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ABSTRACT 

 

The current dissertation used a gene x environment (G x E) approach to examine the 

independent and interactive effects of specific genetic variants and participation in physical and 

cognitive/social activities (PA and CSA) on cognitive performance in 4,764 participants of the 

Health and Retirement Study.  Using three-wave data, three sets of multi-level growth models 

were conducted to examine baseline, longitudinal, and interactive effects of genotype (i.e., ApoE, 

COMT, and BDNF) and CSA/PA on performance across five cognitive measures: immediate, 

delayed and total word recall, and serial 7s and backwards counting. 

At baseline, the ApoE ε4 allele predicted worse performance in all measures except 

backwards counting, and the BDNF Met allele predicted better recall scores.  The effect of 

COMT genotype was not significant.  Higher CSA/PA predicted better performance on almost all 

measures.  One significant G x E interaction was found between COMT x CSA for backwards 

counting.  Longitudinally, participation in CSA moderated the effect of time on word recall in 

the ApoE and BDNF models.  These results support the idea that genetic and environmental 

factors are mechanisms of cognitive aging, but also exemplify the variability seen in genetic 

association studies.  Further research is needed to translate such findings into clinically relevant 

criteria that can be used to identify individual susceptibility to cognitive decline.   
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CHAPTER ONE: 

INTRODUCTION 

 

 Trajectories of cognitive aging are subject to high levels of heterogeneity (Dixon et al., 

2007; Habib, Nyberg, & Nilsson, 2007; Small, Dixon, & McArdle, 2011). Some older adults 

maintain high levels of cognitive functioning throughout their lifespan (Dixon et al., 2007) while 

others experience notable rates of decline much earlier in life (Salthouse, 2009; Vestergren & 

Nilsson, 2011).  A growing body of genetic association studies has attempted to identify genetic 

and environmental factors as likely sources of this variability, particularly in regard to the 

potential for these factors to modify individual susceptibility to cognitive decline.  Unfortunately, 

the momentum of this research has been stalled by inconsistent results, replication difficulties, 

and small effect sizes (Payton, 2009; Raz & Lustig, 2014).  Guided by the conceptual framework 

of the cognitive plasticity and flexibility theory (CPF; Lövdén, Bäckman, Lindenberger, 

Schaefer, & Schmiedek, 2010) and the differential susceptibility theory (DS; Belsky et al., 2009),  

the current dissertation seeks to better understand the independent and interactive effects of 

genetic and environmental factors on age-related changes in cognitive performance in a sample 

of healthy older adults.   

Similar to the theory of cognitive reserve (Stern, 2009), the cognitive flexibility and 

plasticity theory refers to an individual’s potential to improve cognitive performance through 

deliberate acts of training, practice, or exposure to enriched environments (Lövdén et al., 2010).  

This potential may be governed by inherent neurological features of the brain (e.g., brain volume 
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or neural connectivity) that are influenced by genetic variability (Cedazo-Minguez, 2007; 

Payton, 2009).  In relation to the cognitive flexibility and plasticity theory, the differential 

susceptibility theory posits that certain genotypes make individuals more or less responsive to 

the influence of environmental factors (Belsky et al., 2009).  Together, these theories support the 

hypothesis that individuals with certain genotypes may be differentially susceptible (for better or 

worse) to environmental factors that influence age-related cognitive change.  Stated another way, 

individuals may have genetic predispositions that dictate their responsiveness to environmental 

factors that influence cognitive aging.  Furthermore, the magnitude of these effects may be 

related to the complexity or intensity of the environmental exposure. 

 Lifestyle activities are a type of environmental factor that has received considerable 

attention in the field of cognitive aging (Hertzog, Kramer, Wilson, & Lindenberger, 2008).  This 

attention is related to the modifiable nature of lifestyle activities, as well as their potential to 

serve as natural interventions to promote cognitive health.  The vast majority of research 

supports a positive relationship between participation in lifestyle activities and cognitive 

performance, despite a substantial amount of variability in study design, including the lack of a 

standardized definition or measurement of lifestyle activities (Wang, Xu, & Pei, 2012).  The 

current dissertation will focus on two types of lifestyle activities: cognitive/social activities 

(CSA) and physical activities (PA), as these activities have been repeatedly associated with 

cognitive performance (Kraft, 2012; Mitchell et al., 2012; Small, Dixon, McArdle, & Grimm, 

2012).  The effects of these activities may be moderated by certain genotypes (Kim et al., 2011; 

Runge, Small, McFall, & Dixon, 2014; Thibeau, McFall, Wiebe, Anstey, & Dixon, 2016), and 

thus serve as a potential source of intraindividual variability that will be examined in this 

dissertation. 
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A number of genetic association studies have identified genetic variants that play 

important roles in cognitive performance.  For example, variants of Apolipoprotein E (ApoE), a 

gene related to neural integrity and lipid processing (Cedazo-Minguez, 2007; Mahley, 1988), 

have been associated with age-related variability in cognitive processes that require complex 

processing, such as episodic memory and executive function (Laukka et al., 2013; Reynolds et 

al., 2006).  Variants of Catechol-O-Methyltransferase (COMT) and Brain-Derived Neutrophic 

Factor (BNDF) have also been linked to variability in cognitive performance due to their roles in 

regulating neurotransmitter activity (Cools & D'Esposito, 2011) and neural plasticity (Matsushita 

et al., 2005).  In particular, episodic memory and executive function appear to be influenced by 

variants of COMT (Das et al., 2014; de Frias et al., 2004; de Frias et al., 2005) as well as variants 

of BDNF (Egan et al., 2003; Gajewski, Hengstler, Golka, Falkenstein, & Beste, 2012).  Recent 

evidence also suggests these variants moderate the potential for individuals to benefit from 

lifestyle factors such as CSA (Runge et al., 2014; Woodard et al., 2012) and PA (Ferencz et al., 

2014; Kim et al., 2011; Thibeau et al., 2016).  However, the generalization of the impact of such 

activities is limited by small effect sizes, replication difficulties, and insufficient statistical power 

(Chabris et al., 2012; Payton, 2009).   

The complexity of the cognitive phenotype is a likely contributor to these limitations.  

For example, it is unlikely that any one gene will exhibit a large, singular effect on normal 

cognitive processes (Chabris et al., 2012; Goldberg & Weinberger, 2004).  Most likely, cognition 

is a composite manifestation of multiple genetic and environmental factors.  In regard to 

cognitive aging, the effects of gene x environment (G x E) interactions on cognition have 

received less attention (Payton, 2009), despite the fact that even small effects can have important 

clinical implications (Aguinis, Beaty, Boik, & Pierce, 2005).   
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The current dissertation expands on this previous research by examining the independent 

and interactive effects between specific genotypes (i.e., ApoE, BDNF, and COMT) and lifestyle 

factors (i.e., CSA and PA) on cognitive performance in a sub-sample of the Health and 

Retirement Study (HRS; Weir, 2012).  More specifically, this research seeks to understand how 

genetic factors moderate the relationship between lifestyle activities and cognitive performance 

by evaluating genetic variants as plasticity factors that moderate individual responsiveness to 

environmental influences.  The approach utilized multilevel modeling to estimate the 

independent and interactive effects of time, lifestyle activities (i.e., CSA and PA), and genotype 

(i.e., ApoE, BDNF, and COMT) on cognitive performance.  To summarize, a greater 

understanding of the interactions between genes and these risk factors will provide insight 

regarding biological pathways and interventions that may promote healthy cognitive aging.   
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CHAPTER TWO: 

REVIEW OF THE LITERATURE 

 

The following section is a review of the literature pertinent to the current dissertation, 

including a description of the cognitive plasticity and flexibility and differential susceptibility 

theories as they relate to cognitive aging. A summary of previous research which examined the 

independent and interactive effects between genetic variants and participation in lifestyle 

activities on cognitive performance is also included.  This section concludes with a summary of 

preliminary evidence that supports the theoretical and methodological approach utilized in the 

current dissertation and a brief statement of the research questions that will be addressed. 

 

Theoretical Background 

The cognitive plasticity and flexibility and differential susceptibility theories are well-

suited to describe how genetic and environmental factors contribute to variability in cognitive 

performance and influence trajectories of cognitive aging.  Briefly, the cognitive plasticity and 

flexibility theory conceptually supports the hypothesis that engagement in lifestyle activities 

promotes cognitive health by stimulating beneficial neuroplastic changes within the brain.  

Comparatively, the differential susceptibility theory postulates that neuroplasticity is dictated by 

genetic variability, such that an individual’s genetic make-up may moderate this activity-

cognition relationship.  Together, the theories provide the conceptual framework to explain how 

genetic and environmental mechanisms contribute to heterogeneity in cognitive aging. 
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Cognitive Plasticity and Flexibility Theory 

The neurobiological concepts of the cognitive plasticity and flexibility theory are similar 

to those of brain reserve and cognitive reserve (Stern, 2009).  Brain reserve refers to the overall 

capacity of the brain to execute cognitive functions (Stern, 2009) and is likely to be determined 

by genetic factors (Deary, Corley, et al., 2009; Fritsch et al., 2007).  Similarly, cognitive reserve 

represents the ability of the brain to operate efficiently despite the accumulation of structural and 

neural damage that occurs as a result of natural aging, and can be influenced by exposure to 

complex, stimulating activities, such as educational courses or occupational tasks (Stern, 2009). 

Cognitive plasticity refers to the individual’s potential to optimize cognitive abilities 

through actions that require complex thinking.  Exposure to enriched environments promotes 

beneficial plastic changes in the brain that subsequently improve neural efficiency and 

processing.  Appropriate levels of cognitive stimulation may therefore play a significant role in 

the preservation or enhancement of cognitive performance.  Similar to cognitive reserve, 

cognitive plasticity is subject to inter- and intra-individual variability (Dixon et al., 2007; Finkel 

& McGue, 2007; Ram, Gerstorf, Lindenberger, & Smith, 2011).  Notably, beneficial plastic 

changes only occur after being exposed to appropriately complex stimuli for a sufficient period 

of time (Lövdén et al., 2010); however, defining stimuli that meet these criteria is difficult at the 

individual level.  These inherent differences in neurobiological structure and function are aspects 

of cognitive flexibility, which represents the extent to which cognitive performance can be 

improved.  More specifically, individuals may require varying degrees and intensities of 

cognitive stimulation before beneficial plastic changes are experienced.  As with brain reserve, 

cognitive flexibility may be influenced by genotype, including detrimental genetic variants 
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previously associated with cognitive decline (Harris & Deary, 2011).  The extent to which these 

factors influence the trajectory of cognitive decline, however, is still unclear (La Rue, 2010).   

 

Differential Susceptibility Theory 

In terms of cognitive aging, the framework of cognitive plasticity and flexibility is 

complemented by the differential susceptibility theory.  The differential susceptibility theory 

utilizes G x E interaction analyses to examine individual differences in response to 

environmental stimuli, which can be behavioral, physiological, or genetic in nature (Ellis, Boyce, 

Belsky, Bakermans-Kranenburg, & van Ijzendoorn, 2011).  Based on aspects of developmental 

and evolutionary psychology, the differential susceptibility theory proposes that individuals with 

highly reactive, heritable phenotypes are more susceptible to the influences of environmental 

factors (Boyce & Ellis, 2005).  More recently, the concept of “genetic plasticity” was 

incorporated into the differential susceptibility theory (Belsky et al., 2009).  Genetic plasticity 

refers to the presence of unique genetic markers that make individuals more or less responsive to 

environmental influences (Belsky et al., 2009).  As such, individuals with certain genetic variants 

may experience positive behavioral outcomes when immersed in enriched environments or 

worse outcomes when placed in less advantageous environments (Boyce & Ellis, 2005).  It may 

also be possible that individuals may be genetically predisposed to be less responsive to 

environmental influences (i.e., their behavioral outcomes are less dependent on external factors). 

The differential susceptibility theory has been extensively used as a theoretical foundation to 

evaluate G x E interactions to predict adverse outcomes, including some types of mental illness 

(Ellis et al., 2011).  In terms of cognitive aging, G x E interactions can evaluate cognition in 

terms of gains, losses, or the preservation of cognitive performance.   
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In sum, the concepts of cognitive plasticity and flexibility and differential susceptibility 

serve as a theoretical framework to examine how genetic and environmental factors influence 

cognitive performance, both independently and interactively.  The current dissertation expands 

upon these concepts to address several aspects of cognitive aging.  First, it is still uncertain 

which genetic profiles are most susceptible or resilient to cognitive decline, particularly in 

general populations of healthy older adults.  Second, the extent to which these genetic variants 

moderate the influence of environmental factors (e.g., lifestyle activities) remains unclear.  It is 

possible that certain variants predispose individuals to be differentially susceptible to 

environmental influences.  Finally, it is unclear whether these independent or interactive 

relationships are limited to specific cognitive domains.  Collectively addressing these issues will 

help identify individuals at risk for accelerated rates of cognitive decline. It will also help 

determine whether exposure to environmental factors (e.g., more frequent participation in PA or 

CSA) can help delay the onset or trajectory of these changes. 

 

Lifestyle Activities and Cognitive Aging 

 The following section will review research that has examined the relationship between 

lifestyle activities and cognitive aging.  Generally, most research has demonstrated a positive 

association between cognitive performance and participation in physical activities (Kramer & 

Erickson, 2007; Rockwood & Middleton, 2007) and cognitive activities (Lövdén et al., 2010).  

Moreover, these benefits do not appear to be limited to specific activities; having an overall 

active lifestyle has also been shown to be advantageous (Newson & Kemps, 2005).  Cross-study 

comparisons are challenging, however, due to a number of confounding factors such as a lack of 
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standardized definitions and assessments of activity categories, differences in methods of 

cognitive measurement, and variability across study samples.   

 

Physical Activity and Cognitive Performance  

The beneficial relationship between PA and cognition has been established through 

randomized clinical studies that have used fitness training (both aerobic and strength 

conditioning) as an intervention (Colcombe & Kramer, 2003; Kramer, Erickson, & Colcombe, 

2006).  While these studies support a causal relationship between interventions that follow 

structured protocols (e.g., participating in 45 minutes of aerobic exercise 3 times a week for 12 

weeks) and cognitive performance, it is not possible to draw similar conclusions for participation 

in more general PA.  Additionally, the strength of the associations between cognition and general 

PA are obscured by the absence of standardized definitions or measurements of PA.  However, 

in general, PA has been used as an umbrella term to describe purposeful body movement 

(Ballesteros, Kraft, Santana, & Tziraki, 2015).  This comprehensive definition may be 

particularly suitable when referring to studies where it is not feasible to use a standardized 

measure of PA, such as participant-reported levels of PA or observational studies. 

In a systematic review of observational studies which examined the relationship between 

PA and cognitive function (k  = 23), and PA and risk of dementia (k  = 22), approximately 70% of 

studies reported a protective effect of PA despite differences in study design, population, 

assessment of cognitive ability, and measures and definition of physical activity (Wang, Xu, et 

al., 2012).  Additional evidence comes from studies that have associated lower levels of PA with 

worse cognitive performance and increased risk of dementia (Kim et al., 2011; Kraft, 2012; 

Woodard et al., 2012).  For example, in a longitudinal study of 732 adults over the age of 65, 
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Kim et al. (2011) found that individuals who reported lower baseline levels of PA were 

significantly more likely to develop dementia or other forms of cognitive decline compared to 

those who reported higher levels of baseline activity.  This preservation of cognitive ability may 

be related to multiple physiological effects that occur in response to being active.   

PA stimulates a number of physiological changes that directly impact cognition, such as 

increased production of neurogenesis-promoting brain derived neurotropic factor (BDNF) 

protein in regions of the brain associated with episodic memory (Dickerson & Eichenbaum, 

2010; Kim et al., 2011).  Additional PA-related benefits include increased blood flow and 

oxygenation to the brain (Fritsch et al., 2007) as well as other physiologic mechanisms related to 

neuronal survival and neurogenesis (Kraft, 2012).  For example, in a small intervention study of 

older adults aged 55-80 years, regular PA (i.e., three 40-minute walking sessions per week) over 

the course of a year was associated with significant increases in blood serum BDNF levels (Voss 

et al., 2013).  The increased BDNF levels were correlated with improved connectivity between 

brain regions associated with memory and cognition, including the hippocampus (Voss et al., 

2013).  It is also possible that increased production of BDNF may contribute to increased 

hippocampal volume as well, which may play a key role in the preservation of cognitive health. 

In a sample of 1,479 adults aged 65 and older, Erickson, Raji, et al. (2010) found 

significant associations between more frequent baseline PA (i.e., walking six to nine miles per 

week) and greater volume in the prefrontal, temporal, and hippocampal regions of the brain after 

nine years of follow-up.  Participants with greater brain volume were also significantly less 

likely to experience cognitive impairment later in life (Erickson, Raji, et al., 2010).  Frequent PA 

over time may therefore help preserve cognitive abilities that are more susceptible to biological 

aging, such as processing speed, working memory, and attention (Fritsch et al., 2007).   
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Despite the robust nature of these results, it is important to note that the interpretation of 

these effects of PA may vary by study design.  For example, in a study of cognitively healthy 

adults over the age of 65, Steinberg et al. (2015) reported significant associations between 

cognitive performance and the amount of energy expended during PA (e.g., higher PA intensity 

corresponds with higher levels of energy expenditure), yet this relationship was not seen when 

PA was defined by duration or frequency.  This is a clear example of how the definition of PA 

may influence study results.  Furthermore, one must consider the effect of PA on cognitive 

performance across multiple time points in order to determine whether the effect is temporary or 

persists over time.  In a similar fashion, the physiological pathways activated by PA are also 

thought to be activated by complex mental or social activities (Kraft, 2012); there is evidence 

that engaging in such activities also has a beneficial effect on cognition. 

 

Cognitive/Social Activities and Cognitive Performance  

Overall, similar results have been seen in studies that investigated CSA and cognition and 

those that have investigated PA.  Most studies have supported a positive association between 

CSA and cognition, despite inconsistent methodological approaches and varying definitions of 

CSA.  A meta-analysis of studies that examined the relationship between CSA and cognitive 

decline (k = 9) or the risk of dementia (k  = 9) indicated that CSA generally had a protective 

effect against cognitive decline and dementia, regardless of differences in study design, 

population, definition or measurement of outcomes (Wang, Xu, et al., 2012).   

As with PA, the act of engaging in CSA may trigger beneficial neuroplastic changes 

within the brain, including increased neurogenesis and decreased atrophy of brain regions 

associated with memory (Nithianantharajah & Hannan, 2006).  A lifetime of engagement in 
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cognitively-stimulating activities has been associated with decreased hippocampal atrophy in 

older adults (Valenzuela, Sachdev, Wen, Chen, & Brodaty, 2008), which is thought to help 

prevent cognitive decline and the onset of dementia (Valenzuela & Sachdev, 2007; Wilson et al., 

2002).  It is important to note that the benefits of CSA are not always observed, and may be 

restricted to specific population subgroups.  For example, Woodard et al. (2012) evaluated the 

effect of participating in seven CSA (i.e., viewing television, listening to radio, reading 

newspapers, reading magazine, reading books, playing games, and going to museums) as 

preventative factors for cognitive decline.  The researchers concluded that such activities were 

only beneficial for individuals who presented a genetic risk for accelerated cognitive decline 

(Woodard et al., 2012).  As a whole, however, the results of these studies must be interpreted 

with caution, as they represent associations rather than a causal relationship between lifestyle 

activities and cognitive change. 

A positive correlation between frequency of participation in CSA and cognitive 

performance provides little information about the causal relationship between the two variables 

(Salthouse, Berish, & Miles, 2002).  For example, it is not possible to discern whether 

participation in lifestyle activities is implicitly responsible for cognitive improvements, or 

whether external factors (i.e., physical health) influence activity level and cognition, or whether 

individuals with higher cognitive abilities are more likely to participate activities that are more 

challenging than individuals with lower cognitive abilities (Salthouse et al., 2002).   

This latter concept, known as preserved differentiation (Salthouse, Babcock, Skovronek, 

Mitchell, & Palmon, 1990), posits that active individuals have inherently higher levels of 

cognitive functioning compared to inactive individuals, and the cognitive differences between 

these two types of individuals persist over time but follow similar trajectories of decline (Bielak, 
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Anstey, Christensen, & Windsor, 2012; Salthouse et al., 1990).  Evidence of this effect comes 

from  Bielak et al. (2012), who evaluated the relationship between self-reported participation in 

over 50 different activities and cognitive performance in a large 8-year cohort study of three age 

groups (20-24 years, 40-44 years, and 60-64 years at baseline; n = 7,485).  Regardless of age 

group, individuals who reported greater baseline activity reported higher scores in episodic 

memory, working memory, vocabulary, and perceptual speed over time compared to less active 

individuals (Bielak et al., 2012).  More specifically, baseline activity level predicted differences 

in cognitive ability between individuals, but not rates of cognitive change within each individual 

(Bielak et al., 2012).  Similarly, Mitchell et al. (2012) found that higher frequency of baseline 

CSA was associated with better baseline cognitive performance, but this baseline level did not 

predict cognitive change over time.  It is possible that the beneficial effects of lifestyle activities 

are most pronounced during early development stages, leading to individual differences in 

cognitive performance that persist throughout the lifespan (Fritsch et al., 2007).   

