
 
 
 
 
 

CHAPTER 1: OVERVIEW 
 

The common area of all of my research at USF has been the field of compliant mechanisms, 

“a compliant mechanism is one which gets some or all of its motion from deflection of flexible 

members” [1]. Some examples of compliant mechanisms include nail clippers, diving boards, and 

certain plastic bottle tops (such as shampoo bottles). My research has largely focused on shape-

changing mechanisms, which use compliant mechanisms to change their shapes. I have taken 

certain shape-changing mechanisms and added waterproofing barriers to them in order to make 

them waterproof. A substantial part of my research has involved joining compliant mechanisms 

with novel origami membranes, to accomplish this goal. 

One of the primary themes of my research has been developing solutions that involve the 

use of origami, in order to make a mechanism waterproof [2], [3]. The mechanisms in question are 

shape-changing mechanisms, which can morph from an initial state, with a specific initial 

geometry (i.e. square or cylindrical) to a deformed state (i.e. a different parallelogram or 

hyperbolic). Origami engineering is a burgeoning field of engineering that shows promise in a 

multitude of fields. One of the reasons that origami is becoming more common in engineering is 

because it offers the ability to have a high ratio of deployed volume to stowed volume. This entails 

that a device can be small while stowed, and substantially larger when it is deployed. This idea is 

particularly useful in applications where efficient use of volume is critical (i.e. the aerospace 

industry). Although origami has been developed for centuries, its use in engineering applications 

has been more heavily studied in recent years [4]-[8]. 

 
1 

 











 

Figure 6 Simplified model of the unit cell, with the nodes numbered and certain shields 
designated with letters 

 
 

Figure 7 Diagram of relative translation between two shields sharing a side, which 
provides for compression/expansion of the unit cell. 

 

As shown in Figure 7, two adjacent shields on a side may be either pulled apart in tension, 

or pushed together in compression. Thus the origami membrane that connects the two shields on 

a side must fold in a way that permits this relative translation. Rotational motion (shown in Figure 

8) at the corners of the unit cell permits it to shear. The rotations that occur during shear are of 

course coupled. For example, if the angle at nodes 2 and 4 become more acute, then the angles at 

nodes 1 and 3 become more obtuse, and the part of the origami membrane at each of the corners 

would need to fold in ways that permit both acute and obtuse angles at each corner.. Based on the 

 
Copyright by ASME, Andrew J. Katz; Craig P. Lusk, Paper Number DETC2015-47595 

 
17 

 



constraints of the unit cell it was determined that two shields at a node would need to be able to 

rotate up to thirty degrees (positive and negative) with respect to one another.  

 

 
Figure 8 Diagram of the rotational motion of two shields 

 

 

 
Figure 9 Schematic of the edge piece of the origami membrane 

 

As previously stated, the unit cell was designed to expand to four-thirds of its original side 

length, and compress to two-thirds of its original side length, where the original side length was 

three inches. For this reason, the portion of the origami membrane that connects two adjacent 

shields needed to be one inch. Given that shields that are connected at a node need to be able to 

rotate up to thirty degrees (positive or negative) with respect to one another, the portion of the 

membrane that connects these shields (which originates along the hypotenuses of the triangles) 

needed to be thirty degrees wide. The design for the portion of the origami membrane that allows 

compression/expansion (shown in Figure 7) is the same on each edge of the unit cell.  

 
Copyright by ASME, Andrew J. Katz; Craig P. Lusk, Paper Number DETC2015-47595 

 
18 

 



 

 
 
 
 
 
 
 
 

(A) 

 
 
 
 
 
 
 
 

(B) 
 
Figure 19 (A) is the undeformed unit strip, (B) is the deformed unit strip. Adapted from 
[75]. 

 

The unit strips are then further divided into eight triangles, four of which are unique, the 

other four are mirror images of the first four. The geometry in Figure 19 is simplified as a series 

of triangles, seen in Figure 20. The origami is then designed based on the unique four triangles 

henceforth referred to as the major triangles, which each have an undeformed and a deformed 

state.  

 
 
 
 
 
 
 
 
 
 

(A) 

 
 
 
 
 
 
 
 
 
 

(B) 
 
Figure 20 Simplified model of the unit strips. (A) is undeformed and (B) is deformed. 

