
University of South Florida University of South Florida 

Digital Commons @ University of Digital Commons @ University of 

South Florida South Florida 

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations 

3-18-2016 

Characterization of Bacterial Diversity in Cold-Water Characterization of Bacterial Diversity in Cold-Water 

Anthothelidae Corals Anthothelidae Corals 

Stephanie Nichole Lawler 
University of South Florida, slawler2@mail.usf.edu 

Follow this and additional works at: https://digitalcommons.usf.edu/etd 

 Part of the Microbiology Commons, and the Other Oceanography and Atmospheric Sciences and 

Meteorology Commons 

Scholar Commons Citation Scholar Commons Citation 
Lawler, Stephanie Nichole, "Characterization of Bacterial Diversity in Cold-Water Anthothelidae Corals" 
(2016). USF Tampa Graduate Theses and Dissertations. 
https://digitalcommons.usf.edu/etd/6295 

This Thesis is brought to you for free and open access by the USF Graduate Theses and Dissertations at Digital 
Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses and 
Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more 
information, please contact digitalcommons@usf.edu. 

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F6295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/48?utm_source=digitalcommons.usf.edu%2Fetd%2F6295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/192?utm_source=digitalcommons.usf.edu%2Fetd%2F6295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/192?utm_source=digitalcommons.usf.edu%2Fetd%2F6295&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu


 

 

 
 
 
 

Characterization of Bacterial Diversity in Cold-Water Anthothelidae Corals 

 

 

 

by 

 

 

 

Stephanie Nichole Lawler 

 

 

 

 

A thesis submitted in partial fulfillment 

of the requirements for the degree of 

Master of Science 

College of Marine Science 

University of South Florida 

 

 

 

Co-Major Professor: Christina Kellogg, Ph.D. 

Co-Major Professor: Mya Breitbart, Ph.D. 

Pamela Hallock Muller, Ph.D. 

 

 

Date of Approval: 

December 9, 2015 

 

 

 

Keywords: cold-water corals, Anthothela, deep sea, octocoral, submarine canyons 

 

Copyright © 2015, Stephanie Nichole Lawler 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

DEDICATION 

 

 This thesis is dedicated to my parents, Brian and Lorri Lawler, and husband, Jonathon 

Ellington, for the endless love and support they have shown throughout my graduate career. 

Thank you for enduring the long hours, success, and failures. It was your loving words that gave 

me the foundation to believe in myself. As this adventure wraps up, I look forward to where the 

future will take us.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

ACKNOWLEDGMENTS 

  

 The successful completion of this degree is attributed to the many individuals that 

advised, encouraged, and supported me throughout the program. To my advisor and mentor Dr. 

Christina Kellogg, thank you for granting me the opportunity to work along your side for so 

many years. Your guidance, determination, and honesty have shaped me into a stronger, more 

confident woman in the sciences. To my co-advisor Dr. Mya Breitbart, your accomplishment and 

drive inspire me to follow my dreams. You’re an amazing role model who has taught me so 

much over the years. Finally, thank you to my committee member Dr. Pamela Hallock Muller for 

supporting me with kind words and wisdom since before I entered into this graduate program. 

Your confidence in me has pushed me to accomplish more than I ever thought I could. 

 To all those who have supported this adventure financially, emotionally or scientifically, 

thank you for this; I am eternally grateful. To my dearest friends and lab mates, thank you for 

your assistance; your support, suggestions, and engaging conversation have been enlightening 

and empowering. I will always cherish the friendships and memories made during this adventure. 

Finally a huge thanks to the George Lorton Endowed Fellowship and the Alyesworth 

Scholarship for giving me the means to fully focus on my education and participate in workshops 

and trainings over the course of my graduate career. 



i 

 

 

 

 

TABLE OF CONTENTS 

 

List of Tables ................................................................................................................................ iii 

 

List of Figures ................................................................................................................................ iv 

 

Abstract ............................................................................................................................................v 

 

Chapter One: Introduction ...............................................................................................................1 

 1.1 Coral Ecosystems ...........................................................................................................1 

 1.2 Bacterial Communities...................................................................................................3 

 1.3 Overview of Thesis ........................................................................................................6 

   

Chapter Two: Coral-associated bacterial diversity is conserved within the deep-sea 

  Genus Anthothela spp. ...................................................................................................8 

 2.1 Introduction ....................................................................................................................8 

 2.2 Materials and Methods .................................................................................................10 

  2.2.1 Sample Sites and Collections ........................................................................10 

  2.2.2 Genetic Identification....................................................................................13 

  2.2.3 Nucleic Acid Extraction ................................................................................13 

  2.2.4 16S rRNA Gene Pyrosequencing..................................................................15 

  2.2.5 Bioinformatics and Statistical Analysis ........................................................15 

 2.3 Results ..........................................................................................................................17 

  2.3.1 Alpha and Beta Measurements of Bacterial Diversity ..................................18 

  2.3.2 Bacterial Community Composition of New Coral Genus ............................22 

  2.3.3 Bacterial Community Composition of Anthothela .......................................23 

  2.3.4 Core Microbiome ..........................................................................................26 

 2.4 Discussion ....................................................................................................................27 

  2.4.1 Proteobacteria ...............................................................................................27 

   2.4.1.2 Proteobacteria in Sample RB.688Q3 .............................................28 

   2.4.1.2 Proteobacteria in the Anthothela Samples .....................................30 

  2.4.2 Spirochaetes ..................................................................................................34 

  2.4.3 Core Microbiome ..........................................................................................35 

 2.5 Conclusion ...................................................................................................................40 

 2.6 Acknowledgements ......................................................................................................42 

 

Chapter Three: Conclusion ............................................................................................................44 

 

References ......................................................................................................................................46 

 



ii 

About the Author ............................................................................................................... End Page 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

 

 

 

LIST OF TABLES 

 

Table 2.1: List of samples and coral species collected including metadata for  

 each collection .......................................................................................................14 

 

Table 2.2: Alpha diversity analysis of Anthothela samples ....................................................21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

LIST OF FIGURES 

 

Figure 2.1: Map of collection sites from Baltimore and Norfolk Canyons, located  

 off the Mid-Atlantic coast of the United States. ....................................................12 

 

Figure 2.2: Principal coordinates analysis was used to plot the beta diversity of  

 bacterial communities using weighted Unifrac Matrix ..........................................20  

 

Figure 2.3: Relative abundance of bacterial taxa in coral samples ..........................................25   

 

Figure 2.4: A heatmap was created to visualize the core community of the 15  

 samples within the Anthothela genus. ....................................................................26 

 

Figure 2.5: Core bacterial groups contributing within the nitrogen cycle ................................38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

 

 

 

ABSTRACT 

 

 Cold-water corals, similar to tropical corals, contain a diverse and complex microbial 

landscape. Comprised of vital microscopic organisms (i.e. bacteria, viruses, archaea), the coral 

microbiome is a driving factor in the proliferation and survival of the coral host. Bacteria provide 

essential biological functions within coral holobionts, facilitating increased nutrient utilization 

and production of antimicrobial compounds. To date, few cold-water octocoral species have been 

analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 

samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore 

Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing 

found that these samples comprised two Anthothela species (Anthothela grandiflora and 

Anthothela sp.) and a new genus. DNA was extracted and sequenced with primers targeting the 

V4-V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium 

chemistry.  

 Results demonstrated that the host genus was the primary driver of bacterial composition. 

The new coral genus, dominated by Alteromonadales and Pirellulales, had much higher species 

richness and a distinct bacterial community compared to Anthothela samples. Anthothela species 

had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Core 

bacterial diversity present across 90% of the Anthothela samples revealed genus-level 

conservation. This core included unclassified Oceanospirillales, Kiloniellales, 

Campylobacterales, and Spirochaeta; the functional abilities of which contribute to a nearly 



vi 

complete nitrogen cycle. Dominant bacterial members of the new coral genus also had functional 

capabilities in nitrogen cycling. Overall, many of the bacterial associates identified in this study 

have the potential to contribute to the acquisition and cycling of nutrients within the coral 

holobiont. 
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CHAPTER ONE: 

Introduction 

 

1.1 Coral Ecosystems 

 Coral reefs (both tropical and cold-water) are complex and highly productive ecosystems. 

Housing a myriad of species, these valuable environments are often referred to as “oases” in the 

oceans (Knowlton et al., 2010; Lumsden et al., 2007). Coral reefs are recognized for their 

immense biological wealth, which encompasses both socioeconomic and environmental services 

essential to societies throughout the globe. Each year an estimated $30 billion in net benefits is 

generated directly from the roles that coral reefs play in tourism, fisheries, and coastal protection 

(Cesar et al., 2003). Coral reef structures also offer invaluable contributions to the commercial 

fishing industry, employing millions of fisherman as well as providing livelihoods for many 

coastal communities (Bryant et al., 1998). Additionally these ecosystems provide habitats for a 

diverse consortium of organisms ranging from microbes to invertebrate and vertebrate species 

(Nagelkerken et al., 2000; Reed et al., 2006; Roberts & Hirshfield, 2004), making them one of 

the leading locations for research and discovery of natural products. 

 As the main architects of reef habitats, corals (classified under the Class Anthozoa) and 

their structures are responsible for much of the diversity present (Appeltans et al., 2012). Coral 

are divided into three subclasses; stony corals (Subclass Hexacorallia, Order Scleractinia), black 

corals (Subclass Hexacorallia, Order Antipatharia), and soft corals (Subclass Octocorallia; 

Orders Alcyonacea, Helioporacea, and Pennatulacea) (Berntson et al., 2001). While some species 
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are globally distributed, corals are generally associated with specific niches, primarily driven by 

temperature requirements (e.g. warm-water (tropical) corals, temperate, and cold-water corals). 

In total there are approximately 800 tropical coral species (Roberts et al., 2002) and over 3,000 

cold-water coral species (Roberts et al., 2006) known, with many still undescribed. 

