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Abstract

A major question in Knot Theory concerns the process of trying to determine when two

knots are different. A knot invariant is a quantity (number, polynomial, group, etc.) that

does not change by continuous deformation of the knot. One of the simplest invariant of

knots is colorability. In this thesis, we study Fox colorings of knots and knots that are colored

by linear Alexander quandles. In recent years, there has been an interest in reducing Fox

colorings to a minimum number of colors. We prove that any Fox coloring of a 13-colorable

knot has a diagram that uses exactly five colors. The ideas behind the reduction of colors in

a Fox coloring is extended to knots colored by linear Alexander quandles. Thus, we prove

that any knot colored by either the linear Alexander quandle Z5[t]/(t− 2) or Z5[t]/(t− 3)

has a diagram using only four colors.

vi



Chapter 1

Fox Colorings of Knots

1.1 Introduction

One of the main questions in Knot Theory is how to tell knots apart. Thus, knot invariants

are constructed to distinguish two knots. One of the earliest knot invariants is called

colorability of knots. Fox introduced a diagrammatic definition of colorability of a knot

K by Zm (the integers modulo m) [13]. This notion of colorability is clearly one of the

simplest invariant of knots. In this chapter we investigate Fox colorings of knots that are

13-colorable. We first recall a few definitions.

Definition 1.1.1 A knot is an embedding of the circle in three dimensional space. In other

words, it is a simple closed curve in R3.

Two knots K1 and K2 are equivalent if K1 can be deformed continuously to obtain K2. We

say that K1 and K2 are ambient isotopic. A diagram of a knot K is a regular projection

p : K ⊂ R3 → R2 on a plane R2 where there are only finitely many transverse double

points Pi (p−1(Pi) contains only two points) called crossings such that at each crossing the

information on over-strands and under-stands is specified. Given two strands, in a diagram

of a knot, it is indicated which strand passes over and which passes under at each crossing

by drawing the under strand broken. A continuous curve in a diagram is called an arc, thus

there are finitely many arcs and each arc has its endpoints at a crossing. Two diagrams D1

and D2 represent the same knot K if and only if one can transform diagram D1 to diagram

D2 by a finite number of Reidemeister moves I, II, and III. The Reidemeister moves are

given in the following Figure 1.
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Figure 1.: Reidemeister moves I, II, and III, respectfully.

Definition 1.1.2 Let m be a natural number greater than 1. A Fox coloring or m-coloring

of the diagram D of a knot K is a map from the set of the arcs of D to the set of the integers

{0, 1, . . . ,m − 1} such that at every crossing, the sum of the two integers assigned to the

under-arcs is twice the integer assigned to the over-arc mod m.

In the following Figure 2 we have a Fox coloring of an arbitrary crossing.

Figure 2.: Fox coloring: a+ c ≡ 2b mod m

The integer assigned on an arc is called a color. A trivial coloring is a coloring of D that

uses only one color. For example the trefoil knot has a non-trivial 3-coloring.

Figure 3.: 3-coloring of the trefoil knot

Definition 1.1.3 A knot K is p-colorable if it has a diagram D that is non-trivially colored.

It is well known [12] that for a prime p, a knot K is p-colorable if and only if p divides the

2



determinant of K. The problem of finding the minimum number of colors for p-colorable

knots with p prime less than or equal to 11 was studied in [2, 8, 11,16,20,21]. For example

Satoh proved in [16] that any 5-colorable knot admits a non-trivially 5-colored diagram

where the coloring assignment uses only 4 of the 5 available colors. For a prime p, let K be

a p-colorable knot and let Cp(K) denotes the minimum number of colors among all diagrams

of the knot K. When p is prime it was proved in [18] that Cp(K) ≥ blog2(p)c + 2. This

implies that in our case, p = 13, the minimum number of colors of 13-colorable knots is

greater than or equal to 5. In fact, one of the goals of this thesis is to prove equality, that

is C13(K) = 5. A list of known results for small primes is given below:

• C3(K) = 3 for any 3-colorable knot K,

• C5(K) = 4 for any 5-colorable knot K [16],

• C7(K) = 4 for any 7-colorable knot K [8],

• C11(K) = 5 for any 11-colorable knot K [20].

