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Abstract

In this thesis we generalize the problem of phase retrieval of vector to that of multi-vector. The

identification of the multi-vector is done up to some special classes of isometries in the space. We

give some upper and lower estimates on the minimal number of multi-linear operators needed for

the retrieval. The results are preliminary and far from sharp.

ii



Chapter 1

Injectivity Results related to phase retrieval

Consider the following problem: Suppose one is given the magnitude of the coefficients of some

vector x ∈ R2 against some frame of vectors from R2, Φ = {ϕn}Nn=1. That is, one is given

measurements, {|〈x, ϕn〉|2}Nn=1. Can x be recovered from these measurements? In other words is

the mapping sending x to the magnitude squared of its coefficients against some frame injective?

Since replacing x with −x in {|〈x, ϕn〉|2}Nn=1 does not change the measurements, the answer to

the second question can be answered “No”. However, rewording the question and generalizing the

problem to one about the injectivity of the mapping A :RM/{±1}→ RN , x 7→ {|〈x, ϕn〉|2}Nn=1

changes the answer to “Yes.” Qualifying, the answer is yes if Φ is chosen carefully.

Let x, y ∈ R2 be given, x =

x1
x2

, y =

y1
y2

 and Φ =

1 0 1

0 1 1

 where ϕn are taken to be

the column vectors of Φ.

Then the conditions {|〈x, ϕn〉|2}3n=1 = {|〈y, ϕn〉|2}3n=1 give the following:

x21 = y21 ⇒ x1 = ±y1

x22 = y22 ⇒ x2 = ±y2

(x1 + x2)
2 = (y1 + y2)

2⇒ x1x2 = y1y2

Together these conditions imply x = ±y and so Φ gives injective measurements and x may be

recovered from the magnitude of its coefficients against Φ up to a multiple of a unit-modular

constant in R.

In what follows let now xk, yk ∈ C, x =

x1
x2

, y =

y1
y2

, and Φ =

1 0 1

0 1 1

 as before.

Then corresponding to the question presented above, we may ask for complex valued vectors: Is

the mapping B :CM/T→ RN , y 7→ {|〈 y, ϕn〉|2}Nn=1 injective? In this case one may check that

x =

1

i

 and y =

−1

i

 satisfy {|〈x, ϕn〉|2}3n=1 = {|〈y, ϕn〉|2}3n=1 as B(x) = (1, 1, 2) and
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B(y) = (1, 1, 2) however x 6= cy for c ∈ T = {z ∈ C | |z| = 1}. Hence we conclude B is not

injective. However, if Φ =

1 0 1 1

0 1 1 i

, for example, then x is recoverable from the magnitude

of its coefficients against Φ up to a multiple of a unit-modular constant in C (see [3] for a proof).

The problem of characterizing Φ for which the mappings A and B are injective is a problem

related to phase retrieval. In [2], Balan, Casazza, and Edidin asked the following question, inter-

ested in its theoretical implications for phase retrieval, a method by which intensity measurements

{|〈y, ϕn〉|2}Nn=1 may be used to recover signal y up to a unit-modular constant. (For details on how

y may be recovered from these measurements, see the work of Candès, Strohmer, Voroninski, [6]).

What is the minimal size, N, of a frame Φ = {ϕn}Nn=1 for which the mapping A or B is injective?

How does one choose {ϕn} so that Φ gives injective measurements, that is, so that the

corresponding mapping A or B is injective?

Balan et al in [2], gave an upper bound in the complex case forN ,N ≤ 4M − 2, non-constructively

using methods in algebraic geometry, proving that generically, 4M − 2 vectors suffice for the cor-

responding mapping B to be injective. The term generic is algebraic and in this context means the

frames for which corresponding mapping B is injective, forms a Zariski-open set, that is, they form

the complement of a proper algebraic variety in CMN . In addition, for the real case, x ∈ RN , the

authors of [2] solved the problem in full, giving N = 2M − 1. Their argument for this case is

presented in Chapter 2.

Previous work by Heinosaari, Mazzarella, Wolf in [9], used results in differential geometry to

give lower bounds for N , N ≥ 4M − α(M − 1)− 3 (see [9] for exact results), where α(M) is the

number of one’s in the binary representation of M .

Together the results in [2] and [9] gave an asymptotic expression N = 4M + o(n). Influenced

by the authors’ of [2] work, successive researchers Bandeira, Cahill, Mixon, and Nelson in [3] sug-

gesed a precise value of N , N = 4M − 4, this suggestion being coined the “4M − 4 conjecture”.

In [3], the authors verified the conjecture in the cases M = 2, 3 and argued via heuristics that in

general N = 4M − 4.

One part of the conjecture was later confirmed by Conca, Edidin, and Vinzant in [7], again using

methods in algebraic geometry. Generically, frames of vectors Φ of size |Φ| = N = 4M − 4

suffice for B to be injective. (An explicit construction of such frames of size N = 4M − 4 is
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presented in a paper of Bodmann and Hammen, [4].) The authors of [7] showed that for M of the

form M = 2n + 1 the 4M − 4 conjecture holds, that is they showed for such M that any frame of

smaller size does not give injective measurements.

