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Abstract

Let V be a finite-dimensional vector space over a field K, and let End(V ) be the set of

all K-linear transformations from V to V . A Leonard system on V is a sequence

(A;B; {Ei}di=0; {E∗i }di=0),

where A and B are multiplicity-free elements of End(V ); {Ei}di=0 and {E∗i }di=0 are orderings

of the primitive idempotents of A and B, respectively; and for 0 ≤ i, j ≤ d, the expressions

EiBEj and E∗iAE
∗
j are zero when |i− j| > 1 and nonzero when |i− j| = 1. Leonard systems

arise in connection with orthogonal polynomials, representations of many nice algebras, and

the study of some highly regular combinatorial objects. We shall use the construction of

Leonard pairs of classical type from finite-dimensional modules of sl2 and the construction

of Leonard pairs of basic type from finite-dimensional modules of Uq(sl2).

Suppose Φ := (A;B; {Ei}di=0; {E∗i }di=0) is a Leonard system. For 0 ≤ i ≤ d, let

Ui = (E∗0V + E∗1V + · · ·+ E∗i V ) ∩ (EiV + Ei+1V + · · ·+ EdV ).

Then U0, U1, . . . , Ud is the split decomposition of V for Φ. The split decomposition of V for

Φ gives rise to canonical matrix representations of A and B in terms of useful parameters

for the Leonard system.

In this thesis, we consider when certain Leonard systems share a split decomposition. We

v



say that Leonard systems Φ := (A;B; {Ei}di=0; {E∗i }di=0) and Φ̂ := (Â; B̂; {Êi}di=0; {Ê∗i}di=0)

are friends when A = Â and Φ, Φ̂ have the same split decomposition. We obtain Leonard

systems which share a split decomposition by constructing them from closely related module

structures for either sl2 or Uq(sl2) on V . We then describe friends by a parametric clas-

sification. In this manner we describe all pairs of friends of classical and basic types. In

particular, friendship is not entirely a property of isomorphism classes.
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1 Introduction

Leonard pairs and systems are linear algebraic objects. Our discussion assumes the reader is

familiar with linear algebra at an undergraduate level. We postpone formal definitions until

Chapter 2. The most concise description of a Leonard pair is as follows.

Let A and B be diagonalizable linear operators on a finite-dimensional vector

space. Then A, B is a Leonard pair when each is represented by an irreducible

tridiagonal matrix with respect to some eigenbasis of the other.

In other words, when viewed with respect to the corresponding eigenbasis, the nonzero entries

lie on the diagonal in one and on, above, or below the diagonal in the other. Moreover, the

entries above and below the diagonal of the second are nonzero. See Figure 1.1.

A-eigenbasis A B B-eigenbasisA B

Figure 1.1: Two perspectives on a Leonard pair

This simple description of a Leonard pair belies the depth of the topic. The motivating

result is an equivalence of Leonard pairs with the families of orthogonal polynomials in

the terminating branch of the Askey scheme. This equivalence is essentially due to Doug
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Leonard, for whom Leonard pairs are named. Although the connection between Leonard

pairs and orthogonal polynomials is not the main thrust of this thesis, a little background

is in order.

The Askey scheme and its q-analog [5], [6], [7], [8], [29] consist of the sequences of orthog-

onal polynomials which can be expressed with hypergeometric functions. Askey and Wilson

showed that they are 4F3 hypergeometric polynomials and 4φ3 basic hypergeometric polyno-

mials, subject to some balancing conditions on the parameters, together with various limiting

cases of each to simpler hypergeometric polynomials. The terminating branch consists of 11

families for which the sequences of polynomials are eventually zero. See Figures 1.2 and 1.3.

Leonard’s work [30] is related to the work of Askey and Wilson in the terminating branch of

the Askey scheme.

q-Racah

q-Hahn Dual q-Hahn

Quantum
q-Krawtchouk

q-Krawtchouk
Affine

q-Krawtchouk
Dual

q-Krawtchouk

Figure 1.2: The Askey q-Scheme (terminating branch)
Basic types of Leonard pairs

We point out that both Askey and Leonard were inspired by the work of Delsarte [8],

[15], [28], [30]. Delsarte’s focus was the use of association schemes in the study of codes and

designs (these are all highly regular combinatorial objects). His work included a description

of the structure constants of many P- and Q-polynomial association schemes using (basic)

hypergeometric series. The P- and Q-polynomial properties correspond to two related tridi-

agonal matrix representation, which define a three-term recurrence, which in turn defines a

2



Racah

Hahn Dual Hahn

Krawtchouk

Figure 1.3: The classical Askey Scheme (terminating branch)
Classical types of Leonard pairs

Bannai-Ito Orphan

Figure 1.4: Missing from of the Askey Scheme
Missing types of Leonard pairs

terminating sequence of orthogonal polynomials. These hints of a connection between nice

orthogonal polynomials and hypergeometric series influenced the work of Askey and Wilson

and are the direct precursors to Leonard’s results.

Leonard’s result was a classification of the parameters of the P- and Q-polynomial asso-

ciation schemes into a number of families. By solving the various constraints, Leonard gave

a classification of possible parameters. The families identified by Leonard correspond to the

families of orthogonal polynomials in the terminating branch of the Askey scheme (a few

families of the Askey scheme did not fit the combinatorial constraints, but arise from the

computations prior to applying these constraints). A pair of matrices which form what we

now call a Leonard pair appeared in his work. This was a very exciting result. Although a

P- and Q-polynomial association scheme might be large and have many structure constants,

they are all determined by at most 5 free parameters and fell into a handful of families.

In Bannai and Ito’s [9] presentation of Leonard’s result, a missing family of solutions was

3



identified (corresponding to q = −1).

Leonard pairs were introduced by Terwilliger to offer a purely linear algebraic under-

standing of Leonard’s work and the terminating branch of the Askey scheme [31], [34], [32],

[33], [46], [38], [50], [41], [49], [42], [40], [47], [48], [39], [43], [44], [45], [23], [24]. This was

similar in spirit to Bannai and Ito’s treatment of Leonard’s work. The first result was that

Leonard’s results proceed without issue at this level, and in fact do so over any fields of

sufficiently large characteristic. This established a (near) equivalence between Leonard pairs

and the orthogonal polynomials in the terminating branch of the Askey scheme, plus the

Bannai-Ito polynomials, plus a family that can arise over field of characteristic two (dubbed

the “orphan” family). See Figures 1.2, 1.3, and 1.4. Given a Leonard pair, its type is the

type of corresponding orthogonal polynomials.

Terminating branch
of the Askey scheme

13 families, up
to 5 parameters

Parameter arrays
redundant parameters

Leonard systems
2 operators

ordered idempotents

Leonard pairs
2 operators

one-to-one
formulas

one-to-one
matrix entries

four-to-one
omit idempotents

one-to-one
formulas in cases

one-to-one
entries in
split form

one-to-four
order idempotents

Figure 1.5: Orthogonal polynomials and Leonard pairs

At some point, it is inevitable that the 13 families of Leonard pairs must be treated

separately to make full use of their individual characteristics. This was essentially the only

approach prior to Terwilliger’s introduction of Leonard pairs. Terwilliger’s key observation
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was that by introducing an overdetermined set of parameters, referred to as the parameter

array [44], many results could be proven for all Leonard pairs at once. The entries of the

parameter array arise in connection with another pair of perspectives on Leonard pairs.

There are “split bases” with respect to which A is lower-bidiagonal, B is upper-bidiagonal,

and the entries on the subdiagonal of A are all 1. We are concerned with two of these bases,

referred to as the “first split basis” and “second split basis,” respectively. See Figure 1.6.

The values on the diagonals and the nonzero superdigaonals of the matrices representing A

and B with respect to these two split bases form a parameter array.

1st split basis A B 2nd split basisA B

Figure 1.6: Split perspectives on Leonard pairs

Connections between Leonard pairs and the Lie algebra sl2 and universal quantum en-

veloping algebra Uq(sl2) for sl2 have been developed [1], [2], [3], [4], [10], [25]. We offer more

details in Chapter 3. The existence of such connections should not be too surprising; indeed,

the connections between the representation theory of these algebraic objects and Askey-

Wilson polynomials are well-known. Additionally Zhedanov [51] showed that the families of

orthogonal polynomials in the Askey scheme give rise to a pair of operators which satisfy

certain algebraic relations. Both of the algebras sl2 and Uq(sl2) have a triple of equitable

generators x, y, z. They are so-named because the relations which they satisfy are invariant

under cyclic shifts of these generators. Let V be a finite-dimensional irreducible module for

either of these algebras. Then x and y act on an eigenbasis of V for z as lower-bidiagonal

5



and upper-bidiagonal matrices, respectively (and similarly for cyclic shifts of x, y, z). See

Figure 1.7. The shapes of these matrices are reminiscent of those arising in connection with

split decompositions for Leonard pairs. In fact the relationship is far stronger.

Up to isomorphism, every Leonard pair of classical/basic type is constructed on

some irreducible sl2-module/Uq(sl2)-module V by restricting the action of some

linear combinations

A = κI + λy + µz + νyz and B = κ∗I + λ∗z + µ∗x+ ν∗zx. (1.0.1)

We say that a sequence (d, q, κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗) is Leonine when A, B in (1.0.1)

form a Leonard pair, where d + 1 is the dimension of the module and the scalar q is 1 if

there is an sl2-module structure and is the q of Uq(sl2) otherwise. This leads to a one-

to-four correspondence between the isomorphism classes of a Leonard pair (type) and the

collection of all Leonine parameters. We use this correspondence to describe our results.

A key observation is this: By fixing the sl2-module/Uq(sl2)-module structure on V , we can

control the “shape” of the isomorphism class representative of a Leonard pair. That is to

say, there is a basis of V with respect to which A, B are respectively lower-bidiagonal and

upper-bidiagonal. These match the split form of a Leonard pair. This offers another set of

tools for the study of Leonard pairs. In this thesis, we use the fact that every Leonard pair

can be constructed using nice generators of these algebras.

Our goal in this work is to describe when the following situation occurs.

Two Leonard pairs A, B and Â, B̂ are friends when Â = A and the corresponding

elements of the split basis for A, B and Â, B̂ are scalar multiples of one another.

6



z-eigenbasis x y z

y-eigenbasis x y z

Figure 1.7: Two perspectives on the equitable generators

split basis A

B

B̂

Figure 1.8: A perspective on friends

Friendship is an equivalence relation. In Chapter 4 we describe friends by giving the equiv-

alence classes in the following way. Fix an irreducible module for either sl2 or Uq(sl2) and

a sequence of Leonine parameters corresponding to a particular Leonard pair. Any other

sequence of Leonine parameters whose first six entries satisfy a few particular conditions

corresponds to a Leonard pair belonging to the same class of friends. In Chapter 5 we ex-

amine friends type by type. We see that friendships may only result between certain types

of Leonard pairs.

7



2 Preliminaries

In this chapter we recall basic properties of Leonard pairs and related notions. We begin

with a formal definition of a Leonard pair and provide an example [38], [39], [40], [41]. We

elaborate on the relationship between Leonard pairs and orthogonal polynomials [43], [21],

[30], [44]. We extend the concept of a Leonard pair to a Leonard system, and describe

this in depth [39], [43], [42], [40], [41]. We define the split decomposition of a vector space

and emphasize its uniqueness [45], [32]. We describe the parameter array as an alternative

method to describing a Leonard system using a sequence of scalars [44]. These scalars appear

in the matrix representation of a Leonard system with respect to a split basis. We elaborate

on the split form of these matrices and, in particular, their importance to the motivating

problem of this paper. Lastly, we describe how the permutation of some parameters of a

given Leonard system can lead to other distinct Leonard systems by inducing an action of

D4 on the set of all Leonard systems [42], [40], [39], [43].

2.1 Leonard pairs

We begin with some vocabulary.

Definition 2.1.1 [38], [39], [40], [41] Let X denote a square matrix.

(i) X is called tridiagonal whenever each nonzero entry lies on the diagonal, the subdiag-

8



onal, or the superdiagonal.

(ii) Assume X is tridiagonal. Then X is said to be irreducible whenever each entry on the

subdiagonal is nonzero and each entry on the superdiagonal is nonzero.

For the rest of the paper, let K denote a field. We now define a Leonard pair.

Definition 2.1.2 [38], [39], [40], [41] Let V denote a vector space over K with finite positive

dimension. By a Leonard pair on V , we mean an ordered pair of linear operators A : V → V

and B : V → V that satisfy both (i) and (ii) below.

(i) There exists a basis for V with respect to which the matrix representing A is irreducible

tridiagonal and the matrix representing B is diagonal.

(ii) There exists a basis for V with respect to which the matrix representing A is diagonal

and the matrix representing B is irreducible tridiagonal.

2.2 An example

Following the work in [38], [39], [40], [41] we provide a straightforward example of a Leonard

pair. Let V = K5 (column vectors), and let

A =



0 4 0 0 0

1 0 3 0 0

0 2 0 2 0

0 0 3 0 1

0 0 0 4 0


, B =



4 0 0 0 0

0 2 0 0 0

0 0 0 0 0

0 0 0 −2 0

0 0 0 0 −4


.

9



View A and B as linear operators on V . Assume the characteristic of K is not 2 or 3, so A is

irreducible tridiagonal. By construction B is diagonal. Therefore condition (i) in Definition

2.1.2 is satisfied by the basis for V consisting of the columns of the 5× 5 identity matrix, I.

Set

P =



1 4 6 4 1

1 2 0 −2 −1

1 0 −2 0 1

1 −2 0 2 −1

1 −4 6 −4 1


.