 Tropical reefs are primary biodiversity hotspots, often referred to as the “rainforests of 

the ocean” (Knowlton & Jackson, 2008). These corals require an intricate balance of ambient 

environmental factors such as water quality, salinity (32–35 ppt), temperature (25–29˚C), tidal 

variation, and intermittent light intensities in order to ensure health and proliferation (Veron, 

2011). Known for their hermatypic (reef-building) capabilities, most tropical corals obtain 50–

95% of their nutrients through the translocation of carbon compounds from photosynthetic 

zooxanthellae (symbiotic dinoflagellate belonging to the genus Symbiodinium) (Muscatine & 

Cernichiari, 1969). Tropical corals are typically found in the euphotic zone, from 0–50 m and 

within a latitudinal range of 30˚N and 30˚S (Hutson, 1985). However, in areas with very clear 

waters allowing light penetration, some of these same coral species can be found as deep as 130 

m (Lesser et al., 2009). Because the photic zone may extend from the ocean’s surface to depths 

of 150–200 m in some regions, these ‘twilight’ or mesophotic reef communities consist of a 

variety of photosynthetic corals as well as azooxanthellate (lacking the symbiotic dinoflagellate) 

coral species (Kahng et al., 2010). 

 Unlike tropical or mesophotic species, cold-water corals thrive in aphotic environments, 

present at depths ranging from 50–4,000 m with preferred temperatures between 4°C–12°C 

(Roberts et al., 2006). While the majority of these species are present at greater than 50 m 

(Cairns, 1979), some may occur as shallow as SCUBA-diving depths in the higher latitudes 

(Roberts et al., 2006). For this reason these corals are referred to as cold-water corals (rather than 
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deep-sea corals) as their distribution is regulated by temperature and not depth. In comparison to 

tropical corals, cold-water corals are globally distributed, with populations generally inhabiting 

continental shelves and seamounts (Roberts & Hirshfield, 2004). Various species of cold-water 

corals have been described off all coasts of the United States (Lumsden et al., 2007) and from the 

Caribbean (Cairns, 1979) to the Ross Sea in Antarctica (Stanley & Cairns, 1988). Some of the 

best studied areas are in the North Atlantic Ocean including the coasts of Norway (Hovland et 

al., 2002), Canada (Risk et al., 2002), west of the UK (Roberts et al., 2005), and the Azores 

Islands (Hall-Spencer et al., 2007b). 

 Similar to tropical corals, cold-water species require a hard substrate for settlement. 

Structural formations may range in size from individual, isolated colonies (stony corals, soft 

corals) to small patches (black corals, hydrocorals), to large bioherms (stony corals) (Morgan, 

2005; Rogers, 1999). Often, these corals will colonize locations with increased water circulation 

and elevated seafloor topography to enhance exposure to detritus and particulates transported 

from surface waters (White et al., 2005). Since cold-water coral species lack the symbiotic 

dinoflagellates (zooxanthellae) associated with tropical and some mesophotic species, they 

depend on capture feeding and symbiotic relationships with microorganisms for acquisition and 

processing of nutrients (Duineveld et al., 2004; Roberts et al., 2006). 

1.2 Bacterial Communities 

 Microbial communities can occupy a range of marine habitats including sediments, water 

columns, and pelagic and benthic invertebrates (e.g. corals, sponges, etc.) (Bourne & Webster, 

2013). Within the last decade, tropical corals have gained increased interest as some of the most 

biodiverse ecosystems within the world’s oceans. The coral holobiont (which consists of the 

coral animal and its microscopic associates) includes various members of bacteria, archaea, 
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fungi, viruses, as well as algal associates, such as endolithic algae and zooxanthellae (notably, 

only present in tropical and some temperate corals) (Rohwer et al., 2002). Prior to the 1980s, 

bacterial diversity was studied primarily through the use of culture-dependent techniques. In a 

study by Ducklow and Mitchell (1979), corals mucus was shown to contain higher 

concentrations of bacteria than ambient seawater. Additional studies have also addressed the 

functional roles of bacteria in the processing of nutrients (Ritchie & Smith, 1995; Shashar et al., 

1994). While bacteria are recognized for their ubiquitous nature throughout the reef systems, it is 

estimated that between 90–99% of these microscopic organisms present are unattainable through 

culturing (Glockner et al., 2011). Thus, the breadth of bacterial diversity obtained through 

culturing severely underestimates the true total bacterial diversity. Nevertheless, culture-based 

techniques achieved a first glimpse of the unique bacterial consortia associated with coral hosts. 

 More recently, hundreds of studies have researched the microbial diversity associated 

with tropical corals through the use of molecular and culture-based techniques. In 2001, the first 

culture-independent study sequenced 16S rRNA genes from the bacterial community associated 

with the tropical coral, Orbicella franksi (Rohwer et al., 2001). This study was the first to 

address the immense underrepresentation of bacterial populations present in the coral landscape. 

Within the last decade, studies have continued to evaluate the microbial associates present in 

various niches of the coral host, including surface mucus, tissue, and calcium carbonate skeletal 

structures (Bourne & Munn, 2005; Cook et al., 2013; Ducklow & Mitchell, 1979; Koren & 

Rosenberg, 2006; Lampert et al., 2006; Lee et al., 2012; Littman et al., 2009; Nithyanand & 

Pandian, 2009; Ritchie, 2006; Rohwer et al., 2002; Sweet et al., 2010; Sweet et al., 2011). While 

these studies have increased our understanding of the bacterial diversity present, the potential 

importance of these communities and their influence on the overall health of coral colonies is 
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still unclear (Cook et al., 2013; Frias-Lopez et al., 2004; Littman et al., 2009; Sunagawa et al., 

2009).  

 To further evaluate the functions provided by these microorganisms, many studies have 

addressed their metabolic characteristics. One of the primary beneficial roles bacteria play within 

the coral holobiont is the acquisition and biochemical transformation of organic and inorganic 

materials into viable nutrients (Lesser et al., 2004; Shashar et al., 1994). This relationship is 

especially important in cold-water corals which lack the symbiotic dinoflagellates associated 

with attaining nutrients in tropical coral species. Other common symbiotic or commensal 

relationships have been observed between the host and bacteria consortia, including the 

production of antimicrobial compounds that may act as a defensive line protecting the host 

organism against predation (Nissimov et al., 2009; Ritchie, 2006; Shnit-Orland & Kushmaro, 

2009). In contrast, many bacterial groups have been identified as opportunistic or pathogenic, 

causing potential harm to the host organism (Bourne & Webster, 2013; Frias-Lopez et al., 2002; 

Pantos et al., 2003). Additionally, studies have observed fluctuations in bacterial communities 

based on the transitioning of environmental parameters, such as temperature fluctuation, 

increased light intensity, and/or an overload of nutrients or pollutants (Ben-Haim et al., 2003a; 

Guppy & Bythell, 2006; Koren & Rosenberg, 2006; Li et al., 2014; Szmant, 2002). As 

technology advances, the ability to identify and characterize bacterial composition will redefine 

our understanding of diverse microorganisms and their influence on the coral holobiont. 

 Historically, research on the microbial landscape of cold-water corals has been limited in 

comparison to tropical coral species, due in part to cost and difficulty in sample retrieval 

(Lumsden et al., 2007). Much like tropical corals, cold-water corals contain a rich and diverse 

microbial community (Kellogg et al., 2009). While cold-water corals have been identified since 
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the 1800’s, microbial diversity has only been examined within the last decade. In 2006, two 

studies characterized the bacterial communities associated with cold-water corals, demonstrating 

the presence of species-specific bacteria that differed from the surrounding environment. 

Yakimov et al. (2006) did so by assessing microbiota associated with living and dead samples of 

scleractinian coral Lophelia pertusa. Penn et al. (2006) contributed through the examination of 

microbiota associated with the octocoral species, Isididae sp., and unidentified black corals. 

Since then, similar relationships have been observed in stony corals L. pertusa (Galkiewicz et al., 

2011; Kellogg, 2008; Kellogg et al., 2009; Neulinger et al., 2008; Schottner et al., 2009) and 

Madrepora oculata (Hansson et al., 2009). While scleractinian cold-water corals, more 

specifically L. pertusa, have received a lot of attention, comparatively less is understood about 

cold-water octocoral species (Bruck et al., 2007; Gray et al., 2011; Ransome et al., 2014; 

Santiago-Vazquez et al., 2007). To date much is still unknown regarding the bacterial 

composition and community dynamics and functional relationships between of cold-water 

octocorals and their bacterial associates. 

1.3 Overview of Thesis 

 The research discussed in this study aims to broaden our understanding of the bacterial 

communities associated with cold-water corals within the family Anthothelidae. To date, few 

studies have assessed the bacterial assemblages associated with cold-water octocorals (Bruck et 

al., 2007; Gray et al., 2011; Penn et al., 2006). In an effort to expand on the current knowledge of 

these unique organisms, this study provided a baseline characterization of the bacterial diversity 

associated with three Anthothelidae corals; Anthothela grandiflora, Anthothela sp., and a new 

unidentified genus. We examined the core microbial associates to identify potential roles 

conserved by these previously uncharacterized coral hosts. The information gained from this 
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study provides greater insight into the understanding of these cold-water ecosystems.  
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CHAPTER TWO: 

 

Coral-Associated Bacterial Diversity is Conserved within the Deep-Sea Genus Anthothela 

spp. 

 

Note to Reader 

 A modified version of this chapter has been submitted and accepted in the Frontiers 

Microbiology Journal. 

 

2.1 Introduction 

 Cold-water coral ecosystems are vital biodiversity hotspots within the deep sea. Thriving 

in temperatures that range from 4°C–12°C, these corals occur at depths between 50–4,000 m 

(Roberts et al., 2006). Cold-water corals are globally distributed and the majority of colonies 

inhabit locations with strong currents and elevated topography such as continental slopes and 

seamounts (Roberts & Hirshfield, 2004; White et al., 2005). These habitats provide maximum 

access to particulate and planktonic food sources necessary for non-photosynthetic corals (White 

et al., 2005). Similar to tropical reefs (Bourne & Munn, 2005; Rohwer et al., 2002), cold-water 

ecosystems provide critical habitat for many organisms, ranging from benthic and planktonic 

fauna to microbial associates (Roberts et al., 2006). Coral colonies are home to their own diverse 

and complex microbial landscape (Bourne & Webster, 2013; Galkiewicz et al., 2011; Gray et al., 

2011; Hansson et al., 2009; Kellogg et al., 2009; Neulinger et al., 2009; Neulinger et al., 2008; 

Penn et al., 2006). In an attempt to further understand bacterial function within the coral 
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microbiome, studies have examined the roles these bacteria may have within the coral host. 

