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Abstract

We derive two hierarchies of 1+1 dimensional soliton-type integrable systems from

two spectral problems associated with the Lie algebra of the special orthogonal Lie

group SO(3,R). By using the trace identity, we formulate Hamiltonian structures for

the resulting equations. Further, we show that each of these equations can be written

in Hamiltonian form in two distinct ways, leading to the integrability of the equations

in the sense of Liouville. We also present finite-dimensional Hamiltonian systems by

means of symmetry constraints and discuss their integrability based on the existence

of sufficiently many integrals of motion.
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1 Introduction

1.1 Background

One aspect of modern mathematical physics that has been widely studied in the last

few decades is the theory of integrable systems. The origin of the theory dates back

to the 19th century when the Korteweg-de Vries (KdV) equation was derived for the

description of solitary waves in shallow water. The initial observation of a solitary

wave in shallow water was made by John Scott Russell [33, 34], a young Scottish

engineer and naval architect, in experiments to design a more efficient canal boat for

the Union Canal Company in 1834. Russell’s work was not given much attention until

in the mid 1960’s when scientists began to study nonlinear wave propagation using

computers. A major breakthrouh that motivated the revolution in soliton theory was

the work of Zabusky and Kruskal [41] in the discovery of a numerical computation of

solutions for the KdV equation in 1965. In an attempt to resolve the Fermi-Pasta-

Ulam paradox [7], Zabusky and Kruskal obseverd that solitary waves retain their

shapes and speed after collision in a way analogous to colliding particles. Because

of this particle-like behavior, Zabusky and Kruskal called solitary waves “solitons”.

Following this landmark, Gardner, Greene, Kruskal and Miura discovered a method

for finding soliton solutions for the KdV equation. This method, now known as the

Inverse Scattering Transform (IST) [10], is considered one of the most important dis-

coveries of the 20th century. Further work in relation to the IST by Lax [13] in 1968

revealed more remarkable properties of the KdV equation. It turned out that the

KdV equation is the compatibility condition between a pair of two linear operators

which are now called the Lax Pair. In 1974, the work of Gardner et al. and Lax was
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extended to an infinite number of integrable equations by Ablowitz, Kaup, Newell and

Surgur [2]. In particular, they showed that one can derive, from a matrix spectral

problem, nonlinear evolution equations that are solvable by the IST. This technique

underscores the importance of spectral problems in soliton theory.

Solitons are known to arise as solutions to integrable systems. There are many

notions of integrability (complete integrability, Liouville integrability, algebraic in-

tegrability, analytic integrability, etc.), but a universally accepted definition does

not exist. Many of these notions of integrability do not involve explicit solutions

since in general, obtaining explicit solutions of integrable systems is a very difficult

task, although many new solution techniques such as the Hirota bilinear method,

the algebro-geometric method and the Lie-algebraic method have recently been intro-

duced. Motivated by the Liouville-Arnold theorem [4], the notion of integrability in

the sense of Liouville (Liouville integrability) is the existence of infinitely many conser-

vation laws and commuting symmetries. There are many effective methods for finding

symmetries and conservation laws, although constructing nonlinear partial differen-

tial systems, especially multi-component ones, possessing this property is not easy.

One such method lies in a result on bi-Hamiltonian systems which is due to Magri

[25]. In his seminal paper, Magri demonstrates that if a partial differential equation

can be written as a Hamiltonian system in two different but compatible ways, then

the system possesses infinitely many conservation laws and symmetries, and thus,

integrable in the sense of Liouville. In this dissertation, we focus on hierarchies of

Liouville integrable Hamiltonian systems.

The dissertation is organized as follows: In Chapter 2, we study a few meth-

ods for constructing integrable systems and illustrate how some well-known equations

such as the KdV equation, the sine-Gordon equation and the nonlinear Schrödinger

equation can be derived from these methods. Further, we introduce a spectral prob-

lem and derive its associated hierarchy of integrable systems using the so-called Tu

scheme. We then provide an extension of this spectral problem and subsequently

2



construct another hierarchy of integrable systems which contains the earlier hierarchy

as a subsystem. In chapter 3, we focus on Hamiltonian structures and integrability of

nonlinear evolution equations. In particular, we show that the newly constructed hi-

erarchies have bi-Hamiltonian and tri-Hamiltonian structures and are thus integrable

in the sense that they possess infinitely many conserved functionals in involution. The

fourth chapter deals with ordinary differential equations in Hamiltonian form associ-

ated with soliton hierarchies. In this chapter, we derive finite-dimensional Hamilto-

nian systems from a soliton hierarchy by means of symmetry constraint and discuss

their integrability based on the existence of sufficiently many integrals of motion.

Finally, we give some concluding remarks on our results in chapter 5.

1.2 Preliminaries

We now introduce some basic notations and definitions. Let M be an open subset

of X × U , where X is the space of independent variables x = (x1, · · · , xp) and U is

the space of dependent variables u = (u1, · · · , uq)T . We denote by A, the algebra

of smooth functions P (x, u(n)) depending on x, u and derivatives of u up to a finite

order n. The functions in A are called differential functions. For convenience, we will

use the notation P [u] or simply P for the differential function P (x, u(n)). We also

denote the quotient space of A under the image of the total divergence by F . This

is the space of functionals P =
∫
Pdx. In most of our examples, we will assume that

p = q = 1, i.e., X = U = R.

Definition 1.2.1 Given

P [u] = P (x, u(n)), (1.2.1)

the i-th total derivative of P is defined as

DiP =
∂P

∂xi
+

q∑
α=1

∑
J

uαJ,i
∂P

∂uαJ
(1.2.2)

3



where J = (j1, · · · , jk) with 1 ≤ jk ≤ p, k ≥ 0 and

uαJ,i =
∂uαJ
∂xi

=
∂k+1uα

∂xi∂xj1 · · · ∂xjk
. (1.2.3)

If X = R and U = R, then we have the functional P [u] = P (x, u, ux, · · · ). The total

derivative of P is thus

DxP =
∂P

∂x
+ ux

∂P

∂u
+ uxx

∂P

∂ux
+ · · · . (1.2.4)

Example 1.2.2 If

P = xuux, (1.2.5)

then

DxP = uux + xu2
x + xuuxx. (1.2.6)

Definition 1.2.3 Let

P [u] = P (x, u(n)) ∈ Ar (1.2.7)

be an r−tuple of differential functions. The Fréchet derivative of P is the differential

operator dP : Aq → Ar defined as

dP (Q) ≡ P ′[Q] =
d

dε

∣∣∣
ε=0

P [u+ εQ[u]] (1.2.8)

for any Q ∈ Aq.

Example 1.2.4 If

P = uux, (1.2.9)

4



then

dP (Q) = P ′[Q] =
d

dε

∣∣∣
ε=0

(u+ εQ)(ux + εDxQ) = uxQ+ uDxQ. (1.2.10)

Definition 1.2.5 For 1 ≤ α ≤ q, the α-th Euler operator is given by

Eα =
∑
J

(−D)J
∂

∂uαJ
, (1.2.11)

the sum extending over all multi-indices J = (j1, ..., jk) with 1 ≤ jk ≤ p, k ≥ 0.

If p = q = 1, we have u as a function of a single variable x and thus

E =
∞∑
j=0

(−Dx)
j ∂

∂uj
=

∂

∂u
−Dx

∂

∂ux
+D2

x

∂

∂uxx
− · · · . (1.2.12)

Definition 1.2.6 The variational derivative of a functional

L =

∫
Ω

L(x, u(n)), Ω ⊂ X (1.2.13)

is defined as

δL[u]

δu
= E(L) = (E1(L), ..., Eq(L))T . (1.2.14)

If p = q = 1, the n-th order variational derivative of the functional

L =

∫ b

a

L(x, u(n))dx

is given by

δL
δu

= E(L) =
∞∑
j=0

(−Dx)
j ∂L

∂uj
=
∂L

∂u
−Dx

∂L

∂ux
+D2

x

∂L

∂uxx
− · · ·+ (−1)nDn

x

∂L

∂un
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Example 1.2.7 Let

L =

∫
(u2

xx − uux)dx. (1.2.15)

Then

δL
δu

= E(L) = −ux −Dx(−u) +D2
x(2uxx) = 2uxxxx. (1.2.16)

Definition 1.2.8 An evolution equation is a partial differential equation of the form

ut = K[u] (1.2.17)

where u(x, t) is a dependent variable, and K[u] is a differential function. If K is

nonlinear, the above equation is called a nonlinear evolution equation.

Definition 1.2.9 A differential operator is a finite sum

D =
n∑
i=0

Pi[u]Di
x, (1.2.18)

where the coefficients Pi[u] are differential functions. We say that D has order n

provided its leading coefficient is not identically zero: Pn 6≡ 0.

Definition 1.2.10 A (formal) pseudo-differential operator is a formal infinite series

D =
n∑

i=−∞

Pi[u]Di
x, (1.2.19)

whose coefficients Pi are differential functions. We say that D has order n if its leading

coefficient is not identically zero: Pn 6≡ 0.

Example 1.2.11 The operator

D = D2
x +

2

3
u+

1

3
uxD

−1
x (1.2.20)
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is a pseudo-differential of order 2.

Definition 1.2.12 If

D =
∑
J

PJ [u]DJ , PJ ∈ A (1.2.21)

is a differential operator, its (formal) adjoint is the differential operator D∗ which

satisfies ∫
Ω

P · DQdx =

∫
Ω

Q · D∗Pdx (1.2.22)

for every pair of differential functions P,Q ∈ A which vanish when u ≡ 0, every

domain Ω ∈ Rp and every function u = f(x) of compact support in Ω. It follows from

integration by parts that

D∗ =
∑
J

(−D)JPJ . (1.2.23)

That is, for any Q ∈ A,

D∗Q =
∑
J

(−D)J(PJQ). (1.2.24)

Similarly, a matrix differential operator D : Ak → Al with entries Dµν has adjoint

D∗ : Al → Ak with entries D∗µν = (Dνµ)∗, the adjoint of the transpose entries of D.

Note that (DE)∗ = E∗D∗.

Example 1.2.13 If

D = D2
x + uDx, (1.2.25)

then its adjoint is

D∗ = (−Dx)
2 + (−D)xu = D2

x − uDx − ux. (1.2.26)

7



Definition 1.2.14 Let Q[u] = (Q1[u], Q2[u], ..., Qq[u])T ∈ Aq be a q−tuple of differ-

ential functions. The generalized vector field

vQ =

q∑
α=1

Qα[u]
∂

∂uα
(1.2.27)

is called an evolutionary vector field, and Q is called its characteristic.

The space of evolutionary vector fields is a Lie algebra with Lie bracket

[vP , vQ] = v[P,Q]. (1.2.28)

Thus, the generalized vector field v[P,Q] is also an evolutionary vector field with char-

acteristic

[P,Q] = vP (Q)− vQ(P ) = dQ[P ]− dP [Q]. (1.2.29)

where dP [Q] is the Fréchet derivative of P in the direction of Q.

Definition 1.2.15 An evolutionary vector field vQ with characteristic Q is a sym-

metry of the system of evolution equation ut = P [u] if and only if

∂Q

∂t
+ [P,Q] = 0 (1.2.30)

holds identically in (x, t, u(m)). By abuse of language, we will usually say that Q is a

symmetry of ut = K[u].

In particular, if Q[u] = Q(x, u(m)) does not depend explicitly on t, then the

above equation (1.2.30) reduces to the condition that

[P,Q] = 0. (1.2.31)

Example 1.2.16 Consider the well-known KdV equation

ut = uxxx + 6uux. (1.2.32)

8



Denote K[u] = uxxx + 6uux and let P [u] = ux. Then,

K ′[P ] =
∂

∂ε

∣∣∣
ε=0

K[u+ εP ] =
∂

∂ε

∣∣∣
ε=0

((uxxx + εPxxx) + 6(u+ εP )(ux + εPx))

= Pxxx + 6Pux + 6uPx

= uxxxx + 6u2
x + 6uuxx

(1.2.33)

Similarly,

P ′[K] =
∂

∂ε

∣∣∣
ε=0

P [u+ εK] =
∂

∂ε

∣∣∣
ε=0

(ux + εKx)

= Kx = uxxxx + 6u2
x + 6uuxx

(1.2.34)

It follows that [P,K] = 0. Thus, P [u] = ux is a symmetry of the KdV equation. It is

known that the KdV equation possesses infinitely many symmetries and P [u] = ux is

only one of those symmetries.

Definition 1.2.17 A recursion operator for a system of evolution equations ut =

K[u] is a linear operator Φ : Aq → Aq in the space of q−tuples of differential functions

with the property that whenever vQ is an evolutionary symmetry of ut = K[u], so is

vP with P = ΦQ.

Thus, given a characteristic Q0 and a recursion operator Φ for a system of

differential equations, one can generate infinitely many symmetries Qn = ΦnQ0, n =

0, 1, 2, ..., by recursively applying Φ to the characteristic Q0.

Example 1.2.18 The recursion operator for the KdV equation is

Φ = D2
x + 4u+ 2uxD

−1
x , (1.2.35)

where D−1
x is the inverse of the differential operator Dx. Applying Φ recursively to the

symmetry Q0 = ux yields infinitely many symmetries Qn = ΦnQ0, n ≥ 0, of which

9



the first two are

Q1 = ΦQ0 = (D2
x + 4u+ 2uxD

−1
x )ux = uxxx + 6uux, (1.2.36)

and

Q2 = Φ2Q0 = ΦQ1 = (D2
x + 4u+ 2uxD

−1
x )(uxxx + 6uux)

= uxxxxx + 10uuxxx + 20uxuxx + 30u2ux.
(1.2.37)

In this work, we will often encounter recursion operators that are q × q matrices of

integro-differential operators.

10



2 Spectral Problems and Soliton Hierarchies

2.1 Introduction

Searching for new hierarchies of soliton equations remains a very important aspect

of soliton theory. It is well known that systems of soliton equations usually come in

hierarchies which are constructed from spectral problems associated with matrix Lie

algebras (see, e.g. [1, 5]). In their work on the inverse scattering transform, Ablowitz,

Kaup, Newell and Segur introduced the so-called AKNS spectral problem [2] as a

starting point for deriving nonlinear evolution equations solvable by the IST. This has

given rise to several other spectral problems, some of which arise from modifications

of existing ones. Notable examples include the Kaup-Newell spectral problem [12],

the Wadati-Konno-Ichikawa spectral problem [40] and the Dirac spectral problem

[11, 21]. In this section, we introduce a spectral problem as a modification of the

well-known Dirac spectral problem. Our interest lies in real soliton equations and as

a consequence we consider spectral problems associated with the semisimple matrix

Lie algebra so(3,R).

2.2 Methods for Constructing Integrable Systems

In the past few decades, a large number of methods for constructing integrable systems

have been proposed, some of which include Lax pairs, the zero-curvature formulation

scheme, Nijenhuis operators (hereditary symmetries), the Hirota bilinear method and

the Sato formalism and the Gelfand-Dickey approach. We consider a few of them

11



below.