Recently, Vinzant gave the first bit of evidence against the 4M − 4 conjecture. In [14], a frame

of 11 vectors in C4 (presented here for convenience):

ΦT =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 9i −5− 7i −6− 7i

1 1− i −5− 2i −1− 8i

1 −2 + 4i −4− 2i 3 + 8i

1 −3 + i 1− 8i 7− 6i

1 3− 3i −8 + 7i −6− 2i

1 −3 + 5i 5 + 6i 2i

1 −3 + 8i 5− 5i −6− 4i


was verified to give B injective, using computational methods in algebraic geometry, thereby re-

newing interest in calculating explicit values of N .
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Chapter 2

Phase Retrieval: Real and Complex

The following examples coming from injectivity results in phase retrieval provide motivation for

the problem which this thesis introduces (see Chapter 3).

First we develop notation. In the following it will be useful to introduce the following term, used

in [2] the characterize injectivity of the mapping A. A frame Φ = {ϕn}Nn=1 of real or complex

vectors, ϕn ∈ RM or CM , is said to have the complement property if for any P ⊂ [N ] = 1, 2, ..., N

either {ϕn}n∈P or {ϕn}n∈PC forms a spanning set for RM or CM respectively. Recall that the

problem of determining N in the real case, concerns conditions on Φ = {ϕn}Nn=1 which guarantee

the injectivity of the mapping A :RM/{±1}→ RN , given by:

A(x) = {|〈x, ϕn〉|2}Nn=1

Using the terms and notation developed we introduce the following result from [2], presented here

for convenience.

PROPOSITION 1 A is injective if and only if Φ has the complement property.

Proof. (⇒) Suppose there is a set P ⊂ [N ] for which neither {ϕn}n∈P nor {ϕn}n∈PC spans

RM . Then there exists u 6= 0 ∈ {ϕn}⊥n∈P and v 6= 0 ∈ {ϕn}⊥n∈PC . Consider the two vectors

u + v, u − v ∈ RM . Note that |〈u+ v, ϕn〉|2 = |〈 v, ϕn〉|2 and |〈u− v, ϕn〉|2 = |〈 v, ϕn〉|2 for

n ∈ P . When the corresponding measurements are considered for n ∈ PC combined with the

preceding remark, one hasA(u+ v) = A(u− v). However u+ v 6= ±(u− v) for otherwise u = 0

or v = 0, contrary to assumption.

(⇐) Suppose A(u) = A(v) for u 6= ±v, that is |〈u, ϕn〉|2 = |〈 v, ϕn〉|2 for n = 1, ..., N . Since

u, v, and, ϕn are real valued, 〈u, ϕn〉 = ±〈 v, ϕn〉. Let P be the set of n for which equality holds.

Consider then vectors u+ v, u− v 6= 0. |〈u− v, ϕn〉|2 = 0 for n ∈ P while |〈u+ v, ϕn〉|2 = 0 for

n ∈ PC . Hence neither {ϕn}n∈P nor {ϕn}n∈PC spans RM . So Φ does not have the complement

property. �
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Proposition 1 gives then that if Φ is taken to consist of N = 2M − 1 vectors that are full spark,

that is so that every sub-collection of M vectors is linearly independent, the corresponding map A

is injective. Since any frame of smaller size cannot have the complement property, we have:

COROLLARY 2.0.1 In the real case, N(M) = 2M − 1.

As an aside, full spark frames are abundant. A Vandermonde construction of such frames is given

by taking the first M rows of the Vandermonde matrix, for M < N . Such a Vandermonde matrix is

given as follows: 

1 1 · · · 1

x1 x2 · · · xN

x21 x22 · · · x2N
...

...
. . .

...

xN−11 xN−12 · · · xN−1N


Full spark frames are well documented, see the paper [1].

The following examples serve to introduce the problem considered in this thesis through its rela-

tion to real and complex phase retrieval.

2.0.1 The Real Case: Example 1

Let u = (u1, ..., uM ) and v = (v1, ..., vM ) ∈ RM and to each member of Φ, split it into M

functions, ϕn = ϕn,k, k = 1, ...,M thereby creating linear functions ϕn,k : R → R by which one

may rewrite

A(u) = {|〈u, ϕn〉|2}Nn=1 = {|
M∑
k=1

ϕn,k(uk)|2}Nn=1

So that A(u) = A(v) if and only if

|
M∑
k=1

ϕn,kuk|2 = |
M∑
k=1

ϕn,kvk|2 for all n = 1, ..., N .

If Φ is taken to be full spark and of size |Φ| = 2M − 1,A(u) = A(v) =⇒ u = ±v. That is, every

vk is the image of uk under either the identity mapping T1 or isometry T2 : R → R, T2(x) = −x.

Of course, if Tuk = vk, for all k = 1, ...,M , then A(u) = A(v) for,
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|
M∑
k=1

ϕn,kvk|2 = |
M∑
k=1

ϕn,kT2uk|2 = |
M∑
k=1

ϕn,k(−uk)|2 = | −
M∑
k=1

ϕn,kuk|2

| −
M∑
k=1

ϕn,kuk|2 = |T2(
M∑
k=1

ϕn,kuk)|2 = |
M∑
k=1

ϕn,kuk|2

So if Φ is chosen to be of size N = 2M − 1 and full spark, we have for u, v ∈ RM if

|
M∑
k=1

ϕn,kuk|2 = |
M∑
k=1

ϕn,kvk|2 for all n = 1, ..., N

then there exists isometry T = T1 or T2, commuting with each ϕn,k, for which Tuk = vk for k =

1, ...,M . Further, the preceding proposition gives that this is the smallest sized collection of linear

functions {ϕn,k}N,Mn=1,k=1 with this property.

