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Abstract 

The objectives of the study are to review and evaluate four basic risk models that are 

commonly used in investment science; statistically investigate the risk factor in Capital Asset 

Pricing Model (CAPM) that is used to reflect the safety of an investment decision in stocks; 

explore the statistical distribution of monthly precipitation in Belize and to forecast tourist 

arrivals using statistical time series modelling techniques. 

The risk models are the Capital Asset Pricing Model (Sharpe-Linter Version), Capital Asset 

Pricing Model (Conditional Version), Arbitrage Pricing Theory, and Fama–French three-factor 

model adopted in empirical investigations of asset pricing. The underlying assumptions of using 

these models are reviewed, and the statistical procedures to evaluate their robustness are 

reviewed. 

It will be shown that the present manner of determining this risk factor is quite sensitive 

and misleading. We introduce a statistical procedure for obtaining a more robust measure of the 

risk factor commonly referred to as CAPM beta. 

Changes in the hydrological cycle will generate repercussions in all sectors.  It is therefore 

imperative that Belize’s water resources be managed in an integrated manner, responding to the 

requirements of all sectors. Daily rainfall data have been collected for a period of 51 years 

(1960– 2011) from The National Meteorological Service of Belize. The Wakeby distribution 

adequately fit the monthly rainfall data producing a suitable model based on the Kolmogorov – 

Smirnov test.  
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Tourism is vitally important to the entire Belize’s economy, contributing 50% of Belize's 

gross domestic product in 2015.  It is the foremost foreign exchange earner in this small 

economy, followed by exports of marine products, citrus, cane sugar, bananas, and garments. 

The tourist sector is not without its vulnerabilities and is subject to international economic 

vagaries. In order to meet the expected future demands on the industry in terms of service 

delivery it is important that the sector understands the significance of forecasting. 
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Chapter 1: Importance of the Present Studies; A Review 

This chapter introduces the remainder of the dissertation thesis. We will be presenting its 

most basics features, make essential connections between different methodologies that are put 

into use, and finally discus the structure of the manuscript.  

Introduction 

We encounter risks in everything we do, be it, in health, investment, insurance, politics 

and defense. The term risk itself is very difficult to pin down precisely. It evokes notions of 

uncertainty, randomness, and probability according to Dowd (2005). The random outcome to 

which it alludes might be good or bad and we may or may not prefer to focus on the risks 

associated with bad events, presumably with a view to try to protect ourselves against them.  

Concentrating on the investment aspect, when a portfolio manager gives you a risk value in 

making a recommendation, the question that should arise is how good is that value in decision 

making? Our finding, is that, the risk is as good as the assumptions their making in the 

calculation that convey the risk. This study’s  objective is to concentrate on a particular risk 

model that we can improved on, to avoid the misleading interpretations and in order to do that, 

we identified  all the popular models and then we want to dig into these models to see if the 

manner in which the risk value is obtain is correct or misleading. It turns out from our results that 

some of the risk models are misleading.  Before we proceed, a sound understanding of what risk 

is and how it is measured is vital. Hence, the first part of chapter 2 is a review of the most 

popular models. 
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The notion of risk in its broadest sense therefore has many facets, and there is no single 

definition of risk that can be completely satisfactory in every situation (Dowd 2007). However, 

for our purpose here, a reasonable definition is to consider it as the likelihood that we will 

receive a return on an investment that is different from the return we expected to make. 

The normality factor is of concern to us, because to assume normality in the returns 

implies symmetry and there is no symmetry in returns. In fact, there is skewness to the left or 

right. By making a normal symmetry, the assumption will give a risk factor that is misleading. 

The quadratic aspect we are questioning is whether it is the best mathematical characterization or 

there should be another one? These are the two aspects we are concern with and we are 

investigating them further.  

Chapter 3 focuses on the measure of risk that is commonly used in investment namely 

CAPM and investigates the underlying assumptions. Historically, most investors included as part 

of their management strategy a risk measure that is based on historical factors. The common risk 

measure is the risk associated with the Capital Asset Pricing Model. The CAPM model however 

is driven by a set of assumptions; one of which is the normality assumption of the returns. 

Natural phenomena often produce departures from normality and many recent findings suggest 

that the most commonly used estimation methods exhibit varying degrees of non-robustness to 

certain violations of the assumption of normality. In practice, it is not customary to get normal 

data in many real- world applications, researchers are uncertain about the true nature of the 

distribution of the errors and a naïve application of the normal distribution can give the user the 

wrong impression that he or she has obtained a useful inferential result. This can lead to 

misleading information later being passed on to financial advisors and later to their clients with 

regards to investment options.  Chapter 3 continues with the introduction of a statistical 
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procedure for obtaining a more robust measure of risk premium beta. This process included the 

best justification of the selection process of the probability distribution that drives the estimate of 

the CAPM beta.  Our research findings indicated that the distribution of beta is not normal but 

rather a Johnson 4p probability distribution. 

The influence of rainfall on water quality, agriculture and tourism among others cannot 

be over emphasized. Because agriculture and tourism are the largest income earners for Belize, it 

is vital that we understand our rainfall system and possess the ability to model and forecast the 

rainfall, this gives added value to any major investment or planning. In Chapter 4, we focus on 

the parametric statistical analysis of Belize’s rainfall.  The primary goal of this chapter is to 

analyze actual precipitation data collected in fifteen meteorological stations in Belize. There are 

other stations but because of data length, we chose only fifteen. We first identify the probability 

density function (PDF) that best characterizes the behavior, the Wakeby distribution for the 

entire data and then separated the data by the two seasons in Belize namely the wet and dry 

season. We conducted a hypothesis testing to determine if there is a distinction between the two 

seasons. We then transformed the data using a Box Cox transformation and then do a cluster 

analysis on the 15 weather stations.  

The determination of the best fit distribution to represent the rainfall process in stations of 

Belize is discussed in this paper.  An extensive search comparing  several distribution such as 

Wakeby , lognormal, gamma, Weibull ,Generalized Pareto, Dugan and many other distributions 

have  been  used  on the  monthly average rainfall data from 1960 to 2011. The selection of the 

best fit distribution is done by examining the minimum error produced by the Kolmogorov 

Smirnov (KS) goodness of fit test. Based on the results of KS goodness of fit test, Wakeby 
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distribution is the most suitable to describe the rainfall patterns in the stations of Belize as the 

error produced is the minimum. 

In Chapter 5, we did times series analysis on Belize’s tourist arrival data with the 

objective of identifying the best forecasting model. First we test the data for stationarity, 

meaning that the mean and variance does not change over time and that the process does not 

have a trend. The two forecasting procedures that we utilize are the Holt-Winters exponential 

smoothing and Seasonal ARIMA model. Both of these models appear to fit the data well.  In 

further analysis of the residuals, we conclude that the Holt Winter is the optimal forecasting 

model based on the data used in the study. Although our data set was specific, the same 

methodology can be applied to similar time series data. 

Exponential smoothing and ARIMA models are the two most widely-used approaches to 

time series forecasting, and provide complementary approaches to the problem. While exponen-

tial smoothing models were based on a description of trend and seasonality in the data, ARIMA 

models aim to describe the autocorrelations in the data 

The dissertation concludes with Chapter 6, where possible future directions are explained 

along with future consideration with regards to the work already presented. 
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Chapter 2: Risk Analysis for Investment 

 

Introduction 

Risk is a part of investing and a sound understanding of what risk is and how it is measures 

is vital to investment. We start our discussion by defining risk.  Webster’s dictionary defines risk 

as “exposing to danger or hazard”. Thus, risk is perceived, by Webster, almost entirely in 

negative terms. In finance, our definition of risk is both different and broader. Risk, as we see it, 

refers to the likelihood that we will receive a return on an investment that is different from the 

return we expected to make. Thus, risk includes not only the bad outcomes, i.e., returns that are 

lower than expected, but also good outcomes, i.e., returns that are higher than expected. In fact, 

we can refer to the former as downside risk and the latter is upside risk; and we consider both 

when measuring risk. 

 

The foundations for the development of asset pricing models were laid by Markowitz 

(1952) and Tobin (1958). Early theories suggested that the risk of an individual security is the 

standard deviation of its returns – a measure of return volatility. Thus, the larger the standard 

deviation of security returns, the greater the risk. An investor’s main concern, however, is the 

risk of his/her total wealth made up of a collection of securities, the portfolio. Markowitz (1952) 

observed that (i) when two risky assets are combined, their standard deviations are additive only 

in the case that the two assets are perfectly positively correlated and (ii) when a portfolio of risky 

assets is formed, the standard deviation risk of the portfolio is less than the sum of the standard 

deviations of its constituents. Markowitz was the first to develop a specific measure of portfolio 

risk and to derive the expected return and risk of a portfolio. The Markowitz model generates the 



6 

 

efficient frontier of portfolios and the investors are expected to select a portfolio, which is most 

appropriate for them, from the efficient set of portfolios made available. Tobin (1958) suggested 

a course of action to identify the appropriate portfolios among the efficient set. 

The computation of risk reduction as proposed by Markowitz is tedious. Sharpe (1964) 

developed a computationally efficient method, the single index model, where the return on an 

individual security is related to the return on a common index. The common index may be any 

variable thought to be the dominant influence on stock returns and need not be a stock index 

(Jones, 1991). The single index model can be extended to portfolios as well. This is possible 

because the expected return on a portfolio is a weighted average of the expected returns on 

individual securities. 

 

When analyzing the risk of an individual security; however, the individual security risk 

must be considered in relation to other securities in the portfolio. In particular, the risk of an 

individual security must be measured in terms of the extent to which it adds risk to the investor’s 

portfolio. Thus, a security’s contribution to the portfolio risk is different from the risk of the 

individual security. Investors face two kinds of risks, namely, diversifiable (unsystematic) and 

non-diversifiable (systematic). Unsystematic risk is the component of the portfolio risk that can 

be eliminated by increasing the portfolio size, the reason being that risks that are specific to an 

individual security such as business or financial risk can be eliminated by constructing a well-

diversified portfolio. Systematic risk is associated with overall movements in the general market 

or economy and therefore is often referred to as the market risk. The market risk is the 

component of the total risk that cannot be eliminated through portfolio diversification. 
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The main objective of this chapter is to review the conceptual idea behind asset pricing 

models and to discuss the testing and evaluation methods. This chapter is organized as follows. 

Section 2 discusses the four commonly used risk models. These risk models are the Capital Asset 

Pricing Model (Sharpe-Linter Version), Capital Asset Pricing Model (Conditional Version), 

Arbitrage Pricing Theory and a Multifactor model adopted in empirical investigations of asset 

pricing.  Section 3 discusses the empirical findings regarding the four models. The final section 

concludes the chapter. In what follow we shall address very popular investment strategies. 

Relevant information on the mission of the present study can be found in Fama and French 

(1996), Fama and French (1996), Connor and Sehgal (2001), Chawarit (1996), Chanthirakul 

(1998), Fama and French (1992), Ross (1976), Sharpe (1964), Lintner (1965) , Mossin (1966), 

Brigham and Ehrhardt ( 2005). 

A Review of Current Risk Models 

In what follows, we shall address commonly used risk models, the Capital Asset Pricing 

Model (Sharpe-Linter Version), Capital Asset Pricing Model (Conditional Version), Arbitrage 

Pricing Theory and a Multifactor model which are very popular in investment strategies. 

The Capital Asset Pricing Model (CAPM) 

Investors who buy assets expect to earn returns over the time horizon that they hold the 

asset. Their actual returns over this holding period may be very different from the expected 

returns and it is this difference between actual and expected returns that is source of risk. The 

risk and return model that has been in use the longest and is still the standard in most real world 

analyses is the capital asset pricing model (CAPM).  The CAPM conveys the notion that 

securities are priced so that the expected returns will compensate investors for the expected risks. 
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There are two fundamental relationships: the capital market line (CML) and the security market 

line (SML). These two models are the building blocks for deriving the CAPM. 

The CML specifies the return an individual investor expects to receive on a portfolio. 

This is a linear relationship between risk and return on efficient portfolios that can be 

written as: 

 
𝐸(𝑅𝑝) = 𝑟𝑓 + 𝜎𝑝 (

𝐸(𝑅𝑚) − 𝑟𝑓
𝜎𝑚

) 
(2.1) 

 

where 𝑅𝑝 is portfolio return, 𝑟𝑓 risk-free asset return, Rm market portfolio return, 𝜎𝑝 and standard 

deviation of portfolio returns and 𝜎𝑚 is standard deviation of market portfolio returns. 

 

According to Equation 2.1, the expected return on a portfolio can be thought of as the 

sum of the return for delaying consumption and a premium for bearing the risk inherent in the 

portfolio. The CML is valid only for efficient portfolios and expresses investors’ behavior 

regarding the market portfolio and their own investment portfolios. 

 

The Security market line (SML) expresses the return an individual investor can expect in 

terms of a risk-free rate and the relative risk of a security or portfolio. The SML with respect to 

security i can be written as: 

 𝐸(𝑅𝑖) = 𝑟𝑓 + 𝛽𝑖𝑚(𝐸(𝑅𝑚) − 𝑟𝑓)     (2-2) 

 

where  
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𝛽𝑖𝑚 =

𝜎𝑖𝑚
𝜎𝑚2

=
𝑐𝑜𝑣(𝑅𝑖 , 𝑅𝑚) 

𝜎𝑚2
               

(2-3) 

and 𝜎𝑖𝑚 the covariance between security return, 𝑅𝑖 , and market portfolio return. The 

𝛽𝑖𝑚 can be interpreted as the amount of non-diversifiable risk inherent in the security relative to 

the risk of the market portfolio. Equation (2.2) is the Sharpe–Lintner version of the CAPM. The 

set of assumptions sufficient to derive the CAPM version of (Equation 2.2) are the following: 

 the investor’s utility functions are either quadratic or normal, 

 all diversifiable risks are eliminated, and 

 the market portfolio and the risk-free asset dominate the opportunity set of risky assets. 

The SML is applicable to portfolios as well. Therefore, SML can be used in portfolio analysis to 

test whether securities are fairly priced, or not. 

The three assumptions above can be further broken down into eight assumptions for the CAPM, 

namely: 

1. Investors are rational and risk averse. They pursue single-mindedly the maximization of 

the expected utility of their end of period wealth. Implication: The model includes the 

single time horizon for all investors. 

2.  The markets are perfect, thus taxes, inflation, transaction costs, and short selling 

restrictions are not taken into account. 

3. Investors can borrow and lend unlimited amounts at the risk-free rate. 

4. All assets are infinitely divisible and perfectly liquid. 

5. Investors have homogenous expectations about asset returns. In other words, all 

investors agree about mean and variance as the only system of market assessment, thus 
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everyone perceives identical opportunity. The information is costless, and all investors 

receive the same information simultaneously. 

6. Asset returns conform to the normal distribution. 

7. The markets are in equilibrium, and no individual can affect the price of a security. 

8.  The total number of assets on the market and their quantities are fixed within the 

defined time frame. 

Once you accept the assumptions that lead to all investors holding the market portfolio and 

measure the risk of an asset with beta, the return you can expect to make can be written as a 

function of the risk-free rate and the beta of that asset. Table 2-1 outlines some advantages and 

disadvantages of using CAPM. 

Conditional CAPM 

One of the commonly made assumptions is that the betas of the assets remain constant over 

time. However, this is not a particularly reasonable assumption since the relative risk of a firm's 

cash flow is likely to vary over the business cycle.  Hence, betas and expected returns will in 

general depend on the nature of the information available at any given point in time and vary 

over time. Ravi Jagannathan and Zhenyu Wang (1996) assumed that the expected return on an 

asset based on the information available at any given point in time is linear in its conditional 

beta, and introduced the idea of the Conditional CAPM. 

 We use the subscript t to indicate the relevant time period. For example, Rit denotes the 

gross (one plus the rate of) return on asset i in period t, and Rmt, the gross return on the aggregate 

wealth portfolio of all assets in the economy in period t. We refer to Rmt, as the market return. 

Let It-1 denote the common information set of the investors at the end of period t - 1. In this paper 
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Table 2.1: Advantages and disadvantages of CAPM 

Advantages of CAPM Disadvantages of CAPM 

1. Market portfolio includes all the risky assets 

including human capital while the proxy just 

contains the subset of all assets 

2. It has given a measure of risk, market beta, 

interpreted as market sensitivity 

 

3. The popularity  and Attractiveness of CAPM 

is its potential testability 

 

4. If empirically true, it has a wide ranging 
implication in capital budgeting, cost benefit 

analysis, portfolio selection and  development 

of investment strategies 

 

5. CAPM durability is due to the fact that it 

explains  return common variability in terms 

of a single factor, which generates return for 

each individual asset via some linear 

functional  relationship 

 

6. It considers only systematic risk, reflecting a 
reality in which most investors have 

diversified portfolios from which 

unsystematic risk has been essentially 

eliminated 

 

7. It generates a theoretically-derived 

relationship between required return and 

systematic risk which has been subject to 

frequent empirical research and testing. 

 

8. It is generally seen as a much better method of 

calculating the cost of equity than the 
dividend growth model (DGM) in that it 

explicitly takes into account a company’s 

level of systematic risk relative to the stock 

market as a whole. 

 

9. It is clearly superior to the WACC in 

providing discount rates for use in investment 

appraisal. 

 

 

 
 

1. Inability to observe the true market portfolio 

2. Liable to Type1 and  Type11 errors 

3. In order to use the CAPM, values need to be assigned 

to the risk-free rate of return, the return on the market, 

or the equity risk premium (ERP), and the equity beta. 