By matrix multiplication P 2 = 16I, so P is invertible. Also by matrix multiplication,

AP = PB. (2.2.1)

Hence P−1AP is equal to B and is therefore diagonal. By (2.2.1) and since P−1 is a scalar

multiple of P , we find P−1BP is equal to A and is therefore irreducible tridiagonal. Thus

condition (ii) of Definition 2.1.1 is satisfied by the basis for V consisting of the columns of

the matrix P . We conclude that A, B is a Leonard pair. In fact, it is just one member of

the following infinite family of Leonard pairs.

10



Theorem 2.2.1 [39], [40], [42] For any nonnegative integer d, the pair

A =



0 d 0

1 0 d− 1

2 · ·

· · ·

· · 1

0 d 0



, B = diag(d, d− 2, d− 4, . . . ,−d)

is a Leonard pair on the vector space Kd+1, provided the characteristic of K is zero or an

odd prime greater than d.

Theorem 2.2.1 is verified in a manner similar to the above example. Indeed, by [40,

Section 16], the matrix P with ij entry

Pij =

(
d

j

)
2F1

(
−i,−j
−d

∣∣∣∣∣ 2

)
(0 ≤ i, j ≤ d).

satisfies P 2 = 2dI and AP = PB. Recall that 2F1 is the hypergeometric series [21, p. 3]

defined by

2F1

(
a, b

c

∣∣∣∣∣ z
)

=
∞∑
n=0

(a)n(b)nz
n

(c)nn!
,

where (a)n is the falling factorial defined by

(a)n =


1 if n = 0,

a(a+ 1) · · · (a+ n− 1) if n > 0.

The entries of P are given by Krawtchouk polynomials, a family of orthogonal polynomials

11



from the terminating branch of the Askey scheme. A similar phenomenon occurs for all

Leonard pairs – we discuss this in the next section.

2.3 The 13 types of Leonard pairs

We sketch the connection between Leonard pairs and the orthogonal polynomials from the

terminating branch of the Askey scheme. Further details can be found in [39], [40], [41], and

[44]. Here we discuss only what is needed to frame our work.

Theorem 2.3.1 [44] Let A, B be a Leonard pair. Let β be a basis with respect to which [A]β

is irreducible tridiagonal with constant row sum and [B]β = diag(θ∗0, θ
∗
1, . . . , θ

∗
d). Let δ be a

basis with respect to which [A]δ = diag(θ0, θ1, . . . , θd) and [B]δ is irreducible tridiagonal with

constant row sum. The change of basis matrix, P , from β to δ has entries

Pij = fi(θj) (0 ≤ i, j ≤ d),

where these fi are orthogonal polynomials belonging to some family in the terminating branch

of the Askey scheme.

The Askey scheme consists of polynomials arising from hypergeometric polynomials 4F3,

basic hypergeometric polynomials 4φ3, and limiting cases of each to simpler hypergeometric

polynomials. For certain choices of parameters, the sequences are finite. There are 13

different families of orthogonal polynomials from the terminating branch of the Askey scheme,

thus limiting the possible forms of P – and hence A, B – to 13 types.

The Askey scheme consists of sequences of orthogonal polynomials {fi} for which the dual

polynomials {f ∗i } (with respect to some weight) form a sequence of orthogonal polynomials

12



also in the Askey scheme. Some polynomials of the Askey scheme are self-dual.

Corollary 2.3.2 [44] With reference to Theorem 2.3.1, the matrix P−1 has entries

P−1ij = αf ∗i (θ∗j ) (0 ≤ i, j ≤ d)

for some scalar α.

We do not rely heavily upon this connection between Leonard pairs and orthogonal

polynomials. The Leonard pairs associated with different families of orthogonal polynomials

behave slightly differently. To make full use of the literature we will need to distinguish these

cases by name and by some properties, however, the orthogonal polynomials themselves make

no further appearance in our work.

Definition 2.3.3 [43] The type of a Leonard pair is the name of the associated family of

orthogonal polynomials from the terminating branch of the Askey scheme. The 13 types are

Racah, Hahn, dual Hahn, Krawtchouk, q-Racah, q-Hahn, dual q-Hahn, q-Krawtchouk, dual

q-Krawtchouk, quantum q-Krawtchouk, affine q-Krawtchouk, Bannai-Ito, and orphan.

For example, the Leonard pair from Theorem 2.2.1 is a Leonard pair of Krawtchouk type

because the transition matrix P had entries determined by a polynomial belonging to the

Krawtchouk family of polynomials. More details for each type of Leonard pair, including

explicit formulas, can be found in [21], [30], and [44]. It will be useful to categorize Leonard

pairs into somewhat broader families.

Definition 2.3.4 [2], [21] We say that a Leonard pair is of classical type if it is a Leonard

pair of Racah, Hahn, dual Hahn, or Krawtchouk type. We say that a Leonard pair is of basic
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type if it is a Leonard pair of q-Racah, q-Hahn, q-Krawtchouk, quantum q-Krawtchouk, or

affine q-Krawtchouk type.

The term basic refers to a scalar q which is called the base. In the basic case of Leonard

pairs, the value for q has several restrictions but maintains some freedom. On the other hand,

the classical and Bannai-Ito cases correspond precisely to q = 1 and q = −1, respectively.

The latter case is less well-understood. The orphan case of Leonard pairs occurs only when

dealing with a finite field. For these reasons, our study is concerned only with Leonard pairs

of classical and basic types.

2.4 Leonard systems

We introduce the notion of a Leonard system which refines that of a Leonard pair. A

Leonard system consists of a Leonard pair, together with information regarding the bases

from Definition 2.1.2. Before defining a Leonard system explicitly, we must first lay some

groundwork and make a few observations. We start by establishing some notation and

recalling a few linear algebraic facts that we will use throughout the rest of the thesis.

Definition 2.4.1 Let d be a nonnegative integer. Let V be a vector space over the field

K with positive dimension d + 1. Let End(V ) be the set of all linear operators on V . Let

Matd+1(K) denote the K-algebra consisting of all d+ 1 by d+ 1 matrices with entries in K.

Index the rows and columns of these matrices by 0, 1, . . . , d.

Lemma 2.4.2 In the setting of Definition 2.4.1, End(V ) ∼= Matd+1(K).

This allows us to discuss Leonard pairs in the context of matrices without issue.
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Definition 2.4.3 [42, p. 4] Let A be in End(V ). Then A is multiplicity-free whenever it has

d+ 1 mutually distinct eigenvalues in K.

Lemma 2.4.4 [39, Lemma 1.3] Let A,B denote a Leonard pair on V . Then A and B are

both multiplicity-free.

Recall that multiplicity-free implies diagonalizable, so there are eigenbases of V for A

and B.

Definition 2.4.5 [40], [41], [42], Let A denote a multiplicity-free element of End(V ). Let

θ0, θ1, . . . , θd denote an ordering of the eigenvalues of A, and for 0 ≤ i ≤ d let

Ei =
∏

0≤j≤d
j 6=i

A− θjI
θi − θj

,

where I denotes the identity of End(V ). Then

(i) AEi = θiEi (0 ≤ i ≤ d);

(ii) EiEj = δijEi (0 ≤ i, j ≤ d);

(iii)
∑d

i=0Ei = I;

(iv) A =
∑d

i=0 θiEi.

We call Ei the primitive idempotent of A associated with θi.

Lemma 2.4.6 [40, p. 6] With reference to Definition 2.4.5,

V = E0V ⊕ E1V ⊕ · · · ⊕ EdV,
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where EiV is the one-dimensional eigenspace of A in V associated with the eigenvalue θi for

0 ≤ i ≤ d. Note that Ei acts on V as the projection onto this eigenspace.

We are now ready to define a Leonard system.

Definition 2.4.7 [39, Definition 1.4] By a Leonard system on V of diameter d we mean a

sequence

Φ := (A;B; {Ei}di=0; {E∗i }di=0)

that satisfies (i)–(v) below.

(i) Each of A,B is a multiplicity-free element in End(V ).

(ii) E0, E1, . . . , Ed is an ordering of the primitive idempotents of A.

(iii) E∗0 , E
∗
1 , . . . , E

∗
d is an ordering of the primitive idempotents of B.

(iv)

EiBEj =


0 if |i− j| > 1,

6= 0 if |i− j| = 1

(0 ≤ i, j ≤ d).

(v)

E∗iAE
∗
j =


0 if |i− j| > 1,

6= 0 if |i− j| = 1

(0 ≤ i, j ≤ d).

We record the relationship between Leonard pairs and Leonard systems in the following

theorem.

16



Theorem 2.4.8 [42, Lemma 3.3] Let V and End(V ) be as in Definition 2.4.1. Let A and B

denote elements of End(V ). Then the pair A,B is a Leonard pair if and only if the following

(i), (ii) hold.

(i) Each of A,B is multiplicity-free.

(ii) There exists an ordering E0, E1, . . . , Ed of the primitive idempotents of A and there

exists an ordering E∗0 , E
∗
1 , . . . , E

∗
d of the primitive idempotents of B such that (A;B;

{Ei}di=0; {E∗i }di=0) is a Leonard system on V .

We recall the notion of isomorphism for Leonard systems.

Definition 2.4.9 [39, Definition 1.5] Let Φ = (A;B; {Ei}di=0; {E∗i }di=0) denote a Leonard

system on V and let σ denote an isomorphism of K-algebras. Write

Φσ = (Aσ;Bσ; {Eσ
i }di=0; {E∗σi }di=0)

and observe Φσ is a Leonard system over K. Let Φ and Φ′ denote any Leonard systems

over K. By an isomorphism of Leonard systems from Φ to Φ′ we mean an isomorphism of

K-algebras such that Φσ = Φ′. We say Φ and Φ′ are isomorphic whenever there exists an

isomorphism of Leonard systems from Φ to Φ′, and write Φ ∼= Φ′.

Lemma 2.4.10 Let Φ = (A;B; {Ei}di=0; {E∗i }di=0) be a Leonard system on V , and let β be a

basis for V . Define [Φ]β = ([A]β; [B]β; {[Ei]β}di=0; {[E∗i ]β}di=0). Then [Φ]β is a Leonard system

on Kd+1 and [Φ]β ∼= Φ. We refer to [Φ]β as the representation of Φ with respect to the basis

β.

Proof. The map X 7→ [X]β is a K-algebra isomorphism. The result follows from Definition

17



2.4.9. 2

2.5 The D4 action

We describe how a permutation of the elements of a given Leonard system can result in an

entirely new system.

Lemma 2.5.1 [40, p. 10] Let Φ denote the Leonard system from Definition 2.4.7. Then each

of the following three sequences is also a Leonard system in End(V ):

Φ∗ := (B;A; {E∗i }di=0; {Ei}di=0),

Φ↓ := (A;B; {Ei}di=0; {E∗d−i}di=0),

Φ⇓ := (A;B; {Ed−i}di=0; {E∗i }di=0).

Viewing ∗, ↓,⇓ as permutations on the set of all Leonard systems,

∗2 = ↓2 = ⇓2 = 1, (2.5.2)

⇓ ∗ = ∗ ↓, ↓ ∗ = ∗ ⇓, ↓⇓ = ⇓↓ . (2.5.3)

The group generated by the symbols ∗, ↓,⇓ subject to the relations (2.5.2), (2.5.3) is the

dihedral group D4. We recall D4 is the group of symmetries of a square, and has 8 elements.

Therefore ∗, ↓,⇓ induce an action of D4 on the set of all Leonard systems [39], [40], [42], [44],

[45]. This idea is summed up in the following theorem.

Theorem 2.5.2 For any given Leonard system Φ = (A;B; {Ei}di=0; {E∗i }di=0) the D4 action
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induced by ∗, ↓,⇓ produces the following eight distinct Leonard systems.

Φ := (A;B; {Ei}di=0; {E∗i }di=0), Φ↓ := (A;B; {Ei}di=0; {E∗d−i}di=0),

Φ⇓ := (A;B; {Ed−i}di=0; {E∗i }di=0), Φ⇓↓ := (A;B; {Ed−i}di=0; {E∗d−i}di=0),

Φ∗ := (B;A; {E∗i }di=0; {Ei}di=0), Φ∗↓ := (B;A; {E∗i }di=0; {Ed−i}di=0),

Φ∗⇓ := (B;A; {E∗d−i}di=0; {Ei}di=0), Φ∗↓⇓ := (B;A; {E∗d−i}di=0; {Ed−i}di=0).

Proof. Clear by Lemma 2.5.1 and our discussion above. 2

We emphasize that with the D4 action a Leonard system can be altered, in particular by

a reordering of the primitive idempotents, to form another distinct Leonard system. We will

refer to this observation later on in the paper.

2.6 The split decomposition

We recall the first and second split bases of a Leonard system. With respect to both split

bases A is lower-bidiagonal and B is upper-bidiagonal. The split bases play a very important

role in our work. We refer to the following setup throughout this section.

Definition 2.6.1 [45, Definition 2.1] Let V be a vector space over the field K with positive

dimension d + 1. Let End(V ) be the set of all linear operators on V . Let A and B denote

multiplicity-free elements in End(V ). Let E0, E1, . . . , Ed denote an ordering of the primitive

idempotents of A and let θi denote the eigenvalue of A for Ei (0 ≤ i ≤ d). Similarly, let

E∗0 , E
∗
1 , . . . , E

∗
d denote an ordering of the primitive idempotents of B and let θ∗i denote the

eigenvalue of B for E∗i (0 ≤ i ≤ d).
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By a decomposition of V we mean a sequence U0, U1, . . . , Ud consisting of 1-dimensional

subspaces of V such that

V = U0 ⊕ U1 ⊕ · · · ⊕ Ud (direct sum).

