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Abstract

Let p be a prime, q a power of p and Fq the finite field with q elements. Any

function φ : Fq → Fq can be unqiuely represented by a polynomial, fφ of degree

< q. If the map x 7→ fφ(x) induces a permutation on the underlying field we say

fφ is a permutation polynomial. Permutation polynomials have applications in many

diverse fields of mathematics. In this dissertation we are generally concerned with

the following question: Given a polynomial f , when does the map x 7→ f(x) induce a

permutation on Fq?

In the second chapter we are concerned the permutation behavior of the poly-

nomial gn,q, a q-ary version of the reversed Dickson polynomial, when the integer n is

of the form n = qa−qb−1. This leads to the third chapter where we consider binomials

and trinomials taking special forms. In this case we are able to give explicit conditions

that guarantee the given binomial or trinomial is a permutation polynomial.

In the fourth chapter we are concerned with permutation polynomials of Fq,

where q is even, that can be represented as the sum of a power function and a lin-

earized polynomial. These types of permutation polynomials have applications in

cryptography. Lastly, chapter five is concerned with a conjecture on monomial graphs

that can be formulated in terms of polynomials over finite fields.

v



1 Introduction

Let p be a prime and q a power of p (i.e. q = pe, z ∈ N). We use Fq to denote the

(unique) finite field consisting of q elements and Fq to denote its algebraic closure.

Finite fields are polynomially complete in the sense that any function φ : Fq → Fq can

be represented by a polynomial. Further, if we require the degree of this polynomial

to be less than q, the polynomial representation of φ is unique. Given a function

φ : Fq → Fq, the unique polynomial of degree less than q representing φ, fφ, is given

by

fφ(x) =
∑
a∈Fq

φ(a)
(
1− (x− a)q−1

)
. (1.0.1)

The fact that Fq is polynomally complete was first noted by Hermite [35] when q is

prime and by Dickson [16] for general q. In fact Redei and Szele [79] showed that the

only non zero commutative rings that are polynomally complete are the finite fields;

Heisler [33] obtained the same result without the assumption of commutativity.

A polynomial f ∈ Fq[x] is called a permutation polynomial (PP) if the associ-

ated polynomial function c 7→ f(c) from Fq into Fq is a permutation of Fq. Because

of the finiteness of Fq, the definition of a permutation polynomial can be expressed in

the following way.

Lemma 1.0.1 ([64]) A polynomial f ∈ Fq[x] is a permutation polynomial of Fq if

and only if one of the following conditions hold:

(i) the function f : c 7→ f(c) is onto;

(ii) the function f : c 7→ f(c) is one-to-one;
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(iii) f(x) = a has a solution for each a ∈ Fq;

(iv) f(x) = a has a unique solution in Fq for each a ∈ Fq;

(v) The polynomial
f(x)− f(y)

x− y
∈ Fq[x, y] has no roots (x, y) ∈ F2

q with x 6= y.

The general study of permutation polynomials of the prime fields originates with Her-

mite [35] while Dickson was the first to study permutation polynomials over arbitrary

finite fields [16]. The study of permutation polynomials is a major subject in the

theory and applications of finite fields. In fact, many problems involving finite fields

can be reduced to permutation properties of polynomials. For an early history of the

subject see [18].

The study of permutation polynomials over finite fields is essentially about

relations between the algebraic and combinatorial structures of finite fields. Nontriv-

ial permutation polynomials are often the result the sometimes mysterious interplay

between the two structures. Permutation polynomials have applications in finite ge-

ometries, coding theory, computer science, cryptography, and various other fields.

A main question concerning permutation polynomials is how to recognize them.

To this end we have the following theorem, which was first established by Hermite for

the prime fields and Dickson for arbitrary finite fields.

Theorem 1.0.2 (Theorem 7.4 [64]) (Hermite’s Criterion). Let Fq be of charac-

teristic p. Then f ∈ Fq[x] is a permutation polynomial of Fq if and only if the

following conditions hold:

(i) f has exactly one root in Fq;

(ii) for each integer s with 1 ≤ s ≤ q − 2 and s 6≡ 0 (mod p), the reduction of f(x)s

(mod (xq − x)) has degree ≤ q − 2.

The first condition of the above theorem is clearly equivalent to:

∑
x∈Fq

f(x)q−1 = q − 1.

2



While the second is equivalent to:

∑
x∈Fq

f(x)s = 0 1 ≤ s ≤ q − 2.

Thus a reformulation of Hermite’s Criterion is given by the following theorem.

Theorem 1.0.3 Let f ∈ Fq[x]. Then f is a permutation polynomial of Fq if and only

if ∑
x∈Fq

f(x)s =

0 if 1 ≤ s ≤ q − 2

−1 if s = q − 1.

Another useful result for determining (or constructing) permutation polyno-

mials is the following, which is commonly referred to as the Akbary-Ghioca-Wang

(AGW) criterion.

Theorem 1.0.4 ([1]) Let A, S and S̄ be finite sets such that |S| = |S̄|, and let

f : A→ B, f̄ : S → S̄, λ : A→ S and λ̄ : A→ S̄ be mappings such that λ and λ̄ are

onto and λ̄ ◦ f = f̄ ◦ λ. Then, the following statements are equivalent.

(i) f is a permutation of A.

(ii) f̄ is a bijection and f is one-to-one on λ−1(s) for all s ∈ S.

Permutation polynomials with no additional requirements are not hard to con-

struct, pick your favorite permutation of Fq and construct a polynmomial representing

this permutation using (1.0.1). In general the study of permutation polynomials is

concerned with polynomials that have an especially simple algebraic appearence, for

instance polynomials containing only a few terms, or polynomials that possess other

extraordinary qualities. These extraordinary qualities are usually demanded by the

applications of the permutation polynomial in question. For example, in crypto-

graphic applications we may require a high degree of non-linearity in the permutation

polynomial; for geometric applications we may require both the maps x 7→ f(x) and

x 7→ f(x)
x

to be permutations on Fq.

3



While the criteria listed in Lemma 1.0.1, Theorem 1.0.2 and Theorem 1.0.3

are often useful in proving a given function is indeed a permutation polynomial, the

simple ideas should not be equated with methods. A vast majority of the research on

permutation polynomials is concerned with developing methods to apply the above

criteria in certain situations. The remainder of this introduction is devoted to provid-

ing background and results related to the topics discussed in the following chapters

of this dissertation. Throughout this dissertation, letters in typewriter font, x, y, z

are reserved for indeterminants, while letters in standard font x, y, z are reserved for

elements of a given finite field. We write Nqe/qj and Tqe/qj for the norm and trace

maps from Fqe to Fqj .

1.1 Dickson polynomials and their offspring

Let n ∈ N. It is known that the polynomials x1x2 and x1 + x2 generate the ring

of symmetric polynomials in Z[x1, x2] so there is a unique polynomial Dn(x1, x2) ∈

Z[x1, x2] such that

xn1 + xn2 = Dn(x1 + x2, x1x2).

The explicit form of Dn(x1, x2) is given by Warings formula [64], we have

Dn(x1, x2) =

bn
2
c∑

j=0

n

n− j

(
n− j
j

)
(−x2)jxn−2j

1 . (1.1.2)

For a fixed a ∈ Fq, Dn(x, a) is the Dickson polynomial of degree n and parameter

a over Fq. Working over the complex numbers, the Dickson polynomials are closely

related to the Chebyshev polynomials of the first kind Tn(x) = cos (n arccos (x)); in

fact Dn(2xa, a2) = 2anTn(x). Notice by (1.1.2) we have

Dn(x, ab2) =

bn
2
c∑

j=0

n

n− j

(
n− j
j

)
(−a)jbkb−(k−2j)xk−2j = bkDn(b−1x, a).

4



Thus if q is even then every Dickson polynomial Dn(x, a), a ∈ F∗q over Fq can be

expressed in terms of Dn(x, 1); if q is odd then every Dickson polynomial Dn(x, a), a ∈

F∗q can be expressed in terms of Dn(x, 1) and Dn(x, c) for a fixed non square c ∈ F∗q.

Also notice Dn(x, 0) = xn.

The permutation behavior of the Dickson polynomials, Dn(x, a), over Fq is

completely known. If a = 0, then Dn(x, a) = xn so Dn(x, a) is a permutation poly-

nomial of Fq if and only if gcd(n, q − 1) = 1. If a ∈ F∗q, then we have the following

theorem:

Theorem 1.1.1 (Theorem 7.16 [64]) The Dickson polynomial Dn(x, a), a ∈ F∗q, is

a permutation polynomial of Fq if and only if gcd(n, q2 − 1) = 1.

Dickson polynomials are connected to a famous conjecture of Schur[81] to the effect

that any f ∈ Z[x] that is a permutation polynomial of Fp for infinitely many primes p

must be a composition of binomials of the form axn+b and Dickson polynomials. After

several partial results by different authors, Schur’s conjecture was proved completely

by Fried [27].

The reversed Dickson polynomial is obtained from the Dickson polynomial by

reversing the roles of the variable and the parameter. There is a conncection between

the reversed Dickson polynomial and almost perfect nonlinear (APN) functions (see

Definition 1.3.1).

Theorem 1.1.2 (Hou, Mullen, Sellers, Yucas [49]) Let p be a prime and n be

a positive integer. Further assume that n is odd when p > 2. Then, we have the

following relations:

xn is APN on Fp2e ⇒ Dn(1, x) is a PP of Fpe ⇒ xn is APN on Fpe .

For the reversed Dickson polynomial we have

Dn(0, x) =

0 if n is odd

2(−x)k if n = 2k,

5



so Dn(0, x) is a permutation polynomial of Fq if and only if n = 2k and gcd(k, q−1) =

1. When a ∈ F∗q, we have

Dn(a, x) = anDn(1,
x

a2
),

so we only need to consider Dn(1, x). Unlike the Dickson polynomial, the permutation

behavior of the reversed Dickson polynomial is not completely known. We have the

following conjecture for the prime fields.

Conjecture 1.1.3 (Hou, Mullen, Sellers, Yucas [49]) Let p > 3 be a prime, and

let 1 ≤ n ≤ p2 − 1. Then, Dn(1, x) is a PP on Fp if and only if

n =



2, 2p, 3, 3p, p+ 1, p+ 2, 2p+ 1 if p ≡ 1 (mod 12),

2, 2p, 3, 3p, p+ 1 if p ≡ 5 (mod 12),

2, 2p, 3, 3p, p+ 2, 2p+ 1 if p ≡ 7 (mod 12),

2, 2p, 3, 3p if p ≡ 11 (mod 12).

See [49] for more information regarding reversed Dickson polynomials.

In characteristic 2, the functional equation for Dn(1, x) can be expressed as

Dn(1, x2 − x) = xn + (1− x)n =
∑
a∈F2

(x + a)n.

X. Hou [39] introduced the polynomial gn,q ∈ Fp[x] (where p is the characteristic of

Fq) as a q-ary generalization of the reversed Dickson polynomial in characteristic 2.

The polynomial gn,q satisfies the functional equation

gn,q(x
q − x) =

∑
a∈Fq

(x + a)n.

This family of polynomials is a rich source of permutation polynomials; completely

determining the permutation behavior of gn,q is an open and challenging problem.

Results concerning the permutation behavior of the polynomial gn,q is precisely the

topic of the second chapter.

6



1.2 Permutation binomials and trinomials of Fq2 taking a special form

An early systematic study of permutation polynomials of the form xdh(x(q−1)/t), where

t | q−1, 1 ≤ d ≤ (q−1)/t and h ∈ Fq[x], can be found in [83]. A criterion, equivalent

to Theorem 1.2.1, for a polynomial of this form to be a permutation polynomial of

Fq was given in [83]. In fact, this criterion has been rediscovered independently by

several different authors ([73], [84], [88]). Let µt denote the set of t-th roots of unity

in Fq. We have the following theorem

Theorem 1.2.1 ([73],[84],[88]) Let d and t be positive integers with t | q − 1. Let

f = xdh(x
q−1
t ), where h ∈ Fq[x]. Then, f is a PP of Fq if and only if

(i) gcd(d, q−1
t

) = 1 and

(ii) xdh(x)
q−1
t permutes µt.

The above theorem is actually a special case of Theorem 1.0.4, with A = Fq, S = S =

µt, λ = λ = x(q−1)/t and f = xdh(x)(q−1)/t. The key step in applying Theorem 1.2.1

is verifying that xdh(x)
q−1
t permute the set of t-th roots of unity. Unfortunately this

is not an easy question in general.

The simplest types of polynomials are those involving few terms. While the

permutation behavior of a monomail mapping of Fq is completely understood, x 7→ xn

is a permutation of of Fq if and only if gcd(n, q−1) = 1, the situation for polynomials

involving more than one term is quite complicated. It is worth mentioning that the

simplicity as a polynomial is not equivalent to simplicity as a permutation on Fq.

For example, using (1.0.1), we can see the polynomial fa (a 6= 0), that induces the

transposition (0a), is given by

fa(x) = −a2
[(

(x− a)q−2 + a−1
)q−2 − a

]q−2

.

Even for permutation binomials the situation is complex. Several authors have

considered permutation binomials, but it seems a complete determination of permu-

tation binomials over finite fields is out of reach for the time being. The following

7



nonexistence result of Niederreiter and Robinson is one of the earliest dealing with a

general binomial.

Theorem 1.2.2 ([71]) Let f = axn + xm ∈ Fq[x], where a 6= 0 and m > 2 is not a

power of the characteristic of Fq. If q ≥ (m2 − 4m+ 6)2, then f is not a permutation

polynomials of Fq.

For more background and similar results see the survey [46].

Given a binomial f = axn + xm ∈ Fq[x], we can transform f into the form

f = xn(a+ x
q−1
t )

where t | q−1; (see [46]). Thus for a generic binomial one can use Theorem 1.2.1; the

difficulty lies in verifying condition (ii). Some of the results in chapter 3 are concerned

with a binomial of the form x(a + xr(q−1)) ∈ Fq2 [x]. In this case, condition (ii) of

Theorem 1.2.1 is precisely verifying that the map x 7→ x(a + xr)q−1 is a permutation

on µq+1. In this special case, a method of M. Zieve can be used to construct bijective

maps (via degree one rational functions) from µq+1 → Fq∪{∞}. While this idea is not

used directly in chapter 3, these ”nice” maps (via degree one rational functions) can be

used to prove nonexistence results for permutation binomails of the form x(a+xr(q−1))

when q is big enough in relation to r. We refer the interested reader to [89] for more

details.

The trinomial case does not appear to be as well studied as the binomial case.

While there do not seem to be criteria which guarantee a general trinomial is a per-

mutation polynomial, there are still existence and nonexistence results considering

trinomials. While studying hyperovals of projective planes, Cherowitzo ([15]) discov-

ered a class of permutation trinomials in characteristic 2 with additional extraordinary

properties.

Theorem 1.2.3 ([15]) f = x2m + x2m+2 + x3·2m+4 is an o-polynomial of F22m−1 ,

that is, f is a permutation polynomial of F22m−1 with f(0) = 0 and f(1) = 1 and

(f(x + γ) + f(γ)) /x is a permutation polymnomial of F22m−1 for all γ ∈ F22m−1 .

8



Ball and Zieve discovered a class of permutation trinomials in characteristic 3 given

by the following theorem.

Theorem 1.2.4 ([2]) Let q = 32h+1, α = 3h+1, and a ∈ Fq. Then x2α+3 +(ax)α−a2x

is a permutation polynomial of Fq.

A special permutation trinomial was a key ingredient in Dobbertin’s proof the claim

that x2m+3 is maximally nonlinear on F22m+1 (the Welch conjecture).

Theorem 1.2.5 ([21]) f = x2m+1+1 + x3 + x is a permutation polynomial of F22m+1 .

The results contained in chapter 3 of this dissertation are concerned with

binomials and trinomials of the form xd(a + bxq−1 + xr(q−1)) that are permutation

polynomials of Fq2 . Without additional restrictions placed on the coefficients we are

able to produce suprisingly explicit results.

1.3 Permutation polynomials and cryptography

The fundamental objective of cryptography is to allow two people, commonly refered

to as Alice and Bob, to send information over an insecure channel. Ideally this

communication is such that an unknown adversary eavesdropping on the channel

cannot understand what is being said. This information that Alice wishes to send

is called the plaintext. Alice encrypts (using a key known to herself and Bob) this

plaintext and sends the resulting ciphertext over the insecure channel. Bob, who

knows the key, is able to decrypt the message and recover the plain text, while an

adversary with no knowledge of the key is left in the dark.

Often times we may assume the information we wish to communicate is simply

an element in F2n . Thus the encryption of the plaintext and decryption of the cipher-

text are (invertible) maps of F2n → F2n . Permutation polynomials can be used to

construct cryptographic systems, we refer the interested reader to Levine and Braw-

ley [61].

9



In an ideal world, the advesary without knowledge of the key would have no

hope of recovering the plaintext. In practice much research is devoted to developing

methods to ”break” certain cryptographic systems. For more informtation regarding

cryptographic systems and well known attacks we refer the reader to [82] and the

references there.

In order to prevent against well known attacks, these maps used for encryption

and decryption should have certain desirable properties. The differential properties

of f : F2n → F2n consist of the number of solutions to the following equation

f(x + a) + f(x) = b a ∈ F∗2n , b ∈ F2n . (1.3.3)

Definition 1.3.1 A function f : Fq → Fq is called almost perfect nonlinear (APN)

if for each a ∈ F∗q and b ∈ Fq, equation (1.3.3) has at most two solutions in Fq.

APN functions are significant in cryptography as such a function has the highest

resistance to differential cryptanalysis ([74], [3]). The nonlinearity of f : F2n → F2n

is measured through the extended Walsh transformed defined as

Wf (λ, γ) =
∑
x∈F2n

(−1)Tr2n/2(γf(x)+λx), λ ∈ F2n , γ ∈ F∗2n . (1.3.4)

Definition 1.3.2 The linearity of a map f : F2n → F2n is given by

L(f) = max{|Wf (λ, γ)| : λ ∈ F2n , γ ∈ F∗2n}.

It is desirable to find mappings f with the minimum possible value for L(f). These

mappings that achieve the minimum possible value for L(f) are called almost bent

(AB) or maximally nonlinear. Such functions have the best resistance against linear

cryptanalysis ([67]).

When n is odd, the are several classes of APN functions that may be permu-

tations on F2n ; when n is even the situation is not so transparent. In fact, it was a

long standing conjecture that no APN permutation can exist when n is even. The

10



conjecture was confirmed true for n = 4 and for a class of permutation polynomials

p(x) =
∑2n−1

i=0 aix
i ∈ F2n/2 [x] ([38]). The only known APN permutation on F2n , n

even, was discovered by Browning, Dillon, McQuistan and Wolfe in 2009 ([9]).

Definition 1.3.3 A polynomial of the form

L(x) =
m∑
i=0

aix
qi ∈ Fq[x]

is called a linearized polynomial over Fq. Note the map x 7→ L(x) is a linear function

on Fq.

In attempt to construct an APN permutation on F2n one can start with a non

permuting power function, xd and attempt to find a linearized polynomial L(x) so the

sum xd + L(x) is a permutation polynomial. It is quite obvious if the power function

xd is APN on F2n , then so is the sum xd +L(x). In general it is a challenging problem

to take a non permuting function and determine if there is a matching linearized

polynomial so the sum becomes a permutation polynomial. A special case of this

question is considered in chapter 4. We present the proof of a conjecture of Xin Gong

([30]), see Theorem 4.2.1.
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2 The Polynomial gn,q
∗

2.1 Background

Let p be a prime and q a power of p.

In Fq[x] we have xq−x =
∏

a∈Fq(x+a). Let t be another indeterminate and substitute

t + x for x. Then we have

tq−t+xq−x = (t+x)q−(t+x) =
∏
a∈Fq

(t+x+a) =

q∑
k=0

σk((x+a)a∈Fq)t
q−k, (2.1.1)

where σk is the kth elementary symmetric polynomial in q variables. A comparison

of the coefficients of t on both sides of (2.1.1) tells that

σk((x + a)a∈Fq) =



1 if k = 0,

−1 if k = q − 1,

xq − x if k = q,

0 otherwise.

(2.1.2)

Let n ≥ 0 be an integer. By Waring’s formula [64, Theorem 1.76] and (2.1.2), we have

∑
a ∈ Fq

(x + a)n =
∑

α(q−1)+βq=n

(−1)α
(α + β − 1)!n

α!β!
(−1)α(xq − x)β

=
∑

n
q
≤l≤ n

q−1

(l − 1)!n

(lq − n)!(n− l(q − 1))!
(xq − x)n−l(q−1) (l = α + β)

∗Portions of this chapter are taken from [25] which is published in the Journal of Finite Fields and their
Applications, and [26] which is published in the Journal of Discrete Mathematics.
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=
∑

n
q
≤l≤ n

q−1

n

l

(
l

n− l(q − 1)

)
(xq − x)n−l(q−1).

Set

gn,q(x) =
∑

n
q
≤l≤ n

q−1

n

l

(
l

n− l(q − 1)

)
xn−l(q−1) ∈ Z[x].

(Note that the coefficients of gn,q(x) are integers since the coefficients in Waring’s

formula are integers.) Then in Fq[x] we have

∑
a ∈ Fq

(x + a)n = gn,q(x
q − x). (2.1.3)

In fact, we may take the above functional equation as the definition of the polynomial

gn,q. Notice when q = 2, gn,2 is the nth reversed Dickson polynomial over F2. This is

because in characteristic 2 we have

gn,2(x2 − x) = xn + (x+ 1)n = xn + (1− x)n = Dn(1, x(1− x)) = Dn(1, x2 − x).

With this observation in hand, Hou introduced the polynomial gn,q in [39] as the q−ary

version of the reversed Dickson polynomial in characteristic 2. A main objective of

his study was the following question: When does the map x 7→ gn,q(x) permute the

finite field Fqe? With this in mind, we have the following definition:

Definition 2.1.1 (Desirable triple). If gn,q is a permutation polynomial of Fqe , we

say that the triple (n, e; q) is desirable.

With the help of a computer it is not difficult to generate all desirable triples for

a fixed (small) q and fixed e. The difficulty of the prolems lies in classifying these

explicit triples. We consider a desirable triple classified if it belongs to a known

infinite family. For the remainder of this section, we gather known results about the

polynomial gn,q to be used in the upcoming sections.

Like its predecessors, the Dickson and Reversed Dickson polynomials, the poly-

nomail gn,q satisfies a recurrence relation.

13



Proposition 2.1.2 ([40]). The polynomial gn,q satisfies the recurrence relation


g0,q = · · · = gq−2,q = 0,

gq−1,q = −1,

gn,q = xgn−q,q + gn−q+1,q, n ≥ q.

(2.1.4)

Using this recurrence, it is possible to extend the definition of gn,q to n < 0, we have

gn,q =
1

x
(gn+q,q − gn+1,q). (2.1.5)

For n < 0, gn,q ∈ Fp[x, x−1], the ring of Laurent polynomials in x over Fp. Thus the

functional equation in (2.1.1) holds for all n ∈ Z.

Fact 2.1.3 Let e be a positive integer and p be the characteristic of Fq. Every x ∈ Fqe

can be written as yq − y with y ∈ Fqpe .

To see this is the case, define

V = {y ∈ Fq|yq − y ∈ Fqe}.

The map y 7→ yq−y is clearly a Fq-linear q-to-one onto map from V to Fqe with kernel

Fq. We want to show V ⊂ Fqpe . We can choose α ∈ Fqe such that Trqe/q(α) = 1. Then

we have Trqpe/q(α) = Trqe/q(Trqpe/qe(α)) = Trqe/q(p · α) = 0, so there is some β ∈ Fqpe

with βq − β = α. It follows that

V =
⋃
u∈Fq

(uβ + Fqe).

Proposition 2.1.4 (i) gpn,q = gpn,q.