2.2.1 Lax Pairs

The concept of Lax pair nonlinear evolution systems is due to P. D. Lax [13]. Ac-

cording to Lax, completely integrable nonlinear partial differential equations

ut = K[u] (2.2.1)

have an associated system of linear partial differential equations:

LΨ = λΨ, Ψt = MΨ, (2.2.2)

where L and M are linear differential operators and Ψ is an eigenfunction of L cor-

responding to the eigenvalue λ. The pair of operators L and M are known as a Lax

pair for (2.2.1). The property that (2.2.1) is completely integrable lies in the fact that

the eigenvalues are independent of time (i.e. λt = 0). In this case, we say that the

eigenvalue problem (2.2.2) is isospectral. The compatibility of the equations (2.2.2)

leads to the operator equation

dL

dt
= [M,L], (2.2.3)

where [L,M ] ≡ LM − ML is the operator commutator. This equation (2.2.3) is

known as the Lax equation. It can easily be derived from the fact that

d

dt
(LΨ) =

dL

dt
Ψ + LΨt =

dL

dt
Ψ + LMΨ (2.2.4)

and

d

dt
(LΨ) =

dL

dt
(λΨ) = λΨt = M(λΨ) = MLΨ. (2.2.5)

12



Example 2.2.1 The KdV equation has the Lax pair

L = −D2
x + u, M = −4D3

xu+ 6uDx + 3ux. (2.2.6)

One can easily show that the Lax condition (2.2.3) is equivalent to the equation

(Lt + [L,M ])Ψ = (ut − 6uux + uxxx)Ψ = 0 (2.2.7)

which gives rise to the KdV equation,

ut − 6uux + uxxx = 0. (2.2.8)

2.2.2 Zero-Curvature Representation

Let U(λ) and V (λ) be matrix valued functions of x and t depending on the auxiliary

variable λ called the spectral parameter. Consider a system of linear partial differential

equations Φx = U(λ)Φ,

Φt = V (λ)Φ,
(2.2.9)

where Φ is a column vector whose components depend on (x, t, λ). The consistency

condition Φxt = Φtx gives rise to the compatibility conditions

∂

∂t
(U(λ)Φ)− ∂

∂x
(V (λ)Φ) =

(
∂

∂t
U(λ)− ∂

∂x
V (λ) + [U(λ), V (λ)]

)
Φ = 0, (2.2.10)

which gives rise to the equation

Ut − Vx + [U, V ] = 0. (2.2.11)

13



This equation is referred to as the zero curvature equation and the scheme is known

as the zero curvature representation [37].

Example 2.2.2 If

U =
i

2

2λ ux

ux −2λ

 , V =
1

4iλ

cos(u) −isin(u)

isin(u) −cos(u)

 , (2.2.12)

where u = u(x, t), then the zero curvature equation (2.2.11) is equivalent to the sine-

Gordon equation

uxt = sin(u). (2.2.13)

2.2.3 The ZS-AKNS Scheme

Another method for deriving integrable systems is the AKNS scheme [3, 2, 36] which

was introduced by Ablowitz, Kaup, Newell and Segur in 1973 and Zakharov and Sha-

bat in 1972. Integrable systems such as the KdV equation, the sine-Gordon equation

and the mKdV equation can be derived from this method. The method is formulated

by considering the linear systems φx = Uφ,

φt = V φ,
(2.2.14)

where φ is a column vector and U and V are matrices. The consistency condition

φxt = φtx (under the isospectral condition, λt = 0) gives rise to the zero-curvature

equation (2.2.11). The matrices U and V which are said to form an AKNS pair

depend on the spectral parameter λ. This is in contrast with the Lax method in the

sense that the Lax pair may not depend on λ.

Example 2.2.3 Using the ZS-AKNS method, we derive the KdV equation from the

14



one-dimensional Schrödinger equation,

Lψ = λψ, (2.2.15)

where L = − d2

dx2
+ u(x, t) and λ = k2. Letting

φ =

ψx
ψ

 , U =

0 u− λ

1 0

 , (2.2.16)

we formulate the linear systems φx = Uφ,

φt = V φ,
(2.2.17)

where V is assumed to be of the form

V =

a b

c d

 . (2.2.18)

The entries a, b, c and d may depend on x, t and λ. The zero curvature equation

(2.2.11) yields 

b = −ax + (u− λ)c

d = a− cx

dx = −ax

ut − bx + (d− a)(u− λ) = 0

(2.2.19)

From the first three equations in (2.2.19), we can rewrite the last equation in (2.2.19)

as

ut +
1

2
cxxx − uxc− 2cx(u− λ) = 0 (2.2.20)
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Assuming that c depends linearly on the spectral parameter λ, we can let c = λα + β

and obtain

2αxλ
2 +

(
1

2
αxxx − 2αxu+ 2βx − uxα

)
λ+

(
ut +

1

2
βxxx − 2βxu− uxβ

)
= 0.

(2.2.21)

Equating the coefficients of the powers of λ to zero, we have
α = k1,

β = 1
2
k1u+ k2,

ut + 1
4
k1uxxx − k2ux − 3

2
k1uux = 0,

(2.2.22)

where k1 and k2 are arbitrary constants. Choosing k1 = 4 and k2 = 0, we obtain the

KdV equation (1.2.32). From the first three equations in (2.2.19) and the fact that

c = 4λ+ 2u, we have 
a = ux + k3,

b = −4λ2 + 2λu+ 2u2 − uxx,

d = k3 − ux,

(2.2.23)

where k3 is an arbitrary constant. Choosing k3 = 0, we find an explicit form for the

matrix V as

V =

 ux −4λ2 + 2λu+ 2u2 − uxx
4λ+ 2u −ux

 . (2.2.24)

2.2.4 The Tu-Ma Scheme

One of the most widely used methods for generating integrable hierarchies is the

so-called Tu-Ma scheme [38, 39]. We give a brief outline of this scheme below.
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Introduce an isospectral problem

φx = Uφ = U(u, λ)φ ∈ g̃, (2.2.25)

where g̃ is a simple matrix loop algebra based on a given matrix Lie algebra g, u, a

dependent variable, and λ, the spectral parameter.

Then, search for a solution of the form

W = W (u, λ) =
∑
i≥0

Wiλ
−i,Wi ∈ g̃, i ≥ 0, (2.2.26)

to the stationary zero curvature equation

Wx = [U,W ], (2.2.27)

and introduce the Lax matrices

V [m] = V [m](u, λ) = (λmW )+ + ∆m ∈ g̃, m ≥ 0, (2.2.28)

to formulate the temporal spectral problems

φtm = V [m]φ = V [m](u, λ)φ, m ≥ 0. (2.2.29)

The term (λmW )+ denotes the polynomial part of λmW in λ, and the modification

terms ∆m ∈ g̃ guarantee that the zero curvature equations

Utm − V [m]
x + [U, V [m]] = 0, m ≥ 0, (2.2.30)

produce a hierarchy of soliton equations

utm = Km(u), m ≥ 0. (2.2.31)
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In this dissertation, we will usually take g̃ to be

s̃o(3,R) =

{
∞∑
i≥0

Aiλ
n−i|Ai ∈ so(3,R), i ≥ 0 , n ∈ Z

}
. (2.2.32)

This loop algebra s̃o(3,R) [16] is based on the three-dimensional special orthogonal

Lie algebra so(3,R), which consists of 3×3 skew-symmetric real matrices. We choose

the matrices

e1 =


0 0 −1

0 0 0

1 0 0

 , e2 =


0 0 0

0 0 −1

0 1 0

 , e3 =


0 −1 0

1 0 0

0 0 0

 , (2.2.33)

having the commutator relations

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2 (2.2.34)

as a basis for so(3,R).

Example 2.2.4 Consider the spectral problem

φx =

λ2 λp

λq −λ2

φ ∈ s̃l(2,R), φ =

φ1

φ2

 , u =

p
q

 (2.2.35)

and suppose W in (2.2.27) is of the form

W =

a b

c −a

 =

 ∑i≥0 aiλ
−2i

∑
i≥0 biλ

−2i−1∑
i≥0 ciλ

−2i−1 −
∑

i≥0 aiλ
−2i

 ∈ s̃l(2,R), (2.2.36)

where

s̃l(2,R) =

{
∞∑
i≥0

Aiλ
n−i|Ai ∈ sl(2,R), i ≥ 0 , n ∈ Z

}
. (2.2.37)
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Then, (2.2.27) gives rise to the systems
a0 = 1,

b0 = p,

c0 = q,

(2.2.38)

and 
ai+1,x = −1

2
(qbi,x + pci,x),

bi+1 = 1
2
bi,x + pai+1,

ci+1 = −1
2
ci,x + qai+1

, i ≥ 1. (2.2.39)

The corresponding zero curvature equations (2.2.30) with a modification term ∆m =

−am+1e1 generate the following hierarchy of soliton equations:

utm = Km =

bm,x
cm,x

 , m ≥ 0, (2.2.40)

This hierarchy is usually referred to as the real form of the Kaup-Newell hierarchy

since its underlying Lie algebra is real. The original Kaup-Newell hierarchy is associ-

ated with the complex Lie algebra sl(2,C). Under the transformations ∂
∂x
→ −i ∂

∂x
and

∂
∂tm
→ −i ∂

∂tm
, (2.2.40) is transformed into the original Kaup-Newell soliton hierarchy

[12]. The first nonlinear system

ut1 =

p
q


t1

= K1 =

 1
2
[pxx − (p2q)x]

−1
2
[qxx + (pq2)x]

 , (2.2.41)

transforms into the derivative nonlinear Schrödinger equation

iqt1 = −1

2
qxx +

1

2
i(q∗q2)x (2.2.42)

under the transformations ∂
∂x
→ −i ∂

∂x
, ∂
∂t1
→ −i ∂

∂t1
and p = −q∗.
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2.3 A Spectral Problem and Soliton Hierarchy

Consider the following spectral problem:

φx = Uφ = U(u, λ)φ ∈ g̃. (2.3.1)

If we define

U = λe1 + pe2 + qe3, (2.3.2)

where

e1 =

1 0

0 −1

 , e2 =

0 1

0 0

 , e3 =

0 0

1 0

 , (2.3.3)

are a basis of the special linear Lie algebra, sl(2,R), then the above spectral problem

(2.3.1), usually called the ZS-AKNS spectral problem [36], generates the real form of

the AKNS soliton hierarchy. If

U = λ2e1 + λpe2 + λqe3, (2.3.4)

then (2.3.1) generates the real form of the Kaup-Newell hierarchy. Although, this is

not the original spectral problem introduced by Kaup and Newll, we still refer to it as

the Kaup-Newell spectral problem. Evidently, the matrix (2.3.4) is a modification of

(2.3.2). More precisely, (2.3.4) is the product of (2.3.2) and the spectral parameter λ.

This gives rise to a very interesting question: can one generate a new spectral problem

from any of the existing ones by a similar modification? As a consequence, we present

the following main theorem:

20



Theorem 2.3.1 [27] The spectral problem

φx = Uφ = U(u, λ)φ ∈ g̃, (2.3.5)

with spectral matrix

U = λqe1 + (λ2 + λp)e2 + (−λ2 + λp)e3 (2.3.6)

where e1, e2 and e3 are a basis of the Lie algebra so(3,R) given by (2.2.33), and

g̃ = s̃o(3,R), produces a hierarchy soliton equations

utm = Km = Φm

px
qx

 , m ≥ 0, (2.3.7)

where the operator Φ given by

Φ =

 −∂p∂−1p 1
2
∂ − 1

2
∂p∂−1q

−∂ − ∂q∂−1p −1
2
∂q∂−1q

 , ∂ =
∂

∂x
. (2.3.8)

This spectral problem introduced in this theorem is a modification of the well-

known Dirac spectral problem [11, 21]:

φx = Uφ = U(u, λ)φ ∈ g̃ (2.3.9)

with spectral matrix

U = qe1 + (λ+ p)e2 + (−λ+ p)e3 (2.3.10)

where e1, e2 and e3 are a basis of the Lie algebra sl(2,R) given by (2.3.3).
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In what follows we employ the so-called Tu-Ma Scheme [15, 38, 39] to prove

the above theorem.

Proof. The spectral problem (2.3.5) associated with the loop algebra (2.2.32) reads

φx = U(u, λ)φ, φ =


φ1

φ2

φ3

 , u =

p
q

 , (2.3.11)

where the spectral matrix U is

U = λqe1 + (λ2 + λp)e2 + (−λ2 + λp)e3 =


0 λ2 − λp −λq

−λ2 + λp 0 −λ2 − λp

λq λ2 + λp 0

 .
(2.3.12)

If we suppose that W , a solution of the stationary zero curvature equation (2.2.27) is

of the form

W = ce1 + (a+ b)e2 + (a− b)e3 =


0 −a+ b −c

a− b 0 −a− b

c a+ b 0

 ∈ s̃o(3,R), (2.3.13)

then, it follows from (2.2.27) that
ax = λqb− λ2c,

bx = −λqa+ λpc,

cx = 2λ2a− 2λpb.

(2.3.14)
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Letting 
a =

∑
i≥0 aiλ

−2i−1,

b =
∑

i≥0 biλ
−2i,

c =
∑

i≥0 ciλ
−2i−1,

(2.3.15)

and taking the initial values 
a0 = p,

b0 = 1,

c0 = q,

(2.3.16)

obtained by solving the equations
a0 − pb0 = 0,

c0 − qb0 = 0,

b0,x = −qa0 + pc0,

(2.3.17)

we obtain from (2.3.14), the relations
ai,x = qbi+1 − ci+1,

bi+1,x = −qai+1 + pci+1,

ci,x = 2ai+1 − 2pbi+1,

i ≥ 0. (2.3.18)

The first and last equations give rise to

bi+1,x = −q
2
ci,x − pai,x, i ≥ 0. (2.3.19)

By imposing the following conditions (i.e., choosing constants of integration to be

zero):
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ai|u=0 = bi|u=0 = ci|u=0 = 0, i ≥ 1, (2.3.20)

(2.3.18) uniquely determines the sequence {ai, bi, ci|i ≥ 1}, of which the first two sets

are presented as follows: 
a1 = 1

2
qx − 1

2
p3 − 1

4
pq,

b1 = −1
2
p2 − 1

4
q2,

c1 = −px − 1
2
qp2 − 1

4
q3,

(2.3.21)

and 
a2 = −1

2
pxx − 3

4
qxp

2 − 3
8
q2qx + 3

8
q2p3 + 3

8
p5 + 3

32
pq4,

b2 = −3
8
q2p2 + 3

8
p4 − 1

2
qxp+ 1

2
qpx + 3

32
q4,

c2 = −1
2
qxx + 3

2
pxp

2 + 3
4
pxq

2 + 3
8
q3p2 + 3

8
qp4 + 3

32
q5.

(2.3.22)

Now, by virtue of (2.3.18) and the structure of the spectral matrix U in (2.3.12),

we introduce a sequence of Lax operators

V [m] = λ(λ(2m+1)W )+, m ≥ 0, (2.3.23)

and as a result, the corresponding zero curvature equations

Utm − V [m]
x + [U, V [m]] = 0, m ≥ 0, (2.3.24)

generate the following hierarchy of soliton equations:

utm = Km =

am,x
cm,x

 = Φm

a0,x

c0,x

 = Φm

px
qx

 , m ≥ 0, (2.3.25)
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with Φ determined by (2.3.18), and given as

Φ =

 −∂p∂−1p 1
2
∂ − 1

2
∂p∂−1q

−∂ − ∂q∂−1p −1
2
∂q∂−1q

 , ∂ =
∂

∂x
, (2.3.26)

where ∂−1 is the inverse of the differential operator ∂.

Proposition 2.3.2 The functions ai, bi, ci, i ≥ 1 are local.