We have a comment.

Lemma 2.6.2 [45, p. 5] Let u0, u1, . . . , ud denote a basis for V and let Ui denote the subspace

of V spanned by ui (0 ≤ i ≤ d). Then the sequence U0, U1, . . . , Ud is a decomposition of V .

Conversely, let U0, U1, . . . , Ud denote a decomposition of V . Let ui denote a nonzero vector

in Ui (0 ≤ i ≤ d). Then u0, u1, . . . , ud is a basis for V .

Definition 2.6.3 [45, Definition 2.2] With reference to Definition 2.6.1, let U0, U1, . . . , Ud

denote a decomposition of V . We say this decomposition is split with respect to the orderings

E0, E1, . . . , Ed and E∗0 , E
∗
1 , . . . , E

∗
d whenever

(A− θiI)Ui = Ui+1 (0 ≤ i ≤ d− 1), (A− θdI)Ud = 0,

(B − θ∗i I)Ui = Ui−1 (1 ≤ i ≤ d), (B − θ∗0I)U0 = 0.

We emphasize the uniqueness of the split decomposition.

Lemma 2.6.4 [45, Lemma 2.3] With reference to Definition 2.6.1, the following (i), (ii)

hold.

(i) Assume there exists a decomposition U0, U1, . . . , Ud of V which is split with respect to
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the orderings E0, E1, . . . , Ed and E∗0 , E
∗
1 , . . . , E

∗
d . Then

Ui =
i−1∏
h=0

(A− θhI)E∗0V, Ui =
d∏

h=i+1

(B − θ∗hI)EdV (0 ≤ i ≤ d).

(ii) There exists at most one decomposition of V which is split with respect to the orderings

E0, E1, . . . , Ed and E∗0 , E
∗
1 , . . . , E

∗
d .

The next result is useful for finding an explicit expression for the split decomposition in

terms of the primitive idempotents of the linear operators A and B.

Lemma 2.6.5 [45, Lemma 2.4(v)] With reference to Definition 2.6.1, assume there exists a

decomposition U0, U1, . . . , Ud of V which is split with respect to the orderings E0, E1, . . . , Ed

and E∗0 , E
∗
1 , . . . , E

∗
d. Then

Ui = (E∗0V + E∗1V + · · ·+ E∗i V ) ∩ (EiV + Ei+1V + · · ·+ EdV ) (0 ≤ i ≤ d).

With respect to a split decomposition, we elaborate on the relationship between Leonard

pairs and Leonard systems.

Lemma 2.6.6 [45, Lemma 5.9] Assume there exists a decomposition of V which is split with

respect to the orderings E0, E1, . . . , Ed of A and E∗0 , E
∗
1 , . . . , E

∗
d of B. Then the following (i),

(ii) are equivalent.

(i) The pair A,B is a Leonard pair.

(ii) The sequence (A;B; {Ei}di=0; {E∗i }di=0) is a Leonard system.

Theorem 2.6.7 [45, Theorem 5.1] With reference to Definition 2.6.1 the sequence (A; B;

{Ei}di=0; {E∗i }di=0) is a Leonard system if and only if the following (i) and (ii) hold.
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(i) There exists a decomposition of V which is split with respect to the orderings E0, E1,

. . ., Ed of A and E∗0 , E∗1 , . . ., E∗d of B.

(ii) There exists a decomposition of V which is split with respect to the orderings Ed, Ed−1,

. . ., E0 of A and E∗0 , E∗1 , . . ., E∗d of B.

2.7 The split decomposition and matrix representations

We now give matrix representations for the operators A and B with respect to a basis for

the split decomposition.

Lemma 2.7.1 [45, p. 13] Let U0, U1, . . . , Ud be a decomposition of V which is split with

respect to the orderings E0, E1, . . . , Ed and E∗0 , E
∗
1 , . . . , E

∗
d. Let ui denote a nonzero vector

in Ui (0 ≤ i ≤ d) and recall u0, u1, . . . , ud is a basis for V . We normalize the ui so that

(A−θiI)ui = ui+1 (0 ≤ i ≤ d−1). With respect to the basis u0, u1, . . . , ud the matrices which

represent A and B are as follows:

A =



θ0 0

1 θ1

1 θ2

· ·

· ·

0 1 θd



, B =



θ∗0 ϕ1 0

θ∗1 ϕ2

θ∗2 ·

· ·

· ϕd

0 θ∗d



.

The sequence of scalars {ϕi}di=1 is called the split sequence of A, B with respect to the

orderings E0, E1, . . . , Ed and E∗0 , E
∗
1 , . . . , E

∗
d .
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We consider the converse to Lemma 2.7.1.

Definition 2.7.2 [39, Definition 4.1] Let d denote a nonnegative integer. Let A and B

denote matrices in Matd+1(K) of the form

A =



θ0 0

1 θ1

1 θ2

· ·

· ·

0 1 θd



, B =



θ∗0 ϕ1 0

θ∗1 ϕ2

θ∗2 ·

· ·

· ϕd

0 θ∗d



,

where

θi 6= θj, θ∗i 6= θ∗j if i 6= j (0 ≤ i, j ≤ d),

ϕi 6= 0 (1 ≤ i ≤ d).

We observe in Definition 2.7.2 that A and B are multiplicity-free, with eigenvalues

θ0, θ1, . . . , θd and θ∗0, θ
∗
1, . . . , θ

∗
d, respectively. For 0 ≤ i ≤ d we let Ei denote the primi-

tive idempotent for A associated with θi, and E∗i denote the primitive idempotent for B

associated with θ∗i .

Lemma 2.7.3 [45, Lemma 6.2] With reference to Definition 2.7.2, the following (i), (ii) are

equivalent.

(i) The pair A,B is a Leonard pair.

(ii) The sequence (A;B; {Ei}di=0; {E∗i }di=0) is a Leonard system.
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Example 2.7.4 [45, Theorem 6.3] Recall the Leonard system Φ⇓ from Lemma 2.5.1,

Φ⇓ = (A;B; {Ed−i}di=0; {E∗i }di=0).

By Theorem 2.6.7 there exists a unique split decomposition for Φ⇓. With respect to some

basis for this split decomposition the matrices which represent A and B are as follows:

A =



θd 0

1 θd−1

1 θd−2

· ·

· ·

0 1 θ0



, B =



θ∗0 φ1 0

θ∗1 φ2

θ∗2 ·

· ·

· φd

0 θ∗d



.

We call the sequence of scalars {φi}di=1 the split sequence of A, B for Φ⇓ and the second split

sequence of A, B for Φ = (A;B; {Ei}di=0; {E∗i }di=0).

2.8 Normalizing bidiagonal matrices

We follow up on some of the results discussed in the previous section to state them in a form

more directly applicable to our work. We emphasize that most of the results of this section

will be refered to in our main results in Chapters 4 and 5. We begin by making clearer the

normalization mentioned in Lemma 2.7.1.
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Definition 2.8.1 Let Φ = (A;B; {Ei}di=0; {E∗i }di=0) be a Leonard system on V with split

decomposition {Ui}di=0.

(i) By an LB-UB basis for Φ, we mean a basis β = {b0, b1, . . . bd} for V where bi ∈ Ui.

(ii) By a split basis for Φ, we mean an LB-UB basis γ such that the subdiagonal entries of

[A]γ are all 1.

Lemma 2.8.2 Let Φ be as in Definition 2.8.1. If β is an LB-UB basis for Φ, then [A]β,

[B]β are lower- and upper-bidiagonal, respectively.

Proof. Straightforward from Definition 2.6.3. 2

Lemma 2.8.3 Let Φ be a Leonard system. Suppose β = {b0, b1, . . . bd} is an LB-UB basis

for Φ and the ith subdiagonal entry of [A]β is ti (1 ≤ i ≤ d). Let αi =
∏i

j=1 tj, with α0 = 1.

Then γ = {b0, α1b1, . . . .αdbd} is a split basis for Φ.

Proof. The change of basis matrix from β to γ is P = diag(1, α1, α2, . . . , αd). Conjugating by

this matrix gives the ith subdiagonal entry of [A]γ to be αi−1(αi)
−1ti =

∏i−1
j=1 tj (

∏i
j=1 tj)

−1 ti =

1 for 1 ≤ i ≤ d. Thus the subdiagonal entries of [A]γ are all 1. 2

Theorem 2.8.4 Let Φ = (A;B; {Ei}di=0; {E∗i }di=0) be a Leonard system on V where {θi}di=0

and {θ∗i }di=0 are the eigenvalue and dual eigenvalue sequences of Φ, respectively. Let β =

{b0, b1, . . . bd} be a basis for V such that [A]β is lower-bidiagonal with (i, i)-entry θi and [B]β

is upper-bidiagonal with (i, i)-entry θ∗i for 0 ≤ i ≤ d. Then β is an LB-UB basis for Φ.

Moreover, {Ui}di=0 is the split decomposition for Φ, where Ui = span{bi}.
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Proof. Suppose the ith subdiagonal entry of [A]β is ti 6= 0 (1 ≤ i ≤ d). By Lemma

2.8.3 the change of basis matrix between an LB-UB basis for Φ and a split basis for Φ

is diag(1, α1, α2, . . . , αd) where αi =
∏i

j=1 tj. Conjugation by this matrix will preserve di-

agonal entries, in particular, the eigenvalue and dual eigenvalue sequences for A and B

respectively. The split basis is of the form {b0, α1b1, . . . .αdbd}. By basic linear algebra we

have span{αibi} = span{bi} = Ui (0 ≤ i ≤ d) and the result follows. 2

Merely requiring [A]β and [B]β to be lower- and upper-bidiagonal is insufficient to reach

the conclusion in Theorem 2.8.4. We need the eigenvalues along the diagonal of each in order

to claim that β is an LB-UB basis.

2.9 The parameter array

We end this chapter by discussing an alternative way of describing a Leonard system, that

is, with a sequence of scalars called the parameter array. These scalars are easily described,

and appear naturally in the matrix representations for the linear operators of a Leonard pair

with respect to the split decomposition.

Definition 2.9.1 [44, Definition 1.1] Let d denote a nonnegative integer. By a parameter

array over K of diameter d we mean a sequence of scalars

({θi}di=0, {θ∗i }di=0; {ϕj}dj=1, {φj}dj=1)

taken from K which satisfy the following conditions:

(PA1) θi 6= θj, θ∗i 6= θ∗j if i 6= j (0 ≤ i, j ≤ d).
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(PA2) ϕi 6= 0, φi 6= 0 (1 ≤ i ≤ d).

(PA3) ϕi = φ1

∑i−1
h=0

θh−θd−h

θ0−θd
+ (θ∗i − θ∗0)(θi−1 − θd) (1 ≤ i ≤ d).

(PA4) φi = ϕ1

∑i−1
h=0

θh−θd−h

θ0−θd
+ (θ∗i − θ∗0)(θd−i+1 − θ0) (1 ≤ i ≤ d).

(PA5) The expressions

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
(2.9.4)

are equal and independent of i for 2 ≤ i ≤ d− 1. We call the value of these expressions

the common value.

For notational convenience we define ϕ0 = 0, ϕd+1 = 0, φ0 = 0, φd+1 = 0.

Definition 2.9.2 [44, p. 4] Let Φ denote a Leonard system. By the parameter array of Φ

we mean the parameter array

({θi}di=0, {θ∗i }di=0; {ϕj}dj=1, {φj}dj=1)

where {θi}di=0 and {θ∗i }di=0 are the eigenvalue and dual eigenvalue sequences of Φ, respectively.

We call {ϕj}dj=1 the first split sequence of Φ, and {φj}dj=1 the second split sequence of Φ.

We remark that the first and second split sequences get their names from their appearance

in the matrix representations with respect to the split decomposition, as seen in Section 2.7.

The significance of the parameter array is the following:
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Theorem 2.9.3 [44, Theorem 2.1] Two Leonard systems over K are isomorphic if and only

if they have the same parameter array.

The result reduces the linear algebraic problem of isomorphism to a problem of finding

solutions to the constraining equations of a parameter array. We shall take advantage of this

in the next several chapters.

We turn our attention now to the type of a parameter array. Recall from Section 2.3

our discussion of types of Leonard pairs. These are synonymous. In fact, given a parameter

array all associated Leonard pairs and Leonard systems are said to be of the same type as

the parameter array, and vice versa. In the following theorem we see that the type of a

parameter array depends on its eigenvalue sequences.

Theorem 2.9.4 [2], [44] Given a parameter array over K with d ≥ 3, let β be the common

value of (2.9.4) minus 1.

(i) If β = 2 and char(K) 6= 2, then the parameter array is of classical type.

(ii) If β 6= ±2 and char(K) 6= 2, then the parameter array is of basic type.

(iii) If β = −2 and char(K) 6= 2, then the parameter array is of Bannai-Ito type.

(iv) If char(K) = 2 then β = 0 and the parameter array is of orphan type.

When d ≤ 2, β is not defined by (2.9.4). However, in this case β may be taken to have

any value and the parameter array can be expressed as several types. It is customary to take

β = 2 when d ≤ 2. When d = 1, we view the parameter array as being of Krawtchouk type

[2]. When d = 2, the type will depend upon the spacing of the eigenvalue sequences.

In Chapter 3 we shall recall uniform constructions of all Leonard pairs of classical type

from sl2 and of all Leonard pairs of basic type from Uq(sl2).