The next example focuses on the complex case once more.

2.0.2 The Complex Case: Example 2

Consider u = (u1, ..., uM ), v = (v1, ..., vM ) ∈ CM . Each of u and v, uk = ak + ibk, vk =

ck + idk where ak, bk, ck, dk ∈ R are in correspondence with members of R2, (ak, bk), and (ck, dk)

respectively. This correspondence gives way to a representation of ϕn,k = xn,k + iyn,k as linear

operators An,k : R2 → R2 where

An,k(u) =

 xn,k yn,k

−yn,k xn,k

ak
bk

 =

xn,kak − yn,kbk
xn,kbk + yn,kak


So An,k(u) is computed by carrying out the matrix multiplication presented above.

Note that ϕn,k, by representation byAn,k, may be viewed as isometries (rotations)An,k : R2 → R2.

Then, mapping B :CM/T→ RN is given alternatively as:

B(u) = {|〈u, ϕn〉|2}Nn=1 = {||
M∑
k=1

An,kuk||2}Nn=1

So for generic Φ ⊂ CM , of size N = 4M − 4, by [7], if

{||
M∑
k=1

An,kuk||2}Nn=1 = {||
M∑
k=1

An,kvk||2}Nn=1 for n = 1, ..., N

then there exists a rotation (isometry) T , necessarily commuting with all An,k, (as T and An,k are

rotations R2 → R2) for which Tuk = vk for k = 1, ...,M .
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2.0.3 Introduction of Parameter S(M,N)

Again, we develop terminology for what follows. Let A = {(A1,1, ..., A1,M ), ..., (AS,1, ..., AS,M )}

be an ensemble of linear operators An,k : RN → RN . For u and v ∈ (RN )M , if

||
M∑
k=1

An,kuk||2 = ||
M∑
k=1

An,kvk||2 for n = 1, ..., N

then u and v will be said to be A -equivalent, denoted by u 'A v. Lastly, isometry T : RN → RN

is A -admissable if T commutes with all members of A .

The previous example suggests the following question as a generalization of the one considered by

the authors in [2].

What is the smallest sized ensemble A = {(A1,1, ..., A1,M ), ..., (AS,1, ..., AS,M )}, |A | = S, of

linear operators, such that for any pair of tuples u, v ∈ (RN )M

||
M∑
k=1

An,kuk||2 = ||
M∑
k=1

An,kvk||2 for all n = 1, ..., N

implies u and v belong to the same orbit of some A -admissable isometry, T , that is Tuk = vk for

all k = 1, ...,M for some A -admissable isometry T?

For M ,N given, let S(M,N) denote the size of such A . Then Example 1 of Section 2.2 demon-

strates the following result:

PROPOSITION 2 S(M, 1) = 2M − 1

While Example 2 yields:

PROPOSITION 3 S(M, 2) ≤ 4M − 4

Results in phase retrieval in the complex case give upper bounds for S(M, 2), however the restric-

tion of phase retrieval to linear operators that are rotations only, allows for S(M, 2) to be less than

N(M) theoretically. This is in fact confirmed by results given in the following section.

2.0.4 S(2, 2) Example

Let x =

x1
x2

, y =

y1
y2

, ϕn =

ϕn1

ϕn2

. where x, y, ϕn ∈ C2. Then N(2) = 4(2) − 4 = 4,

and there exists ϕ1, ϕ2, ϕ3, ϕ4 such that if
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(∗) |〈x, ϕn〉|2 = |x1ϕn1 + x2ϕn2 |2 = |y1ϕn1 + y2ϕn2 |2 = |〈y, ϕn〉|2

for n = 1, ..., 4, then x = cy for some c ∈ T = {z ∈ C | |z| = 1}.

For instance taking ϕn for n = 1, ..., 4 to be the columns of the matrix Φ =

1 0 1 1

0 1 1 i

 then

ϕn will have the property given in (*).

Instead of members of C2, we take x, y to now be members of (R2)2. A family A with less than

3-tuples of linear operators cannot give injective measurements with respect to equivalence class

members. That is, there does not exist A = {(A1,1, A1,2), (A2,1, A2,2)} such that the conditions:

||A1,1x1 +A1,2x2||2 = ||A1,1y1 +A1,2y2||2

||A2,1x1 +A2,2x2||2 = ||A2,1y1 +A2,2y2||2

guarantee that there is an isometry T , commuting with all Aj,k, such that Txk = yk for k = 1, 2.

However there is a 3-tuple of linear operators distinguishing two tuples of vectors from R2. Take

A = {(I, 0), (0, I), (I, I)}. Then

||
M∑
k=1

Aj,kxk||2 = ||
M∑
k=1

Aj,kyk||2 for j = 1, 2, 3, gives

||x1||2 = ||y1||2

||x2||2 = ||y2||2

||x1 + x2||2 = ||y1 + y2||2

So that 〈xj , xk〉 = 〈yj , yk〉 for all j, k = 1, 2. This last condition by the proposition and its corollary

(to follow) imply that there exists an isometry, T : R2 → R2, trivially commuting with the members

of A (as the members are identity operators hence commuting with all linear operators/isometries)

for which Txk = yk for k = 1, 2.

8



Chapter 3

Upper and Lower Bounds on S(M,N)

In aims of establishing a general bounds on S(M,N) for N > 2 the following result, phrased in

the context of a separable Hilbert spaceH, proves useful. By Corollary 3.02 it gives an initial upper

bound for S(M,N) quadratic in M .