While some bacteria appear to play commensal or pathogenic roles (Bourne & Webster, 2013; 

Nissimov et al., 2009; Shnit-Orland & Kushmaro, 2009), many are not static in function, 

fluctuating with transitioning environmental conditions (e.g. increased microbial pathogenicity 

upon exposure to elevated thermal stressors (Ben-Haim et al., 2003a; Bruno et al., 2007)). 

 Research addressing the microbial communities associated with cold-water corals has 

been limited due to the expense of sampling, which can be directly linked to the difficulty of 

sample retrieval at depth. While many of these corals have been identified since the 1800’s, the 

first microbial study of cold-water corals was not published until 2006. This study assessed 

microbiota associated with dead and living samples of the scleractinian coral Lophelia pertusa 

(Yakimov et al., 2006). That same year, Penn et al. (2006) evaluated bacterial communities 

associated with a black coral and several bamboo corals in the Gulf of Alaska. These two studies 

were the first to describe the microbial communities associated with stony and soft cold-water 

coral species as well as demonstrate differentiation between these deep-sea coral-associated 

communities and those of their surrounding environments (sediment and water column). Since 

then, studies have characterized the microbial diversity of additional cold-water corals; L. 

pertusa (Galkiewicz et al., 2011; Hansson et al., 2009; Kellogg, 2008; Kellogg et al., 2009; 

Neulinger et al., 2008; Schottner et al., 2009), Madrepora oculata (Hansson et al., 2009) and 

octocorals (Paragorgia arborea, Plumarella surperba, and Cryogorgia koolsae (Gray et al., 

2011)). Continued research is necessary to broaden our understanding of these complex 

microorganisms, their relationships with the coral host, and the roles they play in the dynamic 

deep-sea environment.  

 In an effort to further our understanding of cold-water octocorals and their microbial 
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associates, this study evaluated three corals from the family Anthothelidae, initially targeting the 

species Anthothela grandiflora. Endemic to the Atlantic Ocean, A. grandiflora was first observed 

off the coast of Nova Scotia in the mid-1800’s (Whiteaves, 1901), but to date no microbial 

analysis has been completed. For this study, samples from 23 individual colonies of gorgonian 

corals visually identified as Anthothela were collected from Baltimore and Norfolk canyons off 

the east coast of the United States in the Mid-Atlantic Bight. The objective of this study was to 

provide the first characterization of the bacterial diversity associated with the cold-water 

octocoral genus Anthothela. 

2.2 Materials and Methods 

2.2.1 Sample Sites and Collections 

 In total, 23 individual Anthothelidae colonies were sampled during two research cruises 

conducted in August 2012 and May 2013. Site locations in the Mid-Atlantic Bight included 

Baltimore Canyon, which was sampled using the Kraken II remotely-operated vehicle (ROV) 

(University of Connecticut) in 2012 and Norfolk Canyon, sampled using the Jason II ROV 

(Woods Hole Oceanographic Institution) in 2013 (Figure 2.1). Environmental parameters were 

recorded for each sample site including location (latitude and longitude), depth, temperature, and 

salinity (Table 2.1). Depths of sample collection ranged from 401–704 m. Bottom types varied 

from rocky seafloor to rock cliffs and ledges. Common benthic fauna present at sample sites 

associated with coral colonies included adult galatheid squat lobsters (Eumunida picta) and 

cutthroat eels (Synaphobranchidae). Several scleractinian and octocorals were present in the 

vicinity of Anthothelidae colonies, including Desmophylum, Paragorgia and Primnoa species. 

 Because some species of Anthothelidae can grow over other organisms, including dead 

coral branches and sponges, great care was taken to select sections of polyps from the tips of 
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branches rather than the main stalk (Lumsden et al., 2007). This technique was employed to 

avoid accidental contamination of the sampled coral microbiome with that of the supporting 

organism. Branches were removed using the ROV’s manipulator claw and each sample placed in 

an individual polyvinyl chloride (PVC) quiver. The quivers were cleaned before deployment 

using ethanol to remove any interior biofilms, filled with freshwater and sealed with a rubber 

stopper. This prevented contamination of the containers by the water column prior to sampling, 

during which the rubber stopper is removed and in situ seawater replaces the freshwater due to 

density differences. On the ship, coral samples were transferred from the ROV collection quivers 

to sterile 50 mL tubes containing the preservative RNAlater (Life Technologies, Grand Island, 

NY). Samples were incubated overnight at 4°C to allow the preservative to penetrate the coral 

tissues and then stored at -20°C until processing. 

2.2.2 Genetic Identification 

 During ROV collection, coral samples were visually identified as A. grandiflora. Of the 

23 samples collected for microbiology, sufficient biomass remained in 19 samples to be shared 

with collaborators conducting genetic analysis (Table 2.1). Mitochondrial genes mtMutS (France 

& Hoover, 2002; Sanchez et al., 2003) and cytochrome oxidase (cox1) (McFadden et al., 2011; 

Smith et al., 2004) were sequenced for genetic assessment of the corals (S. France and R. 

Clostio, pers. comm.). 
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Figure 2.1. Map of collection sites  

Samples were collected from two submarine canyons, Baltimore and Norfolk, located off the Mid-Atlantic coast of the United States. 

Symbol shapes defined in the legend distinguish the samples based on genetic identification (e.g. Anthothela grandiflora, Anthothela 

sp., and new genus). 
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2.2.3 Nucleic Acid Extraction 

 Two polyps (~50 mg) were removed from each coral sample using flame-sterilized 

forceps and dissecting shears. DNA was extracted using the MOBIO PowerPlant DNA Isolation 

Kit (MO BIO Laboratories; Carlsbad, CA). Per Sunagawa et al. (2010), modifications to this 

protocol included the addition of lysozyme and extended incubation periods at room temperature 

(24°C) and 65°C. Samples were then homogenized using 400 mg each of sterile 0.1 mm and 0.5 

mm zirconia/silica beads (BioSpec Products; Bartlesville, OK) in a Mini-BeadBeater-1 (Biospec 

Products) (Sunagawa et al., 2010). The bacterial and universal primers 63F 

(5’CAGGCCTAACACATGCAAGTC3’) (IDT; Iowa City, IA) (Marchesi et al., 1998) and 

1542R (5’AAGGAGGTGATCCAGCCGCA3’) (IDT) (Pantos et al., 2003) were used to screen 

the samples to confirm amplification of the target 16S bacterial rRNA genes, rather than the 

possible amplification of coral 18S ribosomal rRNA genes by polymerase chain reaction 

(Galkiewicz & Kellogg, 2008). DNA concentrations from the extraction were quantified for each 

sample using a Quant-iT™ PicoGreen dsDNA Assay Kit (Invitrogen: Eugene, OR) as outlined in 

the manufacturer’s protocol and sent for sequencing. 

2.2.4 16S rRNA Gene Pyrosequencing 

 Unamplified DNA extracted from the samples was sequenced by 454 pyrosequencing 

(Selah Genomics; Greenville, SC) using GS FLX Titanium chemistry and V4−V5 targeting 

primers following Roche 454’s standard protocol for amplicons (Claesson et al., 2010): forward 

primer (5′ AYTGGGYDTAAAGNG) (IDT) and reverse primer (5′ 

CGTATCGCCTCCCTCGCGCCATCAG) (IDT). Sequence data from all samples were 

deposited in the NCBI Sequence Read Archive (SRA) under Bioproject number PRJNA296835. 
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Table 2.1. Sample collection and corresponding environmental data. Highlighted samples (n = 16) were used in final analysis.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Samples identified with ND did not have genetic analysis completed 

Coral Year Canyon ID # Latitude Longitude 

Depth 

(m) 

Temp 

(˚C) 

Salinity 

(psu) 

 Anthothela grandiflora 2012 Baltimore NF.13Q6 38.161487 -73.856465 434 7.1 35.1 

 Anthothela grandiflora 2012 Baltimore NF.13Q7 38.161070 -73.856163 432 7.5 35.1 

 Anthothela grandiflora 2012 Baltimore NF.15Q6 38.173512 -73.841965 416 7.2 35.1 

 Anthothela grandiflora 2012 Baltimore NF.15Q7 38.175122 -73.845125 457 6.8 35.1 

 Anthothela grandiflora 2012 Baltimore NF.16Q7 38.181985 -73.861092 436 6.3 35.0 

 Anthothela grandiflora 2012 Baltimore NF.17Q6 38.118832 -73.847417 575 5.7 35.0 

 Anthothela grandiflora 2012 Baltimore NF.17Q7 38.118210 -73.847688 575 5.7 35.0 

 Anthothela grandiflora 2012 Baltimore NF.18Q7 38.117922 -73.845465 679 5.1 35.0 

 Anthothela grandiflora 2013 Norfolk RB.686Q4 37.054690 -74.603935 581 5.9 35.0 

 Anthothela grandiflora 2013 Norfolk RB.687Q5 37.054808 -74.578777 606 5.7 35.0 

 Anthothela grandiflora 2013 Norfolk RB.688Q1 37.024297 -74.588163 559 5.8 34.9 

 Anthothela grandiflora 2013 Norfolk RB.688Q5 37.024247 -74.588199 560 5.8 34.9 

 Anthothela sp. 2012 Baltimore NF.18Q6 38.118158 -73.849030 524 5.5 35.0 

 Anthothela sp. 2013 Norfolk RB.686Q5 37.054699 -74.603939 581 5.9 35.0 

 Anthothela sp. 2013 Norfolk RB.687Q3 37.054881 -74.577786 594 5.6 35.0 

 Anthothela sp. 2013 Norfolk RB.688Q2 37.023429 -74.592413 474 6.5 35.0 

 Anthothela sp. 2013 Norfolk RB.688Q4 37.024201 -74.588153 559 5.8 34.9 

New Genus 2013 Norfolk RB.686Q2 37.058587 -74.605852 480 6.6 35.1 

New Genus 2013 Norfolk RB.688Q3 37.023538 -74.592445 474 6.4 35.0 

ND* 2012 Baltimore NF.01Q7 38.149448 -73.837895 451 6.4 35.1 

ND* 2012 Baltimore NF.02Q7 38.144950 -73.834483 401 6.8 35.1 

ND* 2012 Baltimore NF.16Q6 38.181962 -73.860835 435 5.7 35.0 

ND* 2013 Norfolk RB.687Q4 37.053907 -74.580567 704 5.3 35.0 



15 

2.2.5 Bioinformatics and Statistical Analysis 

 Analysis of the sequence data was conducted using the bioinformatics program QIIME 

1.5.0 on the Data Intensive Academic Grid (DIAG), a National Science Foundation funded MRI-

R2 project #DBI-0959894 and QIIME 1.9.1 on the Amazon Elastic Compute Cloud (Amazon 

“EC2”) (Caporaso et al., 2010). Our bioinformatics workflow and all resulting processed files are 

available online as a USGS data release, http://dx.doi.org/10.5066/F7CZ356K (Kellogg & 

Lawler, 2015). 