 

In their deformed states, each of the four triangles are unique. In their undeformed states 

they are all identical right isosceles triangles. It is also worth noting that in the deformed state, the 

 
Publication and ASME copyright pending presentation at the ASME IDETC2016 conference, August 21-24, 2016, 

Charlotte, NC 
 

28 
 







 

The process for synthesizing triangle #1 is slightly different from the other three. This is 

because only one of its side lengths changes, making this a simpler problem to solve. The 

procedure was similar for this triangle, however all of the length and angle changes were placed 

in the deformed state. The final drawing is shown in Figure 29. 

 
 
 
 
 
 
 

(A) 

 
 
 
 
 
 
 

(B) 
 
Figure 29 (A) Undeformed version of triangle #1 and (B) deformed version of triangle 
#1 

 

All of the fold patterns shown up to this point are for the upper four major triangles of the 

unit strip (triangles 1-4 from Figure 20). 

 

3.2.4 The Unit Strip 

The geometry and kinematics of the lower four major triangles (#5-8 in Figure 20) of the 

unit strip are the same as that of the upper four (#1-4). The fold pattern however is slightly different 

for the deformed versions of the #3 and #4 triangle. The reason for this is because the fold lines 

along the adjacent edge of two major triangles must be the same. If the upper triangles were 

mirrored to form the lower triangles, they would have opposite direction Z-folds, which would not 

be continuous. In order to make the folds on adjacent edges continuous, the layering of the folds 

 
Publication and ASME copyright pending presentation at the ASME IDETC2016 conference, August 21-24, 2016, 

Charlotte, NC 
 

40 
 



 

must be opposite in the upper and lower triangles. The lower versions of these triangles are shown 

in Figure 30. 

 
 
 
 
 
 
 

(A) 

 
 
 
 
 
 
 

(B) 
 
Figure 30 The lower, deformed versions of the (A) #3 triangle and the (B) #4 triangle 

 

As shown in Figure 31A, the undeformed versions of the major triangles are then 

assembled together to form the entire undeformed unit strip. 

(A) (B) (C) 
 
Figure 31 The complete fold pattern for the undeformed unit strip (A), the deformed 
unit strip (B), and the unified unit strip (C) (the undeformed and deformed 
superimposed onto one another) 

 

 
Publication and ASME copyright pending presentation at the ASME IDETC2016 conference, August 21-24, 2016, 

Charlotte, NC 
 

41 
 



 

As shown in Figure 31B, the deformed versions of the major triangles are then assembled 

together to form the complete deformed unit strip. The final fold pattern is created by 

superimposing the undeformed unit strip onto the deformed unit strip, this creates the final, unified 

unit strip, seen in Figure 31C. 

 
 
 
 
 
 
 
 
 
 
 
 
 

(A) 

 
 
 
 
 
 
 
 
 
 
 
 
 

(B) 
 
Figure 32 Undeformed (A) and deformed (B) mechanism, with unit strips of the 
origami mounted to it 

 

The mechanism in each of its states, with one unit strip of the origami mounted to it is 

shown in Figure 32. Figure 32 shows two separate, static structures, where the undeformed origami 

is in blue and the deformed origami is in yellow.  

 

3.3 Conclusion 

In this project, a process has been demonstrated for synthesizing an origami fold pattern 

which can fold to two different versions of a triangle. This ability allows for a membrane with an 

origami fold pattern on it to mimic the kinematics of another shape-shifting mechanism. In this 

 
Publication and ASME copyright pending presentation at the ASME IDETC2016 conference, August 21-24, 2016, 

Charlotte, NC 
 

42 
 



 

[75] Alqasimi, A., Lusk, C., “Shape-Morphing Space Frame (SMSF) Using Linear Bistable 
Elements” in Proceedings of the ASME 2015 International Design Engineering Technical 
Conference & Computers and Information in Engineering Conference, Boston, MA, Aug. 
2-5, 2015. DETC2015-47526, (2015). 

  
[76] Hull, T., “On the mathematics of flat origamis” in Proceedings of the Twenty-fifth 

Southeastern International Conference on Combinatorics, Graph Theory and Computing, 
Boca Raton, FL, Congressus Numerantium 100, pp. 215-224, (1994). 

 
[77] Kasahara, K., Takahama, T., Origami for the Connoisseur, New York: Japan Publications 

(1987). 
 