There is also evidence that continued participation in CSA may be particularly important 

for preserving cognitive function, especially in old age.  In a 12-year (5-wave) longitudinal study 

of 952 older adults (age range = 55 – 94 at baseline), Small et al. (2012) found that higher 

participation in CSA was associated with less decline in episodic memory and verbal speed. 

Additionally, changes in CSA and PA levels were found to be strong indictors of changes in 

episodic and semantic memory (Small et al., 2012). 

Efforts have also been made to evaluate the impact of CSA on cognitive performance 

through experimental studies. For example, the goal of the Senior Odyssey Program (Stine-

Morrow, Parisi, Morrow, & Park, 2008) evaluate the impact of a cognitive training program that 

focused on broad cognitive processes, including those used to solve complex problems (e.g, 
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executive functioning). Although the experimental group was quite small (n = 87) and covered a 

wide range of ages (59 – 93 years of age, M = 73.0), the results indicated that participants 

experienced significant improvements in executive function (Stine-Morrow et al., 2008).  

Another example includes the Experience Corps Program® (Carlson et al., 2008), where 

participants (n = 128, M = 70.1 years of age) committed to tutoring elementary school students 

for approximately 15 hours per week throughout the course of a school year following the 

successful completion of a 32-hour training program. Participants with impairments in executive 

function at baseline assessment showed a significant improvement (42%) in executive function at 

the end of the study. This idea is supported by evidence from the Synapse Study (Park et al., 

2013), where older adults who engaged in complex types of CSA (e.g., learning digital 

photography, kitting) demonstrated significant improvements in episodic memory compared to 

older adults who only participated in passive types of CSA (e.g., listening to classical music). 

To summarize the results of the literature regarding cognitive performance and lifestyle 

activities, the general belief that ‘more is better’ is based on the findings of studies that report a 

positive association between better cognitive function and higher levels of participation in 

physical and cognitive activities (La Rue, 2010).  Although some researchers question the 

validity of the claim that engaging in such activities delays cognitive decline, there is no 

evidence that participation in these activities have a deleterious effect (Salthouse et al., 2002).  It 

has been proposed that a greater understanding of the genetic etiology of cognition may help 

identify individuals who are inherently predisposed to experience more or less beneficial effects 

from lifestyle activities (Fratiglioni, Paillard-Borg, & Winblad, 2004; La Rue, 2010).  This has 

led to increased efforts to identify key associations between genes and cognition. 
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Evaluating the Genetic Etiology of Cognition: Methodological Approaches  

The purpose of the following section is to briefly review the current methodology used to 

analyze the genetic etiology of cognition, with the goal of more easily summarizing the results 

and limitations of the current literature.  The first step in identifying the genetic etiology of 

cognition, which represents a highly complex phenotype, involves providing sufficient evidence 

that supports the genetic basis of a phenotype, such as establishing familial aggregation and 

heritability.  Familial aggregation is established when the relatives of a person with a specific 

phenotype are more likely to express that same phenotype compared to relatives of a person 

without that phenotype (Hernandez & Blazer, 2006).  Heritability is established by estimating the 

proportion of a phenotype that is attributable to genetic variance compared to the proportion that 

is attributable to environmental variance (Deary, Johnson, & Houlihan, 2009).   Heritability 

estimates for cognitive abilities have ranged from 66% for general cognitive abilities (Plomin, 

Haworth, Meaburn, Price, & Davis, 2013), and 77% for memory and 79% for verbal ability 

(Finkel, Reynolds, McArdle, & Pedersen, 2005).  Together, these results suggest that up to 80% 

of the variability in cognitive ability can be related to genetic factors.  Once patterns of familial 

aggregation and heritability have been established, the next step involves identifying the genes 

and mutations associated with the phenotype.  This can be accomplished through genetic 

association studies such as candidate gene studies or polygenic studies. 

Candidate gene studies and polygenic studies are hypotheses-driven approaches that 

differ primarily by the number of genes that are investigated.  Candidate gene studies identify a 

specific gene variant a priori that is thought to influence the etiology of a phenotype, and use a 

population-based case-control or cohort samples to compare the number of individuals with and 

without that phenotype (Tabor, Risch, & Myers, 2002).  Polygenic studies investigate multiple 
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genetic variants that are also identified a priori. For example, BDNF and COMT are often 

investigated together since they both play a role in neurotransmitter production.  Polygenic 

studies can also refer to genome-wide association studies (GWAS), which are hypothesis-free 

studies that consider all genetic variables within a genome (Lvovs, Favorova, & Favorov, 2012).   

Both types of studies are preferable over linkage analysis for detecting genetic 

associations of complex phenotypes due to the accepted fact that such phenotypes are likely 

influenced by many genes, each of which have a comparatively small impact (Cordell & 

Clayton, 2005).  Despite this, such studies are often criticized for their limitations (Raz & Lustig, 

2014).  The results of association studies can also be difficult to interpret and replicate since not 

all individuals who inherit a genetic risk variant will develop the associated phenotype (i.e., 

incomplete penetrance), whereas individuals without that genetic variant may develop the 

phenotype due to environmental exposure or other random causes (i.e., phenocopy; Lander & 

Schork, 1994; Payton, 2009; Raz & Lustig, 2014).  The following section summarizes the results 

of gene association studies that have utilized candidate gene and polygenic approaches to 

examine the effects of three genes (ApoE, BDNF, and COMT) on cognition. 

 

Candidate Genes and Cognitive Performance   

Many of the genetic association studies in cognitive aging have focused on genes related 

to neurotransmitters (i.e., BDNF and COMT) and processing of lipoproteins (i.e., ApoE).  

Although other genes have been investigated, such as clusterin (CLU) and hosphatidylinositorl-

binding clathrin assembly protein (PICALM) genes (Ferencz et al., 2014), this section will focus 

on the effects of ApoE, BDNF, and COMT, as these represent some of the most widely 

investigated genes related to cognition and will also be examined in the current dissertation. 
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Apolipoprotein E 

The primary function of ApoE is to regulate the transport of lipids (e.g., cholesterol and 

triglycerides) and to stimulate neuronal repair and regeneration in the brain (Cedazo-Minguez, 

2007; Mahley, 1988).  ApoE exists in three allelic isoforms: ɛ2, ɛ3, and ɛ4.  Since the discovery 

of the link between ApoE ɛ4 and Alzheimer’s disease (AD; Poirier et al., 1993), the ApoE gene 

has become one of the most widely researched susceptibility genes for neurological conditions 

(Payton, 2009).  The association between ApoE ɛ4 and AD has been consistently replicated 

(Hirschhorn, Lohmueller, Byrne, & Hirschhorn, 2002), but there is still debate as to whether the 

negative effects of ApoE ɛ4 extend to normal cognition (Goldberg & Weinberger, 2004). 

In cognitively healthy individuals, the effects of ApoE ɛ4 appear to be most evident in 

abilities that require complex processing (e.g., working memory), but these effects vary 

depending on age of the research sample.  For example, in a cross-sectional cohort study of older 

adults without dementia (n = 2,848; age range 60 – 102 years; Mbaseline age = 72.84 years), 

significant associations were found between ApoE ɛ4 and measures of perceptual speed and 

episodic memory, but not for measures of semantic memory or verbal fluency (Laukka et al., 

2013).  Conversely, in an unrelated sample of non-demented adults (n = 563; age range 32 – 74 

years; Mbaseline age = 51.06), ApoE ɛ4-carriers did not differ significantly from non- ɛ4 carriers in 

any cognitive measure; in fact, ApoE ɛ4-carriers outperformed non-ɛ4 carriers in reasoning 

ability (de Frias, Schaie, & Willis, 2014).  Additional evidence of the effects ApoE ɛ4 increasing 

with age have been found in longitudinal cohort studies.   

In a 5-year longitudinal study of non-demented older adults (n = 417; age range 74 – 93 

years; Mbaseline age = 79.13); ApoE ɛ4-carriers and non-ɛ4 carriers had similar levels of cognitive 

functioning at the initial assessment, but ApoE ɛ4-carriers exhibited significantly faster 4-year 
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rates of decline in episodic memory, executive function, and verbal fluency (Salmon et al., 

2013).  This exacerbated rate of decline may be related to a negative, dose-dependent effect of 

the ApoE ɛ4 allele.  In a 13-year longitudinal study of aging twins (n = 478; Mbaseline age = 64.96), 

Reynolds et al. (2006) compared baseline ability and rates of cognitive change in ApoE ɛ4 

homozygotes (ɛ4/ ɛ4), heterozygotes (one ɛ4 allele), and non- ɛ4 carriers.  Interestingly, ApoE ɛ4 

heterozygotes had higher working memory scores at baseline, but declined more rapidly over 

time than ApoE ɛ4 homozygotes and non-e4 carriers (Reynolds et al., 2006).   

Meta-analyses have confirmed the majority of these results (Small, Rosnick, Fratiglioni, 

& Backman, 2004; Wisdom, Callahan, & Hawkins, 2011).  ApoE ɛ4-carriers generally 

performed worse than non-ɛ4-carriers on all cognitive measures, but were significantly worse for 

measures of episodic memory, perceptual speed, executive functioning, and global cognitive 

ability (Wisdom et al., 2011).  Moreover, meta-regression analyses have indicated that the effects 

of ApoE ɛ4 on episodic memory and global cognitive ability increase significantly with age 

(Wisdom et al., 2011). 

 

Catechol-O-Methyltransferase  

The Catechol-O-Methyltransferase (COMT) gene encodes the COMT protein, whose 

enzymatic activity degrades dopamine in neuronal synapses (Green, Kraemer, DeYoung, 

Fossella, & Gray, 2013; Sambataro, Pennuto, & Wolf, 2012).  Dopamine is an essential 

neurotransmitter that plays a role in the ability to execute complex cognitive tasks, including 

working memory and information processing (Cools & D'Esposito, 2011; Störmer, Passow, 

Biesenack, & Li, 2012).  Cognition is influenced by dopamine in an inverted-U-dose-dependent 

manner: negative effects are seen when dopamine levels are too high or too low (Cools & 
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D'Esposito, 2011; Nagel et al., 2008; Störmer et al., 2012).  A SNP in COMT leads to a 

substitution of the amino acid, Valine (Val), with another amino acid, methionine (Met), at 

codon 158.  This substitution alters the enzymatic activity of the COMT protein, which 

subsequently alters the rate of dopamine degradation (Nagel et al., 2008).  This altered rate of 

degradation is thought to contribute to changes in cognitive function. 

The enzymatic activity of homozygous Met-carriers (Met/Met) is approximately 3 to 4 

times lower than that of homozygous Val-carriers (Val/Val) or heterozygous Val/Met carriers 

(Cools & D'Esposito, 2011; Nagel et al., 2008).  This difference is thought to contribute to a 

linear relationship between COMT genotype and cognition, with Met/Met carriers demonstrating 

higher levels of cognitive function (attributed to increased availability of dopamine), followed by 

Met/Val carriers, and with Val/Val carriers demonstrating the lowest levels of cognitive function 

(Cools & D'Esposito, 2011).  However, while the detrimental effect of the ApoE ɛ4 allele has 

been robustly demonstrated across multiple studies, the relationship between COMT and 

cognition performance is not as clear, particularly in samples of cognitively healthy older adults.  

This lack of clarity may be attributable to evidence that the influence of the COMT 

genotype varies by cognitive domain.  For example, in two 5-year longitudinal studies of 

individuals aged 50 to 60 years, Met/Met carriers exhibited greater declines in episodic memory 

in the first study (de Frias et al., 2004), but Val/Val carriers had more severe declines in 

executive function in the second study (de Frias et al., 2005).  This suggested that the Met allele 

may be protective for executive function ability, whereas the Val allele is protective of cognitive 

abilities related to memory.  Das et al. (2014) found that Met carriers had significantly faster 

reaction time scores as compared to Val/Val carriers.  These differential effects are likely 

influenced by the areas of the brain activated by cognitive tasks. The Met allele, which is 
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associated with increased availability of dopamine in the prefrontal cortex, may be positively 

associated with cognitive activities that activate that area of the brain (e.g., executive function or 

reaction time).  Conversely, the Val allele decreases dopamine in the temporal lobe, which may 

be advantageous for cognitive tasks that activate the temporal lobes (e.g., episodic memory).   

 

Brain-Derived Neurotropic Factor  

Located on chromosome 11, the BDNF gene encodes the BDNF protein, which plays an 

essential role in neuronal stimulation and protection (Matsushita et al., 2005).  BDNF protein 

concentrations are highest in the hippocampus, an area of the brain that plays a key role in 

learning and memory (Kim et al., 2011).  A SNP in BDNF results in the amino acid substitution 

of Val to Met at codon 66 (val66Met).  The BDNF Met allele has been associated with decreased 

production of BDNF protein (Kim et al., 2011), smaller hippocampal volume (Erickson, Prakash, 

et al., 2010; Lim et al., 2013), and appears to influence executive functions (Das et al., 2014; 

Gajewski et al., 2012) and episodic memory (Egan et al., 2003; Erickson et al., 2008; Nyberg, 

Lovden, Riklund, Lindenberger, & Backman, 2012) in older adults. However, the results of these 

studies are largely inconsistent, especially in regards to the impact of BDNF variants on 

cognitive performance in older adults.  

The detrimental impact of the Met allele first reported by Egan et al. (2003) found 

associations between worse episodic memory performance and Met-carriers in a fairly large 

sample (n = 641; average approximate age = 35 years).  Met-carriers have also been shown to 

perform worse on tasks measuring executive function (Erickson et al., 2008) and perceptual 

speed (Miyajima et al., 2008; Raz, Rodrigue, Kennedy, & Land, 2009).  These results may be 

attributable to age-related declines in the production of the BDNF protein (Hattiangady, Rao, 
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Shetty, & Shetty, 2005).  This concept is further supported by evidence from an 11-year 

longitudinal study.  In this sample, (n = 376, Mage = 83.9 years), baseline scores on a measure of 

perceptual speed did not vary by BDNF genotype, but any Met-carriers experienced significantly 

steeper rates of decline than Val/Val carriers (Ghisletta et al., 2014).    

In a manner similar to the COMT gene, the effects of BDNF genetic variants may become 

more apparent in age, as evidenced by a number of studies that have failed to identify a 

detrimental effect of the Met allele in younger samples.  For example, Hansell et al. (2007) found 

no effects of BDNF genotype on working memory in a sample of adolescent twins and their 

siblings (n = 785, Mage = 16.4 years).  This age-dependent effect was seen in a study of 382 

younger (Mage = 25.6 years, age range 20 – 31) and 566 older adults (Mage = 65.8 years, age range 

= 60 – 71 years), where only the older Met-carriers performed worse in an episodic memory task 

(Li et al., 2010). 

 

Summary of Genetic Association Studies  

Collectively, the results of these genetic association studies results support the association 

between specific genes and cognition, but are plagued by inconsistencies that are likely 

attributable to variability in study design, sample, and assessment of cognitive ability (Payton, 

2009).  Interpretation of the results of these studies is further complicated by the multifactorial, 

complex nature of the cognitive phenotype, as well as the fact that some genetic variants may be 

more advantageous for different cognitive domains (Nyberg et al., 2012).  Given this complexity, 

it is unlikely that any single genes (or even groups of similar genes) will demonstrate relatively 

significant effects on normal cognitive processes (Chabris et al., 2012; Goldberg & Weinberger, 

2004); therefore, it is essential to consider the impact of additional factors that influence 
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cognition, such as environmental factors.  It is very likely that interactions between genes and 

environmental factors, as well as interactions between genes, produce cognitive effects that are 

not apparent when examining the lone impact of a singular gene (Hirschhorn, Lohmueller, 

Byrne, et al., 2002).  As such, there has been a increased interest in a sub-class of association 

studies that investigate G x E interactions.   

 

Gene x Environment Studies of Cognition 

The previously described studies have provided evidence of effects of genetic markers 

and lifestyle activities on cognitive outcomes.  However, as with all complex phenotypes, 

cognition is most likely the result of multiple interactions between genetic and environmental 

factors.  The effects of such interactions are estimated by a sub-class of genetic association 

studies known as G x E interaction studies, which seek to provide a unique understanding of how 

complex phenotypes are influenced by a combination of genetic factors and exposure to different 

environments (Ellis et al., 2011).  These studies have been a central focus of recent research in 

terms of understanding the genetic etiology of cognitive aging. 

Emerging evidence suggests that variants of ApoE gene may constrain the beneficial 

relationship between participation in lifestyle activities and cognitive performance.  In a 

longitudinal study of Swedish adults aged 75 years old at baseline, C. Ferrari et al. (2013) 

examined the modifying effect of high education and high frequency of participation lifestyle 

activities (including CSA) for ApoE ɛ4 carriers.  Notably, there were no statistically significant 

differences between ApoE ɛ4 carriers and non-ɛ4 carriers in regard to their likelihood of 

participating in lifestyle activities.  Higher levels of participation in lifestyle activities decreased 

the risk of dementia and AD by approximately 40% in ApoE ɛ4 carriers (C. Ferrari et al., 2013). 
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This suggested that individuals with the ɛ4 allele may be differentially susceptible to the benefits 

of lifestyle activity compared to non-ɛ4 carriers.  Unfortunately, it is not possible to examine the 

effects of CSA since these activities were grouped with other non-related activities.    

Obisesan, Umar, Paluvoi, and Gillum (2012) examined the interactions among PA and 

ApoE genotype in a cross-sectional analysis of adults aged 60 years and older (n  = 1,799).  

Compared to ApoE ɛ4 carriers, physically active non-ɛ4 carriers reported better overall cognitive 

function in multiple domains, including recall, memory, and learning.  Additional evidence of an 

ApoE x PA effect comes from a separate longitudinal study of older adults (n = 2,480, Mage = 

71.69 years old at baseline).  In this study, Ferencz et al. (2014) investigated the cumulative 

impact of several genetic risk factors (including ApoE ɛ4) and regular physical activity on 

episodic memory.  Individuals who engaged in regular light, moderate, or intense levels of 

physical activity outperformed inactive individuals; however, no differences in episodic memory 

were seen between physically active individuals with a high genetic risk score (GRS) and 

physically active individuals with a low GRS.  These results suggest that physical activity may 

counteract the detrimental effects of genetic risk factors.  Collectively, these results highlight the 

potential for physical activity to mitigate the detrimental effect of the ApoE ɛ4 allele, but 

additional research is clearly needed to confirm these findings as well as to identify other genetic 

variants that may be moderated by lifestyle activities. 

 

Preliminary Evidence to Support the Proposed Dissertation 

The current dissertation is an extension of preliminary research that examined the 

potential benefit of participating in CSA on cognitive performance among participants from the 

Victoria Longitudinal Study (VLS) with or without the ApoE ɛ4 allele (n = 278, Mage = 66.5 
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years).  Higher participation in complex cognitive activities was associated with better 

concurrent cognitive performance in measures of episodic memory, semantic memory, and 

verbal fluency (Runge et al., 2014).  This result supports the CPF theory, which stipulates that 

cognitive stimulation produces beneficial plastic changes within the brain that contribute to 

enhanced cognitive performance.  Similar to previous research (e.g., C. Ferrari et al., 2013), 

results from this study also indicated that the cognitive abilities of ApoE non-ε4 carriers were 

more likely to be influenced by frequent participation in complex lifestyle activities, as compared 

to ApoE  ε4 carriers (Runge et al., 2014).  These results support the conceptual framework of the 

CPF and DS theories that certain genotypes (e.g., the ApoE ɛ4 allele) may predispose individuals 

to be differentially responsive to the effects of environmental stimulation. 

Although the results of the current study were interesting, there were a number of 

limiting factors that could impact their interpretation.  First, the analyses were constrained to one 

genotype, whereas existing evidence suggests that additional polymorphisms (e.g., COMT and 

BDNF) may also influence cognitive performance in older adults.  Second, the VLS sample is 

highly selective in terms of health and educational attainment, making generalizations to the 

broader population difficult.  Finally, the observed effects were limited to baseline observations; 

there were no significant interactions between genotype, participation in CSA, and longitudinal 

changes in cognitive performance.  Whether these results may be related to differential effects 

among genotype, or to the lack of sufficient follow-up period to detect genotypic influences for 

changes in cognitive performance, will be investigated through the use of the HRS dataset. 
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Proposed Research Questions 

  This dissertation proposes to evaluate previously identified genotypes as factors that 

increase an individual’s differential susceptibility in response to environmental factors (i.e., PA 

and CSA), specifically focusing on G x E interactions that identify between-individual 

differences in cognitive performance.  The following research questions will be examined:  

  Question 1: How will frequency of participation in two types of lifestyle activities (PA 

and CSA) influence cross sectional differences and longitudinal changes in cognitive 

performance? It is predicted that higher frequency of participation in both types of activity at 

baseline will be associated with better cognitive performance at baseline as well as less cognitive 

change over time. 

  Question 2: How will cross sectional differences and longitudinal changes in cognitive 

performance be influenced by variants of the ApoE, COMT, and BDNF genes? It is predicted that 

the presence of detrimental variants will be associated with worse cognitive performance at 

baseline and greater cognitive change over time.   