1.2 Frequently used knot diagram transformations

In this section, we list a few transformations of knot diagrams that are used frequently in

this thesis. Moreover, it is important to note that all transformations used in this thesis

are sequences of compound Reidemeister moves, and therefore do not change the knot.

Throughout this chapter we will use the notation {a|b|c} in Zm as seen in [16] to denote

the crossing from Figure 2, where a and c are the colors of the under-arcs, b is the color of

the over arc and a+ c ≡ 2b, mod 13. When the crossing is of the type {c|c|c}, we will omit

over- and under- arcs and draw the arcs crossing each other.

Figure 4.: Transformation of the crossing {c|c|c} with a as an over-arc.

3



Figure 5.: Transformation of the crossing {c|c|c} with a as an under-arc.

Figure 6.: Inverse transformation of the crossing {c|c|c} with a as an under-arc.

Figure 7.: Transformation of the crossing {a|c|2c− a}.

Figure 8.: Inverse transformation of the crossing {a|c|2c− a}.
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Figure 9.: Transformation of c between two crossings {2a− c|a|c}.

Figure 10.: Transformation of c between the crossings {2a− c|a|c} and {c|b|2b− c}.
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Figure 11.: Transformation of c between the crossings {2a− c|a|c} and {c|a|2a− c}.

1.3 Fox coloring and the minimum number of colors of 13-colorable knots

Our first main result is describe in the following theorem.

Theorem 1.3.1 Any 13-colorable knot has a 13-colored diagram with exactly five colors.

Thus, C13(K) = 5 for any 13-colorable knot K.

Proof. We prove this theorem using eight lemmas. In each of the following lemmas we

decrease the coloring scheme of the diagram by one color c, where c is in Z13. To accomplish

this we first remove any crossings of the form {c|c|c}, that is, when c is both an over-arc

and an under-arc. Then, we remove c as an over-arc by transforming any crossings of the

form {a|c|2c − a} where a is in Z13 \ {c}. Finally, we complete each lemma by removing c

as an under-arc in a case by case method. In these under-arc cases we must consider when

c connects two crossings of the same color and when c connects two crossings of different

colors. �

6



1.3.1 Eliminating the color 12

Lemma 1.3.2 Any 13-colorable knot has a 13-colored diagram D with no arc colored by

12.

Proof. We first transform any crossing of the form {12|12|12}. If there is any crossing of

the form {12|12|12}, there is an adjacent crossing of the form {12|a|2a + 1} or {a|12|11 − a}

where a is in Z13 \ {12}. In either case, since 11 − a 6= 12 and 2a + 1 6= 12 for any a in

Z13 \ {12}, we transform the diagram as seen in Figure 4 or Figure 5.

Next, we remove 12 as an over-arc by transforming any crossings of the form {a|12|11−a}.

Since 2a+ 1 6= 12 and 3a+ 2 6= 12 for any a in Z13 \ {12} we transform the diagram as seen

in Figure 7. We complete the proof of the lemma by removing 12 as an under-arc in a case

by case method.

We first consider the case where 12 is an under-arc connecting two crossings of the form

{12|a|2a + 1}. Since 2a + 1 6= 12, 3a + 2 6= 12, and 4a + 3 6= 12 for any a in Z13 \ {12},

we transform the diagram as seen in Figure 9. Now we consider the case where 12 is an

under-arc connecting two crossings of the form {2a + 1|a|12} and {12|2a + 1|4a + 3}. Since

2a + 1 6= 12 and 3a + 2 6= 12 for any a in Z13 \ {12} we transform the diagram as seen in

the following Figure 12.