PROPOSITION 4 Let u = (u1, ..., uM ), v = (v1, ..., vM ) ∈ HM be given with the property:

〈uj , uk〉 = 〈vj , vk〉, ∀j, k = 1, ...,M . Then there exists an isometry T : H → H such that

Tuj = vj for j = 1, ...,M .

Proof. The proof proceeds by induction on M . For base case M = 1,

consider u, v ∈ H given such that ||u|| = ||v|| = 1, without loss of generality.

Let A = {ψn}n, and B = {φn}n be Orthonormal Bases (ONB’s) forH with ψ1 = u and φ1 = v.

Consider the mapping, T : H → H, x 7→
∑
n
〈x, ψn〉φn, and note T is an isometry of H as

||T (x)||22 =
∑
n
|x̂A(n)|2 = ||x||22. Also, T (u) =

∑
n
〈u, ψn〉φn = 〈u, u〉v + 〈u, ψ2〉φ2 + ... = v as

desired, since 〈u, ψn〉 = 0, ∀n ≥ 2.

Suppose the proposition holds for x, y ∈ Hk for k < M . Consider u, v ∈ HM . Without loss of

generality, suppose ||u1|| = ||v1|| = 1. As in the previous case, let A = {ψn}n, and B = {φn}n be

ONB’s forH with ψ1 = u1 and φ1 = v1. Consider the coefficient maps:

T1 : H → `2(A) T2 : H → `2(B)

x 7→ {〈x, ψn〉}n x 7→ {〈x, φn〉}n

The image of the u′js and v′js under these maps are given as follows:

a = (T1(u1), ..., T1(uM )) = ((1, 0, ...), (〈u2, ψ1〉, 〈u2, ψ2〉, ...), ..., (〈uM , ψ1〉, 〈uM , ψ2〉, ...))

b = (T2(v1), ..., T2(vM )) = ((1, 0, ...), (〈v2, φ1〉, 〈v2, φ2〉, ...), ..., (〈vM , φ1〉, 〈vM , φ2〉, ...))

Letting u′, v′ ∈ HM−1 denote the restriction to the last M −1 entries of a and b respectively, one

notes:

9



〈u′j , u′k〉 =
∑
l

〈uj , ψl〉〈uk, ψl〉 =
∑
p

∑
l

〈uj , ψl〉〈ψl, ψp〉〈uk, ψl〉

=〈
∑
l

〈uj , ψl〉ψl,
∑
p
〈uk, ψp〉ψp〉 = 〈uj , uk〉

Similar calculations with 〈v′j , v′k〉 and the assumption 〈uj , uk〉 = 〈vj , vk〉, give 〈u′j , u′k〉 =

〈v′j , v′k〉. Hence by the inductive hypothesis, there exists an isometry S : H → H such that Su′j = v′j

for j = 1, ...,M − 1.

Now, since the coefficient maps T1, T2 preserve inner products, we have:

〈u1, uj〉 = 〈T1(u1), T1(uj)〉 = (u′j)1, 〈v1, vj〉 = 〈T2(v1), T2(vj)〉 = (v′j)1

Using the assumption 〈u1, uj〉 = 〈v1, vj〉 and Su′j = v′j , give that S restricted to the first Fourier

coefficient with respect to ONB, A = {ψn}n, is the identity map. Hence:

(ST1(u1), ..., ST1(uM )) = (S(1, 0, ...), ..., Su′M ) = ((1, 0, ...), ...v′M )

and so ST1(uj) = T2(vj) for j = 1, ...,M and so by letting U = T−12 ST1, there exists an

isometry U : H → H such that Uuj = vj for j = 1, ...,M . �

COROLLARY 3.0.2 S(M,N) ≤
(
M+1
2

)
Proof. Let u, v ∈ (RN )M be given. Consider the ensemble A consisting of M -tuples Ej =

(0, ...0, I, 0, ..., 0), j = 1, ...,M and M -tuples Fi,j = (0, ..., I, 0, ...., 0, I, 0, ..., 0) where I occu-

pies the ith and jth entry, with all other entries zero in the list of operators.

Combining the operators of type E and F into ensemble A give the size of A as S = |A | =(
M+1
2

)
. Suppose ||

M∑
k=1

Aj,kuk||2 = ||
M∑
k=1

Aj,kvk||2 for j = 1, ..., S. Then 〈uj , uk〉 = 〈 vj , vk〉 ∀j, k.

Applying the previous proposition and noting that the members of A commute with all linear oper-

ators RN → RN , there exists an A -admissable isometry, S, such that Suk = vk for k = 1, ...,M .

