖2) + γ

(
G‖u‖2 + ‖v‖2

)
≤ M1 +

2G

a
‖h‖2 +

2

b
‖k‖2.

(3.3.4)

Multiplying by eγt, then integrating over [τ − t, τ ] where t ≥ 0, we have

G‖u(τ, τ − t, u0(τ − t))‖2 + ‖v(τ, τ − t, v0(τ − t))‖2

+2d0e
−γτ
∫ τ

τ−t

(
G‖∇u(τ, τ − t, u0(τ − t))‖2 + ‖∇v(τ, τ − t, u0(τ − t))‖2

)
eγsds

≤ e−γt(G‖u0(τ − t)‖2 + ‖v0(τ − t)‖2) + e−γτM1

∫ τ

τ−t
eγsds

+ e−γτ
∫ τ

τ−t

(
2G

a
‖h‖2 +

2

b
‖k‖2

)
eγsds

≤ e−γt(G‖u0(τ − t)‖2 + ‖v0(τ − t)‖2) +
M1

γ
+ e−γτ

∫ τ

−∞

(
2G

a
‖h‖2 +

2

b
‖k‖2

)
eγsds.

(3.3.5)

It follows that

‖u(τ, τ − t, u0(τ − t))‖2 + ‖v(τ, τ − t, v0(τ − t))‖2

≤ max{1, G}
min{1, G}

e−γt(‖u0(τ − t)‖2 + ‖v0(τ − t)‖2) +
M1|Γ|

min{1, G}γ

+
max{2G

a
, 2
b
}

min{1, G}
e−γτ

∫ τ

−∞

(
‖h‖2 + ‖k‖2

)
eγsds.

(3.3.6)

The inequality (3.3.6) shows that the weak solution g(τ, τ − t) will never blow up as long as we

pullback the initial time. The family of all the global weak solutions {g(τ, τ − t; g0(τ − t)) : t ≥

0, g0 ∈ H} defines a process on H ,

S(τ, τ − t) : g0 7→ g(τ, τ − t; g0), g0 ∈ H, t ≥ 0,

which will be called the non-autonomous reversible Selkov process associated with the evolution-

ary equation (3.1.7).
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Moreover, the inequality (3.3.6) shows that the ball B(τ) shown in (3.3.1) with

Kτ = 1 +
M1|Γ|

min{1, G}γ
+
max{2G

a
, 2
b
}

min{1, G}
e−γτ

∫ τ

−∞

(
‖h‖2 + ‖k‖2

)
eγsds

is a pullback absorbing set. Indeed,

lim sup
t→+∞

‖u(τ, τ − t, u0(τ − t))‖2 + ‖v(τ, τ − t, v0(τ − t))‖2

≤ 1 +
M1|Γ|

min{1, G}γ
+
max{2G

a
, 2
b
}

min{1, G}
e−γτ

∫ τ

−∞

(
‖h‖2 + ‖k‖2

)
eγsds,

(3.3.7)

and for any ball B ⊂ H centered at the origin with radius R, there is a finite time

t0(R) =
1

γ
log

R2max{1, G}
min{1, G}

such that S(τ, τ − t)B ⊂ Bτ for any t ≥ t0. The proof is completed.

Integrating (3.3.4) over [τ −T, τ −T +1] where 0 < T ≤ t, we have an instrumental inequality

to prove the pullback asymptotic compactness as follows,∫ τ−T+1

τ−T
(‖G∇u(s)‖2 + ‖∇v(s)‖2)ds

≤ M1

2d0

+
max{2Ga−1, 2b−1}

2d0

H +G‖u0(τ − T )‖2 + ‖v0(τ − T )‖2.

(3.3.8)

Note that we use the second standing assumption on perturbation terms h(t, x), k(t, x) above.

Next we show the absorbing properties of the (u, v) components of the non-autonomous re-

versible Selkov process in the product Banach spaces [L2p(Γ)]2, for any integer 1 ≤ p ≤ 3.

Lemma 3.3.2. For any given integer 1 ≤ p ≤ 3, there exists a positive constant Kτ,p such that the

absorbing inequality

lim sup
t→∞

‖(u(τ, τ − t, u0(τ − t)), v(τ, τ − t, v0(τ − t)))‖2p
L2p < Kτ,p (3.3.9)

is satisfied by the (u, v) components of the non-autonomous reversible Selkov process {S(τ, τ −

t)}t≥0 for any initial data g0 ∈ H .
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Proof. The case p = 1 has been shown in Lemma 3.3.1. According to the smoothing property of

parabolic PDEs [47], for any given initial data g0 ∈ H there exists a time t0 ∈ (0, 1) such that

S(τ, τ − t+ t0)g0 ∈ E = [H1
0 (Γ)]2 ↪→ L6(Γ) ↪→ L4(Γ). (3.3.10)

Then the weak solution g(τ, τ − t) = S(τ, τ − t)g0 becomes a strong solution on [τ − t + t0, τ ]

and satisfies

S(·, ·)g0 ∈ C([τ − t+ t0, τ);E) ∩ L2(τ − t+ t0, τ ; Π) ⊂ C([τ − t+ t0, τ);L6(Γ))

⊂ C([τ − t+ t0, τ);L4(Γ)),
(3.3.11)

for n ≤ 3. Based on this observation, without loss of generality, we can assume that g0 ∈ L6(Γ)

for the purpose of studying the long-time dynamics. Thus parabolic regularity (3.3.11) of strong

solutions implies the S(τ, τ − t)g0 ∈ E ⊂ L6(Γ), t ≥ 0. By the bootstrap argument, we can

assume that g0 ∈ Π ⊂ L8(Γ) so that S(τ, τ − t)g0 ∈ Π ⊂ L8(Γ), t ≥ 0.

Now we use another rescaling to conduct estimate. Let ũ = u, ṽ = v/G. Then the original

system (3.1.2)-(3.1.3) becomes a rescaled system(we omit the tilde for brevity):

∂u

∂t
= d1∆u+ ρ− au+Gu2v −Gu3 + h(t, x), (3.3.12)

∂v

∂t
= d2∆v +

β

G
− bv + u2v − u3 +

k(t, x)

G
. (3.3.13)

Take the L2 inner-product 〈·, ·〉 of (3.3.12) with u3, we obtain

1

4

d

dt

∫
Γ

u4(t, x)dx+ 3d1‖u(t)∇u(t)‖2

=

∫
Γ

(
ρu3(t, x)− au4(t, x) +Gu5(t, x)v(t, x)−Gu6(t, x) + h(t, x)u3(t, x)

)
dx.

(3.3.14)

Then taking L2 inner-product 〈·, ·〉 of (3.3.13) with Gv3, we get

G

4

d

dt

∫
Γ

v4(t, x)dx+ 3Gd2‖v(t)∇v(t)‖2

=

∫
Γ

(
βv3(t, x)− bGv4(t, x)−Gu2(t, x)v4(t, x) +Gu3(t, x)v3(t, x) + k(t, x)v3(t, x)

)
dx.

(3.3.15)
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Recall d0 = min{d1, d2}, add up the above two equations (3.3.14) and (3.3.15) to obtain

1

4

d

dt

(
‖u‖4

L4 +G‖v‖4
L4

)
+ 3d0

(
‖u∇u‖2 +G‖v∇v‖2

)
=

∫
Γ

(
ρu3 − au4 + βv3 − bGv4

)
dx+

∫
Γ

(
hu3 + kv

)
dx

−G
∫

Γ

(
u6 − u5v − u3v3 + u2v4

)
dx

=

∫
Γ

(
ρu3 − au4 + βv3 − bGv4

)
dx+

∫
Γ

(
hu3 + kv3

)
dx

+G

∫
Γ

u2
(
−u4 + u3v + uv3 − v4

)
dx.

(3.3.16)

Thanks to the Young inequality, we have

−u4 + u3v + uv3 − v4 ≤ −u4 +

(
3

4
u4 +

1

4
v4

)
+

(
1

4
u4 +

3

4
v4

)
− v4 = 0. (3.3.17)

and

∫
Γ

(
(ρ+ h)u3 − au4 + (β + k)v3 − bGv4

)
dx

≤ −1

4

(
a‖u‖4

L4 + bG‖v‖4
L4

)
+

1

4

∫
Γ

(
(ρ+ h)4

a3
+

(β + k)4

b3G3

)
dx

≤ −1

4

(
a‖u‖4

L4 + bG‖v‖4
L4

)
+

∫
Γ

(
2h4

a3
+

2k4

b3G3

)
dx+M2|Γ|,

(3.3.18)

where

M2 =
2ρ4

a3
+

2β4

b3G3
. (3.3.19)

Substituting (3.3.17) and (3.3.18) into (3.3.16), we end up with

d

dt

(
‖u(t)‖4

L4 +G‖v(t)‖4
L4

)
+ γ

(
‖u(t)‖4

L4 +G‖v(t)‖4
L4

)
≤
∫

Γ

(
2h4

a3
+

2k4

b3G3

)
dx+M2|Γ|.
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Multiplying by eγt, then integrating over [τ − t, τ ] where t ≥ 0, we have

‖u(τ, τ − t, u0(τ − t))‖4
L4 +G‖v(τ, τ − t, v0(τ − t))‖4

L4

≤ e−γt(‖u0(τ − t)‖4
L4 +G‖v0(τ − t)‖4

L4) + e−γτM2|Γ|
∫ τ

τ−t
eγsds

+ e−γτ
∫ τ

τ−t

(
2

a3
‖h‖4

L4 +
2

b3G3
‖k‖4

L4

)
eγsds

≤ e−γt(‖u0(τ − t)‖4
L4 +G‖v0(τ − t)‖4

L4) +
M2|Γ|
γ

+ e−γτ
∫ τ

−∞

(
2

a3
‖h‖4

L4 +
2

b3G3
‖k‖4

L4

)
eγsds.

(3.3.20)

Recall that ũ = u, ṽ = v/G, returning to the original u, v, we have

‖u(τ, τ − t, u0(τ − t))‖4
L4 +

1

G3
‖v(τ, τ − t, v0(τ − t))‖4

L4

≤ e−γt(‖u0(τ − t)‖4
L4 +

1

G3
‖v0(τ − t)‖4

L4) +
M2|Γ|
γ

+ e−γτ
∫ τ

−∞

(
2

a3
‖h‖4

L4 +
2

b3G3
‖k‖4

L4

)
eγsds,

(3.3.21)

which implies,

‖u(τ, τ − t, u0(τ − t))‖4
L4 + ‖v(τ, τ − t, v0(τ − t))‖4

L4

≤ max{1, G
−3}

min{1, G−3}
e−γt(‖u0(τ − t)‖4

L4 + ‖v0(τ − t)‖4
L4) +

M2|Γ|
min{1, G−3}γ

+
max{ 2

a3
, 2
b3G3}

min{1, G−3}
e−γτ

∫ τ

−∞

(
‖h‖4

L4 + ‖k‖4
L4

)
eγsds.

(3.3.22)

Let t→ +∞, we have (3.3.9) holds for p = 2 with

K2,τ =
M2|Γ|

min{1, G−3}γ
+
max{ 2

a3
, 2
b3G3}

min{1, G−3}
e−γτ

∫ τ

−∞

(
‖h‖4

L4 + ‖k‖4
L4

)
eγsds.

Similarly taking L2 inner-product 〈·, ·〉 of (3.3.12) with u5 and (3.3.13) with Gv5 respectively,

we get

d

dt

(
‖u(t)‖6

L6 +G‖v(t)‖6
L6

)
+ γ

(
‖u(t)‖6

L6 +G‖v(t)‖6
L6

)
≤
∫

Γ

(
16h6

3a5
+

16k6

3b5G5

)
dx+M3|Γ|,
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where

M3 =
16ρ6

3a5
+

16β6

3b5G5
.