Figure 12.: Transformation of 12 between the crossings {2a+1|a|12} and {12|2a+1|4a+3}.

Finally we consider the case where 12 is an under-arc connecting two crossings of the from

{2a + 1|a|12} and {12|b|2b + 1} where a 6= b and b 6= 2a + 1 for any a and b in Z13 \ {12}.

Since 2a − 2b − 1 6= 12 and 2a − b 6= 12 for any a and b in Z13 \ {12} (from a 6= b and

b 6= 2a+ 1 respectively) we transform the diagram as seen in the following Figure 13.
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Figure 13.: Transformation of 12 between the crossings {2a+ 1|a|12} and {12|b|2b+ 1}.

�

1.3.2 Eliminating the color 11

Lemma 1.3.3 Any 13-colorable knot has a 13-colored diagram D with no arc colored by 11

or 12.

Proof. By the previous lemma we may assume that no arc in D is colored by 12. We first

transform any crossing of the form {11|11|11}. If there is any crossing of the form {11|11|11},

there is an adjacent crossing of the form {11|a|2a+2} or {a|11|9−a} where a is in Z13\{11, 12}.

If a 6= 5, 10, then 9 − a 6= 11, 12 and 2a + 2 6= 11, 12 for any a in Z13 \ {5, 10, 11, 12}, so we

transform the diagram as seen in Figure 4 or Figure 5.

If a = 5 as an under-arc, we transform the diagram as seen in Figure 6. Now, a cannot

equal 5 as an over-arc, otherwise 2a + 2 = 12 contradicting our assumption that no arc is

colored by 12.

If a = 10 as an over-arc, we transform the diagram as seen in Figure 4. Similarly a cannot

equal 10 as an under-arc, otherwise 9 − a = 12 which is a contradiction. Next, we remove

11 as an over-arc by transforming any crossings of the form {a|11|9−a}. Since 9−a 6= 11, 12

we have that a 6= 10. Therefore if a 6= 5, 7, then 2a+ 2 6= 11, 12 and 3a+ 4 6= 11, 12 for any

a in Z13 \ {5, 7, 10, 11, 12} we transform the diagram as seen in Figure 7.

If a = 5 or a = 7, we transform the diagram as seen in Figure 8.

We complete the proof of the lemma by removing 11 as an under-arc in a case by case

method. We first consider the case where 11 is an under-arc connecting two crossings of the

form {11|a|2a+2}. Since 2a+2 6= 11, 12 we have that a 6= 5. If a 6= 7, 8,, then 3a+4 6= 11, 12
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and 4a + 6 6= 11, 12 for any a in Z13 \ {5, 7, 8, 11, 12}, we transform the diagram as seen in

Figure 9. If a = 7, we transform the diagram as seen in the following Figure 14.

Figure 14.: Transformation of 11 between two crossings {3|7|11}.

If a = 8, we transform the diagram as seen in Figure 11. Now we consider the case where

11 is an under-arc connecting two crossings of the from {2a+2|a|11} and {11|b|2b+2} where

a 6= b for any a and b in Z13 \ {5, 11, 12}. (Note that a, b 6= 5 otherwise 2a + 2 = 12 or

2b+ 2 = 12.)

If (a, b) 6= (0, 6), (6, 0), (3, 7), or (7, 3), then either 2a−2b−2 6= 11, 12 and 2a−b 6= 11, 12

or 2b−2a−2 6= 11, 12 and 2b−a 6= 11, 12 for or any a and b in Z13\{5, 11, 12} we transform

the diagram as seen in Figure 10.

If (a, b) = (0, 6), we transform the diagram as seen in the following Figure 15. Similarly

for the case of (6, 0).
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Figure 15.: Transformation of 11 between the crossings {2|0|11} and {11|6|1}.

If (a, b) = (3, 7), we transform the diagram as seen in the following Figure 16. Similarly

for the case of (7, 3).

Figure 16.: Transformation of 11 between the crossings {8|3|11} and {11|7|3}.

