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spherical volume-of-interest (VOI) was dropped onto a homogenous uptake region in the liver. 

The mean and standard deviation of the standardized uptake value (SUV) was extracted to 

calculate a threshold for the tumor volume as shown in Equation 6.1. 

 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = [𝐿𝑖𝑣𝑒𝑟𝜇 + 2𝐿𝑖𝑣𝑒𝑟𝜎] (6.1) 

where 𝜇 is mean and 𝜎 is standard deviation. In cases where contours extended into the 

stomach or the heart, a Boolean tool was used to create a conformal MTV. These difficult 

contours were then physician-verified and/or edited. The fiducial was delineated on CT via an 

absolute threshold for HU greater than 350. The centroid was determined as the center of mass 

of the fiducial contour. 

 

 
Figure 6.1 Method of determining MTV threshold for each esophageal tumor. On the fused PET/CT 
image, a 3-cm spherical region is placed in center of liver to account for background uptake. 

 

6.2.3 Measurement of Fiducial Distance 

The MTV contour was specified using the above defined liver threshold method and the 

axial slices were used to measure the distance between each centroid and corresponding tumor 

border. This distance was defined as the number of slices between the centroid of the fiducial 

and the first axial PET slice that included the MTV contour. The number of axial slices was then 

multiplied by slice thickness (3.27 mm for PET/CT and 3.0 mm for planning CT) to provide the 
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distance in centimeters. The distance and absolute values of the distances were recorded. 

Negative values described distances where fiducials were located inferior to the MTV border for 

both the superior and inferior margins of the tumor. Descriptive statistics such as: mean, 

median, standard deviation, maximum, and minimum were calculated. Cases involving large 

distances were investigated. The Concordance Correlation Coefficient (CCC) was used to 

determine correlation between the MTV threshold and superior fiducial distance (SFD), MTV 

threshold and inferior fiducial distance (IFD), tumor site and IFD, tumor site and SFD, time 

between fiducial and PET/CT, patient age and IFD, patient age and SFD. Tumor site represents 

the location of the tumor in the esophagus (upper, mid or distal/GE junction). The strength-of-

agreement scale was as follows: CCC > 0.99: high; CCC 0.95-0.99: substantial; CCC 0.90-0.95: 

moderate; CCC <0.90: poor (113). 

6.3 Results  

The median MTV threshold was 2.51 SUV (1.6-3.6) for all patients. For patients 

receiving fiducials before undergoing PET/CT (PrePF), the median MTV threshold was 2.45 

SUV (1.6-3.6). For patients receiving fiducials after undergoing PET/CT (PostPF), the median 

MTV threshold was 2.6 SUV (1.8-3.4). There was not much difference in MTV thresholds 

between the two cohorts. A two-tailed t-test demonstrated a p-value of 0.58 between the two 

cohorts demonstrating they were not significantly different.  The median relative uptake for the 

liver contour was 24% (5%-79%). Refer to Table 6.1-6.3. The median distance between MTV 

and fiducials was -0.3 cm (-3.90 cm – 2.70 cm) and 1.3 cm (-2.1 cm – 6.87 cm) for inferior and 

superior tumor borders, respectively (Table 6.2-6.4). These values were comparable to those 

from the two groups. PrePF patients (Table 6.3) demonstrated a median distance between MTV 

and fiducials of -0.82 cm (-2.62 cm - 2.62 cm) and 1.64 cm (-0.33 cm – 6.87 cm) for inferior and 

superior borders, respectively. PostPF (Table 6.4) patients demonstrated a median distance 

between MTV and fiducials of -0.30 cm (-3.90 cm – 2.70 cm) inferiorly and 0.60 cm (-4.20 cm – 

3.90 cm) superiorly. A poor strength-of-agreement (CCC < 0.90) was calculated between MTV 
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threshold and superior fiducial distance (SFD), MTV threshold and inferior fiducial distance 

(IFD), tumor site and IFD, tumor site and SFD, time between fiducial and PET/CT, patient age 

and IFD, patient age and SFD. 

 
Figure 6.2 Method of identifying the fiducial and marking the centroid at the inferior border of the MTV. 

 

24 of 42 (58.5%) cases had inferior fiducials located superior to the MTV border. In 13 

cases (31.7%), inferior fiducials were below the MTV border. 4 cases (9.5%) demonstrated 

perfect agreement between the inferior fiducial and MTV border (all PrePF). The superior 

fiducial and MTV border did not have perfect agreement in any case. In 34 cases (82.9%) as 

shown in Figure 6.3b, the superior fiducial was located inferior to the MTV border. In 7 cases 

(17.1%) the superior fiducial was located superior to the MTV border. Of these cases, 3 of 34 

(8.8%) distances were less than 0.5 cm for the superior location and 7 of 24 (29.2%) distances 

were less than 0.5 cm for the inferior location (Figure 6.3). 
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Figure 6.3 Inferior discordance and superior discordance histograms. Note: For inferior discordance, 
negative values denote that fiducials were located inside MTV. For superior discordance, negative values 
denote that fiducials were located outside MTV. 

