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ABSTRACT 

 

Survival analysis today is widely implemented in the fields of medical and biological 

sciences, social sciences, econometrics, and engineering. The basic principle behind the survival 

analysis implies to a statistical approach designed to take into account the amount of time 

utilized for a study period, or the study of time between entry into observation and a subsequent 

event. The event of interest pertains to death and the analysis consists of following the subject 

until death. Events or outcomes are defined by a transition from one discrete state to another at 

an instantaneous moment in time. In the recent years, research in the area of survival analysis has 

increased greatly because of its large usage in areas related to biosciences and the pharmaceutical 

studies. After identifying the probability density function that best characterizes the tumors and 

survival times of breast cancer women, one purpose of this research is to compare the efficiency 

between competing estimators of the survival function. Our study includes evaluation of 

parametric, semi-parametric and nonparametric analysis of probability survival models. 

Artificial Neural Networks (ANNs), recently applied to a number of clinical, business, 

forecasting, time series prediction, and other applications, are computational systems consisting 

of artificial neurons called nodes arranged in different layers with interconnecting links. The 

main interest in neural networks comes from their ability to approximate complex nonlinear 

functions. Among the available wide range of neural networks, most research is concentrated 

around feed forward neural networks called Multi-layer perceptrons (MLPs). One of the 



 

xiii 

 

important components of an artificial neural network (ANN) is the activation function. This work 

discusses properties of activation functions in multilayer neural networks applied to breast cancer 

stage classification. There are a number of common activation functions in use with ANNs. The 

main objective in this work is to compare and analyze the performance of MLPs which has back-

propagation algorithm using various activation functions for the neurons of hidden and output 

layers to evaluate their performance on the stage classification of breast cancer data. 

Survival analysis can be considered a classification problem in which the application of 

machine-learning methods is appropriate. By establishing meaningful intervals of time according 

to a particular situation, survival analysis can easily be seen as a classification problem. Survival 

analysis methods deals with waiting time, i.e. time till occurrence of an event. Commonly used 

method to classify this sort of data is logistic regression. Sometimes, the underlying assumptions 

of the model are not true. In model building, choosing an appropriate model depends on 

complexity and the characteristics of the data that affect the appropriateness of the model. Two 

such strategies, which are used nowadays frequently, are artificial neural network (ANN) and 

decision trees (DT), which needs a minimal assumption. DT and ANNs are widely used 

methodological tools based on nonlinear models. They provide a better prediction and 

classification results than the traditional methodologies such as logistic regression. This study 

aimed to compare predictions of the ANN, DT and logistic models by breast cancer survival. In 

this work our goal is to design models using both artificial neural networks and logistic 

regression that can precisely predict the output (survival) of breast cancer patients. Finally we 

compare the performances of these models using receiver operating characteristic (ROC) 

analysis. 
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CHAPTER ONE  

Introduction 

1.1 Cancer 

In modern medicine, the term tumor means a neoplasm (from Ancient 

Greek νεο- neo- "new" and πλάσμα plasma “formation, creation” in field medicine) is an 

abnormal mass of tissue as a result of uncontrolled growth or division of cells. Some neoplasms 

do not cause a lump or form an additional tissue. They are called benign. Cancer is 

a malignant neoplasm or malignant tumor. This malignant neoplasm or tumor is the largest cause 

for death in United States Cancer. Cancer is not a new disease from the present generation, it has 

been documented and recorded on a papyrus from ancient Egypt, in 1500 B.C. This oldest 

document has details that were recorded on a papyrus, documenting 8 cases of tumors occurring 

on the breast. Further descriptions can be found in ancient writings of Chinese and Arabic 

literature.  

As mentioned earlier, cancer is a condition of abnormal and rapid cell destruction inside 

the tissues making a mass of extra tissues which is known as tumor. The cancer disease is 

majorly classified into two types based on the tissue or tumor growth. Benign and malignant. 

Unlike benign tumors which are assumed not harmful, malignant tumors are formed by jumping 

of cancer cells to other parts of the body. Scientists have stated the reason behind formation of 

such condition is due to adhesion property of the cancer causing cells which is stated as the 

metastasis. The major types of cancers are breast cancer (in women), leukemia (in children), 
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prostate cancer (in men) and colon cancer. Our present dissertation deals with the subject of 

breast cancer in women with condition of malignancy. Table 1.1 below gives a brief statistics of 

estimated deaths of different types of cancers observed in women during 2013 (Source: 

American Cancer Society). 

 Table 1.1:  Summary of major cancers in women 

 

 

 

 

 

 

 

 

1.2 Breast Cancer 

Breast has been considered as a symbol of femininity, fertility and beauty. Breast disease 

has been known to mankind since old times. Due to the unmistakable side effects particularly at 

later stages, the bumps that advance into tumors have been recorded by doctors promptly in time. 

Unlike other inside malignancies, bosom bumps have a tendency to show themselves as 

noticeable tumors. 

Different types of cancers in 

women 

Percentages 

Lung & Bronchus 72,220 (26%) 

Breast 39,620 (14%) 

Colon & Rectum 24,530 (9%) 

Pancreas 18,980 (7%) 

Ovary 14,030 (5%) 

Non-Hodgkin Lymphoma 8,430 (3%) 

Leukemia 10,060 (4%) 

Uterine corpus 8,190 (3%) 

Liver & intrahepatic bile duct 6,780 (2%) 

Brain/Other nervous systems 6,150 (2%) 

All sites 273,430 (100%) 
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Breast cancer is the most common effecting disease in women and second most cause of 

death for women in United States. It is the cancer that starts in the tissues of the breast with 

uncontrolled multiplicity affects other parts of the body causing death. There are certain cases of 

breast cancer observed in men, but it accounts for less than 0.05% of all the cases diagnosed. 

Breast cancer is classified into two main types: 

 Ductal carcinoma: starts in the tubes (ducts) that move milk from the breast to the 

nipple. Most of the cases fall under this breast cancer.  

 Lobular carcinoma: starts in parts of the breast, called lobules that produce milk.  

In very rare cases, breast cancer can start in other areas of the breast. According to 

American Cancer Society (ACS), even at the age of 85 one in eight women are diagnosed with 

breast cancer. In 2013, an estimated 232,340 new cases of invasive breast cancer are expected to 

be diagnosed among the women, and about 2240 new cases are expected in men. In addition to 

this facts, 64,640 new cases of the in situ breast cancer are expected in the women; of which 85% 

approximately fall into category of ductal carcinoma. One good thing about breast cancer is that 

it can be treated if it is detected in early stages. The most common outward signs of detection are 

formation of lumps, or nipple tenderness or thickening of area near the breasts or a dimple in the 

breast. Less commonly observed signs include breast swelling and enlarged underarm area.  The 

important risk factors include gender, age, family history, early menarche, late menopause, 

physical inactivity, alcohol consumption, among many others. Other clinical factors for increase 

in risk are high bone mineral density, biopsy confirmed hyperplasia, high dose radiation to the 

chest, long menstrual history etc.  
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1.3 Survival Analysis 

Survival analysis today is implemented in almost all fields of sciences. An analysis which 

is performed to determine the probability of occurrence of the events associated with death or 

failure after treatment to the subjects is termed as survival analysis. This classification is 

applicable with help of machine- learning methods that evolve categorical results with 

predetermined time intervals. Survival analysis of breast cancer has acquired good importance 

for cancer detection in early stages taking into consideration risk factors. Different kinds of 

survival studies in present day include clinical trials, prospective cohort studies, retrospective 

cohort studies and retrospective correlative studies. Survival analysis deals with time to event 

modeling data with censoring.  Censoring is mechanism of identification of the data values 

which do not follow up until end of the experiment. In many cases data considered for survival 

analysis are right censored which implies that the concerned subjects leaves the study before the 

event has occurred or study ends before the event has occurred. The primary interest is to 

investigate the time to event or the survival probability. The statistical methods employed in 

study of survival and hazard probability can be performed parametrically, semi-parametrically 

and non-parametrically based on the nature of the data. 

1.3.1 Non-Parametric, Parametric and Semi-parametric Analyses 

Non-parametric survival analysis is used to analyze the data avoiding assumptions for the 

underlying distributions. This kind of analysis restricts the data from occurrence of potential 

errors. One of the commonly used non-parametric estimator is Kaplan-Meier estimator also 

called as product limit estimator. The plots of product limit estimator is a graph with declining 

steps. At times censoring data predicts more accurate results with product limit estimator. 
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Parametric survival analysis assumes functional form of probability distribution for the 

variables that provides the influence of explanatory variables on survival time. The strength of 

this analysis is the estimation is relatively easy and survival curves are smoother as they draw 

information from whole data. This parametric analysis is carried out using two different 

approaches which are regression parametric models (Accelerated Failure Time models) and 

Proportional Hazard (PH models). The name ‘accelerated life’ is extracted from the industrial 

applications where the items are subjected to worse conditions than the item usually encounter in 

real life, so that the experiment is completed in short period of time. Acceleration Failure models 

are usually applied to the log of the survival time. Different AFT models are generated by 

assuming different distributions to error term of expression. Estimation of such models using the 

maximum likelihood is computed for the censored data. 

The intermediate model between above two analyses is semi-parametric survival analysis 

or Cox-regression analysis. It overcomes the disadvantage of the non-parametric analysis of 

comparing the survival functions for limited number of groups. Cox regression models or PH 

models are used for the survival time estimation making assumptions to hazard function in the 

formula. Distribution for the baseline hazard are assumed to follow exponential, Weibull, log-

normal, log-logistic or generalized gamma. Even though cox models have driven statistical 

innovations in past decades, there is more to come in future.  

1.4 Logistic Regression 

Logistic regression is mostly used to predict a categorical (usually dichotomous) variable 

from a given set of independent variables.  If all the independent variables are continuous, we 

usually employ discriminant analysis for modeling the data. In case if all or few independent 
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variables are categorical, logistic regression analysis is the best choice. Also on the other hand, 

logistic regression makes no assumptions about the distributions of the independent 

variables.  One of the most commonly used tools of medical and clinical applied statistics and 

discrete data analysis is logistic regression. It is put forward around 1940’s against the Fisher’s 

1936 classification method and considered as center part of many research studies.  Logistic 

regression also finds applications in the fields of engineering, opinion polls, marketing etc. 

In logistic regression, the predicted dependent variable is a function of the probability 

that a particular subject will be in one of the categories (two categories in case of dichotomous 

dependent variable). In other words, logistic regression is used to predict the probability that the 

'event of interest' will occur as a function of one (or more) discrete/continuous and/or 

dichotomous independent variables (either 0 or 1). For example identifying the relationship 

between a binary outcome (dependent) variable such as presence or absence of disease when we 

are given with predictor (explanatory or independent) variables such as patient demographics or 

imaging findings. The important difference between what is being estimated by a logistic 

regression model and that estimated by a linear model is that linear regression attempts to predict 

the value of the dependent variable as a linear function of one or more independent variables. 

Whereas logistic regression attempts to predict the probability that a unit under analysis will 

acquire the event of interest as a function of one or more independent variables.  

1.5 Artificial Neural Networks 

The implementation of artificial neural networks (ANNs) in the field of survivability is 

suggested to address the limitations of traditional regression methods. ANNs are algorithms 

which are patterned after the structure of human brain. They possess series of mathematical 
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equations and terms to simulate the biological process such as learning and memory. Neural 

networks offers the ability to detect the complex nonlinear relationships between dependent and 

independent variables. ANNs find applications in the fields of social sciences, clinical studies,  

Financial models, altitudes in educational sciences, social mobility, travel behavior, social capital 

among many others. A basic neural network consists of input, hidden and output layers. The 

interconnected nodes in different layers possess weights which are adjusted to find the most 

reliable outcomes by a process termed as learning or training. The most commonly used neural 

network is multilayer perceptron which consists of one input, one output and one or more hidden 

layers. The principle of MLP is to reduce the discrepancy between the real and predicted 

outcomes by propagating discrepancy in backward direction. The merits of trained ANNs is the 

capability to elevate the information present in the hidden layers without the effect of constraints 

on the data representation. Limitations of ANNs include its black box nature, greater 

computation burden, and proneness to over fitting etc. Due to its effective analysis of more 

complex data, ANNs are used to analyze non-linear covariates, time dependent covariates and 

versatility among high order covariates. Comparing to traditional regression models ANNs have 

provided better results concerning to the cancer research.  

1.5.1 ANN and Statistics 

The artificial neural network (ANNs) and literature in statistics discusses almost same 

concepts but usually with different terminology. Sometimes the same term in these both 

literatures may have a different meaning. Below in the Table 1.2 we have mentioned few of such 

terms used in both the cases. 
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1.6 Linking ANN, Logistic Regression and Survival analysis 

Survival analysis methods deals with waiting time, i.e. time till occurrence of an event. 

Commonly used method to classify this sort of data is logistic regression. However, sometimes 

the underlying assumptions of the model may not be true. In model building, choosing an 

appropriate model depends on complexity and the characteristics of the data that effect the 

appropriateness of the model. One strategy, which is used nowadays frequently, is artificial 

neural network (ANN) model which needs a minimal or no assumptions. My current research is 

aimed to compare survival models and predictions of the ANN models for stage classification, 

survival and logistic modeling for breast cancer survival.  

Table 1.2: ANN and Statistical jargon 

 

 

  

 

 

 

 

 

 

 

Neural networks Statistics 

Architecture Model 

Inputs 
Independent (predictor) 

variable 

Outputs 
Dependent (outcome) variable, 

predicted value 

Connection weights Regression coefficients 

Bias weight Intercept parameter 

Error Residuals 

Supervised learning 
Regression, discriminant 

analysis 

Unsupervised 

learning 

PCA, Data reduction, 

Clustering 

Training set Sample data 

Testing set Hold-out data 

Learning, training Parameter estimation, fitting 

Training case, pattern Observation 

Cross-entropy 
Maximum likelihood 

estimation 

Classification Discriminant analysis 

Activation function Inverse link function in GLIM 

Epoch Iteration 
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CHAPTER TWO  

Parametric Analysis of Breast Cancer Tumor Sizes 

 

2.1 Introduction 

Any cancer that grows in our body is always dangerous. If it exists one must try to locate 

and get it out of our body immediately. Breast cancer is a signature disease of Western 

populations. Breast cancer is a cancer that starts in the tissues of the breast. There are two main 

types of breast cancer. Ductal carcinoma starts in the tubes (ducts) that move milk from the 

breast to the nipple. Most breast cancers are of this type. Lobular carcinoma starts in parts of the 

breast, called lobules that produce milk (1 –3). In very rare cases, breast cancer can start in other 

areas of the breast. The three most important things that we can do to find a growth in the breast 

that may become malignant are: regularly scheduled mammograms, annual clinical breast exams 

with your health practitioner, and monthly breast self-examination (4). 

 

2.2 Facts and Numbers 

Cancer is a major cause of morbidity in the United States, with a total of 1.34 million 

cases reported during 2005 from 49 of the 50 states (5). According to American Cancer Society 

(ACS), about 1 in 8 women in the United States (12%) will develop invasive breast cancer over 

the course of her lifetime (6). In 2016, an estimated 246,660 new cases of invasive breast 

cancer (includes new cases of primary breast cancer among survivors, but not recurrence of 

original breast cancer among survivors) are expected to be diagnosed in women in the U.S., 

http://www.breastnotes.com/selfexam/selfexam.htm
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along with 61,000 new cases of non-invasive (in situ) breast cancer and an estimated deaths due 

to breast cancer would be around 40,450 (6, 7). 

About 2,600 new cases of invasive breast cancer were expected to be diagnosed in men in 

2016. Less than 1% of all new breast cancer cases occur in men. For women in the U.S., breast 

cancer death rates are higher than those for any other cancer, besides lung cancer. Also besides 

skin cancer, breast cancer is the most commonly diagnosed cancer among U.S. women. More 

than 1 in 4 cancers in women (about 28%) are effected with breast cancer.  

2.3 Questions of Interest 

Q1: What is the probability distribution function (PDF) that best characterizes the 

behavior of malignant tumors for Whites, African Americans and other races? 

Q2: Is there any statistical difference between mean tumor sizes between the three races 

(Whites, African Americans and Others) in the study? 

Q3: Is there any statistical difference between mean tumor sizes of any two races? 

Q4: If a lady feels a tumor while self-examining, what is the confidence interval 

estimation for the average tumor size based on her race? 

2.4 Data Description 

The Surveillance, Epidemiology, and End Results (SEER)-Medicare database links data 

from the National Cancer Institute’s SEER cancer registry program with claims data from 

Medicare, the federally funded insurance program for the US elderly. These data are made 

available to investigators and have been used extensively in research (details at 

http://healthservices.cancer.gov/seermedicare/). This resource is valuable for conducting research 

on cancers. (8-14) 
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SEER is a National Cancer Institute-funded program collecting data on cancer incidence 

and survival from US cancer registries (http://www.seer.cancer.gov). SEER began in 1973 with 9 

state and metropolitan area cancer registries. Successive expansions in 1992 and 2001 led to the 

inclusion in SEER of 17 cancer registries that presently cover approximately 26%of the US 

population. In total, 146 million person-years are covered during 1973–2007, with 3.1 million 

incident cancers on the basis of a positive or negative test. The US National Cancer Institute’s 

Surveillance, Epidemiology, and End Results (SEER) program began collecting the data for 

many cancers in almost 17 registries.  

We obtained breast cancer incidence data from the US National Cancer Institute’s SEER 

program. We used patient and population data from the SEER 9 Registries Database (15, 16) the 

information that we have used in this present study is obtained from SEER database registry. 

This data source SEER (16) (Surveillance Epidemiology and End Results), which is a unique, 

reliable and essential resource for investigating the different aspects of cancer. The SEER 

database combines patient-level information on cancer site, tumor pathology, stage, and cause of 

death (3, 4). 

 In this work, we preprocessed the SEER data (period of 1992-2008 with all records 

named in breast.txt) for breast cancer to remove redundancies and missing information. The 

resulting data set had 47,167 malignant tumor records, which then pre-classified into three 

groups of races. “Whites” (37,341; 79.15%), “African American” (4,234; 9%) and “Others” 

(5,592; 11.85%) are given in Table 2.1.  
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Table 2.1 Race and age details 

Race N Percent 
Minimum 

age 
Median age 

Maximum 

age 

1 37341 79.17 21 62 102 

2 4234 8.98 22 57 102 

3 5592 11.86 21 53 99 

 

In this work, demographic information included age, race, and marital status. Tumor 

characteristics like tumor size (1mm to 998mm), stage of cancer (I, II, III, IV), tumor grade (1, 2, 

3, 4, or unknown), and tumor treatment (1, 2, 3, 4) are included.  

From Table 2.1, median age at diagnosis in the White women is 62 years (range 21 to 

102 years) compared with a median age of 57 years in the African American women (range 22 to 

102 years) and a median age of 53 years in the Other races women (range 21 to 99 years). There 

are 62.15% survival and 37.35% of not survived patients in our data (Table 2.2) and from Table 

2.3, majority of patients (about 92%) are diagnosed when they are in stages 1 and 2 and very few 

(about 8%) of them are diagnosed in advanced stage of breast cancer. 

 
Table 2.2 Survival status details 

Status Frequency Percent 
Cumulative 

percent 

Dead (0) 17853 37.85 37.85 

Survived (1) 29314 62.15 100.00 

 
Table 2.3 Breast cancer stage wise details 

Stage Frequency Percent 
Cumulative 

percent 

1 23345 49.49 49.49 

2 20017 42.44 91.93 

3 2600 5.51 97.45 

4 1205 2.55 100.00 
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Figure 2.1 Race wise tumor classification chart 

 

2.5 Parametric Analysis of tumor size 

Most clinical research involves the collection of some form of quantitative data. The 

purpose of collecting data is to obtain information that will allow one to infer or draw 

conclusions about the specific characteristics of a certain large group of subjects or events based 

on the observation of a few (17 - 20).To select the proper statistical test it is important to know 

how the data are distributed. The word parametric, or parameter, relates to the nature of data, i.e., 

the assumptions about particular data. The primary assumptions are that the data points are 

randomly drawn, that the population is normally distributed and that there is homogeneity among 

variances. Parametric tests are more stringent than nonparametric tests, and the results tend to be 

more powerful. 

In our work we performed parametric analysis to determine the best fitted distribution 

that characterizes the behavior of tumor size for each race by setting the hypothesis as follows: 

𝐻0: 𝑇ℎ𝑒 𝑡𝑢𝑚𝑜𝑟 𝑠𝑖𝑧𝑒 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑑 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑜𝑑𝑒𝑙  
𝐻1: 𝑇ℎ𝑒 𝑡𝑢𝑚𝑜𝑟 𝑠𝑖𝑧𝑒 𝑑𝑎𝑡𝑎 𝑑𝑖𝑑 𝑛𝑜𝑡 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑜𝑑𝑒𝑙 

Total Malignant 

Tumors 

Men Women 

Race = Whites (79%) 

Race = African Americans (9%) 

Race = Others (12%) 

Stop 
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After performing many trials, from the class of many parametric distributions, based on 

the results of minimum Anderson-Darling value, we identified that Inverse Gaussian distribution 

as the best probabilistic distribution function that characterizes the behavior of the malignant 

tumors for all the three races considered in this study. 

 

2.5.1 Inverse Gaussian distribution 

Over a century, family of Inverse Gaussian distributions had attracted the attention of 

many researchers in many fields (21). When the data possess some extreme values in it, we need 

a distribution that can take all the values into consideration, one such is Inverse Gaussian 

distribution. This is also known as Inverse normal distribution or Wald distribution. Inverse 

Gaussian distribution is 2-parameter family of continuous probability functions with support on 

(0, ∞). This distribution is derived while observing the Brownian motion i.e., random movements 

of atoms and molecules by Schrodinger in 1915 (23).   

The Hazard rate function of Inverse Gaussian distribution is uni-modal which increases 

from zero to its maximum value and decreases asymptotically to a constant. The most 

differentiating fact is extreme values of outcomes can occur with almost all outcomes being 

small. It is a right-skewed distribution with long tail. For these reasons Inverse Gaussian 

distribution is often used in reliability and survival analysis. Various insurance problems and 

stock markets follow this distribution (22).  

The distribution is described by two parameters. Mean or location (µ >  0) and precision 

or shape (λ > 0). Let us suppose x1, x2, x3… xn be n independent and random variables. If xi 

follows the inverse Gaussian distribution, then probability density function of𝑥𝑖~ 𝐼𝐺 (µ, 𝜆) is 

𝑓(𝑥, 𝜃) = (
𝜆

2𝜋𝑥3
)

1

2

𝑒𝑥𝑝 {−
𝜆(𝑥 − 𝜇)2

2𝜇2𝑥
} , 𝑥 ≥ 0;  𝜃 = (𝜇, 𝜆)𝑇 
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The expected value is given by mean µ and variance is equal to
𝜇3

𝜆
. The cumulative distribution 

function is given by 

𝐹(𝑦) = 𝜙(𝑦) + exp (
2𝜆

𝜇
) (−√

4𝜆

𝜇
+ 𝑦2) ; −∞ < 𝑦 < ∞ 

W is the standard normal distribution function. Clearly, as
𝜆

𝜇
→ ∞, 𝐹(𝑦) → 𝜙(𝑦). The 

confidence interval for true mean of this distribution is given by 𝜇̂ ± 𝑧𝛼
2⁄ (𝑛𝜆)−1 2⁄ 𝜇̂3 2⁄  

 

2.5.2 PDF for White women 

 

Figure 2.2 PDF for white women: Inverse Gaussian Distribution 

The fitted PDF and CDF of tumor sizes for white race women is  

 

𝑓(𝑥, 𝜃) = (
43.93

2𝜋𝑥3
)

1

2

𝑒𝑥𝑝 {−
43.93(𝑥 − 32.76)2

2(32.76)2𝑥
} , 𝑥 ≥ 0; 

 

𝐹(𝑦) = 𝜙(𝑦) + exp(2.682) (−√5.36 + 𝑦2) 
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Figure 2.3 Inverse Gaussian CDF for White Women 

 

Figure 2.4 Inverse Gaussian PP Plot for White Women 

 

Figure 2.2 is the fitted Inverse Gaussian PDF with estimated shape and location 

parameters as 43.933 and 32.756 respectively. From Figure 2.3 the CDF graph explains how well 

the distribution fit to data and the PP plot in Figure 2.4 is approximately linear and confirms 

about the fitted distribution. 
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2.5.3 PDF for African American women 

Figure 2.5 below is the fitted Inverse Gaussian PDF for AA women with estimated shape 

and location parameters as 66.614 and 39.611 respectively. From Figure 2.6 the CDF graph 

explains how well the distribution fits to data and the PP plot in Figure2.7 is approximately 

linear and confirms about the fitted distribution. 