Multiplying by eγt, then integrating over [τ − t, τ ] where t ≥ 0, we have

‖u(τ, τ − t, u0(τ − t))‖6
L6 +G‖v(τ, τ − t, v0(τ − t))‖6

L6

≤ e−γt(‖u0(τ − t)‖6
L6 +G‖v0(τ − t)‖6

L6) + e−γτM3|Γ|
∫ τ

τ−t
eγsds

+ e−γτ
∫ τ

τ−t

(
16

3a5
‖h‖6

L6 +
16

3b5G5
‖k‖6

L6

)
eγsds

≤ e−γt(‖u0(τ − t)‖6
L6 +G‖v0(τ − t)‖6

L6) +
M3|Γ|
γ

+ e−γτ
∫ τ

−∞

(
16

3a5
‖h‖6

L6 +
16

3b5G5
‖k‖6

L6

)
eγsds.

(3.3.23)

Returning to the original u, v, we have

‖u(τ, τ − t, u0(τ − t))‖6
L6 +

1

G5
‖v(τ, τ − t, v0(τ − t))‖6

L6

≤ e−γt(‖u0(τ − t)‖6
L6 +

1

G5
‖v0(τ − t)‖6

L6) +
M3|Γ|
γ

+ e−γτ
∫ τ

−∞

(
16

3a5
‖h‖6

L6 +
16

3b5G5
‖k‖6

L6

)
eγsds

(3.3.24)

Therefore,

‖u(τ, τ − t, u0(τ − t))‖6
L6 + ‖v(τ, τ − t, v0(τ − t))‖6

L6

≤ max{1, G
−5}

min{1, G−5}
e−γt(‖u0(τ − t)‖6

L6 + ‖v0(τ − t)‖6
L6 +

M3|Γ|
min{1, G−5}γ

+
max{ 16

3a5
, 16

3b5G5}
min{1, G−5}

e−γτ
∫ τ

−∞

(
‖h‖6

L6 + ‖k‖6
L6

)
eγsds.

(3.3.25)

Let t→ +∞, we have (3.3.9) holds for p = 3 with

K3,τ =
M3|Γ|

min{1, G−5}γ
+
max{ 16

3a5
, 16

3b5G5}
min{1, G−5}

e−γτ
∫ τ

−∞

(
‖h‖6

L6 + ‖k‖6
L6

)
eγsds.

3.4 Pullback Asymptotic Compactness

In this section, we show that the non-autonomous reversible Selkov process {S(τ, τ − t)}t≥0 is

asymptotically compact through the following two lemmas. Note that ‖(y1, y2)‖2 = ‖y1‖2+‖y2‖2.
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Lemma 3.4.1. For any given R > 0, τ ∈ R, there exists a constant Qτ (R) such that if the initial

data g0 ∈ E and ‖g0‖E ≤ R, then (u(τ, τ − t), v(τ, τ − t)) components of the solution trajectories

g(t) = S(τ, τ − t)g0 of the IVP (3.1.7) satisfy

‖∇(u(τ, τ − t, u0(τ − t)), v(τ, τ − t, v0(τ − t)))‖2 ≤ Qτ (R), for t > T1, (3.4.1)

where Qτ (R) > 0 is a constant depending only on R, τ , and T1 > 0 is finite and only depends on

the radius R.

Proof. Taking the L2 inner-products of (3.1.2) with −∆u(t), we get

1

2

d

dt
‖∇u‖2 + d1‖∆u‖2 + a‖∇u‖2

=

∫
Γ

(
−ρ∆u− u2v∆u+Gu3∆u− h∆u

)
dx

≤ (
d1

4
+
d1

4
+
d1

2
)‖∆u‖2 +

1

d1

∫
Γ

(
u4v2 +G2u6

)
dx+

1

2d1

(ρ+ h)2|Γ|

≤ d1‖∆u‖2 +
1

3d1

(∫
Γ

(2 + 3G3)u6dx+

∫
Γ

v6dx

)
+

1

d1

(ρ2 + h2)|Γ|.

Taking the L2 inner-products of (3.1.3) with −∆v(t), we have

1

2

d

dt
‖∇v‖2 + d2‖∆v‖2 + a‖∇v‖2

=

∫
Γ

(
−β∆v − u2v∆v −Gu3∆v − k∆v

)
dx

≤ (
d2

4
+
d2

4
+
d2

2
)‖∆v‖2 +

1

d2

∫
Γ

(
u4v2 +G2u6

)
dx+

1

2d2

(β + k)2|Γ|

≤ d2‖∆v‖2 +
1

3d2

(∫
Γ

(2 + 3G3)u6dx+

∫
Γ

v6dx

)
+

1

d2

(β2 + k2)|Γ|.

Adding up the two components gives

d

dt
‖(∇u,∇v)‖2 + 2γ‖(∇u,∇v)‖2

≤ 2

3

(
1

d1

+
1

d2

)
(2 + 3G2)

(
‖u‖6

L6 + ‖v‖6
L6

)
+

2

d1

(ρ2 + h2)|Γ|+ 2

d2

(β2 + k2)|Γ|

≤ 4

3d0

(2 + 3G2)
(
‖u‖6

L6 + ‖v‖6
L6

)
+

2

d0

(ρ2 + β2 + h2 + k2)|Γ|.

(3.4.2)

Note that we have taken ‖∇ϕ‖ as the norm of E and there is a positive constant η > 0 associated

with the Sobolev imbedding inequality

‖ϕ‖L6 ≤ η‖ϕ‖E = η‖∇ϕ‖, for any ϕ ∈ E. (3.4.3)
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By (3.3.25), for any given g0 = (u0(τ − t), v0(τ − t)) ∈ E, we have

‖u(τ, τ − t, u0(τ − t))‖6
L6 + ‖v(τ, τ − t, v0(τ − t))‖6

L6

≤ η
6max{1, G−5}
min{1, G−5}

e−γt‖u0(τ − t), v0(τ − t)‖6
E +

M3|Γ|
min{1, G−5}γ

+
max{ 16

3a5
, 16

3b5G5}
min{1, G−5}

e−γτ
∫ τ

−∞

(
‖h‖6

L6 + ‖k‖6
L6

)
eγsds.

(3.4.4)

Let

M4(τ) =
M3|Γ|

min{1, G−5}γ
+
max{ 16

3a5
, 16

3b5G5}
min{1, G−5}

e−γτ
∫ τ

−∞

(
‖h‖6

L6 + ‖k‖6
L6

)
eγsds. (3.4.5)

Then (3.4.2) along with these facts shows that for any initial datum ‖g0‖E ≤ R, we arrive at

d

dt
‖(∇u,∇v)‖2 + 2γ‖(∇u,∇v)‖2

≤ 4

3d0

(2 + 3G2)

(
η6R6max{1, G−5}
min{1, G−5}

e−γt +M4(τ)

)
+

2

d0

(ρ2 + β2 + h2 + k2)|Γ|.
(3.4.6)

Multiplying by e2γt, then integrating over [τ − t, τ ] where t ≥ 0, we have

‖(∇u(τ, τ − t, u0(τ − t)),∇v(τ, τ − t, v0(τ − t)))‖2

≤ e−2γt(‖∇u0(τ − t),∇v0(τ − t))‖2) +
4(2 + 3G2)η6R6max{1, G−5}

3d0min{1, G−5}
e−2γτ

∫ τ

τ−t
eγsds

+ e−2γτ

(
4(2 + 3G2)

3d0

M4(τ) +
2|Γ|
d0

(ρ2 + β2)

)∫ τ

τ−t
e2γsds

+
2|Γ|
d0

e−2γτ

∫ τ

τ−t

(
‖h‖2 + ‖k‖2

)
eγsds

≤ e−2γt(‖(∇u0(τ − t),∇v0(τ − t))‖2) +
4(2 + 3G2)η6R6max{1, G−5}

3γd0min{1, G−5}
e−γτ

+
1

2γ

(
4(2 + 3G2)

3d0

M4(τ) +
2|Γ|
d0

(ρ2 + β2)

)
+

2|Γ|
d0

e−2γτ

∫ τ

−∞

(
‖h‖2 + ‖k‖2

)
eγsds.

(3.4.7)

Put

Qτ (R) = 1 +
4(2 + 3G2)η6R6max{1, G−5}

3γd0min{1, G−5}
e−γτ

+
1

2γ

(
4(2 + 3G2)

3d0

M4(τ) +
2|Γ|
d0

(ρ2 + β2)

)
+

2|Γ|
d0

e−2γτ

∫ τ

−∞

(
‖h‖2 + ‖k‖2

)
eγsds,

(3.4.8)
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and for any ball B ⊂ E centered at the origin with radius R, there is a finite time T1(R) = 1
γ
logR

such that (3.4.1) holds for any t ≥ T1.

Lemma 3.4.2. For any τ ∈ R,there exists a universal constant P (τ), for any given R > 0 there

exists a constant T (R) > 0 such that if g0 ∈ H and ‖g0‖2 ≤ R, then the weak solution of the

non-autonomous reversible Selkov process satisfies S(τ, τ − t)g0 ∈ E for t ≥ T (R) and

‖S(τ, τ − t)g0‖2
E ≤ P (τ), t ≥ T (R).

Proof. By the absorbing property shown in Lemma 3.3.1, there exists a time T0(R) > 0 such that

for any g0 ∈ H with ‖g0‖ ≤ R we have S(τ, τ − t)g0 ∈ Bτ for t ≥ T0(R), where Bτ is the

bounded pullback absorbing set in H. Thus we have

‖S(τ − T1, τ − T1 − t)g0‖2 ≤ Kτ , t ≥ T0(R).

From the inequality (3.3.8), we have∫ τ−T1+1

τ−T1
(‖G∇u(s)‖2 + ‖∇v(s)‖2)ds

≤ M1

2d0

+
max{2Ga−1, 2b−1}

2d0

H + max{1, G}K2
τ ,

(3.4.9)

By Lemma 3.3.1, for any g0 ∈ H , the weak solution S(τ, τ− t)g0 is a strong solution on (τ− t, τ ].

This fact and the solution regularity confirm that

(u, v) ∈ C((τ − t, τ);E) ∩ L2
loc(τ − t, τ ;E). (3.4.10)

Via the mean value theorem in calculus, it follows from (3.4.9) that there exists a time T2 ∈

(τ − T1, τ − T1 + 1] such that

(‖G∇u(T2)‖2 + ‖∇v(T2)‖2) ≤ M1

2d0

+
max{2Ga−1, 2b−1}

2d0

H + max{1, G}K2
τ , (3.4.11)

that is,

‖u(T2), v(T2)‖2
E ≤

M1

2d0 min{1, G}
+

max{2Ga−1, 2b−1}
2d0 min{1, G}

H +
max{1, G}K2

τ

min{1, G}
, (3.4.12)
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Finally, set

T (R) = T1 + T2 + 1.

By (3.4.12), we can apply Lemma 3.4.1 to conclude that, for any g0 ∈ H with ‖g0‖ ≤ R,

‖S(τ, τ − t)g0‖2
E ≤ Qτ (

M1

2d0 min{1, G}
+

max{2Ga−1, 2b−1}
2d0 min{1, G}

H +
max{1, G}K2

τ

min{1, G}
), t ≥ T (R)

where Qτ (·) is the function given explicitly by (3.4.8), which does not depend on R.

Put

P (τ) = Qτ (
M1

2d0 min{1, G}
+

max{2Ga−1, 2b−1}
2d0 min{1, G}

H +
max{1, G}K2

τ

min{1, G}
),

we complete the proof.

Note that we run the process from τ − t , after time τ −T2 the E-norm of (u, v) can be bounded

in the universal ball, then we can apply Lemma 3.4.1 to reach the conclusion.

Finally we reach the proof of main result on the existence of pullback attractor, which will be

denoted by A (τ), for the non-autonomous reversible Selkov process {S(τ, τ − t)}t≥0.

Theorem 3.4.3. For any positive parameters d1, d2, ρ, β, a, b, G, there exist a pullback attractor

A (τ) in the phase space H for the non-autonomous Selkov process {S(τ, τ − t)}t≥0.