 

4. The yield on short-term Government debt, which is 

used as a substitute for the risk-free rate of return, is 

not fixed but changes on a daily basis according to 

economic circumstances. A short-term average value 
can be used in order to smooth out this volatility. 

 

 

5. Finding a value for the ERP is more difficult. 

6. Beta values are now calculated and published regularly 

for all stock exchange-listed companies. The problem 

here is that uncertainty arises in the value of the 

expected return because the value of beta is not 

constant, but changes over time. 

 

7. One disadvantage in using the CAPM in investment 
appraisal is that the assumption of a single-period time 

horizon is at odds with the multi-period nature of 

investment appraisal. While CAPM variables can be 

assumed constant in successive future periods, 

experience indicates that this is not true in reality. 
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we assume all the time series in this paper are covariance stationary and all the conditional and 

unconditional moments that we use exist. 

 

Risk-averse rational investors living in a dynamic economy will typically anticipate and 

hedge against the possibility that investment opportunities in the future may change adversely. 

Because of this hedging need that arises in a dynamic economy, the conditionally expected 

return on an asset will typically be jointly linear in the conditional market beta and hedge 

portfolio beta. However, employing Merton (1980) findings, we will assume that the hedging 

motives are not sufficiently important, and hence the CAPM will hold in a conditional sense as 

given below. 

 For each asset i and in each period t, 

 𝐸(𝑅𝑖|𝐼𝑡−1) = 𝛾0𝑡−1 + 𝛾1𝑡−1  𝛽𝑖𝑡−1    (2.4) 

Where 𝛽𝑖𝑡−1 is the conditional beta of asset i defined as, 

 
𝛽𝑖𝑡−1 =

𝑐𝑜𝑣(𝑅𝑖𝑡 , 𝑅𝑚𝑡|𝐼𝑡−1) 

𝑉𝑎𝑟(𝑅𝑚𝑡|𝐼𝑡−1)
                

(2.5) 

γ0t−1, is the conditional expected return on a "zero-beta" portfolio, and 𝛾1𝑡−1, is the conditional 

market risk premium. 

Since our aim is to explain the cross-sectional variations in the unconditional expected 

return on different assets, we take the unconditional expectation of both sides of equation (2) to 

get 

 

 𝐸(𝑅𝑖𝑡) = 𝛾0 + 𝛾1  �̅�𝑖 + 𝑐𝑜𝑣(𝛾1𝑡−1 , 𝛽𝑖𝑡−1 ),    (2.6) 

 

where 
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𝛾0 = 𝐸(𝛾0𝑡−1)        ,   𝛾1 = 𝐸(𝛾1𝑡−1)    𝑎𝑛𝑑     �̅�𝑖 = 𝐸(𝛽𝑖𝑡−1) . 

Here, 𝛾1, is the expected market risk premium, and �̅�𝑖  is the expected beta. If the covariance 

between the conditional beta of asset i and the conditional market risk premium is zero (or a 

linear function of the expected beta) for every arbitrarily chosen asset i, then equation (4) 

resembles the static CAPM, i.e., the expected return is a linear function of the expected beta.  

Jagannathan and Wang (1996) argued that the two assumptions of Fama and French 

(1992) are not reasonable. Relaxing the first assumption naturally leads them to examine the 

conditional CAPM. They demonstrated that the empirical support for the conditional CAPM 

specification is rather strong. When betas and expected returns are allowed to vary over time by 

assuming that the CAPM holds period by period, the size effects and the statistical rejections of 

the model specifications become much weaker. When a proxy for the return on human capital is 

also included in measuring the return on aggregate wealth, the pricing errors of the model are not 

significant at conventional levels. More importantly, firm size does not have any additional 

explanatory power. 

The conditional CAPM is very different from what is commonly understood as the 

CAPM, and resembles the multi-factor model of Ross (1976). The model evaluated has three 

betas, whereas the standard CAPM has only one beta. Jagannathan and Wang(1996) chose this 

model because (i) the use of a better proxy for the return on the market portfolio results in a two-

beta model in place of the classical one-beta model, and (ii) when the CAPM holds in a 

conditional sense, unconditional expected returns will be linear in the unconditional beta as well 

as a measure of beta-instability over time. When the CAPM holds conditionally, we need more 

than the unconditional beta calculated by using the value-weighted stock index to explain the 

cross-section of unconditional expected returns.  
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Additional relevant information can be found in: Fischer, Jensen, and Scholes (1972), 

Fama, Eugene F. (1968) , Fama and French (1992), French, Craig W. (2003) , French, Craig W. 

(2002), Lintner, John (1965). Markowitz, Harry M. (1999) , Mehrling, Perry (2005), Mossin, 

Jan. (1966) Ross, Stephen A. (1977). , Trey nor, Jack L. (1962), Treynor, Jack L. (1961) , Tobin, 

James (1958) and Stone, Bernell K. (1970), Banz (1981), Reinganum (1981), Gibbons (1982), 

Basu (1983), Chan, Chen, and Hsieh 

(19851, Shanken (19851, and Bhandari (1988), Hansen and Jagannathan (1994) , Hansen and 

Singleton (1982), Connor and Korajczyk (1988a and 1988131, Lehmann and Modest (1988), and 

Hansen and Jagannathan (1991 and 1994), Jegadeesh (1992), Dybvig, P. H., and J. E. Ingersoll, 

Jr., 1982, Black, Fischer, Michael C. Jensen, and Myron Scholes, 1972, Bollerslev, Tim, Robert 

F. Engle, and Jeffrey M. Wooldridge, (1988), Zhou, Guofu, (1994) for additional information on 

Condtional CAPM. 

Arbitrage Pricing Theory  

The Arbitrage Pricing Theory (APT) is a very detailed pricing method.   The APT is based 

on five different economic factors.   The factors are: business cycle, time horizon, confidence, 

inflation and market timing risk. The advantage of using the APT in portfolio selection and 

portfolio risk management is that the model makes the fundamental sources of risk explicit.  In 

this method these factors are related to the expected return of risky investments.   By using these 

macroeconomic variables it provides a way to estimate the risk premium for every individual 

variable.   Why is that important to an investor?   For some investors some risk criteria or 

variables are more important than others. 

To understand the arbitrage pricing model, we need to begin with a definition of arbitrage. 

The basic idea is a simple one. Two portfolios or assets with the same exposure to market risk 
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should be priced to earn exactly the same expected returns. If they are not, you could buy the less 

expensive portfolio, sell the more expensive portfolio, have no risk exposure and earn a return 

that exceeds the riskless rate. This is arbitrage. If you assume that arbitrage is not possible and 

that investors are diversified, you can show that the expected return on an investment should be a 

function of its exposure to market risk. While this statement mirrors what was stated in the 

capital asset pricing model, the arbitrage pricing model does not make the restrictive assumptions 

about transactions costs and private information that lead to the conclusion that one beta can 

capture an investment’s entire exposure to market risk. Instead, in the arbitrage pricing model, 

you can have multiples sources of market risk and different exposures to each (betas). The model 

assumes that the return to the i
th

 security, Rit , is generated by a multi- index model: 

 𝑅𝑖𝑡 = 𝑎𝑖 + 𝛽𝑖1(𝐹1𝑡) + ⋯+ 𝛽𝑖𝐽(𝐹𝐽𝑡) + 𝜀𝑖𝑡      ;   𝑖 = 1,2,…𝑁,        (2.7) 

Where the Fjt are factors (j=1,2,…,J); the  𝛽𝑖𝐽 are factor loading or sensitivities and 𝜀𝑖 is a 

random variable with E(𝜀𝑖)=0, E(𝜀𝑖
2)=𝜎𝑖

2, E(𝜀𝑖𝜀𝑘)=0 for 𝑖 ≠ 𝑗 and 𝑐𝑜𝑣(𝜀𝑖 , 𝐹𝑗) = 0 for all i  and j. 

The focus of the APT is on the expected return 𝐸(𝑅𝑖𝑡).  Assuming: 

1. There are no arbitrage possibilities 

2. The law of large number, 

the model implies the following relationship between the expected return to asset and the factor 

loadings(sensitivities) 

 

 𝐸(𝑅𝑖𝑡) = 𝛼0 + 𝛼1𝑏𝑖1 +⋯+ 𝛼𝐽𝑏𝑖𝐽 + 𝜀𝑖𝑡     (2.8) 

 

Where 𝛼0 usually equals the risk-free rate of return and 𝛼𝐽 has the interpretation of the expected 

return to a portfolio (risk price) with unit sensitivity to factor j and zero sensitivity to all other 

factors. 
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The practical questions then become knowing how many factors there are that determine 

expected returns and what the betas for each investment are against these factors. The arbitrage 

model estimates both by examining historical data on stock returns for common patterns (since 

market risk affects most stocks) and estimating each stock’s exposure to these patterns in a 

process called factor analysis. A factor analysis provides two output measures: 

 

1. It specifies the number of common factors that affected the historical return data 

2. It measures the beta of each investment relative to each of the common factors and 

provides an estimate of the actual risk premium earned by each factor. 

The factor analysis does not, however, identify the factors in economic terms – the factors 

remain factor 1, factor 2 etc. In summary, in the arbitrage pricing model, the market risk is 

measured relative to multiple unspecified macroeconomic variables, with the sensitivity of the 

investment relative to each factor being measured by a beta. The number of factors, the factor 

betas and factor risk premiums can all be estimated using the factor analysis. Table 2.1 outlines 

some advantages and disadvantages of APT. 

Fama–French Three-Factor Model 

The Factor Model expands on the capital asset pricing model (CAPM) by adding size and 

value factors in addition to the market risk factor in CAPM. This model considers the fact that 

value and small cap stocks outperform markets on a regular basis. By including these two 

additional factors, the model adjusts for the outperformance tendency, which is thought to make 

it a better tool for evaluating manager performance. 

 

http://www.investopedia.com/terms/f/famaandfrenchthreefactormodel.asp


17 

 

Table 2.2: Advantages and Disadvantages of APT 

Advantages of APT Disadvantages of APT 

1. Underlying assumption is that the 

return generating process is 

stationary 

2. APT operates under relative 

weaker assumptions 

3. Emphasis on multiple systematic 

risk 

4. It appears to better explain 

investment results and more 

efficiently controls portfolio risks 

5. APT models allow for priced 

factors that are orthogonal to the 

market return and do not require 

that all investors are mean–

variance optimizers, as in the 

CAPM 

6. The APT demands that investors 

perceive the risk sources, and that 

they can reasonably estimate factor 

sensitivities. 

 

1. The number of institutional 

investors actually using APT is 

small 

 

2. The arbitrage pricing model's 

failure to identify the factors 

specifically in the model may be a 

statistical strength, but it is an 

intuitive weakness 

 

3.  Even professionals and academics 

can't agree on the identity of the 

risk factors, and the more betas you 

have to estimate, the more 

statistical noise you must live with. 

 

 

Previous work shows that average returns on common stocks are related to firm 

characteristics like size, earnings/price, cash flow/price, book-to-market equity, past sales 

growth, long-term past return, and short-term past return. Because these patterns in average 

returns apparently are not explained by the CAPM, they are called anomalies. Eugene Fama and 

Kenneth French find that, except for the continuation of short-term returns, the anomalies largely 

disappear in a three-factor model. Their results are consistent with rational ICAPM or APT.  

CAPM uses a single factor, beta, to compare the excess returns of a portfolio with the excess 

returns of the market as a whole. But it oversimplifies the complex market. Fama and French 

started with the observation that two classes of stocks have tended to do better than the market as 

a whole: (i) small caps and (ii) stocks with a high book-to-market ratio (BM, customarily called 

http://en.wikipedia.org/wiki/Eugene_Fama
http://en.wikipedia.org/wiki/Kenneth_French
http://en.wikipedia.org/wiki/CAPM
http://en.wikipedia.org/wiki/Portfolio_(finance)
http://en.wikipedia.org/wiki/Stock
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value stocks, and different from growth stocks). They then added two factors to CAPM to reflect 

a portfolio's exposure to these two classes: 

 𝐸(𝑟𝑝) = 𝑟𝑓 + 𝛽𝑡𝑚(𝐸(𝑟𝑚) − 𝑟𝑓) + 𝛽𝑡,𝑆𝑀𝐵(𝑆𝑀𝐵) + 𝛽𝑡,𝐻𝑀𝐿(𝐻𝑀𝐿) + 𝜀𝑝     (2-9) 

Here 𝑟𝑝 is the portfolio's rate of return, rf is the risk-free return rate, and rm is the return of the 

whole stock market. The "three factor" β is analogous to the classical β but not equal to it, since 

there are now two additional factors to do some of the work. SMB stands for "small (market 

capitalization) minus big" and HML for "high (book-to-price ratio) minus low"; they measure the 

historic excess returns of small caps over big caps and of value stocks over growth stocks. These 

factors are calculated with combinations of portfolios composed by ranked stocks and available 

historical market data.  

Fama and French (1993) find that the three-factor risk-return relation is a good model for the 

returns on portfolios formed on size and book-to-market equity.  They found that the three factor 

model also explains the strong patterns in returns observed when portfolios are formed on 

earnings/price, cash flow/price, and sales growth, variables recommended by Lakonishok, 

Shleifer, and Vishny (1994) and others. The three-factor risk-return relation also captures the 

reversal of long-term returns documented by DeBondt and Thaler (1985). Thus, portfolios 

formed on E/P, C/P, sales growth, and long-term past returns do not uncover dimensions of risk 

and expected return beyond those required to explain the returns on portfolios formed on size 

and BE/ME. Fama and French (1994) extend their conclusion to industries. The three-factor risk-

return relation (Equation 2.9) is, however, just a model. It surely does not explain expected 

returns on all securities and portfolios. We find that (1) cannot explain the continuation of short-

term returns documented by Jegadeesh and Titman (1993) and Asness (1994).  

http://en.wikipedia.org/wiki/Growth_stock
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Empirical Testing  

The current approaches of testing and calculating the risk factor on investment returns are 

sensitive to the assumption of the symmetry. The accuracy and robustness of the models in 

discussed above is still yet to be answered. As part of the review process we examined the 

different methods in which the models of interest are tested.  

Testing CAPM 

Another possible problem in many early tests of CAPM has arisen due to it being a single 

period model. Most tests have used time series regression, which is appropriate, if the risk 

premia and betas are stationary, which is unlikely to be true. 

Several researches have focused on the validity of CAPM and the findings from earlier to even 

more recent ones appear to be mixed.  In order to test the validity of the CAPM researchers, 

always test the SML given in (Equation 2.10). The CAPM is a single-period ex-ante model. 

However, since the ex-ante returns are unobservable, researchers rely on realized returns. So the 

empirical question arises: Do the past security returns conform to the CAPM? The beta in such 

an investigation is usually obtained by estimating the security characteristic line (SCL) that 

relates the excess return on security i to the excess return on some efficient market index at time 

t. The ex post SCL can be written as: 

 

 𝑅𝑖𝑡 − 𝑟𝑓𝑡 = 𝛼𝑖 + 𝑏𝑖𝑚(𝑅𝑚𝑡 − 𝑟𝑓𝑡) + 𝜀𝑖𝑡                          (2.10) 

where  𝛼𝑖 is the constant return earned in each period and  𝑏𝑖𝑚  is an estimate of 𝛽𝑖𝑚 in the SML 

(Jensen, 1968). The estimated 𝛽𝑖𝑚 is then used as the explanatory variable in the following cross-

sectional equation: 
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 𝑅𝑖𝑡 − 𝑟𝑓𝑡 = 𝛾0 + 𝛾1𝑏𝑖𝑚 + 𝛿𝑖𝑡                               (2.11) 

to test for a positive risk return trade-off. The coefficient 𝛾0 is the expected return of a zero beta 

portfolios, expected to be the same as the risk-free rate, and 𝛾1 is the market price of risk (market 

risk premium), which is significantly different from zero and positive in order to support the 

validity of the CAPM. When testing the CAPM using (4) and (5), we are actually testing the 

following issues: (i) bim’s are true estimates of historical 𝛽𝑖𝑚’s, (ii) the market portfolio used in 

empirical studies is the appropriate proxy for the efficient market portfolio for measuring 

historical risk premium and lastly whether the CAPM specifications are correct. Other 

methodology have been used for estimating the market model like Lagrange Multiplier, 

Maximum likelihood ratio test  and Hotelling T
2
 statistics , they all reject CAPM. 

The mixed empirical findings on the return–beta relationship prompted a number of responses: 

 The single-factor CAPM is rejected when the portfolio used as a market proxy is 

inefficient (See [2], for example, Roll, 1977; Ross, 1977). Even very small deviations 

from efficiency can produce an insignificant relationship between risks and expected 

returns (Roll and Ross, 1994; Kandel and Stambaugh, 1995). 

 Kothari et al. (1995) highlighted the survivorship bias in the data used to test the 

validity of the asset pricing model specifications. 

 

 Beta is unstable over time (see, for example, Bos and Newbold, 1984); Faff et al., 

1992; Brooks et al., 1994; Faff and Brooks, 1998). 

 

 There are several model specification issues: For example, (i) Kim (1995) and 

Amihud et al. (1993) argued that errors-in-the-variables problem impact on the 
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empirical research, (ii) Kan and Zhang (1999) focused on a time-varying risk premium, 

(iii) Jagannathan and Wang (1996) showed that specifying a broader market portfolio can 

affect the results and (iv) Clare et al. (1998) argued that failing to take into account 

possible correlations between idiosyncratic returns may have an impact on the results. 