 Question 3: How will the presence or absence of genetic variants moderate the benefit of 

participation in both types of lifestyle activity? It is predicted that the presence of detrimental 

genetic variants will constrain the cognitive benefits of participation in lifestyle activities 

(CSA/PA).      
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CHAPTER THREE: 

METHOD 

 

Study Sample  

The study sample included ongoing respondents of the HRS, which is a longitudinal 

study of US adults over the age of 50. The HRS is sponsored by the National Institute on Aging 

(grant number NIA U01AG009740) and is conducted by the University of Michigan (UM).  Data 

collection occurs in 2-year cycles via telephone and face-to-face interviews.  Hispanics and 

Black adults are oversampled.  Spouses of HRS participants are also included, regardless of their 

age.  More in-depth information regarding the methodological details of the HRS are available 

elsewhere (Langa et al., 2005; Wallace & Herzog, 1995).  Since its inaugural wave in 1992, 

approximately 38,000 respondents have joined the HRS.  In 2006 and 2008, a subsample of the 

HRS study population consented to provide DNA samples as a part of the HRS genetic initiative, 

sponsored by the NIA (grant numbers U01AG009740, RC2AG036495, and RC4AG039029) and 

conducted by UM.    

The current dissertation utilizes respondents of the HRS genetic initiative subsample who 

also were selected to respond to the HRS Psychosocial and Lifestyle Questionnaire in 2008.   

Specifically, respondents had to meet the following inclusion criteria: (a) selected and consented 

to provide DNA samples for the HRS genetic initiative in 2006 and 2008; (b) provided genetic 

data that passed quality control filters as specified by the Center for Inherited Disease Research 

(CIDR) and the Genetics Coordinating Center (CGC) at the University of Washington; (c) aged 
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50 years or older; (d) selection to complete a core HRS interview (i.e., selected to complete all 

survey components versus selected to complete a partial interview); (e) selection to complete the 

HRS Psychosocial and Lifestyle Questionnaire in 2008; and (f) respondents who self-identified 

as White/Caucasian or Black/African American race (both Hispanics and non-Hispanics were 

eligible).  After applying these exclusion criteria, the final sample included 4,764 respondents. 

Figure 1 depicts a flow chart of respondents who met these inclusion criteria. 

 

Measures  

  

 Cognition and Memory  

The HRS are widely cited as excellent sources of data for use in examining cognitive 

trends and abilities of the aging US population (McArdle, Fisher, & Kadlec, 2007). Initial 

interviews are conducted face-to-face, and the majority of successive interviews are conducted 

via telephone unless respondents are older than 80 years of age.  The cognitive battery of the 

HRS has been evaluated for internal consistency and validity (Langa et al., 2005), and 

performance on these measures has been shown to be stable from wave to wave, after controlling 

for cohort effects and test-retest bias (Rodgers, Ofstedal, & Herzog, 2003).   

Episodic memory.  The episodic memory domain was assessed by an immediate and 

delayed word recall task.  These tasks are drawn from four categorized word recall lists of 10 

English nouns that do not overlap in content.  Word lists are randomly assigned to respondents at 

the initial interview.  Longitudinally, each respondent is assigned a different set of words for 

each four successive waves of data collection.  This counterbalanced approach ensures that each 

respondent is assigned to each word list only once over 4 waves of data collection, with 
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approximately 8 years passing before a respondent is reassigned to the same set of words as their 

initial interview. 

Immediate word recall.  To assess immediate word recall, the interviewer read a list of 10 

words to each respondent, and respondents verbally recalled as many words as possible.  The 

number of correctly recalled words is scored, with higher scores indicating better performance.    

Delayed word recall.  Approximately 5 minutes after the immediate word recall test, 

during which respondents answered questions about their emotional state and completed two 

mental status tasks (i.e., counting backwards and serial 7s), respondents were asked to recall the 

nouns previously presented as part of the immediate recall task.  The number of correctly 

recalled words is scored, with higher scores indicating better performance.   

Total word recall.  The total word recall score represents the sum of the immediate and 

delayed word recall tasks, with scores ranging from 0 to 20 for HRS waves 1996 and onward.   

Attention.  The attention domain evaluated knowledge and orientation, and included the 

serial 7s subtraction task and backwards counting from 20.   

Serial 7’s.  Respondents are asked to subtract 7 from 100 and continue counting 

backwards by 7s for five total trials.  The number of correct subtractions is scored (0 – 5), with 

high scores indicating better performance.   

Backwards counting.  Respondents are asked to count backwards as quickly as possible 

for 10 total continuous numbers, starting with the number 20.  A score of two points is given if 

the task is completed correctly on the first try; one point if answered correctly on the second try; 

zero points are given if the answer is incorrect on the first and second try. 
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Lifestyle Activities  

Measures of lifestyle activities included two items from the HRS Health questionnaire 

and 18 items from the Lifestyle and Stress sub-module of the HRS Psychosocial and Lifestyle 

Leave-Behind questionnaire (LB).  The two items from the Health questionnaire are part of the 

HRS Core interview, which is administered to HRS respondents every two years.  These items 

measure self-reported frequency of participation in vigorous physical activity and light physical 

activity, scaled on a 5-point Likert scale (1 = every day to 5 = never).  The LB was first launched 

in 2006, and was administered to a random (50%) subsample of participants who completed the 

face-to-face interview.  In 2008, HRS participants who had not completed a face-to-face 

interview in 2006 were rotated into data collection.  Longitudinal data is available in 4-year 

intervals, with the 2010 wave containing the first longitudinal data from the 2006 participants, 

and the 2012 wave containing the first longitudinal data from the 2008 participants.   

Since the inaugural fielding of the LB, the 18 items of Lifestyle and Stress sub-module 

have undergone several revisions.  The 2006 questionnaires included 8 dichotomous (yes/no) 

items that assessed whether respondents engaged in various activities, including taking a 

vacation within the US, going on day trips, owning a cell phone, and using the internet and/or 

email.  In 2008, this measure was expanded to include 18 items measured by a 6-point Likert 

scale (1 = daily to 6 = not in the last month).  These items covered a wider range of activities and 

frequency of participation, including playing sports or exercising, walking 20 minutes or more, 

attending an educational or training course, reading books or magazines, and playing word 

games.  In 2010, two additional items were added to the list and the response scale was changed 

to 7-point scale, adding a “Never/Not relevant” category.  A full list of activities, stratified by 

wave and year of data collection, is provided in Table 1.   
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Considering the methodological discrepancies across the different versions of the LB 

questionnaire and the rotated sample design, the current dissertation utilized items from the 2008 

version of the LB questionnaire, in addition to the two items from the Health questionnaire.  

Using conventions from the HRS (Smith et al., 2013), composite scores were generated from the 

type and frequency of activities of the LB questionnaires.  More specifically, the items directly 

referring to physical activity (i.e., play sports or exercise, walk for 20 minutes or more, engage in 

vigorous physical activity, engage in light physical activity) were categorized as “Physical 

Activities.” All other items were categorized as “Cognitive/Social Activities.” Regardless of 

when participants were originally recruited into the HRS, their self-reported frequency of 

participation in PA or CSA in 2008 served as the baseline lifestyle activity score for the current 

study. The scores were scaled according to frequency of self-reported participation, with higher 

scores representing higher levels of self-reported frequency of activity participation (see section 

on Data Preparation and Statistical Analyses for more details).  

 

Genotyping  

The genotyping process occurred in two stages.  First, the DNA samples were genotyped 

using the Illumina Omni2.5-v1_D protocol.  After this initial stage, an annotation issue within 

this manifest contributed to the reverse coding of the A/B alleles for 18,763 strand ambiguous 

SNPs (i.e., those with A/T or C/G alleles).  In response to this error, the genotypes of the 

ambiguous SNPs were imputed using the IMPUTE2 software (Howie, Donnelly, & Marchini, 

2009) at GCC.  This process uses the haplotypes of a densely genotypes reference sample to 

impute the probability of the three genotypes (e.g., AA, AB, or BB) at each SNP for each 

individual in the sample population (CIDR Health Retirement Study Imputation Report).  
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Familial relatedness among HRS participants were calculated using a kinship coefficient and 

accounted for during the imputation process when possible (J. Faul, Smith, & Zhao, 2014).  A 

more detailed description of the imputation process as well as quality control measures are 

available through dbGaP (database of Genotypes and Phenotypes; phs000428.v1.p1 and 

phg000207.v1); however, a brief description of the processes are necessary to justify the 

exclusion of certain genetic samples as well as to describe the quality of the imputed data.  

Imputation quality control measures.  Prior to the imputation process, several quality 

control filters were applied to the data (N = 12,507).  Samples were excluded if they had a 

missing call rate (MCR) greater than 2% (n = 53).  Additionally, to ensure a non-related 

population sample, samples were excluded if they demonstrated familial relatedness (n = 87).  

Minor allele frequency (MAF) was not included as a filter prior to imputation, with the exception 

of monomorphic SNPs (i.e., a SNP that exists in homozygous form, such as AA or BB, for a 

given population).  After the application of these filters, 12,367 genotypes were imputed.  Two 

additional measures of imputation quality were provided for all SNPs: measures of information 

and certainty.  Information is a numeric estimation (range: 0 to 1) of the association between the 

observed statistical information and the allele frequency estimate and certainty represents the 

posterior probability (as a percentage with a range of 0 to 1) of best-guess phenotypes (J. Faul et 

al., 2014).  It is recommended that SNPs with information and certainty levels below .8 be 

excluded from analyses.  These criteria were applied for the SNPs of interest for the current 

dissertation (i.e., BDNF, COMT, and ApoE) and resulted in the removal of 103 participants, 

yielding an initial sample of 12,264 participant profiles.   

 Estimation of Hardy-Weinberg equilibrium.  The results of this PCA were also used to 

calculate an exact test of Hardy-Weinberg equilibrium (HWE) in the two largest population 
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samples: self-identified white (n = 8,652) and self-identified black (n = 1,519).  The samples 

included in the HWE test were from individuals who were unrelated and had a MCR of less than 

2%. The results indicated that both populations deviated from HWE, with a deviation of 

approximately .01 and .001.  Further analyses of these results suggested that the deviations were 

not related to population structure; however, it was recommended to set a HWE significance 

threshold of p = .0001 for subsequent analyses (Weir, 2012).   

 

Data Preparation and Statistical Analyses  

A series of analyses were conducted a priori to evaluate data quality in the current 

sample, including calculations of sample size and statistical power, whether the genotypes were 

within HWE, the creation of a lifestyle activity composite scores, and the assessment of missing 

data.  After the a priori analyses, multi-level modeling (MLM) was used to examine the 

independent and interactive effects of PA, CSA, and genotype on individual differences in 

baseline cognitive performance and rates of cognitive change over time.  Also referred to as 

mixed effects models or latent growth models (Bauer, Preacher, & Gil, 2006; Luke, 2004; 

McArdle, 2009; Preacher, Curran, & Bauer, 2006), MLM permits researchers to predict the value 

of an outcome variable that depends on the function and interactions of multiple predictor 

variables (Luke, 2004; McArdle, 2009).   

 

 Sample Size and Statistical Power  

  Power analysis and sample size considerations for G x E analyses are not well articulated.  

Evidence for G x E interactions increases dramatically when scanning through millions of 

possible genetic interactions (increasing the risk for a Type I error); however, studies can be 
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underpowered if genetic variants are insufficiently represented in the sample population 

(McArdle & Prescott, 2010).  Power calculations were conducted a priori using G*power3 (F. 

Faul, Erdfelder, Lang, & Buchner, 2007) to estimate the sample size needed to detect the effects 

of two-way (e.g., G x E) and three-way (e.g., G x E x Time) interactions for cognitive outcomes.  

Power analyses revealed that a minimum sample size of 1,199 participants would be required to 

detect a small effect size (.10) with 80% power in two-way (or higher) interactions between 

groups (i.e., fixed effects) at the 5% significance level.  In MLM, it has been estimated that a 4-

fold increase in sample size is required to detect a 3-way interaction effect of the same 

magnitude as a 2-way interaction effect (Heo & Leon, 2010).  The sample used in the current 

dissertation (n = 4,764) is sufficiently large enough to detect independent effects (i.e., genotype, 

participation in lifestyle activities) and interactive effects (i.e., G x E, G x E x time).   

 

Evaluation of Hardy-Weinberg Equilibrium  

Chi-square goodness of fit tests were used to calculate whether the observed allele 

frequencies within the sample were significantly different from the populations-based expected 

allele frequencies.  The genotype distributions for each race and the results of the chi-square tests 

are reported in Table 2.  The estimates for the current sample fall within the recommended p = 

.0001 significant threshold (Weir, 2012), and suggest that observed genotype frequencies of the 

sample are not significantly different from what would be expected in the general population.  

The COMT allele frequencies depart from HW equilibrium for blacks, with fewer observed 

COMT non-Val carriers than expected (p < 8.18e-7).  This result could potentially be attributed 

to a number of factors, including chance, errors in the genotyping process, lack of power, 

population stratification, or a combination of these reasons (Hosking et al., 2004); however, there 
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is little guidance on how to identify the underlying cause of departure of HW (Wittke-

Thompson, Pluzhnikov, & Cox, 2005).  Thus, the analyses involving all genotypes, including 

COMT, were conducted using a diverse sample (whites and blacks together) as well as a 

stratified samples (whites and blacks only) to estimate if this departure from HW contributed to 

substantially different results.    

The ApoE genotypes were categorized as ApoE ε4 carriers and ApoE non-ε4 carriers.  

Given the evidence associating the detrimental effects of the ε4 allele, the ApoE ε4 carriers were 

considered carriers of the “at-risk” ApoE genotype (Reynolds et al., 2006; Runge et al., 2014; 

Wisdom et al., 2011).  The COMT genotypes were categorized as COMT any-Val carriers and 

COMT non-Val carriers.  Given the evidence associating the detrimental effects of the Val 

COMT allele (de Frias et al., 2005; Greenwood, Lin, Sundararajan, Fryxell, & Parasuraman, 

2014; Papenberg et al., 2014), the COMT any-Val carriers were classified as the “at-risk” COMT 

genotype.  The BDNF genotypes were categorized as BDNF any-Met carriers and BDNF non-

Met carriers.  The Met allele of BDNF is considered detrimental (Das et al., 2014; Egan et al., 

2003; Kim et al., 2011), thus the any-Met carriers are referred to as the “at-risk” BDNF 

genotype. 

 

Measurement of Lifestyle Activities  

CSA and PA levels were measured by the 18 items from the 2008 LB questionnaire plus 

two items regarding physical activity from the Health questionnaire. All items were rescaled 

such that higher responses were indicative of higher participation levels. The Cronbach’s alpha 

coefficient for the 20 items was .71, indicating moderate levels of internal consistency and 

reliability among the items (Bland & Altman, 1997).  Individual item-test correlation (ITC) 
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coefficients were evaluated to determine if the removal of individual items would increase the 

alpha coefficient to a more acceptable level (e.g., .8 or higher).  ITC coefficients ranged between 

.24 and .55, with two items demonstrating ITCs below .30 (.23 and.29, respectively).  The 

removal of these items would only increase the overall alpha by .003; therefore, all items were 

retained to create the composite measures of PA and CSA. Composite measures have the ability 

to reduce measurement error and to represent complex concepts by combining multiple variables 

into a single measure (Hair, Black, Babin, & Anderson, 2010).  Although the most common 

approach is to take the average of the items in the scale (Hair et al., 2010), one of the primary 

objectives of the current dissertation was to examine the effects of different types of lifestyle 

activities.  Thus, two composite scores were generated: one representing the composite score for 

PA and a second representing the composite score for CSA.   

 

Description of Multi-Level Models  

The multi-level analyses were modeled with the measurement observations for each wave 

(Level 1) nested within individuals (Level 2).  As such, the intercepts of each cognitive measure 

were modeled as a function of individual characteristics.  The Level 1 (L1) component represents 

inter-individual change in cognitive performance from 2008 to 2012 and the Level 2 (L2) 

component represents between-person differences in cognitive performance (Singer & Willett, 

2003).  Each model also estimates two error components: The L1 variability, or the amount of 

variance that occurs within each individual from wave to wave, and the L2 variability, or the 

amount of variance between individuals.  As recommended by Aguinis, Gottfredson, and 

Culpepper (2013), the significance of the parameter estimates were evaluated based on the range 

of the confidence intervals (i.e., lower-bound intervals that do not include zero are significant).  
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The overall improvement in model fit was estimated by computing the change in explained 

variance at L1 and L2 (i.e., pseudo R2; Raudenbush & Bryk, 2002). 

Prior to analyses, cognitive performance scores were converted to T-scores (M  = 50, SD  

= 10) to allow comparisons across tasks.  Tasks that demonstrated significant non-normal 

distributions (i.e., Serial 7’s and Backwards Counting) were log-transformed to the base of 10, as 

recommended for positively skewed distributions (Howell, 2010).    

Unconditional model (Model A).  Performance on each cognitive measure was initially 

evaluated using unconditional models (Model A).  Model A allows for the calculation of baseline 

between-person differences in cognitive performance or within-person changes in cognitive 

performance over time.  Model A also provides the intraclass correlation coefficient (ICC), or the 

measure of the proportion of variance in cognitive performance score that can be attributed to 

differences between individuals (Luke, 2004).  An ICC greater than 25% suggests that the 

variability between individuals can be explained by differences in between-person predictors 

(Singer & Willett, 2003).   

Unconditional growth model (Model B).  The next model that was estimated was an 

unconditional growth model, which allows for cognitive scores to change, or vary, over multiple 

time points (i.e., time is the only predictor of change).  By adding in the potential for scores to 

change over time, three additional sources of variability are estimated: within-person variability, 

between-person variability in baseline cognitive performance, and between-person variability in 

slope or rate of change.  The evaluation of these variance components help clarify whether 

significant individual differences exist due to differences in initial status or in rates of change 

over time (Singer & Willett, 2003). 
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Conditional growth model (Model C).  Model C is a conditional growth model with 

random intercepts and random slopes, and represents the first model to examine sources that 

have the potential to explain variability at baseline and change in performance for five measures 

of cognitive ability: immediate word recall, delayed word recall, total word recall, serial 7s, and 

backwards counting.  Age at baseline, sex, race, and years of education, time, genotype, and 

baseline participation in CSA and PA served as fixed time-invariant effects at the individual (L2) 

level. Ethnicity was not included as a covariate due to the small portion of the sample that 

identified as Hispanic (<7%).  In this model, the effect of time is also fixed.  The purpose of this 

model is to determine whether the intercepts (i.e., means scores) of cognitive performance are 

predicted by L2 variables while assuming the effect of time is constant across all individuals.  

Non-zero slope parameter estimates suggest the effect of time significantly influences strength of 

relationship between the predictor variables and cognitive performance (Aguinis et al., 2013).   

Random intercepts with random slopes and cross -level interactions (Model D).  

Model D examined the cross-level baseline and longitudinal effects between type of activity, 

genotype, and time based on previous research that has noted such interactions between genotype 

and cognition (Runge et al., 2014).  While some researchers advise against testing for cross-level 

interaction effects if the slope variance between individuals is not different from zero, others 

argue that one should proceed with cross-level interaction models if there is strong rationale for a 

specific hypothesis (Aguinis et al., 2013).  The purpose of these two final models are to 

determine whether the variance in slopes between individuals can be explained by interactions 

between these two predictor variables as well as to compare the parameter estimates generated 

by two different covariance structures. 
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Estimation of covariance parameter structure .  Due to the longitudinal nature of the 

data, all models were fitted with a first-order auto-regressive (AR-1) covariance structure.  

Longitudinal data are more likely to exhibit proximal autocorrelation between measurement 

waves, a phenomenon that occurs when adjacent waves of measurement are more highly 

correlated than non-adjacent waves (Goldstein, Healy, & Rasbash, 1994; Shumway & Stoffer, 

2011; Singer & Willett, 2003).  This violates the assumption of independence and homogeneity 

for within-individual variability and may result in biased standard error estimates in unstructured 

covariance structures (Kwok et al., 2008; Shumway & Stoffer, 2011).   

Model that are fitted with the AR(1) covariance structure yield a parameter estimate 

known as the auto-correlation coefficient (ρ), which represents the correlation between the first 

and second measurement waves (Shumway & Stoffer, 2011).  The presence of significant ρ is an 

indication that there is significant variability in the error structure after accounting for the fixed 

and random effects that occur within the model (Singer, 1998).  If there are weak correlations 

between the time points for the AR(1) model, then it is reasonable to assume independence 

between the residuals (Shumway & Stoffer, 2011).   

  



39 
 

 

 

CHAPTER FOUR: 

RESULTS 

 

Demographic Characteristics  

Respondent demographic characteristics are shown in Table 3, stratified by genetic risk 

category for each gene (i.e., ApoE, COMT, and BDNF).  Independent sample t-tests, Pearson’s 

chi-square tests, and analyses of variance (ANOVA) were used, where appropriate, to examine 

the relationship between participant characteristics (i.e., age at 2008, years of education, sex, 

race, and risk status for ApoE ε4, COMT, and BDNF) and vital status (i.e., whether the 

participant was alive) at the 2012 follow-up.  The results of these analyses are first presented as a 

collective summary of the sample, then as comparisons between genetic risk status for each 

single gene (e.g., ApoE ε4 carriers compared to ApoE non-ε4 carriers). 