 

6.3.1 Large Discordances 

In 8 cases, the superior fiducial-MTV discordance was greater than 2.0 cm. Of these 

cases, time between fiducials and PET ranged from 2-27 days. There was only 1 occurrence 

where the superior fiducial was inferior to the MTV border (negative distance). In the case of the 

patient with 6.87 cm discord (see Figure 6.4), the patient was diagnosed with extensive 

esophagitis and several nodules at the gastroesophageal (GE) junction. This discord was 

attributed to esophagitis. Of the 1 occurrence where the superior fiducial was superior to the 

MTV border, it was the only patient with medically inoperable stage 1 cancer (2 patients had 

stage 2 cancer in the cohort). The patient was diagnosed with adenocarcinoma of the distal 

esophagus although the uptake was in the mid esophagus. This patient had Barrett’s 

esophagus from the mid esophagus to the GE junction which may have influenced the uptake in 

the mid esophageal region (Figure 6.5). There was no correlation between MTV-to-fiducial 

distances greater than 2 cm and the gastroenterologist that performed the fiducial implantation.  
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Figure 6.4 Case with largest discord (6.87 cm) between superior fiducial and superior MTV border. 

 
 
 

Figure 6.5 Example of discordance between fiducials and MTV at the inferior and superior location (-4.20 
cm discord between superior fiducial and superior MTV border.) The red contour represents MTV 

threshold. The green dot represents the superior fiducial. The red dot is the inferior fiducial. 
 
 

 
Table 6.2 Fiducial vs MTV Border 

Total 
Inferior Fiducial 
Distance (cm) 

Superior Fiducial 
Distance (cm) 

MTV Threshold 
(SUV) 

Relative 
MTV (%) 

MTV 
(cm

3
) 

Mean -0.27 1.28 2.51 28.97% 30.53 

Median -0.30 1.31 2.50 24.00% 23.55 

Min -3.90 -2.10 1.60 5.00% 1.80 

Max 2.70 6.87 3.60 79.00% 
107.1

0 

SD 1.50 1.52 0.42 18.19% 28.21 
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Table 6.3 FID Pre PET Fiducial vs MTV Border 

FID Pre PET 

Inferior 
Fiducial 
Distance 

(cm) 

Superior Fiducial 
Distance (cm) 

MTV Threshold 
(SUV) 

Relative 
MTV (%) 

MTV 
(cm

3
) 

Mean -0.64 1.68 2.44 23.50% 40.13 

Median -0.82 1.64 2.45 18.50% 34.70 

Min -2.62 -0.33 1.60 5.00% 3.00 

Max 2.62 6.87 3.60 74.00% 
107.1

0 

SD 1.31 1.43 0.42 16.09% 33.47 

 
Table 6.4 FID Post PET Fiducial vs MTV Border 

FID Post 
PET 

Inferior 
Fiducial 
Distance 

(cm) 

Superior Fiducial 
Distance (cm) 

MTV Threshold 
(SUV) 

Relative 
MTV (%) 

MTV 
(cm

3
) 

Mean -0.03 0.60 2.56 34.10% 21.91 

Median -0.30 0.60 2.60 31.00% 20.60 

Min -3.90 -4.20 1.80 11.00% 1.80 

Max 2.70 3.90 3.40 79.00% 74.80 

SD 1.68 1.77 0.44 18.54% 18.50 

 

6.4 Discussion 

Esophageal tumors can have significant respiration-induced tumor motion. A study by 

Jin et al. measured the peak-to-peak magnitudes of the motion (137). The greatest motion was 

found for the distal esophagus in the cranial-caudal direction with a median distance of 5.4 mm. 

Median displacements for the proximal and middle esophagus were 2.9 mm and 3.7 mm, 

respectively. Interestingly, motion in the cranial-caudal direction was shown to have  the 

strongest correlation with respiratory curves (138). In that particular study, motion in the cranial-

caudal direction reached 13.8 mm in the lower thoracic esophagus, 7.4 mm in the middle 

esophagus, and 4.3 mm in the upper esophagus.  Investigators are beginning to realize the 

benefit of fiducials for radiation treatment planning for cancers of the esophagus (139) and 

studies have demonstrated that implantation of esophageal fiducial markers are both safe and 

feasible for target volume delineation purposes on CT (139). However, to our knowledge, the 
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discordance between endoscopically-placed fiducial markers and PET MTV in esophageal 

cancer has not been investigated. 