 A total of 1,308,658 raw reads were generated from the 23 individual coral samples. 

Quality checks were performed using the split_libraries.py with the following parameters: 

sequence length (minimum sequence length of 200 base pair (bp) and a maximum length of 700 

bp), a minimum average quality score of 25, a maximum of one primer mismatch, and a 

maximum of a six homopolymer run (Kunin et al., 2010). SFF files were split into individual 

sample libraries based on the designated 10 bp identification barcode assigned to each sample 

during library preparation. The 889,914 sequences that passed the quality checks were then 

denoised using denoiser_preprocess.py, denoiser.py, and inflate_denoiser_results.py. This 

process was employed to reduce the number of erroneous operational taxonomic units (OTUs) 

and increase the accuracy of the sequence processing (Quince et al., 2011). Samples containing 

fewer than 10,000 sequences were removed prior to OTU selection to maximize the sequence 

data available. Furthermore, corals with no confirmed genetic identification were also removed 

at this stage, leaving a final total of 16 samples (Table 2.1, highlighted). Moving forward, OTUs 

were selected using an open-reference method (pick_open_reference_otus.py), with a 97% 

similarity threshold (Rideout et al., 2014). This method clustered sequences from each sample 

against the Greengenes reference database release 13_8 (DeSantis et al., 2006). Sequences that 
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were not matched during the reference comparison were reevaluated using the de novo reference 

method. Sequences were then aligned using usearch (Edgar, 2010), which included the removal 

of chimeras. Representative OTU sequences (defined as one representative from each OTU) 

were selected, assigned a taxonomic classification (uclust) (Edgar, 2010), and used to create a 

phylogenetic tree (Price et al., 2010). Sequences were then filtered to remove absolute singletons 

(defined as an OTU present only once in the analysis). Sequences classified as chloroplasts and 

mitochondria were removed from the OTU table as were any sequences classified as Eukarya or 

Archaea. Samples were then rarified to the number of sequences present in the smallest sample 

(10,341) before further diversity analysis was completed. Analysis of the core diversity 

associated with the coral species was completed using compute_core_diversity.py. 

 Alpha and beta diversity calculations as well as relative abundance summaries were 

conducted using alpha_diversity.py, beta_diversity.py, and summarize_taxa_through_plots.py. 

Alpha diversity metrics included Chao index (Chao, 1984), Shannon diversity index (Shannon, 

1948), and Simpson diversity index (Simpson, 1949) (Table 2.2). These indices were employed 

to assess the richness and evenness of the associated microbiota within each individual sample. 

To assess beta diversity (similarities or differences across samples), three matrices were used 

based on phylogenetic and taxonomic relationships between sequences. Weighted and 

unweighted unit fraction (UniFrac) (Lozupone & Knight, 2005) measurements were recorded to 

evaluate the importance of the presence/absence of specific taxa within the samples (unweighted 

Unifrac) compared to the abundance of these taxa (weighted Unifrac) (Fukuyama et al., 2012). 

Bray-Curtis was also assessed to evaluate differences between each sample based on the number 

of sequences per OTUs. To visualize beta diversity, principal coordinate analysis (PCoA) plots 

were prepared in R-Studio (R Development Core Team, 2014) using the previously described 
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metrics. In addition, pairwise analysis of similarities (ANOSIM) was performed to further 

examine the statistical variation between sample groups (e.g. environmental parameters, location, 

or species diversity) (Chapman & Underwood, 1999). A similarity percentage (SIMPER) was 

also used to determine the key contributing families responsible for the observed patterns. This 

statistical analysis was completed using PRIMER-E Ltd (Clarke & Warwick, 2001) and R-

Studio. Figures for this study were produced in R-Studio (R Development Core Team, 2014) 

using the vegan (Oksanen et al., 2015) and gplots packages (Warnes et al., 2015). 

2.3 Results 

 Genetic testing revealed that of the 23 samples collected, 12 were classified as Anthothela 

grandiflora, five as a new Anthothela species, and two as a new unidentified genus within the 

family Anthothelidae (S. France & R. Clostio, pers. comm.) (Table 2.1). Four of the 23 samples 

were not analyzed for coral genetics and were removed from our analysis (NF.01Q7, NF.02Q7, 

NF.16Q6, and RB.687Q4) although their sequence data are included in the SRA data file for 

completeness. In addition, samples with fewer than 10,000 sequence reads (NF.02Q7, 

RB.686Q2, RB.687Q3 and RB.688Q2) were removed before primary analysis to increase 

rarefaction depth. As such, 16 samples were analyzed further, nine from Baltimore Canyon (one 

Anthothela sp. and eight A. grandiflora samples) and seven from Norfolk Canyon (one was 

identified as a new genus, two as Anthothela sp. and four as A. grandiflora) (Table 2.1, Figure 

2.1). 

2.3.1 Alpha and Beta Measurements of Bacterial Diversity 

 Phylogenetic relationships between samples (beta diversity) were compared using three 

primary diversity matrices (weighted UniFrac, unweighted UniFrac and Bray-Curtis) and 

visualized using principal coordinates analysis (PCoA). Diversity of samples was first evaluated 
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based on coral host. Here, samples within the genus Anthothela (A. grandiflora and Anthothela 

sp.) clustered separately from sample RB.688Q3, accounting for ~57% of the statistical variation 

(Figure 2.2). Due to deficient sample size (n = 1), the new genus sample could not be included in 

the analysis of similarities (ANOSIM) to assess the correlation between bacterial diversity and 

coral species. Samples associated with Anthothela sp. and A. grandiflora were compared, 

revealing no significant difference between the two species (ANOSIM: R = 0.03, p = 0.27). 

Sample site was also assessed, indicating no significant correlation between coral-associated 

bacterial diversity and the canyon of origin (ANOSIM: R = -0.02, p = 0.45). The influence of 

depth of sample sites, water temperature, and salinity were also examined by PCoA, but were not 

correlated with bacterial diversity (results not shown). Similarity percentage analysis (SIMPER) 

was then used to examine representative bacterial taxa (family level) responsible for the 

differentiation between Anthothela samples and the unidentified genus. Overall, Anthothela 

samples had an average similarity of 63%. Considerable dissimilarity (~72%) was observed 

between the new genus (sample RB.688Q3) and the Anthothela samples. Contributing families 

included Shewanellaceae (~19%) and Pirellulaceae (~11%) which were only present in sample 

RB.688Q3. Unclassified Oceanospirillales (16%), unclassified Spirochaetales (12%), 

Spirochaetaceae (10%) and Colwelliaceae (10%) also defined the differences seen between 

Anthothela samples and RB.688Q3. 

 To measure the bacterial diversity present within each individual sample, a series of alpha 

diversity indices were used (Table 2.2). Shannon (Shannon, 1948), Simpson (Simpson, 1949), 

and Chao 1 (Chao, 1984) diversity indices account for evenness (defined as the abundance of 

species present) and richness (defined as the number of species or OTUs) as well as the total 

number of species observed. These measurements (Shannon = 5.54, Simpson = 0.87, and Chao1 
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= 457.44) revealed greater species richness and evenness in the sample RB.688Q3 compared to 

the rest of the Anthothela samples (Table 2.2). In general, Shannon measurements were fairly 

consistent across Anthothela samples (average Shannon = 2.27) with increased diversity in two 

samples (RB.688Q4 = 2.68 and NF.18Q6 = 3.09). Similar trends were seen in Chao 1 and 

Simpson measurements. To visualize the diversity driving these patterns, bacterial communities 

were characterized at the phylum, order, and family levels for each host genus. 

 

 

Figure 2.2. PCoA plot of Weighted Unifrac Distance 

Principal coordinates analysis was used to plot the beta diversity of bacterial communities using 

the weighted Unifrac Matrix. Red symbols indicate samples collected from Baltimore canyon, 

while blue symbols indicate samples collected from Norfolk Canyon. Symbol shapes defined in 

the legend distinguish the samples based on host genetic identification (e.g. Anthothela 

grandiflora, Anthothela sp., and new genus). 
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Table 2.2. Alpha diversity analysis of Anthothela samples.  

Corals Canyons Sample ID 

No. 