Proof. In Lemma 3.3.1 we have shown that the non-autonomous reversible Selkov process

{S(τ, τ − t)}t≥0 has a pullback absorbing set Bτ in H . Via Lemma 3.4.2 we proved that

‖S(τ, τ − t)g0‖2
E ≤ P (τ), t ≥ T (R) and for ‖g0‖2 ≤ R,

which implies that S(τ, τ − t) is pullback asymptotically compact in H . Thus we apply Propo-

sition 3.2.5 to reach the conclusion that there exist a pullback attractor A (τ) in H for this non-

autonomous reversible Selkov process {S(τ, τ − t)}t≥0.
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Chapter 4

Random attractor of stochastic Brusselator system

4.1 Introduction

In this work, we shall prove the existence of the random attractor for the following stochastic

Brusselator system with multiplicative noise,

du =
(
d1∆u+ a− (b+ 1)u+ u2v

)
dt+ ρu ◦ dW (t), (4.1.1)

dv =
(
d2∆v + bu− u2v

)
dt+ ρv ◦ dW (t), (4.1.2)

for (t, x) ∈ R×Γ, where Γ ⊂ Rn (n ≤ 3) is a bounded domain with a locally Lipschitz continuous

boundary, given the homogeneous Dirichlet boundary condition

u(t, x) = v(t, x) = 0, t > t0, x ∈ ∂Γ, (4.1.3)

and an initial condition

u(t0, x) = u0(x), v(t0, x) = v0(x). (4.1.4)

All the coefficients d1, d2, a, b and ρ are arbitrarily given positive constants. {W (t)}t∈R is a one-

dimensional, two-sided standard Wiener process (Brownian motion) on a probability space which

will be specified later. The term ρu◦dW (t), ρv ◦dW (t) indicate that the stochastic PDEs (4.1.1)-

(4.1.2) are interpreted as the corresponding stochastic integral equations in the Stratonovich sense.

The original Brusselator equations were proposed in [31] as a system of ODEs and the diffusive

Brusselator equations have been used as a typical mathematical model for morphogenesis and

trimolecular autocatalytic reactions in physical chemistry and mathematical biology, cf. [21] and

the references in [47].
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The concept of random attractor for random dynamical system was first introduced in [14,

19] in the study of the asymptotic dynamics of Navier-Stokes equations and other PDEs with

multiplicative and additive white noise. The fundamental results on random dynamical systems

and related topics have been summarized in [2].

When dealing with random dynamics and the existence of random attractor for stochastic par-

tial differential equations with multiplicative noise, we usually transform the stochastic PDEs

into deterministic ones with random parameters and random initial data through the exponential

transformation of Brownian motion. In this chapter, however, we take the approach of the expo-

nential transformation of the Ornstein-Uhlenbeck process. This transformation does change the

structure of the original equations and produces the non-autonomous terms in (4.2.6) and (4.2.7).

It demands more challenging and sophisticated pullback a priori estimates, other than the non-

dynamical substitution of ω by θ−tω as in some other publications.

Another notable aspect is that the Brusselator reaction-diffusion system does not satisfy the

usual dissipative condition, cf. [47], and the bootstrap method used here is also different from the

decomposition method for the deterministic global attractors in [47]. The result of this chapter

shows that the approach of the Ornstein-Uhlenbeck transformation unifies the treatment of the

stochastic RDEs with multiplicative noise and with additive noise in regard to pullback asymp-

totic dynamics, especially for the reaction-diffusion systems with some sort of weak and hidden

dissipativity.

As always the initial data or solutions are not restricted to be nonnegative and there are no

restrictions on any of the positive parameters in the equations (4.1.1)–(4.1.2).

The rest of the chapter is organized as follows. In Section 2 we present preliminary concepts on

random dynamical system and random attractors. In Section 3 we prove the pullback absorbing

property of the Brusselator random dynamical system. In Section 4 we show the pullback asymp-

totic compactness. In Sections 5 we reach the main results on the existence of a random attractor

and its L2 to H1 attracting regularity.
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4.2 Preliminaries and Formulation

In this section, we recall the concepts of random dynamical system and random attractor. We

refer to [2,5,14,16] for more details. Let (X, ‖ · ‖X) be a real separable Banach space with Borel

σ-algebra B(X) and let (Ω,F, P ) be a probability space. R+ = [0,∞).

Definition 4.2.1. (Ω,F, P, {θt}t∈R) is called a metric dynamical system (MDS) if θ : R× Ω→ Ω

is (B(R)× F,F)-measurable, θ0 is the identity on Ω, θt+s = θt ◦ θs for all s, t ∈ R and θtP = P

for all t ∈ R on Ω.

Definition 4.2.2. A continuous random dynamical system (RDS) on X over a metric dynamical

system (Ω,F, P, (θt)t∈R) is a mapping

ϕ : R+ × Ω×X → X, (t, ω, x) 7→ ϕ(t, ω, x),

which is (B(R+) × F × B(X),B(X))-measurable such that for every ω ∈ Ω, the following

conditions hold:

(i) ϕ(0, ω, ·) is the identity on X;

(ii) Cocycle property: ϕ(t+ s, ω, ·) = ϕ(t, θsω, ϕ(s, ω, ·)) for all t, s ∈ R+;

(iii) ϕ(·, ω, ·) : R+ ×X → X is strongly continuous.

Definition 4.2.3. A continuous stochastic flow on a Banach space X over a metric dynamical

system (Ω,F, P, (θt)t∈R) is a family of mappings S(t, τ, ω) : X → X for t ≥ τ ∈ R and ω ∈ Ω

with the following conditions:

(i) S(t, t, ω) is the identity on X;

(ii) S(t, s, ω)S(s, τ, ω) = S(t, τ, ω) for all τ ≤ s ≤ t and ω ∈ Ω;

(iii) S(t, τ, ω) = S(t− τ, 0, θτω) for all τ ≤ t and ω ∈ Ω;

(iv) The mapping S(t, τ, ω)x is measurable in (t, τ, ω) and continuous in x ∈ X .

Definition 4.2.4. A random set in X is a set-valued function B(ω) : Ω → 2X whose graph

{(ω, x) : x ∈ B(ω)} ⊂ Ω × X is an element of the product σ-algebra F × B(X). A bounded

random set B(ω) ⊂ X means that there is a random variable r(ω) ∈ R+ such that ||B(ω)|| :=
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supx∈B(ω) ||x|| ≤ r(ω) for all ω ∈ Ω. A random set B(ω) is called compact (respectively pre-

compact) if for each ω ∈ Ω the set B(ω) is compact (respectively precompact) in X . A bounded

random set is called tempered with respect to (θt)t∈R on (Ω,F, P ), if for each ω and for any

constant c > 0,

lim
t→∞

e−ct||B(θ−tω)|| = 0.

A random variable R : (Ω,F, P ) → (0,∞) is called tempered with respect to {θt}t∈R if for

each ω ,

lim
t→±∞

1

t
logR(θ−tω) = 0.

A collection D of random subsets of X is called inclusion-closed, if D = {D(ω)}ω∈Ω ∈ D

and D̂ = {D̂(ω) ⊂ D(ω) : ω ∈ Ω} imply that D̂ ∈ D. In this case, the collection D is called

a universe. In the paper, we define D to be the universe of all the tempered random sets in a

specified phase space X . Note that all bounded non-random sets are included in D.

Definition 4.2.5. Let D be a collection of random subsets of X . A random set K ∈ D is called

a D-pullback absorbing set with respect to an RDS ϕ over the MDS (Ω,F, P, {θt}t∈R), if for any

ω ∈ Ω and any bounded set B(ω) ∈ D there exists a finite time tB(ω) > 0 such that

ϕ(t, θ−tω,B(θ−tω)) ⊂ K(ω) for all t ≥ tB(ω).

Definition 4.2.6. Let D be a collection of random subsets of X . Then an RDS ϕ is D-pullback

asymptotically compact in X if for each ω ∈ Ω, {ϕ(tn, θ−tnω, xn)}∞n=1 has a convergent subse-

quence in X whenever tn →∞, and xn ∈ B(θ−tnω) for any given B ∈ D.

Definition 4.2.7. Let a universe D of tempered random sets in a Banach space X be given. A

random set A ∈ D is called a random attractor in D for a given RDS ϕ on X over the MDS

(Ω,F, P, {θt}t∈R), if the following conditions are satisfied for each ω ∈ Ω:

(i) A is a compact random set.

(ii) A is invariant in the sense that

ϕ(t, ω,A(ω)) = A(θtω), ∀ t ≥ 0;
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(iii) A attracts every set B ∈ D in the sense that for every ω ∈ Ω one has

lim
t→∞

distX(ϕ(t, θ−tω,B(θ−tω)),A(ω)) = 0,

where the Hausdorff semi-distance is given by distX(Y, Z) = supy∈Y infz∈Z ‖y−z‖X for subsets

Y and Z in X .

We have the following proposition on the existence of random attractor due to Crauel and

Flandoli [14, Theorem 3.11].

Proposition 4.2.8. Given a Banach space X and a collection D of random sets of X , let ϕ be a

continuous RDS onX over an MDS (Ω,F, P, {θt}t∈R). Suppose that there exists a closed pullback

absorbing set {K(ω)}ω∈Ω ∈ D and ϕ is pullback asymptotically compact with respect to D, then

the RDS ϕ has a unique random attractor A = {A(ω)}ω∈Ω ∈ D whose basin is D and given by

A(ω) =
⋂
τ≥0

⋃
t≥τ

ϕ(t, θ−tω,K(θ−tω)).

Let {W (t)}t∈R be the standard one-dimensional two-sided Wiener process in the probability

space (Ω,F, P ), where

Ω = {ω ∈ C(R,R) : ω(0) = 0},

the σ-algebra F is generated by the compact-open topology on Ω, and P is the corresponding

Wiener measure on F. The shift mapping θt is defined by

θtω(·) = ω(·+ t)− ω(t), t ∈ R.

Then (Ω,F, P, {θt}t∈R) is the canonical MDS and the stochastic process {W (t, ω) = ω(t) : t ∈

R, ω ∈ Ω} is the canonical Wiener process (Brownian motion).

Consider the Ornstein-Uhlenbeck process

z(θtω) = −
∫ 0

−∞
es(θtω)(s)ds = −

∫ 0

−∞
esω(t+ s)ds+ ω(t), (4.2.1)

which solves the linear stochastic differential equation

dz + zdt = dW (t). (4.2.2)

The following proposition is quoted from [5].
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Proposition 4.2.9. Let the metric dynamical system (Ω,F, P, θt) and the Ornstein-Uhlenbeck

process {z(θtω)}t∈R be defined as above. Then there is a θt-invariant set Ω̃ ∈ Ω of full P -measure

such that for every ω ∈ Ω̃, the following statements hold.

1. The Ornstein-Uhlenbeck process {z(θtω)}t∈R has the asymptotically sublinear growth prop-

erty, i.e.

lim
t→±∞

|z(θtω)|
|t|

= 0, (4.2.3)

2. z(θtω) is continuous in t and, for any fixed t0 ∈ R,

lim
t→±∞

1

t− t0

∫ t

t0

z(θsω) ds = 0, (4.2.4)

In the sequel we consider ω ∈ Ω̃ only and will always write Ω for Ω̃.

As the main approach to investigating the random dynamics of stochastic PDEs, we convert

the stochastic Brusselator system (4.1.1)-(4.1.2) to a system of pathwise PDEs with the random

parameter ω(t) and random initial data. Make the transformation

U = e−ρz(θtω)u, V = e−ρz(θtω)v, (4.2.5)

where z(θtω) is the Ornstein-Uhlenbeck process in (4.2.1). Then

dU = −ρe−ρz(θtω)u ◦ dz + e−ρz(θtω)du,

dV = −ρe−ρz(θtω)v ◦ dz + e−ρz(θtω)dv.