�

A lower bound for S(M,N) follows, derived using embedding theorems. Let O(N) denote

the Lie group O(N) = {T : RN → RN | T TT = I}, the Orthogonal group on Euclidean

space. Let O(N,A ) denote the subgroup of O(N) given by, O(N,A ) = {T ∈ O(N) | TAn,k =

An,kT,An,k ∈ A }

PROPOSITION 5 S(M,N) ≥MN −
(
N
2

)
Proof. Consider the mapping ψ :(RN )M/O(N,A )→ RS

[(u1, ..., uM )] 7→ (||
M∑
k=1

A1,kuk||2, ..., ||
M∑
k=1

AS,kuk||2)

10



S(M,N) M = 1 M = 2 M = 3 M = 4 M = 5

N = 1 1 3 5 7 9

N = 2 1 3 5 ≤ S ≤ 6 7 ≤ S ≤ 10 9 ≤ S ≤ 15

N = 3 1 3 6 9 ≤ S ≤ 10 12 ≤ S ≤ 15

N = 4 1 3 6 10 14 ≤ S ≤ 15

N = 5 1 3 6 10 15

where [u] = [(u1, ..., uM )] = [(v1, ..., vM )] = [v] if and only if there exists an A -admissable

isometry T for which Tuj = vj for j = 1, ...,M . (It should be checked that ψ is well-defined. This

step is essentially just handled by checking the fact T commutes with the members of A )

Letting H = O(N,A ), H is a closed subgroup of G = O(N). The Closed Subgroup Theorem

for Lie groups (see Chapter 15 of Lee’s book, [12]) gives that H is an embedded sub-manifold of

G. As such, its dimension is bounded by the dimension of O(N), calculated in [12] (Example 5.26,

see Chapter 4 of this thesis for a similar proof) as
(
N
2

)
. Hence dim(H) ≤ dim(G) =

(
N
2

)
.

Let H act on the manifold M = (RN )M . By Chapter 4, Theorem 3.8 in Bredon, [5], the

dimension of the quotient spaceM/H is given by the highest dimension of an element of the orbit

space. That is the quotient space has dimension equal to the dimension of the principal orbits. So

dim(M/H) = dim(M)− dim(H) ≥MN −
(
N
2

)
.

Note that ψ is continuous. If ψ is an injective map, we may use the Invariance of Domain theorem

(see Kulpa, [11], for an elementary proof) in what follows, which states a continuous injective

mapping from Rk → Rm must have k ≤ m. The dimension of the image of ψ must then at least be

that of the pre-image. Hence S ≥MN −
(
N
2

)
and so S(M,N) ≥MN −

(
N
2

)
. �

Setting M = N in the previous proposition and using the upper bound derived in Corollary 3.0.1,

we obtain the following result:

COROLLARY 3.0.3 S(M,M) =
(
M+1
2

)
As a final note, any collection of M vectors in RN for M less than N may be embedded into RM ,

and so our corollary gives one last result.

PROPOSITION 6 S(M,N) =
(
M+1
2

)
for N ≥M

11



Chapter 4

Phase Retrieval and Quaternions

Recall that the real quaternions, H, consist of elements of the form x = a + bi + cj + dk, with

a, b, c, d ∈ R. The following algebraic relations hold in H, i × j = k, j × k = i, k × i = j,

j × i = −k, k × j = −i, i× k = −j, and i2 = j2 = k2 = −1.

The conjugate of a quaternion x, is denoted x = a − bi − cj − dk, and the norm-squared is

|x|2 = xx. The quaternions are a division ring, and the fact that an inner product with elements

x, y ∈ HM may be defined: 〈x, y〉 = xT y =
M∑
k=1

xkyk, will be useful.

A few preliminary considerations precede our main results and help pave the way to a notion of

phase retrieval in the context of quaternions.

Following the authors in [10], we introduce the symplectic representation of a matrixQ ∈ HM×M

or vector ξ ∈ HM over quaternions. For ξ = ξ1+ξ2j where ξ1, ξ2 ∈ CM , this representation is given

by ρ(ξ) =

 ξ1

−ξ2

 and for Q = Γ1 + Γ2j, with Γ1,Γ2 ∈ CM×M , this symplectic representation is

Θ(Q) =

 Γ1 Γ2

−Γ2 Γ1

. The next lemma proves a fact about this symplectic representation.

LEMMA 4.1 The correspondences ρ(ξ) and Θ(Q), for ξ ∈ HM and

Q ∈ HM×M
∗ = {A ∈ HM×M | AT = A} preserve intensity measurements.

Equivalently, that is, ρ(ξ)
T

Θ(Q)ρ(ξ) = ξ
T
Qξ .

Proof. The verification of the identity is an elementary computation in quaternions. First note that

since Q is taken to be self-adjoint, the quantity ξ
T
Qξ = 〈ξ,Qξ〉 is real valued. Now,

ρ(ξ)
T

Θ(Q)ρ(ξ) =
(
ξ1 −ξ2

) Γ1 Γ2

−Γ2 Γ1

 ξ1

−ξ2

 = ξ1
T

Γ1ξ1 − ξ1
T

Γ2ξ2 + ξT2 Γ2ξ1 + ξT2 Γ1ξ2

while in computing ξ
T
Qξ, which is known to be real, we may ignore terms involving a single

multiple of j.

12



ξ
T
Qξ = (ξ1

T − ξT2 j)(Γ1 + Γ2j)(ξ1 + ξ2j) = ξ1
T

Γ1ξ1 − ξ1
T

Γ2ξ2 + ξT2 Γ2ξ1 + ξT2 Γ1ξ2

Hence the two agree, and the lemma is proven. �

LEMMA 4.2 If Q ∈ HM×M has rank n over H, then φ(Q) has rank 2n over C.

Proof. Let α1, ..., αl ∈ HM be right-linearly independent over H, that is:

α1q1 + α2q2 + ...+ αlql = 0 implies q1 = q2 = ... = ql = 0

Let ck, bk ∈ C, c1ρ(α1) + · · ·+ clρ(αl) + b1ρ(α1j) + · · ·+ blρ(αlj) = 0, Then,

ρ(α1c1 + · · ·+ αlcl + α1jb1 + · · ·+ αljbl) = 0

α1(c1 + jb1) + α2(c2 + jb2) + · · ·+ αl(cl + jbl) = 0, as ρ(ξ) = 0 implies ξ = 0.