(ii) If n1, n2 > 0 are integers such that n1 ≡ n2 (mod qpe − 1), then gn1,q ≡ gn2,q

(mod xq
e − x).

Proof.

14



(i) We have

gpn,q(x
q − x) =

∑
a ∈ Fq

(x + a)pn =
( ∑
a ∈ Fq

(x + a)n
)p

= [gn,q(x
q − x)]p.

(ii) For all x ∈ Fqpe , we have

gn1,q(x
q − x) =

∑
a ∈ Fq

(x+ a)n1 =
∑
a ∈ Fq

(x+ a)n2 = gn2,q(x
q − x).

In particular, gn1,q(x) = gn2,q(x) for all x ∈ Fqe , i.e., gn1,q ≡ gn2,q (mod xq
e − x).

Given two integers m,n > 0, we say m and n belong to the same p-cyclotomic coset

(mod qpe − 1) whenever m ≡ pi · n (mod qpe − 1) for some integer i > 0. If two

integers m,n > 0 belong to the same p-cyclotomic coset modulo qpe − 1, the two

triples (m, e; q) and (n, e; q) are called equivalent, and we write (m, e; q) ∼ (n, e; q) or

m ∼(e,q) n. Proposition 2.1.4 verifies that desirability of triples is preserved under the

∼ equivalence.

Lemma 2.1.5 ([40]). Let l and i > 0 be integers. Then

gl+qi,q = gl+1,q + Si · gl,q, (2.1.6)

where Si = x + xq + · · ·+ xq
i−1

.

From (2.1.6), we have

(Sa − Sb)gn,q = gn+qa,q − gn+qb,q, (2.1.7)

where a, b > 0 are integers. Also note that

Sa − Sb ≡ Sa−b (mod xq
e − x) if b ≡ 0 or a (mod e).

If a < 0, we define Sa = Spe+a.
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Given integers d > 1 and a = a0d
0 + · · · + atd

t, 0 ≤ ai ≤ d − 1, the base d

weight of a is wd(a) = a0 + · · · + at. Let n ≥ 0 be any integer and wq(n) denote the

base q weight of n. If the base q weight of n is small, the form of gn,q is determined

by the following lemma.

Lemma 2.1.6 ([40]). Let n = α0q
0 + · · · + αtq

t , 0 ≤ αi ≤ q − 1 and wq(n) be the

base q weight of n,

gn,q =


0 if wq(n) < q − 1,

−1 if wq(n) = q − 1,

α0x
q0 + (α0 + α1)xq

1
+ · · ·+ (α0 + · · ·+ αt−1)xq

t−1
+ δ if wq(n) = q,

(2.1.8)

where

δ =

 1 if q = 2,

0 if q > 2.

2.2 Desirable Triples of the form (qa − qb − 1, e; q)

A massive computer search suggests that n of the form n = qa− qb−1 is special, that

is, the family of polynomials gqa−qb−1,q contains many permutation polynomials.

Assume n > 0 and n ≡ qa − qb − 1 (mod qpe − 1) for some integers a, b ≥ 0.

If a = 0 or a = b, then n ∼(e,q) q
pe − 2, where (qpe−2, e; q) is desirable if and only if

q > 2 [40, Proposition 3.2 (i)]. If b = 0 and a > 0, we have n ≡ qa − 2 (mod qpe − 1).

By Proposition 2.1.4 and Lemma 2.1.6,

gqa−2,q =
1

x
(gqa+q−2,q − gqa−1,q)

=
1

x

[
−1− 1

x
(gqa+q−1,q − gqa,q)

]
=

1

x

(
−1 +

Sa
x

)
16



=
Sqa−1

x2

= xq−2 + xq
2−2 + · · ·+ xq

a−1−2. (2.2.9)

For which a, e and q is gqa−2,q a PP of Fqe? The complete answer is not known. We

have the following conjecture.

Conjecture 2.2.1 Let e ≥ 2 and 2 ≤ a < pe. Then (qa − 2, e; q) is desirable if and

only if

(i) a = 3 and q = 2, or

(ii) a = 2 and gcd(q − 2, qe − 1) = 1.

Note. When q is even,

gqa−2,q =
(x 1

2
q1 + x

1
2
q2 + · · ·+ x

1
2
qa−1

x

)2

,

and the claim of the conjecture follows from Payne’s Theorem which says that the

linearized polynomials f(x) ∈ F2n [x] such that f(x) and f(x)/x are permutations

of F2n and F∗2n respectively, are exactly of the form f(x) = ax2k with a ∈ F∗2n and

gcd(k, n) = 1 [36, §8.5], [37, 76, 77].

For a general q, the “if” part is obvious. So for the conjecture, one only has to prove

that if q is odd, e ≥ 2, and a > 2, then (qa − 2, e; q) is not desirable.

Now assume n > 0 and n ≡ qa− qb− 1 (mod qpe− 1), where 0 < a, b < pe and

a 6= b. If a < b, we have

n ∼(e,q) q
pe−bn ≡ qpe−b(qa − qb − 1) ≡ qpe+a−b − qpe−b − 1 (mod qpe − 1),

where 0 < pe− b < pe+ a− b < pe. Therefore we may assume 0 < b < a < pe.
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By (2.1.6), we have

Sb · gqa−qb−1,q = gqa−1,q − gqa−qb,q

= gqa−1,q − (gqa−b−1,q)
qb

= −Sa
x

+
(Sa−b

x

)qb
= −

Sa − Sq
b

a−b

x
+
( 1

xq
b −

1

x

)
Sq

b

a−b

= −Sb
x
− Sqb − Sb

xq
b+1

Sq
b

a−b.

So

gqa−qb−1,q = −1

x
−

(Sq−1
b − 1)Sq

b

a−b

xq
b+1

. (2.2.10)

(Note that (2.2.10) also holds for b = 0; see (2.2.9).) Assume e ≥ 2. Write

a− b = a0 + a1e, b = b0 + b1e,

where a0, a1, b0, b1 ∈ Z and 0 ≤ a0, b0 < e. Then from (2.2.10) we have

gqa−qb−1,q ≡ −xq
e−2 − xq

e−qb0−2(a1Se + Sq
b0

a0
)
(
(b1Se + Sb0)

q−1 − 1
)

(mod xq
e − x).

(2.2.11)

Corollary 2.2.2 We have

gq2−q−1,q = −xq−2.

In particular, (q2−q−1, e; q) is desirable if and only if q > 2 and gcd(q−2, qe−1) = 1.

Proof. It follows from (2.2.10).

The following theorem is a generalization of [40, Proposition 3.2 (i)].

Theorem 2.2.3 Assume e ≥ 2. Let 0 < b < a < pe. Then

gqa−qb−1,q ≡ −xq
e−2 (mod xq

e − x) (2.2.12)
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if and only if a ≡ b ≡ 0 (mod e). In particular, if 0 < b < a < pe, and a ≡ b ≡ 0

(mod e), then (qa − qb − 1, e; q) is a desirable triple.

Proof. (⇐) In the notation of (2.2.11), we have a0 = b0 = 0 and 0 < b1 < p. So

gqa−qb−1,q ≡ −xq
e−2 − xq

e−3a1Se
(
(b1Se)

q−1 − 1
)

(mod xq
e − x)

= −xqe−2 − xq
e−3a1Se(S

q−1
e − 1)

= −xqe−2 − xq
e−3a1(Sqe − Se)

≡ −xqe−2 (mod xq
e − x).

(2.2.13)

(⇒) Assume (2.2.12) holds. Then by (2.2.10),

(xq
b − x)Sq

b

a−b = (Sqb − Sb)S
qb

a−b ≡ 0 (mod xq
e − x).

For f ∈ Fq[x], denote {x ∈ Fq : f(x) = 0} by V (f), where Fq is the algebraic closure of

Fq. Then V (xq
e − x) ⊂ V (xq

b − x)∪V (Sa−b), i.e., Fqe ⊂ Fqb ∪V (Sa−b). Since V (Sa−b)

is a vector space over Fq, we must have Fqe ⊂ Fqb or Fqe ⊂ V (Sa−b). However, since

0 < a < pe,

Sa−b = Sa1e+a0 ≡ a1Se + Sa0 6≡ 0 (mod xq
e − x).

So we must have Fqe ⊂ Fqb . Hence b ≡ 0 (mod e). Now by (2.2.11) and the calculation

in (2.2.13), we have

Sa0(S
q−1
e − 1) ≡ 0 (mod xq

e − x). (2.2.14)

If a0 > 0, then

degSa0(S
q−1
e − 1) = (q − 1)qe−1 + qa0−1 = qe − qe−1 + qa0−1 < qe,

which is a contradiction to (2.2.14). So we must have a0 = 0, i.e., a ≡ 0 (mod e).

Remark. If (qa − qb − 1, 2; q) is desirable, where 0 < b < a < 2p and b ≡ 0 (mod 2),

then we must have a ≡ 0 (mod 2). Otherwise, with e = 2, a0 = 1, b0 = 0 in (2.2.11),
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we have

gqa−qb−1,q ≡ −xq
2−2 − xq

2−3(a1S2 + x)
(
(b1S2)q−1 − 1

)
(mod xq

2 − x).

Then gqa−qb−1,q(x) = 0 for every x ∈ Fq2 with Trq2/q(x) = 0, which is a contradiction.

The results of our computer search suggest that when e ≥ 3, the only desirable

triples (qa − qb − 1, e; q), 0 < b < a < pe, are those given by Corollary 2.2.2 and

Theorem 5.5.2. This leads us to conjecture the following:

Conjecture 2.2.4 Let e ≥ 3 and n = qa − qb − 1, 0 < b < a < pe. Then (n, e; q) is

desirable if and only if

(i) a = 2, b = 1, and gcd(q − 2, qe − 1) = 1, or

(ii) a ≡ b ≡ 0 (mod e).

2.3 Desirable Triples of the form (qa − qb − 1, 2; q)

In light of Conjecture 2.2.4, we see the permutation behavior of gqa−qb−1,q is fairly

predictable when e > 2. This situation becomes more chaotic when e = 2. A computer

search suggests that desirable triples of the form (qa−qb−1, 2; q), 0 < b < a < 2p, are

quite common (see table 2.1). For the remainder of this chapter, we consider desirable

triples of the form (qa − qb − 1, 2; q), 0 < b < a < 2p.

Experimental evidence suggests that desirable triples of the form (qa − qp −

1, 2; q) are abundant. These triples appear so often, we remove them from Table 2.1,

for convience of reading and in the hope it will allow other patterns to surface. The

following two theorems deal with the case b = p.

Theorem 2.3.1 Let p be an odd prime and q a power of p.

(i) Fq2 \ Fq consists of the roots of (x− xq)q−1 + 1.
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(ii) Let 0 < i ≤ 1
2
(p− 1) and n = qp+2i − qp − 1. Then

gn,q(x) =


(2i− 1)xq−2 if x ∈ Fq,

2i− 1

x
+

2i

xq
if x ∈ Fq2 \ Fq.

(iii) For the n in (ii), (n, 2; q) is desirable if and only if 4i 6≡ 1 (mod p).

Proof. (i) We have

(xq − x)
[
(x− xq)q−1 + 1

]
= −(x− xq)q + xq − x = xq

2 − x.

Hence the claim.

(ii) Let e = 2, a = p + 2i, b = p. In the notation of (5.5.45), a0 = 0, a1 = i,

b0 = 1, b1 = p−1
2

. Thus

gn,q ≡ −xq
2−2 − ixq2−q−2S2

[(
−1

2
S2 + x

)q−1

− 1
]

(mod xq
2 − x)

= −xq2−2 − ixq2−q−2(x + xq)
[
(x− xq)q−1 − 1

]
.

When x ∈ Fq, x− xq = 0, so

gn,q(x) = −xq2−2 + ixq
2−q−2(x+ xq) = (2i− 1)xq−2.

When x ∈ Fq2 \ Fq, by (i), (x− xq)q−1 = −1. Thus

gn,q(x) = −x−1 + 2ixq
2−q−2(x+ xq)

= −x−1 + 2ixq
2−q−1 + 2ixq

2−2

= (2i− 1)x−1 + 2ix−q.

(iii) Since 0 < 2i − 1 < p, (2i − 1)xq−2 permutes Fq. We claim that (2i −

1)x−1 + 2ix−q maps Fq2 \ Fq to itself. In fact, for x ∈ Fq2 \ Fq,[2i− 1

x
+

2i

xq
−
(2i− 1

x
+

2i

xq

)q]q−1

=
(
−1

x
+

1

xq

)q−1

=
(x− xq
xq+1

)q−1

= −1
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since (x− xq)q−1 = −1.

Therefore, gn,q is a PP of Fq2 if and only if (2i−1)x−1 +2ix−q is 1-1 on Fq2 \Fq,

i.e., if and only if (2i − 1)x + 2ixq is 1-1 on Fq2 \ Fq. So, it remains to show that

(2i− 1)x + 2ixq is 1-1 on Fq2 \ Fq if and only if 4i 6≡ 1 (mod p).

(⇐) Assume 4i 6≡ 1 (mod p). We claim that (2i − 1)x + 2ixq is a PP of Fq2 .

Otherwise, there exists 0 6= x ∈ Fq2 such that (2i−1)x+2ixq = 0. Then xq−1 = −2i−1
2i

.

Hence

1 = (xq−1)q+1 =
(
−2i− 1

2i

)q+1

=
(2i− 1

2i

)2

.

So (2i− 1)2 ≡ (2i)2 (mod p), i.e., 4i− 1 ≡ 0 (mod p), which is a contradiction.

(⇒) Assume 4i ≡ 1 (mod p). Then (2i − 1)x + 2ixq = 2i(xq − x), which is

clearly not 1-1 on Fq2 \ Fq.

Theorem 2.3.2 Let p be an odd prime and q a power of p.

(i) Let 0 < i ≤ 1
2
(p− 1) and n = qp+2i−1 − qp − 1. Then

gn,q(x) =


2(i− 1)xq−2 if x ∈ Fq,

2i− 1

x
+

2i− 2

xq
if x ∈ Fq2 \ Fq.

(ii) For the n in (i), (n, 2; q) is desirable if and only if i > 1 and 4i 6≡ 3 (mod p).

Proof. (i) Let e = 2, a = p + 2i − 1, b = p. In the notation of (2.2.11), a0 = 1,

a1 = i− 1, b0 = 1, b1 = p−1
2

. Thus

gn,q ≡ −xq
2−2 − xq

2−q−2((i− 1)S2 + xq)
[(
−1

2
S2 + x

)q−1

− 1
]

(mod xq
2 − x)

= −xq2−2 − xq
2−q−2(i(x + xq)− x)

[
(x− xq)q−1 − 1

]
.

When x ∈ Fq, x− xq = 0, so

gn,q(x) = −xq2−2 + xq
2−q−1(2i− 1) = 2(i− 1)xq−2.
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When x ∈ Fq2 \ Fq, by (i), (x− xq)q−1 = −1. Thus

gn,q(x) = −x−1 + 2xq
2−q−2((i− 1)x+ ixq)

= −x−1 + 2(i− 1)xq
2−q−1 + 2ixq

2−2

= (2i− 1)x−1 + (2i− 2)x−q.

(ii) Since 0 < 2i−2 < p, 2(i−1)xq−2 permutes Fq. We claim that (2i−1)x−1 +

(2i− 2)x−q maps Fq2 \ Fq to itself. In fact, for x ∈ Fq2 \ Fq,[2i− 1

x
+

2i− 2

xq
−
(2i− 1

x
+

2i− 2

xq

)q]q−1

=
(1

x
− 1

xq

)q−1

=
(x− xq
xq+1

)q−1

= −1

since (x− xq)q−1 = −1.

Therefore, gn,q is a PP of Fq2 if and only if (2i− 1)x−1 + (2i− 2)x−q is 1-1 on

Fq2 \ Fq, i.e., if and only if (2i− 1)x + (2i− 2)xq is 1-1 on Fq2 \ Fq. So, it remains to

show that (2i− 1)x + (2i− 2)xq is 1-1 on Fq2 \ Fq if and only if 4i 6≡ 3 (mod p).

(⇐) Assume 4i 6≡ 3 (mod p). We claim that (2i− 1)x + (2i− 2)xq is a PP of

Fq2 . Otherwise, there exists 0 6= x ∈ Fq2 such that (2i − 1)x + (2i − 2)xq = 0. Then

xq−1 = −2i−1
2i−2

. Hence

1 = (xq−1)q+1 =
(
−2i− 1

2i− 2

)q+1

=
(2i− 1

2i− 2

)2

.

So (2i− 1)2 ≡ (2i− 2)2 (mod p), i.e., 4i− 3 ≡ 0 (mod p), which is a contradiction.

(⇒) Assume 4i ≡ 3 (mod p). Then (2i− 1)x + (2i− 2)xq = (2i− 2)(xq − x),

which is clearly not 1-1 on Fq2 \ Fq.

Theorem 2.3.3 Let q = 2s, n = q3 − q − 1.

(i) For x ∈ Fq2,

gn,q(x) =

0 if x = 0,

xq−2 + Trq2/q(x
−1) if x 6= 0.
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(ii) gn,q is a PP of Fq2 if and only if s is even.

Proof. (i) It is obvious that g(0) = 0. Let 0 6= x ∈ Fq2 . By (2.2.11) (with a0 = 0,

a1 = 1, b0 = 1, b1 = 0),

gn,q(x) = x−1 + x−q−1S2(x)(xq−1 + 1)

= x−1 + x−q−1(x+ xq)(xq−1 + 1)

= x−1 + xq−2 + x−q

= xq−2 + Trq2/q(x
−1).

(ii) 1◦ We show that for every c ∈ F∗q2 , the equation

xq−2 + x−1 + x−q = c (2.3.15)

has at most one solution x ∈ F∗q2 .

Assume that x ∈ F∗q2 is a solution of (2.3.15). Then

cx−q = x−2 + x−q−1 + x−2q = Nq2/q(x
−1) + Trq2/q(x

−2) ∈ Fq.

Let t = c−qx = (cx−q)−q ∈ F∗q. Then x = tcq. Making this substitution in (2.3.15),

we have
1

t

(
cq(q−2) + c−q + c−1

)
= c.

So

t = c−2 + c−2q + c−q−1.

Hence x is unique.

2◦ Assume s is even. We show that

xq−2 + Trq2/q(x
−1) = 0 (2.3.16)

has no solution in F∗q2 . Assume to the contrary that x ∈ F∗q2 is a solution of (2.3.16).
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Then xq−2 ∈ Fq. Since s is even, we have gcd(q − 2, q2 − 1) = 1. So x ∈ Fq. Then

Trq2/q(x
−1) = 0, and xq−2 = 0, which is a contradiction.

3◦ Assume s is odd. We show that (2.3.16) has a solution in F∗q2 . Let x ∈

F22 \ F2. Then x2 + x+ 1 = 0 and x3 = 1. So

xq−2 + Trq2/q(x
−1) = xq−2 + x−1 + x−q

= 1 + x2 + x (since q ≡ 2 (mod 3))

= 0.

The following theorem is particulary interesting as the polynomial gn,q acts on

Fq2 as a binomial. This observation pays dividends in the following chapters.

Theorem 2.3.4 (i) Assume q > 2. We have

gq2i−q−1,q ≡ (i− 1)xq
2−q−1 − ixq−2 (mod xq

2 − x).

(ii) Assume that q is odd. Then xq
2−q−1 + xq−2 is a PP of Fq2 if and only if q ≡ 1

(mod 4).

(iii) Assume that q is odd. Then (qp+1 − q − 1, 2; q) is desirable if and only if q ≡ 1

(mod 4).

Proof. In the notation of (2.2.11), we have e = 2, a = 2i, b = 1, a0 = 1, a1 = i− 1,

b0 = 1, b1 = 0. Thus

gq2i−q−1,q ≡ −xq
2−2 − xq

2−q−2
(
(i− 1)S2 + xq

)
(xq−1 − 1) (mod xq

2 − x)

= −xq2−2 − xq
2−q−2

(
(i− 1)x + ixq

)
(xq−1 − 1)

= −xq2−2 − xq
2−q−2

(
−xq − (i− 1)x + ix2q−1

)
≡ (i− 1)xq

2−q−1 − ixq−2 (mod xq
2 − x).
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(ii) (⇐) Let f = xq
2−q−1 + xq−2. Then

f(x) =

0 if x = 0,

x−q + xq−2 if x ∈ F∗q2 .

1◦ We show that for every c ∈ F∗q2 , the equation

x−q + xq−2 = c (2.3.17)

has at most one solution x ∈ F∗q2 .

Assume x ∈ F∗q2 is a solution of (2.3.17). Then

cx−q = x−2q + x−2 = Trq2/q(x
−2) ∈ Fq.

Let t = c−qx = (cx−q)−q ∈ F∗q. Then x = tcq. So (2.3.17) becomes

1

t

(
c−1 + cq(q−2)

)
= c.

Thus t = c−2 + c−2q. Hence x is unique.

2◦ We show that x−q + xq−2 = 0 has no solution x ∈ F∗q2 .

Assume that x ∈ F∗q2 is a solution. Then x2q−2 = −1. Since 1
2
(q + 1) is odd,

we have −1 = (x2q−2)
1
2

(q+1) = xq
2−1 = 1, which is a contradiction.

(⇒) Assume to the contrary that q ≡ −1 (mod 4). We show that x−q+xq−2 =

0 has a solution x ∈ F∗q2 . Since 4(q−1) | q2−1, there exists x ∈ F∗q2 with o(x) = 4(q−1).

Then x2(q−1) = −1, i.e., x−q + xq−2 = 0.

(iii) It follows from (i) and (ii).

Theorem 2.3.5 Let p be an odd prime and q a power of p. Let 0 ≤ i ≤ p − 2 and
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n = qp+i+1 − q2i+1 − 1. If

(
2i+ 1

q

)
=

1 if i is odd,

(−1)
q−1
2 if i is even,

(2.3.18)

where

(
a

b

)
is the Jacobi symbol, then (qp+i+1 − q2i+1 − 1, 2; q) is desirable.

Proof. Throughout the proof, “≡” means “≡ (mod xq
2 − x)”.

Let e = 2, a = p+ i+ 1, b = 2i+ 1.

Case 1: i is odd.

In the notation of (2.2.11), a0 = 0, a1 = p−i
2
, b0 = 1, b1 = i.

Write g = gqp+i+1−q2i+1−1,q.

g ≡ −xq2−2 − xq2−q−2(
p− i

2
S2)((iS2 + S1)q−1 − 1) (mod xq

2 − x)

= −xq2−2 +
i

2
xq

2−q−2(x+ xq)[((i+ 1)x+ ixq)q−1 − 1].

Clearly, g(0) = 0. When x ∈ F∗q2 ,

g(x) = −x−1 +
i

2
x−q−1(x+ xq)

((i+ 1)x+ ixq)q − ((i+ 1)x+ ixq)

(i+ 1)x+ ixq

= −x−1 +
i

2
(x−q + x−1)

xq − x
(i+ 1)x+ ixq

= −x−1 +
i

2
(x−q + x−1)

x−1 − x−q

(i+ 1)x−q + ix−1

= y +
i

2
(yq + y)

yq − y
(i+ 1)yq + iy

(y = −x−1)

=
iy2q + 2(i+ 1)yq+1 + iy2

2(i+ 1)yq + 2iy
.

Let w = 2(i+ 1)yq + 2iy. Then y =
1

2(2i+ 1)
((i+ 1)wq − iw).

Note: 2(i+ 1)xq + 2ix is a PP of Fq2 , and
1

2(2i+ 1)
((i+ 1)xq − x) is the inverse PP.
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So

g(x) =
1

(4i+ 2)2

iu2q + 2(i+ 1)uq+1 + iu2

w
,

where u = (i+ 1)wq − iw.

The proof will be complete if we can show that for c ∈ Fq2 ,

iu2q + 2(i+ 1)uq+1 + iu2

w
= c, (2.3.19)

i.e.,

i((i+ 1)wq − iw)2q + 2(i+ 1)((i+ 1)wq − iw)q+1 + i((i+ 1)wq − iw)2

w
= c (2.3.20)

has at most one solution w ∈ F∗q2 if c 6= 0 and has no solution w ∈ F∗q2 if c = 0.