Proof. The identities

tr(W 2) = −4a2 − 4b2 − 2c2 (2.3.27)

and

d

dx
tr(W 2) = 2tr(WWx) = 2tr(W [U,W ]) = 0, (2.3.28)

as well as the initial data (2.3.16) give rise to the equation

2a2 + 2b2 + c2 = (2a2 + 2b2 + c2)|u=0 = 2. (2.3.29)

Rewriting this equation (2.3.29) in terms of the Laurent series of the functions a, b

and c in (2.3.15) and balancing coefficients of λi for each i ≥ 1 gives

bi = −1

2

∑
k+l=i,k,l≥1

bkbl −
1

2

∑
k+l=i,k,l≥0

(
akal +

1

2
ckcl

)
, i ≥ 1. (2.3.30)

Based on this recursion relation and the first and last relations of (2.3.18), an ap-

plication of mathematical induction shows that all the functions ai, bi, ci, i ≥ 1 are

differential polynomials in u, and thus are local functions. This completes the proof.
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The first system in (2.3.25) reads

ut1 =

p
q


t1

= K1 =

 qxx − 3p2px − 1
2
pxq

2 − pqqx
−pxx − 1

2
qxp

2 − qppx − 3
4
q2qx

 . (2.3.31)

It is worth mentioning that these equations (2.3.25) have very recently been found to

be connected to the original Kaup-Newell system [12] by some gauge transformation,

although, interestingly enough, the newly introduced spectral matrix (2.3.12) cannot

be directly transformed to the Kaup-Newell spectral matrix [12]. In spite of such a

connection, there may still be some remarkable differences between these two spectral

problems. We elaborate this point in the next chapter.

2.4 An Extended Spectral Problem and Soliton Hierarchy

In this section, we present a generalization of the soliton hierarchy (2.3.25).

Theorem 2.4.1 [26] The spectral problem

φx = Uφ = U(u, λ)φ ∈ g̃, (2.4.1)

with spectral matrix

U = λqe1 + [λ2 + λp+ α(p2 +
q2

2
)]e2 + [−λ2 + λp− α(p2 +

q2

2
)]e3, (2.4.2)

where α ∈ R, e1, e2 and e3 are a basis of the Lie algebra, so(3,R) and g̃ = s̃o(3,R)

produces a hierarchy of soliton equations

utm = Km =

 am,x + α(p2 + q2

2
)cm + 2αqbm+1

cm,x − 2α(p2 + q2

2
)am − 4αpbm+1

 , m ≥ 0, (2.4.3)
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where the vector components of Km are determined by the recursion relations
bm+1,x = − q

2
cm,x − pcm,x + α(p2 + q2

2
)(qam − pcm),

cm+1 = −am,x + qbm+1 − α(p2 + q2

2
)cm,

am+1 = 1
2
cm,x + pbm+1 − α(p2 + q2

2
)am,

(2.4.4)

with initial values

a0 = p, b0 = 1, c0 = q.

Proof. The spectral problem associated with the loop algebra (2.2.32) reads

φx = Uφ = U(u, λ)φ, u =

p
q

 , φ =


φ1

φ2

φ3

 , (2.4.5)

with the spectral matrix

U =


0 λ2 − λp+ α(p2 + q2

2
) −λq

−λ2 + λp− α(p2 + q2

2
) 0 −λ2 − λp− α(p2 + q2

2
)

λq λ2 + λp+ α(p2 + q2

2
) 0

 .
(2.4.6)

If we take W in (2.2.27) to be of the form

W = ce1 + (a+ b)e2 + (a− b)e3 =


0 −a+ b −c

a− b 0 −a− b

c a+ b 0

 ∈ s̃o(3,R), (2.4.7)
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then (2.2.27) gives rise to
ax = λqb− λ2c− α(p2 + q2

2
)c,

bx = −λqa+ λpc,

cx = 2λ2a− 2λpb+ 2α(p2 + q2

2
)a.

(2.4.8)

Letting 
a =

∑
i≥0 aiλ

−2i−1,

b =
∑

i≥0 biλ
−2i,

c =
∑

i≥0 ciλ
−2i−1,

(2.4.9)

and taking the initial values 
a0 = p,

b0 = 1,

c0 = q,

(2.4.10)

which are obtained by solving the equations,
a0 − pb0 = 0,

c0 − qb0 = 0,

b0,x = −qa0 + pc0,

the system (2.4.8) reduces to
bi+1,x = −qai+1 + pci+1,

ai,x = qbi+1 − ci+1 − α(p2 + q2

2
)ci,

ci,x = 2ai+1 − 2pbi+1 + 2α(p2 + q2

2
)ai.

(2.4.11)
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The last two equations lead to

bi+1,x = −q
2
ci,x − pci,x + α(p2 +

q2

2
)(qai − pci), i ≥ 0. (2.4.12)

By choosing constants of integration to be zero, (2.4.11) consequently determines

uniquely the sequence {ai, bi, ci|i ≥ 1}, of which the first two sets are presented as

follows: 
a1 = 1

2
qx − 1

2
p3 − 1

4
pq − αp3 − α

2
pq2,

b1 = −1
2
p2 − 1

4
q2,

c1 = −px − 1
2
qp2 − 1

4
q3 − αqp2 − α

2
q3,

(2.4.13)



a2 = −1

2
pxx −

3

4
qxp

2 − 3

8
q2qx +

3

8
q2p3 +

3

8
p5 +

3

32
pq4 − αqxp2 − αqppx

− αq2qx +
3

2
αp5 +

3

2
αp3q2 +

3

8
αpq4 + α2p5 + α2p3q2 +

1

4
α2pq4,

b2 = −3

8
q2p2 +

3

8
p4 − 1

2
qxp+

1

2
qpx +

3

32
q4 + αp4 + αp2q2 − α

4
q4,

c2 = −1

2
qxx +

3

2
pxp

2 +
3

4
pxq

2 +
3

8
q3p2 +

3

8
qp4 +

3

32
q5 + 4αp2px + αpxq

2

+ αpqqx +
3

2
αqp4 +

3

2
αp2q3 +

3

8
αq5 + α2qp4 + α2p2q3 +

α2

4
q5.

(2.4.14)

Now, the system (2.4.11) leads toai+1

bi+1

 = Q

ai
bi

 , Q =

Q11 Q12

Q21 Q22

 , (2.4.15)
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where 

Q11 = −p∂−1p∂ + αp∂−1(p2q + q3

2
)− α(p2 + q2

2
),

Q12 = −1
2
∂ − p

2
∂−1q∂ − αp∂−1(p3 + p q

2

2
),

Q21 = −∂ − q∂−1p∂ + αq∂−1(p2q + q3

2
),

Q22 = − q
2
∂−1q∂ − αq∂−1(p3q + p q

2

2
)− α(p2 + q2

2
).

(2.4.16)

We now introduce a sequence of Lax operators with modification terms:

V [m] = λ(λ(2m+1)W )+ + ∆m, m ≥ 0, (2.4.17)

where ∆m is chosen as

∆m = δm(e2 − e3), m ≥ 0. (2.4.18)

Consequently, we obtain

V [m]
x − [U, V [m]] = λ(λ2m+1Wx)+ + δm,x(e2 − e3)− λ[U, (λ2m+1W )+]− [U, δm(e2 − e3)].

(2.4.19)

Now, we see that

(λ2m+1Wx)+ − [U, (λ2m+1W )+]

=


0 −am,x − α(p2 + q2

2
)cm −cm,x + 2α(p2 + q2

2
)am

am,x + α(p2 + q2

2
)cm 0 −am,x − α(p2 + q2

2
)cm

cm,x − 2α(p2 + q2

2
)am am,x + α(p2 + q2

2
)cm 0

 (2.4.20)

and also

[U, δm(e2 − e3)] = λδm(−2pe1 + qe2 + qe3). (2.4.21)
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Thus, (2.4.19) becomes

V [m]
x − [U, V [m]]

= λ


0 −am,x − α(p2 + q2

2
)cm −cm,x + 2α(p2 + q2

2
)am

am,x + α(p2 + q2

2
)cm 0 −am,x − α(p2 + q2

2
)cm

cm,x − 2α(p2 + q2

2
)am am,x + α(p2 + q2

2
)cm 0



+ λ


0 qδm −2pδm

−qδm 0 qδm

2pδm −qδm 0

+


0 δm,x 0

δm,x 0 −δm,x
0 δm,x 0

 ,
(2.4.22)

and as a result the corresponding zero curvature equations

Utm − V [m]
x + [U, V [m]] = 0, m ≥ 0, (2.4.23)

generate the equations:
ptm = am,x + α(p2 + q2

2
)cm − qδm

qtm = cm,x − 2α(p2 + q2

2
)am + 2pδm

δm,x = α(p2 + q2

2
)tm .

(2.4.24)

To find δm, we observe that

δm,x = α(2pptm + qqtm)

= α[2p(am,x + α(p2 +
q2

2
)cm − qδm) + q(cm,x − 2α(p2 +

q2

2
)am + 2pδm)]

= α[2p(am,x + α(p2 +
q2

2
)cm) + q(cm,x − 2α(p2 +

q2

2
)am)]

= −2αbm+1,x.
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Hence, upon taking δm = −2αbm+1,x, (2.4.24) producesptm = am,x + α(p2 + q2

2
)cm + 2αqbm+1,

qtm = cm,x − 2α(p2 + q2

2
)am − 4αpbm+1,

(2.4.25)

and thus, we obtain the following hierarchy of soliton equations:

utm = Km =

 am,x + α(p2 + q2

2
)cm + 2αqbm+1

cm,x − 2α(p2 + q2

2
)am − 4αpbm+1

 , m ≥ 0. (2.4.26)

It should be noted that when α = 0, we obtain the soliton hierarchy (2.3.25).

Proposition 2.4.2 The functions ai, bi, ci, i ≥ 1 are local.

The proof is similar to that of proposition 2.3.2. We leave out the details.
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3 Hamiltonian Formulations of Soliton Hierarchies

3.1 Introduction

In the theory of integrable systems, the Hamiltonian formalism, originally introduced

by Gardner [9] and Faddeev and Zakharov [42] in the early 1970’s, is closely related to

the concept of integrability. For a system of first-order ordinary differential equations,

integrability in the sense of Liouville is based on the existence of a Hamiltonian

structure and sufficiently many functionally independent conserved quantities (first

integrals) which are in involution. This is the content of the Liouville-Arnold thorem.

In the case of partial differential equations (evolution equations) in Hamiltonian form,

the phase space is infinite-dimensional and so by extension we would require the

existence of an infinite number of conserved quantities to guarantee integrability in

the sense of Liouville [15, 17, 37, 39] . For systems that can be written in two different

Hamiltonian forms (bi-Hamiltonian systems), integrability is guaranteed by a result

due to Magri [25]. Our goal in this section is to discuss integrability within the

framework of bi-Hamiltonian structures.

Throughout this section, we assume that each function in the potential vector

u is in the Schwartz space (the space of rapidly decreasing functions on Rn).

Theorem 3.1.1 [29, 30] Let P [u] ∈ Ap be defined over a vertically star-shaped region

M ⊂ X × U . Then P is the Euler-Lagrange expression for some variational problem

L =
∫
Ldx, i.e. P = E(L), if and only if the Fréchet derivative dP is self adjoint:

d∗P = dP . In this case, a Lagrangian for P can be explicitly constructed using the
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homotopy formula

L[u] =

∫ 1

0

u · P [λu]dλ. (3.1.1)

When P [u] contains irrational terms, the above integral may diverge due to a possible

singularity at λ = 0. In this case we evaluate the integral

L[u] =

∫ 1

λ0

u · P [λu]dλ (3.1.2)

and take the limit as λ0 →∞.

Example 3.1.2 Consider the functional

L =

∫
(u2

xx − uux)dx. (3.1.3)

Its Euler-Lagrange expression is

E(L)[u] = P [u] = −ux −Dx(−u) +D2
x(2uxx) = 2uxxxx. (3.1.4)

and it’s Fréchet derivative is

dP (Q) = P ′[Q] = 2
d

dε

∣∣∣
ε=0

[(uxxxx + εD4
xQ)] = 2D4

xQ. (3.1.5)

Thus,

dP = 2D4
x, (3.1.6)

which is obviously self-adjoint.

On the other hand, given P [u] = 2uxxxx, we can obtain the functional (3.1.3)
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using the homotopy formula (3.1.1) as follows

L[u] =

∫ {∫ 1

0

u · P [λu]dλ
}
dx

= 2

∫ {∫ 1

0

u · (λuxxxx)dλ
}
dx

=

∫
uuxxxxdx.

(3.1.7)

The Lagrangian L = uuxxxx is not the same as the original one in (3.1.3), but the two

are still equivalent since

uuxxxx = u2
xx − uux +Dx(uuxxx − uxuxx +

1

2
u2). (3.1.8)

Definition 3.1.3 A conservation law of a system of evolution equations takes the

form

DtH + DivP = 0, (3.1.9)

which vanishes for all solutions u = f(x, t) of the given system. Here Div denotes

the spatial divergence and the conserved density H(x, t, u(n)) is assumed without loss

of generality to depend only on x−derivatives of u. Equivalently, for Ω ⊂ X, the

functional

H =

∫
Ω

H(x, t, u(n)) (3.1.10)

is a constant, independent of t, for all solutions u such that H(x, t, u(n)) → 0 as

x→ ∂Ω.

Example 3.1.4 As an example, let’s consider the KdV equation (1.2.32). This equa-

tion is known to have infinitely many conservation laws. We show how to derive the

first two. In the one-dimensional case, equation (3.1.9) becomes

DtH +DxP = 0. (3.1.11)
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Thus, we have ∫
DtHdx = −

∫
DxPdx, (3.1.12)

which reduces to

Dt

∫
Hdx = 0, (3.1.13)

due to the boundary conditions. Thus the quantity H given by

H =

∫
Hdx (3.1.14)

is conserved. Now the KdV equation can be rewritten in the form

Dtu+Dx

(
3u2 + uxx

)
= 0, (3.1.15)

and so we have that the quantity

H1 =

∫
udx (3.1.16)

is a conserved functional for the KdV equation.

A second conservation law is derived as

Dt

(
u2
)

+Dx

(
4u3 + 2uuxx − u2

x

)
= 0 (3.1.17)

and so, we have that the quantity

H2 =

∫
u2dx (3.1.18)

is also a conserved functional for the KdV equation.

Definition 3.1.5 Let D : Aq → Aq be a linear operator. We define a bracket on F
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as follows

{P ,Q}J =

∫ (
δP
δu

)T
DδQ
δu
dx (3.1.19)

where P ,Q ∈ F .

Definition 3.1.6 A linear operator D : Aq → Aq is called Hamiltonian if its bracket

satisfies the condition of skew-symmetry

{P ,Q} = −{Q,P} (3.1.20)

and the Jacobi identity

{{P ,Q},R}+ {{R,P},Q}+ {{Q,R},P} = 0 (3.1.21)

for all functionals P ,Q,R ∈ F . In this case the bracket (3.1.19) is called a Poisson

bracket.

Definition 3.1.7 A Hamiltonian system of evolution equation is a system of the form

∂u

∂t
= DδH

δu
, (3.1.22)

where H ∈ F and D is a Hamiltonian operator. The functional H is called a Hamil-

tonian functional.

Definition 3.1.8 A nonlinear evolution equation is called Liouville integrable if it

can be written as a Hamiltonian system with a well defined Poisson bracket {·, ·},

such that it possesses an infinite number of conserved functionals, {Hn} which are in

involution in pairs {Hm,Hm} = 0.

Proposition 3.1.9 [29] Let D be a q × q matrix differential operator with bracket
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(3.1.19) on the space of functionals. Then the bracket is skew-symmetric, i.e., (3.1.20)

holds, if and only if D is skew-adjoint: D∗ = −D.

Corollary 3.1.10 [29] If D is a skew-adjoint q×q matrix differential operator whose

coefficients do not depend on u, then D is automatically a Hamiltonian operator.

Definition 3.1.11 A pair of skew-adjoint q × q matrix differential operators D and

E is said to form a Hamiltonian pair if every linear combination aD+ bE , a, b ∈ R, is

a Hamiltonian operator.