Reads* OTUS 

ACE 

Richness 

Chao1 

Richness 

Shannon 

Index 

Simpson 

Index 

Simpson 

Evenness 

 Anthothela grandiflora Baltimore NF.13Q6 29,481 43 69.70 62.13 1.53 0.52 0.048 

 Anthothela grandiflora Baltimore NF.13Q7 26,072 49 77.63 119.00 2.16 0.72 0.074 

 Anthothela grandiflora Baltimore NF.15Q6 19,011 40 82.93 97.75 1.59 0.61 0.064 

 Anthothela grandiflora Baltimore NF.15Q7 24,570 45 67.94 69.00 1.88 0.65 0.064 

 Anthothela grandiflora Baltimore NF.16Q7 25,073 42 81.75 105.33 1.61 0.54 0.052 

 Anthothela grandiflora Baltimore NF.17Q6 26,826 49 111.32 109.00 1.29 0.41 0.034 

 Anthothela grandiflora Baltimore NF.17Q7 10,341* 56 101.88 83.27 2.48 0.77 0.079 

 Anthothela grandiflora Baltimore NF.18Q7 11,981 95 210.69 209.833 2.51 0.76 0.044 

 Anthothela grandiflora Baltimore RB.686Q4 24,844 30 54.59 56.00 1.60 0.63 0.089 

 Anthothela grandiflora Norfolk RB.687Q5 14,277 66 135.65 109.50 2.52 0.76 0.062 

 Anthothela grandiflora Norfolk RB.688Q1 14,305 80 127.49 113.21 1.61 0.43 0.022 

 Anthothela grandiflora Norfolk RB.688Q5 298,319 77 115.09 110.00 1.90 0.55 0.029 

 Anthothela sp. Baltimore NF.18Q6 13,048 49 80.138 87.00 2.68 0.81 0.105 

 Anthothela sp. Norfolk RB.686Q5 32,484 67 96.61 101.50 2.38 0.74 0.067 

 Anthothela sp. Norfolk RB.688Q4 255,313 215 569.08 446.92 3.09 0.83 0.028 

New Genus Norfolk RB.688Q3 13,827 432 454.32 457.44 5.54 0.87 0.018 

 

 * All samples were rarified to 10,341 sequences before diversity indices were calculated 
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2.3.2 Bacterial Community Composition of New Coral Genus  

 Proteobacteria dominated the new genus (RB.688Q3), accounting for ~69% of the 

relative abundance, with Planctomycetes representing the second most abundant bacterial taxa at 

~17% (Figure 2.3A). Additional minor contributors to the bacterial diversity included 

Bacteroidetes (~2%), Acidobacteria (~1%), Actinobacteria (~1%), Firmicutes (~1%), and 

Verrucomicrobia (~1%). Phyla representing less than 1% of the relative abundance of the sample 

were labeled as “Other” (representing ~5% of the sample’s relative abundance); some of these 

included Chlamydiae, Deferribacteres, Lentisphaerae, and Nitrospira. 

 The bulk of the bacterial diversity distinguishable at the order level was found within the 

new genus RB.688Q3 (Figure 3B). Alteromonadales dominated bacterial diversity at 47% 

relative abundance, followed by the second most dominate bacterial group, Pirellulales, 

accounting for 13% of the relative abundances. Additional contributing bacterial populations 

included α-proteobacteria (Order Rhodobacterales), δ-proteobacteria (Orders Desulfobacterales 

and Myxococcales), and γ-proteobacteria (Orders Legionellales and Vibrionales). 

Rhodobacterales and Vibrionales accounted for approximately 4% of the relative abundances 

with Desulfobacterales, Myxococcales, Marinicellales, Phycisphaerales, and Planctomycetales 

observed in sample RB.688Q3, but at smaller relative abundance (~2%). Three of these five 

proteobacterial orders were only present in sample RB.688Q3: Rhodobacterales, 

Desulfobacterales, and Myxococcales. 

 Within the order Alteromonadales, Shewanellaceae (~35%) and Colwelliaceae (~11%) 

were both found at high relative abundance. Additionally, Pirellulaceae (Order Pirellulales) 

contributed ~13% of the relative abundance of this sample. Other contributing families present in 

less than 5% of the relative abundance of sample RB.688Q3 included: Verrucomicrobiaceae, 
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Spirochaetaceae, Planctomycetaceae, Pseudoaltermonadaceae, Marinicellaceae, and 

Rhodobacteraceae. The bacterial genus Shewanella accounted for ~35% relative abundance in 

RB.688Q3. Approximately 2% of the identifiable genera in RB.688Q3 were named; these 

included Phaeobacter (family Rhodobacteraceae), Planctomyces (family Planctomycetaceae), 

and Pseudoalteromonas (family Pseudoalteromonadaceae). With the exception of 

Pseudoalteromonas, each was exclusively identified in sample RB.688Q3. 

2.3.3 Bacterial Community Composition of Anthothela 

 In total, 15 coral samples were classified under the genus Anthothela, consisting of both 

A. grandiflora (n = 12) and an unknown Anthothela species (n = 3). At the phylum level, roughly 

half of the 15 samples were dominated by Proteobacteria (~48% average relative abundance). 

The second most dominant bacterial group, Spirochaetes (Figure 2.3A), accounted for ~42% 

average relative abundance of the Anthothela samples (~43% in Anthothela sp. and 41% in A. 

grandiflora samples). Unlike sample RB.688Q3, Proteobacteria and Spirochaetes were the only 

bacterial groups discernible at the phylum level. Phyla representative of less than 1% of the 

relative abundance in at least one sample were labeled as “Other” (~10% of the total relative 

abundance). These included Chloroflexi, Lentisphaerae, and Nitrospira. 

 At the order level, all bacteria groups were classifiable with the exception of one, 

unclassified Spirochaetes (Figure 2.3B). Bacterial diversity associated with Anthothela genus 

samples (A. grandiflora and Anthothela sp.) varied slightly with key communities including 

Oceanospirillales (34%), unclassified Spirochaetes (24%), and Spirochaetales (17%). Other 

orders were observed at higher abundance in several of the Anthothela samples: Alteromonadales 

accounted for 26% of A. grandiflora sample NF.17Q7; Deltaproteobacteria Sva0853 was present 

in 6 of the 15 samples, ranging from 1%–16% relative abundance; Kiloniellales was present in 
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10 samples, ranging from 1%–34% relative abundance. Caulobacterales, with ~36% relative 

abundance, was present in sample RB.686Q4. Bacterial groups observed in one or two of the 

Anthothela genus samples at lower relative abundance included: Rickettsiales present in ~2% of 

three Norfolk Canyon samples (RB.686Q5, RB.687Q5 and RB.688Q5); Legionellales 

accounting for ~2% of samples RB.688Q5 and NF.18Q7; and Vibrionales present in ~2% of 

samples RB.687Q5 and NF.18Q6. Three of the bacterial groups present in Anthothela samples 

were not observed in the new genus RB.688Q3: Caulobacterales, Kiloniellales, and Rickettsiales. 

 Families and identifiable genera (present at greater than 1% relative abundance in at least 

one sample) were also assessed for Anthothela samples. Spirochaeta (Order Spirochaetales, 

Family Spirochaetaceae) were the most abundant bacteria (3%–34% relative abundance) 

observed in 13 of the 15 samples. The family identified as Endozoicomonaceae accounted for 

~2% of two samples RB.687Q5 and RB.688Q1. Because we could not find this family described 

in any taxonomic literature, sequences identified as Endozoicomonaceae were run through RDP 

Classifier (Wang et al., 2007) for further assessment. In Classifier, Endozoicomonaceae 

sequences were categorized as the family Hahellaceae. Lastly, Moritella (Order 

Alteromonadales, Family Moritellaceae) was observed dominating A. grandiflora sample 

NF.17Q7, accounting for ~26% of its relative abundance. 
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Figure 2.3. Relative abundance of bacterial taxa in coral samples 

A) Phyla present at ≥ 1% relative abundance in at least one sample. All remaining taxa are 

summarized under “Other”. B) Orders present at ≥ 1% relative abundance in at least one sample. 

All remaining taxa are summarized under “Other”. Samples collected from Baltimore Canyon 

begin with the letters “NF” and those from Norfolk Canyon with “RB”. 
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2.3.4 Core Microbiome  

 To evaluate the potential conserved-core diversity, samples were first assessed at the 

level of family Anthothelidae, i.e. across all 16 samples. One identifiable genus, Spirochaeta, 

was observed in every sample. Next, we evaluated the core diversity at the Anthothela genus 

level (n = 15). Assessment of Anthothela samples revealed no additional unique taxa, with 

Spirochaeta still the only shared taxon. From here, conserved bacteria were assessed at 90% 

sample coverage revealing four conserved communities; unclassified orders (Oceanospirillales, 

Kiloniellales, and Campylobacterales) and genus Spirochaeta (Figure 2.4). Individual species 

were examined at 100% sample coverage: A. grandiflora (n = 12) and Anthothela sp. (n = 3). A. 

grandiflora samples only shared the genus Spirochaeta, while Anthothela sp. included the genera 

Propionibacterium, Pseudoalteromonas as well as unclassified bacteria within Spirochaetes, 

Kiloniellales, Campylobacterales, Oceanospirillales, and Brachyspiraceae.  

 

 
 

Figure 2.4. Core Microbiome of Anthothela sp. samples 

A heatmap displaying the core communty of the 15 samples within the Anthothela genus. 

Bacterial taxa represented in this figure were unique to the Anthothela spp. core microbiome 

present in 90% of the samples. 
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2.4 Discussion 

 Relatively little is known about cold-water coral microbiomes in comparison to those of 

tropical corals. Prior to this study no microbial assessment had been completed on cold-water 

Anthothelidae corals. Because some tropical coral species have shown correlation between their 

bacterial composition and environmental parameters (e.g. geographic location, depth, ambient 

water-temperature, and surrounding organisms) (Barott et al., 2011; Littman et al., 2009), similar 

relationships were anticipated within the host-microbe interactions of the cold-water corals 

collected during this study. However, bacterial composition of samples was not found to be 

significantly different based on canyon of origin (Figure 2.1). Beta diversity matrices indicated 

relationships between the present taxa and their abundance drove the diversity. Alpha diversity 

measurements also indicated higher bacterial diversity in sample RB.688Q3 (Table 2.2). This as 

well as the ANOSIM results further supported the PCoA distribution showing the clustering of 

all Anthothela samples separate from the new genus RB.688Q3. 

 2.4.1 Proteobacteria 

  In most of the marine environment, Proteobacteria dominate the bacterial diversity 

(Amaral-Zettler et al., 2010). This is true for many tropical coral species (Bourne & Munn, 2005; 

Frias-Lopez et al., 2002; Thurber et al., 2009) as well as cold-water scleractinian and octocorals 

(Galkiewicz et al., 2011; Hansson et al., 2009; Neulinger et al., 2008; Penn et al., 2006; Van 

Bleijswijk et al., 2015; Yakimov et al., 2006). In this study similar trends were observed. 