28



3 Representations of sl2 and Uq(sl2)

In this chapter we recall from the literature a construction of Leonard pairs from the algebras

sl2 and Uq(sl2). First, it turns out that all Leonard pairs of classical and basic types are

constructed uniformly from these respective algebras. Second, the construction returns the

Leonard pair in a lower-bidiagonal - upper-bidiagonal form related to its representation

relative to a split basis. These will be important to our description of Leonard systems

which are friends.

3.1 The Lie algebra sl2

There is an extensive theory behind the Lie algebra sl2. We need only a few basic facts

which can be found in most texts on the subject. See [20], [22], and [27] for example.

Definition 3.1.1 [10, p. 2] The Lie algebra sl2 is the K-algebra that has a basis e, f , h

satisfying

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h,

where [·, ·] denotes the Lie bracket. The elements e, f , h are known as the Chevalley gener-

ators for sl2.

It is more convenient to work with an alternate, symmetric presentation of sl2 rather
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than the Chevalley presentation of Definition 3.1.1.

Lemma 3.1.2 [10, p. 537] With reference to Definition 3.1.1, let

x = 2e− h, y = −2f − h, z = h.

Then x, y, z is a basis for sl2 and

[x, y] = 2x+ 2y,

[y, z] = 2y + 2z,

[z, x] = 2z + 2x.

We call x, y, z the equitable basis for the Lie algebra sl2.

One advantage of the equitable basis is the cyclic shift x 7→ y 7→ z 7→ x defines an

automorphism of sl2 [10]. We may apply this automorphism to each result involving the

equitable basis.

Lemma 3.1.3 [10, p. 651] With reference to Lemma 3.1.2, there is an irreducible finite-

dimensional sl2-module Vd with basis v0, v1, . . . , vd and action

xv0 = −dv0,

xvi = (2i− d)vi + 2(d− i+ 1)vi−1 (1 ≤ i ≤ d),

yvi = (2i− d)vi − 2(i+ 1)vi+1 (0 ≤ i ≤ d− 1),

yvd = dvd,

zvi = (d− 2i)vi (0 ≤ i ≤ d),
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where I is the identity operator on Vd.

We represent this action pictorially in Figure 3.1.
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Figure 3.1: The action of x, y, z on the sl2-module Vd

3.2 Leonard pairs of classical type from sl2

In order to construct a Leonard pair on Vd using the equitable basis for sl2, we restrict the

action of the equitable basis elements x, y, z to Vd.

Definition 3.2.1 With reference to Lemmas 3.1.2 and 3.1.3, let X, Y , Z be the linear

operators on Vd which act as x, y, z, respectively.

We now define operators A and B in terms of the identity operator I and X, Y , Z and

describe their actions on Vd.

Definition 3.2.2 [2, Definitions 5.1, 5.2] PickA ∈ span{I, Y, Z, Y Z} andB ∈ span{I, Z,X,ZX}.

Write

A = κI + λY + µZ + νY Z, B = κ∗I + λ∗Z + µ∗X + ν∗ZX
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for scalars κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗ ∈ K. Define

θi = κ− (λ− µ)(d− 2i)− (d− 2i)2ν (0 ≤ i ≤ d), (3.2.1)

θ∗i = κ∗ + (λ∗ − µ∗)(d− 2i)− (d− 2i)2ν∗ (0 ≤ i ≤ d). (3.2.2)

Lemma 3.2.3 [2, Lemma 5.3] Let {vi}di=0 be the basis of Vd from Lemma 3.1.3, and A, B

be as in Definition 3.2.2. Then the pair A, B act on the sl2-module Vd in the following way.

Avi = θivi − 2(i+ 1)(λ+ (d− 2i)ν)vi+1 (0 ≤ i ≤ d− 1),

Avd = θdvd,

Bv0 = θ∗0v0,

Bvi = 2(d− i+ 1)(µ∗ + (d− 2(i− 1))ν∗)vi−1 + θ∗i vi (1 ≤ i ≤ d).

Observe that the matrix representations for A, B with respect to the basis {vi}di=0 are

respectively lower-bidiagonal and upper-bidiagonal. This resemblance to a Leonard pair goes

further. Up to isomorphism, every Leonard pair of classical type arises from this construction

with an appropriate choice of parameters.

Theorem 3.2.4 [2, Theorem 6.10, 7.1] With reference to Definition 3.2.2, the pair A,B
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acts on Vd as a Leonard pair of classical type if and only if

λ− µ+ 2(d− i)ν 6= 0 (1 ≤ i ≤ 2d− 1), (3.2.3)

λ∗ − µ∗ + 2(d− i)ν∗ 6= 0 (1 ≤ i ≤ 2d− 1), (3.2.4)

λ− (d− 2j)ν 6= 0 (1 ≤ j ≤ d), (3.2.5)

µ∗ − (d− 2j)ν∗ 6= 0 (1 ≤ j ≤ d), (3.2.6)

(λ+ dν)(µ∗ + dν∗) 6= −(λ− µ+ 2(j − 1)ν)(λ∗ − µ∗ − 2(d− j)ν∗) (3.2.7)

(1 ≤ j ≤ d),

λ∗ν + µν∗ + 2νν∗ = 0. (3.2.8)

This construction of Leonard pairs of classical types gives rise to every such Leonard pair.

This allows us to study Leonard pairs of classical type using the representation theory of sl2.

Theorem 3.2.5 [2, Lemmas 9.1-9.4] Assume d ≥ 2. Let A, B be a Leonard pair of classical

type on the vector space V . Then there exists an irreducible sl2-module structure on V such

that A and B act on V as linear combinations of {I, Y , Z, Y Z} and {I, Z, X, ZX},

respectively.

We now recall the parameter restrictions which give rise to each of the classical types,

namely Racah, Hahn, dual Hahn, and Krawtchouk.

Theorem 3.2.6 [2, Theorem 7.2, Lemmas 7.3 - 7.5] Let A, B be a Leonard pair of classical

type. In light of Theorem 3.2.5, we may assume A and B are as in Definition 3.2.2 and the

conditions given in Theorem 3.2.4 hold.
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(i) A, B is a Leonard pair of Krawtchouk type if and only if

µ 6= λ, µ∗ 6= λ∗, λ 6= 0, µ∗ 6= 0, ν = 0, ν∗ = 0, λλ∗ − µλ∗ + µµ∗ 6= 0.

(ii) A, B is a Leonard pair of Hahn type if and only if

λ 6= 0, µ = 0, ν = 0, ν∗ 6= 0,

µ∗ − (d− 2i)ν∗ 6= 0, λ∗ − (d− 2i)ν∗ 6= 0 (1 ≤ i ≤ d),

λ∗ − µ∗ + 2ν∗(d− i) 6= 0, (1 ≤ i ≤ 2d− 1).

(iii) A, B is a Leonard pair of dual Hahn type if and only if

λ∗ = 0, ν 6= 0, µ∗ 6= 0, ν∗ = 0,

λ− (d− 2i)ν 6= 0, µ− (d− 2i)ν 6= 0 (1 ≤ i ≤ d),

λ− µ+ 2ν(d− i) 6= 0, (1 ≤ i ≤ 2d− 1).

(iv) A, B is a Leonard pair of Racah type if and only if ν 6= 0, ν∗ 6= 0 and (3.2.3) − (3.2.8)

hold.

We shall refer to Theorem 3.2.6 when further describing Leonard pairs of classical type

in the subsequent chapters. Now, we present another way of describing a Leonard system

using scalars from the sl2 construction.

Lemma 3.2.7 Given a Leonard system Φ = (A;B; {Ei}di=0; {E∗i }di=0) on V of classical
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type with diameter d ≥ 3, there exists an sl2-module structure on V and unique scalars

(d, 1, κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗) such that A, B are as in Definition 3.2.2 and Ei, E
∗
i are as in

Definition 2.4.5.

Proof. If A, B form a Leonard pair of classical type, then an sl2-module structure is

guaranteed by Theorem 3.2.5. In Definition 3.2.2 expressions for the eigenvalues of A and

B are uniquely expressed in terms of the scalars d, κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗. By Definition

2.4.5, the idempotents {Ei}di=0 and {E∗i }di=0 are determined by the eigenvalues of A and B,

respectively. 2

Definition 3.2.8 With reference to Lemma 3.2.7 we call (d, 1, κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗)

the Leonine parameters for Φ relative to the sl2-module structure on V .

We can fix an sl2-module structure on V and produce a representation of every isomor-

phism class of Leonard system of classical type by some appropriate choice of parameter.

Our next goal is describe Leonard pairs of basic type using representations of Uq(sl2) in the

same way.

3.3 The quantum algebra Uq(sl2)

The quantum algebra Uq(sl2) has been heavily studied since its introduction by Michio Jimbo

in the 1980s. For the purposes of this paper, we need only a few basic facts which can be

found in most texts on the subject. See [12], [13], [14], and [26] for further study.

Definition 3.3.1 [25, Definition 1.1] Let q be a nonzero scalar in the field K such that q is

not a root of unity of K. Let Uq(sl2) denote the unital associative K-algebra with generators
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k, k−1, e, f and the following relations:

kk−1 = k−1k = 1,

ke = q2ek,

kf = q−2fk,

ef − fe =
k − k−1

q − q−1
.

The elements k, k−1, e, f are known as the Chevalley generators for Uq(sl2).

Theorem 3.3.2 [25, Theorem 2.1] The algebra Uq(sl2) is isomorphic to the unital associa-

tive K-algebra with generators x, x−1, y, z and the following relations:

xx−1 = x−1x = I,

qxy − q−1yx
q − q−1

= I,

qyz − q−1zy
q − q−1

= I,

qzx− q−1xz
q − q−1

= I.

We call x, x−1, y, z the equitable generators for Uq(sl2).

Lemma 3.3.3 [25, Lemma 3.1] With reference to Theorem 3.3.2, up to isomorphism there

are two irreducible finite-dimensional Uq(sl2)-modules V +
d , V −d of dimension d + 1. For
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ε ∈ {+,−}, V ε
d has a basis {vεi }di=0 with action

εxvε0 = qdvε0,

εxvεi = (qd − q2i−2−d)vεi−1 + qd−2ivεi (1 ≤ i ≤ d),

εyvεi = qd−2i(q−2i−2 − 1)vεi+1 + qd−2ivεi (0 ≤ i ≤ d− 1),

εyvεd = q−dvεd,

εzvεi = q2i−dvεi (0 ≤ i ≤ d).

We shall focus on V +
d , and simply write Vd for this module. See Figure 3.2.
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Figure 3.2: The action of x, y, z on the Uq(sl2)-module Vd

3.4 Leonard pairs of basic type from Uq(sl2)

We recall the construction of Leonard pairs of basic type from Uq(sl2). We proceed as we

did in the classical case.

Definition 3.4.1 With reference to Theorem 3.3.2 and Lemma 3.3.3, let X, Y , Z be the

linear operators on Vd which act as x, y, z, respectively.
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Lemma 3.4.2 [25] With reference to Definition 3.4.1, X, Y , Z are invertible elements of

End(Vd).

The cyclic shift X 7→ Y 7→ Z 7→ X of the equitable generators defines an automorphism of

End(Vd). We may apply this automorphism to each result involving the equitable generators.

We now define A and B in terms of the identity operator I and X, Y , Z and describe

their actions on Vd.

Definition 3.4.3 [1, Definition 5.1, Lemma 5.2] Pick A ∈ span{I, Y, Z, Y Z} and B ∈

span{I, Z,X, ZX}. Write

A = κI + λY + µZ + νY Z, B = κ∗I + λ∗Z + µ∗X + ν∗ZX

for scalars κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗ ∈ K. We also define

θi = κ+ ν + λqd−2i + µq2i−d (0 ≤ i ≤ d), (3.4.9)

θ∗i = κ∗ + ν∗ + µ∗qd−2i + λ∗q2i−d (0 ≤ i ≤ d). (3.4.10)

Lemma 3.4.4 [1, Lemma 5.2] Let {vi}di=0 be the basis of Vd from Lemma 3.3.3, and A, B

be as in Definition 3.4.3. Then the pair A, B act on the Uq(sl2)-module Vd in the following

way.

Avi = θivi + (q−2(i+1) − 1)(λqd−2i + ν)vi+1 (0 ≤ i ≤ d− 1),

Avd = θdvd,

Bv0 = θ∗0v0,

Bvi = θ∗i vi − q2(i−1)(q−2(d−i+1) − 1)(µ∗qd−2i+2 + ν∗)vi−1 (1 ≤ i ≤ d).
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Observe that the matrix representations for A, B with respect to the basis {vi}di=0 are

respectively lower-bidiagonal and upper-bidiagonal. This resemblance to a Leonard pair goes

further. Up to isomorphism, every Leonard pair of basic type arises from this construction

with an appropriate choice of parameters.

Theorem 3.4.5 [1, Theorem 4.1, 4.2] With reference to Definition 3.4.3, the pair A,B acts

on Vd as a Leonard pair of basic type if and only if

µq2(i−d) − λ 6= 0 (1 ≤ i ≤ 2d− 1), (3.4.11)

λ∗q2(i−d) − µ∗ 6= 0 (1 ≤ i ≤ 2d− 1), (3.4.12)

λqd−2i + ν 6= 0 (1 ≤ i ≤ d− 1), (3.4.13)

µ∗qd−2i + ν∗ 6= 0 (1 ≤ i ≤ d− 1), (3.4.14)

q−2(λqd + ν)(µ∗qd + ν∗) 6= (µ− λq2(i−1))(λ∗ − µ∗q2(d−i)) (3.4.15)

(1 ≤ i ≤ d),

µλ∗q2 − νν∗ = 0. (3.4.16)

This construction of Leonard pairs of basic types gives rise to every such Leonard pair.