First assume c 6= 0. Let t = wc. By (2.3.20), t ∈ Fq. Then (2.3.20) becomes

it2v2q + 2t2(i+ 1)vq+1 + it2v2

tc−1
= c,

where v = (i+ 1)c−q − ic−1. So

t =
1

iv2q + 2(i+ 1)vq+1 + iv2
,

which is unique. Hence w is unique.

Now assume c = 0.

Assume to the contrary that (2.3.20) has a solution w ∈ F∗q2 . Then

i((i+ 1)wq − iw)2q−2 + 2(i+ 1)((i+ 1)wq − iw)q−1 + i = 0.

Let z = ((i+ 1)wq − iw)q−1 ∈ F∗q2 . Then

iz2 + 2(i+ 1)z + i = 0. (2.3.21)
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Since i is odd 2i+ 1 is a square in Fq. So (2.3.21) implies that z ∈ Fq. Then we have

z2 = zq+1 = ((i+ 1)wq − iw)q
2−1 = 1. So z = ±1, which contradicts (2.3.21).

Case 2: i is even.

In the notation of (5.5.45), a0 = 1, a1 = p−i−1
2

, b0 = 1, b1 = i.

g ≡ −xq2−2 − xq2−q−2(
p− i− 1

2
S2 + Sq1)((iS2 + x)q−1 − 1)

= −xq2−2 +
1

2
xq

2−q−2((i+ 1)x+ (i− 1)xq)[((i+ 1)x+ ixq)q−1 − 1].

Clearly, g(0) = 0. When x ∈ F∗q2 ,

g(x) = −x−1 +
1

2
x−q−1((i+ 1)x+ (i− 1)xq)

((i+ 1)x+ ixq)q − ((i+ 1)x+ ixq)

(i+ 1)x+ ixq
.

Note that (i+ 1)x+ ixq 6= 0.

g(x) = −x−1 +
1

2
((i+ 1)x−q + (i− 1)x−1)

xq − x
(i+ 1)x+ ixq

= −x−1 +
1

2
((i+ 1)x−q + (i− 1)x−1)

x−1 − x−q

(i+ 1)x−q + ix−1

= y +
1

2
((i+ 1)yq + (i− 1)y)

yq − y
(i+ 1)yq + iy

(y = −x−1)

=
(i+ 1)y2q + 2iyq+1 + (i+ 1)y2

2(i+ 1)yq + 2iy
.

Let w = 2(i+ 1)yq + 2iy. Then y =
1

2(2i+ 1)
((i+ 1)wq − iw).

Note: 2(i+ 1)xq + 2ix is a PP of Fq2 , and
1

2(2i+ 1)
((i+ 1)xq − ix) is the inverse PP.

So

g(x) =
1

(4i+ 2)2

(i+ 1)u2q + 2iuq+1 + (i+ 1)u2

w
,

where u = (i+ 1)wq − iw.

The proof will be complete if we can show that for c ∈ Fq2 ,

(i+ 1)u2q + 2iuq+1 + (i+ 1)u2

w
= c, (2.3.22)
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i.e.,

(i+ 1)((i+ 1)wq − iw)2q + 2i((i+ 1)wq − iw)q+1 + (i+ 1)((i+ 1)wq − iw)2

w
= c

(2.3.23)

has at most one solution w ∈ F∗q2 if c 6= 0 and has no solution w ∈ F∗q2 if c = 0.

Assume c 6= 0. Let t′ = wc. By (2.3.23), t′ ∈ Fq. Then (2.3.23) becomes

(i+ 1)t′2v2q + 2it′2vq+1 + (i+ 1)t′2v2

t′c−1
= c,

where v = (i+ 1)c−q − ic−1. So

t′ =
1

(i+ 1)v2q + 2ivq+1 + (i+ 1)v2
,

which is unique. Hence w is unique.

Now assume c = 0. Assume to the contrary that (2.3.23) has a solution w ∈ F∗q2 .

Then

(i+ 1)((i+ 1)wq − iw)2q−2 + 2i((i+ 1)wq − iw)q−1 + (i+ 1) = 0.

Let z = ((i+ 1)wq − iw)q−1 ∈ F∗q2 . Then

(i+ 1)z2 + 2iz + (i+ 1) = 0. (2.3.24)

Since i is even

(
2i+ 1

q

)
= (−1)

q−1
2 , i.e. −(2i + 1) is a square in Fq. So (2.3.24)

implies that z ∈ Fq. Then we have z2 = zq+1 = ((i+ 1)wq − iw)q
2−1 = 1. So z = ±1,

which contradicts (2.3.24).

2.4 Connection between gn,q and PPs of the form f = x(a+ x2(q−1))

Assume that e ≥ 2, n > 0, and n ≡ qa − qb − 1 (mod qpe − 1), where 0 ≤ a, b ≤ pe.

Examining the evidence in the previous two sections we see there is little activity
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when e ≥ 3 (see Conjecture 2.2.4), however when e = 2, the situation appears to

be quite chaotic. In fact, a computer search reveals many desirable triples of the

form (qa − qb − 1, 2; q) which are not covered by results in the previous sections, see

Table 2.1. Based on some of these desirable triples and Theorem 2.3.4 we conjectured

the following, which was later proved by Hou ([41]).

Conjecture 2.4.1 Let f = xq−2 + txq
2−q−1, t ∈ F∗q. Then f is a PP of Fq2 if and

only if one of the following occurs:

(i) t = 1, q ≡ 1 (mod 4);

(ii) t = −3, q ≡ ±1 (mod 12);

(iii) t = 3, q ≡ −1 (mod 6).

Suppose a polynomial of the form f = xq−2 + txq
2−q−1 is a permutation polynomial

of Fq2 . Noting that the map x 7→ xq
2−q−1 is a permutation of Fq2 and substituting

xq
2−q−1 for x in Conjecture 2.4.1, we see Conjecture 2.4.1 is equivalent to the following

theorem of Hou.

Theorem 2.4.2 ([41]) Let f = tx+ x2q−1, t ∈ F∗q. Then f is a PP of Fq2 if and only

if one of the following occurs:

(i) t = 1, q ≡ 1 (mod 4);

(ii) t = −3, q ≡ ±1 (mod 12);

(iii) t = 3, q ≡ −1 (mod 6)

It turns out that when n is of the form n = qa−qb−1, the polynomial function gn,q(x)

on Fq2 can be transfered into the form Ax+Bxq+Cx2q−1 through an invertible change

of variables. Using this connection, a theorem of Hou ([42]) can be used to determine

all desirable triples of the form (qa− qb−1, 2; q). This leads to a study of permutation

polynomials over Fq2 of the form xd(a + bxq−1 + xr(q−1)) (for explicit values of d and

r) which is precisely the topic of the next chapter.
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Table 2.1: Desirable triples (qa − qb − 1, 2; q), q ≤ 97, 0 < b < a < 2p, b odd, b 6= p,
(a, b) 6= (2, 1)

a b a b a b a b a b a b a b a b

q = 2 10 5 24 13 40 7 38 13 50 25 60 37 66 45
– – 13 11 25 1 40 33 40 7 51 27 61 39 67 47

25 15 41 35 40 17 52 37 62 1 71 35
q = 22 q = 72 26 1 42 37 40 31 54 33 63 43 73 59
3 1 6 1 27 19 43 39 41 3 57 7 64 11 74 27

8 1 28 21 45 13 41 19 58 41 64 45 74 61
q = 23 8 3 30 25 41 31 59 5 65 49 76 51
– – 9 3 33 5 q = 29 42 3 61 47 66 49 76 65

10 5 15 11 42 21 62 49 67 51 77 67
q = 24 12 5 q = 19 21 3 46 29 62 55 69 3 78 9
3 1 12 9 17 9 26 21 49 35 63 39 70 57 78 69

13 11 23 7 30 1 49 37 64 39 70 65 79 65
q = 25 25 11 31 19 49 43 64 53 71 59 80 47
– – q = 11 26 13 32 5 50 9 65 7 72 47 80 73

6 1 30 21 32 27 50 37 67 53 72 61 82 77
q = 26 10 1 30 23 33 7 51 39 69 63 77 33 83 79
3 1 13 3 31 17 34 5 55 41 70 65 78 73 85 19

17 13 31 23 34 9 55 47 71 67 80 5 85 59
q = 3 18 13 33 17 36 3 57 51 73 71 80 77 85 83
– – 19 15 34 29 36 13 58 53

20 5 35 9 41 23 59 13 q = 41 q = 43 q = 47
q = 32 20 17 36 5 42 25 60 5 12 7 20 11 18 3
3 1 36 33 44 1 60 57 31 1 21 11 20 9
4 1 q = 13 37 35 46 33 61 59 31 5 32 13 24 1
5 1 12 1 46 35 42 1 38 31 29 7

14 1 q = 23 47 35 q = 37 42 33 39 11 37 31
q = 33 15 3 10 7 52 19 19 15 44 5 46 5 44 21
– – 18 5 12 1 52 45 29 23 46 5 46 39 45 37

18 9 21 13 53 23 32 19 46 9 49 11 46 1
q = 5 19 5 22 1 54 49 34 21 49 29 51 15 49 3
6 1 22 17 25 3 55 51 36 1 52 21 55 23 50 5
8 1 25 23 26 5 56 5 38 1 53 1 58 29 50 29

27 21 56 53 38 15 53 23 58 41 51 7
q = 52 q = 17 32 17 57 15 39 3 54 25 59 31 54 13
4 1 11 1 34 21 41 7 55 33 60 33 54 51
6 1 15 7 35 31 q = 31 42 5 57 31 60 39 57 41
7 3 18 1 37 3 22 3 42 9 58 15 61 35 61 27
9 7 18 7 37 11 28 21 43 11 58 33 62 37 62 13

22 5 37 27 29 21 48 21 59 5 62 53 62 29
q = 7 22 9 39 31 35 7 48 45 60 27 65 61 64 33
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Table 2.1 (Continued)

a b a b a b a b a b a b a b a b

68 41 58 5 98 19 77 35 115 73 90 39 50 47 110 35
68 57 58 9 98 89 78 37 116 5 90 57 53 47 110 85
70 7 59 11 99 91 83 7 116 113 93 25 70 5 113 91
70 45 59 29 100 67 85 39 94 25 73 17 115 71
73 39 59 37 100 93 85 51 q = 61 94 65 74 13 116 29
73 51 60 13 101 95 87 35 38 33 97 73 74 57 116 97
75 55 61 15 102 97 90 61 52 39 98 51 75 15 117 23
76 33 62 17 103 37 90 81 59 51 98 73 77 19 118 23
76 57 63 57 103 55 91 63 60 1 99 75 79 23 118 101
77 59 66 25 103 99 92 65 62 1 100 67 85 35 119 23
77 65 67 43 105 11 94 69 62 49 100 77 85 47 119 61
77 67 68 29 94 71 63 3 101 91 85 69 119 103
79 63 71 11 q = 59 95 71 64 5 102 25 87 17 120 13
82 33 72 37 16 13 96 63 64 37 102 81 87 39 120 105
82 69 72 49 20 3 96 73 66 5 103 83 88 13 121 107
83 71 73 5 23 17 97 75 66 9 109 95 88 41 122 63
84 59 75 21 24 15 98 77 67 25 110 97 89 63 122 109
84 73 75 43 30 1 99 79 68 13 111 29 90 45 124 99
85 75 77 47 31 9 101 9 69 15 113 103 90 83 124 113
86 13 78 13 39 27 103 87 71 19 115 101 91 47 126 33
86 77 78 49 50 13 104 89 74 25 115 107 94 53 126 117
87 79 80 1 56 21 104 101 74 55 116 83 95 35 127 113
89 83 81 35 58 1 105 7 75 27 116 109 95 55 129 123
90 85 82 57 61 3 106 51 79 59 117 7 96 57 130 125
91 27 82 79 61 27 106 93 81 39 118 113 97 59 131 127

83 59 61 33 107 95 82 41 120 5 98 61 133 131
q = 53 85 63 63 7 108 83 84 45 120 117 98 77
27 23 88 13 66 13 108 97 84 79 121 119 99 77 q = 71
32 3 88 69 66 19 109 31 85 47 101 97 36 1
50 21 91 29 67 15 110 25 86 17 q = 67 102 31 70 1
51 43 92 23 69 19 110 101 86 49 40 17 102 69 23 3
54 1 92 77 73 27 113 107 87 39 43 11 103 71 53 3
57 7 94 81 76 33 114 109 89 35 48 31 109 83 73 3
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Table 2.1 (Continued)

a b a b a b a b a b a b a b

140 5 111 79 75 3 106 65 108 7 114 69 157 155
131 7 104 81 105 3 107 67 68 9 135 71
103 11 113 83 119 3 108 69 52 11 95 73 q = 34

78 13 113 85 69 5 109 71 85 11 118 77
95 13 114 85 78 5 92 75 125 11 146 81 3 1
47 15 115 87 98 7 111 75 129 11 121 83 4 1
79 15 120 87 78 9 112 77 43 13 100 85 5 1
80 17 117 91 128 15 113 79 135 13 122 85
81 19 118 93 137 15 114 81 121 15 123 87 q = 83
121 19 119 95 108 17 116 85 88 17 126 93 42 1
82 21 120 97 123 17 94 87 89 19 126 95 82 1
101 21 131 97 83 19 118 89 55 23 127 95 68 3
41 23 107 103 85 23 119 91 59 23 129 99 85 3
30 27 119 103 86 25 112 97 91 23 136 103 86 5
85 27 123 103 87 27 122 97 121 27 134 109 87 7
88 33 124 105 103 29 137 99 70 29 135 111 127 7
99 35 113 107 104 29 114 103 94 29 136 113 133 7
98 37 119 107 67 31 126 105 95 31 119 115 29 9
97 39 125 107 91 35 135 107 96 33 133 115 151 9
67 41 114 111 46 37 128 109 98 37 134 115 89 11
92 41 127 111 92 37 129 111 100 41 137 115 146 11
93 43 128 113 99 39 126 113 137 41 139 119 90 13
78 47 130 117 81 41 133 119 83 45 152 119 149 15
88 47 131 119 94 41 134 121 110 45 141 123 28 17
62 51 137 131 127 41 135 123 143 45 148 123 69 17
75 51 138 133 118 43 139 125 95 49 153 129 123 17
106 51 139 135 59 49 137 127 137 49 145 131 40 19
98 53 140 137 98 49 142 137 105 51 146 133 43 19
102 61 69 51 145 143 106 53 148 137 136 19
104 65 q = 73 101 55 107 55 151 137 80 21
106 69 102 57 q = 79 129 55 151 143 95 23
118 69 13 1 113 57 108 57 152 145 34 25
130 69 72 1 119 57 156 5 110 61 154 149 97 27
128 73 74 1 104 61 27 7 113 67 155 151 99 31
109 75 135 1 97 63 54 7 77 69 156 153 72 35
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Table 2.1 (Continued)

a b a b a b a b a b a b

112 35 142 117 71 17 152 83 174 169 58 45
95 37 128 119 98 17 132 85 176 173 121 47
127 37 143 119 133 17 151 85 122 49
109 39 132 121 155 19 155 85 q = 97 152 49
150 39 145 123 77 21 133 87 81 1 164 49
106 45 146 125 100 21 135 91 96 1 124 53
158 49 147 127 133 21 136 93 98 1 140 53
109 51 163 127 102 25 138 97 115 1 178 53
75 53 148 129 77 27 139 99 99 3 147 55
110 53 149 131 35 29 121 101 102 5 60 57
133 55 156 131 163 33 124 103 167 5 76 61
112 57 150 133 109 39 142 105 89 7 128 61
113 59 152 137 46 41 142 107 154 7 130 65
152 59 154 141 141 43 143 107 102 9 150 67
115 63 156 145 112 45 144 109 148 9 117 69
115 69 157 147 113 47 145 111 18 11 122 69
155 69 158 149 165 47 173 111 103 11 77 71
148 71 159 151 173 47 150 121 182 11 134 73
81 73 162 157 114 49 151 123 161 17 135 75
120 73 100 51 156 123 110 25 170 77
121 75 q = 89 92 53 159 123 50 27 137 79
95 77 41 1 116 53 149 125 111 27 138 81
126 85 90 1 117 55 152 125 158 27 105 83
127 87 134 1 139 55 132 127 53 29 140 85
154 87 139 1 170 55 154 129 113 31 133 87
110 89 92 5 118 57 155 131 114 33 142 89
128 89 94 5 102 61 156 133 74 35 143 91
131 95 176 5 123 67 154 137 115 35 144 93
149 95 151 7 150 67 159 139 138 35 145 95
132 97 166 7 124 69 169 141 130 37
133 99 94 9 125 71 168 143 98 39
134 101 95 11 161 71 166 153 123 39
115 105 44 13 126 73 168 157 183 41
136 105 127 13 129 79 170 161 81 43
139 111 49 15 130 81 173 167 119 43
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3 Permutation Polynomials of the form f = xd(a+ bxq−1 + xr(q−1)) ∗

3.1 Background

The results of the previous chapter show the permutation behavior of gqα−qβ−1,q on

Fq2 appears to be quite chaotic. The following lemma shows that gqα−qβ−1,q is a

permutation polynomial of Fq2 if and only if a certain trinomial is a permutation

polynomial on Fq2 .

Lemma 3.1.1 ([42]) Assume q > 2. Let n = qα − qβ − 1, where 0 < β < α < 2p, β

is odd and β 6= p. Write α− β = a0 + 2a1, 0 ≤ a0 ≤ 1, and β = 1 + 2b1. Then

gn,q(x) = Aφ(x) +Bφ(x)q + Cφ(x)2q−1 for all x ∈ Fq2 ,

where Φ is a permutation of Fq2 and


A = 1

β
(−a0b1 + b1 + a1),

B = a0 − b1+1
β

C = − 1
β
(a0b1 + a0 + a1)

Now to determine when the triple (qα − qβ − 1, 2; q) is desirable, we only have to

determine conditions on the coefficients of f = ax + bxq + x2q−1 ∈ Fq[x] that force f

to be a permutation polynomial of Fq2 . To this end we have the following theorems

of Hou:
∗Portions of this chapter are taken from [53] which is published in the Journal of Finite Fields and their

Applications
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Theorem 3.1.2 ([42]) Let f = ax + bxq + x2q−1 ∈ Fq[x], where q is odd. Then f is

a permutation polynomial of Fq2 if and only if one of the following is satisfied.

(i) a(a− 1) is a square in F∗q, and b2 = a2 + 3a.

(ii) a = 1, and b2 − 4a is a square in F∗q.

(iii) a = 3, b = 0, q ≡ −1 (mod 6).

(iv) a = b = 0, q ≡ 1, 3 (mod 6).

Theorem 3.1.3 ([42]) Let f = ax + bxq + x2q−1 ∈ Fq[x], where q is even. Then f is

a permutation polynomial of Fq2 if and only if one of the following is satisfied.

(i) q > 2, a 6= 1, Trq/2
(

1
a+1

)
= 0, b2 = a2 + a.

(ii) q > 2, a = 1, b 6= 0, Trq/2
(

1
b

)
= 0.

The proofs of the previous theorems are especially interesting in the sense that com-

plicated computations that appear to head nowhere produce suprisingly nice results.

We will see in a later section thats this pleasant suprise appears again relating to

permutation polynomials of the form ax3 + bxq+2 + x2q+1.

Using Lemma 3.1.1, Theorem 3.1.2 and Theorem 3.1.3 completely determine

desirable triples of the form (qα − qβ − 1, 2; q). This is summarized in the following

two theorems.

Theorem 3.1.4 ([42]) Let q be even and n = qα − qβ − 1, where 0 ≤ β < α < 2 · 2.

Then (n, 2; q) is desirable if and only if one of the following occurs.

(i) q ≡ 1 (mod 3), (β, α) = (0, 2), (1, 2), (1, 3).

(ii) q = 2, (β, α) = (0, 3)

Theorem 3.1.5 ([42]) Let q be odd and n = qα − qβ − 1, where 0 ≤ β < α < 2p.

Then (n, 2; q) is desirable if and only if one of the following occurs.
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(i) q ≡ 1 (mod 3), (β, α) = (0, 2).

(ii) β > 0, β ≡ α ≡ 0 (mod 2).

(iii) (β, α) = (p, p+ i), 0 < i < p, 2i 6≡ (−1)i (mod p)

(iv) β 6= p, β = 1 + 2b1, α − β = a0 + 2a1, a0, a1, b1 ∈ N, 0 ≤ a0 ≤ 1, and one of the

following is satisfied.

(a) (a1 + b1)(2a1 + b1) + a0(a1 − 2a1b1 − b2) is a square in F∗q and

1 + 2b1 + 2a2
1 + a1b1 + a0(−1− 2b1 + b2

1 + a1(3 + 2b1)) ≡ 0 (mod p)

(b) a0 + 2a2 + b1 ≡ 0 (mod p),

(1 + b1)2 − 4a2
1 − a0(5 + 10b1 + 4b2

1 + 8a1(1 + b1)) ≡ 0 (mod p)

(c) 
a0 = 1, b1 = 0,

4a1 + 3 ≡ 0 (mod p),

q ≡ −1 (mod 6)

(d) a0 = 1, a1 = 0, b1 = 0,

q ≡ 1, 3 (mod 6).

A method similar to that employed by Hou to prove the previous theorems can be

applied to study polynomials of the form f = xd(a+bxq−1+xr(q−1)). For the remainder

of this chapter we focus on the following two questions:

1. When does a binomial of the form f = x(a+ xr(q−1)) permute the field Fq2?

2. When does a trinomial of the form f = x3(a+ bxq−1 + x2(q−1)) permute the field

Fq2?
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In both cases we are able to give explicit conditions on the coefficients that guarantee

f is a permutation polynomial of Fq2 .

We should also note that permutation polynomials of the form f = xd(a +

bxq−1 +xr(q−1)), have been studied by other authors as well ([88], [89]). Our approach

is quite different, as we do not place any additional assumptions on the coefficients of

the polynomial in question.

3.2 PPs of the form f = x(a+ xr(q−1))

Consider a binomial of the form f = ax + x2q−1 ∈ Fq[x], where a 6= 0. The necessary

and sufficient conditions for f to be a permutation polynomial of Fq2 are given in

Theorem 2.4.2. The result can actually be extended to allow a ∈ Fq2 (see [43]). With

this consideration in mind we have a binomial of the above form with a ∈ Fq2 is a

permutation polynomial of Fq2 if and only if one of the following occurs:

• aq+1 = 1, (−a)(q+1)/gcd(2,q+1) 6= 1;

• aq+1 6= 1, q is odd, (−a)(q+1)/2 = 3.

In fact, if aq+1 = 1 then the binomial, x(a+ xr(q−1)) , is a permutation polynomial of

Fq2 if and only if (−a)(q+1)/gcd(r,q+1) 6= 1 and gcd(r− 1, q+ 1) = 1 [90]. It is natural to

ask if the second case above generalizes to arbitrary values of r. The answer to this

question is negative, as we will see from the following theorems.

Remark 3.2.1 It is interesting to note that the proof of the sufficiency of Theo-

rem 2.4.2 cases (ii) and (iii) led to the discovery of a curious hypergeometric identity.

Surprisingly, this same identity resurfaces in the next section.

For the remainder of this section, our objective is to prove the following theo-

rems:

Theorem 3.2.2 ([47]) Let f = ax+ x3q−2 ∈ Fq2 [x], where a ∈ F∗q2. Then, f is a PP

of Fq2 if and only if one of the following occurs:
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(i) q = 22k+1 and a
q+1
3 is a primitive 3rd root of unity.

(ii) q = 5 and a2 is a root of (x + 1)(x + 2)(x− 2)(x2 − x + 1).