 

 

Figure 2.5 PDF for African American Women: Inverse Gaussian distribution 

 

The fitted PDF and CDF of tumor sizes for African American race women is  

 

𝑓(𝑥, 𝜃) = (
66.61

2𝜋𝑥3
)

1

2

𝑒𝑥𝑝 {−
66.61(𝑥 − 39.61)2

2(39.61)2𝑥
} , 𝑥 ≥ 0; 

 

𝐹(𝑦) = 𝜙(𝑦) + exp(3.363) (−√6.73 + 𝑦2) 
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Figure 2.6 Inverse Gaussian CDF for African American Women 

 

Figure 2.7 Inverse Gaussian PP Plot for African American Women 
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2.5.4 PDF for Other Races 

Figure 2.8 below is the fitted Inverse Gaussian PDF for other race women with estimated shape 

and location parameters as 55.703 and 36.846 respectively. From Figure 2.9 the CDF graph 

explains how well the distribution fit to data. The fitted PDF and CDF of tumor sizes for other 

race women is  

𝑓(𝑥, 𝜃) = (
55.70

2𝜋𝑥3
)

1

2

𝑒𝑥𝑝 {−
55.70(𝑥 − 36.85)2

2(36.85)2𝑥
} , 𝑥 ≥ 0; 

𝐹(𝑦) = 𝜙(𝑦) + exp(3.02) (−√6.05 + 𝑦2) 

 

 

 

Figure 2.8 PDF for Other races: Inverse Gaussian Distribution 
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Figure 2.9 Inverse Gaussian CDF for Other race women 

 

2.5.5 Summary of PDF’s 

 
Table 2.4 PDF summary for three races 

RACE 𝝀̂ 𝝁̂ 

White 43.933 32.756 

African American 66.614 39.611 

Others 55.703 36.846 

 

 

Table 2.5 has the race wise details of 95% and 99% confidence interval estimation of true 

mean tumor size based on Inverse Gaussian distribution. After identifying the distribution 

functions that best characterizes the probability distribution of malignant tumors for the three 

races, we proceed to compare the differences of mean tumor sizes for the three races. 
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Table 2.5 The mean tumor size and confidence intervals of all the three races 

Race 𝝁̂ 𝝀̂ SD 95% CI for 𝝁 99% CI for 𝝁 

1 32.756 43.933 28.284 (32.47, 33.04) (32.38, 33.13) 

2 39.611 66.614 30.545 (38.69, 40.53) (38.40, 40.82) 

3 36.846 55.703 29.967 (36.06, 37.63) (35.81, 37.88) 

 

2.6 Comparison of mean tumor sizes 

Let 𝜇𝑤, 𝜇𝑎𝑎, 𝑎𝑛𝑑 𝜇𝑜𝑡ℎ represent mean tumor sizes of whites, African Americans and other 

races respectively. Our interest is to test the hypothesis whether all the three races have same 

mean tumor size or otherwise. 

𝐻0: 𝜇𝑤   = 𝜇𝑎𝑎  = 𝜇𝑜𝑡ℎ 𝑣𝑠. 𝐻1:  𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒𝑚 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙. 

By performing a one way ANOVA at 5% level of significance, we obtained the p-value 

which is very low(p < 0.0001); leading us to the conclusion that there is significant difference 

between the average tumor sizes of all the three races. So, we now proceed in pair wise testing of 

mean tumor sizes for all three races. The Table2.6 below has the details of the results after 

performing t-test for pair wise testing. Clearly, we conclude that the average tumor size is 

significantly different for all the three races in this study. 

  
Table 2.6 Pair wise comparison of mean tumor sizes 

HNull HAlternative P-value Conclusion 
95% CI for mean 

differences 

𝜇𝑤   = 𝜇𝑎𝑎 𝜇𝑤not equals 𝜇𝑎𝑎 0.001 Reject Null (8.107, 8.659) 

𝜇𝑎𝑎   = 𝜇𝑜𝑡ℎ 𝜇𝑎𝑎not equals 𝜇𝑜𝑡ℎ 0.0001 Reject Null (-10.191, -7.760) 

𝜇𝑤   = 𝜇𝑜𝑡ℎ 𝜇𝑤not equals 𝜇𝑜𝑡ℎ 0.0002 Reject Null (-18.547, -16.171) 
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Previous studies (24 - 26) have shown that breast cancer in these younger women is more 

aggressive, with higher rate of occurrence and recurrence rates compared with older women. In 

our study we have the median age of women for all the three races more than 50 years. In Table 

2.7, we classified the tumor stage taking age group into consideration. The majority of women 

are in the ages from 45 to 79. From Table 2.8 and Figure 2.11, African American women are the 

majority of population in all the age groups who are diagnosed with breast cancer. Table 2.8 

gives the age group wise confidence interval for mean tumor size for all the three races. Very 

interestingly, from Figure 2.10 majority of women in younger ages (20 – 44 years) are identified 

with stage-2 breast cancer.  

Table 2.7 Age group Vs. Stage classification 

AGE Stage 1 Stage 2 Stage  3 Stage 4 All 

 Count Row% Count Row% Count Row% Count Row% Total 

20-24 7 25.93 17 62.96 3 11.11 0 0.00 27 

25-29 67 26.59 152 60.32 25 9.92 8 3.17 252 

30-34 239 27.86 481 56.06 94 10.96 44 5.13 858 

35-39 700 34.08 1157 56.33 152 7.40 45 2.19 2054 

40-44 1456 37.89 1992 51.83 305 7.94 90 2.34 3843 

45-49 2153 41.54 2560 49.39 348 6.71 122 2.35 5183 

50-54 2561 45.78 2546 45.51 342 6.11 145 2.59 5594 

55-59 2634 50.44 2209 42.30 250 4.79 129 2.47 5222 

60-64 2723 53.92 1999 39.58 209 4.14 119 2.36 5050 

65-69 2909 56.58 1892 36.80 199 3.87 141 2.74 5141 

70-74 2997 59.35 1755 34.75 169 3.35 129 2.55 5050 

75-79 2496 58.03 1509 35.08 199 4.63 97 2.26 4301 

80-84 1526 55.49 993 36.11 143 5.20 88 3.20 2750 

85+ 877 47.61 755 40.99 162 8.79 48 2.61 1842 

All 23345 49.49 20017 42.44 2600 5.51 1205 2.55 47167 
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Figure 2.10 Stages vs. age group 

 

Table 2.8 Age group based race wise confidence interval of tumor sizes  

Age 

Group 
Race 1 Race 2 Race 3 

 Mean S.D 
C.I (95%) 

Mean S.D 
C.I (95%) 

Mean S.D 
C.I (95%) 

L.C.I U.C.I L.C.I U.C.I L.C.I U.C.I 

20-24 27.12 15.75 19.40 34.84 26.86 13.67 16.73 36.99 18.5 3.32 15.25 21.75 

25-29 33.53 74.51 22.70 44.36 56.2 162.8 3.02 109.38 54.2 167.6 -2.14 110.54 

30-34 36.24 82.99 29.51 42.97 46.8 124.2 24.94 68.66 28.55 22.25 24.99 32.11 

35-39 29.44 60.16 26.36 32.52 28.46 22 25.57 31.35 39.19 114.91 27.37 51.01 

40-44 27.79 59.2 25.58 30.00 40.23 110.44 29.35 51.11 26.84 55.2 22.74 30.94 

45-49 27.81 70.22 25.57 30.05 35.8 89.67 27.88 43.72 27.11 67.33 22.71 31.51 

50-54 25.06 62.78 23.15 26.96 36.92 95.54 28.89 44.95 24.01 38.44 21.44 26.58 

55-59 24.44 68.85 22.31 26.57 28.56 64.53 23.03 34.09 23.81 55.75 19.62 28.00 

60-64 22.20 59.49 20.36 24.04 26.27 51.07 21.63 30.91 22.21 44.1 18.58 25.84 

65-69 23.03 67.36 20.99 25.07 35.11 104.32 25.51 44.71 19.52 16.65 18.05 20.98 

70-74 20.41 53.55 18.81 22.00 30.67 78.75 22.47 38.87 29.45 101.49 19.18 39.72 

75-79 21.31 48.48 19.75 22.86 34.58 98.68 23.52 45.64 19.84 14.66 18.10 21.58 

80-84 22.65 51.02 20.62 24.68 26.81 21.21 23.79 29.83 21.89 25.49 17.49 26.29 

85+ 29.43 73.19 25.91 32.95 30.42 23.38 26.20 34.64 25.12 16.65 21.10 29.14 
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Figure 2.11 Race wise comparison of mean tumor sizes 

 

2.7 Conclusion  

The PDF for all the three races is identified as Inverse Gaussian and the details about 

mean tumor sizes along with 95% and 99% confidence intervals for mean tumor sizes for all the 

three races were tabulated in Table 2.5. One way ANOVA was performed for comparing mean 

tumor sizes of three races and at 5% level of significance, we conclude that the average tumor 

size for all the three races is statistically not the same. Later, we performed pair-wise testing 

between the races and the results are tabulated in Table 2.6. From these results we conclude that 

the average tumor sizes are significantly different for all the three races. Also compared with 

Whites and other race women, African American women have comparatively a greater mean 

tumor sizes and Whites have the least. This is also supported by the results published in Table 

2.7. Finally grouping ages into groups of 5, we also stratified the number of women diagnosed 

with breast cancer in different stages and Table 2.8 gives the race wise confidence intervals. 
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CHAPTER THREE  

Statistical Analysis on Survival times of Breast Cancer Data 

 

3.1 Introduction 

Cancer is a major cause of morbidity in the United States, with a total of 1.34 million 

cases reported in the year 2005 from 49 of the 50 states (6). Cancer incidence typically rises with 

age, and a disproportionate fraction of cases occur among the elderly. According to the statistical 

sources, today in the United States, approximately one in eight women over their lifetime have a 

risk of developing breast cancer. The statistical methods for survival analysis have been 

extracted from the biomedical and epidemiologic studies of humans and animals. Basically, 

survival analysis has its application in data evaluation on the length of time it takes for 

occurrence of a specific event of interest. The event of interest can be death of person or an 

animal or any living being or study of termination of particular equipment. One can identify the 

survival rate with a possibility of data collection related to a particular disease. From the recent 

data the survival rate of patient with breast cancer is 88% after 5 years of diagnosis and 80% 

after 10 years of diagnosis (27). 

 In his book ‘Natural and Political Observations upon the Bill of Mortality’, John Graunt's 

classified registered deaths by age, period, gender and cause of death, suggested for the first time 

that death be regarded as an event which deserves systematic study (28,29). Survival data is 

mainly concerned with time or study analysis of subject or event of interest. This data may also 

contain subjects which have not experienced its effect over a time or complete study of 
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analyticity.  For instance, some patients may still be alive at the end of a study period. For these 

subjects, the exact survival times are unknown. This scenario can also be exhibited when the 

individuals do not follow-up after certain medical attention after a period of study. This would be 

beyond the practical limits to wait until every subject has died before conducting any analysis 

which is an intrinsic characteristic of survival data. This pattern of behavior cannot be validated 

to military and defense officers. Their survival time is usually estimated as the length of survival 

time at the time of leaving service and becoming the reserve. The officers that are still active at 

end of the study period are treated as censored observations. Further studies like data collection, 

evaluation and results related to objective are discussed in following sections. 

3.2 Questions of Interest 

Q1: Is there a significant difference in the average survival time between the three races? 

Q2: Is there a significant difference in the average survival of any two races? 

Q3: What is the appropriate probability distribution function (PDF) that best characterizes the 

survival time of subjects under study for Whites and African Americans and other races? 

Q4: What is the behavior of survival functions for all the three races? 

Q5: What are hazard and cumulative hazard curves explaining the behavior of the variable of 

interest? 

3.3 Data Description 

The information that we have used in this present study is obtained from SEER database 

registry. This data source SEER (Surveillance Epidemiology and End Results), which is a 

unique, reliable and essential resource for investigating the different aspects of cancer. The 



 

27 

 

SEER database combines patient-level information on cancer site, tumor pathology, stage, and 

cause of death (15, 16). In this work, we preprocessed the SEER data (period of 1992-2008 with 

all records named in breast.txt) for breast cancer to remove redundancies and missing 

information. The resulting data set provide 47,167 records, which then pre-classified into two 

groups of “survived” (29,314; 62.15%) and “not survived” (17,853; 37.85%). The “survived” 

class is all records that have a duration period value greater than or equal 204 months and the 

“not survived” class represent the remaining records. In all these cases of breast cancer women 

analyzed, which included 79.17% White women, 8.98% African American (AA), and 11.86% 

other races women (American Indian/AK native, Asian/ Pacific Islander). Our primary variable 

of interest here is the survival time and its probabilistic behavior. The overall description is 

provided in Table 3.1 and Figure 3.1 provides with the race wise descriptive statistics of the 

survival time. Table 3.3 and Table 3.4 have the details about race wise and treatment wise 

survival or otherwise of women considered in our data. 

Table 3.1 Descriptive Statistics of survival time in months 

Race Sample Size Range Mean Variance Median C.V 

Whites 37341 202 100.05 2512.7 98 0.50102 

AA 4234 202 89.183 2742.1 84 0.58717 

Others 5592 202 101.5 2201.5 97 0.46225 

 

 

Table 3.2 Survival based classification 

Censor Frequency Percent Cumulative % 

0 (Dead) 17853 37.85 37.85% 

1 (Censored) 29314 62.15 100.00% 
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Table 3.3 Race wise survival classification 

Race Coded  Censor = 0 Censor = 1 Total 

Whites (W) 1 
Frequency 14229 23112 37341 

Percent 38.1 61.9 100 

African  

Americans (AA) 
2 

Frequency 1992 2242 4234 

Percent 47.0 53.0 100 

Others (Oth) 3 
Frequency 1632 3960 5592 

Percent 29.2 70.8 100 

 
 

 

Figure 3.1 Race wise survival classification 

 
Table 3.4 Treatment Classification 

Treatment Coded  Censor = 0 Censor = 1 Total 

No treatment 1 
Frequency 6053 14656 20709 

Percent 29.2 70.8 100 

Radiation 2 
Frequency 11116 14489 25605 

Percent 43.4 56.6 100 

Radiation & 

Surgery 
3 

Frequency 182 33 215 

Percent 84.7 15.3 100 

Surgery 4 
Frequency 502 136 638 

Percent 78.7 21.3 100 
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Figure 3.2 Treatment based survival classification 

 

3.4 Comparing Survival times 

Kaplan Meier (KM) curve (30, 31) or the product-limit survival plot indicates the 

unconditional probability that a subject will survive beyond time t but do not indicate the 

proportion of subjects surviving to time t. Since all observations are considered alive at 

beginning of study, the KM survivor function starts at 1 and declines as subjects fail over time. 

From the Figure 3.3, we can see that the survival probability of an observation lasting beyond 

time period 100 months is about 0.7 for White race women, 0.58 for African American women 

and 0.78 for other race women. And the survival probability of a women with breast cancer 

surviving beyond time 150 months is about 0.56 for White women, 0.48 for African women and 

0.64 for other race women.   
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Figure 3.3 Product-Limit survival probability of the three races 

 
Table 3.5 Race Wise Summary Statistics for duration 

 

 

 
Table 3.6 Test of equality between three races 

Test of Equality over Strata 

Test Chi-Square DF 

𝑷𝒓 > 
Chi-

Square 

Log-Rank 346.8230 2 <.0001 

Wilcoxon 403.2763 2 <.0001 

-2Log(LR) 332.1676 2 <.0001 

Summary of the Number of Censored and Uncensored Data 

Values 

Stratum RACE Total Censored Failed 
Censored 

(%) 

1 W 37341 23112 14229 38.11 

2 AA 4234 2242 1992 47.05 

3 Others 5592 3960 1632 29.18 

Total  47167 29314 17853 37.85 
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Results of the comparison of survival curves between the three races are shown in Figure 

3.2, Table 3.5 and Table 3.6. Table 3.5 has details about race wise censored data followed by test 

of equality over the three races in Table 3.6. From Table 3.5, there were a total of 17853 women 

(38%) who died of breast cancer. There were a total of 29314 women (62%) that were alive at 

the last assessment period. Also, the log-rank test, which places more weight on larger survival 

times, is more significant than the Wilcoxon test, which places more weight on early survival 

times. Clearly, the rank tests for homogeneity in Table 3.6 indicate a significant difference 

between survival times between all the three the races (p < 0.0001 for the log-rank test and p < 

0.0001 for the Wilcoxon test). From Figure 3.3, other race women live significantly longer than 

White and African American race women, while African American women comparatively have 

less survival. 

 

Figure 3.4 Negative Log Survival DF 
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Figure 3.5 Log Negative Log vs. Log Duration Survival DF 

A plot of the estimated survivor function against time, a plot of the negative log of the 

estimated survivor function against time, and a plot of the log of the negative log of the estimated 

survivor function against log time are given in Figure 3.3, Figure 3.4, and Figure 3.5 

respectively. Figure 3.4 and Figure 3.5 provide an empirical check of the appropriateness of the 

exponential model and the Weibull model, respectively, for the survival data. 

If the exponential model is appropriate, the curve in Figure 3.4 should be approximately 

linear through the origin. Clearly from Figure 3.4 we cannot proceed with exponential model. If 

the Weibull model is appropriate, the curve in Figure 3.5 should be approximately linear. From 

Figure 3.5, we can notice a non-linear trend in the data, which stops us to proceed even with 

Weibull model. Since there is more than one stratum, the Figure 3.5 plot may also be used to 

check the proportional hazards model assumption. Under this assumption, the log of the negative 

log of the estimated survivor function curves should be approximately parallel across strata, 

which in this case fails. 
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3.5 Parametric Analysis 

Probability theory defines distribution by histogram of survival times, given by 

probability density function (PDF) f (t), cumulative distribution function (CDF) which is the 

cumulative area under histogram starting from left, given by 𝐹(𝑡) = ∫ 𝑓(𝑥)𝑑𝑥
𝑡

−∞
, survivor 

function 𝑆(𝑡) =  1 − 𝐹(𝑡 ), hazard function ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
 and cumulative hazard function 𝐻(𝑡) =

 ∫ ℎ(𝑥)𝑑𝑥
𝑡

0
. 

3.5.1 Probability Density Function 

The probability density function (PDF) is also very useful in describing the continuous 

probability distribution of a random variable. The PDF of a random variable T, denoted𝑓(𝑡), is 

defined by𝑓(𝑡)  =  𝑑 𝐹(𝑡) / 𝑑𝑡, where 𝐹(𝑡) is the cumulative density function (CDF).That is, the 

pdf is the derivative or slope of the cumulative density function (CDF),𝐹 (𝑡). Every continuous 

random variable has its own density function, the probability 𝑃 (𝑎 <  𝑇 <  𝑏) is the area under 

the curve between a, b. In this chapter we tried to identify the best fit probability function that 

characterizes the survival time for all the three races (Whites, AA & Others) separately. We have 

identified Generalized Extreme Value distribution (GEV) as the best fit for both White and 

African American races with -0.25296, 81.455, 49.931 and -0.17371, 67.907, 49.663 as 

estimated shape, location and scale parameters for Whites and African American women 

respectively. Lognormal is identified as the best fit for the other race women with estimated 

shape, location and scale parameters as 0.07439, -529.26, and 6.4442. Figure 3.6, Figure 3.7, 

Figure 3.8 are the PDF’s for the three races and Table 3.7 gives the details of the parameter 

estimates of the fit. 
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The Generalized Extreme Value (GEV) distribution (32 – 34) is a flexible three-

parameter model that combines the Gumbel, Fréchet, and Weibull maximum extreme value 

distributions. GEV also has a link to logit functions. GEV has the following analytic form of 

PDF, 

 

1

𝜎
exp {−(1 + 𝑘𝑧)−1 𝑘⁄ (1 + 𝑘𝑧)−1−(1 𝑘⁄ )      𝑓𝑜𝑟 𝑘 ≠ 0 

1

𝜎
exp(−𝑧 − exp (−𝑧))                                    𝑓𝑜𝑟 𝑘 = 0 

 

k, σ, µ are the shape, scale, and location parameters respectively. The scale must be positive  

(σ >0), the shape and location can take on any real value. The range of definition of the GEV 

distribution depends on𝑘. Specifically, the three cases 𝑘 = 0, 𝑘 > 0, 𝑎𝑛𝑑 𝑘 < 0 correspond to 

the Gumbel, Fréchet, and "reversed" Weibull distributions. 

The three parameter lognormal distribution (34, 35) is based on the Normal distribution. A 

random variable is log normally distributed if the logarithm of the random variable is normally 

distributed. With 𝑥 >  µ ≥  0 ;   −∞ <  𝜎 <  ∞;   𝑘 >  0, and µ is the location parameter, that 

defines the point where the support set of the distribution begins; σ is the scale parameter that 

stretch or shrink the distribution and k is the shape parameter that affects the shape of the 

distribution the probability distribution function of three parameter lognormal distribution 

function and its corresponding cumulative distribution function (CDF) are given by: 

𝑓(𝑥) =  
1

(𝑥 − 𝜇)𝑘√2𝜋
𝑒𝑥𝑝 {−

[ln(𝑥 − 𝜇) − 𝜎]2

2𝑘2
} 

 

f (x) =  
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𝐹(𝑥) = Φ {
ln(𝑥 − 𝜇) − 𝜎

𝑘
} 

FOR WHITE RACE WOMEN: The fitted GEV distribution that characterizes the breast 

cancer survival time for White race women is (𝑥) =
1

49.931
exp {−(1 +

(−0.253)𝑧)−1 (−0.253)⁄ (1 + (−0.253)𝑧)−1−(−0.253) }; 𝑤ℎ𝑒𝑟𝑒 𝑧 =
𝑥−81.455

49.931
. The graph of the 

fitted distribution is given in Figure 3.6. 

 

Figure 3.6 PDF of White (GEV distribution) 

 

FOR AA RACE WOMEN: The fitted GEV distribution that characterizes the breast 

cancer survival time for AA race women is  𝑓(𝑥) =
1

49.663
exp {−(1 +

(−0.174)𝑧)−1 (−0.174)⁄ (1 + (−0.174)𝑧)−1−(−0.174) }; 𝑤ℎ𝑒𝑟𝑒 𝑧 =
𝑥−67.907

49.663
 . The graph of the 

fitted distribution is given in Figure 3.7. 
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Figure 3.7 PDF of AA race (GEV distribution) 

  
FOR OTHER RACES WOMEN: The fitted lognormal distribution that characterizes the 

breast cancer survival time for other race women is   

𝑓(𝑥) =  
1

(0.0744)(𝑥−(−529.26))√2𝜋
𝑒𝑥𝑝 {−

[ln(𝑥−(−529.26))−6.444]2

2(0.0744)2 }.  

The PDF graph is given in Figure 3.8. 

 

 

 

Figure 3.8 PDF for Other races ( Lognormal distribution) 
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Table 3.7 Parameter estimates for the identified distributions 

Race PDF Shape(𝒌̂) Location(𝝁̂) Scale(𝝈̂) 

Whites Generalized Extreme Value -0.25296 81.455 49.931 

African Americans Generalized Extreme Value -0.17371 67.907 49.663 

Others Log Normal 0.07439 -529.26 6.4442 

 

3.5.2  Comparison of average survival and confidence interval estimation 

The 95% confidence intervals for the mean duration and median survival for all the three 

race women are given below in Table 3.8.The median death time (median survival) for a White 

women with breast cancer is 179 months and for African American Women is 135 months. 

There is no median value reported for the survival of other race women because the product-limit 

estimator for these data never reached a failure probability greater than 42.40% or a survival 

probability lower than 57.60%. Now we proceed to identify the survival, hazard, cumulative 

hazard functions for the three races.  

Let 𝜇𝑤, 𝜇𝑎𝑎, 𝑎𝑛𝑑 𝜇𝑜𝑡ℎ represent mean survival times of whites, African Americans and 

other races respectively. Our interest is to test the hypothesis whether all the three races have 

same mean survival time or otherwise. 

𝐻0: 𝜇𝑤   = 𝜇𝑎𝑎  = 𝜇𝑜𝑡ℎ 𝑣𝑠. 𝐻1:  𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒𝑚 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙. 

By performing a one way analysis of variance at 5% level of significance, we obtained 

the p-value which is very low (p < 0.0001 for F=96.413); leading us to the conclusion that there 

is significant difference between the average mean survival times of the three races. Also, non-

parametric testing using Kruskal-Wallis supports the current decision. So, we now proceed in 
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pair wise testing of mean survival times for all three races. The Table 3.9 below has the details of 

the results after performing t-test for pair wise testing. Clearly, we conclude that the average 

survival times is significantly different for all the three races in this study. Additionally, at 5% 

level of significance, we conclude that average survival times of White women is greater than 

African American women and less than other race women. African American women has less 

average survival compared to the other two races. 

 
Table 3.8 Confidence intervals of mean duration and median survival 

Race Mean Survival: (95% CI) Median survival: (95% CI) 

Whites 100.05: (99.54, 100.56) 179: (175, 186) 

African Americans 89.183: (87.61, 90.76) 135: (126, 145) 

Others 101.5: (100.27, 102.73) - 

 
 

Table 3.9 Pair-wise hypothesis testing for average survival times of three races 

HNull HAlternative 
P-

value 
Conclusion 

95% CI for mean 

differences 

𝜇𝑤   = 𝜇𝑎𝑎 𝜇𝑤not equals 𝜇𝑎𝑎 0.000 Reject Null (9.28, 12.45) 

𝜇𝑎𝑎   = 𝜇𝑜𝑡ℎ 𝜇𝑎𝑎not equals 𝜇𝑜𝑡ℎ 0.000 Reject Null (-14.32, -10.33) 

𝜇𝑤   = 𝜇𝑜𝑡ℎ 𝜇𝑤not equals 𝜇𝑜𝑡ℎ 0.042 Reject Null (-2.86, -0.05) 

 

 

3.6  Cumulative Distributive Function 

The cumulative distribution function is very useful in describing the continuous 

probability distribution of a random variable, such as time, in survival analysis. The cumulative 

distribution function (CDF) of a random variable T, denoted 𝐹𝑇(𝑡), is defined by 𝐹𝑇(𝑡)  =

𝑃𝑇(𝑇 <  𝑡). This is interpreted as a function that will give the probability that the variable T will 

be less than or equal to any value 𝑡 that we choose. Several properties ofa distribution function 

𝐹(𝑡) can be listed as a consequence of the knowledge of probabilities. Because 𝐹(𝑡) has the 
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probability0 < 𝐹(𝑡)  <  1, then 𝐹(𝑡) is a non-decreasing function of t, and as t approaches ∞, 

𝐹(𝑡) approaches 1. Figure 3.9, Figure 3.10, Figure 3.11 depict the respective CDF’s for all the 

three races.  

 

 

Figure 3.9 CDF for Whites 

 

The fitted GEV CDF for the other White women is given below. The CDF graph is given 

in Figure 3.9.  

𝐹(𝑥) = 𝑒𝑥𝑝 {− [1 + (−0.253)(
𝑥 − 81.455

49.931
)]

−1
(−0.253)⁄

} 

 

In the Figure 3.9 above we can clearly notice that for White women with breast cancer 

the probability of surviving more than 100 months is little more than 50%. i.e. 𝑃(X𝑤 > 100)  =

 0.5. Thus, by 100 months, a White women identified with breast cancer has accumulated quite a 

bit of risk, which begins to accumulate more slowly after this point.  
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Similarly, from the Figure 3.10 below we can see that the probability of surviving 100 

months or fewer is near 60%. i.e., 𝑃(X𝑎𝑎 > 100)  =  0.4. Thus, by 100 months, an African 

American women identified with breast cancer has accumulated quite a bit of risk, comparatively 

more than White women, which then begins to accumulate more slowly after this point.  