This allows us to study Leonard pairs of basic type using the representation theory of Uq(sl2).

Theorem 3.4.6 [1, Theorem 4.2] Assume d ≥ 2. Let A, B be a Leonard pair of basic type

on the vector space V . Then there exists an irreducible Uq(sl2)-module structure on V such

that A and B act on V as linear combinations of {I, Y , Z, Y Z} and {I, Z, X, ZX},

respectively.

We now recall the parameter restrictions which give rise to each of the basic types, namely
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q-Racah, q-Hahn, dual q-Hahn, q-Krawtchouk, dual q-Krawtchouk, quantum q-Krawtchouk,

and affine q-Krawtchouk.

Lemma 3.4.7 [1, Lemmas 7.2 - 7.5] Let A, B be a Leonard pair of basic type. In light of

Theorem 3.4.6, we may assume A and B are as in Definition 3.4.3.

(i) A, B is a Leonard pair of q-Racah type if and only if νν∗ 6= 0 and (3.4.11) − (3.4.16)

hold.

(ii) A, B is a Leonard pair of q-Hahn or q-Krawtchouk type if and only if

µ = 0, λ 6= 0, νν∗ = 0,

qd−2iλ+ ν 6= 0, qd−2iµ∗ + ν∗ 6= 0 (0 ≤ i ≤ d− 1),

µ∗ − q2(i−d)λ∗ 6= 0, λν∗ + µ∗ν + q2i−dλλ∗ 6= 0 (1 ≤ i ≤ d).

(iii) A, B is a Leonard pair of dual q-Hahn or dual q-Krawtchouk type if and only if

λ∗ = 0, µ∗ 6= 0, νν∗ = 0,

qd−2iλ+ ν 6= 0, qd−2iµ∗ + ν∗ 6= 0 (0 ≤ i ≤ d− 1),

λ− q2(i−d)µ 6= 0, λν∗ + µ∗ν + qd−2i+2µµ∗ 6= 0 (1 ≤ i ≤ d).

(iv) A, B is a Leonard pair of quantum q-Krawtchouk type if and only if

λ = 0, λ∗ = 0, µ 6= 0, µ∗ 6= 0, ν 6= 0, ν∗ = 0,

µqd−2i+2 + ν 6= 0 (1 ≤ i ≤ d).
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(v) A, B is a Leonard pair of affine q-Krawtchouk type if and only if

µ = 0, λ∗ = 0, µ∗ 6= 0, λ 6= 0, νν∗ = 0, λν∗ + µ∗ν 6= 0,

qd−2iλ+ ν 6= 0, qd−2iµ∗ + ν∗ 6= 0 (0 ≤ i ≤ d− 1).

We shall refer to Lemma 3.4.7 when further describing Leonard pairs of basic type in the

subsequent chapters. Now, we present another way of describing a Leonard system using

scalars from the Uq(sl2) construction.

Lemma 3.4.8 Given a Leonard system Φ = (A;B; {Ei}di=0; {E∗i }di=0) on V of basic type

with diameter d ≥ 3, there exists a Uq(sl2)-module structure on V and unique scalars

(d, q, κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗) such that A, B are as in Definition 3.4.3 and Ei, E
∗
i are as

in Definition 2.4.5.

Proof. If A, B form a Leonard pair of basic type, then a Uq(sl2)-module structure is

guaranteed by Theorem 3.4.6. In Definition 3.4.3 expressions for the eigenvalues of A and B

are uniquely expressed in terms of the scalars (d, q, κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗). By Definition

2.4.5 the idempotents {Ei}di=0 and {E∗i }di=0 are determined by the eigenvalues of A and B,

respectively. 2

Definition 3.4.9 With reference to Lemma 3.4.8 we call (d, q, κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗)

the Leonine parameters for Φ relative to the Uq(sl2)-module structure on V .

In the next section we unify Lemmas 3.2.7 and 3.4.8.
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3.5 A unified approach

Lemmas 3.2.7 and 3.4.8 give an alternative way of describing Leonard systems in the context

of the equitable generators for sl2 and Uq(sl2). We shall lean heavily upon the constructions

of Leonard pairs of classical and basic type from sl2 and Uq(sl2) in the sequel. These

constructions allow us to control both the isomorphism class and the shape of a Leonard

pair. We begin by giving a single definition to subsume Definitions 3.2.8 and 3.4.9.

Definition 3.5.1 Given a sequence (d, q, κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗) with d ∈ Z+ and q,

κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗ ∈ K, we say that it is Leonine when there exists an irreducible

sl2/Uq(sl2)-module V with dimension d+ 1, and the linear combinations

A = κI + λY + µZ + νY Z, B = κ∗I + λ∗Z + µ∗X + ν∗ZX

involving the equitable generators X, Y , Z of sl2 or Uq(sl2) form a Leonard pair. We say

this Leonard pair corresponds with the Leonine parameters (d, q, κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗).

Now Lemmas 3.2.7 and 3.4.8 are restated as follows.

Theorem 3.5.2 The sequence of scalars (d, q, κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗) is Leonine if and

only if the scalars satisfy Lemma 3.2.7 or Lemma 3.4.8.

Leonine parameters provide an alternative description of Leonard systems.

Corollary 3.5.3 There is a bijection between the set of Leonine parameters and the isomor-

phism classes of Leonard systems of classical and basic type.

Proof. Lemma 3.2.7 gives all Leonard pairs of classical type. Lemma 3.4.8 gives all Leonard

systems of basic type. 2
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Definition 3.5.4 Let Φ be a Leonard system on V . We say that Φ and (d, q, κ, λ, µ, ν,

κ∗, λ∗, µ∗, ν∗) correspond when (d, q, κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗) are the Leonine parameters

for Φ, relative to some fixed module structure on V .

We can now control the isomorphism class of a Leonard system with the Leonine param-

eters, and the shape by the choice of module structure.
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4 Friendship

In this chapter we discuss our own research results. In Section 4.1 we present the motivating

problem for the paper, derived from a problem originally posed by Terwilliger in [46]. We

work to restate the problem, defining a relationship between two Leonard systems called

friendship and equating the problem to a search for friends. We say two Leonard systems

are friends if they share a linear operator, an ordering of the primitive idempotents for that

operator, and split decomposition.

The following section discusses friendship in a bit more detail. We see that friendship

is an equivalence relation among Leonard systems and that any affine transformation of a

given Leonard system will result in friendship.

In Section 4.4 we acknowledge that friendship depends on the choice of representation.

We say two Leonard systems are acquaintances if they share a linear operator and an ordering

of the primitive idempotents for that operator. We investigate conditions for acquaintances

to be friends. We see that if we fix the shape of the matrix representations for all three

linear operators in a particular way, that friendship will result. These required shapes are

inherently provided by using the equitable representations for sl2 and Uq(sl2).
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4.1 Motivation

Our motivation is a problem posed by Paul Terwilliger. Throughout, we assume V is a

(d+ 1)-dimensional vector space over the field K.

Problem 4.1.1 [46, Problem 36.102] Given a Leonard system Φ = (A;B; {Ei}di=0; {E∗i }di=0)

on V , find all Leonard systems Φ̂ = (A, B̂, {Ei}di=0, {Ê∗i }di=0) on V such that

E∗0V + E∗1V + · · ·+ E∗i V = Ê∗0V + Ê∗1V + · · ·+ Ê∗i V. (4.1.1)

To avoid degenerate situations, we shall assume d ≥ 3 when solving problem 4.1.1.

We emphasize that Φ and Φ̂ share the same linear operator A and ordering of primitive

idempotents {Ei}di=0. With this we can see that condition (4.1.1) has implications for the

split decompositions of the two Leonard systems. Recall from Lemma 2.6.5 that a Leonard

system (A,B, {Ei}di=0, {E∗i }di=0) has unique split decomposition

Ui = (E∗0V + E∗1V + · · ·+ E∗i V ) ∩ (EiV + Ei+1V + · · ·+ EdV ) (0 ≤ i ≤ d). (4.1.2)

Lemma 4.1.2 Let Φ = (A;B; {Ei}di=0; {E∗i }di=0) be a Leonard system on V . Let {Ui}di=0 be

the split decomposition for Φ. Then for 0 ≤ i ≤ d,

U0 + · · ·+ Ui = E∗0V + · · ·+ E∗i V.

Proof. Using (4.1.2) and Lemma 2.4.6 observe that

U0 = E∗0V ∩ (E0V + · · ·+ EdV ) = E∗0V ∩ V = E∗0V.
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Suppose by induction that for 0 < i ≤ d, U0 + · · ·+ Ui−1 = E∗0V + · · ·+ E∗i−1V . Then

U0 + · · ·+ Ui = E∗0V + · · ·+ E∗i−1V + Ui

= E∗0V + · · ·+ E∗i−1V + (E∗0V + · · ·+ E∗i V ) ∩ (EiV + · · ·+ EdV )

= E∗0V + · · ·+ E∗i−1V + E∗i V ∩ (EiV + Ei+1V + · · ·+ EdV ).

We note that the left-hand side has dimension i+1 since each Ui has dimension 1 by Definition

2.6.1. Hence the right-hand side has dimension i+ 1. Since the E∗jV (0 ≤ j ≤ d) are distinct

with dimension 1 (Lemma 2.4.6), it must be that E∗i V ∩ (EiV + Ei+1V + · · · + EdV ) has

dimension 1. This space is contained in the 1-dimensional subspace E∗i V . Therefore any

generator of E∗i V ∩ (EiV + Ei+1V + · · · + EdV ) will generate the entire space E∗i V , so the

spaces are equal. Thus U0 + · · ·+ Ui = E∗0V + · · ·+ E∗i V . 2

Theorem 4.1.3 Let Φ = (A;B; {Ei}di=0; {E∗i }di=0) and Φ̂ = (A, B̂, {Ei}di=0, {Ê∗i }di=0) be two

Leonard systems on V . The following are equivalent.

(i) Φ and Φ̂ satisfy E∗0V + E∗1V + · · ·+ E∗i V = Ê∗0V + Ê∗1V + · · ·+ Ê∗i V.

(ii) Φ and Φ̂ have the same split decomposition.

Proof. Suppose (i) holds. By assumption, Φ and Φ̂ have the same orderings of the primitive

idempotents for A. Thus these Leonard systems have the same unique split decomposition by

Lemma 2.6.5. Now suppose (ii) holds; say Φ and Φ̂ have same split decomposition {Ui}di=0.

Then by Lemma 4.1.2, E∗0V +· · ·+E∗i V = U0+· · ·+Ui = Ê∗0V +Ê∗1V +· · ·+Ê∗i V (0 ≤ i ≤ d).

2
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Definition 4.1.4 Any two Leonard systems that satisfy the hypotheses and equivalent con-

ditions of Theorem 4.1.3 are called friends. Given Leonard systems Φ and Φ̂ which are

friends, we say Φ̂ is a friend of Φ.

Using Theorem 4.1.3 and Definition 4.1.4, we restate problem 4.1.1.

Corollary 4.1.5 Let Φ = (A;B; {Ei}di=0; {E∗i }di=0) be a Leonard system on V . The following

sets are equal.

(i) {Φ̂ = (A, B̂, {Ei}di=0, {Ê∗i }di=0) is a Leonard system on V | (4.1.1) holds}.

(ii) {Φ̂ = (A, B̂, {Ei}di=0, {Ê∗i }di=0) is a Leonard system on V | Φ, Φ̂ have the same split

decomposition}.

(iii) {Φ̂ = (A, B̂, {Ei}di=0, {Ê∗i }di=0) is a Leonard system on V | Φ, Φ̂ are friends}, i.e., the

set of all friends of Φ.

Part (ii) of Corollary 4.1.5, in conjunction with the module-theoretic constructions of

Leonard pairs, allows us to further refine our search for friends.

Lemma 4.1.6 Let Φ and Φ̂ be Leonard systems with diameter d ≥ 3. If Φ, Φ̂ are friends

then Φ and Φ̂ are both of classical, both of basic, both of Bannai-Ito, or both of orphan type.

Proof. Recall that if Φ, Φ̂ are friends then they share a linear operator, say A, and an

ordering of the primitive idempotents for A. They also share the sequence of eigenvalues

{θi}di=0 for A. By Theorem 2.9.4 the type of a Leonard system depends on the common value,

which is determined by the eigenvalue sequence for A. Since Φ and Φ̂ share an eigenvalue

sequence, they must be the same type. 2
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Table 4.1: Possible friendships by type

Type Classical Basic Bannai-Ito Orphan

Classical

Basic

Bannai-Ito

Orphan

We shall appeal to the material in Sections 2.8, 3.2, and 3.3 to show that Leonard pairs of

classical/basic type share the same split decomposition precisely when they are constructed

from the same sl2 or Uq(sl2)-module. This in turn allows us to describe friends using Leonine

parameters.

4.2 Common split decompositions

We describe when Leonard systems of classical and basic types share a split decomposition.

Definition 4.2.1 Two irreducible sl2-module structures on V as in Theorem 3.2.5 are di-

agonally similar whenever the vectors with the same index in the corresponding bases of

Lemma 3.1.3 are scalar multiples of one another.

The matrices representing each equitable generator with respect to diagonally similar

bases are similar via conjugation by a diagonal matrix. Diagonal similarity captures the idea

of normalization in Lemma 2.8.3 and Theorem 2.8.4 for the specific construction of Leonard

systems from sl2-modules.
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Lemma 4.2.2 Two Leonard systems of classial on V have the same split decomposition if

and only if they can be constructed from diagonally similar irreducible sl2-module structures

on V as in Theorem 3.2.5.