In view of the equation (4.2.2), dz + zdt = dW (t), the system (4.1.1)-(4.1.2) is transformed by

(4.2.5) to the following random PDE problem:

dU

dt
= d1∆U + ae−ρz(θtω) − (b+ 1)U + e2ρz(θtω)U2V + ρz(θtω)U, (4.2.6)

dV

dt
= d2∆V + bU − e2ρz(θtω)U2V + ρz(θtω)V, (4.2.7)

for ω ∈ Ω, x ∈ Γ and t > t0, with the homogeneous Dirichlet boundary condition

U(t, ω, x) = V (t, ω, x) = 0, t > t0 ∈ R, x ∈ ∂Γ, ω ∈ Ω, (4.2.8)

63



and the initial condition at t = t0 ∈ R,

U(t0, ω, x) = U0(ω, x) = e−ρz(θt0ω)u0(x), V (t0, ω, x) = V0(ω, x) = e−ρz(θt0ω)v0(x). (4.2.9)

For every ω ∈ Ω, the problem (4.2.6)-(4.2.9) of the pathwise nonautonomous partial differential

equations can be written as

dg

dt
= Ag + F (g, θtω),

g(t0, ω, x) = g0 = (U0(ω, x), V0(ω, x))T ,

(4.2.10)

where g(t, ω; t0, g0) = (U(t, ω; t0, U0), V (t, ω; t0, V0))T and

F (g, θtω) =

 ae−ρz(θtω) − (b+ 1)U + e2ρz(θtω)U2V + ρz(θtω)U

bU − e2ρz(θtω)U2V + ρz(θtω)V


for any t ≥ t0 with initial data

g0(ω) = (U0(ω, ·), V0(ω, ·))T = (e−ρz(θt0ω)u0(·), e−ρz(θt0ω)v0(·))T .

By conducting a priori estimates on the Galerkin approximations of the initial value problem

(4.2.10) and the compactness argument, c.f. [12], but with the extra care on the non-autonomous

terms from the random noise, we can prove the local existence and uniqueness of the weak solution

g(t, ω; t0, g0), t ∈ [t0, T (ω, g0)] for some T (ω, g0) > t0, which depends continuously on the initial

data.

By the parabolic regularity [37, Theorem 48.5], every weak solution turns out to be a strong

solution for t > t0 in the existence interval. Similar to Lemma 1.2 in [47], every weak solution

g(t, ω; t0, g0) of (4.2.10) on the maximal interval of existence has the property

g(t, ω; t0, g0) ∈ C([t0, Tmax);H) ∩ C1((t0, Tmax);H) ∩ L2([t0, Tmax);E).

Below we shall study the global existence and the asymptotic dynamics of the weak solutions of

the problem (4.2.10).
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4.3 Pullback Absorbing Property

For brevity, we write U(t, ω; t0, U0), V (t, ω; t0, V0) as U(t, ω), V (t, ω) or simply as U, V , similarly

we write weak solution g(t, ω; t0, g0) as g(t, ω) or g.

Lemma 4.3.1. For any given tempered random variable R(ω) > 0 and any initial data (u0, v0) ∈

H with ‖(u0, v0)‖ ≤ R(ω), there exists a time −∞ < T (R,ω) ≤ −1 such that the weak solu-

tion g(t, ω) = (U(t, ω; t0, U0), V (t, ω; t0, V0)) of the problem of the random Brusselator system

(4.2.6)-(4.2.9) exists on [t0, 0] for any initial time t0 ≤ T (R,ω).

Moreover, for terminal time t ∈ [−4, 0] when t0 ≤ min{T (R,ω),−4}, there exists a random

variable M(t, ω) independent of initial data such that the weak solution satisfies

∥∥g (t, ω; t0, e
−ρz(θt0ω)g0

)∥∥2 ≤M(t, ω), t ≥ t0, ω ∈ Ω. (4.3.1)

Proof. Taking the inner product of (4.2.7) with V (t, ω), we get

1

2

d

dt
‖V ‖2 + d2‖∇V ‖2

= −e2ρz(θtω)

∫
Γ

(
UV − 1

2
be−2ρz(θtω)

)2

dx+
1

4
b2|Γ|e−2ρz(θtω) + ρz(θtω)‖V ‖2.

(4.3.2)

It follows that, in the maximal interval of existence [t0, Tmax),

d

dt
‖V ‖2 + 2λd2‖V ‖2 ≤ d

dt
‖V ‖2 + 2d2‖∇V ‖2 ≤ 2ρz(θtω)‖V ‖2 +

1

2
b2|Γ|e−2ρz(θtω). (4.3.3)

Multiplying the above inequality by e
∫ t
t0

(2ρz(θsω)−2λd2)ds and then integrating it over [t0, t] where

t0 < −4 ≤ t ≤ 0, we obtain

‖V (t, ω; t0, g0)‖2 ≤ ‖V0‖2e
∫ t
t0

(2ρz(θsω)ds−2λd2(t−t0)

+
1

2
b2|Γ|

∫ t

t0

e
∫ t
τ (2ρz(θsω)−2λd2)ds−2ρz(θτω)dτ.

(4.3.4)

The next step is the key to the pullback estimates. We want to get rid of the initial time and data

by the asymptotic decay of the Ornstein-Uhlenbeck process. The arguments go as follows.
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From (4.2.3) and (4.2.4), for every random variable R(ω) > 0, there exists a time T1(R,ω) <

−4 such that for any t0 ≤ T1(R,ω), and t ∈ [−4, 0], we have

1

(t− t0)

∫ t

t0

2ρz(θsω) ds− 2λd2 ≤ −λd2,

e−λd2(t−t0)e−ρz(θt0ω)R2(ω) ≤ 1.

(4.3.5)

Note that the improper integral on the right-hand side of (4.3.4),∫ t

−∞
exp

{∫ t

τ

(2ρz(θsω)− 2λd2s)ds− 2ρz(θτω)

}
dτ, (4.3.6)

is convergent for the following reason. By (4.2.3) and (4.2.4) there exists T2(ω) < −4 such that

for any τ ≤ T2(ω), we have

exp

[∫ t

τ

(2ρz(θsω)− 2λd2s)ds− 2ρz(θτω)

]
= exp

[
(t− τ)

(∫ t
τ

2ρz(θsω)ds

t− τ
− 2λd2 −

2ρz(θτω)

t− τ

)]
≤ e−λd2(t−τ),

(4.3.7)

and ∫ τ

−∞
e−λd2(t−τ)dτ ≤

∫ T2

−∞
e−λd2(t−τ)dτ =

1

λd2

eλd2(T2−t). (4.3.8)

Therefore, we have the following estimates, for t0 ≤ T1(R,ω), and t ∈ [−4, 0],

‖V (t, ω; t0, g0)‖2 ≤ ‖V0‖2e
∫ t
t0

(2ρz(θsω)ds−2λd2(t−t0)

+
1

2
b2|Γ|

∫ t

t0

e
∫ t
τ (2ρz(θsω)−2λd2)ds−2ρz(θτω)dτ

≤ 1 +
1

2
b2|Γ|

∫ t

t0

e
∫ t
τ (2ρz(θsω)−2λd2)ds−2ρz(θτω)dτ

≤ 1 +
1

2
b2|Γ|

∫ t

−∞
e
∫ t
τ (2ρz(θsω)−2λd2)ds−2ρz(θτω)dτ,

(4.3.9)

Next we deal with U component through the transformation

y(t, x, ω) = U(t, x, ω) + V (t, x, ω). (4.3.10)

Adding up (4.2.6) and (4.2.7), we get

dy

dt
= d1∆y + (d1 − d2)∆V − y + V + ae−ρz(θtω) + ρz(θtω)y, (4.3.11)
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Take the inner product of (4.3.11) with y(t) to obtain

1

2

d

dt
‖y‖2 + d1‖∇y‖2

= (d2 − d1)

∫
Γ

|∇V · ∇y| dx+ (ρz(θtω)− 1)‖y‖2 +

∫
Γ

V y dx+ ae−ρz(θtω)

∫
Γ

y dx

≤ |d2 − d1|2

2d1

‖∇V ‖2 +
d1

2
‖∇y‖2 + (ρz(θtω)− 1)‖y‖2 + ‖V ‖2 +

1

2
‖y‖2 + a2|Γ|e−2ρz(θtω).

(4.3.12)

It follows that
d

dt
‖y‖2 + d1‖∇y‖2 ≤ |d2 − d1|2

d1

‖∇V ‖2

+ (2ρz(θtω)− 1)‖y‖2 + 2‖V ‖2 + 2a2|Γ|e−2ρz(θtω).

(4.3.13)

Multiplying the above inequality by e
∫ t
t0

(2ρz(θsω)−1)ds and then integrating it over [t0, t], where

t0 < −4 ≤ t ≤ 0. Then there exists a time T3(R,ω) < −4 such that for any t0 ≤ T3(R,ω),

t ∈ [−4, 0], we have

‖y(t, ω; t0, g0)‖2 ≤ ‖y0‖2e
∫ t
t0

2ρz(θsω)ds−(t−t0)

+

∫ t

t0

e
∫ t
τ (2ρz(θsω)−1)ds

[
|d2 − d1|2

d1

‖∇V (τ)‖+ 2‖V (τ)‖2 + 2a2|Γ|e−2ρz(θτω)

]
dτ

≤ 1 +

∫ t

t0

e
∫ t
τ (2ρz(θsω)−1)ds

[
|d2 − d1|2

d1

‖∇V (τ)‖+ 2λ‖∇V (τ)‖2 + 2a2|Γ|e−2ρz(θτω)

]
dτ.

(4.3.14)

Now we treat the integral term on the right-hand side of (4.3.14). Multiplying (4.3.3) by e
∫ t
τ (2ρz(θsω)−1)ds

and then integrating it by parts on [t0, t], where t0 < −4 ≤ t ≤ 0, we find that there exists

T4(R,ω) < −4, such that the following inequality holds,

2d2

∫ t

t0

e
∫ t
τ (2ρz(θsω)−1)ds‖∇V (τ, ω; t0, g0)‖2dτ

≤
∫ t

t0

e
∫ t
τ (2ρz(θsω)−1)ds(2ρz(θτω)‖V (τ)‖2 +

1

2
b2|Γ| e−2ρz(θτω)) dτ

+ e
∫ t
t0

(2ρz(θsω)−1)ds‖V (t0)‖2 +

∫ t

t0

‖V (τ)‖(−2ρz(θτω) + 1) e
∫ t
τ (2ρz(θsω)−1)dsdτ

≤ 1

2
b2|Γ|

∫ t

t0

e
∫ t
τ (2ρz(θsω)−1)ds e−2ρz(θτω)dτ + 1 +

∫ t

t0

‖V (τ)‖ e
∫ t
τ (2ρz(θsω)−1)dsdτ,

(4.3.15)
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when t0 ≤ T4(R,ω). As for the term
∫ t
t0
‖V (τ)‖e

∫ t
τ (2ρz(θsω)−1)dsdτ in (4.3.15), from (4.3.4), there

exists T5(R,ω) ≤ T1(R,ω) such that for t0 ≤ T5(R,ω) we have∫ t

t0

e
∫ t
τ (2ρz(θsω)−1)ds‖V (τ, ω; t0, V0))‖2dτ

≤
∫ t

t0

e
∫ t
τ (2ρz(θsω)−1)ds‖V0‖2e

∫ τ
t0

(2ρz(θsω)ds−2λd2(τ−t0)
dτ

+
b2|Γ|

2

∫ t

t0

e
∫ t
τ (2ρz(θsω)−1)ds

∫ τ

t0

e
∫ τ
ξ (2ρz(θsω)−2λd2)ds−2ρz(θυω)dξdτ

≤
∫ t

t0

e
∫ t
t0

(2ρz(θsω)+max{−1,−2λd2})ds‖V0‖2dτ

+
b2|Γ|

2

∫ t

t0

∫ t

ξ

e
∫ t
τ (2ρz(θsω)−1)dse

∫ τ
ξ (2ρz(θsω)−2λd2)ds−2ρz(θξω)dτdξ

≤ (t− t0)‖V0‖2e
∫ t
t0

(2ρz(θsω)+max{−1,−2λd2})ds

+
b2|Γ|

2

∫ t

t0

∫ t

ξ

e
∫ t
ξ 2ρz(θsω)ds+

∫ t
ξ max{−1,−2λd2}ds−2ρz(θξω)dτdξ

= (t− t0)‖V0‖2e
∫ t
t0

(2ρz(θsω)+max{−1,−2λd2})ds

+
b2|Γ|

2

∫ t

t0

(t− ξ)e
∫ t
ξ 2ρz(θsω)ds+

∫ t
ξ max{−1,−2λd2}ds−2ρz(θξω)dξ

≤ 1 +
b2|Γ|

2

∫ t

−∞
(t− ξ)e

∫ t
ξ 2ρz(θsω)ds+ max{−1,−2λd2}(t−ξ)−2ρz(θυω)dξ,

(4.3.16)

Note that the last improper integral above is convergent by the similar calculation as in (4.3.7) and

(4.3.8). The stochastic process given by

C1(t, ω) =
b2|Γ|
4d2

∫ t

−∞
e
∫ t
τ (2ρz(θsω)−1)ds−2ρz(θτω)dτ +

1

2d2

+ 1 +
1

2
b2|Γ|

∫ t

−∞
(t− ξ)e

∫ t
ξ 2ρz(θsω)ds+ max{−1,−2λd2}(t−ξ)−2ρz(θυω)dξ

is tempered by (4.2.3) and (4.2.4).