�

1.3.3 Eliminating the color 7

Lemma 1.3.4 Any 13-colorable knot has a 13-colored diagram D with no arc colored by 7,

11, or 12.

Proof. By the previous lemmas we may assume that no arc in D is colored by 11 or 12.

We first transform any crossing of the form {7|7|7}. If there is any crossing of the form

{7|7|7}, there is an adjacent crossing of the form {7|a|2a + 6} or {a|7|1 − a} where a is in

Z13 \ {7, 11, 12}. If a 6= 2, 3, 9, then 1 − a 6= 7, 11, 12 and 2a + 6 6= 7, 11, 12 for any a in

Z13 \ {2, 3, 7, 9, 11, 12}, so we transform the diagram as seen in Figure 4 or Figure 5.

If a = 2 as an over-arc, we transform the diagram as seen in Figure 4. Note that a cannot

equal 2 as an under-arc, otherwise 1 − a = 12 contradicting our assumption that no arc is

colored by 12.
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As an over-arc or an under-arc a cannot be 3, otherwise 1 − a = 11 and 2a + 6 = 12,

contradicting our assumption that no arc is colored by 11 or 12. If a = 9 as an under-arc,

we transform the diagram as seen in Figure 6. Note that a cannot equal 9 as an over-arc

otherwise 2a+ 6 = 11 contradicting our assumption that no arc is colored by 11. Therefore

any crossings of the form {7|7|7} are removed.

Next, we remove 7 as an over-arc by transforming any crossings of the form {a|7|1 − a}.

Since 1−a 6= 7, 11, 12 we have that a 6= 2, 3. Therefore if a 6= 0, 4, 9, then 2a+ 6 6= 7, 11, 12

and 3a+ 12 6= 7, 11, 12 for any a in Z13 \ {0, 2, 3, 4, 7, 9, 11, 12} we transform the diagram as

seen in Figure 7. If a = 0, 4, 9, we transform the diagram as seen in Figure 8. We complete

the proof of the lemma by removing 7 as an under-arc in a case by case method. We first

consider the case where 7 is an under-arc connecting two crossings of the form {7|a|2a+ 6}.

Since 2a+ 6 6= 7, 11, 12 we have that a 6= 3, 9. If a 6= 0, 4, 5, 8, then 3a+ 12 6= 7, 11, 12 and

4a+5 6= 7, 11, 12 for any a in Z13 \ {0, 3, 4, 5, 7, 8, 9, 11, 12} we transform the diagram as seen

in Figure 9. If a = 0, we transform the diagram as seen in the following Figure 17.

Figure 17.: Transformation of 7 between two crossings {6|0|7}.
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If a = 4, we transform the diagram as seen in the following Figure 18.

Figure 18.: Transformation of 7 between two crossings {1|4|7}.

If a = 5, we transform the diagram as seen in the following Figure 19.
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Figure 19.: Transformation of 7 between two crossings {3|5|7}.

If a = 8, we transform the diagram as seen in the Figure 11. Now we consider the case

where 7 is an under-arc connecting two crossings of the from {2a+6|a|7} and {7|b|2b+6} where

a 6= b for any a and b in Z13\{3, 7, 9, 11, 12}. (Note that a, b 6= 3, 9, otherwise 2a+6 = 11, 12

or 2b+ 6 = 11, 12.) If (a, b) 6= (0, 2), (2, 0), (0, 6), (6, 0), (1, 4), (4, 1), (4, 8), (8, 4), then either

2a−2b−6 6= 7, 11, 12 and 2a−b 6= 7, 11, 12 or 2b−2a−6 6= 7, 11, 12 and 2b−a 6= 7, 11, 12

for any a and b in Z13 \ {3, 7, 9, 11, 12} we transform the diagram as seen in Figure 10. If

(a, b) = (0, 2), we transform the diagram as seen in the following Figure 20. Similarly for

the case of (2, 0).
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Figure 20.: Transformation of 7 between the crossings {6|0|7} and {7|2|10}.