 

 

Figure 3.10 CDF for African Americans 

The fitted GEV CDF for the other AA women is given below. The CDF graph is given in 

Figure 3.10.  

𝐹(𝑥) = 𝑒𝑥𝑝 {− [1 + (−0.174)(
𝑥 − 67.907

49.663
)]

−1
(−0.174)⁄

} 
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Figure 3.11 CDF for Others 

The fitted Lognormal CDF for the other race women is given below.  The graph of the 

same is given in Figure 3.11. 

𝐹(𝑥) = Φ {
ln(𝑥 − (−529.26)) − 6.4442

0.0744
} 

From the above Figure 3.11 the probability of surviving 100 months or fewer for other 

race women is near 50%. i.e., 𝑃(X𝑜𝑡ℎ > 100) =  0.5. Thus, by 100 months, equaling with White 

women survival, a patient from other races identified with breast cancer has accumulated quite a 

bit of risk by then. 

 

3.7 Survival Function 

Let T > 0 have a probability density function (PDF) 𝑓(𝑡)and cumulative distribution 

function (CDF)𝐹(𝑡). Survival experience is described by the cumulative survival function given 

by 
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Survivor function 𝑆(𝑡) = chance of surviving to age t 

 = percent still alive at age t 

𝑆(𝑡)  =  𝑃 {𝑇 >  𝑡}  =  1 −  𝐹(𝑡) 

Evidently, 𝑆(𝑡)is the survival probability: the probability that the event will not happen 

until time t. The survival function gives the probability of surviving or being event-free beyond 

time t. Because 𝑆(𝑡) is a probability, it is positive and ranges from 0 to 1. It is defined as 𝑆(0)  =

 1 and as t approaches ∞, 𝑆(𝑡) approaches 0. The Kaplan-Meier estimator, or product limit 

estimator, is the estimator used by most software packages because of the simplistic step idea. 

The Kaplan-Meier estimator incorporates information from all of the observations available, both 

censored and uncensored, by considering any point in time as a series of steps defined by the 

observed survival and censored times. The survival curve describes the relationship between the 

probability of survival and time. 

From the Figure 3.12, the probability of White women surviving beyond 150 months is a 

little less than 0.2, and we see that the probability of surviving 150 months or fewer is a little 

more than 0.8. From the Figure 3.13 and Figure 3.14, we notice that, the probability of African 

American women and other race women surviving beyond 150 months is a little less than 0.1 

and 0.15 respectively. Clearly White women has more probability of survival than other two 

races. The fitted form of survival functions for all the three races are given below. 

For white women: 𝑆(𝑥) = 1 − 𝐹(𝑥) = 1 − 𝑒𝑥𝑝 {− [1 + (−0.253)(
𝑥−81.455

49.931
)]

−1
(−0.253)⁄

} 

For AA women: 𝑆(𝑥) = 1 − 𝐹(𝑥) = 1 − 𝑒𝑥𝑝 {− [1 + (−0.174)(
𝑥−67.907

49.663
)]

−1
(−0.174)⁄

} 

 

For Other race women: 𝑆(𝑥) = 1 − 𝐹(𝑥) = 1 − Φ {
ln(𝑥−(−529.26))−6.4442

0.0744
} 
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Figure 3.12 Survival DF for Whites 

 

Figure 3.13 Survival DF for African Americans 
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Figure 3.14 Survival DF for others 

 

3.8 Hazard Function 

The hazard at time t, ℎ(𝑡) as the probability of an event at the interval [𝑡, 𝑡 + 𝛥𝑡], 

when𝛥𝑡 → 0.   To find an expression for ℎ(𝑡), we should realize that ℎ(𝑡) must be a conditional 

probability: it is conditional on not having the event up to time t (or conditional on surviving to 

time t.). The hazard is the probability of dying (or experiencing the event in question) given that 

patients have survived up to a given point in time, or the risk for death at that moment. 

The connection between hazard, survival, PDF and CDF is given below. The CDF is the 

best starting point. From CDF we get to PDF and then to hazard. Hazard function, 

ℎ(𝑡) = age-specific death rate = percent dying at age t of those alive at age greater or equal to t, 

ℎ(𝑡) =  
𝑑𝐹

𝑑𝑡⁄

𝑆(𝑡)
=

𝐹′(𝑡)

𝑆(𝑡)
=

𝑓(𝑡)

𝑆(𝑡)
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The hazard function has formulation as in the Cox model assumes the subject i at time t 

of the form, ℎ𝑖(𝑡) = ℎ0(𝑡) 𝑒𝑥𝑝(𝑋𝑖𝛽
𝑃𝐻), where Xi is the set of covariates for subject i (at time t), 

βPH is the vector of fixed effects regression coefficients, ho (t) is the baseline hazard (at time t ). 

The meaning of the formula stated above implies that if you survive to 𝑡, you will succumb to the 

event in the next instant. This function additionally assumes baseline h0 to correspond to specific 

distribution with PH property. The above equation is the number of deaths per unit time in the 

interval divided by the average number of survivors at the midpoint of the interval. The hazard 

function is commonly known as the instantaneous failure rate. It is the measure of the risk of 

failure at a point in the time during the aging process. 

 

The graph of the hazard rates of White women (Figure 3.15) shows that probability of 

failing (conditional on having survived to time t) remains below 0.05 for the first 100 months 

whereas from Figure 3.16 for African American Women probability of failing remains below 

0.02 for the first 100 months and hazard rises steeply over 100 months. The hazard of other race 

women from Figure 3.17 displays the probability of failing is below 0.016 until first 100 months 

and then rising linearly thereafter. The fitted hazard function for all the three races are given 

below. 
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Figure 3.15 Hazard Function for Whites 

 

ℎ(𝑥) =

1

49.931
exp {−(1 + (−0.253)𝑧)−1 (−0.253)⁄ (1 + (−0.253)𝑧)−1−(−0.253)}

1 − 𝑒𝑥𝑝 {− [1 + (−0.253)(
𝑥−81.455

49.931
)]

−1
(−0.253)⁄

}

 

 

 

 

Figure 3.16 Hazard Function for African Americans 

ℎ(𝑥) =

1

49.663
exp {−(1 + (−0.174)𝑧)−1 (−0.174)⁄ (1 + (−0.174)𝑧)−1−(−0.174) }

1 − 𝑒𝑥𝑝 {− [1 + (−0.174)(
𝑥−67.907

49.663
)]

−1
(−0.174)⁄

}
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Figure 3.17 Hazard Function for Others 

ℎ(𝑥) =
 

1

(0.0744)(𝑥−(−529.26))√2𝜋
𝑒𝑥𝑝 {−

[ln(𝑥−(−529.26))−6.444]2

2(0.0744)2 } 

1 − Φ {
ln(𝑥−(−529.26))−6.4442

0.0744
}

 

 

3.9 Cumulative Hazard Function 

The cumulative hazard function 𝐻(𝑡)is the integral of the hazard function ℎ(𝑡). It can be 

interpreted as the probability of failure at time x given survival until time x. As the name implies, 

cumulative hazard function cumulates hazards over time.  

𝐻(𝑡) =  ∫ ℎ(𝑥)𝑑𝑥

𝑡

0

 

Clearly is the area under the curve of the function ℎ(𝑥), on the interval from 0 to t. A 

given cumulative hazard will remove a certain proportion of objects (or be associated with a 

probability of surviving beyond t). For example, a cumulative hazard of 0 (i.e.,𝐻(𝑡) = 0) has 

100% associated survival (i.e.𝑆(𝑡) = 1). The above equation can also be expressed as 𝐻(𝑡) =

−ln (1 − 𝐹(𝑡)). The cumulative hazard function gives the number of expected number of failures 
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over time interval t. When the survival function is at its maximum at the beginning of analysis 

time, the cumulative hazard function is at its minimum. As time progresses, the survival function 

proceeds towards it minimum, while the cumulative hazard function proceeds to its maximum.  

From Figure 3.18, Figure 3.19 and Figure 3.20 it is clear that the cumulative hazard 

function, H (t) increases more rapidly over time, supporting our previous results. H (t) for 

African Americans is comparatively more than the other two races. 

 

 

Figure 3.18 Cumulative Hazard Function for Whites 

 

Figure 3.19 Cumulative Hazard Function for African Americans 
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Figure 3.20 Cumulative Hazard Function for others 

3.10 Conclusion 

Lower p-values in log-rank test and product-limit survival curves indicated a statistically 

significant difference between the survival times of all the three races. Compared with White 

women and African American women, other race women has more probability of survival. This 

is also supported by survival curves and hazard functions in the later sections of this chapter. 

However the median survival for other race women and White women is almost same and 

African American women has comparatively very less median survival.  

Survival resulting from breast cancer specifically were analyzed for the study population 

overall by race and treatment taken at diagnosis and summarized in Table 3.3 and Table 3.4. 

From Table 3.4, it is interesting to learn that the probability of survival and death is almost very 

close for the patients who underwent radiation alone. The probability density function that best 

characterizes the behavior of survival time are identified as GEV distribution for Whites and 

African American race women and Log Normal distribution for other race women. The 

parameter estimates of these distributions are given in Table 3.7.  
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CHAPTER FOUR  

Modeling of Breast Cancer Survival Data 

 

4.0 Introduction 

Survival analysis today is widely implemented in the fields of medical and biological 

sciences, social sciences, econometrics, and engineering. The basic principle behind the survival 

analysis implies to a statistical approach designed to take into account the amount of time 

utilized for a study period, or the study of time between entry into observation and a subsequent 

event. The event of interest pertains to death and the analysis consisted of following the subject 

until death (36). Events or outcomes are defined by a transition from one discrete state to another 

at an instantaneous moment in time. Examples include time until onset of disease, time until 

stock market crash, time until equipment failure, and so on. Although the origin of survival 

analysis rests with the mortality tables from centuries ago, this type of analysis was not well 

developed until World War II (37). At the end of the war, the use of these newly developed 

statistical methods quickly spread through private industry as customers are demanding for safer 

and more reliable products.  

In survival analysis, a data set can be categorized as exact or censored, and it may also be 

truncated. Another name for exact data is uncensored data which occurs only when the precise 

time until the event of interest is known. Censored data arises when a subject’s time until the 

event of interest is known to occur only in a certain period of time. For example, if an individual 

drops out of a clinical trial before the event of interest has occurred, then that individual’s time-
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to-event is right censored at the time point at which the individual left the trial. The time until an 

event of interest is truncated if the event time occurs within a period of time that is outside the 

observed time period (38).  

4.1 Questions of Interest 

Q1: How long a woman with breast cancer will survive after undergoing certain 

treatments? (Radiation or surgery or both radiation and surgery or no treatment).  

Q2: What is the effectiveness of treatments when implemented in different stages of 

breast cancer? 

Q3: Given a vector of covariates or explanatory variables is there a parametric survival 

model that may affect survival time of breast cancer women? 

Q4: How good is the popular Kaplan Meier survival analysis when compared with others 

(parametric and nonparametric functions)? 

Q5: Does the Cox proportional hazards survival analysis provide any additional 

information with respect to survival function? 

Q6: Is there any significant difference in proposed parametric survival model and Cox 

PH models? 

 

4.2 Survival and Hazard functions 

Survival time can be estimated as a variable which calculates the time between the 

starting point and ending point of event of interest or time of interest. In medical field (39) it is 

termed as the period elapsing between the completion or institution of any procedure and death. 

The survival time and event data is collected on practical grounds which is either censored or 

truncated. 
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Let us recall the definition of survival function as discussed in the previous chapter.  This 

survival function is also termed as survivor or reliability function. It is defined as the probability 

associated with the mortality rate or failure of some system. This survival function (40) is 

obtained by plotting graph of associated probabilities against time. The survival function can be 

expressed with help of another distribution used commonly in statistical techniques, namely 

cumulative probability function CDF denoted as F(t). The survivor function is defined as the 

complement of the CDF which is formulated in the relationship below 

𝑆(𝑡)  =  𝑃𝑟(𝑇 > 𝑡)  =  1 −  𝐹(𝑡) 

Similarly Hazard function is an alternative representation of the distribution of T or the 

instantaneous occurrence of the event and is defined as 

𝜆(𝑡) = lim
𝑑𝑡→0

Pr (𝑡 < 𝑇 ≤ 𝑡 + 𝑑𝑡|𝑇 > 𝑡)

𝑑𝑡
 

The above expression is termed as the instantaneous rate of occurrence for the 

conditional probability that the event will occur in the time interval between t and (t+dt) as it has 

not occurred before. 

By the prior computation of the conditional probability in the numerator and application 

of limits gives the hazard function as 

𝜆(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
 

In other words the hazard function can be stated as the rate of the occurrence of the event 

at time 𝑡 equals to the probability density at time 𝑡 divided over the probability of the surviving 

to that duration without experiencing the event. The above formula can be expressed using the 

relation between density and survival function as follows 

𝜆(𝑡) = −
𝑑

𝑑𝑡
log 𝑆(𝑡) 
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The above expression of hazard function is integrated using limits 0 to 𝑡 and applying the 

boundary condition S(0)=1 (which implies event not occurred at time 0) to obtain relation 

between hazard and survival function as follows 

𝑆(𝑡) = exp (− ∫ 𝜆(𝑥)𝑑𝑥)
𝑡

0

 

 

4.3 Statistical Approach of Survival Analysis 

The survival analysis can be carried out using various statistical approaches (41) like  

1. Descriptive statistics (includes mean or median of survival, average hazard rate etc.) 

2. Univariate statistics (survival curves) 

3. Multivariate statistics (Parametric, non-parametric and semi-parametric survival analysis) 

The first two classifications of survival analysis have their respective advantages and 

disadvantages which are applicable in only few cases. The third classification is observed to be 

present generation scenario for survival function analysis. Survival models for the analysis of 

data have three main characteristics: (i) the dependent variable or response is the waiting time 

until the occurrence of a well-defined event, (ii) observations are censored, in the sense that for 

some units the event of interest has not occurred at the time the data are analyzed, and (iii) there 

are predictors or explanatory variables whose effect on the waiting time we wish to assess or 

control (128).  

The basic definition of three types of analysis carried under multivariate statistics are 

given below. 

1. Parametric Analysis: This analysis assumes distributions for outcome, and base statistical 

analysis on assumed distributions (check the validity of assumptions). 
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2. Non-parametric Analysis: This analysis avoids distribution or quantitative assumptions and 

relies completely on design properties. 

3. Semi-parametric Analysis: This analysis is an intermediate between above two types of 

analysis, but will make some assumptions to avoid fully specified statistical model (42). 

4.4 Non-parametric Analysis (NP) 

Estimating the distribution of the dependent variable without making assumptions about 

its shape is an important first step in analyzing a dataset. Given the importance of the distribution 

of the dependent variable it is valuable to “let the data speak for itself” first (43). Estimating the 

probabilities without making any assumptions on its shape is called non-parametric analysis. The 

function used to represent the distribution is the Survivor function. Nonparametric methods do 

not require the knowledge of the underlying distribution of the failure time 𝑡. Hence it provides 

an edible way to deal with the data in many practical situations. The seminar paper by Kaplan 

and Meier (44) is the benchmark in survival analysis especially from nonparametric point of 

view. It compelled the application of descriptive statistics and improved the development of all 

existing NP approaches with censored data. The survivor function is calculated by dividing the 

number of survivors by the total number of subjects for every time. 

4.4.1 Kaplan-Meier Estimator 

The Kaplan-Meier estimator originally was derived as an NP maximum likelihood 

estimator of 𝐹(𝑡). Because of the latter method of derivation, it is also called as the product-limit 

(PL) estimator. If the data was not censored then the empirical survival function is given by 

𝑆(𝑡) =  
1

𝑛
∑ 𝐼{𝑡𝑖 > 𝑡},

𝑛

𝑖=1
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Where 𝐼 is termed as the indicator function which takes a value of one if the condition 

𝑡𝑖 > 𝑡 is true or zero otherwise (45). The estimator is simply the proportion alive at 𝑡. For the 

censored data, assume the ordered times of death as𝑡1 < 𝑡2 < 𝑡3 … … < 𝑡𝑚 and 𝑑𝑘 be the death 

occurred at 𝑡𝑘. Let 𝑛𝑘 be the number of persons alive just before 𝑡𝑘. This is the number exposed 

to risk at that time. The Kaplan-Meier (KM) or product limit estimate of the survivor function is 

𝑆̂(𝑡) = ∏ (1 −
𝑑𝑖

𝑛𝑖
)

𝑖:𝑡(𝑖)<𝑡

 

The justification of the estimate is explained as follows. In order to survive until the time 

𝑡 one must first survive until the time 𝑡1. And the conditional probability of surviving from 𝑡2 to  

𝑡1 given already survived  𝑡1 is to be satisfied. The Kaplan-Meier (KM) is a step function with 

jumps at the observed times. If no censoring is present, the KM coincides with the empirical 

survival function (46).  

As mentioned earlier, KM estimator can be interpreted as the non-parametric likelihood 

estimator (NPML) for the death or censored data at time 𝑡. The assumptions formulated for this 

method requires that the likelihood of the subject is 𝑆(𝑡) at 𝑡 is to be maximized as large as 

possible. Since the survival is a non-decreasing function, it does not change at the censoring 

times. Also if a person dies at 𝑡 which is distinct from times of the death we introduced before. 

Let it be time 𝑡𝑖. We need to make the survival function before  𝑡𝑖 as large as possible. Based on 

the above criteria the likelihood takes the form  

𝐿𝑖 = ∏[𝑠(𝑡(𝑖−1)) − 𝑆(𝑡(𝑖))]𝑑𝑖𝑆(𝑡(𝑖))𝑐𝑖

𝑚

𝑖=1
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This is the product over 𝑚 distinct times of death. By taking 𝑡(0) = 0 with 𝑆(𝑡(0))  =  1. 

Estimation of survival function at the death times 𝑡(1), 𝑡(2), . . . , 𝑡(𝑚) for 𝑚 parameters is 

obtained. 

𝜋𝑖 =
𝑆(𝑡𝑖)

𝑆(𝑡𝑖−1)
 

Writing the above expression for the conditional probability of surviving from 𝑆(𝑡𝑖−1) to 

𝑆(𝑡𝑖). Then we can write 𝑆(𝑡𝑖) =  𝜋1𝜋2 … … … 𝜋𝑖 , and the likelihood changes to the following 

expression 

𝐿𝑖 = ∏(1 − 𝜋𝑖)
𝑑𝑖𝜋𝑖

𝑐𝑖(𝜋𝑖𝜋2 … … . . 𝜋𝑖−1)𝑑𝑖+𝑐𝑖

𝑚

𝑖=1

 

In all these cases, individuals who die at time 𝑡𝑖or the time between 𝑡𝑖 and 𝑡𝑖+1also 

contribute to the term 𝜋𝑗 to each of the previous term of death from 𝑡(1)to 𝑡(𝑖−1). Let us assume 

𝑛𝑖 = ∑ (𝑑𝑗 + 𝑐𝑗)𝑗≥𝑖  to be number exposed to risk at 𝑡𝑖and now the L likelihood can be written as 

𝐿𝑖 = ∏(1 − 𝜋𝑖)
𝑑𝑖

𝑚

𝑖=1

𝜋𝑖
𝑛𝑖−𝑑𝑖 

The maximum likelihood estimator of 𝜋𝑖 is then  

𝑆̂(𝑡) = 𝜋̂𝑖 =
𝑛𝑖 − 𝑑𝑖

𝑛𝑖
= 1 −

𝑑𝑖

𝑛𝑖
 . 

In order to estimate 𝑣𝑎𝑟 (𝑆̂(𝑡)), we use the delta method which says, if X ~𝑁(𝜇, 𝜎2) then 

𝑓(𝑋) is approximately normally distributed with mean 𝑓(𝜇) and variance [𝑓′(𝜇)]2𝜎2. Also 

instead of estimating the 𝑣𝑎𝑟 (𝑆̂(𝑡)), we can use the delta method to approximate the 

𝑣𝑎𝑟(log (𝑆̂(𝑡)) with  log (𝑆̂(𝑡))=∑ log (1 − 𝜆̂𝑗)𝑗:𝑡𝑗<𝑡 . Using independence of the 𝜆̂𝑗′𝑠 we get the 

Greenwood’s Formula given by 
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𝑣𝑎𝑟 (𝑆̂(𝑡)) = [𝑆̂(𝑡)]
2

𝑣𝑎𝑟 [log (𝑆̂(𝑡))],   

Implying, 

𝑣𝑎𝑟 (𝑆̂(𝑡)) = [𝑆̂(𝑡)]
2

∑
𝑑𝑗

(𝑟𝑗 − 𝑑𝑗)𝑟𝑗𝑗:𝑡𝑗<𝑡

 

And the sample standard error for computing confidence interval is given by  

𝑆𝐸 (𝑆̂(𝑡)) = 𝑆̂(𝑡)√ ∑
𝑑𝑗

(𝑟𝑗 − 𝑑𝑗)𝑟𝑗𝑗:𝑡𝑗<𝑡

 

4.4.2 The Nelson-Aalen Estimator 

For estimating a cumulative hazard 𝐻(𝑡), one simple approach is to find an estimator of 𝑆(𝑡) 

and take minus the log. An alternativeapproach is to estimate the cumulative hazard directly 

using the Nelson-Aalen estimator. The Nelson Aalen estimator is a non-parametric estimator of 

the cumulative hazard rate function from censored survival data (47). Consider a sample of n 

individuals from a right censored survival population. Our observation of the survival times for 

these individuals will typically be subject to right censoring meaning that for some individuals 

we only know that their true survival times exceed certain censoring times. The censoring is 

assumed to be independent in the sense that the additional knowledge of censorings before any 

time t does not alter the risk of failure at t. The Nelson-Aalen estimator is a step function with the 

location of the steps placed at each observed death time and the vertical size of the steps is the 

inverse of number at risk, Where number at risk is the number of patients just before the death 

that are still observed to be alive. With larger samples the Nelson-Aalen estimator will get closer 

to the true cumulative hazard. The Nelson-Aalen estimator is given by  
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𝐻(𝑡)̂ = ∑
𝑑𝑗

𝑟𝑗
𝑡𝑗<𝑡

 

where 𝑑𝑗  is the subjects who die at time𝑡𝑗and 𝑟𝑗is the number of subjects at risk just prior to time 

𝑡𝑗 . The variance of the estimator is given by  

𝑉𝑎𝑟(𝐻(𝑡)̂) = ∑
𝑑𝑗(𝑟𝑗 − 𝑑𝑗)

𝑟𝑗
2(𝑟𝑗 − 1)

𝑡𝑗<𝑡

≈ ∑
𝑑𝑗

𝑟𝑗
2

𝑡𝑗<𝑡

 

The advantage of non-parametric analysis is that the results do not rest on the 

assumptions. The disadvantage is that we can only compare limited number of groups which 

implies it is very difficult to see the impact of multiple explanatory variables on the subjects 

(48). Another disadvantage of non-parametric techniques is that it can only deal with the 

quantitative explanatory variables like GDP, rich and poor countries etc. 

4.4.3 Kaplan Meier Estimation for breast cancer survival 

4.4.3.1 Effect of treatments on survival of breast cancer 

Considering the breast cancer survival data, in this chapter we are interested in knowing 

how long women with breast cancer will survive after undergoing certain treatments. Treatments 

include radiation or surgery or both radiation and surgery or no treatment. Also we would like to 

know the effectiveness of treatments when implemented in different stages of breast cancer. 

Firstly we considered the effectiveness of treatments on survival for the overall data. From the 

Table 4.1 women who are treated with radiation have a median survival of 154 months with 95% 

CI (149, 157) months. Interestingly, women those who are treated with both treatments has the 

same median survival as of women who received surgery. There is no median value reported for 

the survival of women who did not receive any treatment because the KM estimator for these 

data never reached a failure probability greater than 41.50% or a survival probability lower than 
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58.50%. Figure 4.1 is the product-limit survival graph for all the four treatment types. 

Treatments 3 & 4 in the graph follow almost the same path. The probability of survival for a 

women identified with breast cancer to survive more than 50 months is approximately 82% for 

women who did not receive any treatment, 78% for surgery, 30% for combination of radiation 

and surgery and 30% for those who are treated with surgery. 

 

Table 4.1 Treatment wise KM estimates for median survival 

Treatment No treatment Radiation 
Radiation & 

Surgery 
Surgery 

Median Survival - 154 25 25 

95% CI - [149, 157) [21, 30) [21, 29) 

 

 

 
 

Figure 4.1 Product-Limit estimates for treatments 
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Table 4.2 Stage vs. Treatment Product-Limit Estimates for median survival 

 
No 

treatment 
Radiation 

Radiation & 

Surgery 
Surgery 

Stage I ─ 178(172, -) 104(53, -) 62(42, 100) 

Stage II ─ 
145(140, 

149) 
128(45, -) 43(32, 66) 

Stage 

III 
93(81, 103) 52(47, 57) 32(24, 110) 27(17, 31) 

Stage 

IV 
34(28, 39) 23(21, 27) 17.5(12, 22) 14.5(11, 18) 

 

 

 4.4.3.2 Stage wise effect of treatments of breast cancer 

Further we continued to check the survival probability of breast cancer women treated in 

every stage with different treatments. The median survival in months and the respective 95% 

confidence interval based on their stage of cancer is tabulated in Table 4.2. The median survival 

for those who are in stage I and stage II who did not receive any treatment for breast cancer is 

not reported because the KM estimator for these data never reached a failure probability greater 

than 35.28% or a survival probability lower than 64.72% for the former case and data never 

reached a failure probability greater than 45.29% or a survival probability lower than 54.71% for 

the latter case. The Figure 4.2 clearly depicts that the probability of survival for those who are 

treated with surgery in all the four stages falls down rapidly. 
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Figure 4.2 KM Estimates for Stages Vs. Treatments 

 

 

 

 

Stage-1 vs. Treatments Stage-2 vs. Treatments 

Stage-3 vs. Treatments 
Stage-4 vs. Treatments 
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4.5 Parametric Analysis 

This type of analysis assumes a functional form of the probability distribution and the 

way in which explanatory variables influence the survival time. The first assumption is also 

called as time dependence because of its functional form of probability distribution. With 

growing computing power and existing statistical programming languages, it is relatively simple 

to work with exact likelihood for censored or truncated data with a variety of parametric models. 