Proof. For all Leonard systems constructed from a given irreducible sl2-module structure

on V as in Theorem 3.2.5, the split decomposition is {Ui = span(vi)}d0. Since the module

structures are diagonally similar, the corresponding vi span the same subspace, so the two

Leonard systems have the same split decomposition. Conversely, suppose classical Leonard

systems Φ, Φ̂ have split decomposition {Ui}di=0. For each of the sl2-module structures as in

Theorem 3.2.5, the corresponding bases of Lemma 3.1.3 satisfy vi, v
′
i ∈ Ui (0 ≤ i ≤ d). Since

Ui is 1-dimensional, the two module structures are diagonally similar. 2

We now give a similar treatment for Leonard systems of basic type.

Definition 4.2.3 Two irreducible Uq(sl2)- and Uq̂(sl2)-module structures on V as in The-

orem 3.4.6 are reminiscent whenever the vectors with the same index in the corresponding

bases of Lemma 3.3.3 are scalar multiples of one another.

Lemma 4.2.4 Two basic Leonard systems Φ, Φ̂ on V have the same split decomposition if

and only if they can be constructed from respective irreducible Uq(sl2)- and Uq̂(sl2)-module

structures on V which are reminiscent.

Proof. Similar to that of Lemma 4.2.2. 2
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4.3 Friendship

We comment on friends. Write Φ ∼fr Φ̂ whenever Φ, Φ̂ are friends. We note that ∼fr is an

equivalence relation, which we shall call friendship.

Theorem 4.3.1 Suppose Φ, Φ̂, and Φ̃ are Leonard systems on V .

(i) Φ ∼fr Φ.

(ii) If Φ ∼fr Φ̂, then Φ̂ ∼fr Φ.

(iii) If Φ ∼fr Φ̂ and Φ̂ ∼fr Φ̃, then Φ ∼fr Φ̃.

Proof. Recall that two Leonard systems are friends when they share the same unique split

decomposition. From this definition, (i) and (ii) follow routinely. To show (iii), let {Ui}di=0,

{Ûi}di=0, and {Ũi}di=0 be the split decompositions of Φ, Φ̂, and Φ̃ respectively. Since Φ, Φ̂

are friends, by definition Ui = Ûi (0 ≤ i ≤ d). Similarly since Φ̂, Φ̃ are friends Ûi = Ũi

(0 ≤ i ≤ d). Thus Ui = Ũi (0 ≤ i ≤ d) and Φ, Φ̃ are friends. 2

We describe friends by describing friendship equivalence classes. We recall affine trans-

formations which allow us to construct some friends of a given Leonard system.

Lemma 4.3.2 [31, Lemma 5.1] Let Φ = (A;B; {Ei}di=0; {E∗i }di=0) denote a Leonard system

over the field K and let δ, γ denote scalars in K with δ 6= 0. Then

Φ̂ = (A; δB + γI; {Ei}di=0; {E∗i }di=0)

is a Leonard system.

Lemma 4.3.3 The Leonard systems Φ, Φ̂ of Lemma 4.3.2 are friends.
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Proof. Note that Φ and Φ̂ share both sequences of primitive idempotents, so they have the

same split decomposition. Thus they are friends by Definition 4.1.4. 2

4.4 Acquaintances

We show that friendship is not a purely intrinsic property of two Leonard systems, as it

depends upon the choice of representation.

Lemma 4.4.1 Let Φ = (A;B; {Ei}di=0; {E∗i }di=0) be a Leonard system on V and β be a split

basis for Φ. Then the split decomposition for [Φ]β consists of the subspaces spanned by the

standard basis elements for V .

Proof. By Lemma 2.7.1, with respect to the split basis β the matrices which represent A

and B are

[A]β =



θ0 0

1 θ1

1 θ2

. . . . . .

0 1 θd


and [B]β =



θ∗0 ϕ1 0

θ∗1 ϕ2

θ∗2
. . .

. . . ϕd

0 θ∗d


respectively. By Theorem 2.8.4 the standard basis for V is a split basis for [Φ]β, and the

result follows. 2

Theorem 4.4.2 If Φ = (A;B; {Ei}di=0; {E∗i }di=0) and Ψ = (A; B̂; {Ei}di=0; {Ê∗i }di=0) are two

Leonard systems on the vector space V , then there exists a Leonard system Φ̂ isomorphic to

Ψ such that Φ and Φ̂ are friends.
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Proof. Let β and β̂ be respective split bases for Φ and Ψ, as described in Lemma 2.7.1.

By Lemma 2.4.10, Φ and Ψ are respectively isomorphic to [Φ]β and [Ψ]β̂. By Lemma 4.4.1,

[Φ]β and [Ψ]β̂ both have a split decomposition consisting of the subspaces spanned by the

standard basis elements for Kd+1. Thus [Φ]β and [Ψ]β̂ are friends. Apply the inverse of the

coordinate mapping [·]β to [Ψ]β̂ to produce the desired Φ̂.

2

From Theorem 4.4.2, we see that friendship is not merely a product of isomorphism

classes. We define another relationship among Leonard systems that emphasizes the impor-

tance of the shape of friends.

Definition 4.4.3 Two Leonard systems

Φ = (A;B; {Ei}di=0; {E∗i }di=0) and Ψ = (Â; B̂; {Fi}di=0; {F ∗i }di=0)

on V will be said to be acquaintances whenever A = Â and Ei = Fi (0 ≤ i ≤ d).

Friends are acquaintances, but not all acquaintances are friends. Consider the following.

Example 4.4.4 Suppose Φ = (A;B; {Ei}di=0; {E∗i }di=0) is a Leonard system. Let P = f(A)

for some polynomial f ∈ K, and suppose P is invertible. Apply the automorphism σ of

End(V ) corresponding to conjugation by P , i.e., σ(X) = P−1XP . Consider

Φσ = (Aσ;Bσ; {Eσ
i }di=0; {(E∗i )σ}di=0) = (A;Bσ; {Ei}di=0; {(E∗i )σ}di=0).

Clearly Φ and Φσ are acquaintances. However, in general E∗0V 6= (E∗0)σV , so they are not

friends.
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Example 4.4.5 Recall the D4 action of Theorem 2.5.2. Consider Leonard systems

Φ = (A;B; {Ei}di=0; {E∗i }di=0) and Φ↓ = (A;B; {Ei}di=0; {E∗d−i}di=0).

Then Φ and Φ↓ are acquaintances, but not friends.

The next two examples are known from the study of P- and Q-polynomial association

schemes. For more information on these two examples see [9] and some work by G. Dickie

in [16], [17], [18], and [19].

Example 4.4.6 For certain Leonard systems Φ = (A;B; {Ei}di=0; {E∗i }di=0), there is a per-

mutation π of the primitive idempotents of B such that Φπ = (A;B; {Ei}di=0; {E∗π(i)}di=0) is

also a Leonard system. Such Leonard systems are acquaintances. This is a very special

situation. Some examples of such permutations are {E∗0 , E∗d−1, E∗2 , . . . , E∗d−2, E∗1 , E∗d} and

{E∗0 , E∗d , E∗1 , E∗d−1, . . .}. In several instances, the types of the Leonard systems Φ and Φπ are

different. We will need such a possibility when looking for friends.

Example 4.4.7 For certain Leonard systems Φ = (A;B; {Ei}di=0; {E∗i }di=0), there is a per-

mutation π of the primitive idempotents of A such that Φπ = (A;B; {Eπ(i)}di=0; {E∗i }di=0) is

also a Leonard system. Note that Φ and Φπ are not acquaintances. However, we prevent

this situation from arising by fixing an ordering of the primitive idempotents of A in our

definition of friends.

In light of the discussion in this section, we see that we will need to control the shape

of the Leonard systems when seeking friends. We shall do so by using finite-dimensional

representations of sl2 and Uq(sl2). Before we do this we need one more result regarding

when acquaintances have the same shape as friends.
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Theorem 4.4.8 Let Φ = (A;B; {Ei}di=0; {E∗i }di=0) and Φ̂ = (A; B̂; {Ei}di=0; {Ê∗i }di=0) be ac-

quaintances on V . Then Φ and Φ̂ are friends if and only if there exists a basis β so that [A]β

is lower-bidiagonal with (i, i)-entry θi and [B]β, [B̂]β are simultaneously upper-bidiagonal

with respective (i, i)-entries θ∗i and θ̂∗i .

Proof. If Φ and Φ̂ are friends then such a basis β exists by definition. Conversely, given

such a basis β = {b0, b1, . . . , bd}, let Ui = span{bi}. By Theorem 2.8.4, {Ui}di=1 is the split

decomposition for both Φ and Φ̂. 2

In order to find friends, we must first find acquaintances and a basis that gives the

form required by Theorem 4.4.8. We may do the former by finding Leonard pairs with

an appropriate ordering of idempotents. The latter is achieved by using finite-dimensional

representations of sl2 and Uq(sl2).

4.5 Friends from Leonine parameters

To find Leonard systems it is natural to start by finding Leonard pairs. In this section we

show that finding a pair of friends is equivalent to finding two Leonard pairs along with

a decomposition inducing a special basis for both. This corresponds to finding two sets of

Leonine parameters and an application of some appropriate module structure. We start with

a remark.

By an LB-UB basis for a Leonard pair A, B, we mean an LB-UB basis for some Leonard

system associated with A, B.

Theorem 4.5.1 The following sets are equal.

(i) The set of all pairs of Leonard systems on V which are friends.
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(ii) The pairs of Leonard pairs on V sharing the first operator together with a decomposition

of V which induces an LB-UB basis for both pairs.

Proof. Let Φ = (A;B; {Ei}di=0; {E∗i }di=0) and Φ̂ = (A; B̂; {Ei}di=0; {Ê∗i }di=0) be a pair of

Leonard systems on V which are friends. The collection A, B and A, B̂ and split decompo-

sition {Ui}di=0 shared by Φ and Φ̂ are contained in the second set.

A typical element of the second set consists of Leonard pairs A, B and A, B̂ on V and a

decomposition {Ui}di=0 of V inducing an LB-UB basis β for each. To specify an element of the

first set, we order the primitive idempotents of A consistent with the LB-UB decomposition:

AEi = ([A]β)(i, i)Ei. Then {Ei}di=0 is the standard ordering of primitive idempotents for A.

We do likewise for the primitive idempotents of B and B̂. Now Φ = (A;B; {Ei}di=0; {E∗i }di=0)

and Φ̂ = (A; B̂; {Ei}di=0; {Ê∗i }di=0) are Leonard systems on V . Moreover, Φ and Φ̂ are friends

by Theorem 4.4.8. 2

We achieve the decomposition by using a construction from sl2 or Uq(sl2). We then give

scalars (d, q, κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗) that uniquely determine a Leonard pair/system (by

Lemmas 3.2.7 and 3.4.8). By an appropriate choice of scalars we can produce two Leonard

pairs with the same first operator. We recall that friendship is an equivalence relation on

Leonard systems.

Theorem 4.5.2 Classical Leonard systems Φ and Φ̂ on V are friends if and only if they have

corresponding Leonine parameters satisfying κ = κ̂, λ− µ = λ̂− µ̂, ν = ν̂ for respective sl2-

module structures on V having bases of Lemma 3.1.3 related by v̂i = αivi, where 0 6= α0 ∈ K

is arbitrary and αi+1 = αi(λ+ (d− 2i)ν)/(λ̂+ (d− 2i)ν) (0 ≤ i ≤ d− 1).

Proof. Suppose Φ and Φ̂ are friends. The corresponding sl2-module structures from Theorem
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3.2.5 are diagonally similar, so the bases of V from Lemma 3.1.3 satisfy v̂i = αivi (0 ≤ i ≤ d).

Since A = Â, we compute θ̂iαivi − 2(i+ 1)(λ̂+ (d− 2i)ν̂)αi+1vi+1 = θ̂iv̂i − 2(i+ 1)(λ̂+ (d−

2i)ν̂)v̂i+1 = Âv̂i = Aαivi = θiαivi−2(i+1)(λ+(d−2i)ν)αivi+1 (0 ≤ i ≤ d−1). Thus θ̂i = θi

and (λ̂+ (d− 2i)ν̂)αi+1 = (λ+ (d− 2i)ν)αi (0 ≤ i ≤ d) since the vi form a basis. Note that

the coefficients of αi+1 and αi are nonzero since the parameters are Leonine. Now κ = κ̂,

λ− µ = λ̂− µ̂, ν = ν̂ by (3.2.1) at i = 0, 1, 2 since θi = θ̂i. The converse is straightforward

from the construction. 2

Theorem 4.5.3 Basic Leonard systems Φ and Φ̂ on V are friends if and only if they have

corresponding Leonine parameters satisfying one of the following

(i) q̂ = q, λ̂ = λ, µ̂ = µ, κ̂+ ν̂ = κ+ ν;

(ii) q̂ = q−1, λ̂ = µ, µ̂ = λ, κ̂+ ν̂ = κ+ ν;

(iii) q̂ = −q, λ̂ = (−1)dλ, µ̂ = (−1)dµ, κ̂+ ν̂ = κ+ ν;

(iv) q̂ = −q−1, λ̂ = (−1)dµ, µ̂ = (−1)dλ, κ̂+ ν̂ = κ+ ν

for Uq(sl2)- and Uq̂(sl2)-module structures with bases of Lemma 3.3.3 related by v̂i = αivi,

where 0 6= α0 ∈ K is arbitrary and for 0 ≤ i ≤ d − 1, αi+1 = αi(q
−2(i+1) − 1)(λqd−2i +

ν)/(q̂−2(i+1) − 1)(λq̂d−2i + ν̂).