Definition 3.1.12 A system of evolution equations is a bi-Hamiltonian system if it

can be written in the form

ut = K1[u] = DδH1

δu
= E δH0

δu
, (3.1.23)

where D and E form a Hamiltonian pair.

Lemma 3.1.13 [29] If D, E are skew-adjoint operators, then they form a Hamiltonian

pair if and only if D, E and D + E are all Hamiltonian operators.

Theorem 3.1.14 [29] Let ut = K1[u] = DδH1

δu
= E δH0

δu
be a bi-Hamiltonian system

of evolution equations. Then the operator R = E · D−1 is a recursion operator for the

system.

Theorem 3.1.15 [29] Let

ut = K1[u] = DδH1

δu
= E δH0

δu
(3.1.24)

be a bi-Hamiltonian system of evolution equations. Assume that the operator D of the

Hamiltonian pair is nondegenerate. Let R = E · D−1 be the corresponding recursion

operator, and let K0 = DδH0

δu
. Assume that for each n = 1, 2, . . . , we can recursively

define

Kn = RKn−1, n ≥ 1, (3.1.25)
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meaning that for each n, Kn−1 lies in the image of D. Then there exists a sequence

of functionals H0,H1,H2, . . . , such that

1. for each n ≥ 1, the evolution equation

ut = K1[u] = DδHn

δu
= E δHn−1

δu
(3.1.26)

is a bi-Hamiltonian system;

2. the corresponding evolutionary vector fields vn = vKn all mutually commute:

[vn, vm] = 0, n,m ≥ 0; (3.1.27)

3. the Hamiltonian functionals Hn are a all in involution with respect to either

Poisson bracket:

{Hn,Hm}D = {Hn,Hm}E = 0, n,m ≥ 0, (3.1.28)

and hence provide an infinite collection of conservation laws for each of the bi-Hamiltonian

systems (3.1.26).

Definition 3.1.16 Let D be a skew-adjoint differential operator. We define a func-

tional bi-vector, Θ associated with D as

ΘD =
1

2

∫
{θ ∧ Dθ}dx, (3.1.29)

where θ is a a “uni-vector” corresponding to the one-form du.

Definition 3.1.17 Let vQ be an evolutionary vector field with characteristics Q. The

prolongation of vQ is the vector field, pr vQ, defined by

pr vQ =
∑
J

DJ(Q)
∂

∂uJ
. (3.1.30)
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If D is a differential operator, then the vector field vDθ is a formal evolutionary

vector field with characteristic Dθ, and thus

pr vDθ =
∑
J

DJ(Dθ) ∂

∂uJ
. (3.1.31)

So, if P ∈ A is a differential function, then

pr vDθ(P ) =
∑
J

∂P

∂uJ
DJ(Dθ). (3.1.32)

The vector field pr vDθ, can also act on differential operators (see, e.g., [29]) in such

a way that it acts only on coefficients that are functionally dependent on u.

Example 3.1.18 If D = D3
x + uDx and P = u+ ux, then

Dθ = θxxx + uθx (3.1.33)

and so

pr vDθ(P ) = pr vDθ(u) + pr vDθ(ux)

= (Dθ) + (Dθ)x

= θxxxx + θxxx + uθx + uxθx + uθxx.

(3.1.34)

Also,

pr vDθ(D) = pr vDθ(D3
x + uDx)

= pr vDθ(u)Dx

= (Dθ)Dx

= (θxxx + uθx)Dx.

(3.1.35)

Proposition 3.1.19 [29] Let D be a skew-adjoint differential operator. Then D is
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Hamiltonian if and only if the functional tri-vector

Ψ =

∫
{θ ∧ pr vDθ(D) ∧ θ}dx (3.1.36)

vanishes.

Corollary 3.1.20 [29] Let D be a skew-adjoint differential operator and ΘD = 1
2

∫
{θ∧

Dθ}dx be the corresponding functional bi-vector. Then

pr vDθ(ΘD) =
1

2

∫
{pr vDθ(θ ∧ Dθ)}dx, (3.1.37)

where

−pr vDθ(θ ∧ Dθ) = θ ∧ pr vDθ(D) ∧ θ. (3.1.38)

Example 3.1.21 From example 3.1.18, we have

θ ∧ pr vDθ(D) ∧ θ = θ ∧ (θxxxDx + uθxDx) ∧ θ

= θ ∧ θxxx ∧ θx + uθ ∧ θx ∧ θx

= −(θ ∧ θx ∧ θxxx).

(3.1.39)

Here we used the fact that θ ∧ θx ∧ θx = 0, by the properties of the wedge product.

Thus,

pr vDθ(ΘD) =
1

2

∫
{θ ∧ θx ∧ θxxx}dx. (3.1.40)

By the following property of the wedge products

(θ ∧ θx) ∧ θxxx = (θ ∧ θx) ∧Dxθxx

= Dx(θ ∧ θx ∧ θxx)−Dx(θ ∧ θx) ∧ θxx,
(3.1.41)
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we obtain

pr vDθ(ΘD) =
1

2

∫
{θxxx ∧ θ ∧ θx}dx

= −1

2

∫
Dx(θ ∧ θx) ∧ θxxdx

= −1

2

∫
(θx ∧ θx + θ ∧ θxx) ∧ θxxdx

= 0

(3.1.42)

again, by the properties of the wedge products.

Theorem 3.1.22 [29] Let D be a skew-adjoint differential operator and ΘD = 1
2

∫
{θ∧

Dθ}dx be the corresponding functional bi-vector. Then D is Hamiltonian if and only

if

pr vDθ(ΘD) = 0. (3.1.43)

Example 3.1.23 Let D be given as in example 3.1.18. By proposition 3.1.19, we

only need to show that pr vDθ(ΘD) = 0:

pr vDθ(ΘD) =
1

2

∫
{pr vDθ(θ ∧ Dθ)}dx

=
1

2

∫
{pr vDθ(θ ∧ (θxxx + uθx))}dx

=
1

2

∫
{pr vDθ(θ ∧ θxxx + uθ ∧ θx)}dx

=
1

2

∫
((Dθ) ∧ θ ∧ θx)dx

=
1

2

∫
(θxxx ∧ θ ∧ θx + uθx ∧ θ ∧ θx)dx

= 0

(3.1.44)

by previous calculations. Thus we have shown that D = D3
x + uDx is a Hamiltonian

operator.
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Corollary 3.1.24 [29] Let D and E be Hamiltonian differential operators. Then D, E

form a Hamiltonian pair if and only if

pr vDθ(ΘE) + pr vEθ(ΘD) = 0, (3.1.45)

where

ΘD =
1

2

∫
{θ ∧ Dθ}dx, ΘE =

1

2

∫
{θ ∧ Eθ}dx. (3.1.46)

Corollary 3.1.25 [29] If P ∈ Ar and Q ∈ Aq, then

pr vQ(P ) = dP (Q), (3.1.47)

where dP (Q) is the Fréchet derivative.

Lemma 3.1.26 [29] Let P ,L,R be functionals with variational derivatives
δP
δu

=

P,
δQ
δu

= Q,
δR
δu

= R ∈ Aq. Then the Jacobi identity (3.1.21) is equivalent to the

expression

∫ [
P · pr vDR(D)Q+R · pr vDQ(D)P +Q · pr vDP (D)R

]
dx = 0. (3.1.48)

By corollary 3.1.25, this is equivalent to

∫ [
P · dD(DR)Q+R · dD(DQ)P +Q · dD(DP )R

]
dx = 0, (3.1.49)
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which can also be written as∫ [
P · D′[DR]Q+R · D′[DQ]P +Q · D′[DP ]R

]
dx = 0 (3.1.50)

or more commonly

〈P,D′[DR]Q〉+ 〈R,D′[DQ]P 〉+ 〈Q,D′[DP ]R〉 = 〈P,D′[DR]Q〉+ cycle(P,Q,R) = 0.

(3.1.51)

Proposition 3.1.27 [29] Let D be a skew-adjoint q × q matrix differential operator.

Then the bracket (3.1.19) satisfies the Jacobi identity if and only if (3.1.50) vanishes

for all q−tuples P,Q,R ∈ Aq.

3.1.1 A Classic Example-The Harry Dym Equation

As an example, we consider the well-known Harry Dym equation

ut = −1

2
u3uxxx. (3.1.52)

Under the transformation v = u−2, this equation can written in the equivalent form

vt = (v−
1
2 )xxx. (3.1.53)

We show that this equation has a bi-Hamiltonian structure

vt = D1
δH1

δv
= D2

δH2

δv
, (3.1.54)

where D1 and D2 are the Hamiltonian operators and H1 and H2 are the Hamiltonian

functionals.
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Observe that

vt = D3
x(v
− 1

2 ) ≡ D1
δH1

δv
. (3.1.55)

Let K1[v] = v−
1
2 . Then by the formula (3.1.1) in theorem 3.1.1, we have

H1 =

∫ (∫ 1

0

v ·K1[λv]dλ
)
dx

=

∫ (∫ 1

0

v
1
2λ

1
2dλ
)
dx

= 2

∫
v

1
2dx.

(3.1.56)

Also,

D3
x(v
− 1

2 ) = −1

8
· 4vxxxv

2 − 18vxvxx + 15v3
x

v
7
2

= (2vDx + vx)
( 5v2

x

16v
7
2

− vxx

4v
5
2

)
≡ D2

δH2

δv
.

(3.1.57)

Let K2[v] =
5v2

x

16v
7
2

− vxx

4v
5
2

. Then by the formula (3.1.2) in theorem 3.1.1, we have

H2 = lim
λ0→∞

∫ (∫ 1

λ0

v ·K2[λv]dλ
)
dx

=

∫ (
lim
λ0→∞

∫ 1

λ0

λ−
3
2

( 5

16
v2
xv
− 5

2 − 1

4
vxxv

− 3
2

)
dλ
)
dx

=

∫ (
− 5

8
v2
xv
− 5

2 +
1

2
vxxv

− 3
2

)
dx.

(3.1.58)
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The differential function −5

8
v2
xv
− 5

2 +
1

2
vxxv

− 3
2 can be rewritten as

−5

8
v2
xv
− 5

2 +
1

2
vxxv

− 3
2 = −1

8
v2
xv
− 5

2 +Dx

(
− 1

2
vxv

− 3
2

)
(3.1.59)

Thus, we have

H2 =

∫ (
− 5

8
v2
xv
− 5

2 +
1

2
vxxv

− 3
2

)
dx = −1

8

∫
v−

5
2v2
xdx. (3.1.60)

Now we show that the operators D1 and D2 are Hamiltonian. By formula 3.1.29,

ΘD1 =
1

2

∫
{θ ∧D1θ}dx

=
1

2

∫
{θ ∧D3

xθ}dx

=
1

2

∫
{θ ∧ θxxx}dx

(3.1.61)

and

ΘD2 =
1

2

∫
{θ ∧D2θ}dx

=
1

2

∫
{θ ∧ (2vDx + vx)θ}dx

=
1

2

∫
{θ ∧ (2vθx + vxθ)}dx

=
1

2

∫
{2vθ ∧ θx}dx.

(3.1.62)

So by corollary 3.1.20, we have

pr vD1
(ΘD1) =

1

2
pr vD1

∫
{θ ∧ θxxx}dx

= 0

(3.1.63)

trivially, since there are no terms in v. Thus D1 = D3
x is a Hamiltonian operator.

46



Similarly,

pr vD2
(ΘD2) = pr vD2

∫
{vθ ∧ θx}dx

=

∫
{D2(θ) ∧ θ ∧ θx}dx

=

∫
{(2vθx + vxθ) ∧ θ ∧ θx}dx

=

∫
{2vθx ∧ θ ∧ θx + vxθ ∧ θ ∧ θx}dx

= 0

(3.1.64)

by the properties of the wedge product. So D2 = 2vDx + ux is also a Hamiltonian

operator.

Now we show that D1 and D2 form a Hamiltonian pair. Due to lemma 3.1.13,

we only need to show that D1 + D2 is also a Hamiltonian operator. By corollary

3.1.20, we have

pr vD2
(ΘD1) =

1

2
pr vD2

∫
{θ ∧ θxxx}dx

= 0

(3.1.65)

and

pr vD1
(ΘD2) = pr vD1

∫
{vθ ∧ θx}dx

=

∫
{D1(θ) ∧ θ ∧ θx}dx

=

∫
{θxxx ∧ θ ∧ θx}dx

=

∫
{θ ∧ θx ∧ θxxx}dx

= 0

(3.1.66)

by previous calculations. We have thus shown that the Harry Dym equation is bi-

47



Hamiltonian.

3.2 Hamiltonian Formulation and Liouville Integrability of the First

Hierarchy

We now present the first hierarchy (2.3.25) in a Hamiltonian form using the identity:

δ

δu

∫
tr

(
∂U

∂λ
W

)
dx = λ−γ

∂

∂λ
λγtr

(
∂U

∂u
W

)
, γ = −λ

2

d

dλ
ln|tr(W 2)|, (3.2.67)

This identity is called the trace identity [17, 38].

3.2.1 Hamiltonian Structure

Observe that

∂U

∂p
=


0 −λ 0

λ 0 −λ

0 λ 0

 , ∂U∂q =


0 0 −λ

0 0 0

λ 0 0

 and
∂U

∂λ
=


0 2λ− p −q

−2λ+ p 0 −2λ− p

q 2λ+ p 0

 ,
and as a result, we have

tr

(
W
∂U

∂λ

)
= −4ap− 8bλ− 2qc, tr

(
W
∂U

∂p

)
= −4aλ and tr

(
W
∂U

∂q

)
= −2cλ.

Consequently, we have

δ

δu

∫
(−4ap− 8λb− 2qc) dx = λ−γ

∂

∂λ
λγ

−4λa

−2λc

 . (3.2.68)

Equating coefficients of λm in the above equation gives

δ

δu

∫
(2pam + 4bm+1 + qcm)dx = (γ − 2m)

2am

cm

 , m ≥ 0,
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and considering a particular case with m = 1 yields γ = 0, and thus we obtain

δ

δu

∫ (
−2pam + 4bm+1 + qcm

2m

)
dx =

2am

cm

 , m ≥ 1. (3.2.69)

We have thus proved the following proposition

Proposition 3.2.1 The soliton hierarchy (2.3.25) has the Hamiltonian structure:

utm = Km =

am,x
cm,x

 = J

2am

cm

 = J
δHm

δu
, m ≥ 0, (3.2.70)

with Hamiltonian operator

J =

1
2
∂ 0

0 ∂

 , (3.2.71)

and Hamiltonian functionals

H0 =

∫ (
p2 +

q2

2

)
dx, Hm =

∫ (
−2pam + 4bm+1 + qcm

2m

)
dx, m ≥ 1. (3.2.72)

Using formula 3.1.1 in theorem 3.1.1, H0 is obtained by direct computation as

follows:

Observing that

K0 =
δH0

δu
=

2p

q

 , (3.2.73)

we have

K0(λu) = λ

2p

q

 . (3.2.74)

49



Thus,

H0 =

∫ (∫ 1

0

uT ·K0(λu)dλ
)
dx

=

∫ (∫ 1

0

λ ·

p
q

T ·
2p

q

 dλ)dx
=

∫ (
p2 +

q2

2

)
dx.

(3.2.75)

3.2.2 Bi-Hamiltonian Structure and Liouville Integrability

Proposition 3.2.2 The operator D defined by

D = α

 0 1
2
∂2

−1
2
∂2 0

+ β

1
2
∂ 0

0 ∂

+

−1
2
∂p∂−1p∂ −1

2
∂p∂−1q∂

−1
2
∂q∂−1p∂ −1

2
∂q∂−1q∂

 , (3.2.76)

for arbitrary constants α, β ∈ R is a Hamiltonian operator.