Parametric survival model provides the possibility of more efficiency (43). It is proved to be 

interesting to assume a specific distribution for underlying hazard function (to obtain a full 

hazard or survival function). There may be a provision for non-proportional hazard functions 

also. The direct regression approach for the survival time estimation is given by  

𝐸(𝑡𝑖) = 𝛽𝑜 + 𝑋𝑖𝛽  or  𝑡𝑖 = 𝛽𝑜 + 𝑋𝑖𝛽 + 𝜀𝑖 

where  𝜀𝑖 refers to the survival error distribution. 

This direct regression computation has some problems for estimating survival time like 

the distribution of ti is right skewed (non-normal), the estimator of time may not be the parameter 

of interest (not equal to hazard) and censoring must be accounted. 

The above concerns are addressed using two possible approaches of parametric analysis.  

1. Accelerated failure time models (AFT models) 

2. Proportional hazard model (PH models) (49) 

These models are provided as the common scales for the distributions in parametric 

survival models. Both PH and AFT models were analyzed on basis of t-scale over the 

distributions with interval (0, ∞), whereas the AFT models were also interpreted on the basis of 

𝑙𝑛(𝑡) − scale over the distributions termed as pure AFT models. Distributions that are commonly 

used in parametric analysis using AFT are addressed below.  



 

63 

 

4.5.1 Parametric Model selection: Goodness of fit Tests 

There are few common statistical methods for comparisons of survival models.  

a) Log-likelihood test for the censored data,  

b) AIC,  

c) Cox-Snell Residual plots and  

d) Likelihood-Ratio Statistic.  

The AIC is an operational way of trading off the complexity of an estimated model 

against how well the model fits the data. The AIC is calculated by 

𝐴𝐼𝐶 =  −2 𝑙𝑜𝑔 (𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑)  + 2 (𝑝 + 𝑘), 

where 𝑝 is the number of parameters, 𝑘 = 1 for the exponential model, 𝑘 = 2 for the Weibull, 

log logistic, and log normal models and 𝑘 = 3 for generalized gamma.  

A likelihood ratio test (LRT) is also used to compare the fit of two models. The LRT test 

statistic is twice the difference in the log-likelihoods of the models considered for comparison. 

We generally select the model that gives the largest log-likelihood.  

Other methods include graphical methods (for all distributions mentioned), Cox-Snell 

Residual plots among others (52). Parametric models are fit to the event times and semi-

parametric models are fit to the ordered event times respectively. In both the cases we use the 

AIC to select between parametric models, or to select between semi-parametric models, but not 

to select from a mixture of the two. The AIC or likelihood tests allow us to assess relative model 

goodness of fit, but not absolute model goodness of fit. Just because the second model fits better 

than the first model, it does not mean the second model adequately describes the data. Thus, we 
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would like a method, at least a graphical one that lets us assess the absolute goodness of fit of a 

parametric model. The Table 4.3 below provides information regarding graphical check for 

goodness of fit for the identified parametric model for survival data (53, 54).  

Table 4.3 Graphical check for goodness of fit for parametric survival models 

Graph Behavior Resulting Distribution 

−𝑙𝑜𝑔𝑆(𝑡) versus 𝑡 Straight line through origin. Exponential 

log [−𝑙𝑜𝑔𝑆(𝑡)] versus log 𝑡 Straight line Weibull 

Φ−1(1 − 𝑆(𝑡)) versus log 𝑡 Straight line, where Φ( ) is the CDF. Log-normal 

log [
1−𝑆(𝑡)

𝑆(𝑡)
] versus log 𝑡 Straight line Log-logistic 

 

4.5.2 Parametric modeling of breast cancer data 

 

Our data consists of 47167 breast cancer patients identified with malignant breast tumors. 

Patients are either White women, African American women or other race women, stratified into 

four stages of cancer and are treated with either radiation or surgery or combination of both or no 

treatment. Other covariates include grade of tumors, number of primary tumors, age, and marital 

status. For the rest of this chapter the variables and their representations are given in the Table 

4.4 below. 

It is of substantial interest in performing the parametric modeling is to see the difference 

in survival (in months) between those patients undergone with different treatments, after 

adjusting for patient’s cancer stage, age, marital status, race, grade of tumor, and the number of 

primary tumors. We used SAS software to fit different parametric models. After performing 

univariate analysis marital status of woman is not statistically significant and hence is dropped 

from modeling. 
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When comparing parametric models, the Akaike Information Criterion (AIC) and log-

likelihood values (54) can be used to select the best parametric model. The best fit model is the 

one with smaller AIC and largest Log-likelihood. Once the model is identified we will perform a 

residual analysis check that lets us assess the absolute goodness of fit of the identified parametric 

model.  

Table 4.4 Variables used in survival modeling 

Age 𝑋1  

Grade 

𝑋2𝑖  

i=1:Well differentiated 

2:Moderately differentiated 

3:Poorly differentiated 

4:undifferentiated 

9:Cell type not determined 

(reference) 

Numprims 𝑋3  

Treatments 

𝑋4𝑖  

i=1:No Treatment 

2:Radiation 

3: Radiation & Surgery 

4: Surgery (reference) 

Stage 𝑋5𝑖 ; i=1,2,3,4(reference) 

Race 

𝑋6𝑖  

i=1: Whites 

2: African Americans 

3: Other races(reference) 

Tumor Size 𝑋7  

 

4.5.3 Parametric survival model using AFT class 

Let 𝑇𝑖denote a continuous non-negative random variable representing survival time of 

the 𝑖𝑡ℎ unit, the logarithm can be used as conventional modeling which is formulated below 

ln(𝑇𝑖) = 𝑋𝑖𝛽 + 𝜎𝜖𝑖  𝑜𝑟  𝑇𝑖 = exp(𝑋𝑖𝛽) exp(𝜎𝜀𝑖)  = 𝑇0𝑖 exp(𝑋𝑖𝛽) 
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where 𝜀𝑖 is termed as a suitable error in the ln(t)-scale which is specific for a distribution, 

and 𝑇0𝑖 = exp (𝜎𝜀𝑖) is the error corresponding to the original (t) scale. The term 𝑇0𝑖indicate the 

baseline function at 𝑖 = 0. This implies that the explanatory variables act in multiples and direct 

product on the survival time and their effect is to increase or decrease the time of death with 

respect to the baseline function. The baseline function is specified up to an unknown parameter. 

The term exp(−𝑋𝑖𝛽) is termed as the acceleration parameter. This parameter is different from 

the value in PH model. From the industrial applications point of view, the name ‘accelerated life’ 

implies to the testing of the units to substantial worse conditions rather than they actually 

encounter in real life. Different kinds of parametric models are obtained assuming different types 

of distributions for error term𝜖𝑖.Accelerated life models are considered as standard regression 

models appliedto the natural logarithm of survival time, and except for the fact that observations 

are censored, pose no new estimation problems. This model estimates goodness of fit for 

different distributions using Likelihood ratio (LRT) or Akaike Information criterion (AIC). Once 

the distribution of the error term is chosen, estimation is carried out by maximizing the log-

likelihood for censored data (50) which is also termed as a Tobit model in economic literature. 

 

4.5.4 Exponential distribution 

In regression models it is common practice that the dependent variable depends on the 

explanatory variables only through a linear function. Because of its historical significance, 

mathematical simplicity and important properties, the exponential distribution is one of the most 

popular parametric models. This is the simplest possible distribution with one parameter which is 

derived treating the hazard function as a constant and of monotonic value over baseline hazard 

function denoted as ℎ(𝑡) = 𝜆. 
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ℎ(𝑡) = exp(𝛽0) exp (𝑋𝑖𝛽) 

So for the exponential distribution the instantaneous failure rate is independent of 𝑡 so 

that the conditional chance of failure does not depend on how long the individual has been on 

trial. This is referred to as the memory less property of the exponential distribution. 

 

4.5.4.1 Fitting Exponential Model 

The survival and fitted survival functions for exponential parametric model are given by 

equations below. Table 4.5 has the analysis of the maximum likelihood estimation of parameters 

of the Exponential model for breast cancer patients. 

 𝑆(𝑡; 𝑿) = exp (−𝑡[𝑒𝑥𝑝(−𝑏0 − 𝑏1𝑋1 − 𝑏2𝑋2 … − 𝑏𝑘𝑋𝑘)]) and   

𝑆(𝑡; 𝑿) = 𝑒𝑥𝑝{−𝑡{exp (−5.36 + 0.03𝑋1 − 0.32𝑋21 − 0.14𝑋22 + 0.17𝑋23 + 0.21𝑋24 +

0.09𝑋3 − 0.95𝑋41 − 0.63𝑋42 − 0.26𝑋43 − 1.89𝑋51 − 1.46𝑋52 − 0.72𝑋53 + 0.15𝑋61 +

0.40𝑋62 + 0.0004𝑋7)}}.  

Table 4.5 Analysis of MLEs for Exponential Model 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter   DF Estimate S. E. 95% Confidence 

Limits 

Pr >  

ChiSq 

Intercept   1 5.3589 0.0831 5.1960 5.5219 <.0001 

AGE   1 -0.0321 0.0006 -0.0334 -0.0309 <.0001 

GRADE 1 1 0.3171 0.0350 0.2485 0.3857 <.0001 

GRADE 2 1 0.1368 0.0293 0.0794 0.1943 <.0001 

GRADE 3 1 -0.1723 0.0291 -0.2293 -0.1153 <.0001 

GRADE 4 1 -0.2108 0.0560 -0.3206 -0.1011 0.0002 

GRADE 9 0 0.0000 . . . . 

NUMPRIMS   1 -0.0851 0.0135 -0.1116 -0.0586 <.0001 

TREATMENT 1 1 0.9496 0.0509 0.8499 1.0494 <.0001 
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Table 4.6 (Continued) Analysis of MLEs for Exponential Model 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter   DF Estimate S. E. 95% Confidence 

Limits 

Pr >  

ChiSq 

TREATMENT 2 1 0.6257 0.0499 0.5278 0.7236 <.0001 

TREATMENT 3 1 0.2614 0.0869 0.0910 0.4318 0.0026 

TREATMENT 4 0 0.0000 . . . . 

STAGE 1 1 1.8855 0.0381 1.8108 1.9602 <.0001 

STAGE 2 1 1.4624 0.0373 1.3894 1.5354 <.0001 

STAGE 3 1 0.7280 0.0418 0.6462 0.8099 <.0001 

STAGE 4 0 0.0000 . . . . 

RACE 1 1 -0.1512 0.0265 -0.2033 -0.0992 <.0001 

RACE 2 1 -0.3980 0.0337 -0.4642 -0.3319 <.0001 

RACE 3 0 0.0000 . . . . 

TUMOR_SIZE   1 -0.0004 0.0001 -0.0005 -0.0002 <.0001 

Scale   0 1.0000 0.0000 1.0000 1.0000   

Weibull Shape   0 1.0000 0.0000 1.0000 1.0000   

 

 

4.5.4.2 Exponential Residual Plot 

To evaluate the goodness of fit for exponential model we performed a residual analysis 

for observed and fitted data. The result shows that the mean residual is 0.3785, with a standard 

deviation of 0.3523 and a range of 12.157. A residual graph of survival functions for exponential 

parametric model is shown in Figure 4.3. Clearly the fitted data does not fall close to the straight 

line which explains that exponential is not the best fit for this data. 
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Figure 4.3 Residual plot for exponential distribution 

 

4.5.5 Weibull distribution 

Although the exponential model is good, there is improper assumption that the hazard 

function is constant over the time. If the hazard model is increasing or decreasing over the time, 

the exponential model will miss this fact under such assumption. The general Weibull model as a 

hazard function can be formulated as 

ℎ(𝑡) = 𝑝𝜆𝑡𝑝−1 

The parameter p is called as the shape parameter which is one in case of exponential 

distribution. For the values of p other than one the hazard function increases or decreases 

monotonically. In case of AFT, Weibull model is represented as, 

𝑇𝑖 = exp (𝑋𝑖𝛽) × 𝜎𝜖𝑖 

Which implies the shape function is determined by the variance of the residuals. 

Intuitively, data with low variance duration dependence will tend to exhibit positive duration 

dependence, due to their relative lack of heterogeneity. Furthermore, Weibull in case of hazard 

ratio for two observations with different values i and j can be interpreted as follows 
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𝐻𝑅𝑖

𝑗

=
exp (𝑋𝑖𝛽)

exp (𝑋𝑗𝛽)
 

This indicates that the hazard ratio for different cases can only differ by dichotomous 

variable which is exp (𝛽). 

 

4.5.5.1 Fitting Weibull Model 

The survival and fitted survival functions for Weibull parametric model are given by 

equations below. Table 4.6 has the analysis of the maximum likelihood estimation of parameters 

of the Weibull model for breast cancer patients. 

𝑆(𝑡; 𝑿) = exp (−𝑡𝑘𝑒𝑥𝑝(−𝑏0 − 𝑏1𝑋1 − 𝑏2𝑋2 … − 𝑏𝑘𝑋𝑘)) and  

𝑆(𝑡; 𝑿) = 𝑒𝑥𝑝{−𝑡0.85{exp (5.22 + 0.03𝑋1 − 0.25𝑋21 − 0.10𝑋22 + 0.20𝑋23 + 0.21𝑋24

+ 0.07𝑋3 − 0.88𝑋41 − 0.59𝑋42 − 0.24𝑋43 − 1.7𝑋51 − 1.32𝑋52 − 0.67𝑋53

+ 0.13𝑋61 + 0.35𝑋62 + 0.0003𝑋7)}} 

 

4.5.5.2 Weibull Residual Plot 

To evaluate the goodness of fit for the Weibull model we performed a residual analysis 

for observed and fitted data. The result shows that the mean residual is 0.3785, with a standard 

deviation of 0.3887 and a range of 14.633. A residual graph of survival functions for Weibull 

parametric model is shown in Figure 4.4. Clearly the fitted data does not fall close to the straight 

line which explains that exponential is not the best fit for this data. 
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Table 4.7 Analysis of MLEs for Weibull Distribution 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter   DF Estimate S. E. 95% Confidence 

Limits 

Pr >  

ChiSq 

Intercept   1 5.2216 0.0708 5.0827 5.3604 <.0001 

AGE   1 -0.0287 0.0006 -0.0297 -0.0276 <.0001 

GRADE 1 1 0.2513 0.0298 0.1929 0.3097 <.0001 

GRADE 2 1 0.0974 0.0249 0.0486 0.1462 <.0001 

GRADE 3 1 -0.1761 0.0247 -0.2245 -0.1277 <.0001 

GRADE 4 1 -0.2086 0.0475 -0.3017 -0.1155 <.0001 

GRADE 9 0 0.0000 . . . . 

NUMPRIMS   1 -0.0694 0.0115 -0.0919 -0.0469 <.0001 

TREATMENT 1 1 0.8678 0.0433 0.7829 0.9527 <.0001 

TREATMENT 2 1 0.5897 0.0424 0.5065 0.6728 <.0001 

TREATMENT 3 1 0.2360 0.0738 0.0914 0.3805 0.0014 

TREATMENT 4 0 0.0000 . . . . 

STAGE 1 1 1.6954 0.0331 1.6305 1.7603 <.0001 

STAGE 2 1 1.3236 0.0320 1.2608 1.3863 <.0001 

STAGE 3 1 0.6660 0.0355 0.5964 0.7356 <.0001 

STAGE 4 0 0.0000 . . . . 

RACE 1 1 -0.1255 0.0225 -0.1696 -0.0813 <.0001 

RACE 2 1 -0.3465 0.0287 -0.4028 -0.2903 <.0001 

RACE 3 0 0.0000 . . . . 

TUMOR_SIZE   1 -0.0003 0.0001 -0.0005 -0.0002 <.0001 

Scale   1 0.8484 0.0055 0.8376 0.8593   

Weibull Shape   1 1.1787 0.0077 1.1638 1.1939   
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Figure 4.4 Residual plot for Weibull distribution 

 

4.5.6 Log-normal and Log-Logistic distributions 

There are also certain other models which received importance in social sciences. They 

can be noted probably as common models which are beyond the exponential and Weibull 

models. Both of the models are considered strictly AFT models. Recalling the general equation 

of AFT model, ln(𝑇𝑖) = 𝑋𝑖𝛽 + 𝜎𝜖𝑖. 

If the error 𝜖𝑖 in the above equation is assumed to follow a logistic distribution (55) then 

the resulting model is termed as the log-logistic survival model. If the model follows a standard 

normal distribution, it is termed as log-normal survival model. The standard log-logistic survival 

function is equal to  

𝑆(𝑡) =  
1

1 + (𝜆𝑡)𝑝
 

and the corresponding hazard function is equal to  

ℎ(𝑡) =
𝜆𝑝(𝜆𝑡)𝑝−1

1 + (𝜆𝑡)𝑝
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Similarly the log-normal model is assumed to have bell-shaped symmetrical distribution 

(51) for the error term. If we assume errors to be normally distributed then the corresponding 

cumulative errors are also normal. The survival function of the log-normal is given by 

𝑆(𝑡) = 1 − Φ [
𝑙𝑛𝑇 − ln (𝜆)

𝜎
] 

In general, log-logistic and log-normal models are very similar and will produce similar 

results like logit and probit models in the regression analysis. Also, log-logistic models with p>1 

and log-normal models with all possible values of the p will first rise and then fall over time. 

 

4.5.6.1 Fitting Log-Normal and Log-Logistic distribution 

The survival and fitted survival functions for lognormal parametric model are given by 

equations below. Table 4.7 has the analysis of the maximum likelihood estimation of parameters 

of the lognormal model for breast cancer patients. 𝑆(𝑡) = Φ[𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ − 𝑘 log(𝑡)]; 

Here Φ is the cumulative distribution function of standard normal distribution. 

𝑆(𝑡) = Φ[4.69 − 0.03𝑋1 + 0.27𝑋21 + 0.12𝑋22 − 0.2𝑋23 − 0.24𝑋24 − 0.82𝑋3 + 1.06𝑋41

+ 0.76𝑋42 + 0.35𝑋43 + 1.96𝑋51 + 1.54𝑋52 + 0.8𝑋53 − 0.13𝑋61 − 0.38𝑋62

− 0.0004𝑋7 − 1.07 log(𝑡)] 

The survival and fitted survival functions for log-logistic parametric model are given by 

equations below. Table 4.8 has the analysis of the maximum likelihood estimation of parameters 

of the log-logistic model for breast cancer patients. 

𝑆(𝑡; 𝑿) = {1 + 𝑡𝑘 ∗ 𝑒𝑥𝑝(−𝑏0 − 𝑏1𝑋1 − 𝑏2𝑋2 … − 𝑏𝑘𝑋𝑘)}−1 
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𝑆(𝑡; 𝑿) = {1 + 𝑡0.7exp (−4.29 + 0.03𝑋1 − 0.25𝑋21 − 0.11𝑋22 − 0.22𝑋23 + 0.25𝑋24 + 0.09𝑋3

− 1.14𝑋41 − 0.84𝑋42 − 0.42𝑋43 − 2.06𝑋51 − 1.65𝑋52 − 0.86𝑋53 + 0.13𝑋61

+ 0.39𝑋62 + 0.0004𝑋7)}−1 

Table 4.8 Analysis of MLEs for Log-Normal Distribution 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter Estimate S. E. 
95% Confidence 

Limits 

Pr >  

ChiSq 

Intercept 4.1885 0.0877 4.0167 4.3604 <.0001 

AGE -0.0277 0.0006 -0.0289 -0.0265 <.0001 

GRADE 0.2947 0.0343 0.2274 0.3619 <.0001 

GRADE 0.1404 0.0299 0.0818 0.1990 <.0001 

GRADE -0.2083 0.0300 -0.2670 -0.1495 <.0001 

GRADE -0.2638 0.0565 -0.3746 -0.1531 <.0001 

GRADE 0.0000 . . . . 

NUMPRIMS -0.0929 0.0139 -0.1201 -0.0656 <.0001 

TREATMENT 1.2631 0.0580 1.1495 1.3768 <.0001 

TREATMENT 0.9212 0.0574 0.8088 1.0337 <.0001 

TREATMENT 0.4702 0.1060 0.2624 0.6780 <.0001 

TREATMENT 0.0000 . . . . 

STAGE 2.1276 0.0447 2.0400 2.2151 <.0001 

STAGE 1.6874 0.0438 1.6015 1.7733 <.0001 

STAGE 0.8968 0.0493 0.8002 0.9933 <.0001 

STAGE 0.0000 . . . . 

RACE -0.1385 0.0243 -0.1861 -0.0909 <.0001 

RACE -0.3934 0.0325 -0.4571 -0.3298 <.0001 

RACE 0.0000 . . . . 

TUMOR_SIZE -0.0004 0.0001 -0.0006 -0.0002 <.0001 

Scale 1.3005 0.0075 1.2859 1.3154   
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Table 4.9 Analysis of MLEs for Log-Logistic Distribution 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter Estimates S. E. 
95% Confidence 

Limits 

Pr > 

ChiSq 

Intercept 4.2928 0.0837 4.1287 4.4568 <.0001 

AGE -0.0277 0.0006 -0.0288 -0.0266 <.0001 

GRADE 0.2501 0.0316 0.1881 0.3121 <.0001 

GRADE 0.1071 0.0274 0.0534 0.1607 <.0001 

GRADE -0.2197 0.0275 -0.2736 -0.1658 <.0001 

GRADE -0.2483 0.0529 -0.3519 -0.1446 <.0001 

GRADE 0.0000 . . . . 

NUMPRIMS -0.0863 0.0127 -0.1112 -0.0614 <.0001 

TREATMENT 1.1434 0.0567 1.0323 1.2545 <.0001 

TREATMENT 0.8498 0.0562 0.7397 0.9599 <.0001 

TREATMENT 0.4233 0.1025 0.2224 0.6242 <.0001 

TREATMENT 0.0000 . . . . 

STAGE 2.0563 0.0426 1.9727 2.1398 <.0001 

STAGE 1.6454 0.0418 1.5635 1.7274 <.0001 

STAGE 0.8608 0.0467 0.7692 0.9524 <.0001 

STAGE 0.0000 . . . . 

RACE -0.1313 0.0231 -0.1767 -0.0860 <.0001 

RACE -0.3862 0.0305 -0.4460 -0.3263 <.0001 

RACE 0.0000 . . . . 

TUMOR_SIZE -0.0004 0.0001 -0.0006 -0.0002 <.0001 

Scale 0.6987 0.0045 0.6899 0.7076   
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4.5.6.2 Lognormal and Log-Logistic Residual Plots 

To evaluate the goodness of fit for the lognormal and log-logistic models we performed a 

residual analysis for observed and fitted data. The result shows that the mean residual for 

lognormal is 0.3740, with a standard deviation of 0.3737 and range of 5.258. Log-logistic 

distribution has a mean residual of 0.3770, with a standard deviation of 0.3357 and a range of 

4.608. Residual graphs of survival functions for lognormal and log-logistic parametric models 

are shown in Figure 4.5 and Figure 4.6 respectively.  

Clearly the lognormal is slightly parabolic and the points does not fall close to the 

straight line which explains that lognormal is not the best fit for this data. From Figure 4.6 

below, the graphical check of residual analysis for the log-logistic model, the graph is almost 

linear and hence is the winner parametric model among all others.  

 

 

Figure 4.5 Residual plot for log-normal distribution 
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Figure 4.6 Residual plot for log-logistic distribution 

 

4.5.7 Generalized Gamma Distribution 

The survival function of the gamma distribution is the nested form of number of other 

distributions which is given by the equation below. Note that this model changes to log-

normal as 𝑝 → ∞; Weibull when 𝑘 𝑒𝑞𝑢𝑎𝑙𝑠 𝑡𝑜 1; Exponential when  𝑘 𝑎𝑛𝑑 𝜎 𝑒𝑞𝑢𝑎𝑙𝑠 𝑡𝑜 1; 

regular gamma distribution if 𝑝 𝑒𝑞𝑢𝑎𝑙𝑠 𝑡𝑜 1. The main disadvantage of this generalized 

gamma distribution is slow and difficult to converge.  

 

𝑆(𝑡) = 1 − Γ {𝑘, 𝑘𝑒𝑥𝑝 [

𝑙𝑛𝑇𝑖−𝜆

𝜎

𝑝0.5
]} 

 

4.5.7.1 Fitting Gamma Distribution 

The survival functions for Gamma parametric model are given by equations below. Table 

4.10 has the analysis of the maximum likelihood estimation of parameters of the gamma model 
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for breast cancer patients. Due to complexity we haven’t given the fitted gamma survival 

function. The residual plot given in Figure 4.7, the data does not fall close to a straight line, so 

we conclude that gamma is not a best fit parametric model. 

𝑆(𝑡; 𝑿) = 1 − 𝜙𝑘(𝜆𝑡)   Where 𝜙𝑘(𝜆𝑡) = ∫ (
(𝜆𝑘−1𝑒−𝑥)

Γ(𝑘)
)

𝑥

0
 

 

Figure 4.7 Residual plot for gamma distribution 

 

4.5.8 Selection of best fit parametric model 

 We use the model selection criteria discussed in section 4.4.1 to select the best parametric 

model. From the previous sections, by performing the residual analysis for the fitted parametric 

models log-logistic parametric model performed better than other models. Also from the Table 

4.9, we identify that the log-logistic model has the lowest AIC and highest likelihood values 

performs better than other models. This supports our choice of log-logistic model selection. 

From Table 4.9, we see that Gamma model is also performing close to log-logistic. To address 

this concern, we computed the likelihood ratio test statistic to compare these models. The test 
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statistic value as 31.21 and the corresponding p-value is 0.0001 which concludes that log-logistic 

is better. Comparison of maximum likelihood estimates for all parametric models is given in 

Table 4.10. 