 

Collective Summary of Demographic Characteristics  

Overall, respondents were an average of 69.73 years old in 2008 (SD = 9.52), 

predominately female (n = 2,828; 59.36%), non-Hispanic (n = 4,439; 93.18%), white (n =4,199; 

88.14%), and averaged nearly 13 years of education (SD = 4.11).  Compared to individuals who 

died prior to the 2012 follow-up wave, individuals who were alive were significantly younger at 

2008 (M = 68.78, SD = 9.13 versus M = 76.52, SD = 10.02, respectively), t (4,762) = 18.96, p 

<.001.  Individuals who were alive also reported significantly more years of education (M = 

12.87, SD = 3.99) compared to those who died (M = 12.17, SD = 4.82), t (4,762) = -3.84, p 
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<.001.  The difference in the proportion of men and women who were alive in 2012 compared to 

2008 was significant, .85 versus .90, (X2 (1, N = 4,764) = 21.60, p < .001). 

 

Between-Genotype Comparisons 

Prior to the between-genotype comparisons, the genotypes for ApoE, COMT, and BDNF 

were categorized as “at-risk” genotypes and “low risk” based on the literature examining the 

relationship between each genotype and cognitive performance.  The categorizations of each 

genotype can be viewed in Table 3.  Significant relationships were found between each genotype 

and race; however, this is expected considering allele frequencies vary across subpopulations of 

different ancestry (i.e., population stratification).   

There were no significant differences between ApoE ε4 carriers and ApoE non-ε4 carriers 

in regard to baseline age, sex, ethnicity, years of education obtained, vital status, or self-reported 

frequency of participation in CSA or PA.  Significant relationships were found between ApoE 

genotype and race, X2 (1, N = 4,764) = 20.71, p < .001, with a higher percentage of blacks 

possessing the at-risk ApoE ε4 allele than whites (approximately 35% compared to 26%, 

respectively).  

COMT non-val carriers were significantly younger than COMT any-Val carriers, t (4,762) 

= -2.33, p = .02.  Significant relationships were found between COMT genotype and race, X2 (1, 

N = 4,764) = 141.07, p < .001, with a higher percentage of whites possessing the at-risk COMT 

Val allele compared to blacks (approximately 76% compared to 53%, respectively).  A 

significant relationship was also found between COMT genotype and ethnicity, X2 (1, N = 4,764) 

= 7.27, p = .007, with a higher percentage of non-Hispanics possessing the Val allele compared 

to Hispanics (approximately 74% compared to 67%, respectively).  No significant relationship 



41 
 

was found between COMT genotype, sex, years of education, vital status, or self-reported 

frequency of participation in baseline PA or CSA.   

There were no significant differences between BDNF any-Met carriers and BDNF non-

Met carriers in regard to baseline age, sex, or ethnicity.  BDNF non-Met carriers reported 

significantly fewer years of education compared to BDNF Met-carriers, t (4,762) = -2.40, p = 

.016.  As with ApoE and COMT, a significant relationship between BDNF genotype and race was 

found, X2 (1, N = 4,764) = 190.54, p < .001, with a greater percentage of whites possessing the 

at-risk BDNF Met allele than blacks (approximately 36% compared to 7%, respectively).  No 

significant differences were found between BDNF Met-carriers and non-Met carriers in regard to 

self-reported frequency of baseline PA.  Met-carriers were significantly more likely to engage in 

baseline CSA than non-Met carriers, t (4,762) = -2.03, p = .04, with Met-carriers reporting an 

average of 2.61 units of activity compared to 2.56 units of activity for non-Met carriers. 

To determine whether the association of genotype and cognition difference by race, 

separate two-way ANOVA were conducted to evaluate the mean group differences in cognitive 

task performance between genotype, race, and the interaction between genotype and race.  The 

results (presented in Table 4) indicate the main effects of genotype were not significant.  While 

the main effect of race was significant for all cognitive tasks, there were no significant 

interactions between race and genotype.  The main effect of race was controlled by entering it as 

a covariate in the conditional MLMs (Models C and D in subsequent section).   
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Multi-Level Models Examining the Independent and Interactive Effects of Lifestyle 

Activity, Genotype, and Covariate Predictors on Cognitive Performance  

Four sets of MLMs were conducted to examine the concurrent, longitudinal, and 

interactive effects of genotype and baseline participation in CSA and PA on performance in five 

cognitive measures (immediate recall, delayed recall, total recall, serial 7s, and backwards 

counting).  Each set included an unconditional means model (Models A), an unconditional 

growth model (Models B), a conditional growth model (Models C), and a conditional growth 

model with cross-level interactions (Models D).  The primary difference between each MLM set 

is the genotype that was included as a predictor variable in Models C and D: Each set examined 

the impact of an individual gene (i.e., ApoE, COMT, and BDNF).  Due to the absence of 

predictor variables in Models A and B, the results of these models are uniform across the three 

sets of MLMs.  These results are reported in the subsequent section to serve as a baseline index 

to compare the results of Models C and D for each set.  The results of Models C and D for each 

set are presented in Tables 5a – 5b, 6a-6b, and 7a-7b, respectively.   

 

Models A and B: Unconditional and Unconditional Growth Models 

The ICC estimates for Models A were .51, .54, .57, and .67 for the immediate, delayed, 

total recall, and serial 7’s tasks, respectively.  These estimates suggest that 51 – 67% of the 

variability in these scores was related to between person variations.  The ICC for the backwards 

counting task was the lowest among the cognitive measures at 25% but this estimate is still large 

enough to explore between-individual predictors as potential sources of variability at the 

between-person level (Singer & Willett, 2003).  Adding time as a fixed predictor in Models B 

generally improved overall model fit from Models A.  Scores for immediate, delayed, and total 
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recall decreased significantly by .34, .36, and .41 units per year, respectively.  Scores for the 

serial 7s task decreased by .01 log-units while the backwards counting task increased 

significantly by approximately .01 log-units.   

When examining the variance parameters of Models A, significant between-individual 

variability is present at the intercept and slope for all measures.  When comparing the within-

individual variance estimates from Models A to those of Models B, modest reductions are found.  

More specifically, the effect of time accounts for approximately 10% of the within-individual 

variation for the immediate and delayed recall tasks, 12% for the total recall task, and 9% for 

backwards counting task.  For the serial 7s task, the effect of time is not different from zero.  The 

estimates of the between-individual variance parameters increased slightly from Models A to 

Models B, resulting in negative parameters for the amount of explained between-level variance.  

This result suggests that the sources of variability are likely to be concentrated at the between-

individual levels (Singer & Willet, 2003).  The auto-correlation coefficients of Models B were 

not significant and relatively small, ranging from -.13 to -.16 for the recall tasks and .03 and -.01 

for the serial 7’s and backwards counting tasks, respectively.   

 

Set 1, Models C: Conditional Growth Models with ApoE, Activity, and Covariate 

Predictors  

Models C in Table 5a and 5b include the results for the conditional growth models that 

included ApoE genotype, baseline CSA and PA, and covariates as predictor variables.  Compared 

to Model B, the addition of covariates (i.e., age, sex, race, years of education), ApoE genotype, 

and frequency of participation in CSA and PA significantly improved model fit for all cognitive 

measures.  Significant main effects for ApoE genotype and baseline participation in CSA and PA 
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were seen for all cognitive measures except for the backwards counting task.  ApoE ε4-carriers 

scored between .96 – 1.16 units below the mean for immediate, delayed, and total recall tasks, 

and .02 log-units lower on the serial 7s task.  Individuals who reported higher levels of baseline 

CSA scored approximately .65 - .70 units above the mean for the immediate, delayed, and total 

recall tasks, as well as a .01 log-unit increase in scores for the backwards counting task.  Similar 

effects were seen for PA activity levels, with increased PA predicting higher word recall scores 

by 1.11 – 1.20 units and higher serial 7s scores by .01 log-units. 

Among the covariates that influenced cognitive performance, older age was associated 

with worse performance on all cognitive tasks except backwards counting.  For every one-year 

increase in age, the expected scores for immediate, delayed, and word recall decreased by .46 to 

.59 units, and the expected scores for the serial 7s task decreased by approximately .01 log-units. 

Female gender was associated with better scores on the three recall tasks, with scores 3.27 to 

3.58 units higher than male scores.  For the serial 7’s tasks, female scores were approximately 

.04 log-units lower than male scores.  Gender was not significantly associated with performance 

on the backwards counting task.  Race and years of education were the only covariates that 

significantly influenced all cognitive measures.  The average performance scores for black 

participants were significantly lower than those of white participants, ranging from 1.42 to 2.93 

units lower for the three recall tasks, and .10 and .14 log-units lower for the backwards counting 

and serial 7s tasks.  In regard to education, the scores for immediate, delayed, and total recall 

tasks increased by .51, .46, and .51 units per each year of education obtained beyond 12 years 

(i.e., high school graduate).  Scores in the serial 7’s and backwards counting tasks increased by 

.01 log-units for each additional year of education obtained.   
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When examining the variance parameters, the addition of the predictor variables 

explained an additional 18 - 26 % of the between-individual variability across all cognitive 

scores except for the backwards counting task.  The predictor variables also explained small 

percentages of the within-individual variability for immediate, delayed, and total recall score (1-

4%) and the backwards counting task (5%).  In regard to the serial 7s tasks, the additional 

variance explained at the within- and between-individual levels was no different from zero.  

Significant slopes (i.e., rate of within-individual change) were found for immediate, delayed, and 

total recall (τ11 =2.17, τ11 =1.18, and τ11 =1.63, respectively) and backwards counting (τ11 =.01).  

The slope for the serial 7s task was not significant (τ11 = 7.38e-07).  The auto-correlation 

coefficients of Models C were significant for the immediate, delayed, and total recall tasks but 

not the serial 7s or backwards counting tasks.  These parameters indicate that individual scores 

on the recall tasks were much more likely to vary over time, whereas individual scores on the 

serial 7s and backwards counting tasks were more stable.  However, the strength of these 

correlations is relatively small.  When evaluating the model fit parameter estimates as well as the 

variance parameter estimates, the inclusion of the predictor variables resulted in a substantially 

improved model fit for all cognitive tasks.   

 

Set 1, Models D: Conditional Growth Model with Cross -Level Interactions Between 

ApoE, Activity, and Covariate Predictors  

Model D include the same predictor variables as Model C, but allows for cross-level 

interactions between the predictor variables while allowing the effect of time to vary randomly 

between individuals.  The main effects of the covariates (age, gender, race, and years of 

education) in Models D were nearly identical to those seen in Models C.  The relationship 
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between baseline cognitive performance and ApoE genotype were not significant; however, 

higher baseline levels of CSA and PA were associated with significantly better cognitive 

performance in the three word recall tasks and the serial 7s task.   

Baseline participation in CSA significantly predicted performance in the backwards 

counting task, but this relationship was not seen for PA.  Longitudinally, significant interaction 

effects were found between baseline CSA activity and time for immediate recall, total recall, and 

backwards counting.  This interaction represents the effect of time on immediate and total recall 

performance across individuals when participation in baseline CSA increases by one unit.  The 

negative direction of these interaction estimates also indicates that the effect of time is less 

strongly associated with cognitive performance in individuals who report higher levels of 

baseline CSA compared to individuals who report lower levels of baseline CSA.  In regard to 

immediate recall scores, the effect of time is expected to be 1.71 for the average participant, but 

even though this estimate is not significant, the relationship between time and immediate recall 

scores becomes weaker by -.33 units as an individual’s baseline participation in CSA increases 

by one unit.  Similarly, for backwards counting, the main effect for time is not significant, but 

the relationship between time and backwards counting scores weakens by .01 log-units for each 

log-unit increase in baseline CSA levels.  Finally, there was a significant main effect of time as 

well as the interaction effect between time and baseline CSA for total recall.  The average total 

recall score is expected to increase by 1.25 units per year but this relationship weakens by .22 

units for every one unit increase in baseline CSA. 

When examining the variance parameters, the inclusion of the cross-level interactions 

among predictor variables did not account for any additional within-individual variability for any 

of the cognitive tasks.  In regards to explaining between-individual variation in cognitive scores, 
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the inclusions of the cross-level interactions among the predictor variables explained an 

additional 1-4% of the variability for the three recall tasks, but did not explain any additional 

variability for the serial 7s and backwards counting tasks.  The auto-correlation coefficients 

remained unchanged from Models C.  Overall, when comparing the estimates for the differences 

in explained within- and between-person variance, the addition of the cross-level interaction 

factors in Models D offer little to no improvement in overall model fit. 

 

Set 2, Models C: Conditional Growth Models with COMT, Activity, and Covariate 

Predictors  

Models C in Table 6a and 6b include the results for the conditional growth models that 

included COMT genotype, baseline CSA and PA, and covariates as predictor variables.  

Compared to Model B, the addition of covariates (i.e., age, gender, race, and years of education), 

COMT genotype, and frequency of participation in CSA and PA significantly improved model fit 

for all cognitive measures.   

In regard to the main effects of the covariates, older age was associated with poorer 

cognitive performance on all measures except backwards counting.  For every one-year increase 

in age, predicted scores decreased by .45 to .58 units for the word recall tasks and by .01 log-

units for the serial 7s task.  Gender was significantly associated with all cognitive tasks except 

backwards counting.  The average female scores were higher than male scores on the three recall 

tasks by 3.34 to 3.63 units, but lower on the serial 7’s tasks by .04 log-units.  The effect of 

education was significant, with each additional year of education corresponding with better 

scores for all measures.  The effect of race was also significant for all measures, with black 

participants scoring significantly lower than whites by 1.51 – 3.03 units for the word recall tasks 
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and .11 – .14 log-units for the serial 7s and backwards counting tasks.  Finally, the effect of time 

was significant for immediate recall only, where each wave of measurement was associated with 

a .80 increase in immediate recall performance.   

No significant main effects of COMT genotype were found for any cognitive measure.  

Baseline participation in CSA and PA had significant main effects on all measures except for the 

backwards counting task.  Individuals who reported higher levels of baseline CSA scored 

approximately .62 - .67 units above the mean for the immediate, delayed, and total recall tasks, 

as well as a .01 log-unit increase in scores for the serial 7s task.  Higher levels of PA predicted 

better scores by 1.08 – 1.18 units for the recall tasks and by .01 log-units for the serial 7s task.   

When examining the variance parameters, an additional 18 – 26% of the between-

individual variability was explained by the inclusion of the predictor variables into the models 

for the three recall tasks and the serial 7’s task.  The change in between-individual variability for 

the backwards counting task was not different from zero.  The inclusion of the predictor 

variables explained small percentages of the within-individual variability for the three recall 

tasks (1-4%) and the backwards counting task (5%), but not for the serial 7s task.  The rate of 

within-individual change was significant for immediate, delayed, and total recall (τ11 =2.13, τ11 

=1.35, and τ11 =1.80, respectively) and backwards counting (τ11 =.01), but not for the serial 7s 

task (τ11 = 2.92e-06).  The presence of significant auto-correlation coefficients for the immediate, 

delayed, and total recall tasks indicate that scores on these tasks were more likely to fluctuate 

over time, although the correlations are fairly weak.  The non-significant auto-correlation 

coefficients for the serial 7s and backwards counting tasks suggest that performance on these 

tasks were more stable.  When evaluating the model fit parameter estimates as well as the 
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variance parameter estimates, the inclusion of the predictor variables resulted in a substantially 

improved model fit for all cognitive tasks.   

 

Set 2, Models D: Conditional Growth Model with Cross -Level Interactions Between 

COMT, Activity, and Covariate Predictors  

The main effects of the covariates (age, gender, race, and years of education) in Models 

D were similar to those seen in Models C.  The main effect of COMT genotype was not 

significant for any cognitive measure.  Higher levels of baseline CSA and PA predicted 

significantly better performance on all cognitive measures except for the backwards counting 

task.  A significant baseline interaction effect was found for COMT genotype and CSA 

participation for the backwards counting task.  The sample was stratified by COMT genotype to 

further explore the effects of the presence or absence of the COMT Val allele.  The results 

indicate that the effect of baseline participation in CSA significant ly predicted baseline 

backwards counting scores for COMT any-Val (i.e., at-risk) carriers only.  Consistent with the 

proposed hypothesis, COMT any-Val carriers who reported more frequent participation in CSA 

tended to have higher backwards counting scores (b = .02, p = <.001); this effect was not seen 

for non-Val carriers (b = -.01, p = .53).  The effect of time on backwards counting scores was 

weakened by higher levels of CSA for COMT any-Val carriers (b = -.02, p <.001) but not for 

non-Val carriers (b = .004, p = .68). 

Longitudinally, one significant interaction effect was seen for COMT genotype and 

performance on the serial 7s task with COMT any-Val carriers scoring .03 log-units lower over 

time compared to COMT non-Val carriers.  This interaction represents the effect of time on serial 

7s performance as the genetic risk of COMT increases by one unit (i.e., low-risk carriers 
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compared to at-risk carriers).  Given that time has a significant main effect on serial 7s 

performance, with the average participant scoring .03 log-units higher per log-unit increase in 

time, the negative interaction between COMT genotype and time indicates the relationship 

between time and serial 7s scores weakens by .03 log-units for carriers of the at-risk COMT 

genotype. 

When examining the variance parameters of the collective sample, the inclusion of the 

cross-level interactions among predictors decreased the amount of within-individual variability 

for the recall tasks, but explained an additional 3-4% of between-individual variability for 

immediate and total recall.  For the serial 7s and backwards counting tasks, the amount of 

additional explained within-individual and between-individual variability was not different from 

zero.  The auto-correlation coefficients are nearly identical those found in Models C.   

Overall, when comparing the estimates for the differences in explained within- and 

between-person variance, the addition of the cross-level interaction factors in Models D offer 

little to no improvement in overall model fit. 

 

Set 3, Models C: Conditional Growth Models with BDNF, Activity, and Covariate 

Predictors  

Models C in Table 7a and 7b include the results for the conditional growth models that 

included BDNF genotype, baseline CSA and PA, and covariates as predictor variables.  

Compared to Model B, the addition of covariates (i.e., age, gender, race, and years of education), 

BDNF genotype, and frequency of participation in CSA and PA significantly improved model fit 

for all cognitive measures.   
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As with the models investigating ApoE and COMT, older age was associated with poorer 

cognitive performance on all measures except backwards counting.  Performance in the word 

recall tasks and serial 7s task decreased by .45 – .58 units and .01 log-units, respectively, for 

each one-year increase in age.  Female scores on the recall tasks were significantly higher 

compared to male scores (3.33 – 3.49 units), but significantly lower than males on the serial 7s 

task (-.04 log-units).  No significant gender effects were found for backwards counting.   

Significant effects of education were found across all measures, as each additional year of 

education predicted an increase in score by .46 – .51 units for the recall tasks and .01 log-units 

for the serial 7s and backwards counting tasks.  Significant effects were also found for race, as 

black participants were predicted to score significantly lower than whites by 1.42 – 2.88 units for 

the word recall tasks and .12 – .14 log-units for the backwards counting and serial 7s tasks.  

Time had a significant effect for performance in the immediate recall task only, where 

measurement wave predicted a .80 unit increase in score.   

Significant main effects of BDNF genotype and type of activity were found for several 

cognitive tasks.  In regard to genotype, BDNF any-met carriers scored .48 units higher on 

delayed recall and .01 log-units higher on serial 7s and backwards counting than BDNF non-met 

carriers.  In regard to the effect of each activity, the effect of higher levels of baseline 

participation in CSA and PA were significant for measures except backwards counting.  More 

specifically, performance in the word recall tasks increased by .62 - .67 units for each unit 

increase in CSA activity and 1.09 – 1.18 units for each unit increase in PA.  Similarly, a .01 log-

unit increase in scores for the serial 7s task was significantly predicted for each unit increase in 

CSA and PA.   
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In regard to the variance parameters, the inclusion of the predictor variables increased the 

amount of between-individual variability explained by 17 – 19% for the three word recall tasks 

and 26% for the serial 7s task.  The amount of additional between-individual variance explained 

for the backwards counting task was not different from zero.  The amount of variance explained 

at the within-individual level ranged from 1 – 4% for the three recall tasks, as well as the 

backwards counting task.  The amount of additional within-person variance explained for the 

serial 7s task was not different from zero.  The presence of significant slopes for all cognitive 

tasks indicated that the variability of within individual scores increased the immediate, delayed, 

and total recall tasks (τ11 =2.19, τ11 =1.43, and τ11 =1.87, respectively) as well as the backwards 

counting (τ11 =.01) and the serial 7s task (τ11 = 2.81e-06).  The auto-correlation coefficients were 

significant for the three recall tasks, but not the serial 7s or backwards counting task.  These 

results indicate that performance on the recall tasks were more likely to fluctuate across 

measurement waves, whereas performance on the serial 7s and backwards counting tasks was 

more stable across measurement waves.  Overall, the inclusion of the predictor variables resulted 

in a substantially improved model fit for all cognitive tasks.   