[78] Kawasaki, T., “On the Relation Between Mountain-Creases and Valley-Creases of a Flat 

Origami” in Proceedings of the 1st International Meeting on Origami Science and 
Technology (Ed. H. Huzita), Ferrara, Italy, pp. 229-237, (1989). 

 
[79] Justin, J., “Aspects mathematiques du pliage de papier”, In Proceedings of the First 

International Meeting of Origami Science, Mathematics, and Education, edited by Thomas 
Hull, pp. 29-37. Natick, MA: A K Peters, (2002). 

 
[80] Lu, Y., Mao, B., Yu, J., “Derivation and isomorphism identification of valid topological 

graphs for 1-, 2-DOF planar closed mechanisms by characteristic strings”, Journal of 
Mechanical Science and Technology 25 (1) 255~263, DOI: 10.1007/s12206-010-1201-y, 
(2011). 

 
[81] Bowen, L. A., Grames, C. L., Magleby, S. P., Howell, L. L., Lang, R. J., “A Classification 

of Action Origami as Systems of Spherical Mechanisms” Journal of Mechanical Design, 
November, Vol. 135, 111008, (2013). 

 
[82] Miura, K., “Method of packaging and deployment of large membranes in space”, Tech. 

Report 618, The Institute of Space and Astronautical Science (1985).  
 
[83] Katz, A., Nussbaum, J., Crane, N. B., Lusk, C. P., “Stress-Limiting Test Structures For 

Rapid Low-Cost Strength and Stiffness Assessment” Rapid Prototyping Journal, Vol. 21, 
Iss. 2, pp. 144-151, (2015). 

 
[84] Gibson, I., Rosen D. W., and Stucker, B., Additive Manufacturing Technologies:  Rapid 

Prototyping to Direct Digital Manufacturing. New York: Springer, (2010). 
 
[85] Abe, F., Costa Santos E., Kitamura, Y., Osakada K., and Shiomi, M., "Influence of forming 

conditions on the titanium model in rapid prototyping with the selective laser melting 
process," Proc.  Inst.  Mech.  Eng.  Part C, Vol. 217, pp. 119-126, (2003).  

 
[86] Ahn S., Montero, M., Odell, D., Roundy S., and Wright, P. K., "Anisotropic material 

properties of fused deposition modeling ABS," Rapid Prototyping Journal, Vol. 8, pp. 248-
257, (2002).  

 
77 

 









 

 
The above image is an email from ASME Publishing Rights Administrator, Beth Darchi, 

explaining how ASME papers should be used in a dissertation. This gives permission for the use 

of content in Chapter 2. 

  

 
81 

 



 

 

The above image is an email from ASME Manager, Nhora Cortes-Comerer, explaining 

how ASME papers should be used in a dissertation. This gives permission for the use of content 

in Chapter 3. 

  

 
82 

 



 

 
 
 
 
 

APPENDIX B: MATLAB CODE 
 

The code outlined in appendix B is MATLAB code which ran two nested optimization 

routines, the purpose and details of which are described in Chapter 2. 

 

B.1 Script That Calls The Outer Optimization 

This code calls the outer optimization and defines the parameters of it. 

%This script calls the optimization function along with all of its child 
%functions 
clc 
%BEFORE RUNNING THE OPTIMIZATION MAKE SURE TO DELETE/MOVE/OR RENAME THE 
%EXISTING FILES WHICH RECORD THE VARIABLE VALUES SO THAT THE NEW VALUES DO 
%NOT MIX WITH THE OLD VALUES 
  
%Utilizing the profile function will help to make the program run faster 
%Starting point values for the optimization variables 
x0 = [58.58 67.32 77.98 16.55 49.4 46.61 18.27]; 
x1 = [5.0636 6.1438 66.673 45.276 12.97 38.199 38.051]; 
  
%Lower bounds 
lb = [0 0 0 0 0 0 0]; 
  
%Upper bounds 
ub = [76.2 76.2 78 60.78 60.78 60.78 60.78]; 
  
%Used for testing the inneroptimization function 
%in-neroptimization3(x0) 
  
%Used for testing the whole optimization 
%opt12code(x0,lb,ub) 
  
%Specifies the options for the optimization problem 
options = optimoptions('fmincon'); 
options = optimoptions(options,'Display', 'iter-detailed'); 
options = optimoptions(options,'OutputFcn', { @outputfun }); 
options = optimoptions(options,'PlotFcns', {  @optimplotx @optimplotfval 
@optimplotfirstorderopt }); 
options = optimoptions(options,'Algorithm', 'interior-point'); 
  