Based on the estimates of log-logistic model provided in the Table 4.10, when compared 

to women treated with surgery, those who received no treatment has better survival estimates 

compared with radiation followed by combination of radiation and surgery. However, from this 

model, tumor size, marital status, race has no much effect on the breast cancer.  

 
Table 4.10 Goodness of fit for parametric models 

Distribution Log-Likelihood AIC 

Gamma -43730.415 87506.83 

Log-Normal -43957.83687 87959.67 

Weibull -43961.92163 87967.84 

Exponential -44259.26034 88560.52 

Log-Logistic -43714.80892 87473.62 

 
Table 4.11 Summary of MLE results for fitted parametric models 

Parameter   DF Gamma Log-Normal Weibull Exponential Log-Logistic 

Intercept   1 4.6896 4.1885 5.2216 5.3589 4.2928 

Age   1 -0.0284 -0.0277 -0.0287 -0.0321 -0.0277 

Grade 1 1 0.2747 0.2947 0.2513 0.3171 0.2501 

Grade 2 1 0.1206 0.1404 0.0974 0.1368 0.1071 

Grade 3 1 -0.1972 -0.2083 -0.1761 -0.1723 -0.2197 

Grade 4 1 -0.2355 -0.2638 -0.2086 -0.2108 -0.2483 

Grade 9 0 0.0000 0.0000 0.0000 0.0000 0.0000 

Numprims   1 -0.0815 -0.0929 -0.0694 -0.0851 -0.0863 

Treatment 1 1 1.0637 1.2631 0.8678 0.9496 1.1434 

Treatment 2 1 0.7573 0.9212 0.5897 0.6257 0.8498 
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Table 4.12 (Continued) Summary of MLE results for fitted parametric models 

Parameter   DF Gamma Log-Normal Weibull Exponential Log-Logistic 

Treatment 3 1 0.3489 0.4702 0.2360 0.2614 0.4233 

Treatment 4 0 0.0000 0.0000 0.0000 0.0000 0.0000 

Stage 1 1 1.9563 2.1276 1.6954 1.8855 2.0563 

Stage 2 1 1.5448 1.6874 1.3236 1.4624 1.6454 

Stage 3 1 0.7996 0.8968 0.6660 0.7280 0.8608 

Stage 4 0 0.0000 0.0000 0.0000 0.0000 0.0000 

Race 1 1 -0.1340 -0.1385 -0.1255 -0.1512 -0.1313 

Race 2 1 -0.3790 -0.3934 -0.3465 -0.3980 -0.3862 

Race 3 0 0.0000 0.0000 0.0000 0.0000 0.0000 

Tumor size   1 -0.0004 -0.0004 -0.0003 -0.0004 -0.0004 

Scale   1 1.0748 1.3005 0.8484 1.0000 0.6987 

 
 

4.6 Semi Parametric Analysis: Cox PH regression 

The main disadvantage of non-parametric analysis is that it can only compare the survival 

functions of a limited number of groups whereas the parametric analysis has disadvantage of two 

assumptions as discussed in previous section.  There is an intermediate technique whereby only 

an assumption is made about the way that the explanatory variables. This technique is called 

semi-parametric analysis, or Cox-regression. Proportional hazards regression (56) assumes that 

different groups have proportional hazard functions. Suppose with two groups A and B, there is a 

common hazard function ℎ(𝑡), which applies to group A. Being in group B multiplies the hazard 

by 𝑟. i.e. ℎ𝑠(𝑡) = 𝑟. ℎ𝐴(𝑡) 

Proportional hazards regression estimates 𝑟 without estimating ℎ(𝑡). Since hazards are 

chances, this means that the ratio of the hazard functions can be interpreted as a relative risk or 

relative rate. 
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𝑟 =
ℎ𝑠(𝑡)

ℎ𝐴(𝑡)
 

This relative risk type ratio is very desirable in explaining the risk of events for certain 

categories of covariates or variable of interest. 

 

4.6.1 Assumptions underlying Proportional Hazard Modeling 

1. There exists a baseline hazard function ℎ𝑜(𝑡)common to all individuals in all the study 

groups. The baseline hazard function captures the shape of the hazard function.  

2. When there is a covariate (dichotomous variable) the hazard function becomes the 

exponential of the parameter of interest which is termed as the exponential distribution under 

PH modeling. 

3. Another attractive feature of Cox regression is not assuming the distributions as in the case of 

parametric regression. Instead refers to the fact that the hazard functions are multiplicatively 

related. 

4. Explanatory variables act only on the 𝑟 not on the baseline hazard. 

4.6.2 Proportional Hazard Modeling 

The formulation of Cox’s regression model assumes the hazard of the subject 𝑖 at the 

time 𝑡 of the form 

ℎ1(𝑡) = ℎ0(𝑡)exp (𝑋𝑖𝛽) 

Given two covariate profiles(𝑍1,𝑍2) the hazard ratio 
ℎ(𝑡|𝑧1)

ℎ(𝑡|𝑧2)
= 𝑒𝑥𝑝(

(𝑍1−𝑍2)

𝛽
) is constant in 

time. Usually 𝛽 is of the main interest and can be estimated independently by the partial 

likelihood approach (57) when right-censored data are observed. This appealing property of the 

PH model, together with its great flexibility, has made it one of the most popular models in 
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survival analysis during the past three decades. For the two-sample semi-parametric modeling, 

the proportional hazards model is perhaps the most widely used model and under this model, the 

hazard ratio for the two groups is a constant. Sometimes the constant hazard ratio may be in 

questioned and in this case, one can use the proportional odds model, which allows the time-

dependent hazard ratio. One shortcoming of these models is that they do not apply if the two 

hazard or survival functions cross and this can happen in, for example, a medical study where a 

Treatment may be effective in long run but can have certain adverse effects during the early 

stage. For investigating whether there is really a difference between the two groups or whether 

there is really a treatment effect (58), we test the null hypothesis 𝐻0: 𝛽1 = 0 against the 

alternative hypothesis𝐻1: 𝛽1 ≠ 0. One has to take 𝑇 =
𝛽̂1

𝑆(𝛽̂1)
 as testing statistic with 𝛽̂1 being the 

estimate of 𝛽1 and 𝑆(𝛽̂1) being the corresponding standard error. The distribution of the testing 

statistic is approximated by the standard normal distribution under the null hypothesis. The null 

hypothesis is rejected if  𝑇 ≤ −𝑐 or ≥ 𝑐 .The advantage is that the results can no longer be 

influenced by assumptions about time-dependence, since no such assumptions are made. The 

disadvantages are that hypotheses about time dependence can no longer be tested and that 

parametric analysis yields more precise estimates than the semi-parametric analysis if the 

assumptions about the time dependence are correct. 

 

4.6.3 Cox Proportional Hazards Regression for breast cancer data 

Using the same breast cancer survival data used in parametric survival analysis, in this 

section, we will examine cox regression models for the hazard function ℎ(𝑡). As with other 

regression models, the identification of significant covariates and the interpretation of the 

estimated model coefficients is of primary interest. We will identify the likelihood that an 
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individual alive at time t (with the specific set of covariates as described in parametric survival 

modeling section) will experience the event of interest in the next very small time period. The 

Cox proportional hazard model (58) is used to determine the difference of survival time between 

races, age at diagnosis, stage of cancer, treatment, tumor size, grade, marital status and number 

of primary tumors. The variables in the model are introduced stepwise. The fitted Cox model 

reached its convergence. The model fit statistics are given below in Table 4.11. The results of 

three tests (likelihood, score and Wald tests) given below in Table 4.12 are used to test the 

hypothesis of whether the full model with all variables is better than no variables in the model. 

The p-value for all the three tests supported the model with all variables is statistically 

significant. The parameter estimate values of semi parametric cox regression model along with 

hazard ratios are given in Table 4.14. 

From the Table 4.14, we can say that every year of age hazard increases by 3%. White 

women have 16% and African women has 50% greater hazard than other race women. When 

compared to women who are treated with surgery, those who are treated with radiation has 

50.5% and women who did not receive any treatment has 64% lower hazard rate. While the 

combination of both surgery and radiation has 24% lower hazard rate. Type 3 tests are used to 

test whether there are any differences in event rate across any of the levels of the covariates used 

in the model. P-values reported in Table 4.13 indicate that there are significant differences in 

mortality between the levels of covariates. The fitted Cox PH Survival and Hazard equations for 

breast cancer patients are:  

 

ℎ𝑖(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝(0.033𝑋1 − 0.31𝑋21 − 0.13𝑋22 + 0.19𝑋23 + 0.23𝑋24 + 0.082𝑋3 − 1.03𝑋41

− 0.70𝑋42 − 0.26𝑋43 − 2.01𝑋51 − 1.57𝑋52 − 0.78𝑋53 + 0.15𝑋61 + 0.41𝑋62

+ 0.0003𝑋7) 
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𝑆𝑖(𝑡) = exp (− ∫ {ℎ0(𝑡)𝑒𝑥𝑝(0.033𝑋1 − 0.31𝑋21 − 0.13𝑋22 + 0.19𝑋23 + 0.23𝑋24 + 0.082𝑋3

𝑡

0

− 1.03𝑋41 − 0.70𝑋42 − 0.26𝑋43 − 2.01𝑋51 − 1.57𝑋52 − 0.78𝑋53 + 0.15𝑋61

+ 0.41𝑋62 + 0.0003𝑋7)} 𝑑𝑢) 

 
Table 4.13 Cox regression model fit statistics 

Model Fit Statistics 

Criterion Without 

Covariates 
With 

Covariates 

-2 LOG L 368614.59 358231.90 

AIC 368614.59 358269.90 

SBC 368614.59 358417.91 

 

 

Table 4.14 Test results for beta coefficients 

Testing Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 10382.6831 19 <.0001 

Score 14594.0408 19 <.0001 

Wald 12414.3302 19 <.0001 

 
Table 4.15 Type III tests for levels of covariates 

Type 3 Tests 

Effect DF Wald Chi-Square Pr > ChiSq 

Age 1 2677.5352 <.0001 

M_status 5 219.4995 <.0001 

Grade 4 543.3288 <.0001 

Race 2 161.6861 <.0001 

Treatment 3 677.9500 <.0001 

Stage 3 3555.2608 <.0001 

Numprims 1 36.2624 <.0001 

Tumor size 1 21.5580 <.0001 
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Table 4.16 Cox parameter estimates and hazard ratios 

Parameter  DF 
Parameter 

Estimate 

Standard 

Error 

Hazard 

Ratio 

95% Hazard 

Ratio 

Confidence 

Limits 

Age   1 0.03328 0.00064 1.034 1.033 1.035 

Grade 1 1 -0.31020 0.03505 0.734 0.685 0.786 

Grade 2 1 -0.12712 0.02937 0.880 0.831 0.932 

Grade 3 1 0.19351 0.02919 1.212 1.145 1.284 

Grade 4 1 0.23365 0.05602 1.259 1.128 1.406 

Race 1 1 0.15031 0.02654 1.163 1.104 1.225 

Race 2 1 0.40886 0.03375 1.504 1.408 1.607 

Treatment 1 1 -1.03141 0.05072 0.363 0.329 0.401 

Treatment 2 1 -0.70261 0.04975 0.505 0.458 0.557 

Treatment 3 1 -0.25560 0.08686 0.763 0.644 0.905 

Stage 1 1 -2.01361 0.03759 0.138 0.128 0.148 

Stage 2 1 -1.57326 0.03686 0.213 0.198 0.229 

Stage 3 1 -0.78178 0.04177 0.459 0.423 0.498 

Numprims   1 0.08168 0.01353 1.085 1.056 1.114 

Tumor size  1 0.000384 0.0000826 1.000 1.000 1.001 

 

Finally we obtained the Cox PH survival function model for each of the three races 

respectively. The fit equations are given below. 

Cox PH Survival and Hazard equations for White woman 

ℎ𝑖(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝(0.04𝑋1 − 0.32𝑋21 − 0.11𝑋22 + 0.22𝑋23 + 0.28𝑋24 + 0.08𝑋3 − 0.94𝑋41

− 0.56𝑋42 − 0.17𝑋43 − 1.97𝑋51 − 1.54𝑋52 − 0.81𝑋53 + 0.0005𝑋7) 
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𝑆𝑖(𝑡) = exp (− ∫ {ℎ0(𝑡) exp(0.04𝑋1 − 0.32𝑋21 − 0.11𝑋22 + 0.22𝑋23 + 0.28𝑋24 + 0.08𝑋3

𝑡

0

− 0.94𝑋41 − 0.56𝑋42 − 0.17𝑋43 − 1.97𝑋51 − 1.54𝑋52 − 0.81𝑋53

+ 0.0005𝑋7)} 𝑑𝑢) 

Cox PH Survival and Hazard equations for African American woman 

ℎ𝑖(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝(0.02𝑋1 − 0.28𝑋21 − 0.25𝑋22 + 0.03𝑋23 + 0.11𝑋24 + 0.08𝑋3 − 1.22𝑋41

− 1.02𝑋42 − 0.72𝑋43 − 2.07𝑋51 − 1.62𝑋52 − 0.75𝑋53 + 0.00007𝑋7) 

𝑆𝑖(𝑡) = exp (− ∫ {ℎ0(𝑡)𝑒𝑥𝑝(0.02𝑋1 − 0.28𝑋21 − 0.25𝑋22 + 0.03𝑋23 + 0.11𝑋24 + 0.08𝑋3

𝑡

0

− 1.22𝑋41 − 1.02𝑋42 − 0.72𝑋43 − 2.07𝑋51 − 1.62𝑋52 − 0.75𝑋53

+ 0.00007𝑋7)} 𝑑𝑢) 

Cox PH Survival and Hazard equations for other race woman 

ℎ𝑖(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝(0.02𝑋1 − 0.18𝑋21 − 0.11𝑋22 + 0.2𝑋23 − 0.08𝑋24 + 0.08𝑋3 − 1.03𝑋41

− 0.95𝑋42 − 0.03𝑋43 − 2.12𝑋51 − 1.59𝑋52 − 0.72𝑋53 + 0.0003𝑋7) 

𝑆𝑖(𝑡) = exp (− ∫ {ℎ0(𝑡)𝑒𝑥𝑝(0.02𝑋1 − 0.18𝑋21 − 0.11𝑋22 + 0.2𝑋23 − 0.08𝑋24 + 0.08𝑋3

𝑡

0

− 1.03𝑋41 − 0.95𝑋42 − 0.03𝑋43 − 2.12𝑋51 − 1.59𝑋52 − 0.72𝑋53

+ 0.0003𝑋7)} 𝑑𝑢) 
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Table 4.17 Estimates of Cox and Log-logistic models 

Parameter   DF Cox Log-Logistic 

   Estimates Hazard Estimates Hazard 

Age   1 0.03328 1.034 -0.0277 1.028087 

Grade 1 1 -0.31020 0.734 0.2501 1.284154 

Grade 2 1 -0.12712 0.880 0.1071 1.113046 

Grade 3 1 0.19351 1.212 -0.2197 1.245703 

Grade 4 1 0.23365 1.259 -0.2483 1.281844 

Race 1 1 0.15031 1.163 -0.1313 1.14031 

Race 2 1 0.40886 1.504 -0.3862 1.471379 

Treatment 1 1 -1.03141 0.363 1.1434 3.137417 

Treatment 2 1 -0.70261 0.505 0.8498 2.339179 

Treatment 3 1 -0.25560 0.763 0.4233 1.526992 

Stage 1 1 -2.01361 0.138 2.0563 7.816993 

Stage 2 1 -1.57326 0.213 1.6454 5.183083 

Stage 3 1 -0.78178 0.459 0.8608 2.365052 

Numprims   1 0.08168 1.085 -0.0863 1.090133 

Tumor size   0.000384 1.000 -0.0004 1.000384 

AIC   358269.90  87473.62  

Log likelihood   -179115.95  -43714.81  
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4.7 Comparison of Survival Curves 

 The Table 2.16 below has the details about all the fit models with and without covariates. 

Log-logistic model outperformed Cox. However based on the data and attributable variables 

available, one can choose their best model. Table 2.15 has the comparison of Log-logistic and 

Cox PH estimates along with the hazard ratios. 

Table 4.18 Comparison of Parametric and Cox PH models 

Models Without Covariates With Covariates 

Distribution Parameters 
-Log 

Likelihood 
AIC Parameters 

-Log 

Likelihood 
AIC 

Gamma 3 49170.0137 98346.03 16 43730.415 87506.83 

Log-Normal 2 49366.8675 98737.74 15 43957.837 87959.67 

Weibull 2 49244.9480 98493.90 15 43961.9216 87967.84 

Exponential 1 49280.6023 98563.20 14 44259.2603 88560.52 

Log-Logistic 2 49175.7691 98355.54 15 43714.8089 87473.62 

Cox PH - 184307.293 368614.59 16 179115.950 358269.90 

 

4.8 Conclusion 

Women who are treated with radiation alone have a median survival of 154 months.  And 

women treated with surgery alone and both radiation & surgery reported a median survival of 25 

months. Non-parametric method for survival, based on the treatment indicated that the 

combination of radiation and surgery has the same effect on survival as treated with surgery 

alone. Also from the results of Table 4.2, women in stage-4 breast cancer can be advised to stay 

away from any treatment for a better survival. Financially, this could really save so much for 

women. Further we investigated the effect of treatment stage wise. It is an interesting observation 

that women who are identified with malignant breast cancer tumor, but have not received any 
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treatment has more survival rate when compared to women who are treated with either radiation 

or surgery or combination of both.  

This result is also supported by the results in Table 4.2.  After analyzing the breast cancer 

data using the non-parametric Kaplan Meier method, we further performed a multivariate 

approach parametrically and semi-parametrically. In parametric survival modeling, we modeled 

the data using exponential, Weibull, log-normal, log-logistic and generalized gamma. Based on 

the AIC and log-likelihood comparison, log-logistic resulted as the best fit model for the data. 

Residual plots for the log-logistic model also fall close to the straight line, supporting our choice 

of parametric model.  

Both intercepts and beta coefficients for almost all variables except for the women who 

are singled, widowed and separated, in the model are significantly differ from 0 at 0.05 level. 

Finally, we modeled Cox semi-parametric regression model and tabulated the hazard results with 

95% confidence intervals. Neither parametric nor the Cox semi-parametric models provided any 

evidence about significant differences in covariates stage, race, grade and treatment. Based on 

AIC, as anticipated, all parametric models were performed better than the cox models.  
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CHAPTER FIVE  

Breast Cancer Stage Classification using Multilayer Neural Networks using various 

Activation functions 

 

5.1 Introduction 

Artificial Neural Networks (also called connectionist models or parallel distributed 

processing systems) whose architecture and operation are inspired from our knowledge about 

biological neural cells (neurons) in the brain (59). Artificial Neural Networks (ANNs) can be 

described either as mathematical and computational models for non-linear function 

approximation, data classification, clustering and non-parametric regression or as simulations of 

the behavior of collections of model biological neurons. These are not real neurons in the sense 

that they do not model the biology, chemistry or physics of real neuron. They do, however, 

model several aspects of information combining and pattern recognition behavior of real neurons 

in a simple yet meaningful way. 

Conceptually, Artificial Neutral Networks are computing constructs which mimic the 

process of the human brain. 

Mathematically, they are a system of linked parallel equations which are solved 

simultaneously and iteratively (60). 

Artificial Neural Networks (ANNs) or in short neural networks (NNs), like people, 

learn by example. An ANN is configured for a specific application, such as pattern recognition 

or data classification (61), through a learning process. Learning in biological systems involves 
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adjustments to the synaptic connections that exist between the neurons. This is true for ANNs 

as well. 

The power and usefulness of ANNs have been demonstrated in several applications 

including speech synthesis (62), diagnostic problems and medicine (63), business and finance, 

robotic control (64), signal processing (65), computer vision and many other problems that fall 

under the category of pattern recognition. 

Neural Networks has a large appeal to many researchers due to their great closeness to 

the structure of the brain, a unique characteristic not shared by many traditional systems. 

In an analogy to the brain, an entity made up of inter connected neurons, neural networks 

are made up of interconnected processing elements called units (or nodes), which respond in 

parallel to a set of input signals given to each unit. The unit is the equivalent to its brain 

counterpart, the neuron. 

 

A typical neural network consists of four main parts: 

4. Processing units {𝑢𝑗}, where each 𝑢𝑗 has a certain activation level 𝑎𝑗(𝑡) at any point in time 𝑡. 

5. Weighted interconnection between the various processing units which determine how the 

activation of one unit leads to input for another unit. 

6. An activation rule which acts on the set of input signals at a unit to produce a new output 

signal, or activation. 

7. Optionally, a learning rule that specifies how to adjust weights for a given input output pair. 
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Figure 5.1 Architecture of ANN 

 

5.1.1 Questions of Interest 

Q1: Are MLP neural networks applicable to stage classification problems in Breast 

cancer research?  

 Q2: Under what conditions can MLP type neural networks be applied to stage 

classification problems in breast cancer data? 

Q3: What are the different kind of activation functions available in MLP neural 

networks? 

Q4: Which activation function in the training and testing of the ANN give the better 

performance? 

Q5: What is the best activation function that can be applied to neural networks for stage 

classification problems in Breast cancer research? 

Q6: How to evaluate the identified MLP type neural networks with different activation 

functions to classify breast cancer stages? 

Q7: After dropping the attributable variables from the full model that contribute less in 

breast cancer stage classification, does the reduced model perform the same as the full model? 

Artificial Neural Networks

MLPs, RBFs, Hopfield, etc

Interconnections

Feed Forward, 

Feed backward, 
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Learning
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5.2 The First Step: McCulloch-Pitts Model 

Using one of the characteristics of the biological neuron, McCulloch and Pitts (66) 

proposed a model for artificial neuron. The neuron model proposed by them is given in the 

Figure 5.2 below and is the one that widely used in ANNs with some minor modifications on it. 

The artificial neuron given in the Figure 5.2 has N inputs, denoted as 𝑢1, 𝑢2, … , 𝑢𝑛. Each 

line connecting these inputs to the neuron is assigned a weight, which are denoted as 

𝑤1, 𝑤2 … , 𝑤𝑛 respectively. Weights in the artificial neuron corresponding to the synaptic 

connections in biological neurons. The threshold in artificial neuron is usually represented by θ 

and the activation corresponding to the graded potential is given by the formula:  

𝑎 = (∑ 𝑢𝑖𝑤𝑖

𝑁

𝑖=1

) + 𝜃 

 

Figure 5.2 Mc Culloch-Pitts Model 

 

5.3 A brief history of ANNs 

Neural network simulations appear to be a recent development. However, this field was 

established before the advent of computers, and has survived at least one major setback and several 

areas. Many important advances have been boosted by the use of inexpensive computer 

emulations. Following an initial period of enthusiasm, the field survived a period of frustration 
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and disrepute. During this period when funding and professional support was minimal, important 

advances were made by relatively few researchers. These pioneers were able to develop 

convincing technology which surpassed the limitations identified by Minsky and Papert. Minsky 

and Papert (67), published a book in 1969 in which they summed up a general feeling of frustration 

against neural networks among researchers, and was thus accepted by most without further 

analysis. Currently, the neural network field enjoys a resurgence of interest and a corresponding 

increase in funding.  

 

5.4 Timeline of ANN 

 

1943 McCulloch and Pitts (66) proposed the McCulloch-Pitts neuron model. 

1949 Hebb published his book “The Organization of Behavior” in which the Hebbian learning 

rule was proposed. 

1958 Rosenblatt introduced the simple single layer networks called Perceptrons. 

1969 Minsky and Papert’s (67) book “Perceptrons” demonstrated the limitation of single layer 

perceptrons, and almost the whole field went into hibernation. 

 1970’s and 1980’s: ANN renaissance 

1982 Hopfield published a series of papers on Hopfield networks. 

1982 Kohonen developed the self-Organizing Maps that now bear his name. 

1986 The Back-Propagation learning algorithm for Multi-Layer Perceptrons was re- 

discovered and the whole field got attention. 

1989     Tsividis: Implemented Neural Network on a chip 

1990 The sub-field of Radial Basis Function Networks was developed. 
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2000 The power of Ensembles of Neural Networks and support vector Machines becomes 

apparent. 

 

5.5 Inspiration for ANN: Biological Prototype 

Much is still unknown about how the brain trains itself to process information, so theories 

abound (Figure 5.4).In the human brain, a typical neuron collects signals from others through a 

host of fine structures called Dendrites. The neuron sends out spikes of electrical activity through 

a long, thin stand known as an axon, which splits into thousands of branches. At the end of each 

branch, a structure called a synapse converts the activity from axon into electrical effects that 

inhibit or excite activity in the connected neurons. When a neuron receives excitatory input that 

is sufficiently large compared with its inhibitory inputs, it sends a spike of electrical activity 

down its axon (Figure 5.3). Learning occurs by changing the effectiveness of the synapse so that 

the influence of one neuron on another changes. 

 

Figure 5.3 Biological Neuron 
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Figure 5.4 Human Brain 

 

5.6 Brain versus Computers: Some interesting numbers 

1. There are approximately 10 billion neurons in the human cortex, compared with thousands 

of processors in the most powerful parallel computers. 

2. Each biological neuron is connected to several thousands of other neurons, similar to the 

connectivity in powerful parallel computers. 

3. Lack of processing units can be compensated by speed. The typical operating speeds of 

biological neurons (68) is measured in milliseconds (10–3s), while a silicon chip can 

operate in nanoseconds (10–9s). 

4. The human brain is extremely energy efficient, using approximately 10-6 joules per 

operation per second, where as the best computers today use around 10–16 joules per 

operation per second. 

5. Brains have been evolving for tens of millions of years; computers have been evolving for 

tens of decades. 
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5.7 ANN Types 

 

Feed forward: Single Layer Perceptron (69), MLP, ADALINE (Adaptive Linear Neuron) 

(70), RBF. 

Self-Organized: SOM (Kohonen Maps). 

Recurrent: Simple Recurrent Network, Hopfield Network (71). 

Stochastic: Boltzmann machines (72), RBM. 

Modular: Committee of Machines, Associative Neural Networks (ASNN), Ensembles. 