(iii) q = 23 and a3 is a root of x3 + x + 1.

(iv) q = 11 and a4 is a root of (x− 5)(x + 2)(x2 − x + 1).

(v) q = 17 and a6 = 4, 5.

(vi) q = 23 and a8 = −1.

(vii) q = 29 and a10 = −3.

Theorem 3.2.3 Let f = ax + x5q−4 ∈ Fq2 [x], where a ∈ F∗q2. Then, f is a PP of Fq2

if and only if one of the following occurs:

(i) q = 24k+2 and a
q+1
5 is a primitive 5th root of unity.

(ii) q = 32 and a2 is a root of (x + 1)(x2 + 1)(x2 + x + 2)(x2 + 2x + 2)(x4 + x2 + x +

1)(x4 + x3 + x2 + 1)(x4 + 2x3 + x2 + 2x + 1).

(iii) q = 19 and a4 is a root of (x+ 1)(x+ 2)(x+ 3)(x+ 4)(x+ 5)(x+ 9)(x+ 10)(x+

13)(x + 17)(x2 + 3x + 16)(x2 + 4x + 1)(x2 + 18x + 6).

(iv) q = 29 and a6 ∈ {15, 18, 22, 23}.

(v) q = 72 and a10 is a root of x2 + 4x + 1.

(vi) q = 59 and a12 is a rot of (x + 4)(x + 55)(x2 + 36).

(vii) q = 26 and a13 is a root of (x2 + x + 1)(x3 + x + 1).

Theorem 3.2.4 Let f(x) = ax + x7q−6 ∈ Fq2 [x], where a ∈ F∗q2 . Then f is a PP of

Fq2 if and only if one of the following occurs:

(i) q = 13 and a2 is a root of (1 + x)(2 + x)(3 + x)(4 + x)(5 + x)(6 + x)(7 + x)(8 +

x)(9 +x)(10 +x)(11 +x)(12 +x+x2)(9 +2x+x2)(10 +3x+x2)(9 +4x+x2)(12 +

4x + x2)(10 + 5x + x2)(3 + 6x + x2)(1 + 7x + x2)(4 + 7x + x2)(1 + 8x + x2)(12 +

9x + x2)(1 + 10x + x2)(3 + 12x + x2)(4 + 12x + x2)(12 + 12x + x2)
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(ii) q = 33 and a4 is a root of (2 +x+x2 +x3)(1 + 2x+x2 +x3)(1 +x+ 2x2 +x3)(2 +

2x + 2x2 + x3)(1 + 2x + x2 + 2x3 + x4 + 2x5 + x6)

(iii) q = 41 and a6 is a root of (9 + x)(10 + x)(26 + x)(30 + x)(32 + x)(34 + x)(35 +

x)(37 + x)(39 + 2x + x2)(1 + 14x + x2)(20 + 40x + x2)

The above three theorems can all be proved via the same method. We will

only prove Theorem 3.2.3, i.e. we completely determine all PPs of Fq2 of the form

ax + x5q−4 ∈ Fq2 [x].

Computations

Let f = ax+x5q−4 ∈ Fq2 [x], where a 6= 0, and let 0 ≤ α, β ≤ q−1 with (α, β) 6= (0, 0).

First suppose q < 5.

• When q = 2, we have f(a−1) = 0 = f(0), so f cannot be a PP.

• When q = 3, we have f(−a) = 0 = f(0), so f cannot be a PP.

• When q = 4, we have f = ax + x16 ≡ (a+ 1)x (mod x15 − 1). In this case, f is

clearly a PP if and only if a 6= 1.

Now suppose q ≥ 5. We compute

∑
x∈Fq2

f(x)α+βq =
∑

x∈Fq2
(ax+ x5q−4)α(aqxq + x5−4q)β

=
∑

x∈Fq2

∑
i,j

(
α

i

)
(ax)α−ix(5q−4)i

(
β

j

)
(aqxq)(β−j)x(5−4q)j

= aα+βq
∑

i,j

(
α

i

)(
β

j

)
a−i−jq

∑
x∈Fq2

xα+βq+5(q−1)(i−j). (3.2.1)

It is clear the inner sum is 0 unless α + βq ≡ 0 (mod q − 1), that is, α + β = q − 1.

With 0 ≤ α ≤ q − 1 and β = q − 1− α the right side of (5.2.4) becomes

−a(α+1)(1−q)
∑

−α−1+5(i−j)≡0(modq+1)

(
α

i

)(
q − 1− α

j

)
a−i−jq (3.2.2)
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Since 0 ≤ i ≤ α and 0 ≤ j ≤ q − 1− α it follows

4α + 4− 5q ≤ −α− 1 + 5(i− j) ≤ 4α− 1 (3.2.3)

Define Γ(q, α) := {n ∈ (q + 1)Z : 4α + 4− 5q ≤ n ≤ 4α− 1}. Now we have

∑
x∈Fq2

f(x)α+βq = −a(α+1)(1−q)Λ(q, α, a) (3.2.4)

where

Λ(q, α, a) =
∑

−α−1+5(i−j)∈Γ(q,α)

(
α

i

)(
q − 1− α

j

)
a−i−jq (3.2.5)

Now Hermite’s criterion implies f is a PP of Fq2 if and only if 0 is the only root of f

in Fq2 and

Λ(q, α, a) = 0 for each 0 ≤ α ≤ q − 1. (3.2.6)

Remark 3.2.5 Notice if q + 1 ≡ 0 (mod 5), then 0 is the only root of f if and only

if a
q+1
5 6= 1.

Lemma 3.2.6 If f is a PP of Fq2, then q + 1 ≡ 0 (mod 5)

Proof. Assume f is a PP and q ≥ 5. First suppose 5 ≤ q < 8. Note that

Γ(q, 0) = {−3(q + 1),−2(q + 1),−(q + 1)}.

By (3.2.6) we have

0 = Λ(5, 0, a) =

(
5− 1

1

)
a−5 = −a−5

and

0 = Λ(7, 0, a) =

(
7− 1

1

)
a−21 = −a−21.

In either case we have a contradiction. Now suppose q ≥ 8. In this case notice

Γ(q, 0) = {−4(q + 1),−3(q + 1),−2(q + 1),−(q + 1)}.
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So again by (3.2.6) we have

0 = Λ(q, 0, a) =
4∑

k=1

(
q − 1
k(q+1)−1

5

)∗
a−(

k(q+1)−1
5

)q

where (
n

m

)∗
=


(
n
m

)
if m ∈ Z and m ≥ 0

0 otherwise
.

Now if q+ 1 6≡ 0 (mod 5) then exactly one of
( q−1
k(q+1)−1

5

)∗
is nonzero which contradicts

(3.2.6). Thus if f is a PP of Fq2 we must have q + 1 ≡ 0 (mod 5).

Remark 3.2.7 Assume q + 1 ≡ 0 (mod 5) and α > 0. The previous lemma together

with (3.2.5) imply the sum Λ(q, α, a) is empty unless α + 1 ≡ 0 (mod 5).

Remark 3.2.8 We note that the proof of Lemma 3.2.6 goes through with 5 replaced

by an odd prime r. Thus if f = ax + xr(q−1)+1 ∈ Fq2 [x], where a 6= 0 is a PP of Fq2 ,

then q + 1 ≡ 0 (mod r).

Lemma 3.2.9 Assume q+1 ≡ 0 (mod 5), α > 0, α+1 ≡ 0 (mod 5) and q ≥ 4α+8.

Set v = a−
q+1
5
q, then

Λ(q, α, a) = (−a)−
α+1
5
q

α∑
i=0

(−1)i
(
α

i

) 4∑
l=0

(
i+ 4α−1+l

5

α

)
v5i+l.

Proof. Since q ≥ 4α + 8 we have

Γ(q, α) = {−4(q + 1),−3(q + 1),−2(q + 1),−(q + 1), 0}.

Using (3.2.5) we see

Λ(q, α, a) =
∑

−α−1+5(i−j)∈Γ(q,α)

(
α

i

)(
q − 1− α

j

)
a−i−jq
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=
α∑
i=0

(
α

i

) 4∑
l=0

(
−1− α

1
5
(l(q + 1)− α− 1) + i

)
a−i−[ 1

5
(l(q+1)−α−1)+i]q

= (−1)
α+1
5
qa

α+1
5
q

α∑
i=0

(
α

i

) 4∑
l=0

(−1)i
(

1
5
(l(q + 1)− α− 1) + i+ α

α

)
a−

q+1
5
q(l+5i)

= (−a)
α+1
5
q

α∑
i=0

(−1)i
(
α

i

) 4∑
l=0

(
i+ 4α−1+l

5

α

)
v5i+l.

Between the second and third line we use
(−m
n

)
= (−1)n

(
n+m−1
m−1

)
.

Lemma 3.2.10 Assume q + 1 ≡ 0 (mod 5), α + 1 ≡ 0 (mod 5), and α > 0. Then

Γ(q, α) contains exactly five consecutive multiples of q + 1 unless α = q−1
2
∈ Z,

α = q−3
4
∈ Z, or α = 3q−1

4
∈ Z.

Proof. Since Γ(q, α) is contained in the interval [4α+4−5q, 4α−1], which has length

5(q − 1), we must have 4 ≤ |Γ(q, α)| ≤ 5.

Suppose 4 = |Γ(q, α)|. Choose k so {(k − 3)(q + 1), (k − 2)(q + 1), (k − 1)(q +

1), k(q + 1)} = Γ(q, α). Note q ≥ 9 and α > 0 force k ∈ {0, 1, 2, 3}. We have the

following inequalities 4α− 1 ≤ k(q + 1) + q

(k − 3)(q + 1)− q ≤ 4α + 4− 5q.
(3.2.7)

Since 4α− 1, 4α + 4− 5q ≡ 0 (mod 5) it follows4α− 1 ≤ k(q + 1) + q − 4

(k − 3)(q + 1)− q + 4 ≤ 4α + 4− 5q.
(3.2.8)

Since a ≤ q − 1 and 0 ≤ k ≤ 3, taking the sum of the inequalities in (3.2.8) reveals

k ∈ {0, 1, 2}. If k = 0 then α = q−3
4

, if k = 1 then α = q−1
2

, and if k = 2 then

α = 3q−1
4
.
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Lemma 3.2.11 Assume q + 1 ≡ 0 (mod 5) and y := a
q+1
5 6= 1 is a 5th root of unity.

If α+1 6≡ 0 (mod 5), then Λ(q, α, a) = 0. If α+1 ≡ 0 (mod 5), then for 1 ≤ α ≤ q−1

we have

Λ(q, α, a) =



−a− 1
5

(α+1)(1 + y + y2 + y3) if α = q−3
4
, α ∈ Z

−a− 1
5

(α+1)(y−1 + 1 + y + y2) if α = q−1
2
, α ∈ Z

−a− 1
5

(α+1)(y−2 + y−1 + 1 + y) if α = 3q−1
4
, α ∈ Z

0 otherwise.

Proof. If α + 1 6≡ 0 (mod 5), then Remark 3.2.7 gives the desired result. Assume

α+ 1 ≡ 0 (mod 5). First suppose α 6∈ { q−3
4
, q−1

2
, 3q−1

4
}. Lemma 3.2.10 implies we can

find a set, K, of five consecutive integers such that K(q + 1) = Γ(q, α). Now we have

Λ(q, α, a) =
∑

−α−1+5(i−j)∈Γ(q,α)

(
α

i

)(
q − 1− α

j

)
a−i−jq

=
∑
k∈K

∑
−α−1+5(i−j)=k(q+1)

(
α

i

)(
q − 1− α

j

)
a−i+j

=
∑
k∈K

a−
1
5

[α+1+k(q+1)]
∑

i−j= 1
5

[α+1+k(q+1)]

(
α

α− i

)(
q − 1− α

j

)

= a−
1
5

(α+1)
∑
k∈K

y−k
∑

α−i+j= 1
5

[4α−1−k(q+1)]

(
α

α− i

)(
q − 1− α

j

)

= a−
1
5

(α+1)
∑
k∈K

y−k
(

q − 1
1
5
[4α− 1− k(q + 1)]

)
= −a−

1
5

(α+1)
∑
k∈K

y−k = 0.

(3.2.9)

Now suppose α = q−1
2
. By the above computation and the previous lemma we have

K = {−2,−1, 0, 1}, thus

Λ(q, α, a) = −a−
1
5

(α+1)(y−1 + 1 + y + y2). (3.2.10)
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Similarly if α = q−3
4
, we have

Λ(q, α, a) = −a−
1
5

(α+1)(1 + y + y2 + y3). (3.2.11)

Lastly, if α = 3q−1
4
, we have

Λ(q, α, a) = −a−
1
5

(α+1)(y−2 + y−1 + 1 + y). (3.2.12)

Proof of Theorem 3.2.3

Proof. (⇐) Cases (ii)-(vii) are easily verified by a computer. Assume (i), that is

q = 24k+2 and a
q+1
5 6= 1 is a fifth root of unity. Lemma 3.2.11 gives Λ(q, α, a) = 0 for

each 0 ≤ α ≤ q − 1. Also, by Remark 3.2.5, 0 is the only root of f , so f is a PP of

Fq2 by (3.2.5).

(⇒) Assume f is a PP. By Lemma 3.2.6 we have q + 1 ≡ 0 (mod 5). Let y := a
q+1
5 .

If y 6= 1 is a fifth root of unity then Lemma 3.2.11 implies q must be even. Thus

q = 24k+2 and we have case (i).

Now suppose 1 + y+ y2 + y3 + y4 6= 0. The sum in the RHS of Lemma 3.2.9 is

a polynomial in v(= y−q) and can be easily computed for small values of α with the

help of a computer algebra system. For a few values of α we find

Λ(q, α, a) = (−a)
α+1
5
qv(1+v+v2+v3+v4)



5−4g4(v) if α = 4, q ≥ 24

5−10g9(v) if α = 9, q ≥ 44

5−16g14(v) if α = 14, q ≥ 64

5−28g24(v) if α = 24, q ≥ 104.

(3.2.13)
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Write R(p1, p2) for the resultant of polynomials p1, p2, it follows

GCD(R(g4, g9), R(g4, g14)) = 215335197. (3.2.14)

Thus if q ≥ 64 we must have p (= charFq2) ∈ {2, 3}. Since q + 1 ≡ 0 (mod 5) there

are only a few prime powers q < 64 with p (= charFq2) 6= 2, 3.

• When q = 19, a computer search results in case (iii)

• When q = 29, a computer search results in case (iv)

• When q = 49, a computer search results in case (v)

• When q = 59, a computer search results in case (vi)

When p = 2 we have GCD(g4, g24) = x thus q < 104. Since q+ 1 ≡ 0 (mod 5)

and q > 4 we only need to consider q = 64. A computer search results in case (vii).

When p = 3 we have GCD(g4, g9) = 1 thus q < 44. Again since q + 1 ≡ 0

(mod 5) we only need to consider q = 9. A computer search results in case (ii).

Both Theorem 3.2.2 and Theorem 3.2.4 are proved using a similar method. It

seems that such a method can be applied to binomials of the form f = ax+ xr(q−1)+1

where r is an odd prime. This naturally leads to the following,which was a conjecture

but is now a theorem of Hou.

Theorem 3.2.12 ([44]) Let r > 2 be a fixed prime. If both (q + 1) ≡ 0 (mod r)

and a
q+1
r is not an r − th root of unity; we conjecture there are only finitely many

values (q, a) where a ∈ F∗q2, for which f = ax + xr(q−1)+1 ∈ Fq2 [x] is a permutation

polynomial of Fq2 .

We note that based on computer search evidence, it appears the requirement that

r > 2 be a prime in the above theorem can be relaxed to simply r > 2.
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3.3 PPs of the form f = x3(a+ x2(q−1))

As shown in the previous section, it seems that when q is large enough in relation to

r and aq+1 6= 1, the binomial f = x(a + xr(q−1)) is not a permutation polynomial of

Fq2 . In particular, there is no extension of Theorem 2.4.2 cases (ii) and (iii) to values

of r > 2. However, it turns out that we can prove a similar theorem for d = 3. The

purpose of the present section is to prove the following theorem.

Theorem 3.3.1 Let f = x3(a + x2(q−1)) ∈ Fq[x], with a 6= 0. Then f is a PP of Fq2

if and only if one of the following occurs:

(1) a = 1 and q ≡ 1 (mod 4)

(2) a = 1
3

and q ≡ −1 (mod 6)

(3) a = −1
3

and q ≡ −1 (mod 12).

Preliminaries

In order to prove the Theorem 3.3.1 we need a few preliminary results. Let Zp denote

the ring of p-adic integers and Qp it’s field of fractions. For an integer a ≥ 0 and

z ∈ Qp, we define
(
z
a

)
= (z−a+1)a

(1)a
. If z ∈ Q, we also define

(
z

a

)∗
=


(
z
a

)
if z ∈ Z

0 otherwise.

Lemma 3.3.2 ([42]) Let q be a power of a prime p and a and integer with 0 ≤ a ≤

q − 1. Let z1, z2 ∈ Zp such that z1 ≡ z2 (mod q). Then
(
z1
a

)
≡
(
z2
a

)
(mod p).

Lemma 3.3.3 Let 0 ≤ s < q2−1. Write s = α+βq where 0 ≤ α, β ≤ q−1. Assume
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(3, q − 1) = 1, (note that this must be the case if f is a PP). Then we have

−
∑
x∈Fq2

f(x)s =


0 if α + β 6= q − 1

(−1)q−
α+1
2 a−

α−1
2
−q
[
(−1)

q+1
2 a

q−1
2

∑
i

(
α
i

)(α+q
2
−1−i
α

)∗
(−1)ia2i+1

+
∑

i

(
α
i

)(
q+α−1

2
−i

α

)∗
(−1)ia2i

]
if α + β = q − 1.

Proof.

∑
x∈Fq2

f(x)α+βq =
∑
x∈F∗

q2

x3(α+βq)(a+ x2(q−1))α(a+ x2(1−q))β

=
∑
x∈F∗

q2

x3(α+βq)
∑
i

(
α

i

)
aα−ix2i(q−1)

∑
j

(
β

j

)
a(β−j)x2j(1−q)

= aα+β
∑
i,j

(
α

i

)(
β

j

)
a−(i+j)

∑
x∈F∗

q2

x3(α+βq)+2(q−1)(i−j).

Since (3, q − 1) = 1, the inner sum is 0 unless α + βq ≡ 0 (mod q − 1). This forces

α + β = q − 1. With β = q − 1− α the above becomes:

= −
∑

2(i−j)−3(α+1)≡0 (mod q+1)

(
α

i

)(
q − 1− α

j

)
a−(i+j).

Since 0 ≤ i ≤ α and 0 ≤ j ≤ q − 1− α we must have

−α− 1− 2q ≤ 2(i− j)− 3(α + 1) ≤ −α− 3,

or equivalently

α + 1− q ≤ i− j ≤ α.

Thus if 2(i−j)−3(α+1) ≡ 0 (mod q+1) then 2(i−j)−3(α+1) ∈ {−2(q+1),−(q+1)}.

Now the sum −
∑

x∈Fq2
g3(x)α+βq becomes

=
∑

−3(α+1)+2(i−j)=−(q+1),−2(q+1)

(
α

i

)(
q − 1− α

j

)
a−(i+j) (3.3.15)
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=

 ∑
i−j= 3α−q+2

2

+
∑

i−j= 3α−2q+1
2

(α
i

)(
q − 1− α

j

)
a−(i+j)

=

 ∑
α−i−j= 3α−q+2

2

+
∑

α−i−j= 3α−2q+1
2

(α
i

)(
q − 1− α

j

)
a−(α−i+j)

=

 ∑
i+j= q−α

2
−1

+
∑

i+j=q−α+1
2

(α
i

)(
α + j

α

)
(−1)ja−(α−i+j) (3.3.16)

=
∑
i

(
α

i

)( q+α
2
− 1− i
α

)∗
(−1)

q−α
2
−1−ia2i+1+α−q

2
−α+

∑
i

(
α

i

)(
q + α−1

2
− i

α

)∗
(−1)q−

α+1
2
−ia2i+α+1

2
−q−α

= (−1)
q−α
2
−1a−

α+q
2

∑
i

(
α

i

)( q+α
2
− 1− i
α

)∗
(−1)ia2i+1+

(−1)q−
α+1
2 a−

α−1
2
−q
∑
i

(
α

i

)(
q + α−1

2
− i

α

)∗
(−1)ia2i

= (−1)q−
α+1
2 a−

α−1
2
−q
[
(−1)

q+1
2 a

q−1
2

∑
i

(
α

i

)(α+q
2
− 1− i
α

)∗
(−1)ia2i+1+

∑
i

(
α

i

)(
q + α−1

2
− i

α

)∗
(−1)ia2i

]
.

Theorem 3.3.4 Let n > be a positive interger. Then

∑
k≤2n+1

(
2n+ 1

k

)[2n+1∏
j=1

(2n+ 1− 2k − 2j)

]
(−1)k

(
1

3

)2k+1

+

∑
k≤2n+1

(
2n+ 1

k

)[ 2n∏
j=0

(2n− 2k − 2j)

]
(−1)k

(
1

3

)2k

= 0

50



Proof. Define

F1(n, k) =

(
2n+ 1

k

)[2n+1∏
j=1

(2n+ 1− 2k − 2j)

]
(−1)k

(
1

3

)2k+1

F2(n, k) =

(
2n+ 1

k

)[ 2n∏
j=0

(2n− 2k − 2j)

]
(−1)k

(
1

3

)2k

S1(n) =
∑
k

F1(n, k)

S2(n) =
∑
k

F2(n, k).

Now with the help of Zeilberger’s algorithm we find:

27F1(n+ 2, k) + 8
(
36n2 + 126n+ 113

)
F1(n+ 1, k) + 192(n+ 1)2(2n+ 3)2F1(n, k)

= G1(n, k + 1)−G1(n, k)

where G1(n, k) = F1(n, k)R1(n, k), and

R1(n, k) =

(
1∏5

j=2(2n− k + j)

)
· (9k(2n− 2k + 1)(32(n+ 1)(2n+ 3)

(12n2 + 48n+ 49)k2 − 4(n+ 1)(2n+ 3)(96n3 + 468n2 + 720n+ 343)k

+ 4(n+ 1)(2n+ 3)(24n4 + 156n3 + 358n2 + 337n+ 105))).

Using the same algorithm we see:

27F2(n+ 2, k) + 8
(
36n2 + 126n+ 113

)
F2(n+ 1, k) + 192(n+ 1)2(2n+ 3)2F2(n, k)

= G2(n, k + 1)−G2(n, k).

where G2(n, k) = F2(n, k)R2(n, k), and

R2(n, k) =

(
1∏5

j=2(2n− k + j)

)
· (9k(n− k + 1)(64(n+ 1)(2n+ 3)
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(12n2 + 48n+ 49)k2 − 32(n+ 1)(2n+ 3)(24n3 + 141n2 + 285n+ 200)k

+ 32(n+ 1)(2n+ 3)(6n4 + 42n3 + 109n2 + 129n+ 62))).

Thus we can conclude both S1(n) and S2(n) satisfy the same second order recurrence:

27S1(n+ 2) + 8
(
36n2 + 126n+ 113

)
S1(n+ 1) + 192(n+ 1)2(2n+ 3)2S1(n) = 0

27S2(n+ 2) + 8
(
36n2 + 126n+ 113

)
S2(n+ 1) + 192(n+ 1)2(2n+ 3)2S2(n) = 0.

It is simple to verify that

S1(0) = −2

9
= −S2(0)

S1(1) =
368

243
= −S2(1).

Therefore S1(n) = −S2(n) for all positive integers n, so the proof of the Theorem is

complete.

As per Remark 3.2.1, making the substitution k 7→ 2n + 1 − k and j 7→ 2n + 1 − j

shows the above theorem is simply a remformulation of [Theorem 1.2 [42]].