%Defines the handle for the optimization setup 

 
83 

 



 

optimproblem = 
createOptimProblem('fmincon','objective',@inneroptimization3,'x0',x0,'lb',lb,
'ub',ub,'nonlcon',@optconstraints,'options',options); 
 
%Uses to search for a global optima 
gs = GlobalSearch; 
run(gs, optimproblem) 
 
%Uses a multistart to search for global optima 
%ms = MultiStart; 
%run(ms, optimproblem, 20) 
  
%Used to check the optimized design variables against the constraints 
%function, the second to last number in the dlmread command is the  
% desvar = dlmread('desvarvalues.txt'); 
% rc = size(desvar); 
% x = desvar(rc(1),:) 
% [C, Ceq] = optconstraints(x) 

 

B.2 The Inner Optimization 

This code uses a gradient based approach to solve the solid mechanis equations that dictate 

the behavior of the part. 

function fyopt = inneroptimization3(x) 
%This function solves the set of equations outlined in optfun and records 
%the results in matrices, the bottom half of the function which is 
%currently commented out checks the validity of the solutions by plotting 
format shortg 
%This is the necessary format for the inputs to this function 
%Format: %x1 x2 x3 y1 y2 y3 y4 
%x0 = [58.58 67.32 77.98 16.55 49.4 46.61 18.27] 
  
%Design variables 
%x's and y's are the final position of the given beam 
%The first number is the coordinate in the CAD drawing, the number in 
%parentheses is the coordinate in the hand drawing, the number after the 
%colon is the variable as MATLAB recognizes it. The number in parentheses 
%is the hand drawing and also the CAD drawing in the optimization folder. 
% y1(x1): x(1) = -58.58;  
% y2(x2): x(2) = -67.32;  
% y3(x3): x(3) = -77.98;  
% x1(y1): x(4) = 16.55; %r1 = 60.88 
% x2(y2): x(5) = 49.4; %r2 = 33.997 
% x3(y3): x(6) = 46.61; %r3 = 11.018 
% x4(y4): x(7) = 18.27; %r4 = 28.57 
% y4(x4): x(8) = -74.4; 
% y5(x5): x(9) = -74.4; 
% x5(y5): x(10) = 0; 
  
%Order gets mixed up here because the inputs from the function must be  

 
84 

 



 

%x(1-7) so the only ones which I can prescribe are 8 9 and 10  
%x(8) is really x4, x(9) is really x5, x(10) is really y5  
x(8) = 74.4;  
x(9) = 74.4;  
x(10) = 0; %r5 = 18.529 (old value) 
  
theta10 = atan((x(4)/x(1))); 
theta20 = atan((x(5)-x(4))/(x(2)-x(1))); 
theta30 = atan(-(x(6)-x(5))/(x(2)-x(3))); 
theta40 = atan((x(7)-x(6))/(x(8)-x(3)))+pi; 
theta50 = -pi/2; 
t = [theta10 theta20 theta30 theta40 theta50]; 
  
r(1) = ((x(1)^2) + (x(4)^2))^0.5; 
r(2) = (((x(2) - x(1))^2) + ((x(5) - x(4))^2))^0.5; 
r(3) = (((x(3) - x(2))^2) + ((x(6) - x(5))^2))^0.5; 
r(4) = (((x(8) - x(3))^2) + ((x(7) - x(6))^2))^0.5; 
r(5) = (((x(9) - x(8))^2) + ((x(10) - x(7))^2))^0.5;  
fid2 = fopen('lengths','w'); 
fwrite(fid2,r,'double'); 
fclose(fid2); 
  
fid3 = fopen('angles','w'); 
fwrite(fid3,t,'double'); 
fclose(fid3); 
  