Others: Instantaneously trained, Spiking Neural Networks (SNN) (73), Dynamic, 

Cascades, Neuro Fuzzy (74), PPS, GTM (75). 

5.8 Learning methods in ANN 

As listed in previous section, there are many forms of neural networks. Most operate by 

passing neural ‘activations’ through a network of connected neurons. One of the most powerful 

features of neural networks is their ability to learn and generalize from a set of training data. 

They adapt the strengths/ weights of the connections between neurons so that the final output 

activations are correct. 

 

There are three broad types of learning: 

1) Supervised learning (i.e., learning with a teacher) 

2) Unsupervised learning (i.e., learning with no help) 

3) Reinforcement learning (i.e., learning with limited feedback) 
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Figure 5.5 ANN Architecture 

 

 

Figure 5.6 Learning Methods in ANN 
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5.8.1 Supervised learning 

Which incorporates an external teacher, so that each output unit is told what its desired 

response to input signals ought to be. In this mode, the actual output of a neural network is 

compared to the desired output. Weights, which are usually randomly set to begin with, are then 

adjusted by the network so that the next iteration, or cycle, will produce a closer match between 

the desired and the actual output. The learning method tries to minimize the current errors of all 

processing elements. This global error reduction is created over time by continuously modifying 

the input weights until acceptable network accuracy is reached. Paradigms of supervised learning 

include error-correction learning reinforcement learning and stochastic learning (76). 

With supervised learning, the Artificial Neural Network must be trained before it 

becomes useful. Training consists of presenting input and output data to the network. That is, for 

each input set provided to the system the corresponding desired output set is provided as well. 

This training is considered complete when the neural network reaches a user defined 

performance level. 

An important issue concerning supervised learning is the problem of error convergence, 

i.e., the minimization of error between the desired and computed unit values. The aim is to 

determine a set of weights which minimizes the error. One well-known method, which is 

common to many learning paradigms is the Least Mean Square (LMS) convergence (77). 

 

5.8.2 Unsupervised learning 

Uses no external teacher and is based upon only local information, it is also referred to as 

self-organization, data presented to the network and detects their emergent collective properties. 

Paradigms of unsupervised learning are Hebbian learning and competitive learning. From 
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Human Neurons to Artificial Neuron Esther aspect of learning concerns the distinction or not of 

a separate phase, during which the network is trained, and a subsequent operation phase. We say 

that a neural network learns off-line if the learning phase and the operation phase are distinct. A 

neural network learns on-line if it learns and operates at the same time. Usually, supervised 

learning is performed off-line, whereas unsupervised learning is performed on-line. 

A simple version of Hebbian learning rule (78) is that when unit 𝑖 and unit 𝑗 are 

simultaneously excited, the strength of the connection between them increases in proportion to 

the product of their activations. 

In competitive learning, if a new pattern is determined to belong to a previously 

recognized cluster, then the inclusion of the new pattern into that cluster will affect the 

representation (e.g., centroid) of the cluster. This will in turn change the weights characterizing 

the classification network. If the new pattern of ‘input-outputs’ determined to belong to none of 

the previously recognized cluster, then (the structure and the weights of) the network will be 

adjusted to accommodate the new class (cluster). 

 

5.8.3 Reinforcement learning 

For many applications, the desired output may not be known precisely. Other learning 

law have been developed based on the information whether the response is correct or wrong. 

This mode of learning is called reinforcement learning or learning with critic. 

There are many situations where the desired output for a given input is not known. Only 

the binary result that the output is right or wrong may be available. This output is called 

reinforcement signal. This signal only evaluates the output. The learning based on this evaluate 

signal is called reinforcement learning. Since this is evaluative and not instructive, it is also 

called learning with critic as opposed to learning with teacher in the supervised learning. 
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5.9 Multilayer Perceptron and Radial Basis Function 

Multilayer perceptrons (MLPs) and radial basis function (RBF) networks are the two 

most commonly-used types of feed forward network. They have much more in common than 

most of the neural network literature would suggest. The only fundamental difference is the way 

in which hidden units combine values coming from preceding layers in the network--MLPs use 

inner products, while RBFs use Euclidean distance. There are also differences in the customary 

methods for training MLPs and RBF networks, although most methods for training MLPs can 

also be applied to RBF networks. Furthermore, there are crucial differences between two broad 

types of RBF network, the ordinary RBF networks and the normalized RBF networks that are 

ignored in most of the neural network literature. These differences have important consequences 

for the generalization ability of the networks, especially when the number of inputs is large. Our 

focus in this chapter will be on MLPs. A network with three layers: input, hidden and output 

layers.  

An activation function 𝑓(𝑥,𝑤𝑖)connects the weights 𝑤𝑖of a neuron I to the input x and 

determines the activation or the state of the neuron. An input function x of the formal neuron I 

corresponds to the incoming activity of the neuron, the weight w represents the effective 

magnitude of information transmission between neurons, the activation function 𝑓(𝑥,𝑤𝑖) describes 

the main computation performed by a biological neuron and the output function 𝑜𝑢𝑡𝑖  corresponds 

to the overall activity transmitted to the next neuron in the processing stream. 

 

5.10 Activation Functions 

The crucial step in MLP neural network structure is generating the net inputs by using a 

scalar-to-scalar function which is known as the "activation function" or "threshold function" or 
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"transfer function" (79). These activation functions are used to limit the amplitude of the output 

of a neuron. The typical activation functions which are used to solve the non-linear problems are 

sigmoid, tangent, softmax, radial basis functions among others. These functions further process 

the output of the neuron after initial processing has taken place and are non-linear in nature by 

transforming the weighted sum of inputs to an output value and do the final mapping. In most 

cases these functions squash the amplitude range to a limited value probably the normalized 

value. Interestingly the outputs of these functions are further processed by running more number 

of iterations unless the network attains the desired convergence. In back propagation learning the 

functions implemented should have the characteristics like the continuous, differentiable, and 

monotonically non-decreasing and output should be bounded. 

As mentioned earlier, ANNs are mostly used in modeling nonlinear data. Neural 

networks because of its nonlinear structure are used either to approximate a posteriori 

probabilities for clustering/classification or to approximate probability densities of the training 

data (80, 81). Nonlinearity is introduced into an MLP network in the form of an activation 

function for the hidden units. The nonlinearity in the network is the reason why MLPs are so 

powerful. Below are few important papers surveyed which show that the choice of transfer 

functions is considered by some experts to be as important as the network architecture and 

learning algorithm.  

G. Cybenko (1989), K. Hornik et al. (1989) in their research articles (82, 83) discussed 

about using sigmoidal functions generating sigmoidal outputs as universal approximators. 

However E. J. Hartman, et al. (1990) and J. Park, et al. (1991) also termed Gaussian outputs also 

as universal approximators (82, 83). Hartman and Keeler (1991) proposed a new activation 

function called Gaussian bars (84). Pao (1989) in his book “Adaptive Pattern Recognition and 
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Neural Networks” discussed about using a combination of various activation functions (85). 

Simon Haykin and Leung (1993) were very successful with using radial transfer functions (86). 

Dorffner (1994) using conic section function networks introduced new transformation 

functions that change smoothly from sigmoidal to Gaussian-like (87). Girauld, et al. (1995) 

introduced simplified Gaussian functions called Lorentzian transfer functions which are widely 

used in many research works (88).  

Two most popular feed forward neural networks models, the multi-layer perceptron 

(MLP) and the Radial Basis Function (RBF) networks, are based on specific architectures and 

the transfer functions. Below are few activation functions in detail. 

 

5.10.1 Identity Function 

The Identity function is also known a linear function. The output of the function is same 

as the input variable. Sometimes a constant is used to multiply it to form a linear function with 

scaled magnitude. The activation function needs to introduce non linearity in to the networks for 

the network to be robust. 

( )f x x  

( )f x kx  Where k is a scaling constant 

 

Figure 5.7 Identity Function 
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5.10.2 Binary Step Function 

This function is also known as the Heaviside function or threshold function or hard limit 

function, with threshold θ. The output is always a binary value and it is decided by the function. 


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


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xif
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    0
)(

 

 

Figure 5.8 Binary Step Function 

 

5.10.3 Saturating linear function 

This function is also known as ramp function or piece wise linear sigmoid function (89) 

combines the Heaviside function with a linear output function. 

𝑓(𝑥) = {
0,        𝑥 ≤ 0
𝑥, 0 < 𝑥 < 1
1, 𝑥 ≥ 1

 

 

Figure 5.9 Ramp Function 

 

 
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5.10.4  Sigmoid Functions 

Sigmoidal output functions smooth out many shallow local minima in the total output 

functions of the network. For classification type of problems this may be desirable, but for 

general mappings it limits the precision of the adaptive system (90). This is the most commonly 

used transfer function in MLP as it gives good results in most cases and can dramatically reduce 

the computation burden of training. The term sigmoid mean a graph which is 'S-shaped' curve. It 

is most commonly used function in the neural networks where the training is implemented by 

using the back propagation algorithms. The significance of this function is that the computation 

capacity for training is reduced and can be distinguished easily. 

Uni-polar sigmoid 

The output of this function is bounded to [0, 1]. The function gets zero to as the value of 

x tends to infinity in the negative side. Its analytic equation is given below. 

𝑓(𝑥) =
1

1 + 𝑒𝑥
 

 

Figure 5.10 Uni-polar Sigmoid Function 

Bi-Polar Sigmoid Function 

The bi-polar sigmoid function is similar to the uni-polar sigmoid except that the limits of 

the output range between [-1, 1].  
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𝑓(𝑥) =
1 − 𝑒𝑥

1 + 𝑒𝑥
 

Bipolar binary and uni-polar binary are called as hard limiting activation functions used 

in discrete neuron model. Uni-polar continuous and bipolar continuous are called soft limiting 

activation functions are called sigmoidal characteristics.  

 

Figure 5.11 Bi-Polar Sigmoid function 

 

5.10.5 Hyperbolic Tangent Function 

 

The hyperbolic transfer function also ranges between [-1, 1]. This function is 

implemented in the replication of the sigmoid function where the output range is varying 

between -1 to 1. 

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
=

sinh 𝑥

cosh 𝑥
= tanh 𝑥 

0 

1 

 

-1 
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Figure 5.12 Hyperbolic Tangent function 

 

5.10.6 Radial basis functions (RBFs) 

As MLP's implement sigmoidal transfer functions, RBFs typically use Gaussian 

functions. Both types of networks are universal approximators. This is an important, but almost 

trivial property, since any network using non-polynomial transfer functions are always universal 

approximators. The speed of convergence and the complexity of these networks to solve a given 

problem is more interesting.  

𝑔(𝑥, 𝑐) = 𝑔(||𝑥 − 𝑐||) 

𝑦(𝑥) = ∑ 𝑤𝑖𝑔(||𝑥 − 𝑐𝑖||)

𝑁

𝑖=1

 

 Where𝑦(𝑥) is represented as a sum of N radial basis functions and each of them 

are associated with a different center ci and weighted by an appropriate weight 𝑤𝑖and 𝑤𝑖can be 

obtained by the matrix methods of linear least squares.(91) 

0 

1 

 

-1 
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Figure 5.13 Radial basis function 

 

5.11 Evaluation of model performance 

 The methods used for the model performance evaluation of different neural networks 

include comparison of area under ROC curves, positive predictive values (PPVs) and overall 

accuracy. The values of training and testing the full and reduced models were evaluated and 

tabulated in the following sections. In the ROC graph the diagonal line represents diagnostic test 

where sensitivity equals (1– specificity) which refers that the test has no diagnostic value. A test 

where both sensitivity and specificity are close to 1, which in turn will return a ROC value also 

close to 1, has good diagnostic ability. 

5.11.1 Accuracy, ROC, PPVs 

Receiver operating characteristic (ROC) curves (92) are frequently used to compare the 

diagnostic qualities of statistical models. For a given confidence threshold, the fraction of 

negative outcomes that are correctly identified as negatives is called the true-positive fraction 

(TPF = sensitivity) and the fraction of the positive outcomes that are correctly identified is called 

the true-negative fraction (TNF = specificity). The false-positive fraction (FPF) and the false-

negative fraction (FNF) are defined in the same way. Confusion matrix generated for a model 

gives all these details of classification. For the actually positive and the actually negative 

outcomes, probability distributions can be derived for the various states of truth. 
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Table 5.1 Classification Table 

X 
Actual State 

Positive Negative 

Considered 

positive 
True positive (TP) False positive (FP) 

Considered 

negative 

False negative 

(FN) 

True negative 

(TN) 

 

There are three components to predict the accuracy:  the amount and quality of the data, 

the predictive power of the prognostic factors, and the prognostic method’s ability to capture the 

power of the prognostic factors (93). This study is mainly focused on the area under curve 

(AUC). The measure of comparative accuracy is the trapezoidal approximation to the area under 

the receiver operating characteristic curve. The area under this curve is a nonparametric measure 

of discrimination. While squared error summarizes how close each individual’s survival 

prediction is to the true outcome, the receiver operating characteristic area measures the relative 

goodness of the set of predictions as a whole by comparing the predicted probability of each 

individual with that of all pairs of individual s. This area is calculated using the predictive scores 

of each algorithm in order to compare their average accuracy in predicting outcome. The receiver 

operating characteristic area is independent of both the prior probability of each outcome and the 

threshold cutoff for categorization, and its computation requires only that the algorithm produce 

an ordinal-scaled relative predictive score. In terms of mortality, the receiver operating 

characteristic area estimates the probability that the algorithm will assign a higher mortality 

score to the patient who died than to the patient who lived. The receiver operating characteristic 

area varies from 0 to 1. When the prognostic score is unrelated to survival, the score is 0.5, 

indicating chance accuracy. The farther the scoreisfrom0.5, the better, on average, the prediction 

model is at predicting which of the individuals who will survive. Positive predictive values 
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(PPVs) refers to the chance that a positive test result will be correct, negative predictive value is 

concerned only with negative test results. The interesting thing about positive and negative 

predictive values is that they change if the prevalence of the disease changes. In fact, for any 

diagnostic test, the positive predictive value will fall as the prevalence of the disease falls while 

the negative predictive value will rise (94).  

5.12 Breast Cancer stage classification using various activation functions 

In traditional regression, a specific equation must be predetermined based on the data in 

the system in order to find a relation between the inputs to output variable. Whereas the general 

structure of an ANN can be applied practically on any system. Also, ANNs have been shown to 

outperform regression models when outliers exist in the data and a MLP neural network with an 

appropriate activation function in the hidden layer is always considered as a better model. 

 

The objective of using MLP neural networks in this chapter is to be able to classify stages 

of breast cancer data.  In order to classify the stages we hves chosen MLP network as the 

classifier. We designed different feed forward MLP networks with one hidden layer with 

different inputs. One hidden layer MLP is almost always sufficient to approximate any 

continuous function up to certain accuracy (95). It is proven in many situations that MLPs 

possess the ability to learn and give the better performance especially in the case of 

classification. The MLP network has to be trained before it able to perform specific task with 

less error. In this study we used 33152 (70%) data for training, 14015 (30%) data for testing the 

trained network.  
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Table 5.2 Activation Functions 

Activation function Definition 

Linear ( )f x x  

Binary step 









0,1

0,0
)(

x

x
xf  

Ramp function  or 

Saturating linear 















1,1

10,

0,0

)(

x

xx

x

xf  

Uni polar Sigmoid  
1

1 x
f x

e



 

Bi-polar  
1

1

x

x

e
f x

e









 

Hyperbolic tangent  
sinh( )

cosh( )

x x

x x

e e x
f x

e e x






 


 

Radial Basis Function 

𝑔(𝑥, 𝑐) = 𝑔(||𝑥 − 𝑐||) 

𝑦(𝑥) = ∑ 𝑤𝑖𝑔(||𝑥 − 𝑐𝑖||)

𝑁

𝑖=1

 

 

 

In this study we compared the performance of an MLP network by using different 

activation functions. Every MLP network consists of an input layer, hidden layer and an output 

layer. For all the MLPs with different activation functions hidden nodes are selected 

automatically based on the requirement for training. The best number of hidden nodes required 

in the hidden layer depends on the number of inputs and outputs, amount of noise in the  
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Table 5.3 Input Variables & types 

Input 

Variables 

Modalities Details 

Tumor Size Real 1mm – 998mm 

Treatment Categorical 

1= No Treatment 

2= Radiation 

3=Radiation & Surgery 

4= Surgery 

Age Real 21 - 102 

Number of  

primary tumors 
Real 

1,2,3,4,5 = able to detect 

9 = not able to be detected 

Grade Categorical 

1=Well differentiated 

2=Moderately differentiated 

3=Poorly differentiated 

4=undifferentiated 

9=Cell type not determined 

Marital Status Categorical 

1 = Single 

2 = Married 

3 = Separated 

4 = Divorced 

5 = Widowed 

9 = Unknown 

Race Categorical 

1 = Whites 

2 = African Americans 

3 = Other races 

Duration Real 1-203 months 

 

targets, activation function used. Rules of thumb don't usually work. The number of hidden 

neurons decided upon training stage of the MLP networks. Four output neurons for four stage 
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classification are needed to classify the class of the target outputs. The performances of the MLP 

networks will be evaluated in terms of percentages for correct classification, defined as the 

difference between the actual and the simulated results and by ROC analysis.  

The work in this chapter is divided into two parts. In the first part we designed six neural 

networks models using all combinations of activation functions with all the inputs including 

tumor size, treatment, age, number of preliminary tumors, and grade of the tumor, marital status 

and race of women to classify their stage of breast cancer. At the end of first part of work, our 

objective is to find the best combination of activation function pair that classifies the breast 

cancer stages, by comparing the number of hidden nodes, positive predictive values (PPVs), 

percent of correct classification and comparing ROCs (96). Table 5.2 has the details of input 

variables used in modeling the neural networks. After identifying the best activation function, in 

our second part of work, we tried to reduce the neural network model by eliminating the inputs 

which perform the least. Inputs which fall below 5% normalized importance are eliminated and 

the networks are rerun to check the efficiency of the model. 

For the first part, fixing Hyperbolic Tangent as the activation function for hidden layer, 

we used softmax, hyperbolic tangent, sigmoid as the transfer functions in output layer. Later 

fixing sigmoid function as activation function we have used the softmax, hyperbolic tangent, 

sigmoid as the transfer functions in output layer. This resulted in total of 6 different models. 

 Results of 6 full models with the percentage of correct predictions, positive predicted 

values (PPVs) during training and testing along with stage wise area under curve values are given 

in Table 5.3 and Table 5.4. From these tables, the model with hyperbolic tangent and softmax 

function has a better prediction with less number of hidden nodes. Figure 5.14 gives the ROC of 

the selected model.  
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Table 5.4 Full Model stage classification probabilities 

Full Model details Positive Predictive Probabilities  

Training 

Number 

of hidden 

units 

P(1|1) P(2|2) P(3|3) P(4|4) 
Overall 

Accuracy 

HT– Softmax 8 88.9% 75.0% 41.9% 33.8% 79.0% 

HT – HT 9 91.7% 73.7% 45.3% 26.3% 79.8% 

HT – Sigmoid 9 90.4% 76.4% 0% 0% 77.0% 

Sigmoid – Softmax 9 89.5% 74.5% 46% 26% 79.1% 

Sigmoid – HT 9 90.6% 75.1% 40.7% 1.2% 79.0% 

Sigmoid – Sigmoid 9 91.7% 73.7% 50.9% 0% 79.4% 

Testing  

HT– Softmax 8 88.9% 75.0% 39.3% 28.8% 78.8% 

HT – HT 9 92.1% 72.7% 43.0% 26.1% 79.5% 

HT – Sigmoid 9 90.9% 76.1% 0% 0% 77.6% 

Sigmoid – Softmax 9 89.8% 74.5% 45.1% 23.7% 79.1% 

Sigmoid – HT 9 90.8% 73.5% 43.1% 0.8% 78.5% 

Sigmoid – Sigmoid 9 91.7% 72.5% 51.2% 0% 79.0% 

HT-Hyperbolic Tangent 

Figure 5.15 and Figure 5.16 are the performance analysis of PPVs for training and testing of 

the full models. From these figures and the results given in Table 5.3 and Table 5.4, though the 

sigmoid-softmax pair has comparatively same results like hyperbolic tangent-softmax pair, we 

prefer to select hyperbolic tangent-softmax pair for the following reasons. A MLP model with the 

best performance using less number of hidden units is considered as the best ANN representing 

the problem. Hyperbolic tangent-softmax model uses only 8 hidden units whereas softmax-

sigmoid network uses 9 hidden units. Also since the hyperbolic tangent activation function has a 

derivative, it can be used with gradient descent based training methods. The hyperbolic tangent 

activation function is perhaps the most common activation function used for neural networks. The 



 

115 

 

hyperbolic tangent function provides similar scaling to the sigmoid activation function, however, 

the hyperbolic tangent activation function has a range from -1 to 1. Because of this greater numeric 

range the hyperbolic activation function is often used in place of the sigmoid activation function. 

The neural network diagram for the selected full model is given in Figure 5.17. 

 

 

 

Table 5.5 ROC values of full models 

Activation 

Functions 
AUROC Stages 

 1 2 3 4 

HT– Softmax 0.911 0.866 0.910 0.910 

HT– HT 0.910 0.866 0.882 0.895 

HT– Sigmoid 0.910 0.859 0.909 0.886 

Sigmoid – Softmax 0.912 0.868 0.913 0.919 

Sigmoid –HT 0.909 0.863 0.862 0.881 

Sigmoid – Sigmoid 0.910 0.862 0.909 0.882 

HT-Hyperbolic Tangent 

Figure 5.14 ROC of the full model 
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Figure 5.15 Testing performance of full models 

HT-Hyperbolic Tangent; SM-Softmax; S-sigmoid 

 

Figure 5.16 Testing performance of full models 

HT-Hyperbolic Tangent; SM-Softmax; S-sigmoid 

8
8

.9
0

%

9
1

.7
0

%

9
0

.4
0

%

8
9

.5
0

%

9
0

.6
0

%

9
1

.7
0

%

7
5

.0
0

%

7
3

.7
0

%

7
6

.4
0

%

7
4

.5
0

%

7
5

.1
0

%

7
3

.7
0

%

4
1

.9
0

%

4
5

.3
0

%

0
%

4
6

%

4
0

.7
0

% 5
0

.9
0

%

3
3

.8
0

%

2
6

.3
0

%

0
%

2
6

%

1
.2

0
%

0
%

7
9

.0
0

%

7
9

.8
0

%

7
7

.0
0

%

7
9

.1
0

%

7
9

.0
0

%

7
9

.4
0

%

H T  – S M H T  – H T H  – S S - S M S  – H T S  – S

P(1|1) P(2|2) P(3|3) P(4|4) Overall Accuracy

8
8

.9
0

%

9
2

.1
0

%

9
0

.9
0

%

8
9

.8
0

%

9
0

.8
0

%

9
1

.7
0

%

7
5

.0
0

%

7
2

.7
0

%

7
6

.1
0

%

7
4

.5
0

%

7
3

.5
0

%

7
2

.5
0

%

3
9

.3
0

%

4
3

.0
0

%

0
%

4
5

.1
0

%

4
3

.1
0

% 5
1

.2
0

%

2
8

.8
0

%

2
6

.1
0

%

0
%

2
3

.7
0

%

0
.8

0
%

0
%

7
8

.8
0

%

7
9

.5
0

%

7
7

.6
0

%

7
9

.1
0

%

7
8

.5
0

%

7
9

.0
0

%

H T  – S M H T  – H T H  – S S - S M S  – H T S  – S

P(1|1) P(2|2) P(3|3) P(4|4) Overall Accuracy



 

117 

 

 

Figure 5.17 Full MLP model  using Hyperbolic tangent-softmax activation function 
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5.13 Reduced Neural Network Model and Conclusion 

After identifying that the neural network using the combination of hyperbolic tangent-

softmax pair as the best neural network model for breast cancer stage classification, we further 

proceed to identify the reduced neural network model. Using the same activation pair selected 

from full model we try to find reduced model, if any, by using fewer input units and/or hidden 

units which can perform equivalent to full model or even better than the full model. In order to do 

this, we rerun a neural network model by eliminating the input variables from the full model which 

have less than 5% normalized importance in performance of breast cancer stage classification.  