Proof of Theorem 3.3.1

Proof. (⇒) First we show q must be odd. Suppose q is even and let α = 1, β = q− 2

in Lemma 3.3.3. Notice only the second sum appears since α+q
2
6∈ Z. Then we have

∑
x∈F∗

q2

f(x)1+(q−2)q =
1∑
i=0

(
1

i

)(
q − i

1

)
(−1)ia2i = a2 6= 0.
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Since f(0) = 0, it follows f is a PP only when q is odd.

Now assume q is odd. Again take α = 1, β = q−2, and note g3(0) = 0. From (3.3.15)

we see:

−
∑
x∈Fq2

f(x)1+(q−2)q =
∑

2(i−j)=−(q+1)+6

(
1

i

)(
q − 2

j

)
a−(i+j)+ (3.3.17)

∑
2(i−j)=−2(q+1)+6

(
1

i

)(
q − 2

j

)
a−(i+j)

=

(
q − 2
q−5

2

)
a−

q−5
2 +

(
q − 2
q−3

2

)
a−

q−1
2 +

(
q − 2

q − 2

)
a−(q−2)

= (−1)
q−5
2 (−3

2
)a−

q−5
2 + (−1)

q−3
2 (−1

2
)a−

q−1
2 + a

=
1

2

[
(−1)

q+1
2 a−

q−1
2

[
3a2 − 1

]
+ 2a

]
Set ε = (−1)

q+1
2 a−

q−1
2 (= ±1 ∈ Fq)

=
1

2

[
ε
[
3a2 − 1

]
+ 2a

]
The above takes value 0 only when

3a2 + 2εa− 1 = (3a− ε)(a+ ε) = 0 (3.3.18)

i.e. we must have

a =
ε

3
or − ε =⇒ a ∈ {±1,±1

3
}.

First suppose a = −ε(= ±1), then

−a = (−1)
q+1
2 a−

q−1
2 =⇒ a

q+1
2 = (−1)

q−1
2

• If q ≡ 1 (mod 4) then a
q+1
2 = 1, so we must have a = 1. This is case (1)

• If q ≡ 3 (mod 4) then a
q+1
2 = −1 which is impossible (since a = ±1 and q+1

2
is

even).
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Now suppose a = ε
3
(= ±1

3
), and ε = 1. It follows that ε

q+1
2 = (−1)

q+1
2 η(1

3
).

If ε = −1, then η(1
3
) = 1 =⇒ q ≡ ±1 (mod 12) =⇒ q ≡ −1 (mod 12), since we

require (3, q − 1) = 1. This is case (3).

If ε = 1 then there are two possibilites:

• (−1)
q+1
2 = 1 = η(1

3
)

In this case we have q ≡ −1 (mod 4) and q ≡ ±1 (mod 12) =⇒ q ≡ −1

(mod 12)

• (−1)
q+1
2 = −1 = η(1

3
)

In this case we have q ≡ 1 (mod 4) and q ≡ ±5 (mod 12) =⇒ q ≡ 5

(mod 12) =⇒ q ≡ −1 (mod 6)

• Both of these possibilities give case (2).

(⇐) First consider case (1). Then q ≡ 1 (mod 4) and a = 1. From Lemma 3.3.3, we

may assume α + β = q − 1 and α is odd. By (3.3.16) we have:

−
∑
x∈Fq2

f(x)α+βq =
( ∑
i+j= q−α

2
−1

+
∑

i+j=q−α+1
2

)(α
i

)(
q − 1− α

j

)
a−(α−i+j)

=

(
q − 1
q−α

2
− 1

)
+

(
q − 1

q − α+1
2

)
= (−1)

q−α
2
−1 + (−1)q−

α+1
2

= −
[
(−1)

1−α
2 + (−1)

α+1
2

]
= 0.

Now consider cases (2) and (3). By Lemma 2.2 it suffices to show that for each

odd integer 0 ≤ α ≤ q − 1 we have

(−1)
q+1
2 a

q−1
2

∑
i

(
α

i

)(α+q
2
− 1− i
α

)
(−1)ia2i+1 +

∑
i

(
α

i

)(
q + α−1

2
− i

α

)
(−1)ia2i = 0.

In case (2) we have (−1)
q+1
2 (a)

q−1
2 = (−1)

q+1
2

(
1
3

) q−1
2 = 1. While in case (3) we have

(−1)
q+1
2 (a)

q−1
2 = (−1)

q+1
2

(
−1

3

) q−1
2 = −1. Thus in either case, the first sum takes the
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same value as ∑
i

(
α

i

)(α+q
2
− 1− i
α

)
(−1)i

(
1

3

)2i+1

.

Now we only have to show that

∑
i

(
α

i

)(α+q
2
− 1− i
α

)
(−1)i

(
1

3

)2i+1

+
∑
i

(
α

i

)(
q + α−1

2
− i

α

)
(−1)i

(
1

3

)2i

= 0

in Fp. Write α = 2n+ 1, using Lemma 5.3.5 the LHS of the above becomes

1

α!2α

[∑
i

(
2n+ 1

i

)(2n+1∏
j=1

(2n+ 1− 2i− 2j)

)
(−1)i

(
1

3

)2i+1

+

∑
i

(
2n+ 1

i

)( 2n∏
j=0

(2n− 2i− 2j)

)
(−1)i

(
1

3

)2i
]
.

Thus Theorem 3.3.4 gives the above sum is zero, so the proof of Theorem 3.3.1 is

complete.

At this point, it is natural to wonder if these results can be generalized to

binomials of the form f = xd(a+ x2(q−1)) where d > 3. Unfortunately continuing with

the current method fails. Notice when d > 3, the sum in (3.3.17) contains more than

three terms, so we are not able to derive necessary conditions from (3.3.17) alone.

3.4 PPs of the form f = x3(a+ bxq−1 + x2(q−1))

In this section we wish to completely determine PPs of Fq2 of the form f = x3(a +

bxq−1 + x2(q−1)) ∈ Fq[x], with b 6= 0. Notice if b = 0, then f is of the form f =

x3(a + x2(q−1)) ∈ Fq[x] and the permutation behavior of f is completely determined

by Theorem 3.3.1. To this end we have the following theorem

Theorem 3.4.1 Let p be an odd prime and q a power of p. Define f = x3(a+bxq−1 +

x2(q−1)) ∈ Fq[x]. Then f is a PP of Fq2 if and only if (3, q − 1) = 1 and one of the

following occurs:
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(1) a = b = 0 and (2q + 1, q2 − 1) = 1

(2) a = 1 and b2 − 4 is a square in F×q .

(3) b = 0 and one of the following occurs:

(i) a = 1 and q ≡ 1 (mod 4)

(ii) a = 1
3

and q ≡ −1 (mod 6)

(iii) a = −1
3

and q ≡ −1 (mod 12).

(4) a = 0 and b 6= ±1

(5) a(a− 1)b 6= 0, b2 = 3a+ 1, and 1− a is a square in F×q .

Preliminaries

Before we are ready to prove the above theorem, we need a few preliminary results.

Proposition 3.4.2 Suppose f ∈ Fq[x] is an irreducible cubic. Then the discriminant

of f , D(f), must be a square in Fq.

Proof. We may assume f is monic. Write f = (x− r1)(x− r2)(x− r3). It is clear that

Fq3 is a splitting field for f. It follows that the Galois group of f is Aut (Fq3/Fq) = A3.

Since Aut (Fq3/Fq) contains only even permutations, D(f) must be a square in Fq.

Let f be defined as above and let s ∈ Z with 1 ≤ s ≤ q2 − 2. Write s = α+ βq, with

0 ≤ α, β ≤ q − 1. We compute the power sum

∑
x∈Fq2

f(x)s

=
∑
x∈F×

q2

x3(α+βq)(a+ bxq−1 + x2(q−1))α(a+ bx1−q + x2(1−q))β

=
∑
x

x3(α+βq)
∑
i,j

(
α

i

)(
i

k

)
aα−ibi−kx(q−1)(i−k+2k)

(
β

j

)(
j

l

)
aβ−jbj−lx(1−q)(j−l+2l)
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=
∑
i,j

(
α

i

)(
i

k

)(
β

j

)(
j

l

)
aα+β−i−jbi−k+j−l

∑
x

x3(α+βq)+(q−1)(i+k−j−l)

It is clear that the above sum is 0 unless α + βq ≡ 0 (mod q − 1), or equivalently

β = q − 1 − α. Using this fact we see 3(α + βq) ≡ −3(α + 1)(q − 1) (mod q2 − 1),

so the above sum becomes

=
∑
i,j

(
α

i

)(
i

k

)(
q − 1− α

j

)(
j

l

)
a−i−jbi−k+j−l

∑
x

x(q−1)(−3(α+1)+i+k−j−l)

= −
∑

−3(α+1)+i+k−j−l≡0 (mod q+1)

(
α

i

)(
i

k

)(
q − 1− α

j

)(
j

l

)
a−i−jbi−k+j−l

= −Sq(α, a, b).

By Hermites Criterion, f is a PP of Fq2 if and only if

• 0 is the only root of f and

• Sq(α, a, b) = 0 for each 0 ≤ α ≤ q − 1.

Proof of Theorem 3.4.1 under the assumption a(a− 1)b = 0

Recall that q is a power of an odd prime p, and (3, q − 1) = 1.

Case (1): We have f = x2q+1 which is clearly a PP of Fq2 if and only if (2q+1, q2−1) =

1.

Case (2): We claim f = x3(1 + bxq−1 + x2q−1) is a PP of Fq2 if and only if b2 − 4

is a square in F×q . Note that b2 − 4 is a square in F∗q if and only if the polynomial

g = x2 + bx+ 1 ∈ Fq[x] has two distinct roots in Fq.

Proof. (Of the claim) (⇐) Let x ∈ Fq2 and set y = f(x).

1◦ Suppose y 6= 0. Clearly x 6= 0. Let t = y
x

= x2 + bxq+1 + x2q ∈ Fq. Then x = y
t
, so

y =
(y
t

)3

+ b
(y
t

)q+2

+
(y
t

)2q+1

=
1

t3
(
y3 + byq+2 + y2q+1

)
.
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Thus t3 is unique and (3, q − 1) = 1, so t is unique.

2◦ Now suppose y = 0. We want to show x = 0 as well. Suppose x 6= 0. Then we have

1 + bxq−1 + x2(q−1) = 0,

so xq−1 is a root of g = x2 + bx + 1 ∈ Fq[x], thus we can conclude xq−1 ∈ Fq. This

gives

1 =
(
xq−1

)q−1
= x(q−1)2 = xq

2−2q+1 =
(
x1−q)2

.

It follows that xq−1 = ±1, so b = ±2, thus g = (x ± 1)2 which is a contradiction. In

either case x is uniquely determined by y = f(x), so the sufficiency in this case is

complete.

(⇒) Suppose for contradiction that g = x2 + bx+1 ∈ Fq[x] does not have two distinct

roots in Fq.

1◦ Assume g is irreducible over Fq. Let ε ∈ Fq2 be a root of g. Then εq+1 = 1, so there

is some x1 ∈ Fq2 with xq−1
1 = ε. It follows that

f(x1) = x3
1(1 + bxq−1

1 + x
2(q−1)
1 ) = x3

1f(ε) = 0 = f(0)

which contradicts the fact that f is a PP of Fq2 .

2◦ Assume g is reducible. Then we must have g = (x + ε)2 with ε = ±1. In either

case we have εq+1 = 1 so again there is some x1 ∈ Fq2 with xq−1
1 = ε, which again

gives f(x1) = 0 = f(0) a contradiction.

Case (3): This is precisely Theorem 3.3.1

Case IV : In this case we have f = x3(bxq−1 + x2(q−1)).

First assume b = ±1. It is clear f(0) = 0. We claim that there is some x1 ∈ F∗q with

f(x1) = 0. Since (−b)q+1 = b2 = 1, there is some x1 ∈ F∗q2 with xq−1
1 = −b. Thus

f(x1) = x3
1(bxq−1

1 + x2(q−1)) = x3
1(−b2 + b2) = 0 = f(0),
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so f cannot be a PP if b = ±1.

Now assume b 6= ±1. We use Hermite’s Criterion to show f is a PP. Suppose

for contradiction that f has a root x1 in F∗q2 . Then we have

x3
1(bxq−1 + x2(q−1)) = 0 =⇒ −b = xq−1 =⇒ (−b)q+1 = 1 =⇒ b2 = 1,

which is clearly a contradiction. Thus if b 6= ±1, then 0 is the only root of f . Now

we compute the power sum as before to see:

∑
x∈Fq2

f(x)α+βq =
∑
x∈F∗

q2

(x3(bxq−1 + x2(q−1))α+βq

= −
∑

−α+i−j−q−2≡0 (mod q+1)

(
α

i

)(
q − 1− α

j

)
b−(i+j). (3.4.19)

Letting i run over the interval [0, α] and j over the interval [0, q − 1− α] we see

−2q − 1 ≤ −α + i− j − q − 2 ≤ −q − 2.

Since −2(q + 1) < −2q − 1 and −(q + 1) > −q − 2, the sum in (3.4.19) is empty,(

i.e. it has value 0). Thus by Hermite’s Criterion, f is a PP. We conclude f =

x3(bxq−1 + x2(q−1)) is a PP of Fq2 if and only if b 6= ±1, so the proof of this case is

complete.

Sufficiency of Theorem 3.4.1 under the assumption a(a− 1)b 6= 0.

We use the notation Tr(z) for Trq2/q(z), and N(z) for Nq2/q(z).

Proposition 3.4.3 Assume a(a− 1)b 6= 0. Suppose b2 = 3a+ 1 and 1− a is a square

in Fq. Then we must have f(Fq2 \ Fq) ⊆ Fq2 \ Fq.

Proof. Suppose x 6= xq and f(x) = f(x)q. We have

ax3 + bxq+2 + x2q+1 = ax3q + bx2q+1 + xq+2.
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It follows that

a(x− xq)(x2 + x2q) + (a+ b− 1)(x− xq)xq+1 = 0. (3.4.20)

Since x− xq 6= 0, (3.4.20) becomes

ax2q−2 + (a+ b− 1)xq−1 + a = 0. (3.4.21)

With b2 = 3a+ 1, we observe that (a+ b−1)−4a2 = (b−1)2(1−a) which is a square

in Fq. Thus g = ax2 + (a+ b− 1)x+ a is reducible over Fq, so xq−1 ∈ Fq. Now we have

1 =
(
xq−1

)q−1
= x(q−1)2 = xq

2−2q+1 = x2−2q =
(
x1−q)2

.

Since x 6∈ Fq, we must have x1−q = −1 = xq−1. With xq−1 = −1, (3.4.21) becomes

a+ 1− b = 0. But we also have

(a+ 1− b)(a+ 1 + b) = (a+ 1)2 − b2 = (a+ 1)2 − (3a+ 1) = a(a− 1) 6= 0,

which is clearly a contradiction. Thus g(Fq2 \ Fq) ⊆ Fq2 \ Fq.

Corollary 3.4.4 Write y = g(x). If y ∈ Fq, then x3 = y
a+b+1

and since (3, q−1) = 1,

we can conclude x is uniquely determined by y.

Proposition 3.4.5 Assume a(a−1)b 6= 0. Suppose b2 = 3a+1 and 1−a is a square in

Fq. Let x ∈ Fq2 \Fq, and set y = f(x). Then Tr(x), and N(x) are unqiuely determined

by y.

Proof. By definition g(x) = ax3 + bxq+2 + x2q+1. Therefore we have

Tr(g(x)) = (ax3 + bxq+2 + x2q+1) + (ax3 + bxq+2 + x2q+1)q

= aTr(x3) + (b+ 1)Tr(xq+2) (3.4.22)

N(g(x)) = (ax3 + bxq+2 + x2q+1)(ax3 + bxq+2 + x2q+1)q
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= (a2 + b2 + 1)N(x)3 + (ab+ b)Tr(x4+2q) + aTr(xq+5) (3.4.23)

Combining (3.4.22) and (3.4.23) gives the following system: Tr(y) = aTr(x3) + (b+ 1)Tr(xq+2)

N(y) = (a2 + b2 + 1)N(x)3 + (ab+ b)Tr(x4+2q) + aTr(xq+5)
(3.4.24)

It is not difficult to verify the following formulas hold for z ∈ Fq2 :

Tr(z3) = Tr(z)3 − 2N(z) (3.4.25)

Tr(zq+2) = N(z)Tr(z) (3.4.26)

Tr(z4+2q) = Tr(z)2N(z)2 − 2N(z)3 (3.4.27)

Tr(zq+5) = Tr(z)4Nz − 4Tr(z)2N(z)2 + 2N(z)3 (3.4.28)

Write Tr(x) = t, N(x) = n, Tr(y) = r, and N(y) = s. Making the substitutions (3.4.25)

- (3.4.28), system (3.4.24) becomes:at
3 − n(3a− b− 1)t = r

ant4 + (ab+ b− 4a)n2t2 + n3(a− b+ 1)2 = s

(3.4.29)

We want to show the system (3.4.29) has at most one solution (t, n) ∈ Fq × Fq.

Remark 3.4.6 Since x ∈ Fq2 \ Fq, the polynomial fx = x2 − tx + n ∈ Fq[x], is

irreducible over Fq. Thus t2−4n is a non square in Fq, which also implies t2

n

(
t2

n
− 4
)

is a non square as well.

1◦ Assume r = 0. We claim t = 0 as well. If t 6= 0, then we have

t2

n
=

3a− b− 1

a
.
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Using the relation b2 = 3a+ 1, it follows that

t2

n

(
t2

n
− 4

)
=

3a− b− 1

a
· −a− b− 1

a
= (b+ 1)2(1− a) (3.4.30)

which is a square in Fq. Therefore x must be in Fq which is a contradiction.

2◦ Assume r 6= 0. It is clear t 6= 0 as well. Set u = t2

n
, and γ = r2

s
, then system

(3.4.29) becomes: t(au + b+ 1− 3a) = r
n

t2(au + ab+ b− 4a+ (a−b+1)2

u
) = 1

γ
· r2
n2
.

(3.4.31)

Therefore we have

t2

(
au + b+ 1− 3a)2

γ

)
= t2

(
(au + ab+ b− 4a)u + (a− b+ 1)2

u

)
,

or equivalently

a2u3− (6a2−2ab−2a+aγ)u2 +
[
(3a− b− 1)2 + γ(4a− b− ab)

]
u− (a− b+1)2γ = 0.

(3.4.32)

Let p(u) ∈ Fq[u] denote the LHS of (3.4.32). The problem is now reduced to showing

p(u) has at most one root in Fq. With the help of a computer algebra machine we find

the discriminant of p is given by

D(p) = γ(γ − 4)a2(a− 1)2h(γ) (3.4.33)

where

h(γ) = −27a4 + 18a2b2 − 18a2bγ + 36a2b+ 18a2 + 4ab3γ − 8ab3 − 24ab2 + 12abγ

−24ab− 4aγ2 + 16aγ − 8a+ b4 − 2b3γ + 4b3 + b2γ2 − 4b2γ + 6b2 − 2bγ + 4b+ 1.

62



Using the relation b2 = 3a+ 1 gives

h(γ) = (1− a)(γ + b3 − 3b− 2)2. (3.4.34)

Using (3.4.34), (3.4.33) becomes

D(p) = γ(γ − 4)a2(a− 1)2(1− a)(γ + (b+ 1)2(b− 2))2. (3.4.35)

Here we note that y /∈ Fq so γ(γ−4) is not a square in Fq. Now if γ 6= −(b+1)2(b−2),

then D(p) is not a square in Fq so (3.4.32) has at most one solution in Fq and we are

done. All that remains is to show that (3.4.32) has at most one solution in Fq when

γ = −(b+ 1)2(b− 2).

Assume γ = −(b+ 1)2(b− 2). Now we have

γ(γ − 4) = (b+ 1)2(b− 2)
[
(b+ 1)2(b− 2) + 4

]
= 27a2(a− 1). (3.4.36)

Since γ(γ−4) is a nonsquare we must have (3, q) = 1. Using this fact with the relation

b2 = 3a+ 1, (3.4.32) becomes

p(u) = a2u3 + 3a2(b− 2)u2 + 3a2(b− 2)2u + a2(b− 2)3

= a2 (u + (b− 2))3 (3.4.37)

Clearly p(u) has a unique root in Fq so the proof is complete.

Corollary 3.4.7 Assume f(x) = y ∈ Fq2 \ Fq. Then x is uniquely determined by y.

Proof. Suppose x1 ∈ Fq2 \ Fq with f(x1) = y = f(x). Since Tr(x) and N(x) are

uniquely determined by y, we must have Tr(x1) = Tr(x) and N(x1) = N(x). It follows

that x1 = x or x1 = xq. Since f(xq) = yq 6= y, it must be the case that x1 = x.
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Neccesity of Theorem 3.4.1 under the assumption a(a− 1)b 6= 0.

∑
x∈Fq2

f(x)s

=
∑
x∈F×

q2

x3(α+βq)(a+ bxq−1 + x2(q−1))α(a+ bx1−q + x2(1−q))β

=
∑
x

x3(α+βq)
∑
i,j

(
α

i

)(
i

k

)
aα−ibi−kx(q−1)(i−k+2k)

(
β

j

)(
j

l

)
aβ−jbj−lx(1−q)(j−l+2l)

=
∑
i,j

(
α

i

)(
i

k

)(
β

j

)(
j

l

)
aα+β−i−jbi−k+j−l

∑
x

x3(α+βq)+(q−1)(i+k−j−l)

It is clear that the above sum is 0 unless α + βq ≡ 0 (mod q − 1), or equivalently

β = q − 1 − α. Using this fact we see 3(α + βq) ≡ −3(α + 1)(q − 1) (mod q2 − 1),

so the above sum becomes

=
∑
i,j

(
α

i

)(
i

k

)(
q − 1− α

j

)(
j

l

)
a−i−jbi−k+j−l

∑
x

x(q−1)(−3(α+1)+i+k−j−l)

= −
∑

−3(α+1)+i+k−j−l≡0 (mod q+1)

(
α

i

)(
i

k

)(
q − 1− α

j

)(
j

l

)
a−i−jbi−k+j−l (3.4.38)

= −Sq(α, a, b). (3.4.39)

Now suppose g is a PP of Fq2 . By Hermite’s Criterion, we must have

Sq(α, a, b) = 0 for each 0 ≤ α ≤ q − 1.

Set α = 0. Since 0 ≤ k ≤ i ≤ α, and 0 ≤ l ≤ j ≤ q − 1− α,

−3(α + 1) + i+ k − j − l ≡ 0 (mod q + 1) =⇒ j + l = q − 2 and 0 ≤ l ≤ q − 2

2
.

Therefore the sum in (5.5.45) becomes

0 =
∑

−3−j−l≡0 (mod q+1)

(
q − 1

j

)(
j

j

)
a−jbj−l

64



=
∑

0≤l≤ q−2
2

(
q − 1

q − 2− l

)(
q − 2− l

l

)
a−(q−2−l)bq−2−2l

=
a

b

∑
0≤l≤ q−2

2

(
q − 2− l

l

)
(−1)q−2−lalb−2l

(z = − a
b2

)

= −a
b

∑
0≤l≤ q−2

2

(
q − 2− l

l

)
zl

(l 7→ (l − 2))

= −a
b

∑
2≤l≤ q−2

2
+2

(
−l
l − 2

)
zl−2

= −a
b

(z−2)
∑

0≤l≤q−1

(
−l
l − 2

)
zl.

Thus by lemma 3.5.1, the polynomial x2 + x − z has two distict roots in Fq. In par-

ticular we have 1 + 4z is a square in Fq which gives b2 − 4a is a square in Fq.