Proteobacteria, primarily the orders Oceanospirillales, Kiloniellales, and Alteromonadales, 

accounted for the majority of the diversity in samples. Other minor contributing Proteobacteria 

included Rhodobacterales, Desulfobacterales, Myxococcales, Legionellales, and Vibrionales. 
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2.4.1.1 Proteobacteria in Sample RB.688Q3 

 Alteromonadales (specifically families Shewanellaceae and Colwelliaceae) were 

observed as the dominant order within the new genus sample, RB.688Q3. Genera classified 

under these families are ubiquitous throughout marine environments, described in tropical 

(Bourne & Munn, 2005; Ritchie, 2006; Shnit-Orland & Kushmaro, 2009; Shnit-Orland et al., 

2010; Thompson et al., 2006), temperate (La Rivière et al., 2015), and cold-water coral species 

(Galkiewicz et al., 2011; Gray et al., 2011; Kellogg, 2008; Kellogg et al., 2009). Their presence 

in cold-water environments was expected as many members of both Shewanellaceae and 

Colwelliaceae are psychrophilic (organisms capable of growing in cold, extreme environments) 

(Bowman, 2014; Satomi, 2014). In tropical ecosystems, Colwelliaceae were observed in 

association with coral disease (e.g. White Plague) and the deterioration of several microalgal 

species (Daniels et al., 2015; Fernandes et al., 2012; Roder et al., 2014a; Thompson et al., 2006). 

Biochemical properties of Colwelliaceae members include energy production through the 

decomposition of organic matter and nitrate reduction (Bowman, 2014). Species classified under 

the genus Shewanella (family Shewanellaceae) are generally Gram-negative, facultative 

anaerobes, recognized for their roles in nitrate and iron reduction (Coursolle & Gralnick, 2012; 

Hau & Gralnick, 2007; Kim et al., 2012; Satomi, 2014). Prevalent throughout the marine 

environment, members of this family have been isolated from numerous deep-sea and cold-water 

environments including the Marianas Trench (Kato et al., 1998) and the Arctic Ocean (Kim et 

al., 2012). Shewanella isolated from the mucus of tropical coral genus Favia demonstrated both 

antibacterial properties and antibiotic resistance (Shnit-Orland & Kushmaro, 2009; Shnit-Orland 

et al., 2010). These beneficial or mutualistic relationships are thought to contribute to the overall 

health of the host organism, providing protection from pathogenic or opportunistic bacteria. 
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 Members of the order Rhodobacterales, specifically the genus Rhodobacter are thought to 

be among the most abundant, diverse, and metabolically influential bacteria within the marine 

environment (accounting for ~25% of the total bacteria present in coastal and polar regions) 

(Wagner-Dobler & Biebl, 2006). Rhodobacterales are found ubiquitously amongst coral reef 

systems, typically observed in surface waters, reef invertebrates, and their associated biofilms 

(Galkiewicz & Kellogg, 2008; La Rivière et al., 2015; Roder et al., 2014b; Sharp et al., 2012; 

Sunagawa et al., 2009). Functionally these bacteria are diverse, capable of contributing to the 

reduction of trace metals and the production of antibiotic compounds (Brinkhoff et al., 2004). 

Other notable members also contribute to the global carbon and sulfur cycles through the 

oxidization of carbon monoxide and production of dimethylsulfide (Wagner-Dobler & Biebl, 

2006). To date few Rhodobacterales (particularly members of the family Rhodobacteraceae) 

have been identified in cold-water coral species; these include Alcyonium digitatum (Alsmark et 

al., 2012) and L. pertusa (Kellogg et al., 2009; Neulinger et al., 2008). 

 Desulfobacterales (class α-proteobacteria) are documented sulfate-reducing bacteria, 

functionally described as hydrogenotrophs (capable of using H2 as an energy source within the 

metabolic pathway) (Kimes et al., 2010; Kuever et al., 2005). These members appear to be 

common within deep-sea ecosystems, including microbial mats (Burow et al., 2014), sediments 

(Simister et al., 2015), seeps (Jaekel et al., 2013), and one unidentified cold-water coral (Simister 

et al., 2015). In contrast, Myxococcales (class α-proteobacteria) are commonly observed in 

terrestrial environments, with some present in marine ecosystems (though, notably less) 

(Reichenbach & Dworkin, 1992). Several have been identified in coral species including 

Eunicella cavolini (Bayer et al., 2013a) and Mussismilia braziliensis (Garcia et al., 2013). 

Functionally these bacteria may contribute to the production of nutrients through sulfate 



29 

reduction and the decomposition of organic matter (Baker et al., 2015; Reichenbach, 1999).  

 Legionellales and Vibrionales were each identified as a small percentage (~2%) in the 

new genus. Legionellales, described as facultative or obligate intercellular parasites are 

recognized for infecting species of both invertebrates and vertebrates (Garrity et al., 2005). 

While commonly associated with marine environments, members of the Legionellales have 

rarely been identified in corals (tropical or cold-water) (Meron et al., 2012; Ransome et al., 

2014). Unlike Legionellales, Vibrio spp. (Order Vibrionales) are common associates of shallow-

water corals (Ben-Haim et al., 2003a; Bourne & Munn, 2005; Kushmaro et al., 2001; Lampert et 

al., 2006; Ritchie, 2006; Rohwer et al., 2001; Rosenberg et al., 2007) and have also been found 

in association with the cold-water coral species L. pertusa (Galkiewicz et al., 2011; Neulinger et 

al., 2008), Eunicella verrucosa (Hall-Spencer et al., 2007a), Paragorgea arborea, Plumarella 

superba, and Cryogorgia koolsae (Gray et al., 2011). Although these bacteria are primarily 

acknowledged for their roles as opportunistic or pathogenic bacteria associated with coral disease 

and bleaching events (Ben-Haim et al., 2003a; Ben-Haim et al., 2003b; Hall-Spencer et al., 

2007a; Sussman et al., 2008; Sweet & Bythell, 2012; Toren et al., 1998), they are also 

recognized common members of the healthy coral microbiome (Ainsworth et al., 2015; Bourne 

& Munn, 2005; Raina et al., 2009). 

2.4.1.2 Proteobacteria in Anthothela Samples 

 Oceanospirillales was identified as one of the dominant bacterial groups in Anthothela 

samples, present in eight samples at over 20% relative abundance. Functional characteristics 

associated with Oceanospirillales members include, but are not limited to carbon fixation, sulfur 

oxidation, and biofilm production in the presence of trace metals, such as copper (Little et al., 

1996; Speck & Donachie, 2012; Swan et al., 2011). These roles define both the acquisition of 
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nutrients and potential attraction or inhibition of bacterial colonization within the host. In this 

study, Oceanospirillales were further classified to the family level, with identifiable groups 

consisting of unclassified Oceanospirillales and Endozoicomonaceae. It is currently unclear if 

Endozoicomonaceae is an accepted taxon, since those same sequences were identified by RDP 

Classifier as Hahellaceae with 99% confidence. With that in mind, members of the family 

Hahellaceae (specifically genus Endozoicomonas) are widespread in the marine environment. 

Numerous studies have assessed Endozoicomonas in tropical and temperate corals (Apprill et al., 

2013; Bayer et al., 2013a; Bayer et al., 2013b; Cardenas et al., 2012; Carlos et al., 2013; Correa 

et al., 2013; Jessen et al., 2013; La Riviere et al., 2013; Lee et al., 2012; Morrow et al., 2012; 

Pike et al., 2013; Ransome et al., 2014; Roder et al., 2015; Sunagawa et al., 2009; Sunagawa et 

al., 2010; Yang et al., 2010), as well as a sea slug (Kurahashi & Yokota, 2007) and sponge 

species (Nishijima et al., 2013; Rua et al., 2014). Because Endozoicomonas are both common 

and highly abundant in healthy tropical corals species, relationships between these bacteria and 

their hosts have been thoroughly examined. Functional characteristics include nitrate reduction, 

chemotactic activity, and production of antimicrobial compounds (Kurahashi & Yokota, 2007; 

Rua et al., 2014; Tout et al., 2015). While members of the family Hahellaceae are common in 

tropical and temperate environments, this does not appear to be the case for deep-sea corals. Few 

studies have observed bacteria classified under Hahellaceae in deep cold-water (> 100 m) corals 

(Hansson et al., 2009; Kellogg et al., 2009; Van Bleijswijk et al., 2015). The symbiotic 

relationships between Hahellaceae and zooxanthellae are thought to be the one of the driving 

influences of their abundance and presence in tropical corals (Pantos et al., 2015). Because cold-

water corals lack algal symbionts, the Hahellaceae bacteria should be minimal, if present at all, 

in the cold-water coral holobiont. In this study, this seems to be the case with members of the 
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Hahellaceae (originally classified as Endozoicomonaceae) representing a small minority of the 

Oceanospirillales present, at ~2% in A. grandiflora samples RB.687Q5 and RB.688Q1. 

 Similar to Oceanospirillales, members of the order Kiloniellales were present in multiple 

Anthothela samples at relatively high abundance. Kiloniellales bacteria have been observed in 

several tropical corals species (Sharp et al., 2012; Soffer et al., 2015) as well as mussels (Cleary 

et al., 2015), sponges (Cleary et al., 2013), and algae (Wiese et al., 2009). Soffer et al. (2015), 

identified members of the order Kiloniellales at higher abundances in healthy coral Orbicella 

annularis than in diseased colonies, suggesting association in a beneficial capacity. Functionally, 

these chemoheterotrophic bacteria have been found to utilize nitrates within the metabolic 

process through denitrification (Imhoff & Wiese, 2014; Wiese et al., 2009). To our knowledge, 

no prior studies have identified Kiloniellales associated with cold-water corals. 

 Several contributing Proteobacteria were identified in individual Anthothela samples 

including Alteromondales, Caulobacterales and Rickettsiales. Genus Moritella (Order 

Alteromondales, Family Moritellaceae) was present in A. grandiflora sample NF.17Q7 

accounting for ~26% relative abundance. This bacterial group is specific to marine environments 

and generally classified as halophilic facultative anaerobes (Stanley et al., 2005; Urakawa, 2014). 