 

Set 3, Models D: Conditional Growth Model with Cross -Level Interactions Between 

BDNF, Activity, and Covariate Predictors  

The main effects of the covariates (age, gender, race, and years of education) in Models 

D were similar to those seen in Models C.  In regard to the main effect of BDNF genotype, any-

Met carriers scored significantly higher on the delayed and total recall tasks (2.52 and 2.50 units) 

as well as the serial 7s and backwards counting tasks (.01 log-units) compared to BDNF non-Met 

carriers.  The main effects of baseline CSA and PA were significant for cognitive measures 
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except for the backwards counting.  For each unit increase in CSA, the predicted scores 

increased by 0.81 – 2.52 units for the recall tasks, .01 log-units for the serial 7s task, and .03 log-

units for the backwards counting task.  Similar increases were seen for each unit increase in PA 

for all tasks except backwards counting.  The baseline interaction effects between BDNF 

genotype and activity type were not significant.   

Several longitudinal effects were found.  First, the interaction effect between baseline 

CSA activity and time was significant for immediate recall, total recall, and backwards counting.  

More specifically, the significant effect of time for immediate and total recall scores weakens by 

.43 and .29 units as an individual’s baseline participation in CSA increases by one unit.  Similar 

results are seen for the backwards counting task, where the effect of time on backwards counting 

scores is reduced by .01 log-units for each log-unit increase in CSA.  A single three-way 

interaction between time, BDNF genotype, and CSA was found.  To further understand the 

relationship between BDNF genotype and CSA, the analyses were stratified by genotype.   

For BDNF any-Met carriers, the effect of higher baseline participation in CSA on 

backwards counting scores was not significant (b = .002, p = .897).  Longitudinally, the 

relationship between CSA levels and time was also not significant (b = -.002, p = .86).  

However, a different pattern of results was found for BDNF non-Met carriers.  Primarily, the 

effect of baseline CSA participation was significant, such that backwards counting scores 

increased by .02 log-units for every unit increase in CSA (p = .009). The interaction between 

time and CSA participation was also significant (b = -.01, p = .007), and indicates the effect of 

time on backwards counting scores became weaker when baseline participation in CSA increased 

by one unit.   
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In regard to the variance parameters of Models D, the inclusion of the cross-level 

interactions among the predictor variables explained an additional 8 – 9% of the within-

individual variability for the recall tasks, but these additional parameters decreased the amount of 

explained between-individual variance.  The amount of additional explained within-individual 

and between-individual variability was not different from zero for the serial 7s and backwards 

counting tasks.  The auto-correlation coefficients are nearly identical those found in Models C.   

Overall, when comparing the estimates for the differences in explained within- and between-

person variance, the addition of the cross-level interaction factors in Models D offer little to no 

improvement in overall model fit. 

  



55 
 

 

 

CHAPTER FIVE: 

DISCUSSION 

The current dissertation examined how environmental and genetic factors influenced 

cross-sectional differences and longitudinal change in cognitive performance in a group of select 

older adults, including whether the presence of detrimental genetic variants made individuals 

differentially responsive to environmental factors (e.g., lifestyle activities).  The following 

discussion will describe how the results of the analyses relate to the proposed questions and 

hypotheses.  Specifically, performance in five cognitive measures was associated with: (a) 

baseline participation in physical activities (PA) and cognitive/social activities (CSA); (b) the 

presence of risk alleles from three genetic polymorphisms, Apolipoprotein E (ApoE), Catechol-

O-Methyltransferase (COMT), and Brain-derived Neutrophic Factor (BDNF); (c) the interactive 

effects between the types of activity and risk alleles.  Finally, the following discussion will 

conclude with an overall summary of the results, including limitations and future directions. 

 

Question 1: How does frequency of participation in two types of lifestyle activities (PA and 

CSA) influence individual cognitive performance?  

In line with the cognitive plasticity and flexibility framework (Lövdén et al., 2010), it 

was hypothesized that increased frequency of baseline participation in PA and CSA would 

predict significantly better baseline and longitudinal cognitive performance in measures of 

episodic memory and attention.  As predicted, the positive influence of these lifestyle activities 

were seen across all models, after controlling for age, race, gender, and years of education.  Both 
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types of activity significantly predicted baseline cognitive performance in nearly all measures 

with greater activity being associated with better performance.  Longitudinally, the protective 

effect of CSA on cognitive performance was evident for the measures of immediate word recall, 

total recall, and backwards counting.  No longitudinal effects of PA were found.  The 

implications of these results are described in further detail in the following sections.  Generally, 

these findings support the majority of research investigating the relationship between various 

types of lifestyle activities and cognitive health in aging populations (Prakash, Voss, Erickson, & 

Kramer, 2015; Wang, Xu, et al., 2012; Woodard et al., 2012), but not all have found a 

relationship with cognitive change. 

 

Physical Activity and Cognitive Performance  

In the current dissertation, there was evidence of the beneficial effect of baseline PA on 

concurrent cognitive performance, after controlling for age, gender, race, and years of education.  

More specifically, each unit increase of participation in PA corresponded with increases in word 

recall scores and serial 7s scores by approximately 1.00 – 1.30 units and .02 – .03 log-units, 

respectively.  These results are consistent with those from other cross-sectional studies 

(Ballesteros, Mayas, & Reales, 2013; Huang, Dong, Zhang, Wu, & Liu, 2009; Middleton, 

Barnes, Lui, & Yaffe, 2010), although it is important to note these effects may vary by 

population characteristics (Huang et al., 2009) or study design (Steinberg et al., 2015).   

Although the current dissertation identified concurrent effects of PA, no longitudinal 

effects were found, which contradicts the results of most studies that consistently support the 

protective relationship between PA and cognitive performance.  A recent meta-analysis of 247 

cross-sectional and cohort studies (n > 300 participants per study) investigated the association 



57 
 

between various modifiable risk factors and cognitive performance and/or dementia (Beydoun et 

al., 2014).  Twenty-four of these 247 studies represented cohort studies that included PA as a 

primary risk factor for cognitive decline, and approximately 88% of these studies reported 

evidence of the protective relationship between higher levels of PA and cognitive health 

(Beydoun et al., 2014).  Additionally, it is possible that other aspects of the current dissertation 

(e.g., the select nature of the study sample or the definition of PA) may contribute to study bias 

(see Limitations for more information).   

Nevertheless, the results of the current dissertation support the notion that PA may 

improve cognitive performance to a moderate extent.  This may be particularly important for 

tasks that involve the prefrontal cortex and hippocampus (Prakash et al., 2015). These areas of 

the brain, which play a key role in memory and attention, are particularly susceptible to the 

effects of aging (Cabeza, Nyberg, & Park, 2005).  In line with the cognitive plasticity and 

flexibility theory (Lövdén et al., 2010), PA may stimulate neurocognitive plasticity factors that 

are associated with cognitive performance, such as increased production of the BDNF protein, 

improved neuronal connectivity, and decreased hippocampal atrophy.  These studies, which 

emphasize measurement of biomarkers or other neurological traits in relatively small study 

samples, provide valuable evidence regarding the physiological mechanisms of cognitive 

plasticity that guide the interpretation of cross-sectional general population studies, including the 

current dissertation.  Overall, the protective effect of PA on cognitive decline and dementia has 

been identified across multiple studies, despite notable limitations including the absence of a 

standardized definitions of PA, differences in study populations, and variable use of cognitive 

assessments (Baumgart et al., 2015; Wang, Xu, et al., 2012).  
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Cognitive/Social Activity and Cognitive Performance  

The results of the current dissertation support the hypothesis that baseline participation in 

CSA is beneficial to cognitive performance.  After controlling for the effects of covariates, 

greater frequency of baseline CSA predicted better concurrent cognitive performance across all 

measures.  These results are similar to those from other cross-sectional studies which have 

examined the relationship between cognitive performance and various types of mental activity 

(Runge et al., 2014; Wilson et al., 2002).  Longitudinally, the protective effect of baseline CSA 

was seen for measures of episodic memory (i.e., immediate and total recall) and attention (i.e., 

backwards counting).  These results also support the findings of a number of longitudinal studies 

that purport the protective relationship between participation in CSA and better neurocognitive 

health, including cognitive decline (Valenzuela et al., 2008; Wilson et al., 2002) and incident 

dementia (Valenzuela & Sachdev, 2007; Verghese et al., 2003; Wang, Gustafson, et al., 2012; 

Wilson et al., 2002).   

The beneficial effects of CSA on cross-sectional cognitive performance has been reported 

in several studies (Bielak et al., 2012; Mitchell et al., 2012).  This result may be attributable to 

preserved differentiation, or the concept that individuals with higher cognitive abilities are more 

likely to engage in more complex lifestyle activities (Salthouse et al., 2002).  As such, it is 

possible that between-person differences in levels of activity are simply a reflection of 

differences in inherent cognitive abilities (see Limitation for further discussion).  However, there 

is also evidence that suggests that declines in activity participation precedes declines in cognitive 

performance (Small et al., 2012).  This latter result suggests that although CSA may not 

necessarily improve cognitive function, it may play a crucial role in the preservation of cognitive 

abilities, especially in old age.   
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Similar to PA, the protective aspect of CSA may be the result of beneficial neuroplastic 

changes that are stimulated through CSA.  While participation in CSA has been repeatedly 

correlated with increased neurogenesis and other beneficial neurological changes in animal 

models (e.g., Nithianantharajah & Hannan, 2006), there is little evidence of this at the human 

level.  For example, in a small study of cognitively health adults (aged 58 – 93), higher levels of 

complex mental activity throughout the lifespan (including domains related to education, 

reading, writing, and occupation) was associated with a significantly decreased risk of cognitive 

decline and hippocampal atrophy (Valenzuela et al., 2008).  This evidence that hippocampal 

volume increases in response to CSA is similar to that of PA, which may explain why both types 

of activities are beneficial for cognitive performance.   

Further evidence of the beneficial effects of CSA have been documented in experimental 

studies.  Results from the Senior Odessy Program (Stine-Morrow et al., 2008) and Experience 

Corps Program® (Carlson et al., 2008) have demonstrated that the cognitive performance (i.e., 

executive function) of older adults can be improved after participating in programs that increase 

their levels of CSA.  Furthermore, it may be beneficial to design intervention studies that focus 

on different types of CSA. For example, Park et al. (2013) examined how participation in 

different types of CSA impacted cognitive function in a sample of  221 adults (aged 60 – 90 

years; M = 71.67). During the course of the three-month program, participants assigned to the 

productive engagement experimental condition spent approximately 15 hours per week learning 

digital photography, quilting, or both digital photography and quilting (the latter spent the first 

half of the study learning about digital photography and the second half about quilting). 

Conversely, participants assigned to the receptive-engagement condition spent approximately 15 

hours per week engaging in facilitator-led social activities (e.g., watching movies, cooking, or 
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going on field trips to museums) or participating in activities they believed to be beneficial to 

cognition (e.g., listening to classical music, watching documentaries, or completing word 

puzzles). Results indicated that participants in the productive engagement condition (i.e., those 

who learned about digital photography, quilting, or a combination of both) improved 

significantly on measures of episodic memory compared to participants in the receptive 

engagement condition. Overall, these results highlight the beneficial relationship between CSA 

and cognition. The results also indicate that it may be possible utilize types of CSA in 

intervention studies to maintain or even improve cognitive performance.  

As previously discussed, these effects may vary from study to study due to a number of 

confounding factors (i.e., differences in study population, design, definition of CSA), and as 

such, these results of the current dissertation should be interpreted with caution.  In particular, 

differences in study design make it challenging to interpret the results of the current dissertation.  

For example, much of the cognitive aging literature has focused on using complex mental 

activity as an intervention, such as randomly assigning participants to take a computer course 

(Klusmann et al., 2010) or to complete complex mental tasks like math problems or word 

puzzles (Tranter & Koutstaal, 2008).  A recent meta-analysis concluded that participating in 

CSA was associated with improved memory, executive function, and composite memory scores, 

but the results were inconsistent across studies (Kelly et al., 2014).  However, a review of studies 

that evaluated CSA as a broad construct (i.e., lifestyle activities) concluded that participation in 

CSA was associated with a reduced risk of cognitive decline and dementia, despite differences in 

populations and study design (Wang, Xu, et al., 2012). 

 In sum, PA and CSA both appear to have positive influences on concurrent cognitive 

performance but do not necessarily affect the rate of cognitive change over time.  In terms of the 
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cognitive flexibility and plasticity theory, plastic changes in the brain may be stimulated by PA 

and CSA but unique aspects of CSA are needed to provide sufficient stimulation to produce 

long-term beneficial plastic changes (Lövdén et al., 2010).  Moreover, the extent to which an 

individual can improve his or her cognitive abilities (i.e., cognitive flexibility) may be influenced 

by unfavorable genetic variants related to cognitive function, particularly in older adults (Harris 

& Deary, 2011).   

 

Question 2: How do Variants of the ApoE, COMT, and BDNF Genes Influence Cognitive 

Performance?  

 It was hypothesized that variability in ApoE, COMT, and BDNF genotype would be 

independently associated with cognition, with the presence of detrimental risk alleles (i.e., the 

ApoE ε4 allele, COMT Val allele, and BDNF Met allele) predicting worse baseline and 

longitudinal cognitive performance.  Under the premise of the cognitive plasticity and flexibility 

theory, variation in genotype may contribute to intraindividual differences in cognitive 

performance by influencing the integrity of neural structures (e.g., protein structure) that 

facilitate plastic changes within the brain.  The results of the current dissertation provide partial 

support for this hypothesis, as the examined risk alleles were not uniformly associated with 

variability in cognitive performance at baseline, and few longitudinal genetic effects were found.   

Of the three risk alleles, the detrimental effect of ApoE ε4 allele was the most robust at 

baseline measurement: ApoE ε4 carriers scored significantly lower compared to non-ApoE ε4 

carriers on every cognitive measure except backwards counting.  The presence of the COMT 

Val-allele did not significantly affect baseline performance on any cognitive measure, but 

weakened the effect of time on performance in the serial 7s measure.  Unexpectedly, the 
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presence of the BDNF Met had a positive impact, with any-Met BDNF carriers outperforming 

BDNF Val/Val carriers on baseline measures of delayed and total word recall. 

 

 Apolipoprotein E and Cognitive Performance  

 The current finding that non-ApoE ε4 carriers outperformed ApoE ε4 carriers on baseline 

cognitive measures but not over time contributes a number of research studies that investigated 

the impact of the ApoE ε4 in a cognitively healthy population.  The ApoE ε4 allele has been 

repeatedly implicated in the development of mild cognitive impairment (MCI) and dementia 

(Brainerd, Reyna, Petersen, Smith, & Taub, 2011; Dixon et al., 2014; Farlow et al., 2004; C. 

Ferrari et al., 2013; Packard et al., 2007; Schipper, 2011).  This effect also extends to normal 

cognitive aging: individuals with the ApoE ε4 allele have performed worse on episodic memory 

tasks (Laukka et al., 2013), a finding that is supported by two earlier meta-analyses, which 

showed associations between ApoE ε4 carriers and worse performance in episodic memory, 

executive functioning, and general cognitive ability (Small et al., 2004; Wisdom et al., 2011).  

The results of the current dissertation support and extend these earlier findings.   

Interestingly, other studies have reported adverse longitudinal, but not baseline, effects 

the ApoE ε4 allele in healthy adults (e.g., de Frias et al., 2014; Reynolds et al., 2006; Salmon et 

al., 2013).  ApoE ε4 carriers performed similarly (or better) on cognitive measures compared to 

non-ApoE ε4 carriers, but still exhibited greater longitudinal cognitive declines (de Frias et al., 

2014; Reynolds et al., 2006).  These results suggest that the effect of the ApoE ε4 allele may not 

necessarily play a role in cognitive performance until old age, although the absence of age-

comparative data makes it difficult to determine when this effect occurs.   
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 At a neurological level, variants of the ApoE gene have been associated with neurological 

pathways that influence plasticity in brain regions associated with cognition (e.g., hippocampus, 

prefrontal-cortex).  The ε4 allele, in particular, has been connected to maladaptive lipid 

metabolism and neuronal maintenance and repair (Cedazo-Minguez, 2007; Teter, 2004).  In 

healthy populations, ApoE ε4 carriers are less likely to exhibit evidence of beneficial 

neuroplastic changes in the hippocampus compared to non-ε4 carriers in response to neural 

stimulation (Schönheit, Glöckner, & Ohm, 2007).  Cognitively healthy ε4 carriers also have 

greater levels of activation in the prefrontal cortices of the brain (Wishart et al., 2006), a finding 

which suggests greater utilization of resources is needed for these individuals to maintain normal 

levels of cognitive performance.  Similar evidence was reported in a meta-analysis of brain 

imaging studies (representing over 1300 patients) in individuals with AD or MCI (Schroeter, 

Stein, Maslowski, & Neumann, 2009).  The current results provide additional support regarding 

the role of ApoE variants and neuroplastic variability in brain, with the negative effects of the ε4 

allele contributing to concurrent, but not longitudinal, differences in cognitive performance.  

  

 Catechol-O-Methyltransferase and Cognitive Performance  

The current results found no significant association between COMT genotype and 

performance in any cognitive measures, rejecting the proposed hypothesis that variants of the 

COMT gene would affect baseline cognitive performance.  Longitudinally, a single COMT 

genotype effect was found: the effect of time on serial 7s performance was weakened by the 

presence of any-Val COMT allele.  Initially, this may be interpreted as a beneficial result; 

however, performance on the serial 7s measure tended to increase significantly over time (e.g., a 

practice effect).  Since the presence of the COMT Val allele weakens the relationship between 
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performance and time, this result suggests that although COMT any-Val carriers did not 

necessarily perform worse in the backwards counting measure over time, they benefited less 

from practice.  These findings, while somewhat unexpected, are not exclusive to the current 

dissertation and reflect an inconsistent pattern of results regarding the influence of the COMT 

gene on cognition in samples of healthy older adults (Das et al., 2014; de Frias et al., 2004; de 

Frias et al., 2005; Nagel et al., 2008).   

 Previously, Das et al. (2014) found no significant baseline and longitudinal associations 

between COMT genotype and episodic memory, although it should be noted this sample was 

slightly younger (M = 62.60 years) and more educated (M = 14.30 years) compared to the current 

sample (Mage = 69.73 years; Meducation = 12.78 years).  Other researchers have failed to find 

associations between COMT genotype and episodic memory (Stuart, Summers, Valenzuela, & 

Vickers, 2014) or executive function (Erickson et al., 2008) in population samples of similar age 

rages (e.g., 50 – 85 years).  Other studies that have reported COMT-related differences in 

episodic memory and executive function noted that the detrimental effect of the Val allele 

became more apparent during the later decades of life (de Frias et al., 2004; de Frias et al., 2005; 

Nagel et al., 2008).  However, these results should be interpreted with caution due to sample 

limitations, such as the all-male sample evaluated by de Frias et al. (2004) and (de Frias et al., 

2005), as well as the small sample of older adults (n = 154) in Nagel et al. (2008). 

Given the interrelated connection between the COMT gene and dopamine degradation in 

various brain regions, differences between Val and Met carriers may vary depending on which 

neurological pathways are activated by the cognitive task at hand.  For example, Val carriers 

may perform more poorly on measures that require executive function, working memory, or 

attention (e.g., serial 7s or backwards counting), as these tasks activate the dorsolateral prefrontal 
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cortex (Kipps, 2004), an area of the brain with particularly high concentrations of the COMT 

protein (Cools de Espositio, 2011).  This may, in part, explain why the Val allele appears to have 

a detrimental effect for certain cognitive domains.  For example, in separate analyses of the same 

all-male sample, declines in executive function were found for COMT Val/Val-carriers (de Frias 

et al., 2005), while declines in episodic memory were reported COMT Met/Met-carriers (de Frias 

et al., 2004). 

Moreover, these deficits may only be detectable in individuals with inherently lower 

cognitive abilities.  Papenberg et al. (2014) found COMT Val homozygotes performed worse 

than COMT any-Met carriers on measures of episodic and working memory, but only when 

restricting the analyses to the lowest-performing tertile of the sample.  Additionally, although 

this sample was cognitively healthy and excluded individuals with less than 8 years of education, 

the absence of more extensive clinical assessments make it difficult to confirm that these low-

performing individuals were not in the preclinical stages of cognitive decline.   

In sum, the general absence of an independent COMT genotype effect in the current 

results, combined with the literary evidence, suggest that the effect of the Val allele may be 

limited to specific cognitive domains or populations (i.e., older adults or individuals with lower 

cognitive abilities).  Furthermore, the absence of COMT genetic effects may be related to the 

tests included in the HRS cognitive battery, which has a limited number of measures designed to 

evaluate executive function and has been critiqued for lacking the sensitivity to detect subtle 

variations in normative cognitive aging (Lachman & Spiro, 2002).  The lack of an independent 

genetic effect, however, does not eliminate COMT from contributing to an overall cognitive 

phenotype.  Interactions among additional genetic and environmental factors are likely to affect 
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cognitive performance in a manner is not detected when examining the independent effect of a 

candidate gene (Hirschhorn, Lohmueller, Pearce, Pike, & Lander, 2002).   