 

Table 5.6 Importance and Normalized Importance of input variables 

Inputs 

HT – SM HT – HT HT – S S – SM S – HT S – S 

Imp N.Imp Imp N.Imp Imp N.Imp Imp N.Imp Imp N.Imp Imp N.Imp 

M_STATUS .021 3.8% .064 14.6% .090 15.3% .025 4.2% .037 7.6% .040 6.9% 

RACE .018 3.4% .016 3.6% .018 3.1% .018 3.0% .013 2.7% .016 2.8% 

GRADE .025 4.6% .037 8.5% .035 6.0% .023 3.9% .050 10.3% .033 5.7% 

TREATMENT .127 23.4% .150 34.3% .069 11.7% .111 18.7% .134 27.6% .110 19.3% 

AGE .059 10.9% .106 24.3% .095 16.2% .048 8.1% .103 21.3% .118 20.7% 

NUMPRIMS .085 15.7% .108 24.7% .060 10.2% .021 3.5% .099 20.5% .034 6.0% 

TUMOR_SIZE .543 100.0% .437 100.0% .586 100.0% .593 100.0% .484 100.0% .573 100.0% 

DURATION .121 22.3% .083 18.9% .047 8.1% .162 27.3% .081 16.8% .075 13.0% 

 

From Table 5.5 for the selected activation pair of full model neural network, the input 

variables race, marital status and grade are the variables fall below 5% normalized importance and 

are eligible for elimination. Eliminating these input variables we modeled a reduced network 

model to perform stage classification of breast cancer. The reduced model has 8 input variables, 6 

hidden units to classify breast cancer stages compared with 22 inputs and 8 hidden units of full 

model. An output equation of ANN will be a composite function given as  

 

𝑦𝑖 = 𝑓 {∑ 𝑔 (∑(⦁))} ;   

𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,3,4;  𝑓(⦁) 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  𝑎𝑛𝑑 𝑔(⦁)𝑖𝑠 𝑎 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 
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Table 5.7 Training and Testing results of the reduced neural network model 

 Positive Predictive Probabilities  

Reduced 

Model 

details 

ANN 

Architecture 

I – H – O 

P(1|1) P(2|2) P(3|3) P(4|4) 
Overall 

Accuracy 

Training 8-6-4 89.8% 74.2% 49.8% 30.3% 79.5% 

Testing 8-6-4 90.0% 73.5% 49.2% 24.9% 79.0% 

I-Input units; H-Hidden units; O- Output units 

 

 

 

Figure 5.18 ROC of the reduced neural network model 

 
Table 5.8 ROC Comparison for Full and reduced models 

Models Stage-1 Stage-2 Stage-3 Stage-4 

Reduced Model 0.911 0.868 0.912 0.915 

Full Model 0.911 0.866 0.910 0.910 

 

Table 5.6 has the results of reduced neural network architecture, positive predictive values, 

and overall accuracy of training and testing classification results. The reduced model area under 

curve and full model area under curve results are compared and presented in Table 5.7. Reduced 

model works efficiently using 8 input units and 6 hidden units only. Figure 5.18 gives the ROC of 

the reduced model. Reduced model performed almost close to the full model but with fewer units 

in input and hidden layers. Clearly the reduced model with hyperbolic tangent-softmax activation 

pair is opted as précised one for breast cancer stage classification.  
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CHAPTER SIX  

A Comparison of Artificial Neural Network and Decision trees with Logistic Regression as 

Classification Models for Breast Cancer Survival 

 

6.1 Introduction 

Computer models are being employed actively in the clinical diagnostic field to 

differentiate between healthy and disease suffering patients. These computer models are 

responsible in facilitation of making accurate decisions towards likelihood of disease based on 

certain characteristics of the patient. Many different modeling techniques have been developed, 

tested and refined.  These techniques include both statistical (Linear Discriminant Analysis, 

Logistic Analysis, etc.) and non-statistical techniques (Decision Trees, k-Nearest Neighbor, 

Cluster Analysis, Neural Networks, etc.).  Each technique utilizes different assumptions and may 

or may not achieve similar results based upon the context of the data. Three of such models 

developed are regression methods, decision trees and artificial neural networks. Regression 

methods were termed as the study of dependence (97). This means it measures or calculates the 

relationship between dependent variable and one or more independent variables. Regression 

models are central part of many research projects. It has been used to predict the survival of 

critical conditioned patients who are generally admitted to intensive care unit as a function of 

physiological variables (98). Basically, regression models are classified into two main categories 

i.e. linear models and logistic regression models. The logistic regression model is quite often 

employed technique in data analysis. It is considered as a well-known classification modeling 
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that allows probabilistic decisions and shows promising results on several problems. Like all 

others regression models, which are used for description, control and prediction, logistic model 

(also called as logit model) produce similar results with a best fitting which is considered as a 

clinically interpretable model.  

Survival analysis can be considered a classification problem in which the application of 

machine-learning methods is appropriate. By establishing meaningful intervals of time according 

to a particular situation, survival analysis can easily be seen as a classification problem. Survival 

analysis methods deals with waiting time, i.e. time till occurrence of an event. Commonly used 

method to classify this sort of data is logistic regression. Sometimes, the underlying assumptions 

of the model are not true. In model building, choosing an appropriate model depends on 

complexity and the characteristics of the data that affect the appropriateness of the model. Two 

such strategies, which are used nowadays frequently, are artificial neural network (ANN) and 

decision trees (DT), which needs a minimal assumption. This study aimed to compare 

predictions of the ANN, DT and logistic models by breast cancer survival.  

6.2 Questions of Interest 

Q1: What are the significant attributable variables which play an important role in 

classifying breast cancer survival? 

Q2: What are the different models using different classification methods will be able to 

give improved prediction of survival in breast cancer women? 

Q3: Which of the following techniques will produce the model with the highest precision 

in classifying the breast cancer survival data: logistic regression, decision trees, or neural 

networks?   
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Q4: How does ANN model and decision tree model perform compared with logistic 

regression model in the analyses breast cancer survival using different input variables for the 

same individuals?  

Q5: Are there any benefits of Artificial Neural Network analyses (ANN) and decision 

tree models compared with logistic regression analyses? 

Q6: Using the identified model, what is the probability of survived subject is correctly 

classified as survived and not survived woman as not survived? 

Q7: Will the model selection vary based on the selected evaluation method? 

 

6.3 Logistic Regression 

The linear logistic regression assumes that natural logarithm of odds is in linear 

relationship with corresponding independent covariates. The linear logistic function is 

characterized by three main components. They are random experiment (identifies the PDF of 

response variable), a systematic component (linear relationship of explanatory variables which 

are used as predictors), link function (describes relationship between the first and second 

components). The logistic regression is distinguished from linear model based on its binary 

outcome. Logistic model is a type of predictive model which relates two categories of variables 

like dependent variables (dichotomous or binary outcome either 0 or 1) and independent 

variables (predictor or explanatory variables). In the binary response model, an individual takes 

one of the two possible outcomes. Some of the expected binary outcomes are active-inactive, 

healthy-unhealthy, normal-abnormal etc. For example the probability of officer promotion would 

relate to his characteristics like annual performance and CEP. This model estimates or predicts 

by fitting the occurrence of events into logistic curve. A broad choice of aspects using various 
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links functions that describe the relationship between the probability distribution of response 

variables and the linearity of explanatory variables are listed below. 

1. The logistic function:  𝑔1 (𝜋)  =  𝑙𝑜𝑔 {𝜋/(1 − 𝜋)} 

2. The inverse normal function:  𝑔2(𝜋)  =  Ф − 1 (𝜋) 

3. The complementary log – log function: 𝑔3 (𝜋)  =  −𝑙𝑜𝑔 {−𝑙𝑜𝑔 (1 − 𝜋)} 

4. The log – log function:  𝑔4 (𝜋)  =  −𝑙𝑜𝑔 {−𝑙𝑜𝑔 (𝜋)} 

Apart from this logistic function also possess one important characteristic feature is its 

overall transformations in that it is eminently suited for analysis of data collected. Logistic 

regression architecture is given in Figure 6.1. For example, one can try to predict whether a 

subject will suffer from heart attack at a specified time based on certain characteristics like 

person age, sex, habitats etc. Logistic regression is extensively used in medical diagnosis like 

brain injury, different types of cancer prediction like breast, cervical, prostate etc. More details 

can be found in text book Applied Logistic Regression of Hosmer and Lemeshow (99). Example 

of logistic curve is shown in Figure 6.2. 

 

Figure 6.1 Architecture of Logistic regression 
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Figure 6.2 Logistic Curve 

In case of polytomous response model, the response of a specific item or individual is 

restricted to only a fixed set of possible values. The binary response model falls under the 

category of polytomous response model as a special case. The logit models utilize the ordering of 

response variables by nature. One such example is usage of rating scales in testing of food and 

wine tasting. 

McFadden (100) was the first person who linked the multinomial logit function to theory 

of mathematical psychology and received Nobel Prize in 2000. And many more articles in the 

21st century have made their own and unique way of importance to logistic regression. At present 

wide range of applications using logistic function are being explored in various fields like 

medicine, biological sciences, sociology, psychology, business, management etc. 

In our present work, the outcome variable, survival prediction with breast cancer or 

otherwise is predicted from the knowledge of the patient’s age, tumor size, stage of cancer, 

treatment, administered and duration. 
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6.4 Timeline of Logistic Function 

 

6.4.1: 19th Century 

Alphonse Quetelet (1795-1874), Belgian astronomer turned statistician was first person 

who extrapolated the exponential growth of human population. Pierre-Francois Verhulst (1804-

1847) derived the expression and named the expression as ‘Logit function’ (102). He included 

the expression, functions, properties and applications in three papers published at Proceedings of 

the Belgian Royal Academy (101). 

 

6.4.2: 20th Century 

1920-1930 

Until 1920 there are no specific articles or reviews that discuss about logistic functions. 

Raymond Pearl and Lowell J Reed (1920) were the persons who discovered the logistic function 

for the study of population growth of United States of America. The curve gave a good fit for 

population during the period of 1790 to 1910. They do not have the knowledge of Verhulst 

works on Logit function. Berkson and Reed (1929) published papers on the application of logit 

function (103) to autocatalytic reactions in Proceedings of the National Science Academy of 

Sciences. Yule (1925) was the first person who provoked the name of logit function and 

appreciated the works of Verhulst in his papers in Yule’s Presidential Address of the Royal 

Statistical Society (104). 

1930-1940 

Gaddum and Bliss (1933-1934) introduced the probit model also called as “Probability 

Unit”. But the authors gave more importance to logarithmic transformations rather than common 

normal distributions in bioassay for the study of stimulus and its responses. 
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1940-1950  

Berkson (1944) was the first person who substituted ‘Probit’ with ‘Logit’ by conducting 

many experiments on the method of maximum likelihood estimation and its advocacy in 

minimum chi-square estimation which were not approved at that time (105).Wilson(1943)was 

probably the first person to publish as application of the logistic function in bioassay in Wilson 

and Worcester. 

1960-1970 

Cox (1960-1970) gave equal importance to logit functions compared with probit 

functions in his articles published in JSTOR electronic repertory, which is one among the 12 

major statistical journals in the English language. He covered the importance of multinomial 

generalization of logit function (37). 

1970-1980 

Mckelvey and Zavoina (1975) formulated the latent regression model for an ordered 

probit model of the voting behavior of United States congressmen (106). In 1977 BDR 

(Biomedical Data Processing) which is a computer package offered the facility of maximum 

likelihood estimation of logit and probit functions. 

 

6.4.3: Recent Trends 

Ever since the demand for logistic regression has increased tremendously, many articles 

in name and application of function evolved in many international journals. Few of much cited 

works are listed below for reference. 

1991: The Importance of Assessing the fit of Logistic Regression Models (106). 

1993: Nontraditional Regression Analysis (107) 

1995: Regression Shrinkage and Selection via the Lasso (108) 
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1997: A Comparison of Goodness-of-Fit tests for the Logistic Regression Models (109). 

1999: Additive Logistic Regression: A Statistical View of Boosting (110). 

 

6.4.4 Underlying assumptions 

There were many numbers of assumptions made to the logistic regression compared to ordinary 

regression methods.  

8. The data collected is assumed to be completely randomized during the assignment of 

treatments to experimental subjects. 

9. Multinomial logistic regression does not consider the sample size estimations and 

identifications of outliers. 

10. The attracting aspect of multinomial logistic regression analysis is, it does not assume 

normality, linearity and homoscedasticity. In order to meet the requirements multinomial 

logistic regression is subjected to discriminant analysis because this analysis does not have 

any presumed assumptions. 

11. The assumption of independent variables by logit function can be tested by McFadden-

Hausman test (111). 

12. Furthermore, Multinomial logistic regression assumes non-perfect separation which means if 

the outcomes of variables can be separated by predictor variables then unrealistic coefficients 

appear which influence the size. 

 

6.4.5 Fitting the Logistic Regression Model and Significance Tests 

Consider a sample size of n with observations 𝑥1, 𝑥2, 𝑥3, … . 𝑥𝑛which denote the predictor 

variables that produce the binary output either Y=0 (absence) or Y=1(presence) of the disease. 

‘Y’ represents the dichotomous outcome variable corresponding to the xi value of the 𝑖𝑡ℎvariable. 
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Assuming each of these variables is at least scaled interval, the conditional probability that is 

present denoted by 𝑃(𝑌 = 1|𝑥)  =  𝜋 (𝑥) where π denotes the probability of disease is present. 

The probability of outcome is related to the potential predictor variables by the equation of the 

form 

𝑙𝑜𝑔𝑖𝑡 [𝜋(𝑥)] = 𝑙𝑜𝑔
𝜋 (𝑥)

1 − 𝜋 (𝑥)
=  𝛼 + 𝛽1𝑥1 +  𝛽2𝑥2 +  … … + 𝛽𝑘𝑥𝑘 

Where(𝛼, 𝛽1, 𝛽2 … 𝛽𝑛) are termed as the regression coefficients of the predictor variables  

(𝑥1, 𝑥2, 𝑥3 … . 𝑥𝑛 ). The coefficients of regression are extracted from the availability of data. The 

regression coefficients measure the percentage of contribution of predictor variables towards the 

outcome. This prediction is generally followed by the odds ratio of independent variable. The 

odds ratio is estimated by taking the exponential ratio of the coefficient (say:𝑒𝑥𝑝 (𝛽1)). For 

example the odds ratio for breast cancer can be estimated by taking into consideration the age as 

independent variable along with exponential function of regression coefficient. This estimation 

represents the likelihood of occurrence of breast cancer based on age. The use of probability 

values determines the importance of variables in terms of statistical significance in producing 

outcomes. Increasing the sample size, predictors with small effects on the outcomes become 

statistically significant. Hence, the selection of significant variables is important in such a 

prediction. This selection is usually compelled either by forward or backward selection or step-

wise selection depending upon the size of the sample. Sometimes clinically important variables 

may show statistically insignificant prediction of outcomes due to influence of strong predictors. 

In such case the criterion level of significance can be increased to avoid conflicts. 
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6.4.6 Survival prediction using Logistic, ANN and Decision tree modeling 

In this chapter, using the same input and output variables we established four models 

using both logistic regression, ANNs, decision trees and compared their performances.  

Event history models and logistic regression models are the two commonly used analyses 

of survival, where the former models use target survival as a continuous variable of survival 

time, while the latter models use a fixed survival length. The target is thus a dichotomous 

variable, survived or not. In this chapter, using logistic regression model as a classifier we 

predict the survival of breast cancer women. 

The main idea of this chapter is to design four models with significant attributable 

variables to predict the survival of a breast cancer woman. The significant independent variables 

used in this modeling are selected by logistic regression analysis. As discussed earlier, logistic 

regression is a statistical technique used to examine the relationship between a dependent 

variable (survival or otherwise) and a one or more independent variables (numerical or 

categorical). Initially, we have used all the independent variables including: tumor size, age, 

stage of cancer, treatment, duration, grade of tumor, race, marital status, and number of primary 

tumors. Based on the logistic regression results the independent variables grade of tumor, race, 

marital status, and number of primary tumors nor their interaction terms were not statistically 

significant in providing the best prediction of survival of breast cancer women. Leaving these 

insignificant variables out of the modeling we designed four models inputting one variable at a 

time. The output vector in these models contains two variables for each case: predicted survival 

either 0 (not survived/dead) or 1 (survived/alive). A number between 0 and 1 gives an estimate 

of the accuracy of the predicted value.  
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The first model, named model-1 is using two variables including: age and tumor size 

only. The second model, named model-2 is using three variables including: age, tumor size, and 

stage of cancer. The third model, namely model-3 includes treatment along with the three 

variables chosen in model-2. The last model, model-4 has the variables including: age, tumor 

size, and stage of cancer, treatment and duration. In all these models our output is to predict the 

survival or otherwise of a breast cancer women. We interpret this overall accuracy, as a measure 

of the reliability of a given estimate. 

Table 6.1 summarizes the specificity, sensitivity and overall accuracy results of the four 

logistic regression models. Table 6.2 has the ROC area values for the four logistic models. The 

results showed that the overall accuracy jumps from 70.42% for model-3 to 80% for model-4. 

This is not a surprising result. As anticipated, duration of stay for a woman with breast cancer, 

during the study period has a lot of importance for predicting accurate survival. The logistic 

regression model-1 yielded a ROC area of 68.8%, and sensitivity to survival of 95% gave a 

specificity of only 25%, model-2 with a ROC area of 71% and sensitivity to survival of 95% has 

a specificity of 30%. For the remaining two models the ROC area is 71.8% and 85.5% 

respectively and the sensitivity to survival of 95% has a specificity of 29% and 61% respectively. 

The results of model-4 logistic regression providing with overall accuracy of 80% along with 

81.54% specificity, 76.82% sensitivity and 61% specificity at 95% sensitivity is often desirable. 

The sensitivity and specificity of all the four models with their respective confidence intervals 

are given in Table 6.1.  For computing confidence intervals for sensitivity and specificity see 

Altman et al. The ROC graphs of the four logistic models are given in Figure 6.3.  
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Table 6.1 Sensitivity, specificity and overall results of Logistic regression models 

Logistic 

Regression 

Model 

Sensitivity (%) Specificity (%) 
Accuracy 

(%) value 95% C.I value 95% C.I 

LR 1 68.01 (67.04, 68.96) 69.45 (68.99, 69.91) 69.2 

LR 2 67.31 (66.39, 68.21) 70.47 (70.0, 70.93) 69.78 

LR 3 67.69 (66.80, 68.55) 71.26 (70.78, 71.72) 70.42 

LR 4 76.82 (76.14, 77.47) 81.54 (81.11, 81.97) 79.98 

 

Table 6.2 LR models ROC area values 

LR 

Models 
ROC 

At 95% 

sensitivity 

Specificity 

LR-1 68.8% 25% 

LR-2 71.0% 30% 

LR-3 71.8% 29% 

LR-4 85.5% 61% 

 

 
 

 

 

 

LR-2 LR-1 
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Figure 6.3 ROC graphs for four LR models 

 

6.5 ANN Perceptron Classification 

Major amount of research works during 1960’s were carried under the name of 

“Perceptron”. Frank Rosenblatt (1958) was the person who coined the term “Perceptron” in his 

psychological magazine (112). The word perceptron is derived from English word “Perception” 

which means ability of an individual to understand. He has written in his book named 

“Principles of Neurodynamics” on how to train these kinds of neurons to enable them perform 

pattern recognition tasks. He further provided information on how perceptron provide solution to 

particular problem in finite number of steps. The perceptron turns out to be McCulloch-Pitts 

model which mean a neuron with weighted outputs and with additional pre-processing. 

 

6.5.1 Definition of Perceptron 

A perceptron can be termed as a classification of different sets of data probably unseen 

data sets into learned ones. The structure of perceptron possesses a number of inputs, a bias and 

an output. A simple schematic diagram of perceptron is shown in Figure 6.4. 

 

LR-4 LR-3 
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Figure 6.4 A simple perceptron 

Another definition of perceptron can be considered as “An arrangement of one input 

layer of McCulloh-Pits neurons feeding forward to one output layer of McCulloch-Pitts neurons 

is known as perceptron”. 

6.5.2 Multilayer Perceptron 

The concept of multilayer perceptron is built using number of single layer neurons. Each 

of the perceptron layers is used to solve nonlinearly separable problems by breaking them into 

small linearly separable sections of inputs provided. The outputs of each individual perceptron is 

extracted and combined with another series of perceptrons to obtain final output. In most cases 

the hard-limiting function (step function) is used for producing outputs. This step function 

prevents the information of the inputs to overflow into the inner neurons. To solve this problem 

step function is replaced with a sigmoid function. In a multilayer perceptron, the neurons are 

arranged in order of the input layer, one or more hidden layers and an output layer as shown in 

Figure 6.5. The architecture (113) is designed to possess better properties like no direct 

connection between input and output layers, full connection between layers, number of outputs 

need not be equal to number of inputs, there is no limit for number of hidden layers i.e. they can 

be more or less than input and output units. 
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Figure 6.5 A simple feed forward perceptron model 

 

 ADALINE is an acronym for ADAtive LINear Element. Bernard Widrow and Marcian 

Hoff (1960) developed and presented this as single staged network. It is also called as the delta 

rule; the least-mean-squares rule; the Widrow Hoff rule. The binary values for input and output 

were assumed to be -1 and +1 respectively. Adaline possess similar architecture to perceptron, 

but the difference lies in type of learning rule used and thresholding step. These enable the user 

to solve the linearly inseparable problems which is impossible with single layer perceptron. The 

Widrow-Hoff learning (114) is applicable for trained supervisor, it is independent of the 

activation functions of neurons used. The LMS algorithm was proposed for Adaline. It is evident 

from above that training of perceptron requires modification of weights. The delta rule states that 

weights need to be adjusted corresponding to difference between desired and actual output. 

 

6.5.3 Introduction to Back Propagation 

The most widely used search technique for training artificial neural networks is back 

propagation. This can also be termed as “Feed-Forward back-propagation network”. This is a 

Input Units  Hidden Units    Output Units 
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user friendly model which can be understandable and implemented as software simulation. The 

development of the back propagation training algorithm was credited to Werbos (1993), Parker 

(1985) and LeCun (1986).  It is considered as the most widely used learning which is easy to 

implement and train. Rumelhart, Hinton and Williams have made important contributions 

towards the development and analysis of back propagation (115). They have concentrated on the 

improvement of the original back propagation algorithm. The attempts include working on 

different strategies like scaling differentiation, error metric modification, transfer modification, 

architectural restructuring, and constraining the solution set of the problem. 

The Back propagation is a local search technique which is still a popular and successful 

tool. It requires training for conditioning the network before used for processing other data. 

Networks possess one or more hidden layers depending upon the training introduced. Supervised 

training provides preliminary adjustments to the weights associated to organize the patterns 

categorically. Even though BP is most popular optimizing method to train networks it has certain 

limitations like inconsistency and unpredictable performances. The gradient nature of BP could 

be eliminated by using global search techniques which do not depend on their derivatives. There 

are some cases where large networks can take long time to be trained and may not converge to 

solution significantly. The building of neural network ideal to brain is impossible. However we 

can build some simpler artificial neural networks with a suitable transfer function to work almost 

similar to a biological neuron. The functions of neural network built works similar in meaning to 

the human brain. 

The Feed Forward, Back-Propagation architecture (116) was developed in the early 

1970’s by various independent sources (Werbor; Parker; Rumelhart, Hinton and Williams). In 

Feed-Forward propagation, neurons in present layer receive signals from preceding layers which 
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is multiplied by corresponding weights separately. Inputs from one or more previous neurons are 

individually weighted, then summed. The entire uniqueness of the network exists in the values of 

the weights between neurons. For this type of network in order to adjust weights the most 

common learning algorithm is called back propagation (BP).The use of term “Back Propagation” 

appears to be evolved after 1986 when researchers have presented their research of results on 

Parallel Distributed Processing (PDP) models. This synergistically developed back-propagation 

architecture which is most effective and easy to learn model for multilayer networks. Some work 

has been done which indicates that a maximum of five layers, one input layer, three hidden 

layers and an output layer are required to solve problems of complexity. 

6.5.3.1 Training with back propagation 

The problems are classified into training, testing and validation, files in the description of 

data sets. A BP network will search for a solution using the training data, if the error decreases 

during the testing & validation step, the training will discontinue. The researchers believe this 

step is necessary to not over fit a particular function being estimated. The problem of the 

algorithm begins with convergence. It may either converge to local or global solution. If a 

correct objective function is chosen and a global solution is obtained, then there will no such 

problem. Since, BP converges locally this type of NN training seems to be necessary. Learning 

rate (training parameter that controls the size of weight and bias changes during learning) and 

momentum coefficient (used to prevent the system from converging to a local minimum or 

saddle point) are the key factors that will help a network to train. Too low a learning rate makes 

the network learn very slowly. Too high a learning rate makes the weights and objective function 

diverge, so there is no learning at all. In training our networks we set the learning rate as 0.15 

and the momentum as 0.8.  
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6.5.3.2 Back-Propagation Algorithm 

A gradient search technique (117) like BP can provide the user with well recognized 

problem such as escaping local optima. The weights which are initialized randomly during 

training and starting point is located in local valley with high probability. Numerous solutions 

have been proposed to problems like differential scaling, the transfer function etc. assuming 

many different random starting points. A user must be able to choose different parameters to 

apply in neural networks software packages. The parameters include step size, momentum, 

learning rule, normalization technique, random seed etc. to find best combination to solve a 

particular problem. For the training of multilayer feed-forward ANNs, Error-Back propagation 

algorithm plays an important role. Generally the input layer is considered as a just distributor of 

signals from the external world and not taken into consideration as a layer.  

The back propagation training consists of two methods of computation: 

1. A forward pass 

2. A backward pass 

In forward pass an input pattern vector to the units in the input layer basically leads to the 

sensory nodes of the network. The signals from the input layer then propagate to series of layers 

finally producing the output. This process continuous until the signals reach output layer where 

actual response of the network to the input vector is obtained. In the backward pass, the synaptic 

weights are adjusted according to the signal which propagated backwards to the direction of the 

synaptic connections.  

6.5.3.3 Implementing Back Propagation 

The back propagation algorithm can be implemented in two different modes: 

1. On-line mode  
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2. Batch mode 

 In the on-line mode the error function is calculated after the presentation of the input 

pattern and the error signal is propagated back through the network modifying the weights before 

the presentations of the next pattern. The error function is generally the Mean Square Error of the 

difference between the desired and the actual responses of the network. All such presentations of 

such patterns is usually called as an epoch or one iteration. In batch mode the weights are 

modified only when the input pattern have been presented. Then the error function is calculated 

as the sum of the individual MSE for each of the input pattern and weights are modified 

accordingly before the next iteration. 

6.5.4 Error functions 

If a pattern is submitted and its classification or association is determined to be 

erroneous, the synaptic weights as well as the thresholds are adjusted so that the current least 

mean square classification error is reduced. The input - output mapping, comparison of target 

and actual values, and adjustment, if needed, continue until all mapping examples from the 

training set are learned within an acceptable overall error. Usually, mapping error is cumulative 

and computed over the full training set. Error is the measure of the discrepancy between the 

neural network output and the target. The most popular error functions are sum of squares (SSE) 

and cross entropy (CE) among others. 

 

6.5.5 Advantages of Multilayer Perceptrons 

The general characteristics of multilayer perceptrons are generalization and fault 

tolerance.  
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Generalization: Neural networks are capable of classifying unknown patterns with the support of 

known patterns that have some different level of features. This means incomplete inputs will be 

classified because of their similarity with complete inputs. 

Fault Tolerance: Neural networks are highly fault tolerant. This characteristic feature can also be 

termed as “graceful degradation” (118). Hence the neural networks keep on working even if 

some interconnections between some neurons fail. 