Proof. Suppose Φ and Φ̂ are friends. Then θ̂i = θi (0 ≤ i ≤ d). We claim that q̂ ∈
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{q,−q, q−1,−q−1}. Use (3.4.9) to expand the equations

0 = q−2(θ0 − θ̂0)− (q−2(q̂2 + 1) + 1)(θ1 − θ̂1) + (q̂2(q−2 + 1) + 1)(θ2 − θ̂2)− q̂2(θ3 − θ̂3)

= q̂−dq−d−2
(
q̂2q2 − 1

) (
µq̂
(
q̂2 − 1

)2 (
q̂2 + 1

)
qd − µ

(
q2 − 1

)2 (
q2 + 1

)
q̂d
)
,

0 = q2(θ0 − θ̂0)− (q2(q̂−2 + 1) + 1)(θ1 − θ̂1) + (q̂−2(q2 + 1) + 1)(θ2 − θ̂2)− q̂−2(θ3 − θ̂3)

= −
(q̂2q2 − 1)

(
λq̂ (q̂2 − 1)

2
(q̂2 + 1) q6q̂d − λq̂6 (q2 − 1)

2
(q2 + 1) qd

)
q̂8q6

.

Thus either q̂2q2 = 1 or both µ̂ = µ q̂
d(q2−1)(q4−1)
qd(q̂2−1)(q̂4−1) and λ̂ = λ q

d−6(q2−1)(q4−1)
q̂d−6(q̂2−1)(q̂4−1) . In the latter case,

0 = (θ0 − θ̂0)− 2(θ1 − θ̂1) + (θ2 − θ̂2)

=
(q2 − 1)

2
q−d−6 (q2 − q̂2)

(
λq2d − µq6

)
q̂2 + 1

.

This implies that q̂2 = q2 since µq2(3−d) − λ 6= 0 by the Leonine condition. Thus the claim

holds.

When q̂ = q, the above gives µ̂ = µ, λ̂ = λ. When q̂ = −q, the above gives µ̂ = (−1)dµ,

λ̂ = (−1)dλ. To treat the cases q̂ = ±q−1 we expand the equations

0 = q−2(θ0 − θ̂0)− (2q−2 + 1)(θ1 − θ̂1) + (q−2 + 2)(θ2 − θ̂2)− (θ3 − θ̂3)

=
(q̂2 − 1)

2
qd
(
µq̂q̂6 (q̂2q2 − 1)− λq̂q̂2d (q̂2 − q2)

)
− µ (q2 − 1)

3
(q2 + 1) q̂d+6

q̂d+6qd+2
,

0 = q̂−2(θ0 − θ̂0)− (2q̂−2 + 1)(θ1 − θ̂1) + (q̂−2 + 2)(θ2 − θ̂2)− (θ3 − θ̂3)

=
qd
(
µq̂ (q̂2 − 1)

3
(q̂2 + 1) q6 − λ (q2 − 1)

2
q̂dqd (q̂2 − q2)

)
− µq6 (q2 − 1)

2
q̂d (q̂2q2 − 1)

q̂d+2qd+6
.

When q̂ = q−1, we find µ̂ = λ, λ̂ = µ. When q̂ = −q−1, we find λ̂ = (−1)dµ, µ̂ = (−1)dλ. In

all four cases, κ̂+ ν̂ = κ+ ν since (θ0 − θ̂0) = 0.
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By Lemma 4.2.4, the corresponding Uq(sl2)- and Uq̂(sl2)-module structures are such that

the bases of V from Lemma 3.3.3 satisfy v̂i = αivi (0 ≤ i ≤ d). Arguing as in the proof of

Theorem 4.5.2, we find

(q̂−2(i+1) − 1)(λq̂d−2i + ν̂)αi+1 = (q−2(i+1) − 1)(λqd−2i + ν)αi (0 ≤ i ≤ d− 1).

The converse is straightforward from the construction. 2

From Lemma 3.3.3, we note the following. For d even, Uq(sl2) and U−q(sl2) have the

same action on the respective V +
d and V −d . For d odd, Uq(sl2) and U−q(sl2) swap actions

on the respective V +
d and V −d . Any Leonard system constructed on the irreducible Uq(sl2)

module V −d can also be constructed on V +
d by changing the signs of the coeffients of X, Y ,

and Z, provided that q−2(−λqd+ν)(−µ∗qd+ν∗) 6= (µ−λq2(i−1))(λ∗−µ∗q2(d−i)) (1 ≤ i ≤ d).

Thus in most cases, any Leonard system constructed from U−q(sl2) can be constructed from

Uq(sl2). Our construction yields essentially the same result on both Uq(sl2) and U−q(sl2).

There is an antiautomorphism † of End(V +
d ) which swaps X and Y and fixes Z. This

turns the Uq−1(sl2)-module V +
d into the Uq(sl2)-module V +

d

We are able to uniquely describe any Leonard system using the scalars (d, q, κ, λ, µ,

ν, κ∗, λ∗, µ∗, ν∗) and an appropriate sl2 or Uq(sl2) construction. With the shape and type

determined by the construction, and the first six scalars satisfying the conditions of Theorem

4.5.2 or Theorem 4.5.3, any working values of κ∗, λ∗, µ∗, ν∗ (that is, those satisfying scalar

requirements such as in Theorem 3.2.6 and Lemma 3.4.7) will result in a Leonard system

that is a friend of the first. In this way we find all friends of a Leonard system and solve the

problem of our thesis. In the next chapter we give more restrictions on the scalars (d, q, κ,

λ, µ, ν, κ∗, λ∗, µ∗, ν∗) so that we may classify possible friendships by type.
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5 Classification of friends

In this chapter we reformulate the Leonine parameters on a type-by-type basis. Here we use

eigenvalues as much as possible as the primary parameters. This allows one to construct

Leonard pairs and Leonard systems from irreducible sl2- or Uq(sl2)-modules as in Chapter

3. By fixing the module structure the shape is guaranteed to be lower-bidiagonal/upper-

bidiagonal. By comparing coefficients for the first operator we get all members of an equiv-

alence class of friends.

5.1 Leonard systems of classical type

Given a Leonard system Φ = (A;B; {Ei}di=0; {E∗i }di=0) on V , the eigenvalues are more im-

mediately determined than the Leonine parameters. Our strategy is to describe Leonine

parameters κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗ ∈ K in terms of the eigenvalues of A and B. When

we write λ = λ we mean λ is free, subject to any further restrictions listed. When we write

λ 6= a we mean λ is free but cannot be a, and is also subject to any further restrictions listed.

Theorem 5.1.1 Let A and B be linear operators on the (d+ 1)-dimensional vector space V

(d ≥ 2). Assume there exists an irreducible sl2-module structure on V such that A and B

act on V as the K-linear combinations κI +λY +µZ + νY Z and κ∗I +λ∗Z +µ∗X + ν∗ZX,

respectively. Let {θi}di=0 and {θ∗i }di=0 be as in Definition 3.2.2. Then the following hold.
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(i) A, B is a Leonard pair of Krawtchouk type if and only if θ0 6= θ1, θ∗0 6= θ∗1, and the

scalars κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗ satisfy

κ = θ0 −
d(θ0 − θ1)

2
, κ∗ = θ∗0 −

d(θ∗0 − θ∗1)
2

,

λ 6= 0, λ∗ 6= θ∗0 − θ∗1
2

,

µ =
θ0 − θ1

2
+ λ, µ∗ = λ∗ − θ∗0 − θ∗1

2
,

ν = 0, ν∗ = 0,

λλ∗ − µλ∗ + µµ∗ 6= 0.

(ii) A, B is a Leonard pair of Hahn type if and only if θ0 6= θ1, θ∗0 6= θ∗1, and the scalars κ,

λ, µ, ν, κ∗, λ∗, µ∗, ν∗ satisfy

κ = θ0 −
d(θ0 − θ1)

2
, κ∗ =

θ∗0(2− d) + dθ∗1 − (2d− 4)dν∗

2
,

λ =
θ1 − θ0

2
, λ∗ = λ∗,

µ = 0, µ∗ =
θ∗1 − θ∗0 + 2λ∗ − (4d− 4)ν∗

2
,

ν = 0, ν∗ 6= 0,

µ∗ − (d− 2i)ν∗ 6= 0, λ∗ − (d− 2i)ν∗ 6= 0 (1 ≤ i ≤ d),

λ∗ − µ∗ + 2ν∗(d− i) 6= 0 (1 ≤ i ≤ 2d− 1).

(iii) A, B is a Leonard pair of dual Hahn type if and only if θ0 6= θ1, θ∗0 6= θ∗1, and the scalars
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κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗ satisfy

κ =
θ0(2− d) + dθ1 + (4− 2d)dν

2
, κ∗ = θ∗0 −

d(θ∗0 − θ∗1)
2

,

λ = λ, λ∗ = 0,

µ =
θ0 − θ1 + 2λ− (4− 4d)ν

2
, µ∗ =

θ∗1 − θ∗0
2

,

ν 6= 0, ν∗ = 0,

µ− (d− 2i)ν 6= 0, λ− (d− 2i)ν 6= 0 (1 ≤ i ≤ d),

λ− µ+ 2ν(d− i) 6= 0 (1 ≤ i ≤ 2d− 1).

(iv) A, B is a Leonard pair of Racah type if and only if θ0 6= θ1, θ
∗
0 6= θ∗1, and the scalars κ,

λ, µ, ν, κ∗, λ∗, µ∗, ν∗ satisfy (3.2.3) − (3.2.8) and

κ =
θ0(2− d) + dθ1 + (4− 2d)dν

2
, κ∗ =

θ∗0(2− d) + dθ∗1 − (2d− 4)dν∗

2
,

λ = λ, λ∗ = λ∗,

µ =
θ0 − θ1 + 2λ− (4− 4d)ν

2
, µ∗ =

θ∗1 − θ∗0 + 2λ∗ − (4d− 4)ν∗

2
,

ν 6= 0, ν∗ 6= 0.

Proof. Recall from Definition 3.2.2 that

θi = κ− (λ− µ)(d− 2i)− (d− 2i)2ν (1 ≤ i ≤ d),

θ∗i = κ∗ + (λ∗ − µ∗)(d− 2i)− (d− 2i)2ν∗ (1 ≤ i ≤ d),
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so

θ0 = κ− (λ− µ)d− d2ν, (5.1.1)

θ∗0 = κ∗ + (λ∗ − µ∗)d− d2ν∗, (5.1.2)

θ1 = κ− (λ− µ)(d− 2)− (d− 2)2ν, (5.1.3)

θ∗1 = κ∗ + (λ∗ − µ∗)(d− 2)− (d− 2)2ν∗. (5.1.4)

It follows that

θ0 − θ1 = −2(λ− µ) + (4− 4d)ν, (5.1.5)

θ∗0 − θ∗1 = 2(λ∗ − µ∗) + (4− 4d)ν∗. (5.1.6)

(i): Suppose A, B is a Leonard pair of Krawtchouk type so that the parameters are subject

to the conditions given in Theorem 3.2.6(i). In particular ν = ν∗ = 0. Take λ and λ∗ to be

free. Substituting these values into equations (5.1.5) and (5.1.6), and solving for µ and µ∗

gives

µ =
θ0 − θ1

2
+ λ, µ∗ = λ∗ − θ∗0 − θ∗1

2
.

In (5.1.1) and (5.1.2) these values give

κ = θ0 −
d(θ0 − θ1)

2
, κ∗ = θ∗0 −

d(θ∗0 − θ∗1)
2

.

Conversely, these values satisfy the conditions of Theorem 3.2.6(i) so A, B is a Leonard

pair of Krawtchouk type.
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(ii): Suppose A, B is a Leonard pair of Hahn type so that the parameters are subject to the

conditions given in Theorem 3.2.6(ii).

In particular ν = µ = 0. From (5.1.5) we get λ =
θ1 − θ0

2
, and then from (5.1.1)

we get κ = θ0 −
d(θ0 − θ1)

2
. Take λ∗ and ν∗ 6= 0 to be free. Then by (5.1.6) we get µ∗ =

θ∗1 − θ∗0 + 2λ∗ − (4d− 4)ν∗

2
. Finally, from (5.1.2) we get κ∗ =

θ∗0(2− d) + dθ∗1 − (2d− 4)dν∗

2
.

Conversely, these values satisfy the conditions of Theorem 3.2.6(ii) so A, B is a Leonard

pair of Hahn type.

(iii): Suppose A, B is a Leonard pair of dual Hahn type so that the parameters are subject

to the conditions given in Theorem 3.2.6(iii).

In particular λ∗ = ν∗ = 0. From (5.1.6) we get µ∗ =
θ∗1 − θ∗0

2
, and then by (5.1.2) we

have κ∗ = θ∗0 −
d(θ∗0 − θ∗1)

2
. Take λ and ν 6= 0 to be free. Then from (5.1.5) we get µ =

θ0 − θ1 + 2λ− (4− 4d)ν

2
. And finally, from (5.1.1) we get κ =

θ0(2− d) + dθ1 + (4− 2d)dν

2
.

Conversely, these values satisfy the conditions of Theorem 3.2.6(iii) so A, B is a Leonard

pair of dual Hahn type.