  

Brain-Derived Neutrophic Factor and Cognitive Performance  

Contrary to the proposed hypothesis, the BDNF Met allele was associated with better 

baseline cognitive performance on all measures except immediate word recall.  No longitudinal 

main effects of BDNF genotype were found.  These results contradict the results of frequently 

cited studies that have reported a detrimental effect of the Met-allele for episodic memory (Egan 

et al., 2003; Li et al., 2010), executive function (Erickson et al., 2008) and processing speed 

(Ghisletta et al., 2014; Miyajima et al., 2008), although these effects are not always reported 

(Harris et al., 2006; Stuart et al., 2014).   

The results of the current dissertation are not wholly unique, as there is additional 

evidence of a positive relationship between the Met allele and cognitive performance.  Older 

Met-carriers outperform non-Met carriers in general mental ability (Harris et al., 2006) and tasks 

that require memory-based task switching (Gajewski, Hengstler, Golka, Falkenstein, & Beste, 

2011).  Collectively, these discrepancies highlight the importance of accounting for the potential 

impact of age and overall cognitive health when examining the influence of BDNF on cognition. 

Similar to ApoE, variants of BDNF may moderate cognitive ability by contributing to 

neuroplastic variability in the hippocampus and prefrontal cortex.  Met-carriers typically exhibit 

lower levels of hippocampal and MTL activation (Hariri et al., 2003; Kauppi et al., 2013) as well 

as lower hippocampal and prefrontal cortex volume (Nemoto et al., 2006), although these 

differences do not always contribute to a significant difference in overall brain volume 

(Miyajima et al., 2008).  Importantly, these differences do not always manifest as detectable 
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differences in cognitive performance.  For example, in a small sample of older adults (n = 194, 

aged 55-75 years), Kauppi et al. (2013) noted that activation levels in the MTL of Met-carriers 

was significantly lower than non-Met carriers during the memory encoding process, but not the 

retrieval process.  Ultimately, BDNF Met-carriers slightly underperformed non-Met carriers in 

memory performance, but the difference was not significant.  As with the variants of the COMT 

and ApoE genes, these results suggest that the BDNF Met allele may contribute to neurological 

differences at the physiological level, but these differences may only be detectable in specific 

populations or cognitive domains. 

As with the COMT gene, the effects of BDNF may vary by cognitive domain.  For 

example, Egan et al. (2003) found the BDNF Met allele negatively affected memory 

performance in a relatively young sample (M = 35 years), but this relationship was not found 

with any other cognitive domain.  Li et al. (2010) also reported a negative association between 

the Met-allele and episodic memory, but this effect was limited to older adults’ (M = 65.0 years) 

performance in backward serial recall tasks (i.e., recalling words in the reverse order from which 

they were presented); there were no genetic differences between forward recall (Li et al., 2010).  

Similarly, in another sample of older adults (M = 63.0 years), Miyajima et al. (2008) also 

reported lower scores for episodic memory, processing speed, and general intelligence  in Met-

carriers compared to non-Met carriers.  Conversely, other studies of older adults have reported 

no differences between Met-carriers and non-Met carriers on measures of episodic memory 

(Harris et al., 2006; Stuart et al., 2014).   

Discrepancies regarding the effects of BDNF genotype are also evident in longitudinal 

studies.  Older Met-carriers have performed worse than non-Met carriers in baseline assessments 

of executive function, but were more likely to maintain their executive cognitive abilities over 10 
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years of follow-up while non-Met carriers demonstrated greater decline (Erickson et al., 2008).  

Conversely, Ghisletta et al. (2014) found no baseline differences between Met-carriers and non-

Met carriers in performance speed, but Met-carriers experienced  greater decline after 13 years.  

The contradictory results of two recent meta-analyses further exhibit the extent of the 

inconsistent findings regarding the impact of BDNF genotype.  One meta-analysis of 28 studies 

results supported a negative relationship between the Met-allele and memory (Kambeitz et al., 

2012).  Comparatively, a separate meta-analysis of 23 studies (seven of which overlapped with 

the aforementioned study), found no relationship between BDNF genotype and general 

intelligence, episodic memory and executive function, processing speed, or cognitive fluency 

(Mandelman & Grigorenko, 2012).  Upon closer review of the first meta-analysis, the effect 

became non-significant when restricting the analyses to cognitively healthy samples (d = .09, p = 

.06).  However, the interpretability of the results of the latter meta-analysis was limited by a lack 

of description of the ages of the samples and the extent of other potential confounding variables 

(e.g., cognitive health of samples, publication bias).   

 

Question 3: How Does Variation in ApoE, BDNF, and COMT Genotype Moderate the 

Effect of Participating in PA and CSA on Cognitive Performance?  

It was hypothesized that the variability in genetic factors would interact with baseline 

levels of CSA and PA, with the presence of detrimental variants constraining the benefit of 

participating in both type of activity.  This hypothesis was guided by preliminary evidence, 

which indicated that ApoE ε4 carriers were less responsive to the beneficial effects of 

participating in CSA, while non- ε4 carriers demonstrated significantly better episodic memory 

(Runge et al., 2014).  Similar studies have also reported better cognitive performance in 
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physically and cognitively active ApoE non-ε4 carriers compared to non-ε4 carriers (Obisesan et 

al., 2012; Woodard et al., 2012).  This provided support for combining aspects of the differential 

susceptibility and cognitively plasticity and flexibility theories, with detrimental genetic variants 

representing inherent individual susceptibility factors that constrain one’s ability to develop 

beneficial plastic changes in response to environmental stimuli.  The next section describes the 

interactive effects of single genetic variants (i.e.  ApoE, COMT, and BDNF) and CSA and PA. 

 

Gene x Environmental Interactions on Cognitive Performance  

Contrary to the preliminary evidence and the proposed hypothesis, few interactions were 

found between genotype and PA or CSA.  The results of the current dissertation indicate that 

COMT and BDNF moderated the association between activity and cognitive performance.  

Specifically, older adults who carried the COMT Val allele (i.e., high risk) and also reported 

more frequent CSA had better baseline backwards counting scores.  COMT non-Val carriers did 

not appear to benefit from CSA.  Longitudinally, the backwards counting scores of BDNF non-

Met carriers (i.e., a low risk) were less likely to decline if they also reported high levels of 

baseline CSA.  There were no baseline or longitudinal interactive effects between ApoE and 

CSA or PA.   

The absence of an interactive baseline or longitudinal effects between ApoE and CSA and 

PA was unexpected, particularly considering the independent effects that were found for CSA, 

PA, and ApoE in the current dissertation, as well as previous research which has indicated the 

ApoE ε4 allele generally constrains the beneficial effects of CSA or PA (Obisesan et al., 2012; 

Runge et al., 2014; Woodard et al., 2012).  However, in regard to preventing the onset of mild 

cognitive impairment (MCI) or dementia, CSA and PA appear to be protective for ApoE ε4-
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carriers.  For example, Ferrari (2013) found that factors thought to promote neuroplasticity (i.e., 

high levels of education and participation in lifestyle activities) delayed the onset of dementia for 

ε4-carriers by 1.2 – 2.2 years, an effect that contributed to ε4 carriers living dementia-free for an 

amount of time similar to non-ε4 carriers.  Subsequent research also reported that higher levels 

of lifetime cognitive activity was associated with a lower accumulation of beta-amyloid plaques 

in the brains of cognitively healthy individuals, particularly in ApoE ε4-carriers (Wirth, 

Villeneuve, La Joie, Marks, & Jagust, 2014). 

 In cognitively healthy populations, the presence of the ε4 allele appears to constrain the 

cognitive benefits of participating in CSA or PA in cross-sectional analyses.  However, 

longitudinally, ε4-carriers who report high levels of CSA or PA have a reduced risk for dementia 

or cognitive decline.  Taken together, these results suggest that the ε4 allele affects inherent 

cognitive abilities (independent of the effects of CSA and PA), but the benefits of an active 

lifestyle are more apparent in ε4 carriers over time.   

 Compared to the ApoE genotype, the interactive effects between COMT or BDNF and 

CSA and PA have not been extensively studied in aging populations.  This makes it difficult to 

decipher the results of the current dissertation regarding the interactive effects that were found 

for COMT, BDNF, and CSA.  Previous G x E studies regarding these particular genes have 

typically focused on aspects of development (e.g., exposure to adverse life events; Hygen et al., 

2015; Rabl et al., 2014) or psychopathology (Nielsen et al., 2015; Rivollier, Lotersztajn, 

Chaumette, Krebs, & Kebir, 2014).  The few studies that have examined older populations have 

also focused on PA alone.  For example, higher levels of PA predicted better performance in 

cognitive domains associated with the prefrontal cortex (e.g., speed, reaction time) for COMT 

any-Val carriers, although this effect is not apparent in non-Val carriers (Mandelli & Serretti, 
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2013; Voelcker-Rehage, Jeltsch, Godde, Becker, & Staudinger, 2015).  Most recently, Thibeau et 

al. (2016) found that that higher levels of PA were associated with better baseline episodic 

memory scores and less decline over time for BDNF non-Met carriers.  Conversely, this 

association was absent for any-Met carriers, a results that suggests the BNDF Met allele may 

constrain the benefits of engaging in PA. 
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CHAPTER SIX: 

CONCLUSION 

 

In recognition of the heterogeneity and between-individual variability in cognitive aging, 

the current dissertation conducted a series of analyses using data from the Health and Retirement 

Study (HRS) to examine three potential sources of this variability: Genetic variants, 

environmental factors, and genetic and environment (G x E) interactions.  Collectively, these 

analyses were performed to better understand the extent to which biological and lifestyle factors 

contribute to individual variability in cognitive aging.  It is hoped that the results will contribute 

to future efforts to understand the biological and environmental mechanisms that promote 

healthy cognitive aging. 

Conceptually guided by theories of neurocognitive plasticity and flexibility (Lövdén et 

al., 2010) and differential susceptibility (Belsky et al., 2009), the first sets of analyses examined 

the independent effect of lifestyle factors (i.e., baseline participation in CSA and PA) on baseline 

cognitive performance and cognitive change over time.  Several notable results were produced.  

First, higher levels of participation in both types of activity had a positive influence on baseline 

cognition, as evidenced by better performance in nearly all cognitive measures.  Second, 

participation in baseline CSA, but not PA, also affected the rate of cognitive change by 

weakening the effect of time.  These results correspond with recent research indicating that 

engagement in CSA and PA is associated with improved cognitive performance (Bielak et al., 

2012; Mitchell et al., 2012; Thibeau et al., 2016).  The absence of long-term effects of PA on 
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cognitive performance contradicts the results of previous longitudinal research (Beydoun et al., 

2014; Thibeau et al., 2016), and may be attributable to the relatively few number of questions 

regarding PA in the HRS Psychosocial Lifestyle Questionnaire or an insufficient follow-up 

period.    

The second set of analyses assumed a similar theoretical and analytical approach to 

examine the independent effects of ApoE, COMT, and BDNF variants as predictors of baseline 

cognitive performance and cognitive change over time, with several key findings.  First, variants 

of ApoE significantly predicted initial cognitive performance, but not rate of cognitive change, 

with the presence of the ε4 allele consistently predicting worse cognitive performance.  This 

result is consistent with the majority of current research focusing on cognitively healthy 

populations (Laukka et al., 2013; Small et al., 2004; Wisdom et al., 2011).  Second, the BDNF 

Met allele, which has typically been linked with poorer cognitive performance (Egan et al., 2003; 

Erickson et al., 2008), was associated with better cognitive performance.  Finally, COMT 

genotype did not independently predict baseline cognitive performance, but it was associated 

with change over time in a measure of attention.  The unexpected results of the independent 

effects of BDNF and COMT, may be related to limitations of the HRS cognitive battery (e.g., 

lack of domain-specific, sensitive measures) or unaccounted G x E interactions (Goldberg & 

Weinberger, 2004; Sapkota, Vergote, Westaway, Jhamandas, & Dixon, 2015; Thibeau et al., 

2016).   

The third set of analyses examined whether the presence of detrimental genetic variants 

moderated the relationship between CSA and PA and cognitive performance.  Unexpectedly, few 

interactive effects were identified: COMT genotype moderated the relationship between CSA 

and initial cognitive performance but not rate of change over time, where individuals with the 
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COMT Val allele who also reported higher levels of CSA outperformed COMT non-Val carriers 

in a measure of attention.  Additionally, BDNF genotype moderated the relationship between 

CSA and rate of cognitive change, but did not influence the initial CSA – cognitive performance 

relationship.  More specifically, BDNF non-Met carriers who also reported higher levels of 

baseline CSA were more likely remain stable compared to BDNF any-Met carriers. 

 

Strengths and Limitations, and Future Directions  

The research described in the current dissertation has a number of strengths and 

limitations.  One of the primary strengths is the evaluation and comparison of the independent 

and interactive effects of two types of lifestyle activities and multiple genetic variants on 

trajectories of cognitive change.  This approach is particularly applicable for the investigation of 

cognitive phenotypes, which are likely influenced by a combination of endogenous factors and 

domain-specific neurobiological pathways (Deary, Wright, Harris, Whalley, & Starr, 2004; 

Goldberg & Weinberger, 2004).  Additional strengths are related to unique features of the 

secondary dataset that was used in the current dissertation: The HRS is one of the few datasets 

that provides data on several measures of cognitive function, different types of lifestyle 

activities, and genetic information across multiple time points.  Furthermore, the current sample 

is large enough to provide sufficient statistical power to detect small independent and interactive 

effects in multilevel models (Heo & Leon, 2010), a feature that may be absent in other studies 

with significantly fewer participants.   

Finally, a strength of the current dissertation is the inclusion of both white and black 

participants (while simultaneously taking steps to control the potential confounding effect of 

race).  This contributes to a relatively small body of literature that investigated genetic or 
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environmental influences on cognition in racially diverse populations (Fiocco et al., 2010).  For 

example, in one of the few studies that specifically examined the impact of race in concordance 

with COMT genotype, Fiocco et al. (2010) found no baseline effects of COMT genotype on 

executive functioning performance in either race; however, a linear rate of decline was noted in 

whites, with Met/Met carriers demonstrating the greatest rate of decline.  Conversely, black 

Met/Val carriers exhibited the greatest rate of decline, followed by Met/Met carriers and then 

Val/Val carriers.  Future research should consider race as an importance facet of study design, as 

the effect of genotype may not always correspond with similar trajectories of decline in people of 

different races. 

While the HRS was specifically chosen because it allowed for examination of the 

proposed research questions, certain aspects of the dataset nevertheless limited the 

interpretability of the results.  First, the HRS cognitive battery has been critiqued for its limited 

range of cognitive domains, its ability to detect variability in normal cognitive aging, and the 

potential for ceiling or practice effects (Lachman & Spiro, 2002).  Efforts have been made to 

reduce practice effects in the word recall tasks through a counterbalanced random assignment of 

four different word lists; however, it is not clear whether such efforts have been applied to 

improve the reliability and validity of the other measures.  This feature may have contributed to 

the relative stability in cognitive performance as well as the lack of domain-specific effects seen 

in the current dissertation.  Additional measures, such as tasks to assess executive function (e.g., 

verbal fluency) and speed of processing (e.g., reaction time), would need to be added to the 

current HRS battery to improve its sensitivity to detect small variations in normative cognitive 

aging (Lachman & Spiro, 2002).   
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A second limitation of the HRS measures is the retrospective, self-reported assessment of 

participant engagement in lifestyle activities in the Psychosocial and Lifestyle Leave-Behind 

questionnaire (LB).  The use of self-report measures is a common approach to study behavior 

and is typically the only feasible option to collect data pertaining to participation in lifestyle 

activities, particularly in studies with extremely large sample sizes.  However, research has 

shown that self-report measures can contribute to a number of biases (Podsakoff, MacKenzie, 

Lee, & Podsakoff, 2003).  For example, the accuracy of self-reported levels of PA has been 

shown to differ among men and women, older and younger individuals, as well as individuals 

with higher body mass index (P. Ferrari, Friedenreich, & Matthews, 2007).   

A third methodological limitation is related to the HRS LB questionnaire, which was 

designed to broadly evaluate participation in a variety of lifestyle activities as opposed to 

focusing exclusively on cognitive, social, and/or physical activities.  The activities were 

categorized as CSA or PA (Smith et al., 2013) in order to address the proposed question; 

however, the underlying factor structure of the items remains complex and broadly defined.  

Future research could approach the HRS LB questionnaire as a single construct regarding 

participation in lifestyle activities in order, particularly since the use of robust definitions of 

activity may be more appropriate to promote general neurocognitive health at the population 

level.    

Apart from these methodological issues, one must also consider the reverse-coding error 

that occurred during the genotyping process of the HRS genetic sample (see Methods) as a 

limitation.  Extensive efforts were made to ensure the quality of data generated by the genotype 

imputation procedures (Weir, 2012), but it remains a possibility that some of the atypical results 

reported in the current dissertation were attributable to this reverse-coding error.  It is also 
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possible that this error contributed to a violation of HW equilibrium for the COMT genotype in 

the black population (i.e., a greater number of observed black COMT any-Val carriers than 

expected; see Table 2).  Since a priori analyses indicated that interactions between race and 

COMT genotype did not significantly predict performance on any cognitive measure, race was 

subsequently included as a covariate as recommended to control for potential confounding 

(Keller, 2014).  To further account for the potential influence of race, the models were repeated 

with white and black participants only (see Appendices) with no significant differences in 

outcomes.   

 Finally, the lack of indicators of cognitive health or other disease-states within the current 

sample may also be considered a limitation.  Although respondents who completed the HRS 

questionnaire via proxy were excluded from the current sample, no additional criteria were 

applied to verify the cognitive or overall physical health of the respondents.  Independent and 

interactive effects of both genetic and environmental factors may become more apparent in 

samples that include cognitively normal and impaired individuals , or in samples with certain 

disease-states.  For example, Dik et al. (2000) found the ApoE ε4 allele to predict greater 

cognitive declines in older adults, but this effect was limited to individuals who demonstrated 

levels of cognitive impairment.  Further research would extend the current results by including a 

clinical measure of cognitive impairment to examine the baseline and longitudinal impact of 

genetic variants in cognitively healthy and impaired individuals , as well as other disease-states.   

 This research was conducted in an attempt to identify genetic and environmental factors 

which contribute to the etiology of cognitive aging, and how these factors influence cognition on 

an independent and interactive level.  The current results suggest that both factors contribute to 

inherent differences in cognitive performance between individuals but further work is needed to 
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understand how these mechanisms contribute to the overall process of cognitive aging.  These 

factors may assist in the early detection or evaluation of risk for cognitive decline by allowing 

researchers and clinicians to assessing a range of risk factors, instead of focusing exclusively on 

cognitive testing.   
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Table 1.  Life of lifestyle activities included in the 2008 α Psychosocial and Lifestyle Leave-

Behind Questionnaire, stratified by wave and year of data collection 

Psychosocial and Lifestyle Leave-Behind Questionnaire    

   Care for sick/disabled adult    

   Do activities with grandchildren    

   Volunteer with youth or teens    

   Other volunteer or charity work    

   Perform activities with children    

   Take an educational course    

   Attend a meeting (sport, social, or other club)    

   Pray privately    

   Read books, magazines, newspapers    

   Play word games (e.g., Scrabble)    

   Play card/mind games (e.g., chess)    

   Write letters, stories, or journal    

   Use a computer    

   Perform home maintenance or garden    

   Bake or cook something special    

   Make clothes, knit, or embroider    

   Work on a hobby or project    

   Play sports or exercise    

   Walk for 20 minutes or more    

Health Questionnaire    

   Engage in vigorous physical activity    

   Engage in light physical activity    

α 6-point Likert-scale: 1 - not in the last month; 2 - at least once a month; 3 - several times a month; 4 - once a week; 5 - 
several times a week; 6 - daily 
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Table 2.  Expected versus observed genotype frequencies by gene and race 

Gene Race Genotype 

Expected 

Frequencies 
(% ) 

Observed 

Frequencies 
(% ) 

Observed 

Frequencies 
(n) 

Hardy-Weinberg 

Equilibrium                        
(X2, significance ) 

ApoE CEU Ɛ4+ 0.28 0.26 1,071 14.59, p = .01 

  Ɛ4- 0.72 0.74 3,128  

       

 ASW Ɛ4+ 0.37 0.35 195 1.62, p = .23 

  Ɛ4- 0.69 0.65 370  

       

COMT CEU Val + 0.75 0.77 3,213 3.91, p = .14 

  Val - 0.25 0.23 986  

       

 ASW Val + 0.42 0.53 300 28.03, p = 8.18e-7* 

  Val - 0.56 0.47 265  

       

BDNF CEU Met + 0.36 0.36 1,496 .82, p = .66 

  Met - 0.64 0.64 2,703  

       

 ASW Met + 0.09 0.07 38 3.02, p = .22 

    Met - 0.91 0.93 527   

* Outside the recommended p = .0001 threshold to indicate significant differences (Weir, 2012) 

CEU - White population; ASW - African American population 
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Table 3.  Baseline demographic characteristics by genotype 

  ApoE   COMT   BDNF     

TOTAL 
 ε4-  ε4+  Val- Val +  Met - Met + 

  

 low-risk at-risk  low-risk at-risk  low-risk at-risk    

N 3,498 1,266  1,251 3,513  3,230 1,534   4,764 

Age at 2008 Wave            

M 69.86 69.34  69.18 69.92  69.85 69.46   69.73 

SD 9.72 9.21  9.37 9.65  9.62 9.50   9.59 

Gender (% female) 59.32 59.48  60.19 59.07  58.89 60.37   59.36 

Race (%)            