If (a, b) = (0, 6), we transform the diagram as seen in the following Figure 21. Similarly

for the case of (6, 0).

Figure 21.: Transformation of 7 between the crossings {6|0|7} and {7|6|5}.

If (a, b) = (1, 4), we transform the diagram as seen in the following Figure 22. Similarly

for the case of (4, 1).

Figure 22.: Transformation of 7 between the crossings {8|1|7} and {7|4|1}.

If (a, b) = (4, 8), we transform the diagram as seen in the following Figure 23. Similarly
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for the case of (8, 4).

Figure 23.: Transformation of 7 between the crossings {1|4|7} and {7|8|9}.

�

1.3.4 Eliminating the color 8

Lemma 1.3.5 Any 13-colorable knot has a 13-colored diagram D with no arc colored by 7,

8, 11, or 12.

Proof. By the previous lemmas we may assume that no arc in D is colored by 7, 11, or

12. We first transform any crossing of the form {8|8|8}. If there is any crossing of the form

{8|8|8}, there is an adjacent crossing of the form {8|a|2a + 5} or {a|8|3 − a} where a is in

Z13 \ {7, 8, 11, 12}. If a 6= 1, 3, 4, 5, 9, 10, then 3− a 6= 7, 8, 11, 12 and 2a+ 5 6= 7, 8, 11, 12 for

any a in Z13 \{1, 3, 4, 5, 7, 8, 9, 10, 11, 12}, so we transform the diagram as seen in Figure 4 or

Figure 5. If a = 4, 5, 9 as an over-arc, we transform the diagram as seen in Figure 4. Note

that a cannot be 4, 5, or 9 as an under-arc otherwise 3 − a = 7, 11, 12 contradicting our

assumption that no arc is colored by 7, 11, or 12. If a = 1 as an under-arc, we transform the

diagram as seen in Figure 6. Note that a cannot be 1 as an over-arc otherwise 2a + 5 = 7

contradicting our assumption that no arc is colored by 7. If a = 3 as an under-arc, we

transform the diagram as seen in Figure 6. Note that a cannot be 3 as an over-arc otherwise

2a + 5 = 11 contradicting our assumption that no arc is colored by 11. If a = 10 as an

under-arc, we transform the diagram as seen in Figure 6. Note that a cannot be 10 as an

over-arc otherwise 2a + 5 = 12 contradicting our assumption that no arc is colored by 12.

Therefore any crossings of the form {8|8|8} are removed. Next, we remove 8 as an over-arc

by transforming any crossings of the form {a|8|3−a}. Since 3−a 6= 7, 8, 11, 12 we have that
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a 6= 4, 5, 9. Therefore if a 6= 1, 3, 10, then 2a + 5 6= 7, 8, 11, 12 and 3a + 10 6= 7, 8, 11, 12

for any a in Z13 \ {1, 3, 4, 5, 7, 8, 9, 10, 11, 12} we transform the diagram as seen in Figure

7. If a = 1, 3, 10, we transform the diagram as seen in Figure 8. We complete the proof

of the lemma by removing 8 as an under-arc in a case by case method. We first consider

the case where 8 is an under-arc connecting two crossings of the form {8|a|2a + 5}. Since

2a + 5 6= 7, 8, 11, 12 we have that a 6= 1, 3, 10. If a 6= 5, 9, then 3a + 10 6= 7, 8, 11, 12 and

4a+ 2 6= 7, 8, 11, 12 for any a in Z13 \ {1, 3, 5, 7, 8, 9, 10, 11, 12} we transform the diagram as

seen in Figure 9.

If a = 5, we transform the diagram as seen in the following Figure 24.

Figure 24.: Transformation of 8 between two crossings {2|5|8}.

If a = 9, we transform the diagram as seen in the following Figure 25.
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Figure 25.: Transformation of 8 between two crossings {10|9|8}.