Hence, c1 + jb1 = · · · = cl + jbl = 0 and so c1 = · · · = cl = b1 = · · · = bl = 0

So ρ(α1), · · · ρ(αl), ρ(α1j), · · · , ρ(αlj) are linearly independent over C.

Now if Q ∈ HM×M has rank n, there are M − n right-linearly independent over H vectors

in the null space of Q. So to Φ(Q) there corresponds 2(M − n) linearly independent vectors over

C in the null space given by the symplectic representation. So the rank of Φ(Q) is 2n. �

Noting that for two vectors x, ϕ ∈ HM , |〈x, ϕ〉|2 = 〈x, ϕ〉〈x, ϕ〉 = 〈x, ϕ〉〈ϕ, x〉 = 〈ϕ, x〉〈x, ϕ〉 =

ϕTxxTϕ, the condition |〈x, ϕ〉|2 = |〈y, ϕ〉|2 can be translated to the condition that ϕT (xxT −

yyT )ϕ = 0. Another lemma becomes relevant in the case xxT = yyT .

LEMMA 4.3 For two vectors x, y ∈ HM , if xxT = yyT , then there exists ω ∈ H, |ω|2 = 1 such

that x = yω.

Proof. Let x = (x1, x2, ..., xM ), y = (y1, y2, ..., yM ). Consider the matrix representation of the

equality xxT = yyT :
|x1|2 x1x2 · · · x1xM

x2x1 |x2|2 · · · x2xM
...

...
. . .

...

xMx1 xMx2 · · · |xM |2

 =


|y1|2 y1y2 · · · y1yM

y2y1 |y2|2 · · · y2yM
...

...
. . .

...

yMy1 yMy2 · · · |yM |2


13



The matrix equality gives the following equalities: |xi|2 = |yi|2 for all i = 1, ...,M and more

generally xixj = yiyj for all i, j = 1, ...,M . For x 6= 0, then |xj | = |yj | > 0 for some j. Without

loss of generality, let j = 1. Then xix1 = yiy1 for all i = 1, ...,M so that xi = yiy1
1
x1

for all

i = 1, ...,M . Letting ω = y1
1
x1

gives the desired conclusion. �

It now is appropriate to introduce the mappings C, C , along with the equivalence relation , x ∼R y,

defined on members x, y ∈ HM . x ∼R y means that x is a right unit-modular constant multiple of

y, that is x = yω for some ω ∈ H such that |ω|2 = 1. For Φ = {ϕk}Nk=1, with ϕk ∈ HM , the two

mappings are defined as follows:

C : HM×M
∗ → RN C :HM/∼R→ RN

C(Q) = {ϕkTQϕk}Nk=1 C ([x]) = {|〈x, ϕk〉|2}Nk=1

PROPOSITION 7 Let Φ = {ϕk}Nk=1 be given such that the mapping C has no rank 1 or 2 matrices

Q ∈ HM×M
∗ in its kernel. Then the mapping C is injective, that is, |〈x, ϕk〉|2 = |〈y, ϕk〉|2 for

k = 1, ..., N gives x = yω for some ω ∈ H such that |ω|2 = 1

Proof. Consider the mapping C’s action on matrices xxT , yyT ∈ HM×M
∗ .

By the previous observation, for x, ϕk ∈ HM

|〈x, ϕk〉|2 = ϕk
TxxTϕk

One can translate the statement, for x, y ∈ HM ,

|〈x, ϕk〉|2 = |〈y, ϕk〉|2 for all k = 1, ..., N

into a statement about mapping C, namely,

C(xxT ) = C(yyT )

Equivalently, by linearity of C,

C(xxT − yyT ) = 0

Now, either xxT − yyT is an element of HM×M
∗ of rank 1 or 2, or xxT − yyT = 0. So if Φ is taken

such that C has no rank 1 or 2 members of HM×M
∗ in its null space, and C(xxT − yyT ) = 0, it must

be that xxT = yyT . By the lemma, this gives x = yω for some ω ∈ H such that |ω|2 = 1. That is

x ∼R y, and so C is injective. �
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The mapping C, an analog to the “super-analysis operator” as termed by the authors of [3], readily

allows the introduction of tools from algebraic geometry. Following the arguments in [7], we see

how results in complex phase retrieval can be lifted to ones for phase retrieval over quaternions.

Let CM×Mskew ,CM×Msym , and CM×MHerm donte the set of M ×M skew symmetric, symmetric, and

Hermitian matrices respectively. Let B2M,N = {([U, V ], [X,Y ]) ∈ P(C2M×N × C2M×N ) ×

P(C2M×2M
sym × C2M×2M

skew ) |

(U − iV )T (X + iY )(U + iV ) = 0 and rank(X + iY ) ≤ 4}.

Let π1 : P(C2M×N × C2M×N ) × P(C2M×2M
sym × C2M×2M

skew ) → P(C2M×N × C2M×N ) be the pro-

jection of B2M,N onto its first coordinate. For a complex variety X , let XR denote the real points of

X .