A retrospective study of esophageal cancer patients treated with preoperative or 

definitive chemoradiation at our institution between 2000 and 2012 demonstrated 3-year overall 

survival rates of 44.8% for 3-D conformal radiation therapy (3DCRT) and 41.5% for intensity-

modulated radiation therapy (IMRT) (140). The rates for that study agree well with the national 

5-year relative survival rate of 17% between 2010-2012 (141-143).  In the current study, 

patients were treated with radiotherapy between 2009 and 2014.   

It is common practice at our institution for patients with esophageal tumors that move 

with respiration to undergo fiducial placement in addition to 18F-FDG PET/CT to facilitate 

conformal delivery of a simultaneous integrated boost to the gross tumor volume (144). Our 

data recently reported a 55% complete pathologic response rate, significantly higher than the 

29% reported with the current standard of care CROSS regimen (145), which may be secondary 

to integration of both fiducials and MTV.  Indeed, it is perhaps the combination of fiducials and 

MTV that may allow for precise dose painting – the treatment of tumor areas that are more 

metabolically active with higher doses of radiation. This incorporation has facilitated our 

confidence in dose painting the gross tumor volume to a total dose of 56 Gy in 28 fractions 

simultaneously with the clinical volume dosed to 50.4 Gy while ensuring the reproducibility of 

our daily image guided delivery. Focal dose escalation is of particular concern in the region of 

the gastroesophageal junction where stomach filling can cause additional motion (146). The 

fiducials delimit the visible endoscopic mucosal tumor burden which improves target volume 

delineation in precise conjunction with daily dose delivery.   MTV, on the other hand, identifies 

metabolically active tumor regions and submucosal microscopic spread of disease that may not 

be visible endoscopically or on a CT image.  

Although our hypothesis in this study was neither confirmed nor disproven, a robust 

correlation was found between the inferior fiducial location and the border of the MTV and the 
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absolute SUV values were reasonably close to commonly used values of 2.5. However, relative 

SUV values were lower than the typical values of 40% of SUVmax.  A study by Zhong et al. 

found that an SUV cutoff of 2.5 was best to estimate gross tumor length in squamous cell 

carcinoma of the esophagus using 18F-FDG PET (147).  This agrees with our median MTV 

threshold of 2.51 SUV. 

Some cases demonstrated large areas of uptake that extended well beyond the 

implanted fiducial (-4.2 - 6.9 cm). In a few instances, tumors had small MTV with large distances 

between the MTV border and fiducial location.  These could represent tumors that were not 

FDG avid. The results demonstrated that in 81% of cases, the superior fiducial was located 

below the MTV threshold. Thus, in these cases, the MTV extended above the superior fiducial 

placement.  This discordance could be due to inflammation or esophagitis or potentially to 

disease that was not endoscopically visible. In comparison, 57% of cases the MTV extended 

below the inferior fiducial. Of these cases, 3 of 34 (8.8%) were less than 0.5 cm at the superior 

tumor border and 7 of 24 (29.2%) were less than 0.5 cm at the inferior tumor border. The 

majority of these cases were diagnosed as distal or GE junction tumors.  Thus, accurate fiducial 

placement may not have been possible in these cases given the proximity of the stomach. 

There was a clear indication that in most cases the MTV extended beyond the superior fiducial 

and that timing of the PET before or after fiducial placement was not a significant factor. 

It is unclear, however, the etiology of the discordance superiorly, with the PET/CT 

showing high uptake at and above the endoscopically placed marker, potentially representing 

benign secondary esophagitis such as in the setting of luminal obstruction, the presence of 

malignant nodes, inflammation caused by the technical aspects of the fiducial placement itself, 

or potential submucosal disease. In the case of the largest discordance, the patient had been 

diagnosed prior to treatment with extensive esophagitis. According to these findings, the 

incorporation of a fiducial marker inferiorly into the routine management of locally advanced 
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esophageal cancer may offer accurate target volume delineation when compared with 3D 

PET/CT alone.  

One limitation of this study is that about half of the patients underwent PET/CT imaging 

prior to fiducial implantation. Thus, the PET/CT and planning CT had to be fused, and the 

fiducials and distances between fiducials and the MTV borders had to be identified and 

measured.  Image fusion may have led to some uncertainty (148). 