Moritella isolates have been collected from a wide variety of environments ranging from deep-

sea sediments (Kato et al., 1998; Nogi et al., 1998; Xu, 2003) to tropical corals (Bourne & Munn, 

2005; Bourne, 2005; Rohwer et al., 2001). In cold-water coral species, however, Moritella 

sequences have only been described in the scleractinian L. pertusa collected from the Gulf of 

Mexico (Kellogg, 2008). In the individual A. grandiflora sample RB.686Q4, members of the 

Caulobacterales were found at relatively high abundance (~30%). Recognized for their unique 

morphology, members of this order contain a stalk-like flagellum utilized for adhesion to 
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adjacent surfaces, including but not limited to host organisms (Starr & Skerman, 1965). While 

these bacteria tend to exhibit parasitic tendencies, they have been described as facultative 

commensals, potentially contributing to the acquisition of nutrients through their roles in carbon 

cycling (Abraham et al., 1999). These free-living bacterial communities are often found 

throughout the water column and have been observed in several tropical corals including the 

gorgonian Pseudopterogorgia elisabethae (Correa et al., 2013) and acroporid species (A. 

granulosa, A. valida, and A. millepora) (Ainsworth et al., 2015; Littman et al., 2009). While 

members of the group Caulobacterales have been identified in deep ocean waters (Eloe et al., 

2011), to date, no prior studies have observed Caulobacterales in cold-water reef communities. 

  Members of the order Rickettsiales have previously been described as opportunistic, 

pathogenic, and/or associated with diseased tropical corals. Contradictory studies have identified 

members of Rickettsiales as both associates and etiologic pathogens of White Band Disease I 

(Casas et al., 2004; Peters, 2014; Peters et al., 1983), infecting acroporid species (A. cervicornis, 

A. palmata, and A. prolifera) (Casas et al., 2004) as well as Mussismilia braziliensis (Garcia et 

al., 2013). Casas et al. (2004) found a high abundance of Rickettsiales in both healthy and 

diseased corals. More recently, the possible etiological impact of Rickettsiales in coral disease 

has been debated. Peters (2014) suggested the influence of phagocytic Rickettsiales-like bacteria 

in White Band Disease I as the driving force for cell death. Miller et al. (2014) identified 

Rickettsiales-like bacteria as the infecting agent of acroporid diseases. In contrast, Sweet et al. 

(2014) addressed the presence of causative bacteria in White Band Disease via antibiotic 

partitioning, but failed to identify specific pathogens responsible. Several other studies have also 

attributed the spread of disease to stressed or compromised corals influenced by transitioning 

environments, ultimately allowing for the proliferation of opportunistic bacteria such as 



33 

Rickettsiales (Gignoux-Wolfsohn & Vollmer, 2015; Peters, 2014). While present in this study, 

Rickettsiales were observed at low relative abundance (~2%) in only three Norfolk Canyon 

samples (RB.686Q5, RB.687Q5, and RB.688Q5). With the exception of the study by Gray et al. 

(2011), members of the order Rickettsiales have not been observed in cold-water corals. Because 

their functional characteristics are generally driven by ambient environmental fluctuations (e.g. 

increases in temperature and light intensity), we speculate that the opportunistic tendencies 

exhibited in tropical environments differ from those in cold-water environments. In this case, 

additional research is necessary to definitively assess the potential pathogenicity and overall 

functionality of these bacteria within the cold-water ecosystem. 

2.4.2 Spirochaetes 

 The bacterial diversity in Anthothela samples was distinct from that present in the 

unidentified genus, RB.688Q3. Spirochaetes were observed as one of the primary bacteria, 

dominating over half of the Anthothela samples. Spirochaetes are recognized as motile free-

living, facultative/obligate anaerobes (Leschine et al., 2006). Functional characteristics displayed 

by members of this group include nitrogen and carbon fixation, as well as chemotactic responses 

to chemical stimulants (Baker et al., 2015; Greenberg & Canale-Parol, 1977; Kimes et al., 2010; 

Lilburn et al., 2015). Members of the phylum Spirochaetes are commonly found in association 

with invertebrates at high abundance, including species of termites (Breznak, 2002), oligochaetes 

(Blazejak et al., 2005), sponges (Taylor et al., 2005), and tropical corals (Casas et al., 2004; 

Closek et al., 2014; Kimes et al., 2013; Kimes et al., 2010). Previous studies using clone libraries 

have observed Spirochaetes in association with some cold-water corals (Gray et al., 2011; 

Kellogg et al., 2009; Penn et al., 2006), however they have never been identified as a dominant 

member of the associated bacterial community. In this study, Spirochaetes were recognized as 
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the prevailing phyla in roughly half of the total Anthothela samples. To our knowledge this is the 

first study to establish Spirochaetes as a major contributor within the cold-water coral 

microbiome. 

 In Anthothela samples (A. grandiflora and Anthothela sp.), genus Spirochaeta (phylum 

Spirochaetes) continued to dominate the bacterial groups. New representative Spirochaeta 

sequences from this study were compared to those of environmental and invertebrate studies 

where Spirochaeta sequences had been observed. Sequences associated with Anthothela samples 

were most closely related to sequences isolated from deep-sea water (Accession KF758585, E-

value of 7e
-165

) and microbial mats (Accession DQ218325, E-value of 1e
-161

). While sequences 

from Anthothela corals were not closely related to those of other coral species, presence of this 

bacterium across all 16 samples suggests conservation at the family level. Additionally, presence 

of this bacterium at such a high abundance, as observed in Anthothela samples, suggests a unique 

microbe-host interaction specific to that coral genus. 

2.4.3 Core Microbiome 

 Because corals are dependent (in part) on their microbe-host interactions, examining the 

“core conserved” communities may reveal insights into the overall health of the coral host 

(Krediet et al., 2013; Shade & Handelsman, 2012). Many variables impact the presence of 

microbes within the coral holobiont ranging from the identity of the host (specific at the host 

species (Rohwer et al., 2002) or genus (Littman et al., 2009) level), to a niche within the host 

organism (e.g. tissue vs. mucus) (Ainsworth et al., 2015; Bourne & Munn, 2005; Koren & 

Rosenberg, 2006; Sweet et al., 2010), as well as fluctuations in the surrounding environment 

(Ainsworth & Hoegh-Guldberg, 2009; Pantos et al., 2003; Reshef et al., 2006). While bacterial 

communities may vary based on these parameters, conserved bacteria necessary for coral host 
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health, defined as the “core” community, are consistently present. Because little is known about 

the bacterial functions within the cold-water coral holobiont, it is necessary to identify the core 

microbiota of each coral species (defined as those common in more than one of the designated 

habitats) (Shade & Handelsman, 2012). In this study we applied a stringent approach to examine 

“core” conserved communities, evaluating bacterial groups present at the family (Anthothelidae), 

Anthothela genus, and individual species (A. grandiflora and Anthothela sp.) levels. 

 To begin, samples were evaluated at the family and genus levels at 100% sample 

coverage, revealing one core-conserved bacterium present across all samples, a member of the 

genus Spirochaeta. As previously described, members of the phylum Spirochaetes are common 

throughout coral species, both tropical and cold-water (Casas et al., 2004; Closek et al., 2014; 

Gray et al., 2011; Kellogg et al., 2009; Kimes et al., 2013; Penn et al., 2006). In this study, 

Spirochaeta was found to be one of the dominant bacterial groups accounting for roughly 16% of 

the total relative abundance, thus suggesting a significant role within the coral microbiome. 

These free-living nonpathogenic anaerobes contain metabolic characteristics that consist of, but 

are not limited to, carbon fixation and organic carbon degradation (Baker et al., 2015). 

 Samples were then assessed at 90% sample coverage, particularly looking for conserved 

bacteria specific to Anthothela samples (Figure 2.4). In addition to the genus Spirochaeta, OTUs 

classified under the phylum Proteobacteria (Orders; Oceanospirillales, Kiloniellales, and 

Campylobacterales) were identified. Previous studies described members of the orders 

Oceanospirillales and Kiloniellales as beneficial bacteria, contributing to their host system 

through the production of biofilm and antibacterial properties, respectively (Little et al., 1996; 

Swan et al., 2011). Oceanospirillales members have also been recognized for their influence in 

nutrient dynamics within the coral holobiont through the formation of dissolved inorganic 
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materials produced during carbon fixation and sulfur oxidation (Swan et al., 2011). In contrast to 

Oceanospirillales and Kiloniellales, members of the order Campylobacterales are most 

commonly known for their association with coral disease (Frias-Lopez et al., 2002; Gignoux-

Wolfsohn & Vollmer, 2015; Sunagawa et al., 2009; Sweet & Bythell, 2012; Vezzulli et al., 

2013), but are also present in healthy corals (Sharp et al., 2012). Functionally these bacteria are 

recognized for their metabolic influence in nitrogen cycling and communication through 

bacterial quorum sensing (Golz et al., 2012; Kern & Simon, 2009).  