PROPOSITION 8 Let frame Φ = {ϕk}Nk=1, ϕk ∈ HM , have corresponding complex frame Λ =

{λk}Nk=1 where λk = ρ(ϕk) ∈ C2M . Let λk = uk + ivk and U (respectively V ) be the real matrix

with columns uk (respectively vk). Then the map C is injective if and only if [U, V ] does not belong

to the projection π1((B2M,N )R).

Proof. Let Λ = U + iV , λk = uk + ivk, uk, vk ∈ RM and Q = X + iY , with X symmetric and

Y skew symmetric, X,Y ∈ RM×M .

Let I = {(Λ, Q) ∈ C2M×N × C2M×2M
Herm | Q 6= 0, rank(Q) ≤ 4 and λk

T
Qλk = 0 for k =

1, ..., N}.

I is linearly isomorphic over R to J , a subset of real vector space R2M×N ×R2M×N ×R2M×2M
sym ×

R2M×2M
skew , given below:

J = {(U, V,X, Y ) | X + iY 6= 0, rank(X + iY ) ≤ 4 and λk
T

(X + iY )λk = 0}.

C is injective by the preceding proposition if (U, V ) is not contained in the projection of J onto the

first two coordinates. (B2M,N )R is the projectivization of J , hence (U, V ) is not contained in this

projectivization if and only if [U, V ] 6∈ π1((B2M,N )R) �

THEOREM 4.1 The projective complex variety B2M,N has dimension

4MN −N + 16M − 18.

Proof. Let B′2M,N be the subvariety of P(C2M×N × C2M×N ) × P(C2M×2M ) consisting of

triples ([U, V ], [Q]) such that

rank(Q) ≤ 4 and (uk − ivk)TQ(uk + ivk) = 0 for all k = 1, ..., N

15



where uk and vk are the kth columns of U and V respectively.

B2M,N and B′2M,N are linearly isomorphic by the mapping

F : C2M×2M
sym × C2M×2M

skew → C2M×2M , (X,Y ) → X + iY = Q. F−1(Q) = Q+QT

2 + iQ−Q
T

2i .

Hence dim(B2M,N ) = dim(B′2M,N ).

Let π1 and π2 be the projections onto the first and second coordinate of B′2M,N .

Using the following formula from Harris, the dimension ofB′2M,N may be calculated from dim(π2(B′2M,N ))

and dim(π−12 (Q)) for Q ∈ C2M×2M .

dim(B′2M,N ) = dim(π2(B′2M,N )) + min
Q∈π2(B′2M,N )

dim(π−12 (Q))

The image of B′2M,N under π2 is the set of rank ≤ 4 matrices in P(C2M×2M ). To see this, take

u, v such that (u − iv)TQ(u + iv) = 0 (Q has rank ≤ 4 hence take u + iv such that it is in the

kernel of Q for instance). Let U and V be built by repeating column vectors uk = u, vk = v. Then,

([U, V ], [Q]) belongs to B′2M,N and hence, every rank ≤ 4, Q ∈ C2M×2M , is in the image of π2.

The set of rank ≤ 4 matrices in C2M×2M is an irreducible variety of dimension 16M − 16, [8].

So the projectivization of this variety in P(C2M×2M ) has dimension 16M − 17, so that

dim(π2(B′2M,N )) = 16M − 17

Fix Q ∈ π2(B′2M,N ). Then the polynomial equation holds for Q

(uk − ivk)TQ(uk + ivk) = 0

For each pair of columns (uk, vk), this equation defines a hypersurface of dimension 4M − 1 in

(C2M )2. So the pre-image of Q, π−12 (Q) consists of N hypersurfaces of dimension 4M − 1 in

((C2M )2)N .

After projectivization, π−12 (Q) has dimension (4M − 1)N − 1.

Using the formula, one obtains

dim(B′2M,N ) = dim(π2(B′2M,N )) + min
Q∈π2(B′2M,N )

dim(π−12 (Q))

= 16M − 17 + 4MN −N − 1

�

Our main result for this section follows.
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THEOREM 4.2 There exists Φ = {ϕk}Nk=1, ϕk ∈ HM of size |Φ| = N ≤ 16M − 16 for which

corresponding mapping C is injective.

Proof. By the preceding proposition, Λ = U+ iV gives [U, V ] in π1((B2M,N )R) ⊂ (π1(B2M,N ))R.

The dimension of the projectivization is bounded by the original dimension, so,

dim(π1(B2M,N )) ≤ dim(B2M,N ) = 4MN + 16M −N − 18

when N is 16M − 16 or higher the dimension of this projection is strictly less than 4MN − 1, the

dimension of P(C2M×N × C2M×N ).

Hence, forN ≥ 16M − 16 there exists [U, V ] ∈ P(C2M×N×C2M×N ) such that (U−iV )TQ(U+

iV ) 6= 0 for all rank ≤ 4, Q ∈ C2M×2M . Hence, by letting the inverse to mapping ρ be denoted

e : C2M → HM and the inverse to mapping Θ, θ : C2M×2M → HM×M , there exist Λ with

corresponding Φ = {e(λk)}Nk=1 = {ϕk}Nk=1 such that for θ(Q) = W ,

ϕk
TWϕk 6= 0 for some k, for all rank ≤ 2,W ∈ HM×M

∗ .

Hence, the mapping C :HM/∼R→ RN is injective for Φ. �

Regarding multiplication on the right by a unit-modular quaternion as an isometry, phase retrieval

over quaternions can be related to the problem of calculating S(M, 4). The previous theorem gives

If |〈x, ϕk〉|2=|〈y, ϕk〉|2 for k = 1, ..., N , then

there exists ω ∈ H, |ω|2 = 1, such that xω = y.