White/Caucasian 65.66 22.48  20.70 67.44  56.74 31.40   88.14 
Black or African 

American 
7.77 4.09  5.56 6.30  11.06 0.80 

  11.86 

Ethnicity (%)            

Non-Hispanic 68.01 25.17  24.03 69.14  63.16 30.02   93.18 

Hispanic 5.42 1.41  2.23 4.60  4.64 2.18   6.82 

Education (years)            

M 12.68 12.77  12.65 12.83  12.68 12.99   12.78 

SD 4.00 4.56   3.93 4.17   4.31 3.62     4.11 
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Table 4.  Two-way ANOVA showing mean group differences between genotype, race, and their interaction for all cognitive tasks 

  Immediate Recall   Delayed Recall   Total Recall 

 
Sum of 

Squares 
df F 

p 

value 
 

Sum of 

Squares 
df 

Mean 

Square 

p 

value 
 

Sum of 

Squares 
df F 

p 

value 

ApoE genotype 185.60 1 1.88 0.17  333.87 1 66.77 0.64  375.66 1 0.77 0.57 

Race 4,820.57 1 24.39 <.001  5,196.84 1 2,594.42 <.001  4,038.35 1 20.6 <.001 

ApoE genotype x Race 148.98 1 0.75 0.47  1,456.29 1 145.63 0.14  1,138.42 1 1.16 0.31 

               

COMT genotype 32.97 1 0.33 0.56  34.93 1 34.93 0.55  38.80 1 0.40 0.53 

Race 4,278.90 1 43.38 <.001  9,804.87 1 9,804.87 <.001  8,009.06 1 81.64 <.001 

COMT genotype x Race 192.72 1 1.95 0.76  181.93 1 181.93 0.17  212.92 1 2.17 0.14 

               

BDNF genotype 91.43 1 0.93 0.34  30.24 1 30.24 0.58  61.37 1 0.63 0.43 

Race 710.90 1 7.20 0.01  2,407.38 1 2,407.38 <.001  1,727.89 1 17.61 <.001 

BDNF genotype x Race 53.32 1 0.54 0.46  3.69 1 3.69 0.85  21.62 1 0.22 0.64 
                         

 Serial 7s  Backwards Counting      

 
Sum of 

Squares 
df F 

p 

value 
 

Sum of 

Squares 
df 

Mean 

Square 

p 

value 
     

ApoE genotype 488.60 1 1.04 0.39  554.96 1 110.99 0.35      

Race 7,817.48 1 41.64 <.001  733.93 1 366.97 0.02      

ApoE genotype x Race 1,531.45 1 1.63 0.09  851.77 1 85.17 0.57      

               

COMT genotype 311.57 1 3.36 0.07  342.30 1 342.30 0.07      

Race 24,474.67 1 263.64 <.001  5,572.88 1 5,572.88 <.001      

COMT genotype x Race 93.01 1 1.00 0.32  841.53 1 841.52 0.06      

               

BDNF genotype 22.52 1 0.24 0.62  302.82 1 302.82 0.08      

Race 6,793.52 1 73.14 <.001  509.41 1 509.41 0.02      

BDNF genotype x Race 2.37 1 0.03 0.87   312.79 1 312.79 0.07      
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Table 5a.  Parameter estimates from multi-level models examining cognitive performance as a function of ApoE and activity: 

Immediate, delayed, and total word recall tasks 

  Immediate Recall   Delayed Recall   Total Recall 

 Model C Model D  Model C Model D  Model C Model D 

Baseline main (fixed) effects         
Intercept 85.30 (12.78) 84.49 (12.85)  78.46 (12.47) 77.98 (12.48)  80.90 (12.12) 80.22 (12.13) 

Time .83 (.38)* 1.71 (4.90)  .56 (.38) .94 (.52)  .62 (.37) 1.25 (.50) 

Age (covariate) -.59 (.18)** -.59 (.18)**  -.46 (.18)* -.46 (.18)*  -.52 (.17)** -.51 (.17)** 

Gender (covariate) 3.50 (.24) 3.50 (.24)  3.34 (.24) 3.34 (.24)  3.64 (.24) 3.64 (.24) 

Race -1.42 (.35) -1.42 (.35)  -2.93 (.36) -2.93 (.36)  -2.38 (.36) -2.38 (.36) 

Years of education (covariate) .51 (.03) .51 (.03)  .46 (.03) .46 (.03)  .51 (.03) .51 (.03) 

ApoE -.90 (.25) -.13 (1.20)  -1.02 (.26) -.80 (1.21)  -1.02 (.26) -.51 (1.20) 

Baseline CSA .63 (.15) .93 (.21)  .63 (.16) .73 (.21)  .67 (.16) .88 (.21) 

Baseline PA 1.09 (.11) 1.13 (.14)  1.10 (.11) 1.17 (.14)  1.17 (.11) 1.23 (.14) 

Baseline interaction effects         
ApoE x CSA  -.06 (.40)   .02 (.40)   -.02 (.28) 

ApoE x PA  -.01 (.07)   -.11 (.29)   -.11 (.28) 

Longitudinal interaction effects         
Time x ApoE   .54 (.72)   .70 (.71)   .67 (.67) 

Time x Baseline CSA  -.33 (.12)*   -.11 (.12)   -.22 (.11)** 

Time x PA  .01 (.08)   -.03 (.08)   -.01 (.08) 

Time x ApoE x CSA  -.14 (.24)   -.12 (.23)   -.14 (.22) 

Time x ApoE x PA  -.13 (.17)   -.08 (.16)   -.11 (.16) 

Variance components (random effects)         
Within-person (L1) variance (σ2) 42.92 (3.52) 43.05 (3.52)  41.33 (3.58) 41.44 (3.60)  37.05 (3.32) 37.18 (3.33) 

Intercept (L2) variance (τ00) 45.15 (4.45) 44.94 (4.45)  47.89 (4.53) 47.75 (4.54)  50.34 (4.28) 50.16 (4.29) 

Auto-correlation coefficient (ρ) -.17 (.07) -.16 (.07)  -.14 (.07) -.14 (.07)  -.18 (0.8) -.18 (.08) 

Additional information         
Df 14 21  14 21  14 21 

-2 log likelihood (FIML) -45,639.70 -45,629.47  -45,465.12 -45,462.36  -45,189.03 -45,182.96 

AIC 91,307.39 91,300.94  90,958.25 90,966.73  90,406.07 90,407.92 

BIC 91,411.73 91,457.44  91,062.58 91,123.23  90,510.40 90,564.42 

Psuedo R2 (L1) 0.04 -0.003  0.01 -0.003  0.02 -0.004 

Psuedo R2 (L2) 0.18 0.01   0.19 0.003   0.19 0.004 

Note: Bolded text indicates significance at p <.001, ** indicates significance at p < .01, * indicates significance at p < .05; CSA = Cognitive/Social Activity;  

PA = Physical Activity; Model C = Conditional Growth Model; Model D = Conditional Growth Model with Cross-Level Interactions
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Table 5b.  Parameter estimates from multi-level models examining cognitive performance as a function of ApoE and activity: Serial 7s 

and backwards counting tasks 

  Serial 7s   Backwards Counting 

 Model C Model D  Model C Model D 

Baseline main (fixed) effects      
Intercept 4.66 (.24) 4.66 (.24)  4.62 (.51) 4.54 (.52) 

Time .01 (.01)* .01 (.01)  .03 (.02) .17 (.21) 

Age (covariate) -.01 (.01)** -.01 (.003)**  -.01 (.01) -.01 (.01) 

Gender (covariate) -.04 (.01) -.04 (.01)  .01 (.008) .01 (.008) 

Race -.14 (.01) -.14 (.01)  -.11 (.01) -.11 (.01) 

Years of education (covariate) .01 (.001) .01 (.001)  .01 (.001) .01 (.001) 

ApoE -.02 (.01) -.01 (.03)  .003 (.01) -.03 (.05) 

Baseline CSA .01 (.004) .01 (.005)*  .01 (.01) .02 (.01)* 

Baseline PA .01 (.003) .01 (.003)  .003 (.004) .001 (.006) 

Baseline interaction effects      
ApoE x CSA  -.002 (.01)   .02 (.02) 

ApoE x PA  .001 (.01)   -.01 (.01) 

Longitudinal interaction effects      
Time x ApoE   -.001 (.002)   .05 (.03) 

Time x Baseline CSA  .001 (.002)   -.01 (.01)* 

Time x PA  .001 (.002)   .005 (.004) 

Time x ApoE x CSA  -.002 (.004)   -.01 (.01) 

Time x ApoE x PA  .0002 (.003)   -.003 (.01) 

Variance components (random effects)      
Within-person (L1) variance (σ2) .017 (.0004) .017 (.0004)  .095 (.01) .10 (.01) 

Intercept (L2) variance (τ00) .026 (.001) .026 (.001)  .082 (.01) .082 (.01) 

Auto-correlation coefficient (ρ) .04 (.02) .04 (.02)  -.03 (.05) -.03 (.05) 

Additional information      
Df 14 21  14 22 

-2 log likelihood (FIML) 4,137.42 4,139.52  -5,250.88 -5,243.46 

AIC -8,246.95 -8,237.04  10,529.76 10,530.92 

BIC -8142.49 -8,080.50  10,634.12 10,694.91 

Psuedo R2 (L1) 0.00 0.000  0.05 -0.005 

Psuedo R2 (L2) 0.26 0.000   0.00 0.000 

Note: Bolded text indicates significance at p <.001, ** indicates significance at p < .01, * indicates significance at p < .05; CSA = Cognitive/Social                                                                                     

Activity; PA = Physical Activity; Model C = Conditional Growth Model; Model D = Conditional Growth Model with Cross -Level Interaction
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Table 6a.  Parameter estimates from multi-level models examining cognitive performance as a function of COMT and activity: 

Immediate, delayed, and total word recall tasks 

  Immediate Recall   Delayed Recall  Total Recall 

 Model C Model D  Model C Model D  Model C Model D 

Baseline main (fixed) effects         
Intercept 84.44 (12.79) 83.71 (12.81)  77.66 (12.47) 76.90 (12.50)  80.11 (12.13) 79.30 (12.15) 

Time .80 (.39)* 1.99 (.71)**   .54 (.38) 1.69 (.59)*   .60 (.37) 1.87 (.66)** 

Age (covariate) -.58 (.18)** -.57 (.18)**  -.45 (.18)* -.45 (.18)*  -.51 (.17)** -.50 (.17)** 

Gender (covariate) 3.50 (.24) 3.50 (.24)   3.34 (.24) 3.34 (.24)   3.63 (.24) 3.63 (.24) 

Race -1.51 (.36) -1.52 (.36)  -3.03 (.37) -3.03 (.37)  -2.49 (.37) -2.48(.37) 

Years of education (covariate) .50 (.03) .50 (.03)   .46 (.03) .46 (.03)   .51 (.03) .51 (.03) 

COMT -.05 (.26) -.76 (1.18)  -.04 (.27) .13 (1.20)  -.05 (.27) -.31 (1.18) 

Baseline CSA .63 (.16) .81 (.34)*   .62 (.16) .82 (.35)*   .67 (.16) .87 (.34)* 

Baseline PA 1.09 (.11) 1.00 (.24)  1.10 (.11) 1.12 (.24)  1.18 (.11) 1.14 (.24) 

Baseline interaction effects         
COMT x CSA   .14 (.40)     -.11 (.40)     .01 (.40) 

COMT x PA  .14 (.28)   .03 (.28)   .09 (.28) 

Longitudinal interaction effects         
Time x COMT    -.27 (.71)     -.83 (.69)     -.66 (.66) 

Time x Baseline CSA  -.31 (.21)   -.19 (.20)   -.27 (.19) 

Time x Baseline PA   -.07 (.14)     -.19 (.13)     -.14 (.13) 

Time x COMT x CSA  -.06 (.24)   .07 (.23)   .02 (.22) 

Time x COMT x PA   .06 (.16)     .19 (.16)     .14(.15) 

Variance components (random effects)         
Within-person (L1) variance (σ2) 42.99 (3.53) 43.10 (3.54)  40.94 (3.55) 41.03 (3.56)  36.87 (3.31) 36.97 (3.33) 

Intercept (L2) variance (τ00) 45.13 (4.46) 44.94 (4.47)  48.58 (4.49) 48.47 (4.51)  50.73 (4.28) 50.58 (4.28) 

Auto-correlation coefficient (ρ) -.16 (.07) -.16 (.07)  -.15 (.07) -.15 (.07)  -.19 (.08) -.18 (.08) 

Additional information         
-2 log likelihood (FIML) -45,645.67 -45,637.4  -45,472.70 -45,469.66  -45,196.51 -45,190.74 

Change in -2 loglikelihood  637.05 8.27  612.42 3.04  655.39 5.77 

AIC 91,319.34 91,316.80  90,973.39 90,981.32  90,421.01 90,423.48 

BIC 91,423.67 91,473.30  91,077.73 91,137.82  90,525.34 90,579.98 

Psuedo R2 (L1) 0.04 -0.003  0.01 -0.002  0.03 -0.003 

Psuedo R2 (L2) 0.18 0.004   0.18 0.000   0.19 0.003 

Note: Bolded text indicates significance at p <.001, ** indicates significance at p < .01, * indicates significance at p < .05; CSA = Cognitive/Social                                                                                     

Activity; PA = Physical Activity; Model C = Conditional Growth Model; Model D = Conditional Growth Model with Cross-Level Interaction
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Table 6b.  Parameter estimates from multi-level models examining cognitive performance as a function of COMT and activity: Serial 

7s and backwards counting tasks 

  Serial 7s   Backwards Counting 

 Model C Model D  Model C Model D 

Baseline main (fixed) effects      
Intercept 4.64 (.24) 4.63 (.24)  4.63 (.51) 4.64 (.51) 

Time .01 (.01) .03 (.01)*   .03 (.02) .03 (.03) 

Age (covariate) -.01 (.003)** -.01 (.003)**  -.01 (.01) -.01 (.01) 

Gender (covariate) -.04 (.01) -.04 (.01)   .01 (.01) .01 (.01) 

Race -.14 (.01) -.14 (.01)  -.11 (.01) -.11 (.01) 

Years of education (covariate) .01 (.001) .01 (.001)   .01 (.001) .01 (.001) 

COMT .01 (.001) .01 (.03)  .002 (.01) -.09 (.05) 

Baseline CSA .01 (.004) .01 (.01)   .005 (.01) -.003 (.02) 

Baseline PA .01 (.003) .01 (.01)*  .003 (.004) -.001 (.01) 

Baseline interaction effects      
COMT x CSA   -.001 (.01)     .04 (.02)* 

COMT x PA  .001 (.01)   .001 (.01) 

Longitudinal interaction effects      
Time x COMT    -.03 (.01)*     .04 (.04) 

Time x Baseline CSA  -.005 (.004)   -.002 (.01) 

Time x PA   .001 (.003)     .004 (.01) 

Time x COMT x CSA  .001 (.005)   -.02 (.01) 

Time x COMT x PA   .001 (.003)     -.001 (.01) 

Variance components (random effects)      
Within-person (L1) variance (σ2) .017 (.0004) .017 (.0004)  .095 (.01) .095 (.01) 

Intercept (L2) variance (τ00) .026 (.001) .026 (.001)  .082 (.01) .082 (.01) 

Auto-correlation coefficient (ρ) .04 (.02) .04 (.02)  -.03 (.05) -.03 (.05) 

Additional information      
-2 log likelihood (FIML) 4,133.15 4,136.13  -5,250.93 -5,242.89 

Change in -2 loglikelihood  -473.38 -2.98  140.41 8.04 

AIC -8,238.31 -8,230.26  10,529.87 10,527.78 

BIC -8,133.95 -8,073.73  10,634.22 10,684.32 

Psuedo R2 (L1) 0.00 0.000  0.05 0.000 

Psuedo R2 (L2) 0.26 0.000   0.00 0.000 

Note: Bolded text indicates significance at p <.001, ** indicates significance at p < .01, * indicates significance at p < .05; CSA = Cognitive/Social                                                                                     

Activity; PA = Physical Activity; Model C = Conditional Growth Model; Model D = Conditional Growth Model with Cross-Level Interaction



87 
 

Table 7a.  Parameter estimates from multi-level models examining cognitive performance as a function of BDNF and activity: 

Immediate, delayed, and total word recall tasks 

  Immediate Recall   Delayed Recall  Total Recall 

 Model C Model D  Model C Model D  Model C Model D 

Baseline main (fixed) effects         

Intercept 84.19 (12.79) 82.69 (12.79)  77.25 (12.46) 75.98 (12.47)  79.77 (12.12) 78.31 (12.13) 

Time .80 (.39)* 2.01 (.54)   .54 (.38) 1.18 (.53)*   .60 (.37) 1.54 (.51)** 

Age (covariate) -.58 (.18)** -.57 (.18)**  -.45 (.18)** -.45 (.18)**  -.51 (.17)** -.50 (.17)** 

Gender (covariate) 3.49 (.24) 3.50 (.24)   3.33 (.24) 3.34 (.24)   3.62 (.24) 3.63 (.24) 

Race -1.42(.36) -1.42 (.36)  -2.88 (.37) -2.86 (.37)  -2.35 (.37) -2.34 (.37) 

Years of education (covariate) .50 (.03) .50 (.03)   .46 (.03) .46 (.03)   .51 (.03) .51 (.03) 

BDNF .27 (.25) 1.56 (1.14)  .48 (.25)* 2.52 (1.16)*  .40 (.26) 2.20 (1.14)* 

Baseline CSA .63 (.16) 1.03 (.21)   .62 (.16) .81 (.22)   .67 (.16) .97 (.21) 

Baseline PA 1.09 (.11) 1.14 (.15)  1.10 (.11) 1.29 (.15)  1.18 (.11) 1.30 (.15) 

Baseline interaction effects         

BDNF x CSA   -.38 (.37)     -.22 (.38)     -.31 (.37) 

BDNF x PA  -.01 (.26)   -.45 (.27)   -.31 (.26) 

Longitudinal interaction effects         

Time x BDNF    -.62 (.68)     -.24 (.66)     -.45 (.63) 

Time x Baseline CSA  -.43 (.13)   -.13 (.12)   -.29 (.12)** 

Time x PA   -.03 (.09)     -.10 (.08)     -.07 (.08) 

Time x BDNF x CSA  .23 (.24)   -.03 (.21)   .09 (.21) 

Time x BDNF x PA   .02 (.15)     .14 (.15)*     .09 (.14) 

Variance components (random effects)         

Within-person (L1) variance (σ2) 42.89 (3.51) 43.12 (3.54)  40.81 (3.54) 41.09 (3.57)  36.76 (3.30) 37.04 (3.33) 

Intercept (L2) variance (τ00) 45.25 (4.45) 44.91 (4.47)  48.74 (4.49) 48.32(4.52)  50.87 (4.27) 50.46 (4.29) 

Auto-correlation coefficient (ρ) -.17 (.07) -.16 (.07)  -.15 (.07) -.15 (.07)  -.18 (.08) -.18 (.08) 

Additional information         

-2 log likelihood (FIML) -45,645.10 -45,637.00  -45,472.09 -45,466.05  -45,195.29 -45,188.72 

Change in -2 loglikelihood  637.66 8.10  613.03 6.04  656.61 6.57 

AIC 91,318.19 91,316.00  90,972.19 90,974.09  90,418.58 90,419.45 

BIC 91,422.53 91,472.50  91,076.52 91,130.59  90,522.91 90,575.95 

Explained Within-Person Variance (L1) 0.04 -0.005  0.01 -0.007  0.03 -0.008 

Explained Intercept Variance (L2) 0.18 0.008   0.17 0.009   0.19 0.008 

Note: Bolded text indicates significance at p <.001, ** indicates significance at p < .01, * indicates significance at p < .05; CSA = Cognitive/Social                                                                                     

Activity; PA = Physical Activity; Model C = Conditional Growth Model; Model D = Conditional Growth Model wi th Cross-Level Interaction
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Table 7b.  Parameter estimates from multi-level models examining cognitive performance as a function of BDNF and activity: Serial 

7s and backwards counting tasks 

  Serial 7s    Backwards Counting  

 Model C Model D  Model C Model D 

Baseline main (fixed) effects      

Intercept 4.65 (.24) 4.65 (.24)  4.64 (.51) 4.59 (.51) 

Time .01 (.01) .003 (.01)   .03 (.02) .07 (.02)** 

Age (covariate) -.01 (.003)** -.01 (.003)**  -.01 (.01) -.01 (.01) 

Gender (covariate) -.04 (.01) -.04 (.01)   .01 (.01) .01 (.01) 

Race -.14 (.01) -.14 (.01)  -.12 (.01) -.12 (.01) 

Years of education (covariate) .01 (.001) .01 (.001)   .01 (.001) .01 (.001) 

BDNF .002 (.01) -.001 (.03)  -.01 (.01) .02 (.05) 

Baseline CSA .01 (.004)** .01 (.005)*   .005 (.01) .03 (.01)** 

Baseline PA .01 (.003) .01 (.003)  .003 (.004) -.004 (.01) 