Testing Conditional CAPM 

The test of CCAPM becomes very difficult due to the problem of observing expected 

market return. To overcome the difficulties Tim Bolerslev (1988) ,Hall(1989) and Ng(1991) 

suggested to assume market price risk to be constant and hence requires a functional 

specification of variance and covariance structure. In earlier research works the presence of time 

varying moments in return distribution has been in the form of clustering large shocks of 

dependent variables and thereby exhibiting a large positive or negative value of the error term 

[Mandelbrot (1963) and Fama (1965)]. A formal specification was ultimately proposed by Engle 

(1982) in the form of Autoregressive Conditional Heteroscedastic (ARCH) process. Some of the 

latter studies have attempted to improve upon Engle’s ARCH specification [Engle and 

Bollerslev(1986)]. The approaches which are helpful in specifying functional form of error term 

in the test of CCAPM include the approaches given by Engle and Bollerslev (1986); Bollerslev 

et al. (1992) and Ng et al. (1992) in case of family of ARCH model. 

The implicit assumption of Engle ARCH and Bollerslev GARCH is that return 

distribution characterized with time variation only in variance. But the evidence from various 

studies has shown time variation in both mean and variance of return distribution [Domowitz and 

Hakkins (1985)]. Incorporating this idea Engle (1987) has proposed the ARCH-M to account for 

time variation in both mean and variance 
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Lewellen and Nagel (2006) test the conditional CAPM by directly estimating conditional 

alphas and betas using short window regressions. That is, rather than estimate (Equation 2.2) 

once using the full times series of returns, they estimated it separately every, say, quarter using 

daily or weekly returns. The result is a direct estimate of each quarter‘s conditional alpha and 

beta; without using any state variables or making assumption about the quarter variation in beta. 

Testing APT 

The arbitrage pricing model's failure to identify the factors specifically in the model may 

be a statistical strength, but it is an intuitive weakness. The solution seems simple: Replace the 

unidentified statistical factors with specific economic factors and the resultant model should have 

an economic basis while still retaining much of the strength of the arbitrage pricing model. That 

is precisely what multifactor models try to do. Multi-factor models generally are determined by 

historical data, rather than economic modeling. Once the number of factors has been identified in 

the arbitrage pricing model, their behavior over time can be extracted from the data. The 

behavior of the unnamed factors over time can then be compared to the behavior of 

macroeconomic variables over that same period to see whether any of the variables are 

correlated, over time, with the identified factors.  

A major problem in testing Arbitrage Pricing Theory is that the pervasive factors 

affecting asset returns are unobservable. The conventional factor extraction techniques are 

maximum likelihood factor analysis and principle component approach. Mostly factor analysis to 

measure these common factors has been used [Chen (1983); Roll and Ross (1980); Reinganum 

(1981); Lehmann and Modest (1988)]. While Connor and Korajczyk (1988) have used the 

asymptotic principal component technique to estimate the pervasive factors influencing asset 

returns and to test the restrictions imposed by static and intertemporal version of APT on a 
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multivariate regression model. The factor extraction analysis is only a statistical tool to uncover 

the pervasive forces (factors) in the economy by examining how asset returns covary together. In 

using maximum likelihood procedure, if one knows the factor loadings for say k portfolio, then 

one can compute the k factor loadings for all securities [Chen (1983)]. We can use factor analysis 

only on one group of securities or portfolios and the factor loadings of all securities will 

correspond to the same common factor. Since bik (the sensitivity of asset i to the k
th

 factor) are 

not observable, we need to construct a proxy for the factor loadings. In factor analysis we can use 

estimated an b as a proxy, then run a cross-sectional regression of Rit on bik. We can use the 

autoregressive approach as well and derive the proxy from the return generating process. The 

intuition behind this is that historical excess returns are useful in explaining current cross 

sectional returns because they span the same return space as bik, and thus can be used as proxies 

for systematic risks. The substitution of excess return for unobservable bik is similar in spirit to 

the technique of substituting mimicking factors portfolios return for unobservable factors used by 

Jobson (1982). After identifying the factor, we use the estimated factor loadings to explain the 

cross sectional variation of individual estimated expected returns and to measure the size and 

statistical significance of the estimated risk premia associated with each factor. 

Testing Fama–French Three-Factor Model 

Standard Multivariate Regression method is normally used to test Fama–French three-

factor model (FF3FM hereafter). Once SMB and HML are defined in the model, the 

corresponding coefficients are determined by linear regressions and can take negative values as 

well as positive values. The FF3FM explains over 90% of the diversified portfolios returns, 

compared with the average 80% given by the CAPM. The signs of the coefficients suggested that 
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small cap and value portfolios have higher expected returns—and arguably higher expected 

risk—than those of large cap and growth portfolios.  

The alternate approach in Chen, Roll and Ross (1986) is to look for economic variables 

that are correlated with stock returns and then to test whether the loading of these economic 

factors describe the cross section of expected returns. This approach thus gives insight about how 

the factors relate to uncertainties about consumption and portfolio opportunities that are of 

concern to investors. 

Conclusion 

The accuracy and robustness of the models in this research is still yet to be answered. 

Several researchers have tested the robustness of the results by using data from different market 

sources, for example, Japan, UK etc. However there is no consensus in the literature as to what is 

the suitable measure of risk. 

The version of the CAPM by Sharpe and Lintner has never been an empirical success. More 

than a modest level of disappointment with the CAPM is evident by the number of related but 

different theories, for example, Hakanson (1971); Merton(1973); Ball (1978); Ross (1976); 

Reinganum (1981), and by the questioning of CAPM’s validity, as a scientific theory, e.g., Roll 

(1977, 1994). Nonetheless, the CAPM retains a central place in the thoughts of finance 

practitioners such as portfolio managers, investment advisors and security analysts. But there is a 

good reason for its durability, the fact that it explains return common variability in terms of a 

single factor, which generates return for each individual asset, via some linear functional 

relationship. The elegant derivation of CAPM is based on first principle of utility theory, and its 

continued attractiveness is due to its potential testability. 
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The important point to emphasize is that the Sharpe-Lintner-Black CAPM, Conditional 

CAPM, Consumption CAPM and the Multifactor Model are not mutually exclusive. Following 

Constantinides (1989), one can view the models as different ways of formulizing the asset 

pricing implications of common general assumptions about tastes (risk aversion) and portfolio 

opportunities (multivariate normality). Thus as long as major prediction of the models about the 

cross section of expected returns have some empirical content, and  as long as we keep the 

empirical short comings of the models in mind, we have some freedom to lean on one model or 

another, to suit the purpose in hand. 
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Chapter 3: Proposed Analysis for Estimating Correctly the CAPM Beta 

Introduction 

Historically, most investors included as part of their management strategy a risk measure 

that is based on historical factors. The common risk measure is the risk associated with the 

Capital Asset Pricing Model (CAPM). The CAPM model however is driven by a set of 

assumptions; one of which is the normality assumption of the returns. Natural phenomena often 

produce departures from normality and many recent findings suggest that the most commonly 

used estimation methods exhibit varying degrees of non-robustness to certain violations of the 

assumption of normality. In practice, it is not customary to get normal data in many real- world 

applications, researchers are uncertain about the true nature of the distribution of the errors and a 

naïve application of the normal distribution can give the user the wrong impression that he or she 

has obtained a useful inferential result. This can lead to misleading information later being 

passed on to financial advisors and later to their clients with regards to investment options. We 

introduced a statistical procedure of obtaining a more robust measure of risk premium beta .This 

process included the best justification of the selection process of the probability distribution that 

drives the estimate of the CAPM beta.  

  If the correct PDF of the returns can be identified and implemented, in the estimation 

procedure, on the errors and the response, it is expected that this would improve the estimates 

and minimize the errors.  We have indicated that most of the utility returns fit very well to a 

Johnson SU Distribution.  In recent years, there has been increasing awareness that departure 

from gaussianity occurs and that the Gaussian distribution should be considered an exception 

rather than the rule in applied modeling work such as CAPM. In the meantime, there has been a 
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growing interest in the study of a flexible class of very rich distributional models that cover the 

Gaussian and other common distributions.  

One practical approach to dealing with non-normality residual is the partially adaptive 

estimation, which fits a model selected from within a general parametric family of distributions 

to the error distribution of the data being analyzed. There must be a good reason for introducing 

a complex distribution, particularly if it requires more degrees of freedom than many distribution 

currently use. If the selected family includes the true error distribution as a special case then the 

corresponding estimator should perform similarly to MLE, allowing for some efficiency loss due 

to over-parameterization.  This approach can be applied to CAPM where assumption of 

normality is the driving factor in the estimation of the parameter and the risk measure that 

investors use in their investment decision. The Johnson SU distributions have already been 

mentioned in some attempts to approximate the non-normal behavior of stock returns, but there 

is little information on the numerical efficiency of these models when applied to actual market 

data, or on its power to capture the effects of infrequent but largely negative returns which 

characterize the distributions of some hedge fund strategies. 

The introduction of a not necessarily Normal probability density function to model the error of 

the CAPM parameter raises a number of questions such as: 

1. Are estimates with the selected family of distribution routinely computable? 

2. What practical differences does it make whether the error distribution is assumed to be 

normal or to belong to another family? 

3. Does the new error model yield an advantage from the point of view of both fitting and 

efficiency? 

4.  



28 

 

The Capital Asset Pricing Model (CAPM) 

The capital asset pricing model is a theory based upon the theory of portfolio selection. The basic 

premise is that in capital markets people are rewarded for bearing risk. Any asset is priced in 

equilibrium so that if the asset is risky people receive a higher rate of return than they would 

receive if they held a risk free asset. This higher rate of return is called the risk premium. 

However, the market does not reward people for bearing unnecessary risk, risk that can be 

avoided by diversification.   

 

   The incremental impact on risk and expected return when an additional risky asset, i, is added 

to the market portfolio, m, follows from the formulae for a two-asset portfolio. These results are 

used to derive the asset-appropriate discount rate. 

 Market portfolio's risk = (𝜔𝑚 
2 𝜎𝑚

2 + [(𝜔𝑖 
2𝜎𝑖

2 + 2𝜔𝑚𝜔𝑖𝜌𝑖𝑚  𝜎𝑖  𝜎𝑚)]) 

Hence, risk added to portfolio = 𝜔𝑖 
2𝜎𝑖

2 + 2𝜔𝑚𝜔𝑖  𝜌𝑖𝑚  𝜎𝑖 𝜎𝑚 

 

but since the weight of the asset will be relatively low, 𝜔𝑖 
2 ≈ 0 

therefore additional risk = 2𝜔𝑚𝜔𝑖𝜌𝑖𝑚  𝜎𝑖   𝜎𝑚 

 Market portfolio's expected return =  𝜔𝑚𝐸(𝑅𝑚) + 𝜔𝑖𝐸(𝑅𝑖) 

Hence additional expected return = 𝜔𝑖𝐸(𝑅𝑖) 

 

If an asset, i, is correctly priced, the improvement in its risk-to-expected return ratio achieved by 

adding it to the market portfolio, m, will at least match the gains of spending that money on an 
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increased stake in the market portfolio. The assumption is that the investor will purchase the 

asset with funds borrowed at the risk-free rate,𝑅𝑓, this is rational if 𝐸(𝑅𝑖) > 𝑅𝑓.  

Thus:  

 [𝜔𝑖(𝐸(𝑅𝑖) − 𝑅𝑓)]

[2𝜔𝑚𝜔𝑖𝜌𝑖𝑚𝜎𝑖𝜎𝑚]
=
[𝜔𝑖(𝐸(𝑅𝑚) − 𝑅𝑓)]

[2𝜔𝑚𝜔𝑖𝜎𝑚𝜎𝑚]
   

(3.1) 

 

 
𝐸(𝑅𝑎𝑖) = 𝑅𝑓 + (𝐸(𝑅𝑚) − 𝑅𝑓) ∗

[𝜌𝑖𝑚𝜎𝑖𝜎𝑚]

[𝜎𝑚𝜎𝑚]
      

(3.2) 

 

 
𝐸(𝑅𝑖) = 𝑅𝑓 + (𝐸(𝑅𝑚) − 𝑅𝑓) ∗

[𝜌𝑖𝑚]

[𝜎𝑚𝑚]
        

(3.3) 

Where 
[ρim]

[σmm]
 is the "beta", β return— the covariance between the asset's return and the market's 

return divided by the variance of the market return— i.e. the sensitivity of the asset price to 

movement in the market portfolio's value. Betas are standardized around one. If  

 

𝛽 = 1 ... Average risk investment 

𝛽 > 1 ... Above Average risk investment 

𝛽 < 1 ... Below Average risk investment 

𝛽 = 0 ... Riskless investment 

 

The average beta across all investments is one. 

http://en.wikipedia.org/wiki/Covariance
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The risk and return model that has been in use the longest and is still the standard in most real 

world analyses is the capital asset pricing model.  Once you accept the assumptions that lead to 

all investors holding the market portfolio and measure the risk of an asset with beta, the return 

you can expect can be written as a function of the risk-free rate and the beta of that asset. 

The asset return depends on the amount paid for the asset today. The price paid must 

ensure that the market portfolio's risk (return) characteristics improve when the asset is added to 

it. The CAPM is a model which derives the theoretical required expected return (i.e., discount 

rate) for an asset in a market, given the risk-free rate available to investors and the risk of the 

market as a whole. The CAPM is usually expressed: 

   �̅�𝑖 − 𝑟𝑓 = 𝛽𝑖(�̅�𝑀 − 𝑟𝑓)   (3.4) 

 

where 𝑟𝑓 is the rate of return on the risk free asset and �̅�𝑀 is the expected return on the market 

portfolio.  𝛽𝑖, Beta, is the measure of asset sensitivity to a movement in the overall market; Betas 

exceeding one signify more than average "riskiness" in the sense of the asset's contribution to 

overall portfolio risk; betas below one indicate a lower than average risk contribution. While 

�̅�𝑀 − 𝑟𝑓  is the market premium, the expected excess of the market portfolio's expected return 

over the risk-free rate. 

This equation can be statistically estimated using the following regression equation: 

      �̅�𝑖 − 𝑟𝑓 = 𝛼𝑖 + 𝛽𝑖(�̅�𝑀 − 𝑟𝑓)  + 𝜀𝑖    (3.5) 

where αi is called the asset's alpha, βi is the asset's beta coefficient . 

http://en.wikipedia.org/wiki/Capital_asset_pricing_model
http://en.wikipedia.org/wiki/Estimation_theory
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Alpha_(finance)
http://en.wikipedia.org/wiki/Beta_coefficient
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  Once an asset's expected return,  �̅�𝑖 , is calculated using CAPM, the future cash flows of 

the asset can be discounted to their present value using this rate to establish the correct price for 

the asset. A riskier stock will have a higher beta and will be discounted at a higher rate; less 

sensitive stocks will have lower betas and be discounted at a lower rate. In theory, an asset is 

correctly priced when its observed price is the same as its value calculated using the CAPM 

derived discount rate. If the observed price is higher than the valuation, then the asset is 

overvalued; it is undervalued for a too-low price. 

Johnson Su  4-Parameter Probability Distribution 

Given a continuous random variable X whose distribution is unknown and is to be 

approximated, Johnson (1949) proposed a set of normalizing translations. These translations 

have the following general form 

 
𝑍 = 𝛾 + 𝛿 ∙ 𝑔 (

𝑋 − 𝜉

𝜆
)                    

(3.6) 

where Z is a standard normal random variable, 𝛾 and 𝛿 are shape parameters, λ¸ is a scale 

parameter, 𝜉 is a location parameter and g (-) is one of the following functions, each one defining 

a family of distributions: 

 

𝑔(𝑦) =

{
 
 

 
 

ln(𝑦) ,                               𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

ln (𝑦 + √𝑦2 + 1) ,               𝑆𝑢 𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑙𝑛 (
𝑦
1 − 𝑦⁄ ),                    𝑆𝐵 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑦,                                𝑁𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

 

(3.7) 

 

While the SU distributions are defined in an unlimited range in both directions, for the bounded 

distributions the variable is bounded in both directions. After estimating parameters, the 

http://en.wikipedia.org/wiki/Cash_flow
http://en.wikipedia.org/wiki/Discounted
http://en.wikipedia.org/wiki/Present_value
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calculation of quantile or tail probability is simple, because these distributions come from a 

simple transformation of a normal distribution. 