Proof. It is easy to see that D∗ = −D. Thus we only need to verify lemma 3.1.26:

〈P,D′[DQ]R〉+ cycle(P,Q,R) = 〈P,D′[DQ]R〉+ 〈Q,D′[DR]P 〉+ 〈R,D′[DP ]Q〉 = 0

(3.2.77)

for arbitrary symmetries

P =

P1

P2

 , Q =

Q1

Q2

 , R =

R1

R2

 . (3.2.78)

Here, cycle(P,Q,R) denotes the cyclic permutation of P,Q,R.

Let

X = ∂−1(pP1,x + qP2,x), Y = ∂−1(pQ1,x + qQ2,x), Z = ∂−1(pR1,x + qR2,x) (3.2.79)
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and U
V

 = DQ =
1

2

 αQ2,xx + βQ1,xx − ∂p∂−1(pQ1,x + qQ2,x)

−αQ1,xx + 2βQ2,xx − ∂q∂−1(pQ1,x + qQ2,x)


=

1

2

 αQ2,xx + βQ1,xx − ∂pY

−αQ1,xx + 2βQ2,xx − ∂qY

 .

(3.2.80)

Then

D′[DQ] = −1

2

∂U∂−1p∂ + ∂p∂−1U∂ ∂U∂−1q∂ + ∂p∂−1V ∂

∂V ∂−1p∂ + ∂q∂−1U∂ ∂V ∂−1q∂ + ∂q∂−1V ∂

 , (3.2.81)

and

D′[DQ]R = −1

2

∂U∂−1(pR1,x + qR2,x) + ∂p∂−1(UR1,x + V R2,x)

∂V ∂−1(pR1,x + qR2,x) + ∂q∂−1(UR1,x + V R2,x)

 . (3.2.82)

So, we have

〈P,D′[DQ]R〉

=− 1

2

∫
{P1[∂U∂−1(pR1,x + qR2,x)] + P1[∂p∂−1(UR1,x + V R2,x)]}dx

− 1

2

∫
{P2[∂V ∂−1(pR1,x + qR2,x)] + P2[∂q∂−1(UR1,x + V R2,x)]}dx.

(3.2.83)
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Applying integration by parts to (3.2.83), we obtain

〈P,D′[DQ]R〉

=− 1

2

∫
{−P1,xU∂

−1(pR1,x + qR2,x)− P1,xp∂
−1(UR1,x + V R2,x)}dx

− 1

2

∫
{−P2,xV ∂

−1(pR1,x + qR2,x)− P2,xq∂
−1(UR1,x + V R2,x)}dx

=− 1

2

∫
{−(UP1,x + V P2,x)∂

−1(pR1,x + qR2,x)− (pP1,x + qP2,x)∂
−1(UR1,x + V R2,x)}dx

=− 1

2

∫
{−(UP1,x + V P2,x)Z − (pP1,x + qP2,x)∂

−1(UR1,x + V R2,x)}dx.

(3.2.84)

Again, applying integration by parts to the second term of the last expression in

(3.2.84), we have

〈P,D′[DQ]R〉

=− 1

2

∫
{(UR1,x + V R2,x)∂

−1(pP1,x + qP2,x)− (UP1,x + V P2,x)Z}dx

=− 1

2

∫
{(UR1,x + V R2,x)X − (UP1,x + V P2,x)Z}dx

=− α

2

∫
{(Q2,xxR1,x −Q1,xxR2,x)X − (Q2,xxP1,x −Q1,xxP2,x)Z}dx

− β

2

∫
{(Q1,xR1,x + 2Q2,xR2,x)X − (Q1,xP1,x + 2Q2,xP2,x)Z}dx

+
1

2

∫
{XYxZx −XxYxZ + (pxR1,x + qxR2,x)XY − (pxP1,x + qxP2,x)Y Z}dx.

(3.2.85)
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It follows that∫
{(Q2,xxR1,x −Q1,xxR2,x)X − (Q2,xxP1,x −Q1,xxP2,x)Z}dx+ cycle(P,Q,R)

=

∫
{(Q2,xxR1,x −Q1,xxR2,x)X − (R2,xxQ1,x −R1,xxQ2,x)X}dx+ cycle(P,Q,R)

=

∫
{(Q2,xR1,x −Q1,xR2,x)xX}dx+ cycle(P,Q,R)

= −
∫
{(Q2,xR1,x −Q1,xR2,x)Xx}dx+ cycle(P,Q,R)

= −
∫
{p(P1,xQ2,xR1,x − P1,xQ1,xR2,x) + q(P2,xQ2,xR1,x − P2,xQ1,xR2,x)}dx+ cycle(P,Q,R)

= −
∫
{p(P1,xQ2,xR1,x −R1,xP1,xQ2,x) + q(P2,xQ2,xR1,x −Q2,xR1,xP2,x)}dx+ cycle(P,Q,R)

= 0.

(3.2.86)

Similarly, by cyclic permutation, we have∫
{(Q1,xR1,x + 2Q2,xR2,x)X − (Q1,xP1,x + 2Q2,xP2,x)Z}dx+ cycle(P,Q,R)

=

∫
{(Q1,xR1,x + 2Q2,xR2,x)X − (R1,xX1,x + 2R2,xQ2,x)X}dx+ cycle(P,Q,R)

= 0

(3.2.87)

and

1

2

∫
{XYxZx −XxYxZ + (pxR1,x + qxR2,x)XY − (pxP1,x + qxP2,x)Y Z}dx

=
1

2

∫
{XYxZx − YxZxX + (pxR1,x + qxR2,x)XY − (pxR1,x + qxR2,x)XY }dx

= 0.

(3.2.88)
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This implies that the operator M = D(α = 1, β = 0) given by

M = ΦJ =

 −1
2
∂p∂−1p∂ 1

2
∂2 − 1

2
∂p∂−1q∂

−1
2
∂2 − 1

2
∂q∂−1p∂ −1

2
∂q∂−1q∂

 (3.2.89)

is Hamiltonian, and J +M = D(α = β = 1) given by

J +M =

1
2
∂ 0

0 ∂

+

 −1
2
∂p∂−1p∂ 1

2
∂2 − 1

2
∂p∂−1q∂

−1
2
∂2 − 1

2
∂q∂−1p∂ −1

2
∂q∂−1q∂

 , (3.2.90)

is also Hamiltonian. It then follows from lemma 3.1.13 that J and M form a Hamil-

tonian pair. Thus we have proved the following proposition

Proposition 3.2.3 The soliton hierarchy (2.3.25) is bi-Hamiltonian:

utm = Km = J
δHm

δu
= M

δHm−1

δu
, m ≥ 1, (3.2.91)

where J , Hm and M and are defined by (3.2.71), (3.2.72) and (3.2.89), respectively.

It follows from Magri’s result [25] that the bi-Hamiltonian hierarchy (3.2.91) is Liou-

ville integrable. i.e., it possesses infinitely many commuting conserved functionals:

{Hk,Hl}J =

∫ (
δHk

δu

)T
J
δHl

δu
dx = 0, k, l ≥ 0, (3.2.92)

{Hk,Hl}M =

∫ (
δHk

δu

)T
M
δHl

δu
dx = 0, k, l ≥ 0, (3.2.93)

and commuting symmetries:

[Kk, Kl] = K ′k(u)[Kl]−K ′l(u)[Kk] = 0, k, l ≥ 0. (3.2.94)
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We present the first nonlinear integrable system in this hierarchy (3.2.91) as follows:

ut1 =

p
q


t1

= K1 =

 qxx − 3p2px − 1
2
pxq

2 − pqqx
−pxx − 1

2
qxp

2 − qppx − 3
4
q2qx

 = J
δH1

δu
= M

δH0

δu
,

where the Hamiltonian functional H0 is defined by (3.2.72) and H1 is given by

H1 =

∫ (
1

2
qxp−

1

2
qpx −

1

4
p4 − 1

4
q2p2 − 1

16
q4

)
dx. (3.2.95)

3.2.3 Tri-Hamiltonian Formulation

In this subsection, we formulate a tri-Hamiltonian structure [28] for the soliton hier-

archy (2.3.25). We begin with the following proposition.

Proposition 3.2.4 The operator

Iα,β =

α∂ − 1
2
q∂−1q −1 + q∂−1p

1 + p∂−1q β∂ − 2p∂−1p

 , (3.2.96)

is a Hamiltonian operator for α =
β

2
where α, β ∈ R.

Proof. For α =
β

2
, denote this operator (3.2.96) by

D = β

1
2
∂ 0

0 ∂

+

−1
2
q∂−1q −1 + q∂−1p

1 + p∂−1q −2p∂−1p

 , (3.2.97)

We similarly verify that (3.2.77) holds for arbitrary symmetries

P =

P1

P2

 , Q =

Q1

Q2

 , R =

R1

R2

 . (3.2.98)
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Let

A = ∂−1(qP1 − 2pP2), Y = ∂−1(qQ1 − 2pQ2), Z = ∂−1(qR1 − 2pR2) (3.2.99)

and U
V

 = DQ =

−Q2 + β
2
Q1,x − 1

2
q∂−1(qQ1 − 2pQ2)

Q1 + βQ2,x + p∂−1(qQ1 − 2pQ2)


=

−Q2 + β
2
Q1,x − 1

2
qY

Q1 + βQ2,x + pY

 .

(3.2.100)

Then

D′[DQ] =

−1
2
V ∂−1q − 1

2
q∂−1V V ∂−1p+ q∂−1U

U∂−1q + p∂−1V −2U∂−1p− 2p∂−1U

 , (3.2.101)

and

D′[DQ]R =

−1
2
V ∂−1(qR1 − 2pR2)− 1

2
q∂−1(V R1 − 2UR2)

U∂−1(qR1 − 2pR2) + p∂−1(V R1 − 2UR2)

 . (3.2.102)

So, we have

〈P,D′[DQ]R〉

=− 1

2

∫
{P1[V ∂−1(qR1 − 2pR2)] + P1[q∂−1(V R1 − 2UR2)]}dx

+

∫
{P2[U∂−1(qR1 − 2pR2)] + P2[p∂−1(V R1 − 2UR2)]}dx.

(3.2.103)
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Applying integration by parts to (3.2.103), we obtain

〈P,D′[DQ]R〉

=− 1

2

∫
{−(∂−1P1V )(qR1 − 2pR2)− (∂−1P1q)(V R1 − 2UR2)}dx

+

∫
{−(∂−1P2U)(qR1 − 2pR2)− (∂−1P2p)(V R1 − 2UR2)}dx

=
1

2

∫
{(qR1 − 2pR2)∂−1(P1V − 2P2U) + (V R1 − 2UR2)∂−1(P1q − 2P2p)}dx

=
1

2

∫
{(qR1 − 2pR2)∂−1(P1V − 2P2U) + (V R1 − 2UR2)X}dx.

(3.2.104)

Applying integration by parts to the first term of the last expression in (3.2.104), we

have

〈P,D′[DQ]R〉

=
1

2

∫
{−(P1V − 2P2U)∂−1(qR1 − 2pR2) + (V R1 − 2UR2)X}dx

=
1

2

∫
{(V R1 − 2UR2)X − (P1V − 2P2U)Z}dx

=
β

2

∫
{(R1Q2,x −R2Q1,x)X − (P1Q2,x − P2Q1,x)Z}dx

+
1

2

∫
{(R1Q1 + 2R2Q2)X − (P1Q1 + 2P2Q2)Z}dx

+
1

2

∫
{(R1p+R2q)Y X − (P1p+ P2q)Y Z}dx.

(3.2.105)
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It follows that∫
{(R1Q2,x −R2Q1,x)X − (P1Q2,x − P2Q1,x)Z}dx

=

∫
{(R1Q2,x −R2Q1,x)X − (Q1R2,x −Q2R1,x)X}dx

=

∫
{(R1Q2 −R2Q1)xX}dx+ cycle(P,Q,R)

= −
∫
{(R1Q2 −R2Q1)Xx}dx+ cycle(P,Q,R)

= −
∫
{(R1Q2 −R2Q1)(P1q − 2P2p)}dx+ cycle(P,Q,R)

=

∫
{2p(P2R1Q2 − P2R2Q1)− q(P1R1Q2 − P1R2Q1)}dx+ cycle(P,Q,R)

=

∫
{2p(P2R1Q2 −Q2P2R1)− q(P1R1Q2 −R1Q2P1)}dx+ cycle(P,Q,R)

= 0.

(3.2.106)

Similarly, by cyclic permutation, we have∫
{(R1Q1 + 2R2Q2)X − (P1Q1 + 2P2Q2)Z}dx+ cycle(P,Q,R)

=

∫
{(R1Q1 + 2R2Q2)X − (Q1R1 + 2Q2R2)X}dx+ cycle(P,Q,R)

= 0

(3.2.107)

and ∫
{(R1p+R2q)Y X − (P1p+ P2q)Y Z}dx

=

∫
{(P1p+ P2q)ZY − (P1p+ P2q)Y Z}dx

= 0.

(3.2.108)
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Thus, the operator I = D(β = 0) given by

I =

−1
2
q∂−1q −1 + q∂−1p

1 + p∂−1q −2p∂−1p

 (3.2.109)

is Hamiltonian and the sum J + I = D(β = 1) given by

D =

1
2
∂ 0

0 ∂

+

−1
2
q∂−1q −1 + q∂−1p

1 + p∂−1q −2p∂−1p

 , (3.2.110)

is also Hamiltonian. So by lemma 3.1.13, J and I form a Hamiltonian pair. Conse-

quently, we have the following proposition.

Proposition 3.2.5 The Hamiltonian operators I, J and M given by (3.2.109), (3.2.71),

and (3.2.89), respectively form a Hamiltonian triple: Any linear combination of I, J

and M is also Hamiltonian.

The proof of this proposition is a little tedious but very similar to the proofs of

propositions 3.2.1 and 3.2.3. We leave out the details.

From the condition that, II−1 = I−1I = I2, where I2 is the 2 × 2 identity

matrix, we obtain, through a simple computation, the inverse operator of I as

I−1 =

 −2p∂−1p 1 + p∂−1q

−1− q∂−1p −1
2
q∂−1q

 . (3.2.111)

The fact that I and J form a Hamiltonian pair gives rise to a hereditary symmetry

operator Φ = JI−1, which is exactly the hereditary recursion operator defined by

(2.3.26). Note also that it is direct to see that J = ΦI and M = ΦJ = Φ2I. It thus,

follows that the soliton hierarchy (2.3.25) is tri-Hamiltonian:

utm = Km = I
δHm+1

δu
= J

δHm

δu
= M

δHm−1

δu
, m ≥ 1, (3.2.112)

where the Hamiltonian operators I, J and M are defined by (3.2.109), (3.2.71) and

(3.2.89) respectively, and the Hamiltonian functionals by (3.2.72).
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We remark that one can also verify this tri-Hamiltonian structure by direct

computation (e.g. using a computer algebra system). Note that the first Hamiltonian

structure arises as a consequence of the decomposition J = ΦI of the Hamiltonian

operator J (see, e.g., [24]).

3.2.3.1 Inverse Soliton Hierarchy

We now present an inverse hierarchy of commuting symmetries by computing the

inverse of the recursion operator Φ. Based on the relation Φ = JI−1, we present Φ−1

as

Φ−1 =

 −q∂−1q∂−1 ∂−1 + q∂−1p∂−1

2∂−1 + 2p∂−1q∂−1 −2p∂−1p∂−1

 , (3.2.113)

which is also a hereditary recursion operator (see, e.g., [8]). As a result, we have the

hierarchy

utm = K−m = Φ−mK0 = Φ−m

px
qx

 , m ≥ 1, (3.2.114)

with infinitely many commuting symmetries:

[K−m, K−n] = K ′−m(u)[K−n]−K ′−n(u)[K−m] = 0, m, n ≥ 1.