Now take α = 1. In this case the sum in (5.5.45) becomes

0 =
∑

−6+i+k−j−l≡0 (mod q+1)

(
1

i

)(
i

k

)(
q − 2

j

)(
j

l

)
a−(i+j)bi+j−k−l

=
∑

−6−j−l=−2(q+1),−(q+1)

(
q − 2

j

)(
j

l

)
a−jbj−l +

∑
−5−j−l=−(q+1)

(
q − 2

j

)(
j

l

)
a−1−jb1+j−l +

∑
−4−j−l=−(q+1)

(
q − 2

j

)(
j

l

)
a−1−jbj−l

=

(
q − 2

q − 2

)(
q − 2

q − 2

)
a−(q−2) +

∑
0≤l≤ q−5

2

(
q − 2

q − 5− l

)(
q − 5− l

l

)
a−(q−5−l)bq−5−2l

+
∑

0≤l≤ q−4
2

(
q − 2

q − 4− l

)(
q − 4− l

l

)
a−(1+q−4−l)b1+q−4−2l
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+
∑

0≤l≤ q−3
2

(
q − 2

q − 3− l

)(
q − 3− l

l

)
a−(1+q−3−l)bq−3−2l

= a+
∑

0≤l≤ q−5
2

(−1)q−5−l(q − 4− l)
(
q − 5− l

l

)
al+4b−4−2l

+
∑

0≤l≤ q−4
2

(−1)q−4−l(q − 3− l)
(
q − 4− l

l

)
al+2b−2l−2+

+
∑

0≤l≤ q−3
2

(−1)q−3−l(q − 2− l)
(
q − 3− l

l

)
al+1b−2−2l

(
z = − a

b2

)
= a+

a4

b4

∑
0≤l≤ q−5

2

(−4− l)
(
−l − 5

l

)
zl +

−a2

b2

∑
0≤l≤ q−4

2

(−l − 3)

(
−l − 4

l

)
zl

+
a

b2

∑
0≤l≤ q−3

2

(−l − 2)

(
−l − 3

l

)
zl

= a+
(a
b

)4

(−z−5)
∑

5≤l≤ q−5
2

+5

(l − 1)

(
−l
l − 5

)
zl

+
(a
b

)2

(z−4)
∑

4≤l≤ q−4
2

+4

(l − 1)

(
−l
l − 4

)
zl +

( a
b2

)
(−z−3)

∑
3≤l≤ q−3

2
+3

(l − 1)

(
−l
l − 3

)
zl

We note that
(−l
k

)
= 0 when k < 0, and

(−l
l−i

)
≡ 0 (mod p) when q−i

2
+ i < l ≤

q − 1, i = 3, 4, 5.

= a+
(a
b

)4

(−z−5)
∑

0≤l≤q−1

(l − 1)

(
−l
l − 5

)
zl (3.4.40)

+
(a
b

)2

(z−4)
∑

0≤l≤q−1

(l − 1)

(
−l
l − 4

)
zl +

( a
b2

)
(−z−3)

∑
0≤l≤q−1

(l − 1)

(
−l
l − 3

)
zl

Making the substitutions (3.5.43), (3.5.44), and (3.5.45) gives

= a+
(a
b

)4

(−z−5)

(
2z3(1 + 3z)

1 + 4z

)
+
(a
b

)2

(z−4)

(
− z3

1 + 4z

)
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+
( a
b2

)
(−z−3)

(
2z3

1 + 4z

)
=

2(a− 1)a (3a− b2 + 1)

b2 − 4a
. (3.4.41)

Thus (5.5.47) shows we must have b2 = 3a+ 1. Since b2− 4a = (3a+ 1)− 4a = 1− a,

we can conclude 1− a is a square in F∗q. This completes the proof of Theorem 3.4.1.

3.5 Technical Lemmas

Lemma 3.5.1 Let z ∈ F∗q. Write x2 + x− z = (x− r1)(x− r2). Then

∑
0≤l≤q−1

(
−l
l − 2

)
zl =


1
8

if r1 = r2

0 if r1 6= r2 ∈ Fq

z if r1, r2 6∈ Fq.

Proof. Let C[f(x)] denote the constant term in the Laurent series of f in the inde-

terminant x. Then we have:

∑
0≤l≤q−1

(
−l
l − 2

)
zl =

∑
0≤l<q−1

C

[
1

xl−2(1 + x)l

]
zl

=
∑

0≤l≤q−1

C

[
x2 ·

(
z

x(1 + x)

)l]

= C

[ ∑
0≤l≤q−1

x2 ·
(

z

x(1 + x)

)l]

= C

x2 ·

1−
(

z
x(1+x)

)q
1− z

x(1+x)


= C

[
x2 · x(1 + x)

x(1 + x)− z

(
1− z

(
1

xq
− 1

1 + xq

))]
= C

[
x3(1 + x)

x(1 + x)− z

]
+ C

[
−z
xq−2

· x(1 + x)

x(1 + x)− z

]
+ C

[
x3(1 + x)

x(1 + x)− z
· 1

1 + xq

]
= C

[
−z2

xq−2
·
(

1 +
1

x2 + x− z

)]
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= C

[
−z2

xq−2
·
(

1

x2 + x− z

)]
(3.5.42)

Now suppose r1 = r2(= −1
2
). Then 3.5.42 becomes

= C

[
−z2

xq−2
· 1

(x− r1)2

]
= C

[
−z2

r2
1

(
−2

q − 2

)(
− 1

r1

)q−2
]

=
−z2

rq1
(−1)q−2(q − 1)(−1)q−2 =

z2

r1

=
1

8

If we assume r1 6= r2 then 3.5.42 becomes

= C

[
−z2

xq−2

(
1

(x− r1)(x− r2)

)]
= C

[
−z2

xq−2

(
1

x− r1

− 1

x− r2

)
1

r1 − r2

]
= C

[
z2

r1 − r2

· 1

xq−2

(
1

r
· 1

1− x
r1

− 1

r2

· 1

1− x
r2

)]

=
z2

r1 − r2

(
1

rq−1
1

− 1

rq−1
2

)

=

0 if r1, r2 ∈ Fq

z if r1, r2 6∈ Fq

Lemma 3.5.2 Write x2 +x− z = (x− r1)(x− r2) ∈ Fq[x],with r1 6= r2. We have the

following

∑
0≤l≤q−1

(l − 1)

(
−l
l − 5

)
zl =

2z3(1 + 3z)

1 + 4z
(3.5.43)
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∑
0≤l≤q−1

(l − 1)

(
−l
l − 4

)
zl = − z3

1 + 4z
(3.5.44)

∑
0≤l≤q−1

(l − 1)

(
−l
l − 3

)
zl =

2z3

1 + 4z
. (3.5.45)

Proof. We make use of the following facts:

1.
∑

0≤l≤q−1

(l − 1)

(
−l
l − j

)
zl =

∑
0≤l≤q−1

(l + 1)

(
−l
l − j

)
zl −

∑
0≤l≤q−1

2

(
−l
l − j

)
zl

2.

(
−(q − 1)

q − 6

)
≡
(
−(q − 1)

q − 5

)
≡
(
−(q − 1)

q − 4

)
≡ 0 (mod p)

3.
∑

0≤l≤q−2

(l + 1)yl =
d

dy

[ ∑
0≤l≤q−1

yl

]
=

d

dy

[
1− yq

1− y

]
=

1− yq

(1− y)2

We proceed as in the previous lemma.

∑
0≤l≤q−1

(l + 1)

(
−l
l − 5

)
zl = C

[
x5

∑
0≤l≤q−1

(l + 1)

(
z

x(1 + x)

)l]

= C

x5
1−

(
z

x(1+x)

)q
(

1− z
x(1+x)

)2


= C

[
x5

(
x(1 + x)

x(1 + x)− z

)2(
1− z

(
1

xq
− 1

1 + xq

))]

= C

[
−z
xq−5

(
1 +

z

x(1 + x)− z

)2
]

= C

[
−z
xq−5

(
2z

(x− r1)(x− r2)
+

z2

(x− r1)2(x− r2)2

)]
= C

[
−2z2

xq−5

(
1

(x− r1)(x− r2)

)]
+ C

[
−z3

xq−5

(
1

(x− r1)(x− r2)

)2
]
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For the first term we continue exactly as in the previous lemma to see

C

[
−2z2

xq−5

(
1

(x− r1)(x− r2)

)]
= C

[
−2z2

xq−5

(
1

x− r1

− 1

x− r2

)
1

r1 − r2

]
= C

[
2z2

r1 − r2

· 1

xq−5

(
1

r1

· 1

1− x
r1

− 1

r2

· 1

1− x
r2

)]

=
2z2

r1 − r2

((
1

r1

)q−4

−
(

1

r2

)q−4
)

(3.5.46)

=
2z2

r1 − r2

(
r3

1 − r3
2

)
= (2z2)(r2

1 + r1r2 + r2
2)

= 2z2((r1 + r2)2 − r1r2)

= 2z2(1 + z). (3.5.47)

For the second term we continue in a similar manner to see

C

[
−z3

xq−5

(
1

(x− r1)(x− r2)

)2
]

= C

[
−z3

(r1 − r2)2
· 1

xq−5

(
1

x− r1

− 1

x− r2

)2
]

=
−z3

1 + 4z
· C

[
1

xq−5

(
1

x− r1

− 1

x− r2

)2
]
. (3.5.48)

Again, working like before we have

C

[
1

xq−5

(
1

x− r1

− 1

x− r2

)2
]

= C

[
1

xq−5

(
(x− r1)−2 + (x− r2)−2 − 2

(x− r1)(x− r2)

)]
=

1

r2
1

(
−2

q − 5

)(
−1

r1

)q−5

+
1

r2
2

(
−2

q − 5

)(
−1

r2

)q−5

+
2

r1 − r2

(r3
1 − r3

2)

= (−4)(r2
1 + r2

2)− 2(r2
1 + r1r2 + r2

2)

= (−4)(1 + 2z) + 2(1 + z)

= −2(1 + 2z). (3.5.49)
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Combining (3.5.47), (3.5.48) and (3.5.49) we have

∑
0≤l≤q−1

(l + 1)

(
−l
l − 5

)
zl =

2z2 (1 + 6z + 7z2)

1 + 4z
. (3.5.50)

Computing in a similar manner we also have

2 ·
∑

0≤l≤q−1

(
−l
l − 5

)
zl = 2(z2 + z3). (3.5.51)

Thus combining (3.5.50) and (3.5.51) gives

∑
0≤l≤q−1

(l − 1)

(
−l
l − 5

)
zl =

2z3(1 + 3z)

1 + 4z
. (3.5.52)

The identities (3.5.44) and (3.5.45) are proved in the exact same manner.
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4 Permutation Polynomials of the form x1+2k + L(x)

4.1 Background

Differential cryptanalysis ([3]) together with linear cryptanalysis ([67]) are considered

as some of the most efficient tools for block ciphers. The security of modern block

ciphers relies on the cryptographic properties of its subsitution boxes, which are nor-

mally the only source of nonlinearity. These substitution boxes are often constructed

by means of power mappings that have desirable cryptographic properties such as high

nonlinearity and good differential characteristics. To satisfy these criteria, a crypto-

graphically strong substitution box can be taken from the class of APN functions.

For more information on cryptographically significant mappings over finite fields see

[74] and [75].

The existence of APN permutations of F2n , n even, has been a challenging

question for quite some time. The only known such APN permutation is the example

in F26 discovered by Browning, Dillon, McQuistan and Wolfe in 2009 ([9]). As a

result there is strong interest in finding APN permutations of F2n for even n ≥ 8. One

attempt to construct such functions is to start with a power APN function xd of F2n

and to search for a linearized polynomial L(x) such that xd + L(x) is a permutation

of F2n .

A more general objective has evolved from this line of thought: Determine

permutation polynomials of F2n , of the form xd+L(x), where d is a positive integer and

L ∈ F2n [x] is a linearized polynomial. Several authors have considered the problem

(see [62],[74], and [75]), some of the results are gathered below.
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Lemma 4.1.1 ([62]) Let L(x) ∈ F2n [x] be a nonzero linearized polynomial. Then

xd + L(x) is a permutation polynomial on F2n if and only if

L(µ)

µd
6∈ {αd + (α + 1)d|α ∈ F2n}

for all µ ∈ F∗2n .

Theorem 4.1.2 ([62, Theorem 1]) Suppose gcd(d, 2n−1) = s > 1 and ω2

(
2n−1
s

)
=

k, where ω2(t) denotes the number of nonzero terms in the base 2 expansion of t. If

s 6 | µ for all intergers µ > 0 with ω2(µ) ≤ k − 1, then xd + L(x) is not a permutation

polynomial of F2n .

Theorem 4.1.3 ([62, Theorem 2]) Let n be odd, L(x) be a nonzero linearized poly-

nomial over F2n . Then x3 + L(x) is a permutation polynomial on F2n if and only if

L(x) = α2x + αx2 for some α ∈ F∗2n .

Theorem 4.1.4 ([62, Theorem 3]) Suppose n is even and L(x) ∈ F2n [x] is a lin-

earized polynomial. Then x3 + L(x) is not a permutation polynomial on F2n .

The previous two theorems can be extended to power functions of the form x1+2k .

Theorem 4.1.5 ([62, Theorem 4]) Suppose gcd(k, n) = 1 and L(x) ∈ F2n [x] is a

linearized polynomial. Then x1+2k + L(x) is a permutation polynomial of F2n if and

only if n is odd and L(x) = α2kx + αx2k for some α ∈ F∗2n .

Motivated the above results, Gong considered the same type of polynomials in The-

orem 4.1.5 but under the assumption that gcd(k, n) > 1. The following two classes of

permutation polynomials were discovered.

Theorem 4.1.6 ([30]) Assume the 3|n.

(i) If k = n/3 or 2n/3 and k ≡ 1 (mod 3), then x1+2k + (x + x2k)22k+1
is a permu-

tation polynomial of F2n .
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(ii) If k = n/3 or 2n/3 and k ≡ 2 (mod 3), then x1+2k+(x+x2k)2k+1
is a permutation

polynomial of F2n .

Based on Theorem 4.1.6 and computer search results, Gong conjectured the following:

If k = n/3 and k ≡ 0 (mod 3) then both x1+2k +(x+x2k)22k+1
and x1+2k +(x+x2k)2k+1

are permutation polynomials of F2n . We confirm this conjecture in the next section.

4.2 L(x) = (x + x2k)22k+1
or L(x) = (x + x2k)2k+1

Theorem 4.2.1 Assume that 3|n, k = n/3 and k ≡ 0 (mod 3). Then x1+2k + (x +

x2k)22k+1
and x1+2k + (x + x2k)2k+1

are both PPs of F2n .

Proof. By Lemma 4.1.1, we have x1+2k + L(x) is a PP of F2n if and only if

L(x)

x1+2k
6∈ {y2k + y + 1 : y ∈ Fn2} (4.2.1)

for all x ∈ F∗2n . From (4.2.1) it follows that x1+2k + L(x) is a PP of F2n if and only if

Tr2n/2k

(
L(x)

x1+2k

)
6=

0 if n/k is even

1 if n/k is odd.
(4.2.2)

Since n/k = 3 we only have to show

Tr2n/2k

(
L(x)

x1+2k

)
6= 1.

We first prove that x1+2k + (x + x2k)22k+1
is a PP of F2n when k is even.

Assume that k is even. We show that

Tr2n/2k

(
(x+ x2k)22k+1

x1+2k

)
6= 1 (4.2.3)

for all x ∈ F2n .
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Notice for x ∈ F2n we have

Tr2n/2k

(
(x+ x2k)22k+1

x1+2k

)
= Tr2n/2k

(
x22k+1

+ x2

x1+2k

)

= Tr2n/2k

(
x22k+1+22k + x2+22k

x1+2k+22k

)

=

(
Tr2n/2k(x

3 + x1+2k+1
)
)

N2n/2k(x)
.

Therefore, showing (4.2.3) is satisfied is equivalent to showing

Tr2n/2k(x
3 + x1+2k+1

) + N2n/2k(x) 6= 0 (4.2.4)

for all x ∈ F2n .

Since 6|n by assumption, we have 9|2k−1. Choose v ∈ F2k such that v is not a

cube in F2k . Then x3 + v ∈ F2k [x] is irreducible. Let α be a root of x3 + v. It follows

that F2n = F2k(α). Since x3 + v is the minimum polynomial of α over F2k , it is easy

to see Tr2n/2k(α) = 0 and N2n/2k(α) = v. Now since α4 = αv, an induction gives

α2k = v1+22+···+22·k/2α = v
1
3

(2k−1)α. (4.2.5)

Write x = a+ bα + cα2 ∈ F∗2n , with (a, b, c) ∈ F3
2k
6= (0, 0, 0). We have

Tr2n/2k(x
3) = Tr2n/2k((a+ bα + cα2)(a2 + b2α2 + c2α4)).

Combining the fact that Tr2n/2k(α) = Tr2n/2k(α
2) = 0 and the reduction α3 = v, we

see

Tr2n/2k(x
3) = a3 + b3v + c3v2. (4.2.6)

Let σ denote the Frobenius of F2n/F2k and set β = α2. Then we have

N2n/2k(x) = (a+ bα + cβ)(a+ bασ + cβσ)(a+ bασ
2

+ cβσ
2

)

= a3 + b3N2n/2k(α) + c3N2n/2k(β) + a2bTr2n/2k(α) + a2cTr2n/2k(β)
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+ b2aTr2n/2k(αα
σ) + b2cTr2n/2k(αα

σβσ
2

) + c2aTr2n/2k(ββ
σ)

+ c2bTr2n/2k(ββ
σασ

2

) + abcTr2n/2k(αβ
σ + ασβ).

Observe that we have

Tr2n/2k(αα
σ) = N2n/2k(α)Tr2n/2k(

1

α
) = 0,

Tr2n/2k(ββ
σ) = Tr2n/2k(αα

σ)2 = 0,

Tr2n/2k(αα
σβσ

2

) = N2n/2k(α)Tr2n/2k(β) = 0,

Tr2n/2k(ββ
σασ

2

) = N2n/2k(β)Tr2n/2k(
1

α
) = 0,

Tr2n/2k(αβ
σ + ασβ) = Tr2n/2k(α

σ2

β + ασβ)

= Tr2n/2k(β(Tr2n/2k(α)− α))

= Tr2n/2k(α)Tr2n/2k(β) + Tr2n/2k(αβ)

= v.

Combining the above facts we have

N2n/2k(x) = a3 + b3v + c3v2 + abcv (4.2.7)

Proceeding as before we also have

Tr2n/2k(x
1+2k+1

) = Tr2n/2k((a+ bα + cβ)(a2 + b2α2 + c2β2)σ)

= Tr2n/2k((a+ bα + cβ)(a2 + c2vασ + b2βσ))

= a3 + bc2vTr2n/2k(αα
σ) + b3Tr2n/2k(αβ

σ)

+ c3vTr2n/2k(α
σβ) + cb2Tr2n/2k(ββ

σ)

= a3 + b3Tr2n/2k(αβ
σ) + c3vTr2n/2k(α

σβ).
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Using (4.2.5) we have

Tr2n/2k(αβ
σ) = N2n/2k(α)Tr2n/2k(

α

ασ
) = v1− 1

3
(2k−1),

Tr2n/2k(α
σβ) = N2n/2k(α)Tr2n/2k(

ασ

α
) = v1+ 1

3
(2k−1).

Thus

Tr2n/2k(x
1+2k+1

) = a3 + b3v1− 1
3

(2k−1) + c3v2+ 1
3

(2k−1). (4.2.8)

Combining (4.2.6), (4.2.7), and (4.2.8) gives

Tr2n/2k(x
3 + x1+2k+1

) + N2n/2k(x) = abcv + a3 + b3v1− 1
3

(2k−1) + c3v2+ 1
3

(2k−1).

Define

a1 = a, b1 = bv−
1
9

(2k−1), c1 = cv
1
9

(2k−1).

Then

Tr2n/2k(x
3 + x1+2k+1

) + N2n/2k(x) = a1b1c1v + a3
1 + b3

1v + c3
1v

2

= N2n/2k(a1 + b1α + c1α
2) (by (4.2.7))

6= 0.

This completes the proof that x1+2k + (x + x2k)22k+1
is a PP of F2n when k is even.

Now we consider x1+2k +(x+x2k)2k+1
under the assumption k is even. We note

that to prove that x1+2k + (x + x2k)2k+1
is a PP of F2n , we only need to show

Tr2n/2k(x
3 + x1+22k+1

) + N2n/2k(x) 6= 0 (4.2.9)

for all x ∈ F2n .

Equation (4.2.9) can be proved in the same manner as Equation (4.2.4). In

fact, we have:

Tr2n/2k(x
1+22k+1

) = Tr2n/2k((a+ bα + cβ)(a2 + b2α2 + c2β2)σ
2

)
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= Tr2n/2k((a+ bα + cβ)(a2 + c2vασ
2

+ b2βσ
2

))

= a3 + bc2vTr2n/2k(αα
σ2

) + b3Tr2n/2k(αβ
σ2

)

+ c3vTr2n/2k(α
σ2

β) + cb2Tr2n/2k(ββ
σ2

)

= a3 + b3Tr2n/2k(αβ
σ2

) + c3vTr2n/2k(α
σ2

β).

Using (4.2.5) it follows that

Tr2n/2k(αβ
σ2

) = N2n/2k(α)Tr2n/2k(
ασ

α
) = v1+ 1

3
(2k−1),

Tr2n/2k(α
σ2

β) = N2n/2k(α)Tr2n/2k(
α

ασ
) = v1− 1

3
(2k−1).

Thus

Tr2n/2k(x
1+22k+1

) = a3 + b3v1+ 1
3

(2k−1) + c3v2− 1
3

(2k−1). (4.2.10)

Putting the pieces together we have

Tr2n/2k(x
3 + x1+22k+1

) + N2n/2k(x) = abcv + a3 + b3v1+ 1
3

(2k−1) + c3v2− 1
3

(2k−1). (4.2.11)

Define

a2 = a, b2 = bv
1
9

(2k−1), c2 = cv−
1
9

(2k−1).

Then

Tr2n/2k(x
3 + x1+22k+1

) + N2n/2k(x) = a2b2c2v + a3
2 + b3

2v + c3
2v

2

= N2n/2k(a2 + b2α + c2β)

6= 0

Now assume k is odd. For each x ∈ F∗2n , by (4.2.9), with n replaced by 2n and

k replaced by 2k we have

Tr22n/22k(x
3 + x1+22k+1

) + N22n/22k(x) 6= 0. (4.2.12)
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For each z ∈ F2n , we have

Tr22n/22k(z) = z + z22k + z24k = z + z22k + z2k = Tr2n/2k(z)

as well as

N22n/22k(z) = z · z22k · z24k = z · z22k · z2k = N2n/2k(z).

Therefore (4.2.12) becomes

Tr2n/2k(x
3 + x1+2k+1

) + N2n/2k(x) 6= 0.

Thus x1+2k + (x + x2k)22k+1
is a PP of F2n when k is odd as well. Using the same

method, we have x1+2k + (x + x2k)2k+1
is also a PP of F2n .
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5 On Monomials Graphs of Girth Eight∗

5.1 Background

All graphs considered in this chapter are finite, undirected, with no loops or multiple

edges. All definitions of graph-theoretic terms that we omit can be found in Bollobás

[4]. The order of a graph is the number of its vertices. The degree of a vertex of a

graph is the number of vertices adjacent to it. A graph is called r-regular if degrees

of all its vertices are equal to r. A graph is called connected if every pair of its

distinct vertices is connected by a path. The distance between two distinct vertices

in a connected graph is the length of the shortest path connecting them. The girth of

a graph containing cycles is the length of a shortest cycle.