6.5 Conclusion  

The inferior fiducial location and MTV border for esophageal cancer had a robust 

correlation. Thus, it may be prudent to incorporate an inferior fiducial in the routine management 

of locally advanced esophageal cancer. The etiology of the discordance between the superior 

fiducial location and MTV border could be caused by inflammation from the fiducial placement 

itself, submucosal disease, or benign secondary esophagitis. Regardless of the discordance, 

having both fiducials is important for image guidance, especially in cases of focal dose 

escalation in tumors involving the GE junction. The factors confounding FDG uptake superiorly 

need further investigation to optimize MTV delineation. 
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Chapter Seven: Conclusions and Future Work 

7.1 Research Outcomes 

This research explored PET/CT diagnostics and treatment capabilities in lung and 

esophageal cancer. The main research outcomes of this work were that: 

 Image Features are affected by motion, especially in tumors that move greatly 

(ranging ~1-2 cm) - such as those that move with the respiratory cycle (lung 

tumors located near the diaphragm). 

 Certain features are less affected by motion and noise. GLSZM are highly 

sensitive and varied greatly with the addition of uncorrelated Gaussian noise. 

This is not acceptable as an additional decision factor  for clinical image analysis 

for PET/CT systems with high levels of noise but it could be an advantage in low 

noise situations. GLSZM features may vary significantly (more than 100 % for CT 

data) with change of image texture pattern. Shape features were the least 

affected by the addition of uncorrelated Gaussian noise. GLCM and RLM 

features were highly sensitive to image noise (change in noise level caused 

changes >100%), although not as much as for the GLSZM features.  

 There was discordance between endoscopically placed fiducial markers and 

MTV. This demonstrates a need for both techniques synergistically in the clinic to 

provide a more complete  view of the tumor location. 

Investigators must be aware of these effects of noise and motion on image feature 

analysis and account for them to avoid false positives. Chalkidou et al. found that published 

studies using image feature analysis to predict clinical outcomes had an average probability of 

type-I error (false positive) of 76% (82). These false positives could be caused by tumor motion 

and image noise as well as other factors that affect image features such as SUV bin 
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discretization (where SUV bins are divided into equally spaced bins) and reconstruction 

parameters (47, 48, 81-83). Other studies have demonstrated that particular features are 

correlated with tumor volume (82). Thus, the predictive abilities of these image features are 

characteristics of the tumor volume and not the features themselves (71). It cannot be 

emphasized enough that investigators involved in image feature analysis, especially in a clinical 

setting, must be aware of how factors such as noise and motion affect their image features. This 

work highly recommends that image feature analysis for PET and CT imaging modalities be 

standardized and a protocol developed for reproducibility and accuracy across institutions. 

7.2 Future Work 

Currently, investigators are pursuing active research correlating treatment outcomes to 

image features (54, 80). One goal of image feature analysis in Radiotherapy is to identify 

predictive and prognostic features and to use such features to identify optimal treatment 

regimen for patients (personalized medicine). This technique will allow the Radiation Oncologist 

to select the optimal treatment regimen for a patient prior to treatment thus providing the best 

chance of survival and quality of life (tumor control and reduced toxicity). Esophageal cancers 

will especially benefit from this technique because they are time-sensitive. An ineffective 

treatment could lead to an early death. A patient’s chance of survival decreases each day an 

ineffective treatment regimen is used.  

The next step of our research would be to extend the noise study from Chapter 4 and 

assess the sensitivity of correlated noise effects on image features. This would require access 

to raw PET/CT data which was unavailable during this study due to proprietary reasons. Noise 

would be added directly to the sinograms in the case of PET and then reconstructed with the 

noise inherent in the image, thus providing a more accurate noise image because it more 

accurately represents the stochastic effect of the random variations in photon counting for CT 

and radioactive decay in PET (21, 48). The ASIM PET simulator, open-access software 

developed by the University of Washington (https://depts.washington.edu/asimuw/index.html) to 
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simulate emission data, attenuation correction, and noise propagation would be used to apply 

correlated noise to the raw PET data (sinograms) at our institution (H. Lee Moffitt Cancer 

Center). 

Another interesting and potentially promising idea would look at ways to account for 

motion and noise effects in image feature analysis. Vaidya et al accounted for motion in their 

study of 2 NSCLC patients by applying a deconvolution algorithm – an inverse filter 

compensating for blurring through a motion kernel (38). Aerts et al accounted for noise by using 

data that was in its raw form, without pre-processing or normalization (84). Although a 2D study, 

Ganeshan et al. removed the effects of noise in CT using image filtration, using features larger 

than 4 voxels (72). 

Our current research serves as a warning to investigators that image features are not 

independent. They are affected by many factors that require acquisition protocol standardization 

across institutions. 

Another future step would be standardization of Radiomic features. This would be a 

collaborative effort between many institutions and research groups. Buvat stated that feature 

descriptor names, definitions, and equations vary between studies (71) which warrants the 

standardization of features a necessary step toward clinical applications. 
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