The first and second symmetry systems arept
qt

 =

 q
2p

 and

pt
qt

 =

−q∂−1q∂−1q + 2∂−1p+ 2q∂−1p∂−1p

2∂−1q + 2p∂−1q∂−1q − 4p∂−1p∂−1p

 . (3.2.115)

The equations in this hierarchy are nonlocal and for this reason, it may be difficult

to guarantee Liouville’s integrability based on Magri’s scheme [25].
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3.3 Hamiltonian Formulation and Liouville Integrability of the Second

Hierarchy

3.3.1 Hamiltonian Formulation

We again apply the trace identity (3.2.67) to formulate a Hamiltonian structure for

the extended soliton hierarchy (2.4.26). From the partial derivatives

∂U
∂p

=


0 −λ+ 2αp 0

λ− 2αp 0 −λ− 2αp

0 λ+ 2αp 0

 , ∂U
∂q

=


0 αq −λ

−αq 0 −αq

λ αq 0

 and

∂U
∂λ

=


0 2λ− p −q

−2λ+ p 0 −2λ− p

q 2λ+ p 0

 ,
we easily obtain

tr(W
∂U

∂λ
) = −4ap−8bλ−2qc, tr(W

∂U

∂p
) = −4aλ−8αpb, and tr(W

∂U

∂q
) = −2cλ−4αqb,

and so the trace identity gives

δ

δu

∫
(−4ap− 8λb− 2qc)dx = λ−γ

∂

∂λ
λγ

−4λa− 8αpb

−2λc− 4αqb

 . (3.3.1)

Equating coefficients of λm in the above equation, we get

δ

δu

∫
(2pam + 4bm+1 + qcm)dx = (γ − 2m)

2am + 4αpbm

cm + 2αqbm

 , m ≥ 0
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and considering a particular case with m = 1 yields γ = 0. Thus we obtain

δ

δu
Hm =

2am + 4αpbm

cm + 2αqbm

 , m ≥ 0, (3.3.2)

where the Hamiltonian functionals are

H0 =

∫
(p2(1 + 2α) + q2(

1

2
+ αq))dx, Hm =

∫
(−2pam + 4bm+1 + qcm

2m
)dx, m ≥ 1.

(3.3.3)

Here, H0 is computed similarly as in (3.2.75).

Now using the relation bm+1 = ∂−1(pcm+1 − qam+1) from (2.4.11), the system

(2.4.25) becomes ptm = −cm+1 + qbm+1 + 2αqbm+1,

qtm = 2am+1 − 2pbm+1 − 4αpbm+1.
(3.3.4)

Observing that am
bm

 = N

2am + 4αpbm

cm + 2αqbm

 , (3.3.5)

where

N =

1
2

+ αp∂−1q −2αp∂−1p

αq∂−1q 1− 2αq∂−1p

 , (3.3.6)

we can easily see that

Km =

 −(1 + 2α)q∂−1q −1 + (1 + 2α)q∂−1p

2 + 2(1 + 2α)p∂−1q −2(1 + 2α)p∂−1p

am+1

cm+1


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= J

2am+1 + 4αpbm+1

cm+1 + 2αqbm+1

 , m ≥ 0, . (3.3.7)

where

J =

−1
2
(1 + 4α)q∂−1q −1 + (1 + 4α)q∂−1p

1 + (1 + 4α)p∂−1q −2(1 + 4α)p∂−1p

 (3.3.8)

is a Hamiltonian operator. We have thus, proved the following proposition:

Proposition 3.3.1 The soliton hierarchy (2.4.26) has a Hamiltonian structure:

utm = Km = J
δHm+1

δu
, m ≥ 0, (3.3.9)

where the Hamiltonian functionals Hm are defined by (3.3.3).

A direct computation shows

δHm+1

δu
= Ψ

δHm

δu
, Ψ = N−1QN, (3.3.10)

where the inverse of the operator N is given by

N−1 =

2− 4αp∂−1q 4αp∂−1p

−2αq∂−1q 1 + 2αq∂−1p

 . (3.3.11)

The expression for Ψ is explicitly given by

Ψ =

Ψ11 Ψ12

Ψ21 Ψ22

 (3.3.12)
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where

Ψ11 = −α(p2 + q2

2
) + α∂q∂−1q − (1 + 2α)p∂−1p∂ + α(1 + 2α)p∂−1(p2q + q3

2
)

−2α(1 + 2α)p∂−1p∂p∂−1q − α(1 + 2α)p∂−1q∂q∂−1q − 2α2(p3 + p q
2

2
)∂−1q,

Ψ12 = ∂ − 2α∂q∂−1p− (1 + 2α)p∂−1q∂ − 2α(1 + 2α)p∂−1(p3 + p q
2

2
)

+2α(1 + 2α)p∂−1q∂q∂−1p+ 4α(1 + 2α)p∂−1p∂p∂−1p+ 4α2(p3 + p q
2

2
)∂−1p,

Ψ21 = −1
2
∂ − α∂p∂−1q − 1

2
(1 + 2α)q∂−1p∂ + α

2
(1 + 2α)q∂−1(p2q + q3

2
)

−α(1 + 2α)q∂−1p∂p∂−1q − α
2
(1 + 2α)q∂−1q∂q∂−1q − α2(p2q + q3

2
)∂−1q,

Ψ22 = −α(p2 + q2

2
) + 2α∂p∂−1p− 1

2
(1 + 2α)q∂−1q∂ − α(1 + 2α)q∂−1(p3 + p q

2

2
)

+2α(1 + 2α)q∂−1p∂p∂−1p+ α(1 + 2α)q∂−1q∂q∂−1p+ 2α2(p2q + q3

2
)∂−1p.

(3.3.13)

From the relation Km+1 = ΦKm, m ≥ 0 in (3.1.25), and JΨ = ΦJ (see e.g.

[22]), we obtain a common recursion operator for the soliton hierarchy (2.4.26):

Φ = Ψ† = N †Q†(N−1)†,

where N †, Q† and (N−1)† are the adjoint operators of N,Q and N−1, respectively.

The expression for Φ is explicitly presented as

Φ =

Φ11 Φ12

Φ21 Φ22

 , (3.3.14)
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where

Φ11 = −α(p2 + q2

2
) + αq∂−1q∂ − (1 + 2α)∂p∂−1p− α(1 + 2α)(p2q + q3

2
)∂−1p

+2α(1 + 2α)q∂−1p∂p∂−1p+ α(1 + 2α)q∂−1q∂q∂−1p+ 2α2q∂−1(p3 + p q
2

2
),

Φ12 = 1
2
∂ − αq∂−1p∂ − 1

2
(1 + 2α)∂p∂−1q − α

2
(1 + 2α)(p2q + q3

2
)∂−1q

+α(1 + 2α)q∂−1p∂p∂−1q + α
2
(1 + 2α)q∂−1q∂q∂−1q + α2q∂−1(p2q + q3

2
),

Φ21 = −∂ − 2αp∂−1q∂ − (1 + 2α)∂q∂−1p+ 2α(1 + 2α)(p3 + p q
2

2
)∂−1p

−2α(1 + 2α)p∂−1q∂q∂−1p− 4α(1 + 2α)p∂−1p∂p∂−1p− 4α2p∂−1(p3 + p q
2

2
),

Φ22 = −α(p2 + q2

2
) + 2αp∂−1p∂ − 1

2
(1 + 2α)∂q∂−1q + α(1 + 2α)(p3 + p q

2

2
)∂−1q

−2α(1 + 2α)p∂−1p∂p∂−1q − α(1 + 2α)p∂−1q∂q∂−1q − 2α2p∂−1(p2q + q3

2
).

(3.3.15)

3.3.2 Bi-Hamiltonian Structure and Liouville Integrability

Define

M = ΦJ =

M11 M12

M21 M22

 . (3.3.16)

where

M11 = 1
2
∂ − αq∂−1p∂ + α∂p∂−1q + α2(p2q + q3

2
)∂−1q

−2α2q∂−1p∂p∂−1q − α2q∂−1q∂q∂−1q + α2q∂−1(p2q + q3

2
),

M12 = α(p2 + q2

2
)− αq∂−1q∂ − 2α∂p∂−1p− 2α2(p2q + q3

2
)∂−1p

+4α2q∂−1p∂p∂−1p+ 2α2q∂−1q∂q∂−1p− 2α2q∂−1(p3 + p q
2

2
),

M21 = −α(p2 + q2

2
) + 2αp∂−1p∂ + α∂q∂−1q − 2α2(p3 + p q

2

2
)∂−1q

+2α2p∂−1q∂q∂−1q + 4α2p∂−1p∂p∂−1q − 2α2p∂−1(p2q + q3

2
),

M22 = ∂ + 2αp∂−1q∂ − 2α∂q∂−1p+ 4α2(p3 + p q
2

2
)∂−1p

−4α2p∂−1q∂q∂−1p− 8α2p∂−1p∂p∂−1p+ 4α2p∂−1(p3 + p q
2

2
).

(3.3.17)
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Proposition 3.3.2 The operator

D = γJ +M, γ ∈ R, (3.3.18)

where J and M are given by (3.3.8) and (3.3.16) respectively, is Hamiltonian.

The proof of this proposition is rather complicated but very similar to the

proofs of propositions 3.2.1 and 3.2.3. For brevity, we leave out the proof.

Choosing γ = 0 shows that M is Hamiltonian and γ = 1 shows that J + M

is Hamiltonian and so by lemma 3.1.13, J and M form a Hamiltonian pair. Thus we

have proved that

Proposition 3.3.3 The soliton hierarchy (2.4.26) has a bi-Hamiltonian structure

utm = Km = J
δHm+1

δu
= M

δHm

δu
, m ≥ 0, (3.3.19)

where J , Hm and M and are defined by (3.3.8), (3.3.3) and (3.3.16), respectively.

It follows from Magri’s scheme [25] that the hierarchy (2.4.26) is Liouville

integrable, i.e., it possesses infinitely many commuting conserved functionals:

{Hm,Hn}J =

∫
(
δHm

δu
)TJ

δHn

δu
dx = 0, m, n ≥ 0, (3.3.20)

{Hm,Hn}M =

∫
(
δHm

δu
)TM

δHn

δu
dx = 0, m, n ≥ 0. (3.3.21)

and commuting symmetries:

[Km, Kn] = K ′m(u)[Kn]−K ′n(u)[Km] = J
δ

δu
{Hm,Hn} = 0, m, n ≥ 0. (3.3.22)

We point out that, similar to [22], these commuting relations can also be generated

from the Virasoro algebra of Lax operators [14, 19], which is easier to prove than the

existence of a bi-Hamiltonian structure.
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4 Symmetry Constraints and Finite-dimensional Hamiltonian Systems

4.1 Introduction

As mentioned earlier, integrability of finite-dimensional Hamiltonian systems in the

sense of Liouville is based on the existence of sufficiently many functionally inde-

pendent conserved quantities or first integrals which are in involution. This is a

well-developed concept in the theory of ordinary differential equations. In this chap-

ter, we construct finite-dimensional Hamiltonian systems by means of the so-called

Bargmann symmetry constraint [18, 23, 20] from a hierarchy of (1+1)-dimensional

evolution equations associated with the spectral problem (2.3.5), and discuss their

integrability in the sense of Liouville. The Bargmann symmetry constraint method

corresponds to the binary nonlinearization technique [18, 23, 20] in which the Lax

pairs and adjoint Lax pairs of a given soliton hierarchy are “constrained” to a nonlin-

earized system, yielding a finite-dimensional Liouville integrable Hamiltonian system

whose solutions can be presented explicitly. For the sake of simplicity, we will use the

loop algebra in equation (2.2.37) as the underlying loop algebra.

Definition 4.1.1 A Poisson bracket on a smooth manifold M is a bilinear skew-

symmetric operation that assigns a smooth real-valued function {F,H} on M to each

pair F,H of smooth, real-valued functions, with the basic properties:

(a) Jacobi Identity: {{F,H}, P}+ {{P, F}, H}+ {{H,P}, F} = 0,

(b) Leibniz’s rule : {F,H · P} = {F,H} · P +H · {F, P}.
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Definition 4.1.2 A manifold M with a Poisson bracket is called a Poisson manifold.

The bracket is said to define a Poisson structure on M .

Example 4.1.3 Let M be an even dimensional Euclidean space R2n with coordinates

(p, q) = (p1, · · · , pn, q1, · · · , qn). If H(p, q) and F (p, q) are smooth functions, then the

Poisson bracket of F and H, denoted by {F,H}, is given by

{F,H} =
n∑
i=1

(∂F
∂qi

∂H

∂pi
− ∂F

∂pi
∂H

∂qi

)
. (4.1.1)

Definition 4.1.4 The system of ordinary differential equations

dqi

dt
=
∂H

∂pi
,

dpi

dt
= −∂H

∂qi
, i = 1, . . . , n, (4.1.2)

is called a finite-dimensional Hamiltonian system, where the function H(p, q) is a

smooth function. We call H the Hamiltonian function of the system. In Classical

Mechanics, the above equations (4.1.2) are referred to as Hamilton’s equations.

Definition 4.1.5 Let M be a Poisson manifold and H a smooth function. The

Hamiltonian vector field associated with H is the unique smooth vector field XH on

M satisfying

XH(F ) = {F,H} = −{H,F} (4.1.3)

for every smooth function F .

Example 4.1.6 In the case of the Poisson bracket on R2n in equation (4.1.1), the

Hamiltonian vector field corresponding to H(p, q) is the function

XH =
n∑
i=1

(∂H
∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

)
. (4.1.4)

Definition 4.1.7 A symplectic manifold is a smooth (even-dimensional) manifold,

M , equipped with a simplectic form ω. A simplectic form is a closed nondegenerate
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differential 2-form. We say that ω is closed if the exterior derivative dω = 0 and non-

degenerate if for all p ∈M , there exists an X ∈ TpM such that whenever ω(X, Y ) = 0

for all Y ∈ TpM , it follows that X = 0.

Definition 4.1.8 Every simplectic manifold (M,ω) is a Poisson manifold with the

Poisson bracket defined by the simplectic form, ω as

{F,H} = ω(XF , XH), (4.1.5)

where XF is a vector field associated with F .

Example 4.1.9 The most basic example of a symplectic manifold is R2n equipped

with the form ω =
n∑
i=1

dpi ∧ dqi. Note that according to equations (4.1.3), (4.1.4) and

(4.1.5), we have

{F,H} = ω(XF , XH) = XH(F ) =
n∑
i=1

(∂H
∂pi

∂F

∂qi
− ∂H

∂qi
∂F

∂pi

)
. (4.1.6)

Definition 4.1.10 The number of degrees of freedom of a Hamiltonian system is the

number of (pi, qi) pairs in Hamiltons equations (i.e., the value of n).

Proposition 4.1.11 [29] A function F (p, q) is a first integral (or an integral of mo-

tion) for the Hamiltonian system (4.1.2) with Hamiltonian function H if and only if

F and H are in involution, i.e., {F,H} = 0.