 Nitrogen is a critical, but limited resource within the marine environments (Zehr & 

Kudela, 2011).Previous studies have addressed the importance of nitrogen cycling in 

photosynthetic systems such as tropical corals, suggesting the influence of fungi, photosynthetic 

bacteria (e.g. cyanobacteria), and/or dinoflagellate symbionts on the biochemical processes 

(Lesser et al., 2007; Lesser et al., 2004; Pernice et al., 2012; Shashar et al., 1994; Wegley et al., 

2007). While it is evident that nitrogen availability is one of the driving factors in the 

proliferation and health of tropical coral hosts, little is known about its influence in the cold-

water coral holobionts. The core bacterial groups (Spirochaeta, Oceanospirillales, Kiloniellales, 

and Campylobacterales) observed in the Anthothela genus samples, accounted for a substantial 

part of the nitrogen cycle (Figure 2.5). Members of the genus Spirochaeta, identified as the most 

conserved bacterium present were previously recognized for their roles in nitrogen fixation an 

essential step in the nitrogen cycle (Lilburn et al., 2015). Spirochaeta fulfill one of the most 

essential steps in the nitrogen cycle. During nitrogen fixation, nitrogen gas (N2) is converted to 

readily available organic compounds that may then be taken in, sustaining the productivity of 

bacterial and host organisms (Zehr & Kudela, 2011). Several members of the order 

Campylobacterales have been recognized for their contributions through nitrate ammonification 
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(Tiedje, 1988). This is the process by which nitrate is converted to ammonium (one of the 

primary nitrogen sources (Zehr & Kudela, 2011)), thereby recycling nitrogen back into the 

system (Radecker et al., 2015; Simon, 2002; Tiedje, 1988). Members of the order 

Oceanospirillales have been observed to contribute through the reduction of nitrate to nitrite, also 

defined as nitrate reducers (Zehr & Kudela, 2011). Lastly, members of the order Kiloniellales 

classified as chemoheterotrophic aerobic bacteria, have shown potential in the processing of 

molecular nitrogen through denitrification (Imhoff & Wiese, 2014). In this process, nitrates are 

reduced back into N2 (dinitrogen) to be utilized by nitrogen-fixing bacteria. 

 

 

Figure 2.5. Core bacterial groups contributing within the Nitrogen Cycle 

Each of the bacteria present within the core microbiome of Anthothela samples was previously 

recognized for their roles within the nitrogen cycle. This diagram illustrates a simplified 

overview of the bacterial groups with their coinciding functions. This figure was adapted from 

one presented in Wegley et al. (2007). 
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 Although the core microbiome of the new genus (n = 1) could not be evaluated, bacterial 

members were assessed for possible functional characteristics associated with the biochemical 

processing of nitrogen. Similar to Anthothela samples, core members associated with the new 

genus were previously documents for their metabolic properties consistent with nitrogen cycling. 

Members of the genus Spirochaeta have been known to play a role in nitrogen fixation, while 

bacterial members classified under the families Shewanellaceae and Colwelliaceae (Order 

Alteromonadales) have been acknowledged for their roles as nitrate reducers in the reduction of 

nitrates to nitrites (Satomi, 2014). Classified as anaerobic ammonia-oxidizing bacteria, 

Pirellulales (Phylum Planctomycetes) have been thought to contribute through the removal of 

metabolic waste within the host microbiome (Mohamed et al., 2010). One of the end products of 

nitrate ammonification (ammonia) may be taken in by ammonia-oxidizing bacteria such as 

Pirellulales, resulting in the oxidization of ammonium and formation of nitrites (Zehr & Kudela, 

2011). While members of the order Pirellulales and families Shewanellaceae and Colwelliaceae 

only show potential metabolic properties for a portion of the nitrogen cycle, other bacterial 

members may be present within RB.688Q3 that complete the remaining metabolic functions. 

 In an effort to further understand the core diversity, bacterial composition was evaluated 

in individual Anthothela species (A. grandiflora and Anthothela sp.) at 100% sample coverage. 

Of A. grandiflora samples (n = 12), the genus Spirochaeta remained present as the only core 

microbe. This was not the case in Anthothela sp. samples (n = 3), which exhibited higher overall 

diversity. These samples contained similar conserved communities when compared to those 

identified at the genus level, with the exception of several bacterial groups (Propionibacterium, 

Pseudoalteromonas and unclassified Brachyspiraceae). Of the three members, 

Propionibacterium and Pseudoalteromonas were most commonly observed in association with 
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other coral holobionts. In a recent study, Propionibacterium was identified as one of the core 

bacteria present in association with endosymbiotic cells of tropical corals Acropora granulose 

and Montipora capitata (Ainsworth et al., 2015). In addition to tropical and temperate corals 

(Ainsworth et al., 2015; Bayer, et al., 2013b; De Castro et al., 2010; La Riviere et al., 2013; Lee 

et al., 2012), Propionibacterium species have also been previously described in cold-water 

corals, which lack the symbiotic dinoflagellates (Neulinger et al., 2008). However, caution is 

advised due to a recent study by Salter et al. that identified Propionibacterium as a common 

bacterial contaminant found in association with many extraction kits and associated reagents 

(Salter et al., 2014). Additional research is necessary to confirm the presence of this bacterium in 

association with cold-water corals. Similar to Propionibacterium, members of the genus 

Pseudoalteromonas were observed within many coral species (Nissimov et al., 2009; Radjasa et 

al., 2005; Rohwer et al., 2001; Shnit-Orland & Kushmaro, 2009; Shnit-Orland et al., 2012). As 

predominant members of the coral holobiont, Pseudoalteromonas species have previously 

exhibited antibacterial activity against Gram-negative bacteria as well as probiotic properties 

(Nissimov et al., 2009; Radjasa et al., 2005; Ritchie, 2006; Shnit-Orland & Kushmaro, 2009). 

Overall, the core diversity present in Anthothela sp. samples was similar to those at the 

Anthothela genus level indicating a genus-specific core microbiome.  

2.5 Conclusions 

 Cold-water corals have been a particular topic of interest for the last decade or more. 

While prior studies have investigated the host-microbe interactions of some cold-water coral 

species, much is still unknown about these diverse organisms and their bacterial consortia. Our 

study provides insight into the previously uncharacterized microbiome of cold-water octocorals 

in the family Anthothelidae. Comparisons between undersea canyons revealed no significant 
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correlation between bacterial communities and geographic locations. The two species of 

Anthothela shared a very similar bacterial community, in contrast to the new genus in the family 

(RB.688Q3) which had a highly diverse microbiome distinct from the rest. This suggests genus-

specific bacterial associates rather than species-specific or environmentally influenced as seen in 

previous tropical coral studies.  

 The bacterial composition of these Anthothelidae corals had some similarity to the 

microbiota associated with shallow, tropical corals. Several groups present in this study were 

related to bacteria previously identified as opportunistic or pathogenic bacteria (e.g. 

Rickettsiales, Vibrionales, and Campylobacterales). These families may be causative agents in 

coral disease; however, these opportunistic bacteria could be triggered in response to 

perturbations from the surrounding environment (i.e. increased temperature and/or light 

intensities). The presence of these bacteria in cold-water corals, which are subject to less 

dramatic thermal and radiant environmental shifts, may provide new opportunities to determine 

their underlying roles within healthy coral holobionts.  

 Additional evaluation of the core microbiome at 90% also revealed a conserved bacterial 

community associated with the Anthothela genus. Many of the core bacteria share potential 

metabolic functions associated with nutrient provision and properties aiding in the protection of 

the coral host. Unlike tropical corals, cold-water corals lack a symbiotic dinoflagellate to assist 

with the acquisition and cycling of nutrients. Overall health and proliferation of cold-water corals 

are dependent on capture feeding and the presence of microorganisms (Duineveld et al., 2004; 

Roberts et al., 2006). Members of the core microbiome of Anthothela samples were recognized 

for their potential roles in the uptake and remineralization of organic and inorganic material. 

More specifically many of the bacterial groups present have been shown to play a role in 
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nitrogen cycling, including nitrogen fixation (Spirochaeta), nitrate ammonification 

(Campylobacterales), nitrate reduction (Oceanospirillales), and denitrification (Kiloniellales). 

The new coral genus (RB.688Q3) also contained a microbial community potentially capable of 

various functions specific to nitrogen cycling. The bacteria present in this sample accounted for 

three major processes: nitrogen fixation, nitrate reduction, and ammonia oxidation. 

Unfortunately with a sample size of n = 1, this evaluation is only a partial representation of the 

overall bacterial and functional diversity present within the new genus. Further research is 

necessary to investigate the microbial-host interactions, specifically the functionality of these 

bacterial associates and their role within the cold-water coral holobionts. 
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CHAPTER THREE 

Conclusion 

 

 The research presented in this thesis assessed bacterial communities associated with three 

cold-water octocorals classified under the Family Anthothelidae (A. grandiflora, Anthothela sp., 

and a new unidentified genus). As the first study to assess the microbial landscapes of the three 

corals, this research expanded the established knowledge of cold-water coral microbial diversity. 

Bacteria interact within coral hosts in many ways, some of which are still not fully understood. 

Previous studies have addressed this interaction as well as the presence of, and functional 

characteristics of, bacteria in tropical corals, defining diverse and essential relationships between 

host species and their microbiota. While many tropical coral species have been thoroughly 

explored, little is known about cold-water corals and their microbial associates. 

 Prior to this study, Anthothela species had been identified in the Atlantic Ocean (Arantes 

et al., 2009; Lopez-Gonzalez & Briand, 2002; Watling & Auster, 2005; Whiteaves, 1901), but no 

microbial assessments of these corals had been completed. In an effort to broaden our 

understanding of these corals, bacterial diversity was characterized through the use of deep-

sequencing, giving a first look at the bacterial diversity present in three Anthothelidae. These 

corals were collected from two different canyons (Norfolk and Baltimore) to test the hypothesis 

that bacterial diversity was linked to biogeographic location. However, results of this study 

instead found host-specific associations among the bacteria communities irrespective of the 

sample origin similar to prior work in tropical corals. Those bacteria associated with Anthothela 

samples (A. grandiflora and Anthothela sp.) were found to be similar, yet distinct from those 
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present in the new unidentified coral genus, RB.688Q3. Both alpha and beta diversity supported 

the separation of samples, revealing host genus as the primary driver of bacterial community 

diversity. Analysis of the core microbiome also revealed core diversity conserved at the host-

genus level. Bacterial groups present in the core microbiome have been previously recognized 

for their influential roles in the processing of nutrients, specifically nitrogen cycling. 

 While this study evaluated the bacterial composition through 16s rRNA gene sequencing 

(which is generally used for characterization of bacterial communities and not functional 

characteristics), we were able to infer bacterial roles through existing knowledge of the present 

groups. While this provided a first glimpse into the bacterial community composition, more 

information is needed. Moving forward, research should focus on bacterial functionality through 

the use of culture-based and metagenomic techniques. By doing so, studies may be able to 

address the complex interactions taking place, thus expanding our understanding of these cold-

water corals and their symbiosis with complex microbiota. 
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