 

Let’s consider first the SU translation function 

 𝑔(𝑦) = ln (𝑦 + √𝑦2 + 1) = sinh−1(𝑦)      (3.8) 

 

where,  

 
𝑍 = 𝛾 + 𝛿 ∙ sinh−1 (

𝑋 − 𝜉

𝜆
) 

(3.9) 

where λ ¸ must be positive. The shape of the distribution of X depends only on the parameters 𝛾 

and  𝛿, so the distribution of the variable 𝑌 =
𝑋−𝜉

𝜆
 has the same shape as that of X, and we can 

write 

 𝑍 = 𝛾 + 𝛿 ∙ sinh−1(𝑌) (3.10) 

Johnson's SU-distribution can cover a wide range of skewness and kurtosis values. In fact, 

Johnson constructed tables in which he computes 𝛾 and 𝛿 in terms of skewness and kurtosis. The 

expected value and the lower central moments of Y are given by the following equations: 

 

 𝜇1
′ (𝑌) = 𝜔1/2𝑠𝑖𝑛ℎ(𝜃) (3.11) 

 
𝜇2
′ (𝑌) =

1

2
(𝜔 − 1)(𝜔𝑐𝑜𝑠ℎ(2𝜃) + 1) 

(3.12) 

 

 
𝜇3
′ (𝑌) = −

1

4
𝜔
1
2(𝜔 − 1)2(𝜔(𝜔 − 2)𝑠𝑖𝑛ℎ(3𝜃) + 3𝑠𝑖𝑛ℎ(𝜃)) 

(3.13) 

 𝜇4
′ (𝑌) = −

1

8
(𝜔 − 1)2(𝜔2(𝜔4 + 2𝜔3 + 3𝜔2− 3)cosh(4𝜃) + 4𝜔2(𝜔+ 2)cosh(2𝜃) + 3(2𝜔 + 1)) (3.14) 
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where 𝜔 = exp (𝛿−2) and 𝜃 =
𝛾
𝛿⁄  . Observe that when 𝜃 = 0 we have µ3(Y) = 0 and so the 

distribution is symmetric. Note also that 𝜔 > 1 and µ3 has opposite sign to  𝛾. The skewness and 

kurtosis of Y, which we denote respectively as √𝛽1 and 𝛽2 are given by: 

 √𝛽1 =
𝜇3

𝜇2
3/2

 
(3.15) 

 

 𝛽2 =
𝜇4
𝜇2
2 

(3.16) 

Knowing our target values for skewness and kurtosis for the variable Y, the problem is to obtain 

estimates the parameters 𝛾 and  𝛿 . This can be done in different ways. We can use the tables 

computed by Johnson, but these are limited and often need second order interpolation 

techniques. Another possibility is to use equations (3.7) - (3.10) to obtain estimates for 𝛾 and 𝛿 . 

The efficiency of this method will depend on the rate of convergence of the algorithm used to 

find a solution to the set of equations. Some algorithms for approximating these solutions have 

been given by Hill, Hill& Holder (1976).  

 

   The probability distribution function of a Su distributed variable X is given by the equation: 

 

 
𝑓𝑋(𝑥) =

𝛿

𝜆√2𝜋 ((
𝑥 − 𝜉
𝜆 )

2

+ 1)

𝑒𝑥𝑝 [−
1

2
(𝛾 + 𝛿. sinh−1 (

𝑥 − 𝜉

𝜆
))

2

] 

(3.17) 

 And the cumulative distribution function of a Su distributed variable X is given by the equation: 
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𝐹(𝑥) = Φ(𝛾 + 𝛿𝑙𝑛 (

𝑧

1 − 𝑧
)) 

(3.18) 

 

 where    𝑧 =
𝑥−𝜉

𝜆
  and Φ is the Laplace Integral. 

 

The use of the families described above (and many others not mentioned here for reason of 

brevity: e.g., Lye and Martin (1993), Philips (1994), Tiku, Islam, and Selcuk (2001)) allows 

exploration, identification, and comparison of data without imposing over-restrictive models. It 

may be that a dataset could be fitted reasonably well by a subordinate model of the larger 

distribution, but generalized distributions include this information without presupposing it. See 

King and MacGillivray (1999). Johnson’s SU distribution is an additional family of distributions 

which is worthy of note in the context of partially adaptive regression. 

 

Procedure for Estimating the Johnson 4P Probability Distribution  

In the Partially Adaptive Estimation method the distribution of errors in the linear 

regression model belongs to a parametric family of distributions which is adaptable enough to 

capture a wide variety of probability densities of interest in statistics, economics, physical 

sciences (e.g., agronomy, ecology, climate science, and energy systems), health sciences, and 

general management. The primary objective of PAE is to extract from observed data hidden or 

implied relationships which were missed or neglected by traditional regression analysis; 

therefore a common effective framework to obtain full error distribution handling capabilities is 

established and kept operational for a vast range of applications. 

 



35 

 

  We assume that the data are generated in the following scenario 

 

 𝑦𝑖 = 𝑥𝑖
′𝛽 + 𝑢𝑖    𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑛        (3.19) 

 

Where yi denotes the response variable of the i-the observation,  xi is the m × 1 i-
th

 vector of 

observations of the exogenous variables including, if needed, the intercept term, and n > m + 1. 

the symbol 𝛽 denotes a conformable vector of unknown regression coefficients or regression 

parameters. Finally, ui is the error or residual term corresponding to the 

 i-th observation. In this chapter we adopt the standard assumption that the ui, i = 1, 2, n are 

unobservable independent and identically distributed random variables. We also assume that 

errors are independent of the regressors. Equation (3.19) tells us that ui is distributed according to 

the same model regardless of the value assumed by xi. 

 

Suppose we know that the residuals in Equation (3.19) are distributed according to the 

probability density function f (u, λ) which, in turn, depends on a vector λ of k parameters called 

distributional parameters. In this setting, a random sample {yi, xi, i = 1, 2, n} yields indirect 

observations on the residuals u from f (u, λ) obtained as (y −Xβ) where X is the design matrix of 

order n× (m+1). λ and β are the true but unknown values of the parameters. The vector λ makes 

it possible to acquire original and reliable models of the error term, which may be of use in the 

analysis of the data at hand; it also allows a correct evaluation of the shape of the error 

distribution, for example, very diverse tail behavior can be described. If the regression 

hyperplane has an intercept and f (u, λ) is asymmetric, then the estimate of the intercept and the 

mean of the estimated errors are indistinguishable unless we specify that E (ui) = 0, i = 1, 2, n. In 
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the standard scheme of partially adaptive estimation, the error distribution is known up to λ so 

we can obtain efficient estimates using the maximum likelihood (ML) estimation method. The 

many subordinate models are able to provide a suitable approximation to the true distribution. 

Given the observations and the model, we want to minimize 

 
𝑆(𝛽, 𝜆  ) = −∑𝑙𝑛[𝑓(𝑦𝑖 − 𝑥𝑖

′𝛽;𝛽, 𝜆  )]   

𝑛

𝑖=1

 
(3.20) 

over β and λ. A recurrent hypothesis is that the log-likelihood function in (3.20) is differentiable; 

consequently, if ML estimators exist they must satisfy the following partial differential equations 

 

 𝜕𝑆(𝛽)

𝜕(𝛽𝑗)
=

1

𝑓(𝑦𝑖 − 𝑥𝑖
′𝛽;𝛽, 𝜆  )

𝜕[𝑓(𝑦𝑖 − 𝑥𝑖
′𝛽;𝛽, 𝜆  )]𝑥𝑖𝑗

𝜕(𝛽𝑗)
= 0         

 

   𝑗 = 1,2,…𝑚 + 1     (3.21) 

And 

 𝜕𝑆(𝛽)

𝜕(𝜆𝑟)
= −

1

𝑓(𝑦𝑖 − 𝑥𝑖
′𝛽; 𝛽, 𝜆  )

𝜕[𝑓(𝑦𝑖 − 𝑥𝑖
′𝛽; 𝛽, 𝜆  )]

𝜕(𝜆𝑟)
= 0            

𝑟 = 1,2, … , 𝑘     (3.22) 

 

Statistical theory shows that, under standard regularity conditions, ML estimators are invariant to 

parameterization, asymptotically unbiased, consistent and asymptotically efficient irrespective of 

the sample size and the complexity of the model (this last property means that, in the limit, there 

is no other unbiased estimator that produces more accurate parameter estimates). Furthermore, 

the maximum-likelihood method generates, along with the estimates themselves, useful 

information about the accuracy of the parameter estimates. In fact, likelihood inference offers a 
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convenient apparatus to establish the large-sample properties of partially adaptive estimators. For 

instance, suppose that each xi is redefined as the deviation from its own mean 

 
𝑥𝑖0 = 1          𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛,             ∑𝑥𝑖𝑗 = 0    𝑓𝑜𝑟 𝑗 = 1,2,… ,𝑚    

𝑛

𝑖=1

  
(3.23) 

 

The ML estimate for the regression parameters β will be asymptotically independent of 

the ML estimate of the distributional parameters λ included in the error distribution (Cox and 

Hinkley (1968)). However, when the error distribution is asymmetric none of these estimates 

gives a consistent estimate of the intercept and therefore, the corresponding prediction of a 

conditional mean, given the repressors, is also inconsistent. The estimates of the other regression 

parameters are consistent, but they may lose their high efficiency. If the design matrix X has its 

columns centered, then the intercept is absorbed in the function. 

The estimate of the intercept needs a bias-correction when E (u) is not equal to zero. Since 

the true distribution function of the errors does not necessarily belong to the hypothesized 

family, f (u, λ), the minimization of Equation (3.3) should more precisely be called the pseudo or 

quasi maximum likelihood method (Gourieroux, Monfort, and Trognon (1984)). However, if the 

estimated density approximates the underlying distribution well, the efficiency is expected to be 

close to that of the maximum likelihood estimation based on knowledge of the actual distribution 

of the errors. 

Parameters Estimation 

When the density function is known, the maximum likelihood estimators are solutions of 

Equation (3.21-3.22) with respect to the parameters βi, i = 1, 2, m and λj, j = 1, 2, k. Likelihood 

functions are rarely sufficiently regular, e.g., convex, so that it is not usually possible to obtain a 
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closed-form solution of the likelihood equations and computationally intensive procedures are 

required. This is particularly true in the area of partially adaptive estimation because the 

“flexible” functional forms employed to model the error distribution are highly non-linear and 

include a large number of parameters. Perhaps, it is useful to recall that these parameters are not 

an end in themselves, but are necessary tools for acknowledging and capturing characteristics 

associated with many phenomena of statistical interest. However, the widespread availability of 

versatile and powerful software packages and the improved performance and reduced costs of 

home computing platforms on which to run them, encourage the regular use of nonlinear 

parameter estimation when necessary. 

The technique used most often is the direct minimization of S (β, λ) reported in (3.20) in 

which regression and distributional parameters are estimated simultaneously. Most iterative 

algorithms for numerical iterative optimization of an objective function use the Gauss-Newton 

method, steepest descent method, or a combination of these two methods. These procedures 

frequently incorporate a one-dimensional search algorithm and an option for generalized 

inverses. 

The usual process starts from an initial estimate of the entire set of parameters; with each 

iteration the estimates are refined by computing a correction factor for each parameter by using 

the information in the gradient and in the Hessian (analytically or numerically determined); 

iteration ceases when the gradient is sufficiently close to zero or the correction factors become 

sufficiently small. A Newton-Raphson or a quasi-Newton method works well and generates 

asymptotic standard errors as a by-product of the estimation procedure. Such algorithms are not 

immune from common weaknesses: local optima, inappropriate starting values, divergence, slow 

convergence, and solutions outside the feasible range of the parameters; in some cases the 
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calculation of derivatives is completely impractical except by finite difference approximation. 

These difficulties are essentially due to the use of a large number of unknowns and to the effect 

of nonlinearity.  

A high degree of non-linearity, in fact, can generate very high variability of the estimates, 

intense correlation between these estimates, and numerical singularities due to heavy 

cancellation in the density function of the errors. Furthermore, the basic model often nests 

simpler models as a limiting case for some parameters that may be difficult to handle 

numerically. 

To circumvent all these difficulties it is often possible to take advantage of special 

structures that exist in certain types of optimization problems. For instance, if the distribution of 

the residuals is normal, fitting by maximum likelihood is equivalent to fitting by least squares, 

but the latter is much simpler. Also, the parameters of the likelihood function need not all be 

treated as nonlinear; in fact, the replacement of linear parameters by their linear least squares 

estimates, given the values of the nonlinear parameters, leads to a reduced model involving only 

nonlinear parameters. (See Lawton and Sylvestre (1971), Oberhofer and Kmenta (1974), Gallant 

and Goebel (1976)). This can be helpful when the model of the error distribution provides box 

constraints for the distributional parameters which can be exploited by the optimization 

algorithm, whereas no significant bounds can be given for the regression parameters.  

Analysis of Financial Data 

Since Fama's (1965) work the financial markets literature has been overflowed by studies 

about skewness, kurtosis and tail-fatness in the distribution of financial returns.  We examine this 

concept using a data set that consists of 36 electric and electric/gas companies that were 

continuously publicly traded between January 1990 and December 2004. These include all 
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publicly traded companies with SIC’s 4911 and 4931. Any stock that stopped trading and did not 

have continuous returns during the period was removed from the sample. This exclusion 

involved only one utility stock. Market and utility stock returns are monthly total stock returns 

that are obtained from the University of Chicago’s Center for Research in Security Prices 

(CRSP) database. The market is defined by the CRSP value-weighted index that includes all 

stocks traded on the NYSE, NASDAQ, and the AMEX. We used monthly data to be generally 

consistent with practitioners’ use of monthly data for estimation. Monthly data resulted in 180 

stock return observations for each utility stock and the market. The risk-free rate is the one-

month return on the one-month US Treasury Bill. The excess market return is the same as 

defined in the Fama-French database. 

The statistics displayed in Table 3.1 assumed that the returns for each stock are 

independently and identically distributed.  The Normality Tests results for each of 36 Electric 

and Gas company stock return are summarized. Using the JB statistic we rejected the assumption 

of normality for 28 of the listed stock returns that accounts for a 22.2% success rate.  The JB 

statistics is asymptotically Chi-Squared distributed with two degrees of freedom and has a 

critical value of 5.99 at the 5% significance level. While applying the Shapiro-Wilk test statistics 

we rejected only 27 of the returns that accounts for a 25% success rate 33.3 success rate for 

Anderson Darling test.  The results we obtained justified the needs for alternative estimation 

techniques that would improve the estimates with minimum error. 

The measurement of the goodness-of-fit for the distributional regression has two aspects: 

the degree of proximity between the models adopted to fit the observed residuals to the true 

distribution that generates data, and, the agreement between observed and estimated responses. 

We compared the results of the CAPM parameters assuming that the errors followed the Johnson 
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SU distribution with the OLS CAPM estimates and we observed that  the risk parameter have 

been improved for most stocks. 

It should be noted that the, the estimation of the beta coefficient (β1) is important for the 

risk classification.  Table 3.2 summarizes the results, where 36 of the utilities stock show 

improvement in the estimation of the β1‘s ranging from 0.04% to 10.65%.  

Table 3.1: Normality Test of Stocks 

 

 

 

Ticker N Average_Return Std Skewness Kurtosis JB-P-Value JB-decision SW-P-Value SW-Decision AD-P-Value AD-Decision

X1 180 0.0104 0.0548 0.3307 1.5360 0.0000 Reject 0.0134 Reject 0.0273 Reject

X2 180 0.0121 0.0643 0.2815 1.6540 0.0000 Reject 0.0058 Reject 0.0542 Accept

X3 180 0.0102 0.0449 0.3770 0.5893 0.0322 Reject 0.1053 Accept 0.1709 Accept

X4 180 0.0073 0.0621 0.1023 1.7385 0.0000 Reject 0.0214 Reject 0.2500 Accept

X5 180 0.0102 0.0804 0.3152 0.3661 0.1363 Accept 0.1064 Accept 0.0422 Reject

X6 180 0.0086 0.0772 1.1441 6.8710 0.0000 Reject 0.0001 Reject 0.0050 Reject

X7 180 0.0106 0.0627 0.3393 2.1165 0.0000 Reject 0.0004 Reject 0.0050 Reject

X8 180 0.0089 0.0543 0.1848 0.4871 0.2460 Accept 0.3007 Accept 0.2500 Accept

X9 180 0.0095 0.0844 0.0171 3.2036 0.0000 Reject 0.0001 Reject 0.0050 Reject

X10 180 0.0136 0.0559 0.3078 1.3502 0.0003 Reject 0.0287 Reject 0.1582 Accept

X11 180 0.0074 0.0600 -0.1779 1.2440 0.0019 Reject 0.0227 Reject 0.1054 Accept

X12 180 0.0104 0.0510 -0.3183 1.9432 0.0000 Reject 0.0007 Reject 0.0050 Reject

X13 180 0.0109 0.0647 0.0671 4.9679 0.0000 Reject 0.0001 Reject 0.0050 Reject

X14 180 0.0119 0.0679 0.5332 3.3100 0.0000 Reject 0.0001 Reject 0.0050 Reject

X15 180 0.0130 0.0841 -2.5444 22.0566 0.0000 Reject 0.0001 Reject 0.0050 Reject

X16 180 0.0098 0.0603 -0.1075 1.7553 0.0000 Reject 0.0038 Reject 0.0050 Reject

X17 180 0.0084 0.0449 0.2663 0.4220 0.1769 Accept 0.1628 Accept 0.2500 Accept

X18 180 0.0088 0.0506 -0.3969 3.6483 0.0000 Reject 0.0001 Reject 0.0050 Reject

X19 180 0.0096 0.0542 0.2575 2.3516 0.0000 Reject 0.0011 Reject 0.0050 Reject

X20 180 0.0102 0.0501 -0.3055 1.0460 0.0041 Reject 0.0074 Reject 0.0108 Reject

X21 180 0.0095 0.0669 -0.5215 2.5565 0.0000 Reject 0.0001 Reject 0.0050 Reject

X22 180 0.0099 0.0563 -0.0253 0.3480 0.6290 Accept 0.7515 Accept 0.2500 Accept

X23 180 0.0078 0.0480 -0.0865 0.8384 0.0640 Accept 0.5226 Accept 0.2500 Accept

X24 180 0.0106 0.0855 0.0863 -0.1075 0.8564 Accept 0.4784 Accept 0.2295 Accept

X25 180 0.0051 0.0645 -0.2997 1.5303 0.0000 Reject 0.0017 Reject 0.0050 Reject

X26 180 0.0092 0.0501 -0.1284 -0.2552 0.6118 Accept 0.4918 Accept 0.2500 Accept

X27 180 0.0078 0.0499 -0.0275 0.6333 0.2197 Accept 0.1316 Accept 0.0266 Reject

X28 180 0.0045 0.0944 -0.6672 9.3935 0.0000 Reject 0.0001 Reject 0.0050 Reject

X29 180 0.0071 0.0615 -0.2731 3.0146 0.0000 Reject 0.0001 Reject 0.0050 Reject

X30 180 0.0063 0.0579 0.5521 2.9277 0.0000 Reject 0.0002 Reject 0.0196 Reject

X31 180 0.0065 0.0617 -0.1484 1.1526 0.0049 Reject 0.0321 Reject 0.0214 Reject

X32 180 0.0098 0.0815 -0.8333 4.2742 0.0000 Reject 0.0001 Reject 0.0050 Reject

X33 180 0.0133 0.0785 -0.2452 5.0402 0.0000 Reject 0.0001 Reject 0.0050 Reject

X34 180 0.0094 0.0543 0.4620 2.9066 0.0000 Reject 0.0002 Reject 0.0050 Reject

X35 180 0.0085 0.0514 -0.3540 1.2757 0.0003 Reject 0.0187 Reject 0.0610 Accept

X36 180 0.0011 0.1014 -0.6422 5.7503 0.0000 Reject 0.0001 Reject 0.0050 Reject
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The extent of the differences in CAPM beta under normal and Johnson SU distribution are 

shown in Figure 3.1 in which we rank the top 13 stocks.  In our initial test of normality under all 

three normality test (JB, AD and SW), the six stocks that appeared to have a normal PDF all 

shows large percent improvement when the Johnson SU PDF was use. The percent increase in 

the β1‘s estimates appears to be very volatile across the 36 stocks. Since they differ enough to 

matter in practice, the use of normality based estimation may not be appropriate. Table 3.2 and 

Figure 3.3 both displayed the percent change in CAPM Beta under the Johnson Distribution over 

the Normal distribution. The value weighted portfolio beta for utility stocks during the specific 

time period was 0.21 and the mean of the percent change between normal beta and Johnson beta 

is 0.0229 (2.29%). This is a substantial difference, and would lead to a large difference in the 

estimated cost of capital for the portfolio. 