Using this equality, |〈x, ϕk〉|2 = |
M∑
j=1

ϕk,jxj |2 = |
M∑
j=1

ϕk,jyj |2 = |〈y, ϕk〉|2. By splitting ϕk into

its components and considering their action on each component of x, we may further consider the

matrix representation of the components ϕk, Ak,j . Then

|
M∑
j=1

ϕk,jxj |2 = ||
M∑
j=1

Ak,jx
′
j ||2 = ||

M∑
j=1

Ak,jy
′
j ||2 = |

M∑
j=1

ϕk,jyj |2.

Where for instance if ϕk,j = α− iβ − jγ − kδ, and xj = a+ ib+ jc+ kd

Ak,jx
′
j =


α β γ δ

−β α δ −γ

−γ −δ α β

−δ γ −β α




a

b

c

d


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Now, let Tω represent the linear operator whose action corresponds to multiplication of an element

x ∈ HM by ω on the right. For ω = ω1 + ω2i+ ω3j + ω4k

xjω = (aω1 − bω2 − cω3 − dω4) + (aω2 + bω1 + cω4 − dω3)i+

(aω3 − bω4 + cω1 − dω2)j + (aω4 + bω3 + cω2 + dω1)k

Hence, Tω(xj) =


ω1 −ω2 −ω3 −ω4

ω2 ω1 ω4 −ω3

ω3 −ω4 ω1 ω2

ω4 ω3 −ω2 ω1




a

b

c

d


The equality |〈x, ϕk〉|2 = |〈y, ϕk〉|2 may be reinterpreted

|
M∑
j=1

ϕk,jxj |2 = |
M∑
j=1

ϕk,jyj |2 = |
M∑
j=1

ϕk,jxjω|2 = ||
M∑
j=1

Ak,jTωxj ||2

|(
M∑
j=1

ϕk,jxj)ω|2 = ||
∑M

j=1 TωAk,jxj ||2 = ||Tω
M∑
j=1

Ak,jxj ||2 = ||
M∑
j=1

Ak,jxj ||2

Above, an implicit argument is given for Ak,jTω = TωAk,j . By computation each of Ak,jTω and

TωAk,j are given as:
αω1 + βω2 + δω4 + γω3 −αω2 + βω1 + δω3 − γω4 −αω3 + βω4 − δω2 + γω1 −αω4 − βω3 + δω1 + γω2

αω2 − βω1 + δω3 − γω4 αω1 + βω2 − δω4 − γω3 αω4 + βω3 + δω1 + γω2 −αω3 + βω4 + δω2 − γω1

αω3 + βω4 − δω2 − γω1 −αω4 + βω3 − δω1 + γω2 αω1 − βω2 − δω4 + γω3 αω2 + βω1 + δω3 + γω4

αω4 − βω3 − δω1 + γω2 αω3 + βω4 + δω2 + γω1 −αω2 − βω1 + δω3 + γω4 αω1 − βω2 + δω4 − γω3


Hence Tω is an A -admissable isometry with respect to ensembles of operators, A , representing

multiplication of a quaternion by a quaternion on the left. Thus, the results in this Chapter imply an

upper bound on S(M, 4):

PROPOSITION 9 S(M, 4) ≤ 16M − 16
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Chapter 5

Appendix

Let F : Rn+k → Rk be a C∞ map and y ∈ Rk.

DEFINITION 5.0.1 y is said to be a regular value for the mapping F should the following hold: the

derivative DF,y(x) : Rn+k → Rk is surjective, that is dim(kerDF,y(x)) = n.

THEOREM 5.1 If y ∈ Rk is a regular value of a C∞ map F : Rn+k → Rk, then F−1(y) is a

C∞-manifold of dimension n.

Let A and T denote linear transformations in what follows.

DEFINITION 5.0.2 The Orthogonal group on Euclidean space Rn, denoted by O(n), is O(n) =

{T : Rn → Rn | T TT = I}.

PROPOSITION 10 The Orthogonal group, O(n) = {T : Rn → Rn|T TT = I}, is a Lie group of

dimension dimO(n) =
(
n
2

)
Proof. Let Mn(R) = {A : Rn → Rn}, and Sn(R) = {A : Rn → Rn|A = AT }. Consider the

mapping F : Mn(R) → Mn(R) given by F (A) = ATA. Let M ∈ Sn(R), be a element in the

image of F . Then the derivative of F at M is:

DF,M (A) = d
dt(M + tA)T (M + tA)|t=0 = d

dtM
TM + tATM + tMTA+ t2ATA|t=0 =

ATM +MTA

For B ∈ Sn(R), there is a transformation H = 1
2MB such that:

DF,M (H) = (12MB)TM +MT (12MB) = 1
2(BTMTM +MTMB) = 1

2(BT +B) = B

Consider M ∈ O(n), F (M) = I , where I denotes the identity map. I is a regular value for the

mapping F as the derivative of F , DF,I(A) is surjective. F−1(I) = O(n) by definition, and so

O(n) is a C∞ manifold of dimension:
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dim(Mn(R))− dim(Sn(R)) = n2 − n(n+1)
2 = n(n−1)

2 =
(
n
2

)
To prove that O(n) is a Lie group, one checks that the mappings m(A,B) = AB and i(A) = AT

are continuous on O(n). �
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