 

6.5.6 Limitations of Multilayer Perceptrons 

There are limitations to the feed forward, back propagation architecture. Back-

propagation requires a lot of supervised training, with lots of input-output examples. Sometimes, 

the learning can get stuck in local minima, limiting the best solution. This occurs when the 

network systems finds an error that is lower than the surrounding possibilities but does not 

finally gets to the smallest possible error. In typical feed forward, back-propagation applications, 

the desired output may not be known precisely. In such case the back propagation learning 

cannot be used directly. Examples like include speech synthesis from the text robot arms, 

evaluation of bank loans, image processing etc. 

6.5.7 ANN Modeling  

Neural networks are undoubtedly powerful nonlinear function estimators. As mentioned 

earlier there are several types of ANN architectures. They usually perform prediction tasks at 

least as well as other techniques, if not significantly better. Additionally, building an ANN 

requires minimum domain knowledge in the areas of mathematics and statistics, than does for 

building a logistic regression model. The ANN type used in this study is called a multilayer 

perceptron (MLP) or multilayer feed forward network, which propagates input signals forwards 

and error signals backwards. During the process, the weights are adjusted so that the output 
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grows more accurate. This process is prone to over fitting problems. In order to avoid over 

fitting, a common technique is to train the network with some portion of the data values, and 

then evaluate its performance by testing the trained network with the remaining data values. In 

our ANN modeling we used 70% data for training and remaining 30% data for testing. 

The four ANN models consisted of an input layer, a hidden layer and an output layer. 

Table 6.3 summarizes the specificity, sensitivity and overall accuracy results of the ANN models 

when training. Table 6.4 summarizes the specificity, sensitivity and overall accuracy results of 

the ANN models when testing the trained model. Table 6.5 has the ROC area values for the four 

ANN models. Since training is the key factor for an ANN model, here we will be discussing 

about training results of ANN models. Even in this case, the results showed that the overall 

accuracy jumps from 71.12% for model-3 to 82.80% for model-4 for the same reason as 

mentioned earlier. The ANN model-1 yielded a ROC area of 72.1%, and sensitivity to survival of 

95% gave a specificity of only 31%, model-2 with a ROC area of 73.1% and sensitivity to 

survival of 95% has a specificity of 32%. For the remaining two models the ROC area is 73.8% 

and 87.4% respectively and the sensitivity to survival of 95% has a specificity of 39% and 66% 

respectively. Comparing these results with logistic models, at a 95% sensitivity, ANN has a 

better specificity for all the four models. Table 6.5 gives the details about architecture and ROC 

area of ANN models and their respective ROC graphs of the four ANN models are given in 

Figure 6.7. The output of ANN will be a composite function of the form  

𝑦𝑖 = 𝑓 {∑ 𝑡𝑎𝑛ℎ (∑(⦁))} ;  𝑖 = 0,1;   

𝑓(⦁) 𝑖𝑠 𝑎 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑡𝑎𝑛ℎ(⦁)𝑖𝑠 𝑎 ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
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Table 6.3 Sensitivity, specificity and overall results of ANN training 

ANN 

Models 

Sensitivity (%) Specificity (%) Accuracy 

(%) Value 95% C.I Value 95% C.I 

ANN 1 66.78 (65.70, 67.83) 70.76 (70.19, 71.31) 69.85 

ANN 2 67.25 (66.19, 68.27) 71.48 (70.91, 72.03) 70.46 

ANN 3 68.23 (67.20, 69.23) 72.08 (71.51, 72.63) 71.12 

ANN 4 88.95 (88.27, 89.59) 80.60 (80.09, 81.09) 82.80 
 

 

Table 6.4 ANN models architecture and ROC values 

ANN 

Models 

Architecture 

ROC 

At 95% 

sensitivity 
I – H - O 

Specificity 

ANN-1 2 – 7 – 2 72.1% 30% 

ANN-2 6 – 3 – 2 73.1% 32% 

ANN-3 10 – 6 – 2 73.8% 39% 

ANN-4 11 – 3 – 2 87.4% 66% 

 

Table 6.5 Sensitivity, specificity and overall results of ANN testing 

ANN 

Model 

Sensitivity (%) Specificity (%) 
Accuracy 

(%) value 95% C.I value 95% C.I 

ANN 1 66.18 (64.52, 67.80) 70.66 (69.79, 71.51) 69.63 

ANN 2 68.66 (67.08, 70.20) 72.00 (71.14, 72.84) 71.20 

ANN 3 66.87 (65.26, 68.43) 71.89 (58.27, 59.97) 70.67 

ANN 4 89.36 (88.32, 90.32) 80.97 (80.20, 81.72) 83.20 
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ANN-1 
ANN-2 

ANN-3 ANN-4 

 
Figure 6.6 ROC graphs for four ANN models 

 

 

6.6 Decision Tree Classification 

Data mining tools are proved to be successful in field of medical diagnosis. The 

combination of both data mining tools along with decision trees is popular and effective 

classification approach which provides understandable and clear classifications rules that transfer 

knowledge to physicians and medical specialists. Data mining methods help to reduce the false 

positive and false negative decisions (129-131). This is one of the actively employed techniques 

that provide promising results in the breast cancer diagnosis.  
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 A decision tree can be stated as the classification tool or classifier for determining 

appropriate action for the given situation. A simple decision tree consists of a root node (parental 

node), internal nodes or test nodes, and leaf nodes (terminal nodes or decision nodes). The final 

decisions for the target class are obtained on the leaf nodes from performing split test in the 

internal nodes. In complex cases, the leaf node possesses a probability vector for the target value 

of certain case (132). A simple decision tree classifying survival of breast cancer patients with 

treatment as an attributable variable is given below Figure 6.7.  

 

 

  

 

 

 

Decision tree usually consists of nominal and/or continuous attributes. In case of nominal 

attributes, one outcome is assigned for the target value whereas for continuous attributes there 

will be threshold which has two outcomes, one for each classified interval based on the 

conditions imposed by the fixed threshold. A more comprehensible decision trees are typically 

less complex preferred by the decision makers. Each designated path of the decision tree from 

root to leaf can be transformed into a rule by computing tests along the path which assign class 

prediction to terminal node. These predictions are termed as the class values.  

Figure 6.7 Simple Decision Tree example 
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6.6.1 Framework of Decision Trees: Algorithm 

Decision tree accuracy is affected by the total number of nodes, depth of the tree, total 

number of leaves and number of attributes used. The complexity is controlled explicitly by the 

stopping criteria used and pruning methods employed. The objective of the decision trees is to 

find the optimal decision tree by minimizing the general errors. In order to solve heuristic 

problems with large data sets decision tree inducers with growing and pruning are being actively 

employed.  The algorithms employed follow the concept of “divide and rule” in evaluating for 

the final optimal decision tree. In the foregoing process, partition of the training sets is executed 

based in the values of the discrete attributes. The appropriate function is selected based on the 

splitting measures. After the selection, nodes are further divided into subsections to carry out 

similar splitting procedures or stopped when the criteria is satisfied (133, 134).  

6.6.2 Splitting Techniques 

Decision trees are most commonly univariate splitting i.e., they make splitting measures 

based on the single attribute at each internal node. But, the inducer searches for the best attribute 

at internal node upon splitting. Various criteria contain measures for the splitting procedures to 

be executed. The splitting procedures are employed in different ways based on the originating 

measure (includes information theory, dependence and distance) and based on the measure of 

structure (impurity based criteria, normalized impurity based criteria, and binary criteria) more of 

which can be found in data mining books (135). In case of univariate splitting, many researchers 

claim that the choice of splitting criteria does not make much difference on the performance of 

the tree.  
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 Accordingly in the literature multivariate splits have been extensively employed in case 

complex decision making situations. The frame work for these splits is not well known as that of 

univariate splits. Several attributes are involved in the single node split test at each internal node. 

Generally, multivariate splits are based on the linear combination of the input variables. The 

problem of finding the optimal linear split is much more difficult than that of the univariate split. 

Methods used for finding optimal split include greedy search method (136), linear programming 

(137), linear discriminant analysis (138), and many others. 

6.6.3 Stopping Criteria 

All the decision trees require stopping criteria otherwise it would be an undesirable to 

grow a tree which occupies its own node. This would lead to expensive computation and 

difficulty in interpretation. Rules for stopping the growing phase are discussed below.  

1. Number of cases in the node is less than the pre-indicated value. 

2. The depth of the node should not exceed more that predefined or maximum value. 

3. The number of cases in the terminal nodes is less than the minimum number of cases for 

parent nodes. 

4. The best splitting should not exceed a certain threshold limit set. 

5. Predictor values for all records are identical – no further rule for splitting is computed. 

6.6.4 Pruning Methods 

Early studies have proved stopping criteria degrade the performance of tree. This might 

create small and under fitted trees or over-fitted trees depending on situations. Hence, an 

alternative method for stopping growth is to allow the tree to grow and prune back to the 

optimum size using certain pruning methods. Pruning methods gained importance based on 
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trading accuracy for simplicity. It has improved the generalized performance of the decision tree 

especially in noisy circumstances (139). There are various techniques for pruning the trees 

include cost-complexion, reduced and minimum error, pessimistic, optimal etc.  

6.6.5 Decision Tree Inducers 

The approach of induction is to develop a decision tree from set of examples. Various 

techniques like ID3, C4.5, Classification and regression trees (CART or CRT), chi-squared 

automatic interaction detector (CHAID), Quick, unbiased, efficient, and statistical tree (QUEST) 

and many others are actively employed based on the attributes.  For large data sets two methods 

developed have been popularly employed namely the Catlett method and SLIQ algorithm. 

Further advancements and extensions for decision trees like oblivious trees (140), fuzzy decision 

trees, and incremental induction (141) can be found in the literature. Here in this chapter we will 

construct decision trees based on CHAID and CRT methods and choose the best performing 

method. 

6.6.6 Chi-squared Automatic Interaction Detector (CHAID) 

CHAID is a type of decision tree technique, based upon adjusted significance testing 

(Bonferroni testing). It is one of the oldest tree classification methods originally proposed by 

Kass (1980; according to Ripley, 1996, the CHAID algorithm is a descendent of THAID 

developed by Morgan and Messenger). . CHAID algorithm only accepts nominal or ordinal 

categorical predictors. When predictors are continuous, they are transformed into ordinal 

predictors before using the following algorithm. After the merging of the continuous and 

categorical variables adjusted p-value is computed using Bonferroni adjustments (14). P-value 

decides further merging operation if needed or not. 
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6.6.7 Classification and Regression Trees (CART) 

CART algorithm was introduced in Breiman in 1986. These trees are characterized by the 

construction of binary trees implies that each external nodes consists of exactly two outgoing 

edges. It generates a regression model when the target variable is continuous else a classification 

model in case of categorical variables. In case of regression models, the CART looks for the 

splits that minimize the prediction square error (8). The prediction is based on the mean value of 

the target attribute of the rows falling under the terminal leaf node. The present research studies 

have employed these two methods which appeared to give better results compared to other 

evaluation methods. 

6.6.8 Advantages and Disadvantages 

Decision trees were pointed as good classification tools in literature due to its self-

explanatory nature and easy to understand and interpretation behavior. It takes into consideration 

both numerical and nominal input attributes. They have the capability to handle and deal with 

large datasets and datasets with large amount of errors. The predicted performance is proved to 

be much higher and better than traditional methods like neural networks, logistic methods etc. 

 Decision trees also possess certain disadvantages which include its sensitiveness to small 

changes in input data can alter the nature of trees. Most of the algorithms accept only discrete 

variables (like ID3 and C4.5). Decision trees perform well if few highly relevant attributes are 

present and less if more complexions interactions exists. 

6.6.9 Modeling using Decision Trees 

Table 6.6 summarizes the specificity, sensitivity and overall accuracy results of the four 

decision tree models using both CHAID and CRT based methods. Table 6.7 has the ROC area 
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values for these models. The results showed that the overall accuracy jumps from 71.10% for 

model-3 to 82.6% for model-4 in a CHAID decision tree. Similarly for a CRT based decision 

tree the accuracy jumps from 70.9% for model-3 to 83.2% for model-4. As noticed in both 

logistic and ANN models, duration under study for a woman with breast cancer, during the study 

period has a lot of importance for predicting accurate survival.  

For CHAID based decision tree the ROC for model-1 covered an area of 72%, and 

sensitivity to survival of 95% gave a specificity of only 22%, model-2 with a ROC area of 73.2% 

and sensitivity to survival of 95% has a specificity of 25%. For the remaining two models the 

ROC area is 73.6% and 87.6% respectively and the sensitivity to survival of 95% has a 

specificity of 29% and 62% respectively. The results of model-4 decision tree with overall 

accuracy of 82.6% along with 80.14% specificity, 89.67% sensitivity and 62% specificity at 95% 

sensitivity are often desirable. The sensitivity and specificity of all the four models with their 

respective confidence intervals are given in Table 6.6.  For computing confidence intervals for 

sensitivity and specificity see Altman et al. The ROC graphs of CHAID based decision tree 

models are given in Figure 6.9. 

The results of CRT based decision tree models reported a ROC of 71.9% for model-1, 

and sensitivity to survival of 95% gave a specificity of only 24%, model-2 with a ROC area of 

72.8% and sensitivity to survival of 95% has a specificity of 29%. For the remaining two models 

the ROC area is 72.7% and 87.4% respectively and the sensitivity to survival of 95% has a 

specificity of 28% and 62% respectively. The results of model-4 CRT decision tree with overall 

accuracy of 82.2% along with 79.86% specificity, 93.62% sensitivity and 62% specificity at 95% 

sensitivity are often desirable. The sensitivity and specificity of all the four models with their 
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respective confidence intervals are given in Table 6.6.  For computing confidence intervals for 

sensitivity and specificity see Altman et al. The ROC graphs of CRT based decision tree models 

are given in Figure 6.8. 

CHAID uses multi way splits by default (meaning that a given current node is split into 

more than two nodes), whereas CRT does binary splits (meaning each node is split into two sub-

nodes only). This difference between CRT and the CHAID has even an effect on the tree structures. 

In case of CHAID, trees sometimes look more like bushes. CHAID has been especially popular in 

marketing and medical research, where segmentation or classification has many major applications. 

Few more differences are listed below: 

 CHAID uses a p-value from a chi-square significance test to measure the desirability of a 

split, while CRT uses the reduction of an impurity measure.  

  CHAID searches for multi-way splits, while CRT performs only binary splits.  

 CHAID uses a forward stopping rule to grow a tree, while CRT deliberately over fits and 

uses validation data to prune back. 

 CHAID tree output is simple, short and easy to interpret, while CRT has a larger tree 

structure. 

Finally, one may prefer CHAID when the goal is to classify or understand the relationship 

between a response variable and a set of explanatory variables, whereas CRT is better suited for 

creating a regression model. In view of this, in this chapter we will choose CHAID over CRT for 

survival classification of breast cancer woman. 
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 Table 6.6 Sensitivity, specificity and overall results of Decision trees 

Training 
 Sensitivity Specificity Accuracy  

(%)  Value 95% CI Value 95% CI 

Model 1 
CHAID 64.77 (63.73,65.8) 71.12 (70.60,71.73) 69.6 

CRT 66.83 (65.74,67.91) 70.75 (70.19,71.30) 69.9 

Model 2 
CHAID 69.33 (68.27,70.37) 71.21 (70.65,71.76) 70.8 

CRT 69.2 (68.14,70.24) 71.2 (70.63,71.74) 70.7 

Model 3 
CHAID 67.59 (66.58,68.59) 72.25 (71.69,72.81) 71.1 

CRT 66.22 (65.22,67.21) 72.64 (72.07,73.20) 70.9 

Model 4 
CHAID 89.67 (89.00,90.30) 80.14 (79.63,80.63) 82.6 

CRT 93.62 (93.05,94.14) 79.86 (79.35,80.35) 83.2 

Testing 
 Sensitivity Specificity Accuracy 

(%)  Value 95% CI Value 95% CI 

Model 1 
CHAID 63.66 (62.07,65.22) 71.22 (70.35,72.09) 69.3 

CRT 67.33 (65.66,68.97) 69.69 (68.83,70.55) 69.2 

Model 2 
CHAID 68.63 (66.97,70.24) 71.27 (70.40,72.12) 70.7 

CRT 67.24 (65.56,68.87) 70.82 (69.95,71.67) 70 

Model 3 
CHAID 66.32 (64.75,67.85) 72.19 (71.31,73.04) 70.7 

CRT 65.11 (63.55,66.65) 71.42 (70.54,72.28) 69.8 

Model 4 
CHAID 88.2 (87.10,89.21) 80.38 (79.61,81.14) 82.4 

CRT 94.02 (93.19,94.76) 79.93 (79.16,80.69) 83.2 

 

 
Table 6.7 ROC of Decision tree using CHAID and CRT 

 CHAID CRT 

Model-1 72.0% 71.9% 

Model-2 73.2% 72.8% 

Model-3 73.6% 72.7% 

Model-4 87.6% 87.4% 

 

6.7 Performance Evaluation of models 

In the context of predictive binary classification models, one of four outcomes is possible: (a) 

a true positive (TP) – i.e., a survived subject is classified as “survived”; (b) a false positive (FP) 

– i.e., a not survived subject is classified as “survived”; (c) a true negative (TN) – i.e., a not 
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survived subject are classified as “not survived”; (d) a false negative (FN) – i.e., a not survived 

subject is classified as “survived”.  

The central concern of implementing different modeling applications in this chapter is to 

identify which of the proposed techniques are actually improving predictive accuracy.  An 

improvement of even a fraction of a percent can translate into significant savings or increased 

revenue.  

The performances of logistic, ANN and decision tree models in this chapter are evaluated 

based on the sensitivity, specificity, overall accuracy, and the area under curve values of each 

model. Sensitivity is the proportion of true positives that are correctly identified by the model. 

Specificity is the proportion of true negatives that are correctly identified by the model.  

 CHAID CRT 

Model-1 

  

Model-2 
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Model-3 

  

Model-4 

  
 

Figure 6.8 ROCs of Decision trees using CHAID and CRT 

In other words, sensitivity refers to how good is the designed model is at correctly identifying 

women who are dead with breast cancer and specificity refers to how good the designed model is 

at correctly identifying women who have survived breast cancer (119). However, as a matter of 

fact, reporting a high sensitivity is not necessarily a good thing, but it’s the specificity, which 

should not be worse, which in turn can conclude the designed model as useless (120). Also, we 

will compare the area under the ROC curve, which is a convenient way to compare different 

predictive binary classification models when the analyst or decision maker has no information 

regarding the costs or severity of classification errors. According to Thomas (2000), this 

measurement is equivalent to the Gini index and the Mann-Whitney-Wilcoxon test statistic for 

comparing two distributions (Hanley and McNeil) and is referred in the literature in many ways, 

including AUC or AUCROC values.  



 

153 

 

Many research studies have exhibited the importance of ANNs, decision trees, logistic 

regression as predictor and classification tools in field of medical diagnosis. The works are 

extended in the risk prediction in a variety of cancers like breast (121), prostate (122), liver 

(123), ovarian (124), cervical (125), bladder (126), and skin cancer (127).  

We will compare the results of four logistic models with the results of four ANN models 

and decision tree models. The analytical description of designed neural network or the internal 

working of the ANN models will not be our point of concentration however we will treat them as 

black box which intakes input data and gives us the output. 

Table 6.8 has the performance evaluation of logistic, ANN and decision tree techniques. 

The overall accuracy for correct classification of survival of breast cancer women is almost the 

same in ANN and decision tree techniques compared to logistic. However the specificity of the 

model performance for logistic is slightly more than the ANN and decision trees. The ranking of 

these methods based on their classification performances are also tabulated in Table 6.8. The 

area under the curve ROC values of decision tree methods is slightly more compared to ANN 

and logistic regression methods. Table 6.9 has the details of comparing ROCs of the three 

different methods employed in this chapter with their ranking based on high ROC values.  

Table 6.8 Performance Comparison of Logistic, ANN and Decision tree 

 Overall Accuracy Specificity 

Model LR ANN CHAID LR ANN CHAID 

  Train Test Train Test  Train Test Train Test 

1 69.2 69.85 69.63 69.6 69.3 69.45 70.76 70.66 71.17 71.22 

2 69.78 70.46 71.2 70.8 70.7 70.47 71.48 72 68.63 71.27 

3 70.42 71.12 70.67 71.1 70.7 71.26 72.08 71.89 72.25 72.19 

4 79.98 82.31 81.95 82.6 82.4 81.54 79.76 79.22 80.14 80.4 

Rank III II I I III II 
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Table 6.9 ROCs of all methods 

Models LR ANN DT 

Model-1 68.8% 72.1% 72.0% 

Model-2 71.0% 73.1% 73.2% 

Model-3 71.8% 73.8% 73.6% 

Model-4 85.5% 87.4% 87.6% 

Rank III II I 

 

 

 

LR-Logistic Regression; ANN-Artificial Neural Network; DT-Decision tree 

Figure 6.9 Comparison of overall accuracy of LR and ANN models 
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LR-Logistic Regression; ANN-Artificial Neural Network; DT-Decision tree 

Figure 6.10 Specificity comparison of LR and ANN models 

 

 

Figure 6.11 Comparison of ROCs graphically for the three methods 
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6.8 Conclusion and discussion 

For maintaining consistency in comparing the models, we initially compared the accuracy 

of logistic distribution and accuracy in ANN and decision tree models in classification of 

survival of breast cancer data. Further we calculated the receiver operating characteristic (ROC) 

curves, compared them visually and calculate the area under the curve for comparison (121). The 

graph of comparison of three methods based on ROCs is given in Figure 6.11. Model-4 using the 

inputs including age, tumor size, stage of cancer, treatment and duration performed well by 

logistic, ANN and decision tree methods. The accuracy of classification for LR, ANN and DT 

models is recorded as 79.98%, 82.31% and 82.6%.  We find no much difference in these values 

for ANN and DT methods. However, at 95% sensitivity ANN has reported a better specificity 

compared to logistic and DT models. Using ROC analysis as a measure of discriminating ability 

of logistic, ANN and decision tree models we have not found convincing proof that the use of 

ANN model or decision tree models in general would increase the quality of the statistical 

studies that use traditional tools such as logistic regression models. 

In the present study, the effects of factors like age, tumor size, stage of cancer, treatment, 

and on the survival of a woman with breast cancer were designed. Four models for logistic and 

four models of ANN trained with gradient descent and four models of DT based on CHAID 

algorithm have been evaluated. The degree of generalization or the precision of predictive ability 

was measured for each logistic model, ANN model, decision tree model and  their predictive 

abilities were in the order of model-4 > model-3 > model-2 > model-1.  

As mentioned earlier, there is no significant difference in performance between LR, ANN 

model and decision tree models as measured by area under the ROC curve. Though all of them 
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have almost same area under curve, the shapes of these curves were different. i.e., at a fixed 

sensitivity, ANN’s and decision trees had higher specificity compared to LR. Figure 6.11 depicts 

this fact.  

In summary, it is hard to draw general conclusions regarding the performance or 

superiority of one model over the other on the basis of findings presented in this chapter or 

elsewhere, since the results for each of these studies are based on the specific kind of interest. 

Each model has its advantages, and the selection of a model should be based on these advantages 

and the intended purpose of the study. In this study, we conclude that ANN model-4 and decision 

tree model-4 has a better predictive probability compared to logistic model and can be used as 

the best for the modeling and prediction of breast cancer survival. 

Well-performing ANN models can be used for predictions when there is an unknown 

nonlinear relation between the independent variables and the dependent variables that is not well 

understood by other tools like logistic regression. 
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CHAPTER SEVEN  

Conclusion and Future work 

 

In this chapter we shall pose some possible extensions of the present research. This 

chapter stands on the foundations built on Chapters 2, 3, 4, 5 and 6. We make necessary 

connections between the methods employed in those chapters and report on ongoing work that 

could not be included in this thesis.  

In chapter two, we have used the Inverse Gaussian (IG) distribution for statistical 

modeling of the breast cancer tumor sizes for the three race women. At the end of this chapter 

grouping ages into groups of 5, we also stratified the number of women diagnosed with breast 

cancer in different stages. As a future research, it would be of interest to develop a 

statistical/mathematical model that identifies categorized age as the independent variable and 

tumor size as the response variable. Having established such models which may be non-linear in 

nature with a high degree of accuracy, namely, high R2 and adjusted R2 we can further proceed 

to calculate the rate of change of tumor size along with age.  

As a part of future research we plan to focus on the use of the kernel density estimation 

method. In case if we do not have enough information to fit the probability distribution of the 

parameters which behave as a random variable, we can proceed to investigate the applicability of 

the kernel density estimation method to obtain the density function of the parameters. 
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In chapters three and four, we have used the family of generalized extreme value 

distribution and log-logistic models to statistically model the survival of breast cancer women 

utilizing the available predictor variables for predictive purposes. As the part of future research, 

if we are given with more relevant information on breast cancer such as family history, age at 

first live birth, drinking and smoking habits, etc. we can be able to provide more compressive 

understanding of breast cancer. As a matter of fact, with the increased number of highly 

attributable variables and very handy software programs, it is of paramount importance that a 

survival model, incorporating such covariates be developed for more accurate and appropriate 

results of prediction. 

For the problem of breast cancer stage classification and classification of survival or 

otherwise of breast cancer woman we proposed artificial neural network approach in chapters 

five and six. There are many areas of research that can be explored further based on the findings 

from these chapters. Some specific ideas for future research are listed below: 

o The neural network parameters needs a random initializations of weights and 

biases Failing to declare proper initial values can in turn reduce the chances of 

proper training of network. Our proposal is to identify a relation, if any, that 

define neural network parameters such as weights and biases in terms of 

regression coefficients in statistical modeling.  

o Try to identify and explore the black box nature of ANNs. 

o Examine other network parameters that influence ANN performance, such as the 

activation function, number of hidden layers, number of epochs, learning rate, etc. 
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o To identify if there is any relationship between number of hidden layers, number 

of hidden units in each hidden layer and the output function of the network. This 

can mainly help us to reduce the training time. 

o Evaluate the application of different activation functions mathematically and 

statistically to identify their ability to provide robust results. 

o Linking ANNs, regression, differential equations and implementing them in 

applications of biological systems. 

Finally, the methods used in the current study could be implemented in the study of other 

types of cancers in providing important information on treatment and survival of cancer patients. 
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