 

Figure 3.1: CAPM Beta Estimates under the Normal and Johnson SU Distribution 
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Table 3.2: Percent Change in CAPM Beta 

 

  

Figure 3.2: Percent Change in CAPM Beta under the Johnson SU vs. the Normal 

distribution 

 

Ticker β0-ols β1-ols β0-jsu β1-jsu ΒJSU-OLS   %  Δ in  β1

X1 -0.02459 0.92339 -0.0115 1.0335 0.1101 10.65%

X2 -0.02066 0.93022 -0.0004 0.9982 0.0680 6.81%

X3 -0.02195 0.93182 -0.0064 0.9895 0.0576 5.83%

X4 -0.02364 0.93568 -0.0038 0.9865 0.0508 5.15%

X5 -0.0038 0.98671 0.0083 1.0397 0.0530 5.09%

X6 -0.02353 0.93204 -0.0106 0.9818 0.0498 5.07%

X7 -0.01736 0.94451 -0.0102 0.9855 0.0410 4.16%

X8 -0.02523 0.92594 -0.0160 0.9647 0.0388 4.02%

X9 -0.00344 0.98988 0.0147 1.0302 0.0403 3.91%

X10 -0.0222 0.92098 -0.0134 0.9585 0.0375 3.91%

X11 -0.02893 0.91938 -0.0179 0.9559 0.0365 3.82%

X12 -0.02475 0.92287 -0.0124 0.9546 0.0318 3.33%

X13 -0.02873 0.90952 -0.0172 0.9404 0.0309 3.29%
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The adequacy of the normal distribution can be assessed in several ways. For instance, Islam and 

Tiku (2004) use the q-q plot of the observed and estimated responses to ascertain the goodness-

of-fit for the possible models of the error distribution.  

 

 

Table 3.3: CAPM beta estimates and Goodness -of-fit statistics from Johnson SU 

probability distribution 

 

 

 

We focus on the index below; 

 
ψa = 1 −

∑ |(yi − xi
′β) − Q(pri , λ)|

αn
i=1

∑ |yi − θα|α
n
i=1

      
(3.24) 

 

 

           

 

Ticker β0 β1 α R
2

Ad.R
2

Cor(r,ř) Com(r,ř) tau Bonf Rα psi_α S_α (-L) Sic

X1 -0.0115 1.0335 3.5526 0.4825 0.4766 0.8564 0.7626 0.7687 0.6769 0.8300 0.8300 0.6390 -132.70 -119.72

X2 -0.0004 0.9982 1.0389 0.5567 0.5516 0.8988 0.7927 0.8003 0.7094 0.6226 0.6226 7.9008 -223.23 -210.25

X3 -0.0064 0.9895 1.0480 0.6333 0.6291 0.9321 0.7800 0.8257 0.7399 0.6709 0.6709 6.4330 -252.10 -239.12

X4 -0.0038 0.9865 1.0703 0.5986 0.5940 0.9173 0.7855 0.8133 0.7236 0.6556 0.6556 6.3471 -235.78 -222.80

X5 0.0083 1.0397 1.1403 0.5559 0.5534 0.8973 0.7391 0.7840 0.6954 0.6192 0.6192 10.7158 -398.72 -384.00

X6 -0.0106 0.9818 1.0725 0.4918 0.4860 0.8622 0.8073 0.7799 0.6793 0.6066 0.6066 7.7814 -194.70 -181.72

X7 -0.0102 0.9855 1.1749 0.5872 0.5825 0.9117 0.8716 0.8194 0.7300 0.6970 0.6970 4.1915 -220.25 -207.27

X8 -0.0160 0.9647 1.0314 0.5938 0.5892 0.9146 0.8566 0.8085 0.7159 0.6402 0.6402 7.6318 -238.00 -225.02

X9 0.0147 1.0302 3.6397 0.5120 0.5064 0.8736 0.7784 0.7755 0.6823 0.8626 0.8626 0.5524 -182.41 -169.43

X10 -0.0134 0.9585 1.0830 0.5735 0.5686 0.9052 0.8136 0.7981 0.7031 0.6381 0.6381 6.4674 -226.75 -213.77

X11 -0.0179 0.9559 1.2061 0.5877 0.5830 0.9118 0.8024 0.8052 0.7158 0.6823 0.6823 3.8787 -240.69 -227.70

X12 -0.0124 0.9546 1.1135 0.6262 0.6220 0.9281 0.7692 0.8221 0.7330 0.6892 0.6892 4.9175 -255.42 -242.43

X13 -0.0172 0.9404 1.0157 0.5697 0.5649 0.9032 0.8176 0.8026 0.7115 0.6205 0.6205 8.1809 -216.95 -203.96
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The index ψa  is attractive for a number of reasons: it is dimensionless and varies in the [0, 

1] interval; it has an intuitively reasonable interpretation. Before accepting the more complicated 

models, we need to ask whether the improvement in goodness-of-fit is more than we had 

expected by chance. If the distributional regression model were really correct then one should 

find values of  close to one; conversely, if  ψais near to zero, the regression plan determined by 

minimizing the Minkowski metric under the given distribution of errors is most likely to be 

wrong. Using the stock data we observe an average  Ra of 0.7264, minimum of 0.5596 and a 

maximum of 0.9644 as shown in Table 3.3.  These finding lends support to the argument that the 

normal assumption is misleading. Table 3.3 contains other goodness of fit statistics that were 

used to determine the goodness of fit of the distribution. 

Conclusion 

We have shown that the beta estimates under the Johnson SU Probability Distribution 

along with the use of partial estimation techniques, outperform the beta estimates form the OLS 

estimation under normal assumption.  Large estimation differences indicate departure from 

normality. Hence, the use of the true PDF that characterized the stock returns along with an 

alternative estimator, PAE. An essential task of partially adaptive estimation in CAPM analysis 

is to screen a large number of potential error distributions to select models which fit the 

information contained in the response variable both efficiently and concisely. Since estimates 

that are optimal for one residuals behavior may be quite inadequate for another, owing to 

differences in the tails and asymmetries, it is desirable to have a procedure that is sufficiently 

tractable over a vast range of different distributions.  

The PAE estimates substantially improve upon OLS estimates in our finite sample 

applications of CAPM , particularly since the data errors are unevenly distributed around the 
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mean, or show peakedness and/or fat tails. Therefore OLS is not an efficient estimator of beta. 

We have shown that the estimates with the Johnson distribution are routinely computable. We 

also have shown that there are large percent changes in the CAPM beta estimates and lastly it 

appears that the error model under the Johnson distribution does have potential to outperform 

that of the Normal distribution.  

  The results of the work reported above suggest that beta systematic risk measure 

calculated by CAPM is very sensitive and unstable within a specific sector of the market. These 

finding have serious implication in investment. If an investment analyst includes the use of 

CAPM beta in his/her optimal strategy, the following statistical procedure is recommended.  

 

1. Identify the correct probability distribution function that best characterized the historical 

data of interest. 

2. Use the Best estimation technique such as PAE to estimate the parameters of the PDF.  

3. Include the PDF chosen in the CAPM assumption and calculate the optimal coefficients 

alpha and beta. 

4. Repeat the procedure over different time intervals and examine the consistency of the 

beta over time prior to making a decision.  

 

Furthermore, the suggested statistical procedure is unique to the specific stock and hence it has 

the potential to contribute to the overall reduction in decision error in the stock market. Also in 

an environment where the stocks are traded infrequently and less data is available, normally 

referred to as a thin trading environment. Johnson Probability distributions can also be used as a tool 

to analyze and model the non-normal behavior of hedge fund indices. 
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Chapter 4: Parametric Statistical Analysis of Belize’s Rainfall 

Introduction 

Belize is situated on the Caribbean coast of Central America with Mexico to the North and 

Guatemala to the west and south. It lies between 15º45´ and 18º30´N and 87º30´ and 89º15´W. 

The terrain is low and flat along coastal areas and in some northern regions of the country while 

in the central and southern regions low mountains rise gradually to a height of 3,685 feet. See 

Figure 4.1. 

   The climate of Belize is characterized by two seasons: a rainy and a dry season. In Belize, 

most of the year’s rainfall occurs during the period June to November, that is, the rainy season. 

It is noted from the graph (Figure 4.2) below that the transition from dry to the rainy is very 

sharp. Mean annual rainfall across Belize ranges from 60 inches (1524mm) in the north to 160 

inches (4064mm) in the south. Except for the southern regions, the rainfall is variable from year 

to year.  

Water is one of the vital natural resources, which plays an important role in our lives,  be it 

agriculture, the tourism industry and domestics. Shortage or excessive rainfall can be very 

harmful as there will be food scarcity and insecurity, water pollution, erosion, 

telecommunication problems, etc. All of this could lead to economic loss in a country. Therefore, 

prior knowledge of the distribution of rainfall intensity is important for drainage pattern design. 

Proper drainage plays a crucial role in controlling erosion, effective agricultural planning, 

controlling water pollution, and in sustaining the tourism sector of Belize. 
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Figure 4.1: Map of Belize showing the location of the stations 
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Figure 4.2: Box Plot of monthly average rainfall in Belize 1960-2011 

 

The primary goal of this chapter is to analyze actual precipitation data collected at fifteen 

meteorological stations in Belize. There are other stations but because of data length, we chose 

only fifteen. We first identify the probability density function (PDF) that best characterizes the 

behavior, the Wakeby distribution, and then grouped the data using the two seasons in Belize, 

namely the wet and dry season. We did hypothesis testing to determine whether there is a 

distinction between the two seasons. 

Probability distributions can be viewed as a tool for dealing with uncertainty. We use the 

distributions to perform specific calculations, and apply the results to make well-grounded 

business decisions. However, if you use a wrong tool, you will get wrong results. If you select 
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and apply an inappropriate distribution (the one that doesn't fit to your data well), your 

subsequent calculations will be incorrect, and that will certainly result in wrong decisions.  

In many industries, such as agriculture; Belize’s major source of income, the use of 

incorrect models can have serious consequences, such as the inability to complete tasks or 

projects in time, and faulty engineering designs resulting in the damage of expensive equipment 

etc. In some specific areas such as hydrology, using appropriate distributions can be even more 

critical. 

To our knowledge no such research has been done in Belize and hence Distribution fitting 

allows us to develop valid models which can protect us from potential time and money losses 

which can arise due to invalid model selection, thus enabling us to make better business 

decisions.  

Descriptive Statistics 

Rainfall in Belize have been measured daily at a series of fixed weather stations since 1960 by 

the Belize National Meteorological Services. For the purpose of this study, 15 stations were 

considered (Figure 4-1). There are other stations in Belize that are currently being used however 

we didn’t include them because of lack of data within our time frame. 

 

A summary of the monthly rainfall for the 15 stations for period 1964-2011 is presented 

in Figure 4.2.  For all the 15 stations the precipitation typically displays a right skewed and 

leptokurtic (Figure 4.3). Descriptive statistics of Belize’s precipitation by year are presented in 

Table 4-1. The annual mean ranges from 3.67 mm to7.95 mm, while the median ranges from 

2.24 mm to 7.72 mm. In every year the mean is greater than the median, indicating that the mean 
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is influenced by the higher precipitations that are typically observed in the wet season. This is 

expected given the skewness of the data in Figure 4-2. Positive skewness indicates that values 

located to the right of the mean are more spread out than are values located to the left of the 

mean. Negative skewness indicates that values located to the left of the mean are more spread 

out than are values located to the right of the mean. Inspection of the skewness values in Table 4-

1 reveals that, as anticipated, all individual years exhibit right skewness, with skewness values 

ranging from 0.11 to 4.26. This finding is consistent with the plot of all data (Figure 4-2). 

Kurtosis is a measure of the degree of the peakedness of a distribution. A kurtosis measure 

greater than zero signals a distribution that is more peaked and has tails which are wide relative 

to the normal distribution. This distribution is said to be leptokurtic. A distribution that is less 

peaked and has narrower tails relative to the normal distribution is said to be platykurtic. 

The normal distribution has a kurtosis value of zero and is said to be mesokurtic. As can 

be seen in Table 4-1, precipitation data for Belize is leptokurtic for all years between 1960 and 

2011. The box-and-whisker plot confirms the observations of the plots and tables above, that the 

data are skewed to the right. 
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Table 4.1: Descriptive statistics for the stations 

 

Stations 

Statistic 

Mean Median Variance Std. 

Deviation 

Skewness Kurtosis 

BELMOPAN 5.74 5.31 20.75 4.56 1.86 8.50 

CENTFAR 4.45 3.94 10.87 3.30 1.22 2.75 

LIBERTAD 3.70 2.92 11.02 3.32 1.34 1.81 

MAYAKING 6.39 5.64 24.19 4.92 1.27 1.86 

MELINDA1 6.14 5.39 22.27 4.72 1.14 1.57 

MIDDELSE 7.94 6.97 37.78 6.15 1.22 2.33 

POMONA01 7.20 6.39 28.41 5.33 1.04 1.15 

PSWGIA01 5.43 4.63 17.93 4.23 1.45 4.07 

PUNTAGOR 10.51 7.48 80.94 9.00 1.13 0.86 

RIOBRAVO 3.95 3.04 11.90 3.45 1.35 1.87 

SAVANNAH 6.54 5.85 24.03 4.90 0.77 0.11 

SPANISHL 4.31 3.69 10.13 3.18 1.01 1.44 

STJOHNSC 4.81 3.90 17.00 4.12 1.84 5.59 

TOWERHIL 3.81 3.21 10.39 3.22 1.16 1.53 

TRDP0001 8.59 6.29 49.27 7.02 1.08 0.58 
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Figure 4.3: Histograms of monthly precipitation from sampling stations in Belize 

 

Figure 4.4: Box plot for the 15 Stations 
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Table 4.2: Descriptive statistics for annual rainfall in Belize 1960-2011 

 

 

Year Mean Median

Std. 

Error of 

Mean

Std. 