Let k ≥ 3, and gk(n) denote the greatest number of edges in a graph of order

n and girth at least 2k + 1. The function gk(n) has been studied extensively; see

the surveys by Bondy [6], and by Füredi and Simonovits [28]. It is known that for

2 ≤ k 6= 5, and sufficiently large n,

c′kn
1+ 2

3k−3+ε ≤ gk(n) ≤ ckn
1+ 1

k , (5.1.1)

where ε = 0 if k is odd, ε = 1 if k is even, and c′k and ck are positive constants

depending on k only. The upper bound was due to Bondy and Simonovits [5], and

the lower bound was obtained via an explicit construction by Lazebnik, Ustimenko

and Woldar [55]. (For many prior related results see the references in [5, 55].) For

k = 5, a better lower bound is known, and it is of magnitude n1+1/5. The only known

∗This chapter is the paper [48]
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values of k for which the lower bound for gk(n) is of (maximum) magnitude n1+1/k are

k = 2, 3, and 5. Several graphs of such extremal magnitude were constructed using

polynomials over finite fields as we describe below.

For each k = 2, 3, 5, consider a bipartite graph Γk(q) with vertex partitions

Pk = Fkq and Lk = Fkq , and edges defined as follows.

For k = 2, a vertex (p) = (p1, p2) ∈ P2 is adjacent to a vertex [l] = [l1, l2] ∈ L2

if and only if

p2 + l2 = p1l1.

For k = 3, a vertex (p) = (p1, p2, p3) ∈ P3 is adjacent to a vertex [l] =

[l1, l2, l3] ∈ L3 if and only if the following two equalities hold:

p2 + l2 = p1l1, p3 + l3 = p1l
2
1.

For k = 5, a vertex (p) = (p1, p2, p3, p4, p5) ∈ P5 is adjacent to a vertex

[l] = [l1, l2, l3, l4, l5] ∈ L5 if and only if the following four equalities hold:

p2 + l2 = p1l1, p3 + l3 = p1l
2
1, p4 + l4 = p1l

3
1, p5 + l5 = p4l1 − 2p3l2 + p2l3.

It can be shown that for k = 2, 3 and 5, the graph Γk(q) is q-regular, and it

can be shown that the girth of Γk(q) is 2(k + 1) (for k = 5 we have to assume that

q is odd). For the origins and properties of these constructions, and their relation to

generalized polygons, see Lazebnik and Ustimenko [54], [55], Lazebnik and Woldar

[56], and the references therein. The graphs described above are also related to Moore

graphs and cages; see Miller and Širáň [69] and Exoo and Jajcay [23].

Similar constructions of hypergraphs turned out to be useful for some extremal

problems for hypergraphs; see Lazebnik and Mubayi [57] and Lazebnik and Verstraëte

[58].

In what follows we concentrate on a generalization of the construction of

Γ3(q) above. Let f, g ∈ Fq[x, y]. The graph G = Gq(f, g) is a bipartite graph
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with vertex partitions P = F3
q and L = F3

q, and edges defined as follows: a ver-

tex (p) = (p1, p2, p3) ∈ P is adjacent to a vertex [l] = [l1, l2, l3] ∈ L if and only

if

p2 + l2 = f(p1, l1) and p3 + l3 = g(p1, l1).

It is clear that Γ3(q) = Gq(xy, xy
2), and as we already mentioned, the girth of this

graph is eight. If f and g are monomials, we refer to Gq(f, g) as a monomial graph.

For certain questions in extremal graph theory and finite geometry, it is desir-

able to have examples of graphs Gq(f, g) containing no cycles of length less than eight

and not isomorphic to the graph Gq(xy, xy
2). Do they exist? So far, no such graphs

Gq(f, g) have been found for odd q. For even q, such examples exist, in particular,

among monomial graphs. This motivated Dmytrenko, Lazebnik and Wiliford [20] and

Kronenthal [52] to study monomial graphs Gq(f, g) of girth at least eight for odd q.

We encourage the interested reader to see these papers for more details and related

references.

The results from [20] and [52] suggest that for odd q, monomial graphs of girth

at least eight are isomorphic to Γ3(q). The main conjecture of [20] and [52] is the

following.

Conjecture 5.1.1 Let q be an odd prime power. Then every monomial graph of girth

eight is isomorphic to Γ3(q).

In an attempt to prove Conjecture 5.1.1, two more related conjectures were proposed

in [20] and [52].

For an integer 1 ≤ k ≤ q − 1, let

Ak = xk
[
(x + 1)k − xk

]
∈ Fq[x] (5.1.2)

and

Bk =
[
(x + 1)2k − 1

]
xq−1−k − 2xq−1 ∈ Fq[x]. (5.1.3)
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Conjecture A. Let q be a power of an odd prime p and 1 ≤ k ≤ q − 1. Then Ak is

a PP of Fq if and only if k is a power of p.

Conjecture B. Let q be a power of an odd prime p and 1 ≤ k ≤ q − 1. Then Bk is

a PP of Fq if and only if k is a power of p.

The logical relation between the above three conjectures is as follows. It was

proved in [20] that for odd q, every monomial graph of girth at least eight is isomorphic

to Gq(xy, x
ky2k), where 1 ≤ k ≤ q − 1 is an integer not divisible by p for which both

Ak and Bk are PPs of Fq. In particular, either of Conjectures A and B implies

Conjecture 5.1.1.

In [20] and [52], the above conjectures were shown to be true under various ad-

ditional conditions. The main objective of this chapter is to confirm Conjecture 5.1.1.

This is achieved by making progress on Conjectures A and B. Our results fall short of

establishing the claims of Conjectures A and B. However, when considered together,

these partial results on Conjectures A and B turn out to be sufficient for proving

Conjecture 5.1.1.

Throughout this chapter, most equations involving integers should be treated

as equations in the characteristic of Fq, i.e., in characteristic p.

Prior Status of Conjecture A

The proof of [20, Theorem 1] implies that Conjecture A is true for q = p.

Prior Status of Conjecture B

For each odd prime p, let α(p) be the smallest positive even integer a such that(
a

a/2

)
≡ (−1)a/22a (mod p).

The proof of [52, Theorem 4] implies the following.
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Theorem 5.1.2 Let p be an odd prime. If Conjecture B is true for q = pe, then it is

also true for q = pem whenever

m ≤ p− 1

b(p− 1)/α(p)c
.

Unfortunately, unlike Conjecture A, Conjecture B has not been established for

q = p.

5.2 Power Sums of Ak and Bk

Let q be any prime power (even or odd). For each integer a > 0, let a∗ ∈ {1, . . . , q−1}

be such that a∗ ≡ a (mod q − 1); we also define 0∗ = 0. Note that for all a ≥ 0 and

x ∈ Fq, xa = xa
∗
. We always assume that 1 ≤ k ≤ q − 1; additional assumptions on

k, when they apply, will be included in the context.

Lemma 5.2.1 For 1 ≤ s ≤ q − 1,

∑
x∈Fq

Ak(x)s = (−1)s+1

s∑
i=0

(−1)i
(
s

i

)(
(ki)∗

(2ks)∗

)
. (5.2.4)

Proof. We have

∑
x∈Fq

Ak(x)s =
∑
x∈F∗q

xks
[
(x+ 1)k − xk

]s
=
∑
x∈F∗q

xks
∑
i

(
s

i

)
(x+ 1)ki(−xk)s−i

=
∑
x∈F∗q

∑
i

(−1)s−i
(
s

i

)
x2ks−ki(x+ 1)(ki)∗

=
∑
x∈F∗q

∑
i

(−1)s−i
(
s

i

)
x2ks−ki

∑
j

(
(ki)∗

j

)
x(ki)∗−j

=
∑
i,j

(−1)s−i
(
s

i

)(
(ki)∗

j

)∑
x∈F∗q

x2ks−j
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= (−1)s+1
∑
i

(−1)i
(
s

i

) ∑
j≡2ks (mod q−1)

(
(ki)∗

j

)
.

If 2ks 6≡ 0 (mod q − 1),

∑
x∈Fq

Ak(x)s = (−1)s+1
∑
i

(−1)i
(
s

i

)(
(ki)∗

(2ks)∗

)
.

If 2ks ≡ 0 (mod q − 1),

∑
x∈Fq

Ak(x)s = (−1)s+1
∑
i

(−1)i
(
s

i

)[((ki)∗

0

)
+

(
(ki)∗

q − 1

)]
= (−1)s+1

∑
i

(−1)i
(
s

i

)(
(ki)∗

(2ks)∗

)
.

Hence (5.2.4) always holds.

Lemma 5.2.2 (i) If q is even,

∑
x∈Fq

Bk(x)s =
s∑
i=0

(
s

i

)(
(2ki)∗
(ks)∗

)
, 1 ≤ s ≤ q − 1. (5.2.5)

(ii) If q is odd,

∑
x∈Fq

Bk(x)s = −(−2)s
∑
i,j

2−i(−1)j
(
s

i

)(
i

j

)(
(2kj)∗
(ki)∗

)
, 1 ≤ s ≤ q − 1.

(5.2.6)

Proof. (i) If k = q − 1,

Bk(x) = (x+ 1)2(q−1) − 1 =

1 if x = 1,

0 if x ∈ Fq \ {1},
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so the left side of (5.2.5) is 1. On the other hand, the right side of (5.2.5) equals

s∑
i=1

(
s

i

)
= 1,

and hence (5.2.5) holds.

Now assume that 1 ≤ k < q − 1. The calculation is identical to the proof of

Lemma 5.2.1. We have

∑
x∈Fq

Bk(x)s =
∑
x∈F∗q

([
(x+ 1)2k + 1

]
x−k
)s

=
∑
x∈F∗q

x−ks
[
(x+ 1)2k + 1

]s
=
∑
x∈F∗q

x−ks
∑
i

(
s

i

)
(x+ 1)(2ki)∗

=
∑
x∈F∗q

x−ks
∑
i

(
s

i

)∑
j

(
(2ki)∗

j

)
xj

=
∑
i,j

(
s

i

)(
(2ki)∗

j

)∑
x∈F∗q

xj−ks

=
∑
i

(
s

i

) ∑
j≡ks (mod q−1)

(
(2ki)∗

j

)
.

If ks 6≡ 0 (mod q − 1),

∑
x∈Fq

Bk(x)s =
∑
i

(
s

i

)(
(2ki)∗

(ks)∗

)
.

If ks ≡ 0 (mod q − 1),

∑
x∈Fq

Bk(x)s =
∑
i

(
s

i

)[((2ki)∗

0

)
+

(
(2ki)∗

q − 1

)]
=
∑
i

(
s

i

)(
(2ki)∗

(ks)∗

)
.
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(ii) We have

∑
x∈Fq

Bk(x)s =
∑
x∈F∗q

([
(x+ 1)2k − 1

]
x−k − 2

)s
=
∑
x∈F∗q

∑
i

(
s

i

)[
(x+ 1)2k − 1

]i
x−ki(−2)s−i

= (−2)s
∑
x∈F∗q

∑
i

(−2)−i
(
s

i

)
x−ki

∑
j

(
i

j

)
(x+ 1)(2kj)∗(−1)i−j

= (−2)s
∑
x∈F∗q

∑
i,j

2−i(−1)j
(
s

i

)(
i

j

)
x−ki

∑
l

(
(2kj)∗

l

)
xl

= (−2)s
∑
i,j,l

2−i(−1)j
(
s

i

)(
i

j

)(
(2kj)∗

l

)∑
x∈F∗q

xl−ki

= −(−2)s
∑
i,j

∑
l≡ki (mod q−1)

2−i(−1)j
(
s

i

)(
i

j

)(
(2kj)∗

l

)
.

Note that if l ≡ ki (mod q − 1) and 0 ≤ l ≤ (2kj)∗, then either l = (ki)∗ or i = 0,

j > 0 and l = q − 1; in the latter case,
(
i
j

)
= 0. Therefore, we have

∑
x∈Fq

Bk(x)s = −(−2)s
∑
i,j

2−i(−1)j
(
s

i

)(
i

j

)(
(2kj)∗

(ki)∗

)
.

Theorem 5.2.3 (i) Ak is a PP of Fq if and only if gcd(k, q − 1) = 1 and

∑
i

(−1)i
(
s

i

)(
(ki)∗

(2ks)∗

)
= 0 for all 1 ≤ s ≤ q − 2. (5.2.7)

(ii) Bk is a PP of Fq if and only if gcd(k, q − 1) = 1 and

∑
i

(−1)i
(
s

i

)(
(2ki)∗

(ks)∗

)
= (−2)s for all 1 ≤ s ≤ q − 2. (5.2.8)

We remind the reader that according to our convention, (5.2.7) and (5.2.8) are

to be treated as equations in characteristic p.
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Proof. [Proof of Theorem 5.2.3] We prove the claims using Hermite’s criterion.

(i) Clearly, 0 is the only root of Ak in Fq if and only if gcd(k, q − 1) = 1. By (5.2.4),∑
x∈Fq Ak(x)s = 0 for all 1 ≤ s ≤ q − 2 if and only if (5.2.7) holds.

(ii) We consider even and odd q’s separately.

Case 1. Assume that q is even. We have Bk = [(x + 1)2k − 1]xq−1−k.

If q = 2, then k = 1 and Bk = x2, which is a PP of F2. In this case, (5.2.8) is

vacuously satisfied.

Now assume that q > 2. Clearly, 0 is the only root of Bk in Fq if and only if

gcd(k, q − 1) = 1. By (5.2.5),
∑

x∈Fq Bk(x)s = 0 for all 1 ≤ s ≤ q − 2 if and only if

(5.2.8) holds.

Case 2. Assume that q is odd.

1◦ We claim that if Bk is a PP of Fq, then gcd(k, (q − 1)/2) = 1. Otherwise,

gcd(2k, q−1) > 2 and the equation (x+1)2k−1 = 0 has at least two roots x1, x2 ∈ F∗q.

Then Bk(x1) = −2 = Bk(x2), which is a contradiction.

2◦ We claim that Bk is a PP of Fq if and only if gcd(k, (q − 1)/2) = 1 and

(5.2.8) holds.

By 1◦ and (5.2.6), we only have to show that under the assumption that

gcd(k, (q − 2)/2) = 1,

∑
i,j

2−i(−1)j
(
s

i

)(
i

j

)(
(2kj)∗

(ki)∗

)
=

0 for 1 ≤ s ≤ q − 2,

1 for s = q − 1,
(5.2.9)

if and only if (5.2.8) holds. Set

Si = 2−i
∑
j

(−1)j
(
i

j

)(
(2kj)∗

(ki)∗

)
, 0 ≤ i ≤ q − 1.
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Then (5.2.9) is equivalent to

∑
i

(
s

i

)
Si =


1 if s = 0,

0 if 1 ≤ s ≤ q − 2,

1 if s = q − 1.

(5.2.10)

Equation (5.2.10) is a recursion for Si, which has a unique solution

Si =

(−1)i if 0 ≤ i ≤ q − 2,

2 if i = q − 1.

Therefore, (5.2.9) is equivalent to

∑
j

(−1)j
(
i

j

)(
(2kj)∗

(ki)∗

)
=

(−2)i if 0 ≤ i ≤ q − 2,

2 if i = q − 1.
(5.2.11)

It remains to show that when i = 0 and q − 1, (5.2.11) is automatically satisfied.

When i = 0, (5.2.11) is clearly satisfied. When i = q − 1,

∑
j

(−1)j
(
i

j

)(
(2kj)∗

(ki)∗

)
=

∑
j= q−1

2
, q−1

(−1)j
(
q − 1

j

)(
(2kj)∗

q − 1

)

= (−1)
q−1
2

(
−1
q−1

2

)
+ (−1)q−1

(
−1

q − 1

)
= 2.

3◦ To complete the proof of Case 2, it remains to show that if Bk is a PP of Fq,

then gcd(k, q − 1) = 1, that is, k must be odd. This is given by Lemma 5.3.7 later.

5.3 Facts concering Ak and Bk

Assume that q > 2 and 1 ≤ k ≤ q − 1, and let

a :=
⌊q − 1

k

⌋
. (5.3.12)
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When gcd(k, q − 1) = 1, let k′, b ∈ {1, . . . , q − 1} be such that

k′k ≡ 1 (mod q − 1), bk ≡ −1 (mod q − 1), (5.3.13)

and set

c :=
⌊q − 1

k′

⌋
. (5.3.14)

Note that
q − 1

a+ 1
< k ≤ q − 1

a
(5.3.15)

and
q − 1

c+ 1
< k′ ≤ q − 1

c
. (5.3.16)

The following obvious fact will be used frequently.

Fact 5.3.1 Ak is a PP of Fq if and only if A(pk)∗ is. The same is true for Bk.

Lemma 5.3.2 If 1 < k ≤ q − 1 and Ak is a PP of Fq, then(
ka

q − 1− ka

)
≡ 0 (mod p), (5.3.17)

(
2c

c

)
≡ 0 (mod p). (5.3.18)

Proof. 1◦ We first prove (5.3.17). By Theorem 5.2.3 (i), gcd(k, q− 1) = 1, and hence

(5.3.15) becomes
q − 1

a+ 1
< k <

q − 1

a
. (5.3.19)

Therefore

q − 1 < k(a+ 1) ≤ 2ka < 2(q − 1),
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which implies that (2ka)∗ = 2ka− q + 1. By (5.2.7),

0 =
∑
i

(−1)i
(
a

i

)(
(ki)∗

(2ka)∗

)
=

∑
2a− q−1

k
≤i≤a

(−1)i
(
a

i

)(
ki

2ka− q + 1

)

= (−1)a
(

ka

2ka− q + 1

)
= (−1)a

(
ka

q − 1− ka

)
.

(Note: in the above, 2a− (q − 1)/k ≤ i ≤ a implies that i = a.)

2◦ We now prove (5.3.18). If c > (q − 1)/2, (5.3.18) is automatically satisfied.

So we assume that c ≤ (q − 1)/2. Since gcd(k′, q − 1) = 1, (5.3.16) becomes

q − 1

c+ 1
< k′ <

q − 1

c
. (5.3.20)

If c = (q − 1)/2, then (5.3.20) implies that k′ = 1. It follows that k = 1, which is a

contradiction. Thus c < (q − 1)/2. Set s = (cb)∗. Then

s = q − 1− ck′, (5.3.21)

and

(2ks)∗ = q − 1− 2c. (5.3.22)

By (5.2.7),

0 =
∑
i

(−1)i
(
s

i

)(
(ki)∗

(2ks)∗

)
=
∑
i

(−1)i
(
s

i

)(
(ki)∗

q − 1− 2c

)
. (5.3.23)

For each 0 ≤ l ≤ 2c, let i(l) ∈ {0, . . . , q−1} be such that (ki(l))∗ = q−1− l. Because

of (5.3.20), we have

i(l) =

q − 1− lk′ if 0 ≤ l ≤ c,

2(q − 1)− lk′ if c+ 1 ≤ l ≤ 2c.

When 0 ≤ l < c,

i(l) = q − 1− lk′ > q − 1− ck′ = s.
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When c < l ≤ 2c, we also have

i(l) = 2(q − 1)− lk′ > q − 1− ck′ = s.

When l = c, i(l) = s. Therefore (5.3.23) becomes

0 = (−1)s
(
q − 1− c
q − 1− 2c

)
= (−1)s

(
q − 1− c

c

)
= (−1)s

(
−1− c
c

)
= (−1)s+c

(
2c

c

)
.

Corollary 5.3.3 Conjecture A is true for q = p.

Proof. Let 1 < k ≤ p− 1. Since 0 ≤ p− 1− ka ≤ ka ≤ p− 1, we have(
ka

p− 1− ka

)
6≡ 0 (mod p).

By Lemma 5.3.2, Ak is not a PP of Fq.

Remark 5.3.4 Equation (5.3.17) is contained in [20, Theorem 1], and Corollary 5.3.3

is implied by the proof of [20, Theorem 1].

Lemma 5.3.5 Assume that Ak is a PP of Fq. Then all the base p digits of k′ are 0

or 1.

Proof. We only have to consider the case when k is not a power of p. By (5.3.18),

we have c > (p− 1)/2. Write k′ = k′0p
0 + · · ·+ k′e−1p

e−1, where 0 ≤ k′i ≤ p− 1. Since

c ≤ q − 1

k′
≤ pe − 1

k′e−1p
e−1

,

we have

k′e−1c ≤ p− 1

pe−1
,
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and hence k′e−1c ≤ p − 1. It follows that k′e−1 ≤ (p − 1)/c < 2. Replacing k′ with

(pe−1−ik′)∗ (and k with (p1+ik)∗), we also have k′i < 2.

Lemma 5.3.6 Assume that q is odd and Bk is a PP of Fq. Then

(−2)k−1 ≡ 1 (mod p).

Proof. We first claim that k 6= q− 1. If, to the contrary, k = q− 1, since gcd(k, (q−

1)/2) = 1 (proof of Theorem 5.2.3, Case 2, 1◦), we must have q = 3 and k = 2. But

then Bk = (X + 1)4− 1− 2X2 ≡ 2X(X + 1) (mod X3−X), which is not a PP of F3.

Since Bk is a PP of Fq, f := [(x + 1)2k − 1]/xk is one-to-one on F∗q. Since

Bk(0) = 0, we have f(x) 6= 2 for all x ∈ F∗q. Define f(0) = 2. Then f : Fq → Fq is a

bijection with f(−2) = 0. Thus

−1 =
∏

x∈Fq\{−2}

f(x) = 2
∏

x∈Fq\{0,−2}

(x+ 1)2k − 1

xk
= 2k+1

∏
x∈Fq\{±1}

(xk + 1)(xk − 1).

(5.3.24)

Case 1. Assume that k is odd. Since gcd(k, (q−1)/2) = 1, we have gcd(k, q−1) = 1.

Then, ∏
x∈Fq\{±1}

(xk + 1) =
∏

y∈Fq\{0,2}

y = −1

2
,

∏
x∈Fq\{±1}

(xk − 1) =
∏

y∈Fq\{0,−2}

y =
1

2
.

Therefore (5.3.24) gives

−1 = 2k+1
(
−1

2

)1

2
,

that is, 2k−1 = 1.

Case 2. Assume that k is even. Then (q − 1)/2 is odd and gcd(k, q − 1) = 2.
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Let S denote the set of nonzero squares in Fq. We have

∏
α∈S

(x− α) = x(q−1)/2 − 1. (5.3.25)

Setting x = −1 in (5.3.25) gives
∏

α∈S(α + 1) = 2, that is,

∏
α∈S\{1}

(α + 1) = 1. (5.3.26)

By (5.3.25),

∏
α∈S\{1}

(x + 1− α) =
(x + 1)(q−1)/2 − 1

x
=

(q−1)/2∑
i=1

(
(q − 1)/2

i

)
xi−1. (5.3.27)

Setting x = 0 in (5.3.27) gives

∏
α∈S\{1}

(α− 1) =
q − 1

2
= −1

2
. (5.3.28)

By (5.3.26) and (5.3.28),

∏
x∈Fq\{±1}

(xk + 1) =
∏

x∈Fq\{±1}

(x2 + 1) =
( ∏
α∈S\{1}

(α + 1)
)2

= 1,

∏
x∈Fq\{±1}

(xk − 1) =
( ∏
α∈S\{1}

(α− 1)
)2

=
1

4
.

Thus (5.3.24) becomes 2k−1 = −1.

Lemma 5.3.7 Assume that q is odd, 1 < k ≤ q − 1, and Bk is a PP of Fq. Then k

is odd, a and c are even, and

2k−1 = 1, (5.3.29)(
a
a
2

)
= (−1)

a
2 2a, (5.3.30)
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(
a− 1
a
2

)(
ka

k

)
= (−1)

a
2
−12a−1, (5.3.31)

(
b
q−1

2

)
= (−1)b+

q+1
2 2b, (5.3.32)

(
q − 1− ck′

1
2
(q − 1− ck′)

)
= (−1)

c
2

+ q−1
2 2−ck

′
, (5.3.33)

(−c+ 1)

(
q − 1− (c− 1)k′

1
2
[q − 1− (c− 2)k′]

)
= (−1)

c
2

+ q−1
2 2−(c−1)k′ . (5.3.34)

Proof. 1◦ We first show that k is odd. This will imply (5.3.29) through Lemma 5.3.6

and also complete the proof of Theorem 5.2.3, Case 2, Step 3◦. Recall from the proof

of Theorem 5.2.3, Case 2, Step 2◦, that gcd(k, (q − 1)/2) = 1 and (5.2.8) holds.