Baseline interaction effects      

BDNF x CSA   -.002 (.01)     -.02 (.02) 

BDNF x PA  .002 (.01)   .01 (.01) 

Longitudinal interaction effects      

Time x BDNF    .02 (.01)     -.03 (.03) 

Time x Baseline CSA  .003 (.002)   -.02 (.01) 

Time x PA   .001 (.002)     .004 (.01) 

Time x BDNF x CSA  -.01 (.004)*   .01 (.01) 

Time x BDNF x PA   .001 (.003)     -.002 (.01) 

Variance components (random effects)      

Within-person (L1) variance (σ2) .017 (.0004) .017 (.0004)  .095 (.01) .095 (.01) 

Intercept (L2) variance (τ00) .026 (.001) .026 (.001)  .082 (.01) .082 (.01) 

Auto-correlation coefficient (ρ) .04 (.02) .03 (.02)  -.03 (.05) -.03 (.05) 

Additional information      

-2 log likelihood (FIML) 4,132.23 4,135.66  -5,250.15 -5,243.65 

Change in -2 loglikelihood  -472.46 -3.43  141.19 6.50 

AIC -8,236.46 -8,229.31  10,528.30 10,529.31 

BIC -8,132.10 -8,072.77  10,632.66 10,685.85 

Explained Within-Person Variance (L1) 0.00 0.000  0.03 0.000 

Explained Intercept Variance (L2) 0.26 0.000   0.00 0.000 

Note: Bolded text indicates significance at p <.001, ** indicates significance at p < .01, * indicates significance at p < .05; CSA = Cognitive/Social                                                                                     

Activity; PA = Physical Activity; Model C = Conditional Growth Model; Model D = Conditional Growth Model with Cross -Level Interaction
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Figure 1.  Flowchart of inclusion criteria 

 

Respondents with genetic samples

n = 12,507

n = 12,367 (98.88%)

n = 12,264 (98.06%)

11,963 (95.65%)

11,507 (92.00%)

5,615 (44.89%)

4,969 (39.73%)

4,764 (38.09%)

Samples with relatedness or a MCR > 2%  

n = 140 (1.12%)

Samples with a probability allele  frequency of < .8

n = 103 (.86%)

Respondents not selected for a core interview in 2008

Respondents categorized as "Other" race

n = 205 (1.64%)

Respondents aged < 50 years

n = 301 (2.41%)

Respondents not selected to participate in the 2008 

Psychosocial Questionnaire

n = 5892 (47.11%)

Eligible respondents who did not return                                 

the questionnaire in 2008

n = 646 (5.17%)

n = 456 (3.65%)
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APPENDICES 

 The following appendices contain the parameter estimates for the conditiona l growth 

models with each genotype, activity, and covariate predictors (Models C) and conditional growth 

models with cross-level interactions between genotype, activity, and covariate predictors using 

white participants only.   
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Appendix 1a.  Parameter estimates from multi-level models examining cognitive performance as a function of ApoE and activity: 

Immediate, delayed, and total word recall measures for whites only 

  Immediate Recall   Delayed Recall   Total Recall 

 Model C Model D  Model C Model D  Model C Model D 

Baseline main (fixed) effects         
Intercept 90.59 (13.50) 90.20 (13.50)  81.67 (13.09) 81.42 (13.09)  85.93 (12.77) 85.611 (12.77) 

Time .96 (.41)* 1.87 (.60)  .69 (.39) 1.13 (.55)*  .78 (.38) 1.46 (.53) 

Age (covariate) -.69 (.19) -.70 (.19)  -.55 (.18)* -.55 (.18)*  -.63 (.18)** -.63 (.18)** 

Gender (covariate) 3.50 (.24) 3.50 (.24)  3.35 (.24) 3.36 (.26)  3.64 (.26) 3.65 (.26) 

Years of education (covariate) .46 (.03) .46 (.03)  .42 (.03) .42 (.03)  .46 (.03) .46 (.03) 

ApoE -1.05 (.28) -8.31 (1.31)  -1.16 (.26) -.75 (1.34)  -1.19 (.28) -.86 (1.31) 

Baseline CSA .78 (.17) 1.07 (.23)  .73 (.18) .87 (.23)  .81 (.16) 1.03 (.23) 

Baseline PA 1.08 (.11) 1.08 (.15)  1.06 (.12) 1.12 (.15)  1.15 (.11) 1.18 (.15) 

Baseline interaction effects         
ApoE x CSA  .13 (.43)   .02 (.40)   .07 (.43) 

ApoE x PA  -.08 (.30)   -.12 (.29)   -.01 (.30) 

Longitudinal interaction effects         
Time x ApoE   .60 (.80)   .41 (.76)   .53 (.73) 

Time x Baseline CSA  -.37 (.12)*   -.16 (.12)   -.27 (.12)** 

Time x PA  .05 (.09)   -.001 (.08)   .03 (.08) 

Time x ApoE x CSA  -.17 (.26)   -.04 (.24)   -.11 (.24) 

Time x ApoE x PA  -.14 (.17)   -.09 (.17)   -.11 (.16) 

Variance components (random effects)         

Within-person (L1) variance (σ2) 42.92 (3.52) 39.42 (3.47)  36.93 (3.41) 37.02 (3.42)  32.70 (3.13) 32.80 (3.14) 

Intercept (L2) variance (τ00) 49.55 (4.49) 49.31 (4.51)  51.89 (4.46) 51.78 (4.46)  55.42 (4.22) 55.26 (4.23) 

Auto-correlation coefficient (ρ) -.23 (.08) -.23 (.08)  -.22 (.08) -.22 (.08)  -.28 (.09) .27 (.09) 

Additional information         
df 13 20  13 20  13 20 

-2 log likelihood (FIML) -40,275.52 -40,265.15  -40,037.58 -40,035.46  -39,850.43 -39,844.35 

AIC 80,577.05 80,570.29  80,101.17 80,110.92  79,726.86 79,728.69 

BIC 80,672.30 80,716.80  80,196.42 80,257.47  79,822.12 79,875.24 

Psuedo R2 (L1) -0.03 0.08  0.03 0.00  0.05 0.00 

Psuedo R2 (L2) 0.15 0.00   0.13 0.00   0.15 0.00 

Note: Bolded text indicates significance at p <.001, ** indicates significance at p < .01, * indicates significance at p < .05; CSA = Cognitive/Social Activity;  

PA = Physical Activity; Model C = Conditional Growth Model; Model D = Conditional Growth Model with Cross-Level Interactions 
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Appendix 1b.  Parameter estimates from multi-level models examining cognitive performance as a function of ApoE and activity: 

Serial 7s and backwards counting measures for whites only 

  Serial 7s   Backwards Counting 

 Model C Model D  Model C Model D 

Baseline main (fixed) effects      
Intercept 4.37 (.24) 4.38 (.25)  4.17 (.51) 4.04 (.51) 

Time .01 (.01)* .01 (.01)  .02 (.02) .28 (.21) 

Age (covariate) -.01 (.01)** -.01 (.003)**  -.005 (.01) -.003 (.01) 

Gender (covariate) -.04 (.01) -.04 (.01)  .01 (.008) .01 (.008) 

Years of education (covariate) .01 (.001) .01 (.001)  .01 (.001) .01 (.001) 

ApoE -.02 (.01) -.01 (.03)  -.003 (.01) -.01 (.05) 

Baseline CSA .01 (.004) .01 (.005)*  .01 (.01) .02 (.01)* 

Baseline PA .01 (.003) .01 (.003)  .003 (.004) .002 (.006) 

Baseline interaction effects      
ApoE x CSA  -.01 (.01)   .01 (.02) 

ApoE x PA  .003 (.01)   -.01 (.01) 

Longitudinal interaction effects      
Time x ApoE   .001 (.01)   .02 (.04) 

Time x Baseline CSA  .003 (.002)   -.02 (.01)* 

Time x PA  .001 (.002)   .003 (.004) 

Time x ApoE x CSA  -.001 (.005)   -.002 (.01) 

Time x ApoE x PA  -.002 (.003)   -.003 (.01) 

Variance components (random effects)      
Within-person (L1) variance (σ2) .016 (.0004) .016 (.0004)  .074 (.01) .073 (.005) 

Intercept (L2) variance (τ00) .024 (.001) .024 (.001)  .078 (.01) .078 (.01) 

Auto-correlation coefficient (ρ) .05 (.03) .04 (.02)  -.14 (.05) -.14 (.05) 

Additional information      
df 13 20  13 21 

-2 log likelihood (FIML) 3,947.26 3,951.07  -3,840.06 -3,832.71 

AIC -7,868.52 -7,862.4  7,706.12 7,707.43 

BIC -7,773.24 -7,715.56  7,801.40 7,861.34 

Psuedo R2 (L1) 0.00 0.00  0.01 0.01 

Psuedo R2 (L2) 0.14 0.00   0.00 0.00 

Note: Bolded text indicates significance at p <.001, ** indicates significance at p < .01, * indicates significance at p < .05; CSA = Cognitive/Social Activity;  

PA = Physical Activity; Model C = Conditional Growth Model; Model D = Conditional Growth Model with Cross-Level Interactions 
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Appendix 2a.  Parameter estimates from multi-level models examining cognitive performance as a function of COMT and activity: 

Immediate, delayed, and total word recall measures for whites only 

  Immediate Recall   Delayed Recall  Total Recall 

 Model C Model D  Model C Model D  Model C Model D 

Baseline main (fixed) effects         

Intercept 89.60 (13.51) 89.36 (13.54)  
77.66 

(12.47) 

76.90 

(12.50) 
 

80.11 

(12.13) 

79.30 

(12.15) 

Time .93 (.41)* 2.08 (.80)**  .54 (.38) 1.69 (.59)**  .60 (.37) 1.87 (.66)** 

Age (covariate) -.68 (.19) -.68 (.19)**  -.45 (.18)* -.45 (.18)*  -.51 (.17)** -.50 (.17)** 

Gender (covariate) 3.48 (.25) 3.48 (.25)  3.34 (.24) 3.34 (.24)  3.63 (.24) 3.63 (.24) 

Years of education (covariate) .46 (.03) .46 (.03)  .46 (.03) .46 (.03)  .51 (.03) .51 (.03) 

COMT -.13 (.28) -.96 (1.36)  -.04 (.27) .13 (1.20)  -.05 (.27) -.31 (1.18) 

Baseline CSA .78 (.17) 1.23 (.41)**  .62 (.16) .82 (.37)**  .67 (.16) .88 (.34)* 

Baseline PA 1.08 (.12) .80 (.24)**  1.10 (.11) 1.12 (.24)  1.18 (.11) 1.14 (.24) 

Baseline interaction effects         
COMT x CSA  -.15 (.46)   -.11 (.40)   .01 (.97) 

COMT x PA  .34 (.30)   .03 (.28)   .09 (.28) 

Longitudinal interaction effects         
Time x COMT   -.15 (.81)   -.83 (.69)   -.66 (.66) 

Time x Baseline CSA  -.35 (.24)   -.19 (.20)   -.27 (.19) 

Time x Baseline PA  -.06 (.14)   -.19 (.13)   -.14 (.13) 

Time x COMT x CSA  -.08 (.24)   .07 (.23)   .02 (.22) 

Time x COMT x PA  .10 (.16)   .19 (.16)   .14(.15) 

Variance components (random effects)         

Within-person (L1) variance (σ2) 39.44 (3.47) 39.56 (3.48)  40.94 (3.55) 41.03 (3.56)  36.87 (3.31) 36.97 (3.33) 

Intercept (L2) variance (τ00) 49.46 (4.52) 49.25 (4.52)  48.58 (4.49) 48.47 (4.51)  50.73 (4.28) 50.58 (4.26) 

Auto-correlation coefficient (ρ) -.22 (.07) -.22 (.07)  -.15 (.07) -.15 (.07)  -.19 (.08) -.18 (.08) 

Additional information         
df 13 20  14 21  14 21 

AIC 80,591.20 80,587.59  90,973.39 90,981.32  90,421.01 90,423.48 

BIC 80,686.45 80,734.14  91,077.73 91,137.82  90,525.34 90,579.98 

Psuedo R2 (L1) 0.05 0.00  0.01 0.00  0.03 0.00 

Psuedo R2 (L2) 0.15 0.00   0.18 0.00   0.19 0.00 

Note: Bolded text indicates significance at p <.001, ** indicates significance at p < .01, * indicates significance at p < .05; CSA = Cognitive/Social Activity;  

PA = Physical Activity; Model C = Conditional Growth Model; Model D = Conditional Growth Model with Cross-Level Interactions 
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Appendix 2b.  Parameter estimates from multi-level models examining cognitive performance as a function of COMT and activity: 

Serial 7s and backwards counting measures for whites only 

  Serial 7s   Backwards Counting 

 Model C Model D  Model C Model D 

Baseline main (fixed) effects      
Intercept 4.64 (.24) 4.63 (.24)  4.63 (.51) 4.64 (.51) 

Time .01 (.01) .03 (.01)*  .03 (.02) .03 (.03) 

Age (covariate) -.01 (.003)** -.01 (.003)**  -.01 (.01) -.01 (.01) 

Gender (covariate) -.04 (.01) -.04 (.01)  .01 (.01) .01 (.01) 

Years of education (covariate) .01 (.001) .01 (.001)  .01 (.001) .01 (.001) 

COMT .01 (.001) .01 (.03)  .002 (.01) -.09 (.05) 

Baseline CSA .01 (.004) .01 (.01)  .005 (.01) -.003 (.02) 

Baseline PA .01 (.003) .01 (.01)*  .003 (.004) -.001 (.01) 

Baseline interaction effects      
COMT x CSA  -.001 (.01)   .04 (.02)* 

COMT x PA  .001 (.01)   .001 (.01) 

Longitudinal interaction effects      
Time x COMT   -.03 (.01)*   .04 (.04) 

Time x Baseline CSA  -.005 (.004)   -.002 (.01) 

Time x PA  .001 (.003)   .004 (.01) 

Time x COMT x CSA  .001 (.005)   -.02 (.01) 

Time x COMT x PA  .001 (.003)   -.001 (.01) 

Variance components (random effects)      
Within-person (L1) variance (σ2) .017 (.0004) .017 (.0004)  .095 (.01) .095 (.01) 

Intercept (L2) variance (τ00) .026 (.001) .026 (.001)  .082 (.01) .082 (.01) 

Auto-correlation coefficient (ρ) .04 (.02) .04 (.02)  -.03 (.05) -.03 (.05) 

Additional information      
df 14 21  14 21 

AIC -8,238.31 -8,230.26  10,529.87 10,527.78 

BIC -8,133.95 -8,073.73  10,634.22 10,684.32 

Psuedo R2 (L1) 0.00 0.00  0.03 0.00 

Psuedo R2 (L2) 0.26 0.00   0.00 0.00 

Note: Bolded text indicates significance at p <.001, ** indicates significance at p < .01, * indicates significance at p < .05; CSA = Cognitive/Social Activity;  

PA = Physical Activity; Model C = Conditional Growth Model; Model D = Conditional Growth Model  with Cross-Level Interactions 
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Appendix 3a.  Parameter estimates from multi-level models examining cognitive performance as a function of BDNF and activity: 

Immediate, delayed, and total word recall measures for whites only 

  Immediate Recall   Delayed Recall  Total Recall 

 Model C Model D  Model C Model D  Model C Model D 

Baseline main (fixed) effects         
Intercept 89.43 (13.51) 87.94 (13.51)  80.49 (13.09) 79.06 (13.09)  84.76 (12.77) 83.23 (12.77) 

Time .93 (.41)* 2.19 (.60)  .67 (.39) 1.28 (.57)**  .76 (.38)* 1.70 (.56) ** 

Age (covariate) -.68 (.19) -.68 (.19)  -.54 (.19)** -.54 (.19)**  -.61 (.18)  -.61 (.18)  

Gender (covariate) 3.48 (.25) 3.48 (.25)  3.33 (.26) 3.33 (.26)  3.62 (.26) 3.62 (.26) 

Years of education (covariate) .46 (.03) .46 (.03)  .41 (.03) .41 (.03)  .46 (.03) .46 (.03) 

BDNF .24 (.25) 1.92 (1.20)  .50 (.26) 3.05 (.12)**  .40 (.26) 2.68 (1.20) 

Baseline CSA .78 (.17) 1.37 (.24)  .73 (.18) 1.10 (.24)  .81 (.18) 1.31 (.24) 

Baseline PA 1.08 (.12) 1.05 (.16)  1.07 (.18) 1.20 (.16)  1.15 (.12) 1.21 (.16) 

Baseline interaction effects         
BDNF x CSA  -.72 (.39)   -.63 (.40)   -.71 (.39) 

BDNF x PA  .02 (.27)   -.32 (.27)   -.17 (.27) 

Longitudinal interaction effects         
Time x BDNF   -.56 (.72)   -.23 (.69)   -.40 (.67) 

Time x Baseline CSA  -.53 (.14)   -.20 (.13)   -.37 (.13) ** 

Time x PA  .03 (.09)   -.05 (.09)   -.01 (.09) 

Time x BDNF x CSA  .31 (.23)   .07 (.22)   .19 (.22) 

Time x BDNF x PA  -.03 (.16)   .09 (.15)   .03 (.15) 

Variance components (random effects)         

Within-person (L1) variance (σ2) 39.32 (3.46) 39.62 (3.49)  36.46 (3.37) 36.77 (3.40)  32.46 (3.12) 32.80 (3.15) 

Intercept (L2) variance (τ00) 49.61 (4.50) 49.13 (4.53)  52.72 (4.43) 52.21 (4.54)  55.92 (4.21) 55.39 (4.24) 

Auto-correlation coefficient (ρ) -.23 (.08) -.22 (.08)  -.23 (.08) -.23 (.08)  -.28 (.09) -.27 (.09) 

Additional information         
df 13 20  13 20  13 20 

-2 log likelihood (FIML) -40,282.24 -40,272.69  -40,044.15 -40,038.34  -39,857.92 -39,849.97 

AIC 80,585.38 80,585.38  80,114.29 80,116.68  79,741.84 79,739.94 

BIC 80,731.92 80,731.92  80,209.55 802,636.23  79,837.10 79,886.48 

Psuedo R2 (L1) 0.05 -0.01  0.04 -0.01  0.05 0.04 

Psuedo R2 (L2) 0.15 0.01   0.12 0.01   0.14 0.01 

Note: Bolded text indicates significance at p <.001, ** indicates significance at p < .01, * indicates significance at p < .05; CSA = Cognitive/Social Activity;  

PA = Physical Activity; Model C = Conditional Growth Model; Model D = Conditional Growth Model  with Cross-Level Interactions 
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Appendix 3b.  Parameter estimates from multi-level models examining cognitive performance as a function of BDNF and activity: 

Serial 7s and backwards counting measures for whites only 

  Serial 7s   Backwards Counting 

 Model C Model D  Model C Model D 

Baseline main (fixed) effects      
Intercept 4.36 (.25) 4.36 (.25)  4.18 (0.51) 4.13 (.51) 

Time .01 (.01) .01 (.01)  .02 (.02) .07 (.03) ** 

Age (covariate) -.01 (.003) * -.01 (.003)*   -.005 (.007) -.005 (.007) 

Gender (covariate) -.04 (.006) -.04 (.006)  .012 (.008) .012 (.008) 

Years of education (covariate) .01 (.001) .01 (.001)  .01 (.001) .01 (.001) 

BDNF .001 (.006) -.02 (.03)  -.01 (.007) -.01 (.05) 

Baseline CSA .008 (.004) * .004 (.005)  .006 (.005) .03 (.01)   

Baseline PA .01 (.003) .01 (.003)  .004 (.004) -.002 (.006) 

Baseline interaction effects      
BDNF x CSA  .005 (.009)   -.02 (.01) 

BDNF x PA  .002 (.006)   .01 (.01) 

Longitudinal interaction effects      
Time x BDNF   .03 (.01)   -.03 (.03) 

Time x Baseline CSA  .01 (.03) **   -.02 (.007) 

Time x PA  .001 (.002)   .003 (.004) 

Time x BDNF x CSA  -.01 (.004) **   .01 (.01) 

Time x BDNF x PA  .001 (.003)   -.003 (.007) 

Variance components (random effects)      
Within-person (L1) variance (σ2) .024 (.001) .024 (.001)  .073  (.005) .073  (.005) 

Intercept (L2) variance (τ00) .016 (.001) .016 (.001)  .017 (.003) .017 (.003) 

Auto-correlation coefficient (ρ) .05 (.03) .04 (.03)  -.14 (.05) -.14 (.05) 

Additional information      
df 13 20  13 20 

-2 log likelihood (FIML) 3,940.54 3,947.10  -3,838.62 -3,831.41 

AIC -7,855.67 -7,854.21  7,703.24 7,702.82 

BIC -7,760.41 -7,707.62  7,798.82 7,849.40 

Psuedo R2 (L1) 0.17 0.00  0.03 0.00 

Psuedo R2 (L2) 0.00 0.00   0.00 0.00 

Note: Bolded text indicates significance at p <.001, ** indicates significance at p < .01, * indicates significance at p < .05; CSA = Cognitive/Social Activity;  

PA = Physical Activity; Model C = Conditional Growth Model; Model D = Conditional Growth Model  with Cross-Level Interactions 
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