Now we consider the case where 8 is an under-arc connecting two crossings of the from

{2a + 5|a|8} and {8|b|2b + 5} where a 6= b for any a and b in Z13 \ {1, 3, 7, 8, 10, 11, 12}.

(Note that a, b 6= 1, 3, 10 otherwise 2a + 5 = 7, 11, 12 or 2b + 5 = 7, 11, 12.). If (a, b) 6=

(0, 2), (2, 0), (0, 6), (6, 0), (2, 5), (5, 2) then either 2a − 2b − 5 6= 7, 8, 11, 12 and 2a − b 6=

7, 8, 11, 12 or 2b − 2a − 5 6= 7, 8, 11, 12 and 2b − a 6= 7, 8, 11, 12 for any a and b in Z13 \

{1, 3, 7, 8, 10, 11, 12} we transform the diagram as seen in Figure 10. If (a, b) = (0, 2), we

transform the diagram as seen in the following Figure 26. Similarly for the case of (2, 0).
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Figure 26.: Transformation of 8 between the crossings {5|0|8} and {8|2|9}.

If (a, b) = (0, 6), we transform the diagram as seen in the following Figure 27. Similarly

for the case of (6, 0).

Figure 27.: Transformation of 8 between the crossings {5|0|8} and {8|6|4}.

If (a, b) = (2, 5), we transform the diagram as seen in the following Figure 28. Similarly

for the case of (5, 2).

Figure 28.: Transformation of 8 between the crossings {9|2|8} and {8|5|2}.

�

1.3.5 Eliminating the color 6

Lemma 1.3.6 Any 13-colorable knot has a 13-colored diagram D with no arc colored by 6,

7, 8, 11, or 12.
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Proof. By the previous lemmas we may assume that no arc in D is colored by 7, 8, 11,

or 12. We first transform any crossing of the form {6|6|6}. If there is any crossing of the

form {6|6|6}, there is an adjacent crossing of the form {6|a|2a + 7} or {a|6|12 − a} where a

is in Z13 \ {6, 7, 8, 11, 12}. With the exceptions of a = 0, 2, 9 as an over-arc (when 2a + 7 =

7, 8, 11, 12) and a = 0, 1, 4, 5 as an under-arc (when 12 − a = 7, 8, 11, 12) we transform

the diagram as seen in Figure 4 or Figure 5. Now we must check when a = 0, 2, 9 as an

under-arc. First and foremost a cannot equal 0 as an under-arc otherwise 12 − a = 12

contradicting our assumption that no arc is colored by 12. If a = 2, 9 as an under-arc,

we transform the diagram as seen in Figure 6. Therefore any crossings of the form {6|6|6}

are removed. Next, we remove 6 as an over-arc by transforming any crossings of the form

{a|6|12− a}. Since 12− a 6= 6, 7, 8, 11, 12 we have that a 6= 0, 1, 4, 5. With the exceptions of

a = 2, 9 (when 2a+ 7 = 6, 7, 8, 11, 12 and 3a+ 1 = 6, 7, 8, 11, 12) we transform the diagram

as seen in Figure 7. If a = 2 or a = 9, we transform the diagram as seen in Figure 8. We

complete the proof of the lemma by removing 6 as an under-arc in a case by case method.

We first consider the case where 6 is an under-arc connecting two crossings of the form

{6|a|2a + 7}. Since 2a + 7 6= 6, 7, 8, 11, 12 we have that a 6= 0, 2, 9. If a 6= 1, 3, 4, then

3a + 1 6= 6, 7, 8, 11, 12 and 4a + 8 6= 6, 7, 8, 11, 12, so we transform the diagram as seen in

Figure 9. If a = 1, we transform the diagram as seen in Figure 11. If a = 3, we transform

the diagram as seen in the following Figures 29, 30, and 31.
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Figure 29.: Starting transformation of 6 between two crossings {0|3|6}.