Definition 4.1.12 A Hamiltonian system on the 2n-dimensional symplectic mani-

fold, M is said to be completely integrable or Liouville-integrable if there are n smooth

first integrals in involution which are functionally independent on an open and dense

subset of M .
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4.2 Soliton Hierarchy and Its Hamiltonian Formulation

Theorem 4.2.1 The spectral problem

φx = Uφ = U(u, λ)φ ∈ g̃, (4.2.7)

with spectral matrix

U = λqe1 + (λ2 + λp)e2 + (−λ2 + λp)e3 =

 λq λ2 + λp

−λ2 + λp −λq

 , (4.2.8)

where e1, e2 and e3 are a basis of the Lie algebra sl(2,R) given by (2.3.3) and g̃ =

s̃l(2,R) produces a hierarchy of soliton equations

utm = Km = Φm

px
qx

 , m ≥ 0, (4.2.9)

where the operator Φ given by

Φ =

 ∂p∂−1p 1
2
∂ + ∂p∂−1q

−1
2
∂ + ∂q∂−1p ∂q∂−1q

 , ∂ =
∂

∂x
. (4.2.10)

The proof begins with W in the stationary zero-curvature equation

Wx = [U,W ] (4.2.11)

defined as

W =
∑
i≥0

 ciλ
−2i−1 aiλ

−2i−1 + biλ
−2i

aiλ
−2i−1 − biλ−2i −ciλ−2i−1

 ∈ s̃l(2,R). (4.2.12)
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Equation (4.2.11) then gives the relations

am =
1

2
cm−1,x + pbm, cm = qbm −

1

2
am−1,x and bm,x = pam−1,x + qcm−1,x, m ≥ 1,

(4.2.13)

with initial values

a0 = p, b0 = 1, c0 = q. (4.2.14)

The remainder of the proof follows similarly as in the proof of theorem 2.3.1.

We point out a well-known fact that there is a gauge transformation between

the Dirac and ZS-AKNS spectral problems (see [31] for details). This is the same

gauge transformation [31] that transforms the spectral problem (4.2.7) into the orig-

inal Kaup-Newell spectral problem [12]. However, as pointed out in [31], the ex-

tensions of the Dirac and the ZS-AKNS spectral problems, which are also gauge

equivalent under the same transformation, have different non-dynamical r-matrices

[35] determined by their respective finite-dimensional Hamiltonian systems via some

constraints. Thus, although two spectral problems may be gauge equivalent, they

may possess certain properties that are completely different. We thus conjecture that

our spectral problem and the Kaup-Newell spectral problem may be another gauge

equivalent pair of spectral problems with extensions that have two different pair of

r-matrices determined by their respective finite-dimensional Hamiltonian systems.

Proposition 4.2.2 The hierarchy (4.2.9) has a Hamiltonian structure

utm = Km = J
δHm

δu
, m ≥ 0, (4.2.15)

with Hamiltonian operator

J =

∂ 0

0 ∂

 , (4.2.16)
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and Hamiltonian functionals

H0 =

∫ (
p2

2
+
q2

2

)
dx, Hm =

∫ (
−pam − 2bm+1 + qcm

2m

)
dx, m ≥ 1. (4.2.17)

Similar to proposition 3.2.2, one can show that this hierarchy (4.2.9) is bi-

Hamiltonian and thus according to Magri’s scheme [25], each system is integrable in

the sense of Liouville.

4.3 Binary Nonlinearization of Lax Pairs and Adjoint Lax Pairs

4.3.1 Bargmann Symmetry Constraint

We now consider the binary nonlinearization procedure [18, 23, 20].

Proposition 4.3.1 The Lax pairsφx = Uφ = U(u, λ)φ,

φtm = (V [m])φ = (V [m])(u, λ)φ,
(4.3.1)

of the the system (4.2.9) have associated adjoint Lax pairsψx = −UTψ = −UT (u, λ)ψ,

ψtm = −(V [m])Tψ = −(V [m])T (u, λ)ψ,
(4.3.2)

where ψ = (ψ1, ψ2)T and V [m] = λ(λ(2m+1)W )+, m ≥ 0, with W given by (4.2.12).

Proof. The proof easily follows from the fact that Utm − V
[m]
x + [U, V [m]] = 0 if and

only if (−UT )tm − ((−V [m])T )x + [−UT ,−(V [m])T ] = 0.
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Now recall from [18] that the variational derivatives of the spectral parameter

λ = λ(u) with respect to the potentials p and q can be expressed as

δλ

δp
=

〈φψT , ∂U
∂p
〉

−
∫∞
−∞〈φψT ,

∂U
∂λ
〉
,
δλ

δq
=

〈φψT , ∂U
∂q
〉

−
∫∞
−∞〈φψT ,

∂U
∂λ
〉
. (4.3.3)

It follows that

δλ

δu
=

1

E

λφ1ψ2 + λφ2ψ1

λφ1ψ1 − λφ2ψ2

 , (4.3.4)

where

E = −
∫ ∞
−∞

(qφ1ψ1 − 2λφ1ψ2 + pφ1ψ2 + 2λφ2ψ1 − qφ2ψ2)dx. (4.3.5)

Introducing N distinct eigenvalues λ1, λ2, ..., λN , equations (4.3.1) and (4.3.2) yield

the spatial and temporal systems



φ1j

φ2j,


x

= U(u, λj)

φ1j

φ2j,

 , j = 1, 2, · · · , N,

ψ1j

ψ2j,


x

= −UT (u, λj)

ψ1j

ψ2j,

 , j = 1, 2, · · · , N,

(4.3.6)



φ1j

φ2j,


tm

= V (m)(u, λj)

φ1j

φ2j,

 , j = 1, 2, · · · , N,

ψ1j

ψ2j,


tm

= −(V (m))T (u, λj)

ψ1j

ψ2j,

 , j = 1, 2, · · · , N.

(4.3.7)
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Observing that the hierarchy (4.2.9) can be rewritten as

ut = J

am
cm

 = JGm = JΨm

a0

c0

 , m ≥ 0, (4.3.8)

where

Ψ = Φ∗ =

 p∂−1p∂ 1
2
∂ + p∂−1q∂

−1
2
∂ + q∂−1p∂ q∂−1q∂

 . (4.3.9)

the Bargmann symmetry constraint

JG0 = J
N∑
i=1

Ej
δλj
δu

or G0 =
N∑
i=1

Ej
δλj
δu

, (4.3.10)

where

Ej = −
∫ ∞
−∞

(qφ1jψ1j − 2λjφ1jψ2j + pφ1jψ2j + 2λjφ2jψ1j − qφ2jψ2j)dx, 1 ≤ j ≤ N,

(4.3.11)

gives rise to the constrainta0

c0

 =

p
q

 =

〈AP1, Q2〉+ 〈AP2, Q1〉

〈AP1, Q1〉 − 〈AP2, Q2〉

 , (4.3.12)

where Pi = (φi1, ..., φiN)T , Qi = (ψi1, ..., ψiN)T , i = 1, 2, A = diag(λ1, λ2, ..., λN) and

〈·, ·〉 denotes the usual inner product on RN .

4.3.2 Finite-dimensional Hamiltonian Systems

Hereafter, we will denote u by ũ under the constraint (4.3.12), to distinguish between

equations.

Substituting equation (4.3.12) into equations (4.3.6) and (4.3.7), we obtain the
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nonlinear Lax pairs and adjoint Lax pairs

φ1j

φ2j


x

=

 −λj q̃ λ2
j − λj p̃

−λ2
j − λj p̃ λj q̃


φ1j

φ2j

 , j = 1, 2, · · · , N,

ψ1j

ψ2j


x

=

 λj q̃ λ2
j + λj p̃

−λ2
j + λj p̃ −λj q̃


ψ1j

ψ2j

 , j = 1, 2, · · · , N,

(4.3.13)



φ1j

φ2j


tm

=

 ∑m
i=0 c̃jλ

2m+1−2j
∑m

i=0(ãjλ
2m+1−2j + b̃jλ

2m+2−2j)∑m
i=0(ãjλ

2m+1−2j − b̃jλ2m+2−2j) −
∑m

i=0 c̃jλ
2m+1−2j


φ1j

φ2j

 ,

j = 1, 2, · · · , N,ψ1j

ψ2j


tm

=

 −
∑m

i=0 c̃jλ
2m+1−2j −

∑m
i=0(ãjλ

2m+1−2j − b̃jλ2m+2−2j)

−
∑m

i=0(ãjλ
2m+1−2j + b̃jλ

2m+2−2j)
∑m

i=0 c̃jλ
2m+1−2j


ψ1j

ψ2j

 ,

j = 1, 2, · · · , N.

(4.3.14)

We can easily see that the system (4.3.13) is a finite-dimensional system with respect

to x, where as (4.3.14) is a system of evolution equations with respect to x and tm.

However, this system (4.3.14) can be transformed into a finite-dimensional Hamilto-

nian system under the control of (4.3.13). The system (4.3.13) can be put in the

form

P1x = 〈AP1, Q1〉AP1 − 〈AP2, Q2〉AP1 + A2P2 + 〈AP1, Q2〉AP2 + 〈AP2, Q1〉AP2,

P2x = −A2P1〈AP1, Q2〉AP1 + 〈AP2, Q1〉AP1 − 〈AP1, Q1〉AP2 + 〈AP2, Q2〉AP2,

Q1x = −〈AP1, Q1〉AQ1 + 〈AP2, Q2〉AQ1 + A2Q2 − 〈AP1, Q2〉AQ2 − 〈AP2, Q1〉AQ2,

Q2x = −A2Q1 − 〈AP1, Q2〉AQ1 − 〈AP2, Q1〉AQ1 + 〈AP1, Q1〉AQ2 − 〈AP2, Q2〉AQ2.

(4.3.15)

It follows that
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Proposition 4.3.2 The system (4.3.13) has the Hamiltonian form

Pix =
∂H

∂Qi

, Qix = −∂H
∂Pi

, i = 1, 2, (4.3.16)

where the Hamiltonian function is

H =
1

2
(〈AP1, Q1〉 − 〈AP2, Q2〉)2 +

1

2
(〈AP1, Q2〉+ 〈AP2, Q1〉)2 + 〈A2P1, Q2〉 − 〈A2P2, Q1〉.

(4.3.17)

In the next subsections, we want to discuss integrability. We will consider two main

cases:

1. When zero boundary conditons are imposed on the eigenfunctions and the adjoint

eigenfunctions and

2. When no boundary conditions are imposed on the eigenfunctions and the adjoint

eigenfunctions.

4.3.3 Involutive and Independent Systems

We begin by deriving integrals of motion for the systems (4.3.13) and (4.3.14). First we

consider the case where the zero boundary conditions, lim|x|→+∞ φ = lim|x|→+∞ ψ = 0

are imposed. Under these conditions, we obtain the identity

Ψ
δλ

δu
= λ2 δλ

δu
, (4.3.18)

where Ψ is defined by equation (4.3.9). In this case, the above identity (4.3.18) gives

rise to ãm
c̃m

 =

〈A2m+1P1, Q2〉+ 〈A2m+1P2, Q1〉

〈A2m+1P1, Q1〉 − 〈A2m+1P2, Q2〉

 , m ≥ 0. (4.3.19)
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Observing from equation (4.2.13) that

bm,x = 2qam − pcm, m ≥ 0, (4.3.20)

we obtain

b̃0 = 1, b̃m = 〈A2mP1, Q2〉 − 〈A2mP2, Q1〉, m ≥ 1. (4.3.21)

Corollary 4.3.3 [23] If Ũ and W̃ satisfy the adjoint representation equation W̃x =

[Ũ , W̃ ], then identity

(W̃ 2)x = [Ũ , W̃ 2] (4.3.22)

holds. It follows from the above corollary that

Fx =
1

2
(trW̃ 2)x =

d

dx
(ã2 − b̃2 + c̃2) = tr[Ũ , W̃ 2] = 0. (4.3.23)

Thus, F is a generating function of integrals of motion for the system (4.3.16).

Now, considering F =
∑

n≥0 Fnλ
2n, we obtain

Fn =
n−1∑
i=0

ãiãn−1−i −
n∑
i=0

b̃ib̃n−i +
n−1∑
i=0

c̃ic̃n−1−i, n ≥ 1, (4.3.24)
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and substituting (4.3.19) and (4.3.21) into (4.3.24), we have the following expressions

for Fn, n ≥ 0:



F0 = −1,

F1 = (〈AP1, Q1〉 − 〈AP2, Q2〉)2 + (〈AP1, Q2〉+ 〈AP2, Q1〉)2 + 2(〈A2P1, Q2〉 − 〈A2P2, Q1〉)

= 2H,

Fn =
n−1∑
i=0

[(〈A2i+1P1, Q2〉+ 〈A2i+1P2, Q1〉)(〈A2n−1−2iP1, Q2〉+ 〈A2n−1−2iP2, Q1〉)

+(〈A2i+1P1, Q2〉 − 〈A2i+1P2, Q2〉)(〈A2n−1−2iP1, Q1〉 − 〈A2n−1−2iP2, Q2〉)]

−
n−1∑
i=1

[(〈A2iP1, Q2〉 − 〈A2iP2, Q1〉)(〈A2n−2iP1, Q2〉 − 〈A2n−2iP2, Q1〉)

−2(〈A2nP1, Q2〉 − 〈A2nP2, Q1〉) , n ≥ 2.

.

(4.3.25)

It should be noted that the above functions are all polynomials of 4N dependent

variables φij, ψij.

At this point, we also want to present the temporal systems (4.3.14) in a

Hamiltonian form. Observing the equality

( ∂F
∂Pi

,
∂F

∂Qi

)T
=
(

tr
(
W̃
∂W̃

∂Pi

)
, tr
(
W̃
∂W̃

∂Qi

))T
, (4.3.26)

we find that

tr
(
W̃
∂W̃

∂P1

)
= tr

∞∑
i=0

 c̃iλ
−2i−1 ãiλ

−2i−1 + b̃iλ
−2i

ãiλ
−2i−1 − b̃iλ−2i c̃iλ

−2i−1

 ∞∑
j=0

∂

∂P1

 c̃jλ
−2j−1 ãjλ

−2j−1 + b̃jλ
−2j

ãjλ
−2j−1 − b̃jλ−2j c̃jλ

−2j−1


= tr

∑
i≥0
j≥0

 c̃iλ
−2i−1 ãiλ

−2i−1 + b̃iλ
−2i

ãiλ
−2i−1 − b̃iλ−2i c̃iλ

−2i−1

 A2j+1Q1λ
−2j−1 A2j+1Q2λ

−2j−1 + A2jQ2λ
−2j

A2j+1Q2λ
−2j−1 − A2jQ2λ

−2j −A2j+1Q1λ
−2j−1


=
∑
i≥0
j≥0

[2c̃iA
2j+1Q1λ

−2i−2j−2 + 2ãiA
2j+1Q2λ

−2i−2j−2 − 2b̃iA
2jQ2λ

−2i−2j]

=
∑
i≥0
j≥1

[2c̃iA
2j−1Q1 + 2ãiA

2j−1Q2 − 2b̃iA
2jQ2]λ−2i−2j.

(4.3.27)
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Similarly, we have

tr
(
W̃
∂W̃

∂P2

)
=
∑
i≥0
j≥1

[−2c̃iA
2j−1Q2 + 2ãiA

2j−1Q1 + 2b̃iA
2jQ1]λ−2i−2j. (4.3.28)

It then follows that 1
2
∂Fm+1

∂P1

1
2
∂Fm+1

∂P2

 = −(−Ṽ [m])T

Q1

Q2

 . (4.3.29)

A similar argument leads to 1
2
∂Fm+1

∂Q1

1
2
∂Fm+1

∂Q2

 = Ṽ [m]

P1

P2

 . (4.3.30)

Thus we have the following

Proposition 4.3.4 The system (4.3.14) has a Hamiltonian form

Pitm =
∂(1

2
Fm+1)

∂Qi

, Qitm = −
∂(1

2
Fm+1)

∂Pi
, (4.3.31)

where Fm+1, m ≥ 0 is given by (4.3.25).