By (4.3.14), (4.3.15) and (4.3.16), for t0 ≤ min{T3(R,ω), T4(R,ω), T5(R,ω)}, we have

‖y(t, ω; t0, y0))‖2 ≤ C2(t, ω), for − 4 ≤ t ≤ 0, (4.3.17)

where

C2(t, ω) = 1 +

(
|d2 − d1|2

d1

+ 2λ

)
C1(t, ω) + 2a2

∫ t

−∞
e
∫ t
τ (2ρz(θsω)−1)ds−2ρz(θτω)dτ. (4.3.18)
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Set T (R,ω) = min{T1(R,ω), T2(R,ω), T3(R,ω), T4(R,ω), T5(R,ω)}. Then we have, for t0 ≤

T (R,ω) and t ∈ [−4, 0],

‖g(t, ω; t0, g0)‖2 = ‖U(t, ω; t0, g0)‖2 + ‖V (t, ω; t0, g0)‖2

= ‖y(t, ω; t0, g0)− V (t, ω; t0, g0)‖2 + ‖V (t, ω; t0, g0)‖2

≤ 2‖y(t, ω; t0, g0)‖2 + 3‖V (t, ω; t0, g0)‖2 ≤M(t, ω),

(4.3.19)

where

M(t, ω) = 3C2(t, ω) + 3

(
1 +

b2|Γ|
2

∫ t

−∞
e
∫ t
τ (2ρz(θsω)−2λd2)ds−2ρz(θτω)dτ

)
.

The proof is completed.

If g(t, ω; τ, g0) is the weak solution to problem (4.2.6)-(4.2.9), then

h(t, ω; τ, h0) = S(t, τ, ω)h0 = eρz(θtω)g(t, ω; τ, g0), t ≥ τ, (4.3.20)

where

h0 = (u0, v0), g0 = e−ρz(θτω)h0,

is the solution to the original stochastic Brusselator problem (4.1.1)-(4.1.4).

By the uniqueness of weak solution of g(t, ω; τ, g0) and the stationary increment of Brownian

Motion, we can verify that S(t, τ, ω) is a stochastic flow on H , namely,

S(t, s, ω)S(s, τ, ω)) = S(t, τ, ω), for τ ≤ s ≤ t,

S(t, s, ω) = S(t− s, 0, θsω), for s ≤ t.

The second equality means that

eρz(θtω)g(t, ω; s, e−ρz(θsω)h0)

= eρz(θt−sω)g(t− s, θsω; 0, e−ρz(ω)h0) for all s ≤ t.

(4.3.21)

Define the Brusselator random dynamical system ϕ : R+ × Ω × H → H over the MDS

(Ω,F, P, {θt}t∈R) by

ϕ(t− τ, θτω, h0) = S(t, τ, ω)h0 = eρz(θtω)g(t, ω; τ, g0), (4.3.22)
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where t ≥ τ ∈ R, ω ∈ Ω, h0 ∈ H . The cocycle property of the mapping ϕ can be checked by

(4.3.22), (4.3.21) and the properties of stochastic flow in Definition 2.3.

From (4.3.22), we have the pullback relation

ϕ(t, θ−tω, (u0, v0)) = eρz(ω)g(0, ω;−t, g0), (4.3.23)

in which g(0, ω;−t, g0), t ≥ 0, can be called the pullback quasi-trajectory from g0, which is not

a trajectory but the terminal values at time t = 0 of the bunch of weak solutions g(0, ω;−t, g0)

starting from g0 more and more backward at time −t. We shall deal with the pullback quasi-

trajectories to investigate the pullback asymptotic behavior of the Brusselator random dynamical

system ϕ.

Lemma 4.3.2. For the Brusselator random dynamical systemϕ onH over the MDS (Ω,F, P, {θt}t∈R),

there exists a D-pullback absorbing setB0(ω), which is the random ball centered at the origin with

the radius M0(ω) given by

M0(ω) = eρz(ω)

[
3C2(0, ω) + 3

(
1 +

b2|Γ|
2

∫ 0

−∞
e
∫ 0
τ (2ρz(θsω)−2λd2)ds−2ρz(θτω)dτ

)]
.

Proof. This is a direct consequence of Lemma 4.3.1 and the characterization of the pullback

quasi-trajectories of this Brusselator RDS ϕ. Note that M0(ω) is a tempered random variable and

B0 ∈ D.

Furthermore we show the pullback absorbing property of the V -component of the random Brus-

selator system (4.2.6)-(4.2.9) in the Banach space L6(Γ). This is a key step to pave the way toward

the proof of the pullback asymptotic compactness in the next section.

Lemma 4.3.3. For any given initial data (u0, v0) ∈ E, and terminal time t ∈ [−4, 0], there exists a

random time T6(‖g0‖L6 , ω) ≤ −4 and a positive random variables P (t, ω) such that for any initial

time t0 ≤ T6(‖g0‖L6 , ω), we have

‖V (t, ω; t0, g0)‖6
L6 ≤ P (t, ω), −4 ≤ t ≤ 0. (4.3.24)
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Proof. Taking the inner product of (4.2.7) with V 3, we obtain

1

4

d

dt

∫
Γ

V 4(t, x)dx+ 3d2‖V (t)∇V (t)‖2

=

∫
Γ

(
bUV 3 − e2ρz(θtω)U2V 4 + ρz(θtω)V 4

)
dx

≤
∫

Γ

(
1

2
b2e−2ρz(θtω)V 2 +

1

2
e2ρz(θtω)U2V 4 − e2ρz(θtω)U2V 4 + ρz(θtω)V 4

)
dx.

(4.3.25)

It follows that

d

dt
‖V (t)‖4

L4 + 6λd2‖V (t)‖4
L4 ≤

d

dt
‖V (t)‖4

L4 + 6d2‖∇V 2(t)‖2

≤ 2ρz(θtω)‖V (t)‖4
L4 +

1

2
b2e−2ρz(θtω)‖V (t)‖2.

(4.3.26)

Multiply the inequality (4.3.26) by e
∫ t
t0

(2ρz(θsω)−6λd2)ds and then integrate the resulting inequality

over [t0, t], where t0 < t. By virtue of (4.3.4), we have
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‖V (t, ω; t0, g0)‖4
L4 ≤ ‖V0‖4

L4e
∫ t
t0

(2ρz(θsω)−6λd2)ds

+
b2

2

∫ t

t0

e
∫ t
τ (2ρz(θsω)−6λd2)ds−2ρz(θτω)‖V (τ, ω; t0, V0))‖2dτ

≤‖V0‖4
L4e

∫ t
t0

(2ρz(θsω)−6λd2)ds
+
b2

2

∫ t

t0

e
∫ t
τ (2ρz(θsω)−6λd2)ds−2ρz(θτω)‖V0‖2e

∫ τ
t0

(2ρz(θsω)−2λd2)ds
dτ

+
b4|Γ|

4

∫ t

t0

e
∫ t
τ (2ρz(θsω)−6λd2)ds−2ρz(θτω)

∫ τ

t0

e
∫ τ
υ (2ρz(θsω)−2λd2)ds−2ρz(θυω)dυdτ

=‖V0‖4
L4e

∫ t
t0

(2ρz(θsω)−6λd2)ds
+
b2‖V0‖2

2

∫ t

t0

e
∫ t
τ (2ρz(θsω)−6λd2)ds−2ρz(θτω)e

∫ τ
t0

(2ρz(θsω)−2λd2)ds
dτ

+
b4|Γ|

4

∫ t

t0

e−2ρz(θτω)e
∫ t
τ (2ρz(θsω)−6λd2)ds

∫ τ

t0

e
∫ τ
ξ (2ρz(θsω)−2λd2)ds−2ρz(θξω)dξdτ

=‖V0‖4
L4e

∫ t
t0

(2ρz(θsω)−6λd2)ds
+
b2‖V0‖2

2

∫ t

t0

e
∫ t
τ (2ρz(θsω)−6λd2)ds−2ρz(θτω)e

∫ τ
t0

(2ρz(θsω)−2λd2)ds
dτ

+
b4|Γ|

4

∫ t

t0

∫ t

ξ

e−2ρz(θτω)e
∫ t
τ (2ρz(θsω)−6λd2)dse

∫ τ
ξ (2ρz(θsω)−2λd2)ds−2ρz(θξω)dτdξ

≤‖V0‖4
L4e

∫ t
t0

(2ρz(θsω)−6λd2)ds
+
b2‖V0‖2

2

∫ t

t0

e
∫ t
t0

(2ρz(θsω)−2λd2)ds
e−2ρz(θτω)dτ

+
b4|Γ|

4

∫ t

t0

∫ t

ξ

e−2ρz(θτω)e
∫ t
ξ 2ρz(θsω)ds−

∫ t
ξ 2λd2ds−2ρz(θξω)dτdξ

≤‖V0‖4
L4e

∫ t
t0

(2ρz(θsω)−6λd2)ds
+
b2‖V0‖2

2
e
∫ t
t0

(2ρz(θsω)−2λd2)ds

∫ t

t0

e−2ρz(θτω)dτ

+
b4|Γ|

4

∫ t

t0

∫ t

t0

e−2ρz(θτω)e
∫ t
ξ 2ρz(θsω)ds−

∫ t
ξ 2λd2ds−2ρz(θξω)dτdξ.

(4.3.27)
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Next we use the bootstrap method to take the inner product of (4.2.7) with V 5 and obtain

1

6

d

dt

∫
Γ

V 6(t, x)dx+ 5d2‖V 2(t)∇V (t)‖2

=

∫
Γ

(
bUV 5 − e2ρz(θtω)U2V 6 + ρz(θtω)V 6

)
dx

≤
∫

Γ

(
1

2
b2e−2ρz(θtω)V 4 +

1

2
e2ρz(θtω)U2V 6 − e2ρz(θtω)U2V 6 + ρz(θtω)V 6

)
dx.

(4.3.28)

It follows that

d

dt
‖V (t)‖6

L6 + 10λd2‖V (t)‖6
L6 ≤

d

dt
‖V (t)‖6

L6 + 10d2‖∇V 3(t)‖2

≤ 2ρz(θtω)‖V (t)‖6
L6 +

1

2
b2e−2ρz(θtω)‖V (t)‖4

L4 .