20



Figure 30.: Intermediate transformation of 6 between two crossings {0|3|6}.
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Figure 31.: Ending transformation of 6 between two crossings {0|3|6}.

If a = 4, we transform the diagram as seen in Figure 11. Now we consider the case where

6 is an under-arc connecting two crossings of the from {2a + 7|a|6} and {6|b|2b + 7} where

a 6= b for any a and b in Z13 \ {0, 2, 6, 7, 8, 9, 11, 12}. (Note that a, b 6= 0, 2, 9 otherwise

2a+ 7 = 7, 8, 11, 12 or 2b+ 7 = 7, 8, 11, 12.)

If (a, b) 6= (1, 4), (4, 1), then either 2a− 2b− 7 6= 6, 7, 8, 11, 12 and 2a− b 6= 6, 7, 8, 11, 12

or 2b − 2a − 7 6= 6, 7, 8, 11, 12 and 2b − a 6= 6, 7, 8, 11, 12 for or any a and b in Z13 \

{0, 2, 6, 7, 8, 9, 11, 12} we transform the diagram as seen in Figure 10. If (a, b) = (1, 4), we

transform the diagram as seen in the following Figure 32. Similarly for the case of (4, 1).
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Figure 32.: Transformation of 6 between the crossings {9|1|6} and {6|4|2}.

�

1.3.6 Eliminating the color 1

Lemma 1.3.7 Any 13-colorable knot has a 13-colored diagram D with no arc colored by 1,

6, 7, 8, 11, or 12.

Proof. By the previous lemmas we may assume that no arc in D is colored by 6, 7, 8, 11,

or 12. We first transform any crossing of the form {1|1|1}. If there is a crossing of the

form {1|1|1}, there is an adjacent crossing of the form {1|a|2a + 12} or {a|1|2 − a} where

a is in Z13 \ {1, 6, 7, 8, 11, 12}. With the exceptions of a = 0, 4, 10 as an over-arc (when

2a + 12 = 6, 7, 8, 11, 12) and a = 3, 4, 9 as an under-arc (when 2 − a = 6, 7, 8, 11, 12) we

transform the diagram as seen in Figure 4 or Figure 5. Now we must check when a = 0, 4, 10

as an under-arc. First off, a cannot be 4 as an under-arc otherwise 2−a = 11 contradicting

our assumption that no arc is colored by 11. If a = 0 or a = 10 as an under-arc, we

transform the diagram as seen in Figure 6. Therefore any crossings of the form {1|1|1} are

removed.
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Next, we remove 1 as an over-arc by transforming any crossings of the form {a|1|2 − a}.

Since 2 − a 6= 1, 6, 7, 8, 11, 12 we have that a 6= 3, 4, 9. With the exceptions of a = 0, 10

(when 2a + 12 = 1, 6, 7, 8, 11, 12 and 3a + 11 = 1, 6, 7, 8, 11, 12) we transform the diagram

as seen in Figure 7. If a = 0 or a = 10, we transform the diagram as seen in Figure 8. We

complete the proof by removing 1 as an under-arc in a case by case method. We first consider

the case where 1 is an under-arc connecting two crossings of the form {1|a|2a + 12}. Since

2a+12 6= 1, 6, 7, 8, 11, 12 we have that a 6= 0, 4, 10. If a 6= 3, 9, then 3a+11 6= 1, 6, 7, 8, 11, 12

and 4a + 10 6= 1, 6, 7, 8, 11, 12, so we transform the diagram as seen in Figure 9. If a = 3,

we transform the diagram as seen in the following Figure 33.
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Figure 33.: Transformation of 1 between two crossings {5|3|1}.

If a = 9, we transform the diagram as seen in the following Figure 34.
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Figure 34.: Transformation of 1 between two crossings {4|9|1}.

Now we consider the case where 1 is an under-arc connecting two crossings of the from

{2a+12|a|1} and {1|b|2b+12} where a 6= b for any a and b in Z13 \ {0, 1, 4, 6, 7, 8, 10, 11, 12}.