Deviatio

n

Kurtosis
Skewnes

s

1960 5.07 5.04 0.99 3.43 1.54 0.99

1961 6.62 5.28 1.57 5.45 3.42 1.73

1962 5.93 4.02 1.44 4.98 0.3 0.95

1963 3.67 2.24 0.94 3.26 -0.49 0.92

1964 5.41 5.17 1.33 4.61 -2.04 0.11

1965 4.92 4.3 0.88 3.05 -0.06 0.47

1966 7.32 5.54 0.6 5.05 1.03 1.28

1967 5.53 4.82 0.56 4.54 8.66 2.35

1968 6.04 5.48 0.52 4.35 2.59 1.22

1969 7.06 5.08 0.68 6.24 2.29 1.47

1970 6.41 5.61 0.59 5.35 1.6 1.27

1971 6.43 4.72 0.72 6.49 7.13 2.39

1972 6.86 5.65 0.65 5.74 2.63 1.5

1973 6.33 5.38 0.56 5.3 0.75 1.04

1974 6.18 5.34 0.47 4.72 0.36 1.02

1975 5.02 3.08 0.59 5.68 1.37 1.49

1976 6.38 5.22 0.6 6.19 3.81 1.78

1977 6.51 4.94 0.48 4.85 1.74 1.35

1978 7.05 5.93 0.51 5.33 4.07 1.68

1979 7.84 7.72 0.54 5.61 0.75 0.86

1980 7.75 6.16 0.75 7.31 5.02 1.91

1981 7.01 4.82 0.72 7.22 3.29 1.72

1982 7.55 5.88 0.66 6.81 9.34 2.57

1983 6.28 3.94 0.61 6.31 3.6 1.85

1984 7.76 6.64 0.62 6.36 0.79 1.07

1985 6.04 4.62 0.49 5.18 7.4 2.27

1986 6.06 4.92 0.54 4.95 1.36 1.21

1987 4.91 3.32 0.58 5.03 5.14 2.11

1988 6.93 5.54 0.6 5.49 0.91 1.12

1989 6.18 5.08 0.56 5.41 1.85 1.4

1990 7.95 6.04 0.73 6.32 4.99 1.93

1991 5.19 4.95 0.41 3.76 -0.43 0.52

1992 6.34 5.85 0.37 4.41 0.76 0.97

1993 6.53 4.22 0.47 5.91 4.85 2.04

1994 5.69 4.42 0.38 4.75 1.95 1.39

1995 6.02 4.61 0.41 5.41 7.47 1.95

1996 5.3 4.27 0.31 4.11 3.88 1.57

1997 6.15 4.44 0.42 5.6 2.14 1.43

1998 6.06 4.72 0.43 5.74 5.79 2.03

1999 5.51 4.2 0.37 4.93 4.19 1.8

2000 6.12 4.49 0.44 5.87 2.88 1.53

2001 5.74 4.18 0.37 4.99 3.29 1.59

2002 5.53 4.33 0.38 4.82 5.82 2.07

2003 4.75 3.81 0.36 4.48 4.97 1.84

2004 5.1 4.32 0.28 3.54 1.61 1.07

2005 5.91 4.49 0.45 6.03 9.22 2.55

2006 7.55 6.33 0.47 6.05 3.02 1.4

2007 5.35 4.39 0.37 4.53 1.52 1.28

2008 5.99 3.95 0.44 5.53 2.66 1.49

2009 5.29 4.36 0.35 4.39 9.35 2.31

2010 5.69 4.51 0.41 5.05 1.52 1.21

2011 4.69 2.8 0.64 6.17 27.05 4.26
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 Figure 4.5: Box Plot of monthly average rainfall in Belize 1960-2011 

 

Fitting the Wakeby Probability Distribution 

The Wakeby distribution (WAD), defined by Thomas and introduced by Houghton (1977), 

is defined by the quantile function 

 𝑥(𝐹) = 𝜉 +
𝛼

𝛽
[1 − (1 − 𝐹)𝛽 ] −

𝛾

𝛿
[1 − (1 − 𝐹)−𝛿) ], 

(4-1) 

 

where 𝐹 = 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) is the cumulative distribution function. The parameterization 

explicitly exhibits the WAD as a generalization of Pareto distribution when α = 0, or γ = 0), and 

gives estimates of the α and γ parameters that are more stable under small perturbations of the 

data. The domains of the parameters are:  

ξ  ≤ x ≤ ∞ if δ ≥ 0 and γ > 0 ; 
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𝜉 ≤ 𝑥 ≤ 𝜉 +
𝛼

𝛽
+ 𝛾/𝛿 if δ<0,or  γ=0. 

This distribution is defined by five parameters, more than most of the common systems 

of distributions. This allows for a wider variety of shapes, and so a reasonably good fit to a 

sample might be expected. Actually, by suitable choice of parameter values of WAD, it is 

possible to mimic the extreme value, log-normal, generalized Pareto and log-gamma 

distributions.  Empirical evidence, in relation to the condition of separation (Matalas et al., 

1975), suggests that the distributions of floods are more nearly Wakeby-like with β>1 and γ>0 

(i.e., long stretched upper tails) than like any of the other more commonly suggested flood 

distributions (Houghton, 1978; Landwehr et al., 1978). In addition, WAD provides a plausible 

description of precipitation sequences, and it also provides a means for representing the 

seemingly long, stretched upper tail structures of flood distributions, as well as the tail structures 

of distributions of other hydrologic phenomena (Landwehr et al., 1980). Thus WAD can credibly 

be considered a parent hydrology distribution. Because of the above reasons, WAD is widely and 

successfully used in hydrology, especially for the modelling of extreme events. Recently, Wilks 

and McKay (1996) concluded that WAD provided the best representations of extreme snowpack 

water equivalent values, based on the performance evaluation of a suite of theoretical probability 

distributions. 

For estimation of the five parameters of WAD, the method of L-moments estimation (Hosking, 

1990) has been used. In this study, attempts to use WAD with the method of L-moments 

estimates(L-ME), on the Belize’s rainfall data (monthly average  precipitation) at 15 weather 

stations Belize have been made to obtain reliable quantile estimates. 
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Figure 4.6: Histogram of Monthly Rainfall from sampling stations in Belize (1964-2011) 

 

The Wakeby Probability distribution is a very flexible five-parameter distribution (Pilon 

and Harvey,  

1994). It can assume shapes that other distributions cannot describe. While this has been seen as 

an advantage, it means that records with several years of extreme data can affect the shape of this 

distribution to a greater extent than other distributions 

 

  



58 

 

 L- Moment Estimation of Wakeby Probability Distribution 

For estimation of the five parameters of WAD, the method of L-moments estimation 

(Hosking, 1990) has been used. Since the distribution function F(x) of WAD is not explicitly 

defined, the maximum likelihood estimates (MLE) of parameters are not easily obtained (see 

Park and Jeon, 2000, for computing MLE).Thus the method of probability weighted moments 

(PWM) estimation was introduced by Greenwood et al. (1979) for estimation of parameters of 

the distributions (like WAD) whose inverse form x = x(F) is explicitly defined. Since the L-

moments are simple linear combinations of special cases of PWMs, the method of L-moments 

estimation (L-ME) can be viewed as equivalent to the method of PWM estimation. L-Moments 

are more convenient, however, because they are more directly interpretable as measures of the 

scale and shape of the probability distribution. The main advantages of using L-ME are that the 

parameter estimates are more reliable than the method of moment’s estimates, particularly from 

small samples, and are usually computationally more tractable than MLE. Furthermore, due to 

the use of linear moments instead of the conventional product moments and being resistant to the 

presence of outliers (which may be present in the sample due to the occurrence of heavy rainfall 

and typhoon events), the method is quite robust. 

The (population) L-moments of WAD are, following Hosking (1986):  

 𝜆1 = 𝜉 +
𝛼

1 + 𝛽
+

𝛾

𝛿 − 1
 

 (4-2) 

 𝜆2 =
𝛼

(1 + 𝛽)(2 + 𝛽))
+

𝛾

(1 − 𝛿)(2 − 𝛿)
 

(4-3) 
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𝜆3 =

𝛼(1 − 𝛽)

(1 + 𝛽)(2 + 𝛽)(3 + 𝛽))
+

𝛾(1 + 𝛿)

(1 − 𝛿)(2 − 𝛿)(3 − 𝛿)
 

(4-4) 

 

 
𝜆4 =

𝛼(1 − 𝛽)(2 − 𝛽)

(1 + 𝛽)(2 + 𝛽)(3 + 𝛽)(4 + 𝛽))
+

𝛾(1 + 𝛿)(2 + 𝛿)

(1 − 𝛿)(2 − 𝛿)(3 − 𝛿)(4 − 𝛿)
 

(4-5) 

 
𝜆𝑟 =

𝛼Γ(1 + 𝛽)Γ(𝑟 − 1 − 𝛽)

Γ(1 − 𝛽)Γ(𝑟 + 1 + 𝛽)
+
𝛾Γ((1 − 𝛿)Γ((𝑟 − 1 + 𝛿)

Γ(1 + 𝛿)Γ(𝑟 + 1 − 𝛿)
, 𝑟 ≥ 5 

(4-6) 

The sample L-moments are obtained from observations: see Hosking (1990) for the 

formulas. Now, analogously to the usual method of moment’s estimations, the ‘method of L-

moments estimation’ (L-ME) obtains parameter estimates by equating the first p (number of 

parameters) sample L-moments to the corresponding population L-moments. Since no explicit 

solution of simultaneous equations is possible in WAD, the equations can be solved by Newton–

Raphson iteration. Landwehr et al. (1979) derived an algorithm to get the estimates in each of the 

cases:  known and unknown. The FORTRAN program (PELWAK) provided by Hosking (1997) 

basically uses the method of Landwehr et al. (1979). First a solution is sought in which all five 

parameters are estimated, as functions of the first five L-moments. If no solution is found due to 

convergence failure, the parameter it is set to zero and a solution is sought in which the other 

four parameters are estimated as functions of the first four L-moments. If this too is 

unsuccessful, then a generalized Pareto distribution is fitted instead, using the first three L-

moments. Note that, when α=0 or γ=0 (but not simultaneously) in WAD, Equation (4.1) is 

reduced to the following quantile function of the generalized Pareto distribution: 

 𝑥(𝐹) = 𝜉 + 𝛼[1 − (1 − 𝐹)𝑘]/𝑘 

 (4-7) 
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The probability function, the parameter estimates (L-ME) of WAD, and Kolmogorov–

Smirnov’s (K–S) goodness-of-fit statistic D at each station are given in Tables 4.3. The p-values 

of K–S Ds are at least 0.35, which shows that WAD is acceptable for each of the stations.  Figure 

3-3 shows the relative frequency histogram of each station. 

Result of Fitting The Wakeby Probability Distribution Function 

Table 4.3: Station codes, parameters estimates of Wakeby Distribution, K_S statistics and 

P-Value computed from Stations. 

 

Table 4.4: Best fit probability distribution of clustered data 

 

ξ α β γ δ K/S P-VALUE

BELOPAN  GENERALIZED PARETO/WAKEBY 0.06683 7.8054 0.37647 0 1.2X10-10 0.04798 0.28331
MAYAKING WAKEBY 0.2323 8.6237 0.47852 0.05272 0.84023 0.0317 0.98577
CENTFAR WAKEBY 0.14455 6.8201 1.5701 1.6727 0.13124 0.01716 0.99674
MELINDA1 WAKEBY 0.03842 7.8997 0.87932 1.5684 0.20613 0.02196 0.9789
MIDDLESE WAKEBY 0.06274 10.976 0.67555 0.94254 0.34904 0.01871 0.99717
LIBERTAD  GENERALIZED PARETO/WAKEBY 0.01904 1.4785 8.919 4.4148 0.1539 0.03011 0.97781
POMONA01

WAKEBY 0.08723 8.0197 2.0053 4.8682 0.05419 0.0176 0.99736
PSWGIA01 WAKEBY 0.05753 7.0258 0.92207 1.8704 0.20133 0.00953 0.91149
PUNTAGOR WAKEBY 0.06185 5.8544 1.5634 3.7473 0.11954 0.00894 0.91251
RIOBRAVO WAKEBY 0.06585 5.5682 1.5095 3.7005 0.11986 0.00855 0.9238
SAVANNAH WAKEBY 0.05679 5.7091 1.2799 3.4331 0.1255 0.00867 0.8856
SPANISHL WAKEBY 0.06124 5.5102 1.4464 3.5116 0.11687 0.00901 0.80836
STJOHNSC WAKEBY 0.0614 5.4668 1.4131 3.4384 0.12145 0.00894 0.80014
TOWERHIL WAKEBY 0.0718 5.4613 1.2762 3.153 0.14236 0.00833 0.84247
TRDP0001 WAKEBY 0.070336 4.971 1.6027 3.8992 0.01957 0.00793 0.8267

PARAMETERS

Stations BEST- FIT Distribution

Goodness of fit

ξ α β γ δ K/S P-VALUE
BELOPAN 1
SPANISHL 1
LIBERTAD 2
TOWERHIL 2
MELINDA1 3
POMONA01 3
PSWGIA01 4
STJOHNSC 4
SAVANNAH 6 WAKEBY 0.05679 5.7091 1.2799 3.4331 0.1255 0.00867 0.8856
TRDP0001 7 WAKEBY 0.070336 4.971 1.6027 3.8992 0.01957 0.00793 0.8267
PUNTAGOR 8 WAKEBY 0.06185 5.8544 1.5634 3.7473 0.11954 0.00894 0.91251

WAKEBY

WAKEBY

WAKEBY

PARAMETERS

WAKEBY
-0.05716 4.9758 1.3827 3.619 0.11986 0.00869 0.86718

0 -4.5897 3.189 4.7423 -0.21757 0.03027 0.731

0.01631 0.98273

0.0536 7.6303 1.5533 3.3554 0.04328 0.01679 0.9493

-0.01513 6.8051 0.90516 1.2907 0.26009

BEST- FIT 

Distribution
ClustersStations

Goodness of fit
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Hydrological data are often asymmetrical and right skewed. Results from fitting data, 

from the meteorological stations and the results represented in short by the following paragraphs.  

The method discussed above is used to estimate the parameters of the Wakeby Distribution for 

the period 1960 -2012. In addition to the Wakeby Distribution, efforts were made to test the 

performance of other popular distributions such as lognormal and Weibull distribution. The 

estimated parameters for the Wakeby Distribution are presented in Table 4.3. From the Table 

4.3, it appears that the data fits the identified Wakeby distribution well. Table 4.5 compares the 

actual observed average rainfall for each station to that of the estimated average rainfall using 

our proposed model. It is showed that the range of the difference is from (0 - 48.59) %, with an 

average difference of 20.52%. In Table 4.6, we compared the actual average monthly rainfall to  

Table 4.5: Comparison of station’s observed average vs. proposed model estimated average 

rainfall 

Stations Mean Wakeby Mean % Difference 

BELMOPAN 5.74 5.74 0.01 

CENTFAR 4.45 4.72 6.03 

LIBERTAD 3.70 5.39 37.22 

MAYAKING 6.39 6.39 0.00 

MELINDA1 6.14 6.22 1.24 

MIDDELSE 7.94 8.06 1.57 

POMONA01 7.20 7.90 9.32 

PSWGIA01 5.43 6.05 10.83 

PUNTAGOR 10.51 6.60 45.67 

RIOBRAVO 3.95 6.49 48.59 

SAVANNAH 6.54 6.49 0.89 

SPANISHL 4.31 6.29 37.43 

STJOHNSC 4.81 6.24 25.87 

TOWERHIL 3.81 6.15 47.01 

TRDP0001 8.59 5.96 36.19 
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Table 4.6: Comparison of station’s observed average vs. PRECIS model forecasted average 

rainfall 

 

 

the PRECIS forecasted values for the stations. This this second comparison the range of the 

difference is (33.64- 40.98) %, with an average difference of 38.58 in the average monthly 

rainfall for the stations. The selection of an appropriate frequency distribution for extreme 

precipitation over Belize is made with an aim to identify a distribution that best fits the observed 

data. 

Examining Belize’s Wet and Dry Seasons 

Since there are two distinct rainfall seasons in Belize, we test whether there is a significant 

difference between the Wet and Dry season in Belize. The Kruskal Wallis test and the 

Kolmogorov Smirnov test suggested that there is a statistical significant difference between the 

two seasons hence the need to further examine the p. d. f. of the two seasons.   Table 4.8 shows 

that for the dry season the best fit model is the Wakeby distribution; however, for the Wet season 

Stations Mean 
PRECIS 

% 
Difference 

BELMOPAN 5.74 8.06 33.64 

CENTFAR 4.45 6.63 39.44 

LIBERTAD 3.70 5.73 43.09 

MAYAKING 6.39 9.26 36.62 

MELINDA1 6.14 9.05 38.32 

MIDDELSE 7.94 11.12 33.43 

POMONA01 7.20 10.80 40.04 

PSWGIA01 5.43 8.16 40.18 

PUNTAGOR 10.51 15.92 40.98 

RIOBRAVO 3.95 5.59 34.36 

SAVANNAH 6.54 10.05 42.21 

SPANISHL 4.31 **** **** 

STJOHNSC 4.81 7.19 39.63 

TOWERHIL 3.81 5.70 39.86 

TRDP0001 8.59 12.66 38.30 
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from June to November the average rainfall in Belize from 1964-2011 follows a Generalized 

extreme value distribution.  Figure 4.7 and 4.8 shows the p.d.f. of the two seasons. 

 

Table 4.7: Hypothesis Test Summary 

 

 

Table 4.8: Best Fit Model for the monthly rainfall 

 

Dry Wakeby 0.0112 0.86425

Wet Gen. Extreme Value 0.01264 0.75285

 Best fit probability distribution for Belize's  

average monthly rainfall by season

Season

Best fit 

Distribut

ion

Kolmogorov 

Smirnov Statistics
P-value
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Figure 4.8: Probability Density function for Belize’s wet season 

 

 

Figure 4.9: Probability Density function for Belize’s dry season 
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Conclusion 

The determination of the best fit distribution to represent the rainfall process in stations of 

Belize is discussed in this paper.  The  an extensive search comparing  several distribution such 

as Wakeby , lognormal, gamma, Weibull ,Generalized Pareto, Dugan and many other 

distributions have  been  used  on the  monthly average rainfall data from 1960 to 2011. The 

selection of the best fit distribution is done by examining the minimum error produced by the 

Kolmogorov Smirnov (KS) goodness of fit test. Based on the results of KS goodness of fit test, 

Wakeby distribution is the most suitable to describe the rainfall patterns in the stations of Belize 

as the error produced is the minimum. There were three stations, Belmopan, Libertad and Rio 

Bravo for which the Wakeby distribution was ranked as second best distribution.  