(iv): Suppose A, B is a Leonard pair of Racah type so that the parameters are subject to

the conditions given in Theorem 3.2.6(iv). It can be verified that the values of κ, λ, µ, ν

will be the same as those in the dual Hahn case and the values of κ∗, λ∗, µ∗, ν∗ will be the

same as those in the Hahn case.

Conversely, these values satisfy the conditions of Theorem 3.2.6(iv) so A, B is a Leonard

pair of Racah type.

2

We summarize Theorem 5.1.1 in Table 5.1.
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From Theorem 5.1.1 we are able to see the possible friendships that may result between

Leonard systems of different classical types. We do this by comparing the values for κ, λ,

µ, and ν. Table 5.2 summarizes the different possible friendships that can result between

Leonard systems of classical type.

5.2 Leonard systems of basic type

We now turn our attention to the basic case. We use the same conventions concerning free

parameters as in the previous section. For simplicity, we focus on the case where q̂ = q and

the module structures coincide.

Theorem 5.2.1 Let A and B be linear operators on the (d+ 1)-dimensional vector space V

(d ≥ 2). Assume there exists an irreducible Uq(sl2)-module structure on V such that A and

B act on V as the K-linear combinations κI+λY +µZ+νY Z and κ∗I+λ∗Z+µ∗X+ν∗ZX,

respectively. Let {θi}di=0 and {θ∗i }di=0 be as in Definition 3.4.3. Then the following hold.

(i) A, B is a Leonard pair of q-Racah type if and only if θ0 6= θ1, θ
∗
0 6= θ∗1, and the scalars

κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗ satisfy (3.4.11) − (3.4.16) and

κ = κ, κ∗ = κ∗,

λ =
θ0 − θ1

qd−2(q2 − 1)
+ µq−2d+2, λ∗ =

qd(θ∗0 − θ∗1)
1− q2

+ µ∗q2d−2,

µ = µ, µ∗ = µ∗,

ν = θ0 − κ−
q2(θ0 − θ1)
q2 − 1

− µq−d(q2 + 1), ν∗ = θ∗0 − κ∗ −
θ∗0 − θ∗1
1− q2

− µ∗qd−2(1 + q2).

(ii) A, B is a Leonard pair of q-Hahn or q-Krawtchouk type if and only if θ0 6= θ1, θ
∗
0 6= θ∗1,
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and the scalars κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗ satisfy

κ = κ, κ∗ = κ∗,

λ =
θ0 − θ1

qd−2(q2 − 1)
, λ∗ =

qd(θ∗0 − θ∗1)
1− q2

+ µ∗q2d−2,

µ = 0, µ∗ = µ∗,

ν = θ0 − κ−
q2(θ0 − θ1)
q2 − 1

, ν∗ = θ∗0 − κ∗ −
θ∗0 − θ∗1
1− q2

− µ∗qd−2(1 + q2),

νν∗ = 0, ν 6= −qd−2iλ, ν∗ 6= −qd−2iµ∗ (0 ≤ i ≤ d− 1),

µ∗ 6= q2(i−d)λ∗, λν∗ + µ∗ν + q2i−dλλ∗ 6= 0 (1 ≤ i ≤ d).

(iii) A, B is a Leonard pair of dual q-Hahn or dual q-Krawtchouk type if and only if θ0 6= θ1,

θ∗0 6= θ∗1, and the scalars κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗ satisfy

κ = κ, κ∗ = κ∗,

λ =
θ0 − θ1

qd−2(q2 − 1)
+ µq−2d+2, λ∗ = 0,

µ = µ, µ∗ =
θ∗0 − θ∗1

qd−2(q2 − 1)
,

ν = θ0 − κ−
q2(θ0 − θ1)
q2 − 1

− µq−d(q2 + 1), ν∗ = θ∗0 − κ∗ −
q2(θ∗0 − θ∗1)
q2 − 1

,

νν∗ = 0, ν 6= −qd−2iλ, ν∗ 6= −qd−2iµ∗ (0 ≤ i ≤ d− 1),

λ 6= q2(i−d)µ, λν∗ + µ∗ν + q2i−dµµ∗ 6= 0 (1 ≤ i ≤ d).

(iv) A, B is a Leonard pair of quantum q-Krawtchouk type if and only if θ0 6= θ1, θ
∗
0 6= θ∗1,
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and the scalars κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗ satisfy

κ = κ, κ∗ = θ∗0 −
q2(θ∗0 − θ∗1)
q2 − 1

,

λ = 0, λ∗ = 0,

µ =
qd(θ0 − θ1)

1− q2
, µ∗ =

θ∗0 − θ∗1
qd−2(q2 − 1)

,

ν = θ0 − κ−
θ0 − θ1
1− q2

, ν∗ = 0,

ν 6= −qd−2i+2µ (1 ≤ i ≤ d).

(v) A, B is a Leonard pair of affine q-Krawtchouk type if and only if θ0 6= θ1, θ∗0 6= θ∗1, and

the scalars κ, λ, µ, ν, κ∗, λ∗, µ∗, ν∗ satisfy

κ 6= θ0, κ∗ 6= θ∗0,

λ =
θ0 − θ1

qd−2(q2 − 1)
, λ∗ = 0,

µ = 0, µ∗ =
θ∗0 − θ∗1

qd−2(q2 − 1)
,

ν = θ0 − κ−
q2(θ0 − θ1)
q2 − 1

, ν∗ = θ∗0 − κ∗ −
q2(θ∗0 − θ∗1)
q2 − 1

,

νν∗ = 0, λν∗ + µ∗ν 6= 0,

ν 6= −qd−2iλ, ν∗ 6= −qd−2iµ∗ (0 ≤ i ≤ d− 1).

Proof. Recall from Definition 3.4.3 that

θi = κ+ ν + λqd−2i + µq2i−d (1 ≤ i ≤ d),

θ∗i = κ∗ + ν∗ + µ∗qd−2i + λ∗q2i−d (1 ≤ i ≤ d),
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so

θ0 = κ+ ν + λqd + µq−d, (5.2.7)

θ∗0 = κ∗ + ν∗ + µ∗qd + λ∗q−d, (5.2.8)

θ1 = κ+ ν + λqd−2 + µq2−d, (5.2.9)

θ∗1 = κ∗ + ν∗ + µ∗qd−2 + λ∗q2−d. (5.2.10)

It follows that

θ0 − θ1 = (q2 − 1)(λqd−2 − µq−d), (5.2.11)

θ∗0 − θ∗1 = (q2 − 1)(µ∗qd−2 − λ∗q−d). (5.2.12)

(i): Suppose A, B is a Leonard pair of q-Racah type so that the parameters are subject to

the conditions given in Lemma 3.4.7(i). Take κ and µ to be free. Then by (5.2.11) we get λ =

θ0 − θ1
qd−2(q2 − 1)

+µq2−2d. Along with (5.2.7) this yields ν = θ0−κ−µq−d(1 + q2)− q
2(θ0 − θ1)
q2 − 1

.

Now take κ∗ and µ∗ to be free. Then by (5.2.12) we get λ∗ =
qd(θ∗0 − θ∗1)

1− q2
+ µ∗q2d−2. And

finally by (5.2.8) we have ν∗ = θ∗0 − κ∗ − µ∗qd−2(1 + q2)− θ∗0 − θ∗1
1− q2

.

Conversely, these values satisfy the conditions of Lemma 3.4.7(i) so A, B is a Leonard

pair of q-Racah type.

(ii): Suppose A, B is a Leonard pair of q-Hahn or q-Krawtchouk type so that the parameters

are subject to the conditions given in Lemma 3.4.7(ii). In particular µ = 0. Then by (5.2.11)

we get λ =
q2−d(θ0 − θ1)

q2 − 1
. Take κ to be free. Then by (5.2.7) we have ν = θ0−κ−

q2(θ0 − θ1)
q2 − 1

.

It can be verified that the values of κ∗, λ∗, µ∗, ν∗ will be the same as those in the q-Racah
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case.

Conversely, these values satisfy the conditions of Lemma 3.4.7(ii) so A, B is a Leonard

pair of q-Hahn or q-Krawtchouk type.

(iii): Suppose A, B is a Leonard pair of dual q-Hahn or dual q-Krawtchouk type so that the

parameters are subject to the conditions given in Lemma 3.4.7(iii). In particular λ∗ = 0.

Take κ∗ to be free. By (5.2.12) we get µ∗ =
q2−d(θ∗0 − θ∗1)

q2 − 1
. Along with (5.2.8) this yields

ν = θ∗0 − κ∗ −
q2(θ∗0 − θ∗1)
q2 − 1

. It can be verified that the values of κ, λ, µ, ν will be the same as

those in the q-Racah case.

Conversely, these values satisfy the conditions of Lemma 3.4.7(iii) so A, B is a Leonard

pair of dual q-Hahn or dual q-Krawtchouk type.

(iv): Suppose A, B is a Leonard pair of quantum q-Krawtchouk type so the parameters are

subject to the conditions given in Lemma 3.4.7(iv). In particular λ = λ∗ = ν∗ = 0. Then

by (5.2.12) we get µ∗ =
q2−d(θ∗0 − θ∗1)

q2 − 1
. Along with (5.2.8) this yields κ∗ = θ∗0 −

q2(θ∗0 − θ∗1)
q2 − 1

.

Substituting into (5.2.11) gives µ =
qd(θ0 − θ1)

1− q2
. Takes κ to be free. Then from (5.2.7) we

get ν = θ0 − κ−
θ0 − θ1
1− q2

.

Conversely, these values satisfy the conditions of Lemma 3.4.7(iv) so A, B is a Leonard

pair of quantum q-Krawtchouk type.

(v): Suppose A, B is a Leonard pair of affine q-Krawtchouk type so that the parameters

are subject to the conditions given in Lemma 3.4.7(v). In particular µ = λ∗ = 0. It can be

verified that the values of κ, λ, µ, ν will be the same as those in (ii). Similarly, the values of

κ∗, λ∗, µ∗, ν∗ will be the same as those in (iii).

Conversely, these values satisfy the conditions of Lemma 3.4.7(v) so A, B is a Leonard
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pair of affine q-Krawtchouk type. 2

We summarize Theorem 5.2.1 in Table 5.3.

From Theorem 5.2.1 we are able to see the possible friendships that may result between

Leonard systems of different basic types. We do this by comparing the values for κ, λ, µ, and

ν. Table 5.4 summarizes the different possible friendships that can result between Leonard

systems of basic type.
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5.3 Concluding remarks

This thesis describes Leonard systems which are friends, that is, which share certain operators

and a split decomposition. Friendship is not purely intrinsic, but depends on the choice of

representation (shape). This leads to a two-part description of friends. First, we achieve the

desired shape (split decomposition) by applying an sl2- or Uq(sl2)-module construction in

terms of the equitable generators. The expressions involving the equitable generators give

rise to the Leonine parameters that define a Leonard system of either classical or basic type.

By taking two sets of Leonine parameters whose first six entries satisfy particular conditions

we obtain a description of two Leonard systems that are friends.

We leave it as a problem to investigate friendship more thoroughly for Leonard systems

of Bannai-Ito and orphan types. These cases do not have a well-developed algebraic con-

struction to rely on. We expect that the Bannai-Ito case may be split according to whether

the diameter is even or odd, once appropriate algebras are described. The orphan case may

be small enough and special enough to be treated directly.
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[14] Gustav W. Delius, Andreas Hüffmann, Mark D. Gould, and Yao-Zhong Zhang. Quan-

tum Lie algebras associated to Uq(gln) and Uq(sln). J. Phys. A, 29(17):5611–5617, 1996.

[15] P. Delsarte. An algebraic approach to the association schemes of coding theory. Philips

Res. Rep. Suppl., (10):vi+97, 1973.

77



[16] Garth A. Dickie. Q-polynomial structures for association schemes and distance-regular

graphs. ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)–The University of Wis-

consin - Madison.

[17] Garth A. Dickie. Twice Q-polynomial distance-regular graphs. J. Combin. Theory Ser.

B, 68(1):161–166, 1996.

[18] Garth A. Dickie and Paul M. Terwilliger. Dual bipartite Q-polynomial distance-regular

graphs. European J. Combin., 17(7):613–623, 1996.

[19] Garth A. Dickie and Paul M. Terwilliger. A note on thin P -polynomial and dual-thin

Q-polynomial symmetric association schemes. J. Algebraic Combin., 7(1):5–15, 1998.

[20] Karin Erdmann and Mark J. Wildon. Introduction to Lie algebras. Springer Under-

graduate Mathematics Series. Springer-Verlag London, Ltd., London, 2006.

[21] George Gasper and Mizan Rahman. Basic hypergeometric series, volume 35 of Ency-

clopedia of Mathematics and its Applications. Cambridge University Press, Cambridge,

1990. With a foreword by Richard Askey.

[22] J. E. Humphreys. Introduction to Lie Algebras and Representation Theory, volume 1.

Springer-Verlag, New York, 1972.

[23] Tatsuro Ito and Paul Terwilliger. Tridiagonal pairs of Krawtchouk type. Linear Algebra

Appl., 427(2-3):218–233, 2007.

[24] Tatsuro Ito and Paul Terwilliger. Tridiagonal pairs of q-Racah type. J. Algebra,

322(1):68–93, 2009.

78



[25] Tatsuro Ito, Paul Terwilliger, and Chih-wen Weng. The quantum algebra Uq(sl2) and

its equitable presentation. J. Algebra, 298(1):284–301, 2006.

[26] Christian Kassel. Quantum groups, volume 155 of Graduate Texts in Mathematics.

Springer-Verlag, New York, 1995.

[27] Anthony W. Knapp. Lie groups beyond an introduction, volume 140 of Progress in
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