(4.3.29)

Then there is a random variable T6(‖g0‖L6 , ω) ≤ −4 such that for every ω ∈ Ω, t0 ≤ T6(‖g0‖L6 , ω)

and t ∈ [−4, 0], we have

‖V (t, ω; t0, g0)‖6
L6

≤‖V0‖6
L6e

∫ t
t0

(2ρz(θsω)ds−10λd2(t−t0)
+
b2

2

∫ t

t0

e
∫ t
η (2ρz(θsω)−10λd2)ds−2ρz(θηω)‖V (η)‖4

L4dη

≤‖V0‖6
L6e

∫ t
t0

(2ρz(θsω)ds−10λd2(t−t0)
+
b2

2

∫ t

t0

e
∫ t
η (2ρz(θsω)−10λd2)ds−2ρz(θηω)·

· ‖V0‖4
L4e

∫ η
t0

(2ρz(θsω)−6λd2)ds
dη

+
b4‖V0‖2

4

∫ t

t0

e
∫ t
η (2ρz(θsω)−10λd2)ds−2ρz(θηω)e

∫ η
t0

(2ρz(θsω)−2λd2)ds

∫ η

t0

e−2ρz(θτω)dτdη

+
b6|Γ|

8

∫ t

t0

e
∫ t
η (2ρz(θsω)−10λd2)ds−2ρz(θηω)

∫ η

t0

e−2ρz(θτω)dτ ·

·
∫ η

t0

e
∫ η
ξ 2ρz(θsω)ds−

∫ η
ξ 2λd2ds−2ρz(θξω)dξdη

(4.3.30)

73



≤‖V0‖6
L6e

∫ t
t0

(2ρz(θsω)ds−10λd2(t−t0)
+
b2‖V0‖4

L4

2

∫ t

t0

e−2ρz(θηω)e
∫ t
t0

(2ρz(θsω)−6λd2)ds
dη

+
b6‖V0‖2

4

∫ t

t0

e−2ρz(θηω)e
∫ t
t0

(2ρz(θsω)−2λd2)ds

∫ η

t0

e−2ρz(θτω)dτdη

+
b6|Γ|

8

∫ t

t0

e−2ρz(θτω)dτ

∫ t

t0

∫ η

t0

e
∫ t
η (2ρz(θsω)−10λd2)ds−2ρz(θηω)·

· e
∫ η
ξ 2ρz(θsω)ds−

∫ η
ξ 2λd2ds−2ρz(θξω) dξdη

≤‖V0‖6
L6e

∫ t
t0

(2ρz(θsω)ds−10λd2(t−t0)
+
b2‖V0‖4

L4

2
e
∫ t
t0

(2ρz(θsω)−6λd2)ds

∫ t

t0

e−2ρz(θηω)dη

+
b6‖V0‖2

4
e
∫ t
t0

(2ρz(θsω)−2λd2)ds

∫ t

t0

e−2ρz(θηω)

∫ η

t0

e−2ρz(θτω)dτdη

+
b6|Γ|

8

∫ t

t0

e−2ρz(θτω)dτ

∫ t

t0

∫ t

ξ

e−2λd2(t−η)−2ρz(θηω)e
∫ t
ξ (2ρz(θsω)−2λd2)ds−2ρz(θξω)dηdξ

≤‖V0‖6
L6e

∫ t
t0

(2ρz(θsω)ds−10λd2(t−t0)
+
b2‖V0‖4

L4

2
e
∫ t
t0

(2ρz(θsω)−6λd2)ds

∫ t

t0

e−2ρz(θηω)dη

+
b6‖V0‖2

4
e
∫ t
t0

(2ρz(θsω)−2λd2)ds

∫ t

t0

e−2ρz(θηω)dη

∫ t

t0

e−2ρz(θτω)dτ

+
b6|Γ|

8

∫ t

t0

e−2ρz(θτω)dτ

∫ t

t0

e−2λd2(t−η)−2ρz(θηω)dη ·
∫ t

t0

e
∫ t
ξ (2ρz(θsω)−2λd2)ds−2ρz(θξω)dξ

≤P (t, ω),

where

P (t, ω) = 3 +
b6|Γ|

8

∫ t

−∞
e−2ρz(θτω)dτ

∫ t

−∞
e−2λd2(t−η)−2ρz(θηω)dη·

·
∫ t

−∞
e
∫ t
ξ (2ρz(θsω)−2λd2)ds−2ρz(θξω)dξ.

Note that the three improper integrals above are convergent by the similar calculations as shown

in (4.3.7) and (4.3.8). The proof is completed.

The next lemma is instrumental to the proof of pullback asymptotic compactness in the next

section.
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Lemma 4.3.4. Let (t0, t1) satisfy t0 < −4 ≤ t1 < 0 and (u0, v0) ∈ H with ‖(u0, v0)‖ ≤

R(ω), where R(ω) > 0 is any given random variable as in Lemma 4.3.1. If the weak solution

g(t, ω; t0, g0) satisfies ‖g(t1, ω; t0, g0)‖ ∈ E with

‖g(t1, ω; t0, g0)‖E ≤ G(ω),

where G(ω) > 0 is any given random variable, then there exists a random variable D(t, G, ω) > 0

such that

‖V (t, ω; t0, g0)‖6
L6 ≤ D(t, G, ω), for any t ∈ [t1, 0], t0 ≤ min{T (R,ω),−4}, (4.3.31)

where T (R,ω) is the same as in Lemma 4.3.1.

Proof. Fix the initial time t0 ≤ min{T (R,ω),−4}. Integrate (4.3.26) over [t1, t] to get

‖V (t, ω; t0, g0)‖4
L4 ≤ ‖V (t1, ω; t0, g0)‖4

L4e
∫ t
t1

(2ρz(θsω)−6λd2)ds

+
1

2
b2

∫ t

t1

e
∫ t
τ (2ρz(θsω)−6λd2)ds−2ρz(θτω)‖V (τ, ω; t0, g0)‖2dτ

≤ δ4G4(ω)e
∫ t
t1

(2ρz(θsω)−6λd2)ds

+
1

2
b2

∫ t

t1

e
∫ t
τ (2ρz(θsω)−6λd2)ds−2ρz(θτω)‖V (τ, ω; t0, g0)‖2dτ

≤δ4G4(ω)e
∫ t
t1

(2ρz(θsω)−6λd2)ds
+
b2

2

∫ t

t1

e
∫ t
τ (2ρz(θsω)−6λd2)ds−2ρz(θτω)dτ

+
1

4
b4|Γ|

∫ t

t1

e−2ρz(θτω)e
∫ t
τ (2ρz(θsω)−6λd2)ds

∫ τ

−∞
e
∫ τ
ξ (2ρz(θsω)−2λd2)ds−2ρz(θξω)dξdτ,

(4.3.32)

in which the last inequality follows from the use of (4.3.4) and δ is the constant of the Sobolev

embedding H1
0 (Γ) ↪→ L4(Γ),

‖ϕ‖L4(Γ) ≤ δ‖ϕ‖E, for any ϕ ∈ E.

Put

Π(t, ω) = δ4P̃ 4(ω)e
∫ t
t1

(2ρz(θsω)−6λd2)ds
+

1

2
b2

∫ t

t1

e
∫ t
τ (2ρz(θsω)−6λd2)ds−2ρz(θτω)dτ

+
1

4
b4|Γ|

∫ t

t1

e−2ρz(θτω)e
∫ t
τ (2ρz(θsω)−6λd2)ds

∫ τ

−∞
e
∫ τ
ξ (2ρz(θsω)−2λd2)ds−2ρz(θξω)dξdτ.

(4.3.33)
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Fix any initial time t0 ≤ min{T (R,ω),−4}. By integrating (4.3.29) over [t1, t] and using (2.3.3),

we get

‖V (t, ω; t0, g0)‖6
L6

≤‖V (t1, ω; t0, g0)‖6
L6 e

∫ t
t1

(2ρz(θsω)ds−10λd2(t−t0)

+
1

2
b2

∫ t

t1

e
∫ t
τ (2ρz(θsω)−10λd2)ds−2ρz(θτω)‖V (τ)‖4

L4dτ

≤ ζ6G6(ω)e
∫ t
t1

(2ρz(θsω)−6λd2)ds
+

1

2
b2

∫ t

t1

e
∫ t
τ (2ρz(θsω)−6λd2)ds−2ρz(θτω)Π(τ, ω)dτ.

(4.3.34)

Then (4.3.31) is valid with

D(t, G, ω) = ζ6G6(ω)e
∫ t
t1

(2ρz(θsω)−6λd2)ds
+
b2

2

∫ t

t1

e
∫ t
τ (2ρz(θsω)−6λd2)ds−2ρz(θτω)Π(τ, ω)dτ.

The proof is completed.

4.4 Pullback Asymptotic Compactness

In this section, we show that the Brusselator random dynamical system ϕ is pullback asymptoti-

cally compact in H via the following modified uniform Gronwall inequality, cf. [37].

Proposition 4.4.1. Given a natural number n > 1, let β, ζ , and h be nonnegative functions in

L1([−n, 0];R+). Assume that β is absolutely continuous on [−n, 0] and the following differential

inequality is satisfied,
dβ

dt
≤ ζβ + h, for t ∈ [−n, 0].

If ∫ t+1

t

ζ(τ) dτ ≤ A,

∫ t+1

t

β(τ) dτ ≤ B,

∫ t+1

t

h(τ) dτ ≤ C,

for any t ∈ [−n,−1], where A,B, and C are some positive constants, then

β(t) ≤
(
B + C

)
eA for t ∈ [−n+ 1, 0].

Lemma 4.4.2. For any given random variable R(ω) > 0 and any initial data (u0, v0) ∈ H

with ‖(u0, v0)‖ ≤ R(ω), there exists a tempered random variable K(ω) > 0, and a finite time
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T (R,ω) < 0 such that if the initial time t0 ≤ T (R,ω), then the weak solution g(t, ω; τ, g0),

where g0 = e−ρz(θτω)(u0, v0), of the problem of the random Brusselator reaction-diffusion system

(4.2.6)-(4.2.9) satisfies g(0, ω; t0, g0) ∈ E and

‖g(0, ω; t0, g0)‖2
E ≤ K(ω), t0 ≤ T (R,ω). (4.4.1)

Proof. The proof is divided into three bootstrap steps. First we conduct estimates of the time av-

erage of the H1
0 (Γ)-norm for both U -component and V -component solutions on the time interval

[−4,−1]. Second we apply the uniform Gronwall inequality (Proposition 4.4.1) to get the point-

wise estimate of U -component in the time interval [−2, 0]. Third we use the results of previous

two steps to get the pointwise estimate of V -component in the time interval [−1, 0].

STEP 1. In this step, we establish the time-average estimates of the of E-norm for the weak

solutions (U, V ). Note that the estimate of L6(Γ)-norm of the V -component of the weak solu-

tion has been obtained in Lemma 4.3.4. Since z(θtω) is continuous in t, we see that Z(ω) =

max−4≤τ≤−1 |z(θτω)| is a positive constant for every given ω ∈ Ω. Fix the initial time t0 ≤

min{T (R,ω),−4}, here T (R,ω) comes from Lemma 4.3.1, integrate the second inequality of

(4.3.3) over [t, t+ 1], where −4 ≤ t ≤ −1, and by (4.3.9) we have∫ t+1

t

2d2‖∇V (τ, ω; t0, g0)‖2dτ

≤
∫ t+1

t

2ρz(θτω)

(
1 +

b2|Γ|
2

∫ τ

−∞
e
∫ τ
ξ (2ρz(θsω)−2λd2s)ds−2ρz(θξω)dξ

)
dτ

+
b2|Γ|

2

∫ t+1

t

e−2ρz(θτω)dτ + ‖V (t)‖2

≤
∫ 0

−4

2c|z(θτω)|
(

1 +
b2|Γ|

2

∫ τ

−∞
e
∫ τ
ξ (2ρz(θsω)−2λd2s)ds−2ρz(θξω)dξ

)
dτ

+
b2|Γ|

2

∫ 0

−4

e−2ρz(θτω)dτ + 1

+
b2|Γ|

2
max
−4≤t≤−1

∫ t

−∞
e
∫ t
τ (2ρz(θsω)−2λd2s)ds−2ρz(θτω)dτ.