The cluster analysis identifies eight clusters in Belize’s rainfall using the Ward’s Method 

(See Table 4.4). Four of the clusters are somewhat notable because their clustering is based on 

their regional location such north, south, central and west. Looking at the individual best fit 

probability distribution functions of the clusters, notably the Wakeby distribution base on the 

Kolmogorov Smirnov test statistics fitted the data very well. Therefore, the best fit probability 

function is the Wakeby distribution. The variation exhibit permits for the further study of the 

underlying factors present in the different geographical area in Belize. 
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Chapter 5: Statistical Models for Forecasting Tourists Arrival in Belize 

Introduction 

In the previous chapter we understand the behavior of rainfall of Belize and this is very 

important to tourism. Tourism is vitally important to the entire Belizean economy, contributing 

26% of Belize's gross domestic product in 2006 and 50% in 2015. In most of coastal Belize, 

tourism has completely replaced fishing as the primary source of income for all but a very few 

residents. Tourism is the number one foreign exchange earner in this small economy, followed 

by exports of marine products, citrus, cane sugar, bananas, and garments. However, this sector is 

exposed to the vagaries of international economics and is severely affected in recession years. 

Despite the drop in arrivals in 2009 the industry experienced many record breaking arrivals 

which led to an overall growth during the years 2011- 2015, an outstanding period for the Tourism 

Industry in Belize.  

The development of tourism in Belize was premised originally on the niche marketing of 

the country to high end, stay-over visitors interested in a pristine, natural, land and marine 

environment, otherwise known as eco-tourism. The consequent pressures on tourism facilities, 

sites and regulatory capacity generated by these day visitors sparked controversial debates on the 

potential negative impact on the niche stay-over market segment, highlighted the problems 

arising from the lack of a cohesive, comprehensive, national framework for tourism/cruise 

development and raised questions on the actual net benefits accruing to Belize from mass 

market, cruise tourism. The development of the tourism industry in Belize was built through the 

development of the overnight sector. Over the past five years. Belize overnight tourism sector 
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has seen consistent growth, and particularly very strong performances in 2012-2014, with 2014 

being the most positive year of overnight tourism in Belize in the last ten years. 

The forecast of tourists’ arrival is important since it would enable the tourism industry of 

Belize to adequately prepare for any number of arrivals at any future date. The benefits of 

accurate forecast s are well documented in tourism forecasting literature (Molly 1991). Accurate 

forecasts are valuable to both the private and public sectors. Forecasting is crucial for the private 

sector in planning to avoid shortages or surpluses in goods and services. Time series analysis and 

modelling plays a very important role in forecasting, especially when our initial stochastic 

realization is nonstationary in nature. 

Time series analysis is one of the major areas in statistics that can be applied to many 

realistic problems. In the present chapter, we begin with a description of the structure of the 

Belizean economy and the importance of tourism in the economy. We then summarize the 

development of time series modeling and introduce some methodologies that have been 

developed recently. We also introduce some fundamental concepts that are essential for dealing 

with time series models.  We carry out a statistical comparison of two different time series 

models by comparing their forecasting and actual residuals.  

A true test of a forecasting model is its ability to forecast outside the sample period. We 

measure the accuracy of the forecasts by withholding the data for the last two years. We use for 

each model a subset of the data (all observations except the last two years) to forecast the 

remainder of the known data. For the forecast period, a forecast error is calculated, defined as 

actual tourist arrivals less forecast tourist arrivals. We then used the mean absolute percentage 

error (MAPE), as the final measure of forecast accuracy. 
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Over the past two decades, the study of air travel demand forecasting has attracted 

considerable attention by researchers. Within the Central American and Caribbean region 

considerable attention has been given to tourism but not much in terms of statistical driven 

research. For Belize, the last known study was done by United Nation in 1992 where they 

forecasted Caribbean tourist data using ARIMA. Among various competing forecasting models, 

ARIMA has gained popularity and is frequently adopted in empirical studies, because it often 

outperforms many other econometric and time series methods. Dharmaratne (1995) estimates 

and validates the ARIMA model for forecasting long-stay visitors in Barbados and suggests that 

customized model building may be highly rewarding compared to simple or standard methods. 

Lim and McAleer (1999) use the ARIMA model to explain tourist arrivals from Malaysia to 

Australia. The HEGY seasonal unit roots test is used to examine stochastic seasonality in the 

tourism demand series. Their findings, revealing the existence of seasonal unit roots in 

international tourist arrivals from Malaysia to Australia, is evidence in favor of a varying, rather 

than constant seasonal pattern. Kulendran and Witt (2003) examine seven forecasting models on 

international business tourism and suggest that the relative forecasting performance of various 

models is highly dependent on the length of forecasting horizon and the detection of seasonal 

unit roots. In addition, the Lim and Pan (2005) study also adopts the ARIMA model to study 

inbound tourism development in China. A comparison of the forecasting performance of 

competing models is frequently highlighted in recent tourism demand forecasting literature (Chu 

2004, Kulendran and Wong 2005, Coshall 2006). While consensus is not yet achieved, many 

researchers conclude the ARIMA model, to a great degree, appears the suitable model (Chu 

1998, Kim and Song 1998, Kulendran and Witt 2001, Lim and McAleer 2002). For the purpose 
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of forecasting performance comparison, we choose two models including Seasonal ARIMA and 

the Holt–Winter method to model inbound tourism arrival in Belize. 

Structure of Belize’s Economy and Importance of Tourism 

With a GDP of $9600 per capita in 2014, Belize is a small, open economy, characterized 

by a narrow production base, heavy reliance on imports, small range of mostly primary, export 

commodities and a manufacturing capacity (excluding export sugar and citrus juice 

manufacturing) limited to production which can profitably meet the domestic demand of its 

small population base (0.37million people in 2015). 

Up to the 1990’s, the country was highly dependent on sugar exports that accounted for more 

than 40.0% on average of domestic merchandise exports. Following the oil shock in the late 

1970’s and plummeting sugar prices in the early 1980’s, the development of the tourism industry 

was encouraged as part of a general strategy to diversify the economy, increase foreign exchange 

earnings, generate employment and so improve the country’s resilience to external shocks. 

After more than four decades, some success in reducing dependence on sugar exports and 

in expanding the tourism industry was achieved. Sugar as a share of domestic exports went from 

44.7% in 1984 to 25.1% in 2015 with a low of 10.9% in 2010, in response to higher production 

of other traditional exports such as citrus and banana and development of nontraditional 

commodities such as papaya, farmed shrimp and petroleum. Meanwhile, significant foreign and 

local investments into tourism have gradually raised its economic importance and have 

contributed to its current substantial level. 

The results of the continued tourism expansions are evident. Foreign exchange earnings 

as a percent of exports of goods and services have increased. Using the SIC categories of “Hotel 
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and Restaurants” and “Transportation” to proxy tourism’s contribution to GDP, Its share of GDP 

increased over the same period. Employment in tourism has risen steadily with time. Available 

data since 1998 showed that employment in tourism rose from one out of every 11 persons in 

1998 to one out of every 7 persons by 2014 (BTB 2014). 

Table 5.1: Belize’s Economics as it relates to Tourism 

Belize’s Economics as it relates to Tourism 

% 

change 

'14 vs. 

'13 
2014 2013 2012 2011 2010 

Tourist Expenditure (mnBze $) 3.2 773 750 639 514 500 

Tourist Expenditure (mn US $) 3.2 387 375 320 257 250 

Employment in Tourism (SIB)   19,141 18,850 N.D. N.D. 13,242 

Total Employment (SIB) 4.8 134,421 128,277 N.D. N.D. 107,484 

Tourism employment as a % of total -3.1 14.2 14.7 N.D. N.D. 12.3 

GDP - Current Prices (mnBze $) - revised 4.6 3,398 3,249 3,145 2,978 2,797 

Tourism expenditure as % of GDP   22.8 23.1 20.3 17.2 17.9 

Total   1699 1624.3 1572.6 

  

Institutional and Policy Framework 

The Belize Tourism Board (BTB) is the implementing arm of the Ministry of Tourism. 

Responsibility for planning, developing, promoting and regulating the growth of the tourist 

industry lies with this statutory body whose Board of Directors is comprised of private sector 

representatives and whose budget is funded through industry taxes.  

In addition to the work of the BTB, Government provides assistance mostly through loan funded 

projects that address critical infrastructural constraints. Between 2000 and 2004, the 

Government, through a combination of loan, grants and counterpart funds, invested 
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approximatelyUS$15.0 million to develop and improve a number of major archaeological sites 

and provide training mostly to tour guides and other service providers. Notably, the 

improvements to the archaeological sites were designed for a combined maximum of 300,000 

cruise and stay-over visitors and did not cater for the explosive growth in cruise arrivals that 

began in 2002.Various private sector associations, funded through membership fees, protect and 

lobby for their interests. The Belize Tourism Industry Association (BTIA) was initially set up as 

an umbrella organization for all service providers. Its membership includes various smaller 

associations such as the Hotel and Tour Guides Association. The Federation of Cruise 

Associations of Belize is a recently formed breakaway group consisting of some 800 members 

spread across 19 associations that include tendering, taxis, handicraft and transportation. The 

members of this federation did not want their interests diluted by biases in favor of stay-over 

market interests. 

Recognizing the need for a comprehensive framework and more pro-active approach to 

developing the tourism industry, the Ministry of Tourism commissioned the Blackstone 

Corporation in 1998 to develop a ten year strategy and action plan to stimulate economic growth, 

while protecting the country’s environmental and heritage resources and ensuring benefits for the 

local people. 

This first national tourism strategy recommended the continued niche marketing of the 

country to high-end spenders on an eco-tourism platform that promoted small scale, 

environmental, cultural and community tourism with strong inter-sectoral linkages. The 

Blackstone report considered and discarded a mass tourism scenario aimed at quadrupling 

arrivals to 400,000 by2008, because it was felt that the environmental degradation and negative 

cultural impact could destroy the country’s eco-tourism niche. Instead, the proposed strategy 
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opted for a lower, average, annual growth of 4.0% or minimum target of 120,000 visitors by the 

end of the first 5years and a minimum of 140,000 visitors by the end of 2008.  

An updated national tourism policy (BTB, 2005) was crafted in 2005 that recommended 

the non-conflicting co-existence of the niche, stay-over and mass market, cruise segments. The 

policy assumed that cruise arrivals would stabilize at an annual rate of 1.0mn visitors and 

cautioned that the expansion of the cruise industry should not jeopardize Belize’s status as an 

eco-tourism destination. It suggested that selected sites should be designated primarily as cruise 

visitors’ sites or new sites catering specifically to the cruise market should be developed. 

Another recommendation was the immediate implementation of ceilings or capacity limits on the 

number of cruise visitors to designated sites. This policy also called for the development of a 

long term Tourism Master Plan (a plan of action, cutting across all government ministries and 

even some private sector stakeholders) to implement the recommendations suggested in the 

policy paper. To date, no sites have been designated specifically for cruise tourists, nor have 

capacity limits been adhered to and financing constraints have delayed development of the 

master plan.  

The Government, however, has secured a loan to finance tourism oriented infrastructural 

projects in selected destinations and has also produced the tourism master plan. It remains to be 

seen if the needed multi-disciplinary buy-in will be obtained to implement the entire policy 

rather than just those sections that fall within the purview of the tourism ministry and the BTB, 

as happened with the 1998 strategy. Notwithstanding the existence of this policy, the sentiment is 

widely felt especially among the stakeholders in the stay-over market that the explosive growth 

of cruise tourism has put at risk the country’s niche positioning as a high-end provider of an eco-
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based tourist experience, and its development has not proceeded in a sustainable and 

environmentally responsible manner.  

Significant attention was given to the cruise tourism because of the potential and contributions to 

the countries’ economy and in 2015 there was a total of 957,975 Cruise Passenger Arrival, this 

was a minor drop pf 1% compared to 2015. 

Figure 5.1 shows that Americans continue to be our largest market for visitors, making up 63.1% 

of the overall arrivals. This followed by Europeans at 12% and Canadians at 7% in 2015.  

 

Figure 5.1: Market Share: Jan – Dec 2015 

 

Methodology 

Figure 5.2 shows the actual data used in the model building process and illustrates the high 

degree of nonlinearity and seasonality and upward trend in time. The time plot shows drop in 
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2009, and an increase in 2010. There is nothing unusual about the time plot and there appears to 

be no need to do any data adjustments.  

The Monthly data for the period 2000 to 2013 is divided into two periods: (1) data from 

2000-2011, yielding 144 observations, are employed to estimate two models for the series; (2) 

data from 2012-2013 are used for ex post validation purposes referred to as the test data. 

 

 

Figure 5.2: Plot of tourist’s arrivals in Belize 2000-2013 

 

We introduced first the Holt –Winters Exponential Smoothing, since the data exhibits seasonality 

and trend .We then introduced the seasonal ARIMA model. 
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Holt-Winters Exponential Smoothing 

The idea of exponential smoothing is to forecast future points through an exponentially 

weighted average of past observation. Holt-Winters exponential smoothing estimates the level, 

slope, and seasonal component at the current time point. Smoothing is controlled by 𝛼, 𝛽 𝑎𝑛𝑑 𝛾  

for the estimates of the level, slope of the trend, and seasonal component, respectively. Parameter 

values close to zero means that relatively little weight is placed on the most recent observations 

when making forecasts of future values. 

The Holt-Winters model uses a modified form of exponential smoothing. It applies three 

exponential smoothing formulae to the series. Firstly, the level (or mean) is smoothed to give a 

local average value for the series. Secondly, the trend is smoothed and lastly each seasonal sub-

series (i.e. all the January values, all the February values….. for monthly data) is smoothed 

separately to give a seasonal estimate for each of the seasons. 

The exponential smoothing formulae applied to a series with a trend and constant seasonal 

component using the Holt-Winters additive technique are: 

 )b)(a1()s(a 11   ttpttt Y   (5-1) 

  11 )b1()a(ab   tttt   (5-2) 

 
ptttt Y  )s1()a(s 

 (5-3) 

    

where ,  and   are the smoothing parameters, at is the smoothed level at time t, bt is the 

change in the trend at time t, st is the seasonal smooth at time t and p is the number of seasons 

per year. 
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The Holt-Winters algorithm requires starting (or initialising) values. Most commonly: 
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the Holt-Winters forecasts are then calculated using the latest estimates from the appropriate 

exponential smoothings that have been applied to the series. So we have our forecast for time 

period T : 

 
TTTTy sbaˆ    (5-7) 

 

where Ta  is the smoothed estimate of the level at time T, Tb is the smoothed estimate of the 

change in the trend value at time T and Ts is the smoothed estimate of the appropriate seasonal 

component at T. 

As mentioned earlier the Holt-Winters model assumes that the seasonal pattern is relatively 

constant over the time period.  We expected to notice changes in the seasonal pattern and 

identify this as a potential problem with the model, particularly if long–term predictions are 

made. In practice this is dealt with by transforming the original data and modelling the 
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transformed series or using a multiplicative model.  The exponential smoothing formulae applied 

to a series using Holt-Winters Multiplicative models are: 
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The initialising values are: 
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So we have our prediction for time period T : 
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Figure 5.3: Plot of Tourist arrivals two year forecast 

 

ARIMA Model 

The classical ARIMA (p, d, q) is defined as follows 

 ∅𝑝(𝐵)(1 − 𝐵)
𝑑𝑋𝑡 = 𝜃𝑞(𝐵)𝜀𝑡 (5-12) 

Where {𝑋𝑡} is the realized time series.  

The seasonal ARIMA model incorporates both non-seasonal and seasonal factors in a 

multiplicative model.  One shorthand notation for the model is ARIMA (p, d, q) × (P, D, Q)S, 

with p = non-seasonal AR order, d = non-seasonal differencing, q = non-seasonal MA order, P = 

seasonal AR order, D = seasonal differencing, Q = seasonal MA order, and S = time span of 

repeating seasonal pattern. Without differencing operations, the model could be written more 

formally as 

 𝛷(𝐵𝑆)𝜑(𝐵)(𝑋𝑡 − 𝜀𝑡)  =  𝛩(𝐵
𝑆)𝜃(𝐵)𝜀𝑡 (5-13) 
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The non-seasonal components are: 

AR:  φ(B) = 1 - φ1B - ... - φpBp 

MA:  θ(B) = 1 + θ1B + ... + θqBq 

The seasonal components are: 

Seasonal AR:  Φ(B
S
) = 1 - Φ1B

S
 - ... - ΦPBP

S
 

Seasonal MA:  Θ(B
S
) = 1 + Θ1B

S
 + ... + ΘQBQ

S
 

Note that on the left side of Equation (5.1) the seasonal and non-seasonal AR components 

multiply each other, and on the right side of Equation (5.1) the seasonal and non-seasonal MA 

components multiply each. 

The order of the seasonal ARIMA model determines the structure of the model and it is 

essential to have a good methodology in terms of developing the forecasting model. In the 

present study, we start with addressing the issue of the seasonal sub index s. After we examine 

the original data, shown by Figure 5.11, we have reason to believe the average monthly tourists 

arrivals behave as a periodic function with a cycle of 12 months.  

 

Hence, we let the seasonal sub index s = 12. In time series analysis, one cannot proceed 

with a model building procedure without confirming the stationarity of a given stochastic 

realization, thus, we test the overall stationarity of the series by using the method introduced by 

Kwiatkowski, D., Phillips, P C. B., Schmidt, P., and Shin, Y in 1992, (Kwiatkowski et al., 1992). 

Once the order of the differencing is identified, it is common for one ARIMA ( p, d, q) 

×(P,D,Q)s model that we have several sets of  ( p, q, P, Q)that are all adequately representing a 

given set of time series. Akaike’s information criterion, AIC, (Akaike, 1974), was first 
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introduced by Akaike in 1974 plays a major role in our model selecting process. We shall choose 

the set of (p, q, P, Q) that produces the smallest AIC. 