Definition 4.3.5 As in example 4.1.9, we define the Poisson bracket of two functions

F and H on the symplectic manifold (R4N , ω) in terms of local coordinates (i.e.,

ω =
2∑
i=1

N∑
j=1

dψij ∧ dφij =
2∑
i=1

dQi ∧ dPi) as

{F,H} =
2∑
i=1

N∑
j=1

( ∂F
∂ψij

∂H

∂φij
− ∂F

∂φij

∂H

∂ψij

)
=

2∑
i=1

(( ∂F
∂Qi

)T ∂H
∂Pi
−
( ∂F
∂Pi

)T ∂H
∂Qi

)
=

2∑
i=1

(〈 ∂F
∂Qi

,
∂H

∂Pi

〉
−
〈 ∂F
∂Pi

,
∂H

∂Qi

〉)
,

(4.3.32)
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where 〈·, ·〉 still denotes the usual inner product on RN .

Corollary 4.3.6 [23] If Ũ and Ṽ [m] satisfy the zero curvature equation Ũtm − Ṽ
[m]
x +

[Ũ , Ṽ [m]] = 0, then the identity

W̃tm = [Ṽ [m], W̃ ], m ≥ 0, (4.3.33)

holds.

It follows from the above corollary that Ftm = 1
2
(trW̃ 2)tm = 0,m ≥ 0. Thus

F = 1
2
(trW̃ 2) is also a generating function of integrals of motion for (4.3.31). Hence

we have the following:

Proposition 4.3.7 The sequence of functions {Fn}∞n=0 where Fn is given by (4.3.25)

constitutes an involutive system with respect to (4.3.32):

{Fn+1, Fm+1} =
∂

∂tm
Fn+1 = 0, m, n ≥ 0. (4.3.34)

The following theorem concludes that the nonlinearized spatial system (4.3.13)

is Liouville integrable [4] in some region of the phase space.

Theorem 4.3.8 Let F̄k, 1 ≤ k ≤ N , be defined by

F̄k =
2∑
i=1

φikψik, 1 ≤ k ≤ N. (4.3.35)

Then F̄k, 1 ≤ k ≤ N, Fn, n ≥ 1, constitute an involutive system of which F̄k, Fn, 1 ≤

k, n ≤ N are functionally independent in some open subset of R4N .

Proof. Let V̄ (λk) = (φikψjk)i,j=1,2, 1 ≤ k ≤ N . We see that F̄k = tr(V̄ (λk)) and since

V̄ (λk) satisfies the equation V̄ (λk)x = [U(ũ, λk), V̄ (λk)] (see e.g., [20] for details) we

have that F̄kx = tr(V̄ (λk)x) = tr[U(ũ, λk), V̄ (λk)] = 0 which shows that F̄k, 1 ≤ k ≤ N

are all integrals of motion of the nonlinearized spatial system (4.3.13).
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Upon observing that

∂F̄k
∂Pi

= (0, · · · , 0︸ ︷︷ ︸
k−1

, ψik, 0, · · · , 0︸ ︷︷ ︸
N−k

)T ,
∂F̄k
∂Qi

= (0, · · · , 0︸ ︷︷ ︸
k−1

, φik, 0, · · · , 0︸ ︷︷ ︸
N−k

)T , i = 1, 2, 1 ≤ k ≤ N,

(4.3.36)

it can be easily shown that

{F̄k, F̄l} =
2∑
i=1

((∂F̄k
∂Qi

)T ∂F̄l
∂Pi
−
(∂F̄k
∂Pi

)T ∂F̄l
∂Qi

)
= 0, (4.3.37)

which implies that the functions F̄k, 1 ≤ k ≤ N are in involution. It can also be

shown that

{F̄k, Fn} =
2∑
i=1

((∂F̄k
∂Qi

)T ∂Fn
∂Pi
−
(∂F̄k
∂Pi

)T ∂Fn
∂Qi

)
= 0. (4.3.38)

This establishes the involution of F̄k, 1 ≤ k ≤ N, Fn, n ≥ 1.

Next, we demonstrate that these functions F̄k, 1 ≤ k ≤ N, Fn, n ≥ 1 are

functionally independent in some open subset U ⊂ R4N . This is equivalent to showing

that the 2N × 4N Jacobian matrix

J =
∂(F̄1, · · · , F̄k, F1, · · · , Fn)

∂(P1, P2, Q1, Q2)
(4.3.39)

has rank 2N , i.e., the column vectors {∇F̄k,∇Fn} of J are linearly independent at

each point of U .

Consider only the first column of J :
{∂F̄1

∂P1

, · · · , ∂F̄n
∂P1

,
∂F1

∂P1

, · · · , ∂Fn
∂P1

}
, and let

N∑
k=1

αk

(∂F̄k
∂P1

)T
+

N∑
n=1

βn

(∂Fn
∂P1

)T
= 0, (4.3.40)
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where αk, βn, 1 ≤ k, n ≤ N are constants. Now suppose U contains points such that

P1 = P2 = 0 and Q1, Q2 6= 0. To this end, we find

∂F̄k
∂Pi

∣∣∣∣
P1=P2=0

= (0, · · · , 0︸ ︷︷ ︸
k−1

, ψik, 0, · · · , 0︸ ︷︷ ︸
N−k

)T , i = 1, 2, 1 ≤ k ≤ N, (4.3.41)

∂F1

∂P1

∣∣∣∣
P1=P2=0

= −2A2Q2,
∂Fn
∂P1

∣∣∣∣
P1=P2=0

= −2A2nQ2, n ≥ 2. (4.3.42)

Under the condition P1 = P2 = 0, and for 1 ≤ k ≤ N , equation (4.3.40) reduces to

αkψ1k +
N∑
n=1

(−2βnλ
2n
k )ψ2k = 0. (4.3.43)

It follows that αk = βn = 0, 1 ≤ k, n ≤ N . The same conclusion can be be arrived

at from the remaining columns in the Jacobian matrix (4.3.39). Thus, all the column

vectors are linearly independent, which completes the proof.

4.3.4 Integrability with No Boundary Conditions

We now discuss the Liouville integrability of the systems (4.3.13) and (4.3.14) in the

case where no boundary conditions are imposed on the eigenfunctions and the adjoint

eigenfunctions.

Now, consider again the spectral and adjoint spectral problemsφx = U(u, λ)φ, φ = (φ1, φ2)T ,

ψx = −U(u, λ)Tψ, ψ = (ψ1, ψ2)T ,
(4.3.44)

where U is given by equation (4.2.8). Then from equation (4.3.4), we have

Ψ

λφ1ψ2 + λφ2ψ1

λφ1ψ1 − λφ2ψ2

 = λ2

λφ1ψ2 + λφ2ψ1

λφ1ψ1 − λφ2ψ2

+ I

p
q

 , (4.3.45)
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where I is an integral of motion of (4.3.44). Applying (4.3.45) m times under the

constraint (4.3.12) yieldsãm
c̃m

 = Ψ̄m

ã0

c̃0

 =
m∑
i=0

Ii

〈A2m+1−2iP1, Q2〉+ 〈A2m+1−2iP2, Q1〉

〈A2m+1−2iP1, Q1〉 − 〈A2m+1−2iP2, Q2〉

 ,m ≥ 0,

(4.3.46)

where I0 = 1 and Ii, 1 ≤ i ≤ m, are all integrals of motion of (4.3.13). From (4.3.20)

we obtain

b̄m = 2∂−1(qām − pc̄m)

=
m−1∑
i=0

Ii(〈A2m−2iP1, Q2〉 − 〈A2m−2iP2, Q1〉) + Tm, m ≥ 1,
(4.3.47)

where Tm is also an integral of motion of (4.3.13). The first two equations in (4.2.13)

lead to Tm = Im,m ≥ 1.

Now, from 1
2
tr(W̃ 2)x = (ã2 − b̃2 + c̃2)x = 0 (corollary 4.3.3) and the fact that

(1
2
trW̃ 2)|u=0 = 1, which imply ã2 − b̃2 + c̃2 = 1, we obtain the following

2b̃m =
m−1∑
i=0

ãiãm−1−i −
m−1∑
i=1

b̃ib̃m−i +
m−1∑
i=0

c̃ic̃m−1−i, m ≥ 2, (4.3.48)
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in a way similar to (4.3.24). Substituting (4.3.46) and (4.3.47) into (4.3.48), we get

2
m−1∑
i=0

Ii(〈A2m−2iP1, Q2〉 − 〈A2m−2iP2, Q1〉) + 2Im

=
m−1∑
i=0

[ i∑
k=0

Ik

(
〈A2i−2k+1P1, Q2〉+ 〈A2i−2k+1P2, Q1〉

)]
×

[m−1−i∑
l=0

Il

(
〈A2m−2i−1−2lP1, Q2〉+ 〈A2m−2i−1−2lP2, Q1〉

)]
−

m−1∑
i=1

[ i−1∑
k=0

Ik

(
〈A2i−2kP1, Q2〉 − 〈A2i−2kP2, Q1〉

)
+ Ii

]
×

[m−1−i∑
l=0

Il

(
〈A2m−2i−2lP1, Q2〉+ 〈A2m−2i−2lP2, Q1〉

)
+ Im−i

]
+

m−1∑
i=0

[ i∑
k=0

Ik

(
〈A2i−2k+1P1, Q1〉 − 〈A2i−2k+1P2, Q2〉

)]
×

[m−1−i∑
l=0

Il

(
〈A2m−2i−1−2lP1, Q1〉 − 〈A2m−2i−1−2lP2, Q2〉

)]
.

(4.3.49)

Interchanging the summation in the above equality in the following way (see,

e.g., in [23, 20]):

m−1∑
i=1

i−1∑
k=0

=
m−2∑
k=0

m−1∑
i=k+1

,
m−1∑
i=1

m−i−1∑
l=0

=
m−2∑
l=0

m−1−l∑
i=1

,
m−1∑
i=1

i−1∑
k=0

m−i−1∑
l=0

=
m−2∑
k=0

(m−2)−k∑
l=0

m−(l+1)∑
i=k+1

,

(4.3.50)

we deduce that (see, e.g., in [20]):

Im = −1

2

m−1∑
i=1

IiIm−i +
1

2

∑
k+l≤m−1
k,l≥0

IkIlFm−(k+l). (4.3.51)

From the expression b̃1 = 1
2
(q̃2 + p̃2), we obtain I1 = 1

2
F1, which, together with
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the above formula (4.3.51) gives

Im =
m∑
n=1

dn
∑

i1+i2+...+in=m
i1,...,in≥1

Fi1 ...Fin ,m ≥ 1, (4.3.52)

where the constants dn are given by

d1 =
1

2
, d2 =

3

8
, dn = dn−1 +

1

2

n−2∑
s=1

dsdn−s−1 −
1

2

n−1∑
s=1

dsdn−s. (4.3.53)

Thus, by direct computation we can verify that

Proposition 4.3.9 The temporal systems (4.3.14) have the Hamiltonian form

Pitm =
∂Hm

∂Qi

, Qitm = −∂Hm

∂Pi
, (4.3.54)

where

Hm =
1

2

m∑
n=0

dn
n+ 1

∑
i1+i2+...+in=m

i1,...,in≥1

Fi1 ...Fin ,m ≥ 1. (4.3.55)

The functions Hm,m ≥ 1 are all functions of Fm,m ≥ 1, and since Fm,m ≥ 1 com-

mute, Hm,m ≥ 1 commute as well, which implies the commutability of the Hamilto-

nian phase flows gtmHm
. We thus, have the following theorem on Liouville integrability.

Theorem 4.3.10 The spatial systems (4.3.13) and the temporal systems (4.3.14) un-

der the control of (4.3.14) are all finite-dimensional Liouville integrable Hamiltonian

systems with Hamiltonian functions H and Hm respectively, which are given by equa-

tion (4.3.17) and (4.3.55), respectively. Additionally, these systems possess 2N invo-

lutive and independent integrals of motion: F̄k, Fn, 1 ≤ k, n ≤ N .
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4.3.5 Involutive Solutions

The above theorem leads to the following result:

Theorem 4.3.11 The m-th soliton equation utm = Km, has the following involutive

solution with separated variables x, tm:p(x, tm) = 〈AgxHgtmHm
P1(0, 0), gxHg

tm
Hm
Q2(0, 0)〉+ 〈AgxHgtmHm

P2(0, 0), gxHg
tm
Hm
Q1(0, 0)〉,

q(x, tm) = 〈AgxHgtmHm
P1(0, 0), gxHg

tm
Hm
Q1(0, 0)〉 − 〈AgxHgtmHm

P2(0, 0), gxHg
tm
Hm
Q2(0, 0)〉,

(4.3.56)

where gxH , g
tm
Hm

are the Hamiltonian phase flows [4] associated with the Hamiltonian

systems (4.3.16) and equation (4.3.54) respectively, and Pi(0, 0), Qi(0, 0), i = 1, 2, are

arbitrary initial value vectors.

Proof. Define Pi(x, tm) = gxHg
tm
Hm
Pi(0, 0) and Qi(x, tm) = gHx g

tm
Hm
Qi(0, 0), 1 ≤ i ≤ 2. It

follows that Pi(x, tm) and Qi(x, tm), 1 ≤ i ≤ 2, solve the systems (4.3.16) and (4.3.54).

We know that the system (4.3.54) is equivalent to the nonlinearized temporal system

(4.3.14) under the control of (4.3.13) , This implies that Pi(x, tm) and Qi(x, tm) should

also solve (4.3.13) and (4.3.14). Thus (3.47) determines a solution to utm = Km. In

addition, since {H,Hm} = 0, the systems (4.3.13) and (4.3.14) are compatible and

hence the Hamiltonian phase flows gxH , g
tm
Hm

commute (i.e., gxHg
tm
Hm

= gtmHm
gxH). This

shows that the solution (4.3.56) is involutive.
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5 Concluding Remarks

In this dissertation we have presented a spectral problem and its extension based on a

modification of the well-known Dirac spectral problem. Through the so-called Tu-Ma

scheme, we have obtained two soliton hierarchies with one as a subsystem of the other.

We have further expressed all the equations in Hamiltonian and bi-Hamiltonian forms

and have consequently proved the Liouville integrability of these equations over the

real field based on Magri’s scheme [25].

We have also derived a third Hamiltonian structure for the first hierarchy and

shown the compatibility of the three Hamiltonian structures making this hierarchy

tri-Hamiltonian. Although the existence of such a structure is not needed to prove

integrability, it is still interesting due to the fact that not every integrable system is

tri-Hamiltonian. Additionally, we have also derived an inverse hierarchy of commuting

symmetries whose integrability, as remarked earlier, may be difficult to establish due

to the nonlocalness of the equations. The success in obtaining this hierarchy is a

direct consequence of the existence of the inverse of the recursion operator. For

many soliton hierarchies, the inverse of the recursion operator may not exist and as a

result these hierarchies may not have an inverse hierarchy of commuting symmetries.

Examples of such hierarchies include the Wadati-Konno-Ichikawa hierarchy and the

Jaulent-Miodek hierarchy [32].

Furthermore, we have presented finite-dimensional Hamiltonian systems by

means of the Bargmann symmetry constraint and discussed their integrability in terms

of the existence of integrals of motion. Most importantly, we have presented involutive

solutions to the nonlinear evolution equations in the soliton hierarchy based on the
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integrability of the finite-dimensional integrable systems.

Finally, we remark that except for the inverse hierarchy, all equations generated

are local although the recursion operators for the hierarchies involve nonlocal terms.

This is due to the locality property of the functions {ai, bi, ci|i ≥ 1}. Nonlocality is

a troubling element in the theory of integrable systems as many recursion operators

usually involve nonlocal terms. One may see the recent paper by De Sole, Kac and

Valeri [6] to realize the disturbing nature of nonlocality.
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