(4.4.2)

Then for t0 ≤ min{T (R,ω),−4} and −4 ≤ t ≤ −1, we have∫ t+1

t

‖∇V (τ, ω; t0, g0)‖2dτ ≤ K1(ω)

2d2

, (4.4.3)
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where

K1(ω) =

∫ 0

−4

2ρ|z(θτω)|
(

1 +
b2|Γ|

2

∫ τ

−∞
e
∫ τ
ξ (2ρz(θsω)−2λd2s)ds−2ρz(θξω)dξ

)
dτ

+
b2|Γ|

2

∫ 0

−4

e−2ρz(θτω)dτ + 1 +
b2|Γ|

2
max
−4≤t≤−1

∫ t

−∞
e
∫ t
τ (2ρz(θsω)−2λd2s)ds−2ρz(θτω)dτ.

In particular, let t = −4 and we have∫ −3

−4

‖∇V (τ, ω; t0, g0)‖2dτ ≤ K1(ω)

2d2

. (4.4.4)

By the Mean Value Theorem, there is a time t1 ∈ [−4,−3] such that

‖V (t1, ω; t0, g0)‖E ≤
K1(ω)

2d2

. (4.4.5)

Then by Lemma 4.3.4, there is a random variable D(t,K1/(2d2), ω) > 0 such that

‖V (t, ω; t0, g0)‖6
L6 ≤ D(t,K1/(2d2), ω), for any t ∈ [t1, 0], t0 ≤ T (R,ω). (4.4.6)

Fix any initial time t0 ≤ min{T (R,ω),−4}. Integrating the inequality of (4.3.13) over [t, t+1],

where −4 ≤ t ≤ −1, in view of (4.3.17) and (4.4.5) we have∫ t+1

t

d1‖∇y(τ, ω; t0, g0)‖2dτ

≤
(
|d2 − d1|2

d1

+ 2λ

)∫ t+1

t

‖∇V ‖dτ +

∫ t+1

t

(2ρz(θτω)− 1)‖y(τ)‖2dτ + ‖y(t)‖2

+ 2a2|Γ|
∫ t+1

t

e−2ρz(θτω)dτ

≤
(
|d2 − d1|2

d1

+ 2λ

)
K1(ω)

2d2

+ max
−4≤t≤0

C2(t, ω)

∫ 0

−4

|2ρz(θτω)− 1|dτ

+ max
−4≤t≤−1

C2(t, ω) + 2a2|Γ|
∫ 0

−4

e−2ρz(θτω)dτ.

(4.4.7)

Consequently, for t0 ≤ min{T (R,ω),−4} and −4 ≤ t ≤ −1, it holds that∫ t+1

t

‖∇U(τ, ω; t0, g0)‖2dτ =

∫ t+1

t

‖∇y(τ, ω; t0, g0)−∇V (τ, ω; t0, g0)‖2dτ

≤
∫ t+1

t

2
(
‖∇y(τ, t0, ω, y0)‖2 + ‖∇V (τ, t0, ω, V0)‖2

)
dτ

≤ K1(ω)

d2

+
2K2(ω)

d1

,

(4.4.8)
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where

K2(ω) =

(
|d2 − d1|2

d1

+ 2λ

)
K1(ω)

2d2

+ max
−4≤t≤0

C2(t, ω)

∫ 0

−4

|2ρz(θτω)− 1|dτ

+ max
−4≤t≤−1

C2(t, ω) + 2a2|Γ|
∫ 0

−4

e−2ρz(θτω)dτ.

STEP 2. Now we conduct the estimates of H1
0 (Γ)-norm for the U -component of the weak

solutions. Taking the inner product of (4.2.6) with −∆U(t), we get

1

2

d

dt
‖∇U‖2 + d1‖∆U‖2 + (b+ 1)‖∇U‖2

=

∫
Γ

(
−ae−ρz(θtω)∆U − e2ρz(θtω)U2V∆U

)
dx+ ρz(θtω)‖∇U‖2

≤
(
d1

4
+
d1

4

)
‖∆U‖2 +

a2|Γ|
d1

e−2ρz(θtω) +
1

d1

e4ρz(θtω)

∫
Γ

U4V 2 dx+ ρz(θtω)‖∇U‖2.

It follows that

d

dt
‖∇U‖2 + d1‖∆U‖2 + 2(b+ 1)‖∇U‖2

≤2a2|Γ|
d1

e−2ρz(θtω) +
2

d1

e4ρz(θtω)‖U‖4
L6‖V ‖2

L6 + 2ρz(θtω)‖∇U‖2

≤2a2|Γ|
d1

e−2ρz(θtω) +
2

d1

e4ρz(θtω)ζ4‖∇U‖4‖V ‖2
L6 + 2ρz(θtω)‖∇U‖2

≤2a2|Γ|
d1

e−2ρz(θtω) +

(
2

d1

e4ρz(θtω)ζ4‖∇U‖2‖V ‖2
L6 + 2ρz(θtω)

)
‖∇U‖2.

(4.4.9)

After dropping the terms d1‖∆U‖2 and 2(b + 1)‖∇U‖2 from the left-hand side of the inequality

(4.4.9), it can be written as

dβ

dt
≤ α(t)β(t) + γ(t), t ∈ [−3, 0], (4.4.10)

where

β(t) = ‖∇U‖2,

α(t) =
2ζ4

d1

e4ρz(θtω)‖∇U‖2‖V ‖2
L6 + 2ρz(θtω), and

γ(t) =
2a2|Γ|
d1

e−2ρz(θtω).
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For t0 ≤ T (R,ω) and −3 ≤ t ≤ −1 and, we obtain the following estimates: By (4.4.8),∫ t+1

t

β(τ)dτ =

∫ t+1

t

‖∇U‖2dτ ≤ K1(ω)

d2

+
2K2(ω)

d1

.

By (4.4.8) and (4.4.6)∫ t+1

t

α(τ) dτ =

∫ t+1

t

2ζ4

d1

e4ρz(θτω)‖∇U‖2‖V ‖2
L6dτ +

∫ t+1

t

2ρz(θτω)dτ

≤ 2ζ4

d1

max
−3≤τ≤0

[
D1/3

(
τ,
K1

2d2

, ω

)
e4ρz(θτω)

] [
K1(ω)

d2

+
2K2(ω)

d1

]
+ 2

∫ 0

−3

c|z(θτω)|dτ,

and ∫ t+1

t

γ(τ)dτ =
2a2|Γ|
d1

∫ t+1

t

e−2ρz(θτω)dτ ≤ 2a2|Γ|
d1

∫ 0

−3

e−2ρz(θτω)dτ.

Apply the Uniform Gronwall Inequality (Proposition 4.4.1) with the above three estimates to get

‖U(t, ω; t0, g0)‖2
E ≤ K3(ω), t ∈ [−2, 0], t0 ≤ T (R,ω), (4.4.11)

where

K3(ω) =

(
K1(ω)

d2

+
2K2(ω)

d1

+

∫ 0

−3

2a2|Γ|
d1

e−2ρz(θτω)dτ

)
·

· exp

{
2ζ4

d1

max
−3≤τ≤0

[
D

1
3

(
τ,
K1

2d2

, ω

)
e4ρz(θτω)

] [
K1(ω)

d2

+
2K2(ω)

d1

]
+ 2

∫ 0

−3

c|z(θτω)|dτ
}
.

STEP 3. In this step, we wrap up the proof by conducting the estimates of H1
0 (Γ)-norm for the

V -component of the weak solutions based on the results of Step 1 and Step 2. Taking the inner

product of (4.2.7) with −∆V (t), we get

1

2

d

dt
‖∇V ‖2 + d2‖∆V ‖2

=

∫
Γ

(
−bU∆V + e2ρz(θtω)U2V∆V

)
dx+ ρz(θtω)‖∇V ‖2

≤
(
d2

4
+
d2

4

)
‖∆V ‖2 +

b2

d2

‖U‖2 +
1

d2

e4ρz(θtω)

∫
Γ

U4V 2 dx+ ρz(θtω)‖∇V ‖2

It follows that
d

dt
‖∇V ‖2 + d2‖∆V ‖2

≤2b2

d2

‖U‖2 +
2

d2

e4ρz(θtω)‖U‖4
L6‖V ‖2

L6 + 2ρz(θtω)‖∇V ‖2

≤2b2

d2

‖U‖2 +
2ζ6

d2

e4ρz(θtω)‖∇U‖4‖∇V ‖2 + 2ρz(θtω)‖∇V ‖2.

(4.4.12)
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After dropping the terms d2‖∆V ‖2 from the left-hand side, the inequality (4.4.12) can be written

as
dβ̃

dt
≤ α̃(t)β̃(t) + γ̃(t), t ∈ [−2, 0], (4.4.13)

where

β̃(t) = ‖∇V ‖2,

α̃(t) =
2ζ6

d2

e4ρz(θtω)‖∇U‖4 + 2ρz(θtω), and

γ̃(t) =
2b2

d2

‖U‖2.

For −2 ≤ t ≤ −1 and t0 ≤ min{T (R,ω),−4}, we have the following estimates: It follows from

(4.4.3) that ∫ t+1

t

β̃(τ)dτ =

∫ t+1

t

‖∇V ‖2dτ ≤ K1(ω)

2d2

.

By (4.4.11), ∫ t+1

t

α̃(τ)dτ =
2ζ6

d2

∫ t+1

t

e4ρz(θτω)‖∇U‖4dτ + 2

∫ t+1

t

ρz(θτω)dτ

≤ 2ζ6

d2

max
−2≤τ≤0

(e4ρz(θτω))K2
3(ω) + 2

∫ 0

−2

c|z(θτω)|dτ,

and by (4.4.8)∫ t+1

t

γ̃(τ)dτ =
2b2

d2

∫ t+1

t

‖U‖2 ≤ 2b2λ2

d2

∫ t+1

t

‖∇U‖2 ≤ 2b2λ2

d2

(
K1(ω)

d2

+
2K2(ω)

d1

)
.

Apply the Uniform Gronwall Inequality again with the three estimates above to obtain

‖V (t, ω; t0, g0)‖2
E ≤ K4(ω), t ∈ [−1, 0], t0 ≤ min{T (R,ω),−4}, (4.4.14)

where

K4(ω) =

(
K1(ω)

2d2

+
2b2λ2

d2

[
K1(ω)

d2

+
2K2(ω)

d1

])
·

· exp

[
2ζ6

d2

max
−2≤τ≤−1

(
e4ρz(θτω)

)
K2

3(ω) + 2

∫ 0

−2

c|z(θτω)|dτ
]
.

Finally, put t = 0 in (4.4.11) and (4.4.14). Thus (4.4.1) holds with K(ω) = K3(ω) +K4(ω). The

proof is completed.
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4.5 Main Results on Random Attractor

In this section, we finally prove the existence of a random attractor for the Brusselator random

dynamical system ϕ in the phase space H . Moreover, we show that it has the H to E attracting

regularity.

Theorem 4.5.1. For any positive parameters d1, d2, a, b and ρ, there exists a unique random at-

tractor A = {A (ω)}ω∈Ω in the phase space H for the Brusselator random dynamical system ϕ

over the MDS (Ω,F, P, (θt)t∈R).

Proof. By Lemma 4.3.2, the RDS ϕ has a pullback absorbing set with respect to the universe D,

which is the closed random ball B0(ω) centered at the origin with radius M0(ω) in H .