%Input variables 
%kk and range can be changed in order to help MATLAB solve the equations 
%more easily, range must go back to its actual value, kk is just the number 
%of steps and consequently the step size 
kk = 10; %Number of iterations 
range = 13.62; %Distance of actuation, original range is 13.62 
  
indk = [0 0 t(2) t(3) t(4)]; %Inputs for the first stage optimization 
solr(kk,5) = zeros; 
FVAL1(kk,5) = zeros; 
EXITFLAG(kk) = zeros; 
  
for k = 1:kk 
    varx = 74.4 - (range * ((1/kk) * (k-1))); %changes the distance which the 
device is currently being actuated 
    %Writes the aforementioned distance into a binary file to be read later 
    %by the optimzation function, opteqns 
    fid = fopen('var','w'); 
    fwrite(fid,varx,'double'); 
    fclose(fid); 
    [sol1,FVAL,EXITFLAG(k)] = 
(fsolve(@opteqns,indk,optimset('MaxFunEvals',2000,'FunValCheck','on','Display
','off'))); 
    %writes the results of the fsolve command into matrices 
    for d = 1:5 
        solr(k,d) = sol1(d); 
        FVAL1(k,d) = FVAL(d); 
    end 
    indk = sol1; 

 
85 

 



 

end 
  
%Commented these out to try to make the program run faster, they are used 
%to convert the angular variables to degrees from radians to make them 
%easier to understand 
%sold(:,3:5) = (solr(:,3:5)*180)/pi; 
%sold(:,1:2) = (solr(:,1:2)); 
fyopt = mean(solr(:,2)) + max(abs(solr(:,2))); 
  
%Everything past this line is used for checking the validity of the prior 
%code 
  
%solr((kk+1),:) = indk; %Checking the initial guess loop 
% EXITFLAG 
% solr 
% sold 
% FVAL1; 
  
%Used to plot function values at each iteration 
%for u = 1:5 
    %plot(FVAL1(:,u)) 
    %pause 
%end 
  
%Verification test 
% r(1) = 60.88; 
% r(2) = 33.997;  
% r(3) = 11.018; 
% r(4) = 28.57;  
% r(5) = 18.529; 
% theta10 = (15.809 * pi) / 180; %0.2759 radians 
% theta20 = (75.093 * pi)/ 180; %1.3106 radians 
% theta30 = (345.331 * pi)/ 180; %6.0272  
% theta40 = (262.802 * pi) /180; %4.5868 
% theta50 = -pi/2; 
%  
% for q = 1:kk; 
%     varx(q) = 74.4 - (13.62 * ((1/kk)*(q-1))); 
%     %This line was at one point being used to check the initial guess loop 
%     %varx(kk+1) = 74.4; 
%     p1 = [0 + 1i*0]; 
%     p2 = p1 + [(r(1)*cos(theta10))+(1i*r(1)*sin(theta10))]; 
%     p3 = p2 + [(r(2)*cos(solr(q,3)))+(1i*r(2)*sin(solr(q,3)))]; 
%     p4 = p3 + [(r(3)*cos(solr(q,4)))+(1i*r(3)*sin(solr(q,4)))]; 
%     p5 = p4 + [(r(4)*cos(solr(q,5)))+(1i*r(4)*sin((solr(q,5))))];    
%     p6 = p5 + [(r(5)*cos(theta50))+(1i*r(5)*sin(theta50))]; 
%     p7 = p6 - [varx(q)+1i*0]; 
%     z = [p1;p2;p3;p4;p5;p6;p7]; 
%     plot(real(z),imag(z)) 
%     hold on 
%     %drawnow 
%     pause 
% end 
end 
  

 
86 

 



 

%a = 60.88 
%b = 33.997 
%c = 11.018 
%d = 28.57 
%e = 18.529 
  
%t10 = 15.809 
%t20 = 75.093 
%t30 = 345.331 
%t40 = 262.802 
%t50 = 270 

 

B.3 Optimization Constraints 

This code defines the constraints of the optimization. 

function [C, Ceq] = optconstraints(x) 
  
%Inequality constraints 
%Prevents any point from going outside of 3" 
c1 = x(1) - 74.4; 
c2 = x(2) - 74.4; 
c3 = x(3) - 74.4; 
  
%Shield cannot be larger than unit cell length minus actuation distance 
%this allows the piece to be actuated without pieces sticking out of the 
%actuated unit cell 
%Keeps the center to right side length inside of 3" 
c4 = x(4) - 60.78; 
c5 = x(5) - 60.78; 
c6 = x(6) - 60.78; 
c7 = x(7) - 60.78; 
  
%Keeps x2 in front of x1 
c8 = x(1) - x(2); 
  
%Equality constraints 
%Keeps the top to bottom length at 3" 
%Commented these out because I think it may have been incorrect 
%c9 = x(4) - 74.4; 
%c10 = x(5) - 74.4; 
  
C = [c1; c2; c3; c4; c5; c6; c7; c8]; 
Ceq = []; 
end 

 

B.4 Inner Optimization Equations 

This code defines the solid mechanics equations to be solved. 
 