Another important aspect in our model selection process is to determine the seasonal 

differencing, D, the goal is to select a smaller AIC without complicating the selected model. 

Hence, we only compute the AIC for both D = 0 and D = 1 based on our previous selection of 

the orders (p, d, q, P, Q), and choose the model with smaller AIC to be our final model. 

 

Below we summarize the model identifying procedure: 

1. Determine the seasonal period s. 

2. Check for stationarity of the given time series 𝑦𝑡  by determining the order of 

differencing d, where d = 0, 1, 2,…, according to KPSS test, until we achieve stationarity. 

3. Deciding the order m of the process, for our case, we let where m= 5 

p + q + P + Q ≤m 

4. After (d, m) are selected, lies all possible configurations of ( p, q, P, Q) for   

p + q + P + Q ≤m 

5. For each set of ( p, q, P, Q) , estimate the parameters for each model, that is, 

∅1 , ∅2 , … , ∅𝑝 , 𝜃1𝜃2, … , 𝜃𝑞 , Φ1, Φ2, …Φ𝑝 

6. Compute the AIC for each model, and choose the one with smallest AIC. 

7. After (p, d, q, P, Q) is selected, we determine the seasonal differencing filter by selecting 

the smaller AIC between the model with D = 0 and D = 1. 

8. Our final model will have identified the order of (p, d, q, P, D, Q). 

With the use of statistical software such are R. 
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Figure 5.4: Plot of tourist’s arrival in between 2000 - 2013 and forecast 

 

Comparison of the Forecasting Models 

Diagnostic checks help to determine if the anticipated model is adequate. At this stage, an 

examination of the residuals from the fitted model is done and if it fails the diagnostic tests, it is 

rejected and we repeat the cycle until an appropriate model is achieved. Different combinations 

of AR and MA individually yield different ARIMA models. The optimal model is obtained on 

the basis of minimum value of Akaike Information Criteria (AIC). The Root Mean Square Error 

(RMSE) and the Mean Absolute Percentage Error (MAPE) are used to evaluate the performance 

of the various models and are given below. For comparing the forecasting performance of 

competing models, the measure of accuracy of mean absolute percent error (MAPE) is calculated 

as: 

 
𝑀𝐴𝑃𝐸 =

1

𝑛
∑|

𝑌𝑡 − 𝐹𝑡
𝑌𝑡

| ∗ 100

𝑛

𝑡=1

 
(5-14) 

Where yt (t=1, 2 . . . n) is the actual value, and F(t= 1, 2, .  . , n) represents the forecasted value. 

The lower the value of MAPE is, the better the forecast will be. According to Lewis 
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(1982), the MAPE greater than 50% denotes inaccuracy of forecasting, 20–50% is reasonable, 

10–20% is good, and smaller than 10% shows high accuracy of forecasting. Table 5-1 shows the 

forecast accuracy for both forecasting methods used. 

 

Table 5.2: Residuals summary 

Forecast 
Accuracy ME RMSE MAE MPE MAPE ACF1 

ARIMA 

Training set 136.7055 1031.201 797.2927 0.395793 4.433043 0.004798 

Test set 2381.718 2820.974 2381.718 9.85867 9.85867 0.360309 
Holt-Winters 

Training set 88.44435 1110.412 852.0112 0.346572 4.78286 0.040577 

Test set 2163.617 2591.954 2180.3675 8.879839 8.950951 0.309376 

The Holt-Winter model outperforms the ARIMA model due to it lower MAPE. However 

since the ARIMA model MAPE is smaller than 20%, this indicates the forecasting performance 

is also good according to Lewis (1982). 

Initially, we employed the Holt-Winters method with both additive and multiplicative seasonality 

to forecast tourists’ arrivals. Figure 5.4 shows the data alongside the within-sample one-step-

ahead forecasts over the sample period 2000–2011 and the forecasts for the period 2012–2013. 

The data show an obvious seasonal pattern with peaks observed in the December of each year as 

this corresponds to the Belizean Tourist season.  The results show that the method with the 

multiplicative seasonality fits the data best. This was expected as the time plot shows the 

seasonal variation in the data increases as the level of the series increases. This is also reflected 

in the two sets of forecasts; the forecasts generated by the method with multiplicative seasonality 

portray larger and increasing seasonal variation as the level of the forecasts increases compared 

to the forecasts generated by the method with additive seasonality. Because the nature of the 
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data, we utilized the multiplicative method for further forecasting. Figure 5.5 shows the graph of 

the estimated Holt Winter model and its two year ahead forecast.  

The application of the method with multiplicative seasonality is presented in Table 5.2 and 

Figure.  Table 5.2 summarized the two year period ahead forecast values with 80% and 90% 

confidence intervals for the predicted values and the actual tourist arrivals for the same period. 

 

 

Figure 5.5: Forecast from H-W multiplicative model 
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Figure 5.6: Forecasts from Holt Winters model 

 

Table 5.4 shows the actual tourists’ arrival and forecasted monthly tourists’ arrival in 

Belize for period 2000-2013 using both the exponential smoothing and the ARIMA models. The 

time plot in Figure 5.1 revealed that there was a seasonal increasing trend from year 2000 to 

2008 with a decrease in 2009 and 2011. And a increasing trend thereafter. For smoothing the 

data, Holt-Winter exponential Smoothing was used. The Holt–Winters exponential smoothing 

model is estimated by using the computer application, R and the parameters of α, β, and γ were 

obtained by grid searching from 0 to 1. The model with parameter values is selected based on the 

smallest sum of squared errors and subsequently used to produce the forecasting. The mean 

Absolute Percentage error (4.78286) was the least for α=0.1887396, β= 0.02201329, γ= 

0.522769.  
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The values of for α=0.1887396 is relatively low, indicating that the estimate of the level 

at current time period is based upon both recent observations and some observation in the more 

distant past. The value of β= 0.02201329 indicated that the estimate of the slope b of trend 

component is updated over the time series, as the level change the slope b of the trend 

component does not remain the same over the time series. 

Following the ARIMA model procedure outline before, ARIMA model were fitted to the tourist 

arrival series.  At the estimation stage, the autocorrelation (ACF) and partial autocorrelation 

(PACF) were checked to identify any autoregressive or moving average process. 

 

Table 5.3: H-W period ahead forecast value 

 

Month Year

Holt -

Winter Lo 80 Hi 80 Lo 95 Hi 95 Actual Arrival

Jan 2012 24134.28 23261.632 25006.92 22799.68 25468.87 24263

Feb 2012 25079.7 24161.686 25997.72 23675.72 26483.69 25778

Mar 2012 30426.15 29427.813 31424.48 28899.33 31952.97 32240

Apr 2012 23367.25 22392.486 24342.01 21876.48 24858.02 23699

May 2012 20218.85 19236.674 21201.02 18716.74 21720.95 22106

Jun 2012 22574.01 21516.431 23631.59 20956.58 24191.44 24615

Jul 2012 24347.21 23215.63 25478.78 22616.61 26077.8 25778

Aug 2012 18836.48 17773.873 19899.09 17211.36 20461.6 19528

Sep 2012 10258.96 9311.847 11206.08 8810.474 11707.45 11743

Oct 2012 12574.88 11532.834 13616.93 10981.21 14168.55 14498

Nov 2012 18917.39 17615.87 20218.91 16926.89 20907.89 21542

Dec 2012 26821.08 25372.491 28269.66 24605.66 29036.49 31346

Jan 2013 24537.47 22705.112 26369.83 21735.12 27339.83 28431

Feb 2013 25498.11 23585.949 27410.27 22573.71 28422.5 28765

Mar 2013 30933.05 28724.017 33142.07 27554.63 34311.46 35795

Apr 2013 23756 21852.611 25659.4 20845.02 26666.99 23555

May 2013 20554.76 18763.262 22346.26 17814.9 23294.62 22941

Jun 2013 22948.53 21002.371 24894.69 19972.14 25924.93 26817

Jul 2013 24750.59 22669.291 26831.89 21567.52 27933.66 27833

Aug 2013 19148.13 17328.53 20967.74 16365.29 21930.98 20863

Sep 2013 10428.46 8978.41 11878.52 8210.797 12646.13 10654

Oct 2013 12782.36 11192.357 14372.37 10350.66 15214.06 14543

Nov 2013 19229.09 17222.736 21235.45 16160.64 22297.55 22868

Dec 2013 27262.4 24955.204 29569.59 23733.85 30790.95 31111

H-W Period Ahead Forecast Values with 80% and 95% Confidence Intervals and Actual Values
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Figure 5.7: Forecasts fr om Holt-Winter 

 

Figure 5.8: Holt-Winter residual plot 
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Figure 5.9: ACF of the seasonal 

 

 

Figure 5.10: Seasonal ARIMA residual plots of tourist arrivals in Belize 

 

Since the correlogram shows that one of the sample autocorrelations for lags 1-20 exceed 

the significance bounds, and the p-value for the Ljung-Box test is 0.7755, we can conclude that 

there is very little evidence for non-zero autocorrelations in the forecast errors up to lag 20 as 

shown in Figure 5-13. The spike in the plot suggests that the model can be slightly improved 
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although it is unlikely to make much difference to the resulting forecast in Table 5-3. The 

forecasted tourists’ arrival for the year 2012-2013 is presented in Table 5-3 along with the 80% 

and 90% confidence interval. When compare with the actual observed arrivals it appears that the 

model fits the data very well as seen in Figure 5-13.  

 The best fitted model was ARIMA(1,0,1)(2,1,1)(12) . This can be written as  

 (1 − ∅1𝐵)(1 − Φ1𝐵
12 −Φ2𝐵

24)(1 − 𝐵12)𝑋𝑡 = (1 + θ1𝐵)(1 + Θ1𝐵
12)𝜀𝑡 (5-15) 

Substituting the estimated ARIMA coefficients, 

 (1 − 0.9744𝐵)(1 + 0.0982𝐵12 − 0.016𝐵24)(1 − 𝐵12)𝑋𝑡

= (1 − 0.7394𝐵)(1 − 0.5240𝐵12) (5-16) 

Simplifying it, we get      

 𝑋𝑡 −𝜀𝑡 =0.9744𝑋𝑡−1+ 0.9018𝑋𝑡−12− 0.87871392𝑋𝑡−13+ 0.1088𝑋𝑡−24

−0.10601472𝑋𝑡−25− 0.0106𝑋𝑡−36+ 0.01032864𝑋𝑡−37

−0.7394𝜀𝑡− 0.524𝜀𝑡−12+ 038474𝜀𝑡−13  (5-17) 

The mathematical form of the one step ahead forecasting model for Belize is given by, 

 𝑋𝑡 =0.9744𝑋𝑡−1 + 0.9018𝑋𝑡−12 − 0.87871392𝑋𝑡−13 + 0.1088𝑋𝑡−24

−0.10601472𝑋𝑡−25 − 0.0106𝑋𝑡−36 + 0.01032864𝑋𝑡−37

−0.7394𝜀𝑡 − 0.524𝜀𝑡−12 + 038474𝜀𝑡−13  (5-18) 

which is different from  the  model forecasted by United Nation  in their 1992 report on Belize.  
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Table 5.4: ARIMA model Ahead Forecast Values 

 

 

 

Figure 5.11: Forecast from ARIMA(1.0,1)(2,1,1)12 

 

Month 
Year

Forecast 

ARIMA Lo 80 Hi 80 Lo 95 Hi 95 Actual Arrival

Jan 2012 24167.21 22269.83 26226.25 21326.48486 27386.323 24263

Feb 2012 25170.65 23142.89 27376.05 22136.45332 28620.714 25778

Mar 2012 30441.89 27931.85 33177.46 26688.01854 34723.744 32240

Apr 2012 23014.71 21076.73 25130.89 20117.79448 26328.782 23699

May 2012 20176.62 18444.8 22071.03 17589.05302 23144.86 22106

Jun 2012 22443.83 20483.46 24591.82 19516.00154 25810.896 24615

Jul 2012 24208.86 22060.21 26566.76 21001.09798 27906.558 25778

Aug 2012 18870.72 17171.05 20738.62 16334.17798 21801.15 19528

Sep 2012 10133.61 9208.442 11151.73 8753.387086 11731.467 11743

Oct 2012 12385.75 11240.75 13647.4 10678.10861 14366.494 14498

Nov 2012 18544.47 16810.18 20457.71 15958.74127 21549.158 21542

Dec 2012 26446.13 23946.2 29207.07 22719.95745 30783.435 31346

Jan 2013 24405.43 21881.61 27220.35 20653.02341 28839.637 28431

Feb 2013 25324.36 22658.67 28303.65 21363.0698 30020.177 28765

Mar 2013 30584.27 27312.26 34248.26 25724.34246 36362.344 35795

Apr 2013 23364.41 20827.32 26210.57 19597.74916 27855.034 23555

May 2013 20297.22 18062.77 22808.08 16981.2997 24260.651 22941

Jun 2013 22609.63 20088.95 25446.59 18870.42197 27089.785 26817

Jul 2013 24440.89 21684.02 27548.27 20352.82496 29350.093 27833

Aug 2013 18931 16772.38 21367.43 15731.17986 22781.68 20863

Sep 2013 10205.07 9029.678 11533.45 8463.296213 12305.296 10654

Oct 2013 12472.76 11022.7 14113.56 10324.63432 15067.811 14543

Nov 2013 18763.26 16562.84 21256.01 15504.47545 22706.988 22868

Dec 2013 26748.03 23585.68 30334.35 22065.92848 32423.605 31111

ARIMA Period Ahead Forecast Values with 80% and 95% Confidence Intervals and Actual Values
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Conclusion 

Tourism in Belize and the Central America region underpin their fragile economies.  With 

planning being an important aspect in tourism, the importance of forecasting cannot be 

overemphasized. Yet, little has been done on this issue. We have developed two models. The 

estimated models were subjected to validation process based on their statistical properties and 

forecasting capability. The ex post forecast shows that the ARIMA(1,0,1)(2,1,1)(12) scheme provides 

excellent short term forecast and the Holt-Winter also provides excellent forecasts. Of the two models 

however, based on MAPE and RMSE in Table 5-1 the results shows that the Holt-Winter 

Exponential smoothing model was the best for forecasting tourist arrival in Belize.  The model 

does not show how various socioeconomic variables affect the number of arrivals. If such 

information is needed, a structural model should be developed and its simulation capability 

should be examined. Since the development of structural model can be costly, the benefit of 

additional information that would be obtained should be weighed against the costs of obtaining 

them. 

The ARIMA models deal with seasonality in a more implicit manner--we can't easily see in 

the ARIMA output how the average for January, say, differs from the average for June. 

Depending on whether it is deemed important to isolate the seasonal pattern, this might be a 

factor in choosing among models. The ARIMA models have the advantage that, once they have 

been initialized, they have fewer "moving parts" than the exponential smoothing and adjustment 

models and as such they may be less likely to over fit the data.  ARIMA models also have a more 

solid underlying theory with respect to the calculation of confidence intervals for longer-horizon 

forecasts than do the other models. 
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Chapter 6: Future Research 

We proposed in developing a statistical economic model that drives the economy of Belize. 

This is extremely important because no such model does exist. The process, by which we will 

proceed in developing this model, is first identifying the attributable variables that drive the 

economy, such as agriculture, tourism, temperature and rainfall etc. with our model response 

variable which would be the value return base on the attributable variables. Most importantly, we 

will identify the interactions that would be involved in the modeling process and once we have 

identified it, we believe we can developed a very good model and validate it to be used by my 

country Belize. 

Usefulness of such model is that it can estimate it potential economic behavior, secondly it 

identifies the significant attributable variables that drives the economy, thirdly it will identify the 

interaction of the risk variables that drives the economy ,fourthly , we can use the modelling 

aspect  to rank the attributable variables base on their percentage of contribution to the economy 

which is useful to government will know what entities they should focus in in order to increase 

the overall economy. Finally we will proceed perform surface response analysis that is we want 

to be within 95% certainly, what are the values of the attributable variables that drives the model 

that maximize the economy. This is extremely important because this information to the 

government in the sense that they can try to maintain the values that will maximize the economy. 

For example, if tourism is one of the key factors then they should aim to maintain the optimum 

values. 

Belize has a significant need for developing a statistical model that drives the tourism 

sector. Since tourism is one on the key factors that drives the economy. In which our response 

variable will be tourism arrivals and the attributable variables mentioned in the previous 
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proposed research. Since we know from descriptive statistics, that tourism is one of the key 

factors in driving Belize’s economy. Having such a model is useful because we will able to 

identify the key factors that drive the tourism sectors. 

As a result of the present study, we will continue the research on the subject area by 

studying the following problems. Investigate the selection of the best ARIMA model utilizing 

AIC versus BIC with respect to small, medium and large sample sizes.  Overall, the results 

enable forecasters to choose the most suitable model, based on the available data, forecast 

horizon for forecasting tourism demand.  A future research would aim at revisiting the 

robustness of our results in multivariate nonlinear frameworks, which controls for additional 

exogenous variables that affect tourism demand. Another area of interest is to examine whether a 

combination of forecasts based on the aforementioned models provides any additional gains in 

the forecasting accuracy of tourism demand in Belize. 

While good research finding have been obtained, further work needs to be done to 

generalize the finding to other neighboring countries with similar characteristics. Future studies 

can employ the same forecasting model but with different data series for forecasting accuracy 

validity.  
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