Lemma 4.4.2 and the compact imbedding E ↪→ H imply that the RDS ϕ is pullback asymptot-

ically compact in H with respect to D.

By Proposition 4.2.8, there exists a unique random attractor A = {A (ω)}ω∈Ω in H for this

RDS ϕ, which is given by

A (ω) =
⋂
τ≥0

⋃
t≥τ

ϕ(t, θ−tω,B0(θ−tω)), ω ∈ Ω

Therefore, we reach the conclusion.

Now we show that the random attractor A (ω) is an (H,E) random attractor. This concept is a

generalization of (H,E) global attractor introduced in Chapter 2.

Definition 4.5.2. Let {Σ(t, ω)}t≥0 be a random dynamical system on a Banach space X over a

given metric dynamical system and let Y be a compactly imbedded subspace of X. Let a universe

D of tempered random sets in a Banach space X be given. A subset A ∈ D is called an (X,Y)

random attractor for this RDS, if A(ω) has the following properties:

(i) A is a nonempty, compact, and invariant random set in Y.

(ii) A attracts any set B ∈ D with respect to the Y-norm. Namely, there exists τ = τB > 0 such

that Σ(t, θ−tω,B(θ−tω)) ⊂ Y for t > τ and

distY(Σ(t, θ−tω,B(θ−tω)),A(ω))→ 0, as t→∞.
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Definition 4.5.3. Let D be a universe of sets in a Banach space X . A random dynamical system

(ϕ, θ) on X is said to be D-flattening if for every B ∈ D, ε > 0 and ω ∈ Ω, there exists a

T0(B,ω, ε) > 0 and a finite dimensional subspace of X1(ε) (which may depend on ε) of X , such

that the following two conditions are satisfied.

(i)
⋃
t≥T0 Qϕ(t, θ−tω,B(θ−tω)) is bounded in X ,

(ii) ||(I −Q)(ϕ(t, θ−tω,B(θ−tω)))||X < ε.

where Q : X → X1(ε) is a bounded projection.

Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · → ∞ as j → ∞ be the complete set of eigenvalues each

repeated to its multiplicity of the differential operator−A : [H2(Γ)∩H1
0 (Γ)]2 → [L2(Γ)]2 defined

by (1.0.2) and {ej}∞j=1 be the corresponding eigenvectors. LetQn : H → Span{e1, · · · , en} be the

orthogonal projection from H onto the subspace spanned by the first n eigenvectors. Then every

u ∈ H has a unique orthogonal decomposition u = u1 +u2, where u1 = Qnu and u2 = (I−Qn)u

are called low modes and high modes, respectively.

The following proposition is seen in [50].

Proposition 4.5.4. Given a uniformly convex Banach space X and a universe of random sets D

in X, let ϕ be a continuous RDS on X over an MDS (Ω,F, P, {θt}t∈R). Suppose that there exists

a closed pullback absorbing set {K(ω)}ω∈Ω ∈ D and the RDS ϕ is D-flattening, then the RDS ϕ

has a unique random attractor A = {A(ω)}ω∈Ω ∈ D in X, which is given by

A(ω) =
⋂
τ≥0

⋃
t≥τ

ϕ(t, θ−tω,K(θ−tω)).

Next we show that the Brusselator random dynamical system ϕ possesses the flattening property

in the more regular space E. The first condition of the flattening property is clearly satisfied due

to Lemma 4.4.2. To prove the second condition, we decompose the weak solution g(t, ω; t0, g0)

of the random Brusselator reaction-diffusion system (4.2.6)-(4.2.9) as the high modes and the low

modes,

g(t, ω) = g1(t, ω) + g2(t, ω), where g1 = Qng, g2 = (I −Qn)g.

Then we show the following lemma.
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Lemma 4.5.5. For any given ε > 0 and any initial data (u0, v0) ∈ H with ‖(u0, v0)‖ ≤ R(ω),

whereR(ω) is an arbitrarily given tempered positive random variable, there exists a finite TE(R,ω) =

min{T (R,ω),−4} < 0, where T (R,ω) is given in Lemma 4.3.1, and a positive integer N(ε, ω)

such that the high modes g2(t, ω; t0, g0) satisfy

‖eρz(ω)g2(0, ω; t0, g0)‖E < ε, for all t0 ≤ TE(R,ω), n > N(ε, ω). (4.5.1)

Proof. Taking the inner product of (4.2.6) with −∆U2(t), we get

1

2

d

dt
‖∇U2‖2 + d1‖∆U2‖2 + (b+ 1)‖∇U2‖2

=

∫
Γ

(
−ae−ρz(θtω)∆U2 − e2ρz(θtω)U2V∆U2

)
dx+ ρz(θtω)‖∇U2‖2

≤
(
d1

4
+
d1

4

)
‖∆U2‖2 +

a2|Γ|
d1

e−2ρz(θtω) +
1

d1

e4ρz(θtω)

∫
Γ

U4V 2 dx+ ρz(θtω)‖∇U2‖2.

It follows that for any t0 ≤ TE(R,ω) (where T (R,ω) is given in Lemma 4.3.1) and t ∈ [−1, 0],

d

dt
‖∇U2‖2 + d1λn+1‖∇U2‖2

≤2a2|Γ|
d1

e−2ρz(θtω) +
2

d1

e4ρz(θtω)‖U‖4
L6‖V ‖2

L6 + 2ρz(θtω)‖∇U2‖2

≤2a2|Γ|
d1

e−2ρz(θtω) +
2

d1

e4ρz(θtω)ζ6‖∇U‖4‖∇V ‖2 + 2ρz(θtω)‖∇U2‖2

≤2a2|Γ|
d1

e−2ρz(θtω) +
2

d1

e4ρz(θtω)ζ6K2
3(ω)K4(ω) + 2ρz(θtω)‖∇U2‖2.

(4.5.2)

Multiply (4.5.2) by e
∫ t
σ(2ρz(θsω)−d1λn+1)ds and integrate the resulting inequality over [σ, t], for−1 ≤

σ < t ≤ 0,

‖∇U2(t, ω; t0, g0)‖2 ≤ ‖∇U2(σ, ω; t0, g0)‖2e
∫ t
σ(2ρz(θsω)−d1λn+1)ds

+
2a2|Γ|
d1

∫ t

σ

e
∫ t
τ (2ρz(θsω)−d1λn+1)ds−2ρz(θτω)dτ

+
2

d1

ζ4K2
3(ω)K4(ω)

∫ t

σ

e
∫ t
τ (2ρz(θsω)−d1λn+1)ds+4ρz(θτω)dτ

≤‖∇U2(σ, ω; t0, g0)‖2e
∫ t
σ(2ρz(θsω))ds−d1λn+1(t−σ)

+
2a2|Γ|
d1

∫ t

σ

e
∫ t
τ (2ρz(θsω))ds−d1λn+1(t−τ)−2ρz(θτω)dτ

+
2

d1

ζ4K2
3(ω)K4(ω)

∫ t

σ

e
∫ t
τ (2ρz(θsω))ds−d1λn+1(t−τ)+4ρz(θτω)dτ,

(4.5.3)
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where

‖∇U2(σ, ω; t0, g0)‖2e
∫ t
σ 2ρz(θsω)ds ≤ K3(ω)e

∫ 0
−1 2ρ|z(θsω)|ds,

e−d1λn+1(t−σ) → 0 as n→ 0,

2a2|Γ|
d1

∫ t

σ

e
∫ t
τ (2ρz(θsω))ds−2ρz(θτω)dτ ≤ 2a2|Γ|

d1

∫ 0

−1

e
∫ 0
−1 2ρ|z(θsω)|ds−2ρz(θτω)dτ,∫ t

σ

e−d1λn+1(t−τ)dτ =
1

d1λn+1

(1− e−d1λn+1(t−σ))→ 0 as n→ 0.

Consequently, there exists an integer N1(ε, ω) ≥ 1 such that for every ω ∈ Ω and t ∈ [−1, 0],

‖eρz(θtω)∇U2(t, ω; t0, g0)‖2 ≤ max
t∈[−1.0]

e2ρz(θtω)‖∇U2(t, ω; t0, g0)‖2 <
ε2

2
, (4.5.4)

whenever t0 ≤ TE(R,ω), n > N1(ε, ω).

On the other hand, taking the inner product of (4.2.7) with −∆V2(t), we get

1

2

d

dt
‖∇V2‖2 + d2‖∆V2‖2

=

∫
Γ

(
−bU∆V2 + e2ρz(θtω)U2V∆V2

)
dx+ ρz(θtω)‖∇V2‖2

≤
(
d2

4
+
d2

4

)
‖∆V2‖2 +

b2

d2

‖U‖2 +
1

d2

e4ρz(θtω)

∫
Γ

U4V 2 dx+ ρz(θtω)‖∇V2‖2.

It follows that

d

dt
‖∇V2‖2 + d2λn+1‖∇V2‖2

≤2b2

d2

‖U‖2 +
2

d2

e4ρz(θtω)‖U‖4
L6‖V ‖2

L6 + 2ρz(θtω)‖∇V2‖2

≤2b2

d2

C2(t, ω) +
2ζ6

d2

e4ρz(θtω)K2
3(ω)K4(ω) + 2ρz(θtω)‖∇V2‖2,

(4.5.5)

for t ∈ [−1, 0] and t0 ≤ TE(R,ω). Multiply (4.5.5) by e
∫ t
σ(2ρz(θsω)−d2λn+1)ds and integrate the
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resulting inequality over [σ, t] where −1 ≤ σ < t ≤ 0,

‖∇V2(t, ω; t0, g0)‖2 ≤ ‖∇V2(σ, ω; t0, g0)‖2e
∫ t
σ(2ρz(θsω−d2λn+1)ds

+
2b2

d2

∫ t

σ

e
∫ t
τ (2ρz(θsω)−d2λn+1)dsC2(τ, ω)dτ

+
2ζ6

d2

K2
3(ω)K4(ω)

∫ t

σ

e
∫ t
τ (2ρz(θsω)−d2λn+1)ds+4ρz(θτω)dτ

≤‖∇V2(σ, ω; t0, g0)‖2e
∫ t
σ(2ρz(θsω))ds−d2λn+1(t−σ)

+
2b2

d2

∫ t

σ

e
∫ t
τ (2ρz(θsω))ds−d2λn+1(t−τ)C2(τ, ω)dτ

+
2ζ6

d2

K2
3(ω)K4(ω)

∫ t

σ

e
∫ t
τ (2ρz(θsω))ds−d2λn+1(t−τ)+4ρz(θτω)dτ.

(4.5.6)

Similar to (4.5.3) and (4.5.4), there exists an integer N2(ε, ω) ≥ 1 such that for every ω ∈ Ω and

t ∈ [−1, 0],

‖eρz(θtω)∇V2(t, ω; t0, g0)‖2 ≤ max
t∈[−1,0]

e2ρz(θtω)‖∇V2(t, ω; t0, g0)‖2 <
ε2

2
, (4.5.7)

whenever t0 ≤ TE(R,ω), n > N2(ε, ω). Adding up (4.5.3) and (4.5.6), we reach (4.5.1). The

proof is completed.

Theorem 4.5.6. The random attractor A = {A (ω)}ω∈Ω for the Brusselator random dynamical

system ϕ shown in Theorem 4.5.1 is indeed an (H,E) random attractor.

Proof. Since Lemma 4.5.5 along with (4.3.23) shows that the flattening property with respect toE

is satisfied by the RDS ϕ and Lemma 4.4.2 together with (4.3.23) confirms that there exists a pull-

back absorbing ball centered at the origin with the radius eρz(ω)K(ω) in the space E. Therefore,

by Proposition 4.5.4 with X = E, there exists a unique random attractor AE for the Brusselator

random dynamical system ϕ in E.

By the mutual attraction and the invariance of both random attractors A in H from Theorem

4.5.1 and AE in E, we see that AE = A and A is an (H,E) random attractor. The proof is

completed.
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