Assume to the contrary that k is even. Equation (5.2.8) with s = (q − 1)/2

gives ∑
i

(−1)i
( q−1

2

i

)(
(2ki)∗

q − 1

)
= (−2)

q−1
2 . (5.3.35)

Since gcd(2k, q − 1) = 2, (q − 1)/2 is odd. In the above,( q−1
2

i

)(
(2ki)∗

q − 1

)
6= 0

only if i = (q− 1)/2. Hence (5.3.35) gives 2(q−1)/2 = 1. So the order of 2 in F∗p is odd.

However, by Lemma 5.3.6, 2k−1 = −1 has order 2, which is a contradiction.

2◦ We now prove that a is even and (5.3.30) and (5.3.31) hold. Since gcd(k, (q−

1)/2) = 1 and k is odd, we have gcd(k, q − 1) = 1. Thus (5.3.15) becomes

q − 1

a+ 1
< k <

q − 1

a
.

By (5.2.8), ∑
i

(−1)i
(
a

i

)(
(2ki)∗

ka

)
= (−2)a. (5.3.36)

In the above, (2ki)∗ ≥ ka only when i ≥ a/2. When a/2 < i ≤ a, (2ki)∗ = 2ki− (q−
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1) < ka. Therefore, a must be even and (5.3.36) becomes

(−1)
a
2

(
a
a
2

)
= (−2)a,

which is (5.3.30). Also by (5.2.8),

∑
i

(−1)i
(
a− 1

i

)(
(2ki)∗

k(a− 1)

)
= (−2)a−1. (5.3.37)

In the above, (2ki)∗ ≥ k(a−1) only when i ≥ (a−1)/2, i.e., i ≥ a/2 (since a is even).

When a/2 < i ≤ a− 1, (2ki)∗ = 2ki− (q − 1) < k(a− 1). Hence (5.3.37) becomes

(−1)
a
2

(
a− 1
a
2

)(
ka

k(a− 1)

)
= (−2)a−1,

which is (5.3.31).

3◦ Next, we prove (5.3.32). By (5.2.8),

(−2)b =
∑
i

(−1)i
(
b

i

)(
(2ki)∗

(kb)∗

)
=
∑
i

(−1)i
(
b

i

)(
(2ki)∗

q − 2

)
. (5.3.38)

In the above, (
b

i

)(
(2ki)∗

q − 2

)
6= 0

only if i = (q − 1)/2. Hence (5.3.38) gives

(−2)b = (−1)
q−1
2

(
b
q−1

2

)(
q − 1

q − 2

)
= (−1)

q+1
2

(
b
q−1

2

)
,

which is (5.3.32).

4◦ Finally, we prove that c is even and (5.3.33) and (5.3.13) hold.

In (5.3.16), if k′ = (q − 1)/c, since gcd(k′, q − 1) = 1, we must have k′ = 1.

Then k = 1, which is a contradiction. Therefore (5.3.16) becomes

q − 1

c+ 1
< k′ <

q − 1

c
. (5.3.39)
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Let s = (cb)∗. Then we have

s = q − 1− ck′,

(ks)∗ = q − 1− c.

By (5.2.8), ∑
i

(−1)i
(
s

i

)(
(2ki)∗

q − 1− c

)
= (−2)s. (5.3.40)

For 0 ≤ l ≤ c/2, let i ∈ {0, . . . , q − 1} be such that (2ki)∗ = q − 1− 2l. By (5.3.39),

i = q − 1− lk′ or
1

2
(q − 1)− lk′.

If i = q − 1 − lk′, then i > q − 1 − ck′ = s. If i = 1
2
(q − 1) − lk′, then i ≤ s

only if l = c/2. In fact, 1
2
(q − 1)− lk′ = i ≤ s = q − 1− ck′ implies that

k′ ≤ q − 1

2(c− l)
,

which, by (5.3.39), implies that 2(c− l) ≤ c, i.e., l ≥ c/2.

Therefore, the ith term of the sum in (5.3.40) is nonzero only if i = 1
2
(q− 1)−

c
2
k′. Hence c must be even and (5.3.40) gives

(−1)
1
2

(q−1−ck′)
(

q − 1− ck′
1
2
(q − 1− ck′)

)
= (−2)−ck

′
,

which is (5.3.33).

To prove (5.3.34), we choose s = ((c− 1)b)∗. We have

s = q − 1− (c− 1)k′,

(ks)∗ = q − 1− (c− 1),

and (5.2.8) gives ∑
i

(−1)i
(
s

i

)(
(2ki)∗

q − 1− (c− 1)

)
= (−2)s. (5.3.41)
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For 0 ≤ l ≤ c/2− 1, let i ∈ {0, . . . , q − 1} be such that (2ki)∗ = q − 1− 2l. Then

i = q − 1− lk′ or
1

2
(q − 1)− lk′.

If i = q−1− lk′, then i > s. If i = 1
2
(q−1)− lk′, then i ≤ s only if l = c/2−1.

In fact, i ≤ s implies that

k′ ≤ q − 1

2(c− 1− l)
,

which further implies that 2(c− 1− l) ≤ c, i.e., l ≥ c/2− 1. Therefore, the ith term

of the sum in (5.3.41) is nonzero only if i = 1
2
[q − 1− (c− 2)k′]. Hence (5.3.41) gives

−2−(c−1)k′ = (−1)
c
2
−1+ q−1

2

(
q − 1− (c− 1)k′

1
2
[q − 1− (c− 2)k′]

)(
q − 1− 2( c

2
− 1)

q − 1− (c− 1)

)
= (−1)

c
2
−1+ q−1

2

(
q − 1− (c− 1)k′

1
2
[q − 1− (c− 2)k′]

)
(−c+ 1),

which is (5.3.34).

For each odd prime p, let

α(p) = min
{
u : u is a positive even integer,

(
u

u/2

)
≡ (−1)

u
2 2u (mod p)

}
.

(5.3.42)

Remark 5.3.8 Since (
p− 1
p−1

2

)
≡ (−1)

p−1
2 (mod p),

we always have α(p) ≤ p− 1.

Lemma 5.3.9 Assume that q is odd and 1 < k ≤ q − 1. If Bk is a PP of Fq, then

all the base p digits of k are ≤ (p− 1)/α(p).

Proof. By (5.3.30), a = b(q − 1)/kc ≥ α(p). Let q = pe and write k = k0p
0 + · · · +

ke−1p
e−1, where 0 ≤ ki ≤ p− 1. We first show that ke−1 ≤ (p− 1)/α(p). Assume that
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ke−1 > 0. Since

a ≤ q − 1

k
≤ pe − 1

ke−1pe−1
,

we have

ke−1a ≤ p− 1

pe−1
.

Thus ke−1a ≤ p− 1, and hence ke−1 ≤ (p− 1)/a ≤ (p− 1)/α(p).

Replacing k with (pe−1−ik)∗, we conclude that ki ≤ (p− 1)/α(p).

We include a quick proof for Theorem 5.1.2.

Proof. [Proof of Theorem 5.1.2] Let q = pe. Assume that 1 < k ≤ qm − 1 and Bk is a

PP of Fqm . Write k = k0q
0 + · · · + km−1q

m−1, 0 ≤ ki ≤ q − 1. By Lemma 5.3.9, all

the base p digits of k are ≤ b(p− 1)/α(p)c. Hence

ki ≤
⌊p− 1

α(p)

⌋q − 1

p− 1
, 0 ≤ i ≤ m− 1.

Since Conjecture B is assumed to be true for q, by Fact 5.3.1, we may assume that

k ≡ 1 (mod q − 1), that is,

k0 + · · ·+ km−1 ≡ 1 (mod q − 1).

However,

k0 + · · ·+ km−1 ≤ m
⌊p− 1

α(p)

⌋q − 1

p− 1
≤ q − 1.

So we must have k0 + · · ·+ km−1 = 1.

5.4 A Theorem on Ak

Theorem 5.4.1 Conjecture A is true for q = pe, where p is an odd prime and

gpf(e) ≤ p− 1.

Theorem 5.4.1 is an immediate consequence of Corollary 5.3.3 and the following

lemma.
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Lemma 5.4.2 Let q be a power of an odd prime p and 1 ≤ m ≤ p−1. If Conjecture A

is true for q, it is also true for qm.

Proof. Assume that Ak is a PP of Fqm , where 1 ≤ k ≤ qm−2. Let k′ ∈ {1, . . . , qm−2}

be such that k′k ≡ 1 (mod qm − 1). It suffices to show that k′ is a power of p. Write

k′ = k′0q
0 + · · · + k′m−1q

m−1, 0 ≤ k′i ≤ q − 1. Since Ak is a PP of Fq and since

Conjecture A is true for q, we may assume that k′ ≡ 1 (mod q − 1), that is,

k′0 + · · ·+ k′m−1 ≡ 1 (mod q − 1). (5.4.43)

On the other hand, by Lemma 5.3.5, all base p digits of k′ are ≤ 1. Hence

k′i ≤
q − 1

p− 1
, 0 ≤ i ≤ m− 1.

Therefore,

k′0 + · · ·+ k′m−1 ≤
q − 1

p− 1
m ≤ q − 1. (5.4.44)

Combining (5.4.43) and (5.4.44) gives k′0 + · · ·+ k′m−1 = 1.

Remark 5.4.3 In [52], the author commented that an avenue to improve Theorem ??

is to find a more explicit form for the function p0 in that theorem. By Theorem 5.4.1,

one can choose p0(r) = r + 1.

5.5 A Theorem on Bk

Our proof of Conjecture B under the condition α(p) > (p− 1)/2 follows a simple line

of logic. Assume to the contrary that Bk is a PP of Fpe for some k ∈ {1, . . . , pe − 1}

which is not a power of p. Then with the help of Lemma 5.5.1, a := b(pe− 1)/kc ≡ 0

(mod p). However, (5.3.31) dictates that a 6≡ 0 (mod p), hence a contradiction.

Lemma 5.5.1 Let p ≥ 3 be a prime. Let i, j, e be integers such that 0 < i < j ≤ e−1,
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and let

k = k0p
0 + · · ·+ ki−1p

i−1 + pi + pj, k0, . . . , ki−1 ∈ {0, . . . , p− 1},

a =
⌊pe − 1

k

⌋
,

u =
⌊e− j
j − i

⌋
.

Assume that a is even and
pe − 1

pi + pj
− pe − 1

k
≤ 1. (5.5.45)

Then

a =


pe−j

[
1− pi−j + · · ·+ (−1)u(i−j)] if u is odd,

pe−j
[
1− pi−j + · · ·+ (−1)u(i−j)]− 1 if u is even.

(5.5.46)

Proof. Write e− j = u(i− j) + r, 0 ≤ r < j − i. We have

pe − 1

pi + pj
= pe−j

1

1 + pi−j
− 1

pi + pj

= pe−j
[
1− pi−j + p2(i−j) − · · ·

]
− 1

pi + pj

= pe−j
[
1− pi−j + · · ·+ (−1)upu(i−j)]

+ (−1)u+1pr+i−j
[
1− pi−j + p2(i−j) − · · ·

]
− 1

pi + pj

= pe−j
[
1− pi−j + · · ·+ (−1)upu(i−j)]+ (−1)u+1pr+i−j

1

1 + pi−j
− 1

pi + pj

= pe−j
[
1− pi−j + · · ·+ (−1)upu(i−j)]+

1

pi + pj
[
(−1)u+1pr+i − 1

]
.

Since r + i < j, we have

0 <
1

pi + pj
[
(−1)u+1pr+i − 1

]
< 1 if u is odd,

−1 <
1

pi + pj
[
(−1)u+1pr+i − 1

]
< 0 if u is even.
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Thus

⌊ pe − 1

pi + pj

⌋
=


pe−j

[
1− pi−j + · · ·+ (−1)upu(i−j)] if u is odd,

pe−j
[
1− pi−j + · · ·+ (−1)upu(i−j)]− 1 if u is even.

(5.5.47)

Note that the right side of (5.5.47) is always even. Then (5.5.46) follows from (5.5.45),

(5.5.47) and the assumption that a is even.

Theorem 5.5.2 Conjecture B is true for q = pe, where p is an odd prime such that

α(p) > (p− 1)/2.

Proof. Assume to the contrary that there exists k ∈ {1, . . . , pe − 1}, which is not a

power of p, such that Bk is a PP of Fpe . Write

k = k0p
0 + · · ·+ ke−1p

e−1, 0 ≤ ki ≤ p− 1.

Since α(p) > (p− 1)/2, by Lemma 5.3.9, ki ≤ 1 for all i. Let

a =
⌊pe − 1

k

⌋
.

By Lemma 5.3.7, a is even, and by (5.3.31),(
ka

k

)
6≡ 0 (mod p).

In particular, a 6≡ 0 (mod p).

Let d be the distance in Z/eZ defined by

d([x], [y]) = min{|x− y|, e− |x− y|}, x, y ∈ {0, . . . , e− 1}.

This is the arc distance with [0], . . . , [e − 1] evenly placed on a circle in that order.

Let l be the shortest distance between two indices i, j ∈ Z/eZ with ki = kj = 1.

Then 1 ≤ l < e. The 1’s among k0, . . . , ke−1 cannot be evenly spaced. Otherwise,
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gcd(k, pe − 1) = (pe − 1)/(pl − 1) > 1, which is a contradiction. Therefore, we may

write

(k0, . . . , ke−1) = (
0∗ · · · ∗

i

1 0 · · · 0︸ ︷︷ ︸
l−1

j

1 0 · · ·
e−1

0︸ ︷︷ ︸
l

),

where j = e− 1− l, i = j − l = e− 1− 2l. We have

u =
⌊e− j
j − i

⌋
=
⌊ l + 1

l

⌋
=

2 if l = 1,

1 if l ≥ 2.

Case 1. Assume that l = 1. Since

k0p
0 + · · ·+ kip

i ≤ p0 + · · ·+ pi =
pj − 1

p− 1
<

pj

p− 1
,

we have

pe − 1

pi + pj
− pe − 1

k
= (pe − 1)

[ 1

pi + pj
− 1

k0p0 + · · ·+ kipi + pj

]
< (pe − 1)

[
1

pi + pj
− 1

pj

p−1
+ pj

]
= (pe − 1)

1

pj

[ p

p+ 1
− p− 1

p

]
=

pe − 1

pjp(p+ 1)
< pe−j−2 = 1.

Thus by (5.5.46),

a = pe−j
[
1− pi−j + · · ·+ (−1)upu(i−j)]− 1 = p2(1− p−1) ≡ 0 (mod p),

which is a contradiction.

Case 2. Assume that l ≥ 2. Since the distance between the indices of any

two consecutive 1’s among k0, . . . , ke−1 is ≥ l, we have

k0p
0 + · · ·+ kip

i < pi + pi−l + pi−2l + · · · = pi
pl

pl − 1
.
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Hence

pe − 1

pi + pj
− pe − 1

k
= (pe − 1)

[ 1

pi + pj
− 1

k0p0 + · · ·+ kipi + pj

]
< (pe − 1)

[
1

pi + pj
− 1

pl

pl−1
pi + pj

]
=
pe − 1

pl − 1

pi

(pi + pj)
(

pl

pl−1
pi + pj

)
<

pe+i

p(pi + pj)
(

pl

pl−1
pi + pj

)
<

pe+i

p2j+1
= pe+e−1−2l−2(e−1−l)−1 = 1.

Therefore by (5.5.46),

a = pe−j
[
1− pi−j + · · ·+ (−1)upu(i−j)] = pl+1(1− p−l) ≡ 0 (mod p),

which is a contradiction.

Many odd primes p satisfy the condition α(p) > (p − 1)/2. Among the first

1000 odd primes p, the equation α(p) = p − 1 holds with 211 exceptions. The first

few exceptions are α(29) = 10, α(31) = 8, α(47) = 18, . . . . In fact, for any odd prime

p, either α(p) = p − 1 or α(p) ≤ (p − 1)/2; this follows from a symmetry described

below.

Note that for integer m ≥ 0,

2−2m

(
2m

m

)
=

(2m)!

(2m ·m!)2
=

(2m− 1)!!

(2m)!!
.

Thus α(p) is the smallest positive even integer 2m (≤ p− 1) such that

(2m− 1)!!

(2m)!!
≡ (−1)m (mod p). (5.5.48)
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Let 0 ≤ m ≤ (p− 1)/2. Since

2−2m

(
2m

m

)[
2−(p−1−2m)

(
p− 1− 2m
p−1

2
−m

)]−1

=
(2m− 1)!!

(2m)!!
· (p− 1− 2m)!!

(p− 2− 2m)!!
=

(p− 2)!!

(p− 1)!!
=

∏
2≤i≤p−1
i even

p− i
i

= (−1)
p−1
2 ,

condition (5.5.48) is symmetric for m and (p− 1)/2−m.

For integers i ≤ j, denote i(i+ 1) · · · j by [i, j]. Then we have(
2m

m

)
=

[m+ 1, 2m]

[1,m]
,(

p− 1− 2m
p−1

2
−m

)
=

[p+1
2
−m, p− 1− 2m]

[1, p−1
2
−m]

=
[2m+ 1, p−1

2
+m]

[p+1
2

+m, p− 1]
.

Hence (
2m

m

)(
p− 1− 2m
p−1

2
−m

)
=

[m+ 1,m+ p−1
2

]

[1,m][m+ p+1
2
, p− 1]

=
[m+ 1,m+ p−1

2
]2

[1, p− 1]

= −
[
m+ 1,m+

p− 1

2

]2

.

Therefore, if (5.5.48) is satisfied, one has

p−1
2∏
i=1

(m+ i)2 ≡ (−1)
p+1
2 (mod p).

5.6 A Theorem on monomial graphs of girth eight

We continue to use the notation introduced at the beginning of Section 5.3. For

1 ≤ k ≤ q−1 with gcd(k, q−1) = 1, the parameters k′, b and c are defined in (5.3.13)

and (5.3.14).

Assume to the contrary that Conjecture 5.1.1 is false. Then for some k ∈

{1, . . . , q−1} which is not a power of p, both Ak and Bk are PPs of Fq. We will see that

the same argument as in the proof of Theorem 5.5.2 gives that c := b(q − 1)/k′c ≡ 0
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(mod p). The purpose of the following lemma is to establish an equation that cannot

be satisfied when c ≡ 0 (mod p).

Lemma 5.6.1 Assume that q is odd, 1 < k ≤ q − 1, and both Ak and Bk are PPs of

Fq. Then c is even and

2−2ck′ =

(
2(q − 1)− 2ck′

q − 1− ck′

)
+ (−1)

q−1
2

+ c
2

+1

(
2(q − 1)− 2ck′

1
2
(q − 1)− ( c

2
− 1)k′

)(
2c

c+ 2

)
. (5.6.49)

Proof. By Lemma 5.3.7, c is even. Let s = (2cb)∗. Since 2cb 6≡ 0 (mod q − 1), we

have 1 ≤ s ≤ q − 2. Clearly, 2ck′ > q − 1. (Otherwise, 2c ≤ (q − 1)/k′, which implies

that 2c ≤ c, a contradiction.) It follows that

s = 2(q − 1)− 2ck′.

Note that c < (q−1)/2. (Otherwise, since gcd(k′, q−1) = 1, we have k′ < (q−1)/2 ≤

2, which implies that k′ = 1, i.e., k = 1, which is a contradiction.) Thus

(ks)∗ = q − 1− 2c.

By (5.2.8), ∑
i

(−1)i
(
s

i

)(
(2ki)∗

q − 1− 2c

)
= (−2)s. (5.6.50)

For each 0 ≤ l ≤ c, let i ∈ {0, . . . , q − 1} be such that (2ki)∗ = q − 1− 2l. Then

i =
3

2
(q − 1)− lk′ or q − 1− lk′ or

1

2
(q − 1)− lk′.

In each of these cases, we determine the necessary conditions on l such that i satisfies

0 ≤ i ≤ s.

Case 1. Assume that i = 3
2
(q − 1)− lk′. In this case,

i ≥ 3

2
(q − 1)− ck′ > 2(q − 1)− 2ck′ (since 2ck′ > q − 1)

= s.
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Case 2. Assume that i = q − 1 − lk′. In this case we always have i ≥ 0.

Moreover,

i ≤ s⇔ q − 1− lk′ ≤ 2(q − 1)− 2ck′

⇔ l ≥ 2c− q − 1

k′

⇔ l ≥ c.

Case 3. Assume that i = 1
2
(q − 1) − lk′. In this case, i ≥ 0 if and only if

l ≤ c/2. Moreover,

i ≤ s⇔ 1

2
(q − 1)− lk′ ≤ 2(q − 1)− 2ck′

⇔ l ≥ 2c− 3

2
· q − 1

k′

⇒ l > 2c− 3

2
(c+ 1)

⇒ l ≥ c

2
− 1.

Combining the above three cases, we see that (5.6.50) becomes

2−2ck′ =

(
2(q − 1)− 2ck′

q − 1− ck′

)
+ (−1)

q−1
2

+ c
2

+1

(
2(q − 1)− 2ck′

1
2
(q − 1)− ( c

2
− 1)k′

)(
q − 1− 2( c

2
− 1)

q − 1− 2c

)
+ (−1)

q−1
2

+ c
2

(
2(q − 1)− 2ck′

1
2
(q − 1)− c

2
k′

)(
q − 1− c
q − 1− 2c

)
.

(5.6.51)

In the above, (
q − 1− 2( c

2
− 1)

q − 1− 2c

)
=

(
−c+ 1

2 + c

)
=

(
2c

c+ 2

)
,

and, by (5.3.18), (
q − 1− c
q − 1− 2c

)
=

(
−1− c
c

)
=

(
2c

c

)
= 0.

Hence (5.6.49) follows from (5.6.51).

Theorem 5.6.2 Conjecture 5.1.1 is true.
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Proof. Assume to the contrary that Conjecture 5.1.1 is false. Then there exists

1 ≤ k ≤ q − 1, which is not a power of p, such that both Ak and Bk are PPs of Fq.

By Lemma 5.3.5, all the base p digits of k′ are ≤ 1. By exactly the same

argument as in the proof of Theorem 5.5.2, with k and a replaced by k′ and c,

respectively, we conclude that we may assume that c ≡ 0 (mod p). Then obviously,(
2c

c+ 2

)
= 0. (5.6.52)

Since q − 1− ck′ ≡ p− 1 (mod p), the sum (q − 1− ck′) + (q − 1− ck′) has a carry

in base p at p0, implying that (
2(q − 1)− 2ck′

q − 1− ck′

)
= 0. (5.6.53)

Combining (5.6.49), (5.6.52) and (5.6.53), we have a contradiction.
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6 Conclusion

This dissertation started with the goal of completely characterizing the permutation

behavior of the family of polynomials gn,q. Unfortunatelty this problem turned quite

challenging and still remains an open problem.

Sticking with the theme of ”discovering” these naturally occuring permutation

polynomials, as opposed to constructing those with desirable properties, leads to a

plethora of permutation polynomials over the fields Fq2 . In chapter 3 we are able

to completely determine the permutation behavior of polynomails of the form f =

xd(a+ bxq−1 +xr(q−1)) for specific values of d and r. While a complete classification of

permutation binomials and trinomials is still out of hand, we hope that some of the

techniques developed in chapter 3 can be used to address other problems involving

polynomials over finite fields containing only a few terms.

In chapter 4 we confirm a conjecture of Xin Gong related to construction of a

permutation polynomial starting with a non permuting power function and adding a

specific linearized polynomial. Permutation polynomials of this type have applications

in cryptography and APN functions.

In chapter 5 we see how a problem relating to combinatorial structures defined

over finite fields can be formulated in terms of polynomials of finite fields. While we

were able to prove the main conjecture in chapter 5, namely that every monomial

graph of girth eight is isomorphic to Γ3(q), the conjectures regarding the polynomials

Ak and Bk still remain open.
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