87 
 



 

function F = opteqns(ind) 
%Andrew Katz 
%Design optimization for shape shifting water proof surface 
  
fid2 = fopen('lengths','r'); 
r = fread(fid2,'double'); 
fclose(fid2); 
  
fid3 = fopen('angles','r'); 
t = fread(fid3,'double'); 
fclose(fid3); 
  
psi2 = ind(3) - t(2); 
psi3 = (ind(4) - t(3)) - (ind(3) - t(2)); 
psi4 = (ind(5) - t(4)) - (ind(4) - t(3)); 
psi5 = (ind(5) - t(4)); 
k2 = 2000; %have not yet accounted for I or L 
k3 = 2000; 
k4 = 2000; 
k5 = 2000; 
  
%Receives variables from the inneroptimization function 
fid = fopen('var','r'); 
varx = fread(fid,'double'); 
fclose(fid); 
  
F = [r(1)*cos(t(1)) + r(2)*cos(ind(3)) + r(3)*cos(ind(4)) + r(4)*cos(ind(5)) 
+ r(5)*cos(t(5)) - varx;...  
r(1)*sin(t(1)) + r(2)*sin(ind(3)) + r(3)*sin(ind(4)) + r(4)*sin(ind(5)) + 
r(5)*sin(t(5));...  
(1/sin(ind(4) - ind(5))) * ((-k3*psi3*cos(ind(5))/r(3)) + 
(k4*psi4*cos(ind(4))/r(4)) + (k4*psi4*cos(ind(5))/r(3)) + 
(k5*psi5*cos(t(5))/r(4))) - ind(1);...  
(1/(sin(ind(4) - ind(5)))) * ((k3*psi3*cos(t(5) - ind(5))/r(3)) + 
(k4*psi4*cos(t(5) - ind(4))/r(4)) - ((k4*psi4*cos(t(5) - ind(5)))/r(3)) + 
((k5*psi5*cos(t(5) - ind(5)))/r(3))) - ind(2);... 
k2*psi2 + (k3*psi3*(((-r(2)*sin(ind(3) - ind(5)))/(r(3)*sin(ind(4) - 
ind(5))))-1)) + (k4*psi4*((-r(2)*sin(ind(3) - ind(4)))/(r(4)*sin(ind(5) - 
ind(4))))) - (k4*psi4*((r(2)*sin(ind(3) - ind(5)))/(r(3)*sin(ind(4) - 
ind(5))))) + (k5*psi5*((-r(2)*sin(ind(3) - ind(4)))/(r(4)*sin(ind(5) - 
ind(4)))))]; 
end 
  
%ind(1) = Fx 
%ind(2) = Fy 
%ind(3) = theta2 
%ind(4) = theta3 
%ind(5) = theta4 
%E(pp) = 1.5 - 2 GPa 

 

 
88 

 



 

B.5 Output Function 

This code records certain design variables to a separate file to be used at various times 

during the execution of the program. 

function stop = outputfun(x, optimValues, state) 
stop = false; 
  
%Recording design variable results using a text file because the binary 
%file is less convenient to read and because it rounds to the nearest 
%integer and the text file rounds to the nearest hundreth 
dlmwrite('desvarvalues.txt',x,'-append'); 
  
%Old code that attempted to save all plots in a multistart, never finished 
%it because I wasn't sure that it was necessary 
%h = gcf; 
%saveas(h,'Plots') 
end 
  
 

 

  

 
89 

 



 

 
 
 
 
 

APPENDIX C: CAD DRAWINGS FROM CHAPTER 2 

 
 
Figure C.1 These are various designs that were tested in Chapter 2 but were not 
deemed useful 

  

 
90 

 



 

 

Figure C.2 These are various double size designs that were tested in Chapter 2 but were 
not deemed useful 

  

 
91 

 



 

 
 
 
 
 

APPENDIX D: CAD DRAWINGS FROM CHAPTER 4 
 

 

 
Figure D.1 These are all eight sizes of the part designed for Chapter 4 

 

 
 

92 
 