(Note that a, b 6= 0, 4, 10 otherwise 2a+ 12 = 1, 6, 7, 8, 11, 12 or 2b+ 12 = 1, 6, 7, 8, 11, 12.)

If (a, b) 6= (2, 5), (5, 2), (3, 5), (5, 3), then either 2a− 2b− 12 6= 1, 6, 7, 8, 11, 12 and 2a−b 6=

1, 6, 7, 8, 11, 12 or 2b − 2a − 12 6= 1, 6, 7, 8, 11, 12 and 2b − a 6= 1, 6, 7, 8, 11, 12 for any a

and b in Z13 \ {0, 1, 4, 6, 7, 8, 10, 11, 12} we transform the diagram as seen in Figure 10. If

(a, b) = (2, 5), we transform the diagram as seen in the following Figure 35. Similarly for
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the case of (5, 2).

Figure 35.: Transformation of 1 between the crossings {3|2|1} and {1|5|9}.

If (a, b) = (3, 5), we transform the diagram as seen in the following Figure 36. Similarly

for the case of (5, 3).

Figure 36.: Transformation of 1 between the crossings {5|3|1} and {1|5|9}.

�

1.3.7 Eliminating the color 10

Lemma 1.3.8 Any 13-colorable knot has a 13-colored diagram D with no arc colored by 1,

6, 7, 8, 10, 11, or 12.

Note during the proof of Lemma 1.3.8, we will use substitutions of the under-arc cases seen

in Figures 38, 39, 40, and 41 above to complete the following transformations. Moreover,

once the 10 arcs have been eliminated in Figures 42 and 43 we will use them as substitutions

for Figures 44 and 45.

Proof. By the previous lemmas we may assume that no arc in D is colored by 1, 6, 7, 8, 11,

or 12. We first transform any crossing of the form {10|10|10}. If there is any crossing of the

form {10|10|10}, there is an adjacent crossing of the form {10|a|2a+ 3} or {a|10|7− a} where

a is in Z13 \ {1, 6, 7, 8, 10, 11, 12}. With the exceptions of a = 2, 4, 9 as an over-arc (when

2a + 3 = 1, 6, 7, 8, 11, 12) and a = 0, 9 as an under-arc (when 7 − a = 1, 6, 7, 8, 11, 12) we
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transform the diagram as seen in Figure 4 or Figure 5. Now we must check when a = 2, 4, 9

as an under-arc. As an under-arc a cannot be 9 otherwise 7 − a = 11 contradicting our

assumption that no arc is colored by 11. If a = 2 or a = 4 as an under-arc, we transform

the diagram as seen in Figure 6. Therefore any crossings of the form {10|10|10} are removed.

Next, we remove 10 as an over-arc by transforming any crossings of the form {a|10|7 − a}.

Since 7 − a 6= 1, 6, 7, 8, 10, 11, 12 we have that a 6= 0, 9. With the exceptions of a = 2, 4, 5

(when 2a+3 = 1, 6, 7, 8, 10, 11, 12 and 3a+6 = 1, 6, 7, 8, 10, 11, 12) we transform the diagram

as seen in Figure 7. If a = 2, we transform the diagram as seen in the following Figure 37.

Figure 37.: Transformation of 10 as an over-arc {2|10|5}.
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If a = 4, we transform the diagram as seen in Figure 8. If a = 5 since 7 − a = 2, we

transform the diagram similarly to the Figure 37, i.e. a = 2. We complete the proof by

removing 10 as an under-arc in a case by case method. We first consider the case where

10 is an under-arc connecting two crossings of the form {10|a|2a + 3}. Since 2a + 3 6=

1, 6, 7, 8, 10, 11, 12 we have that a 6= 2, 4, 9. So, we need to check a = 0, 3, 5. If a = 0, we

transform the diagram as seen in the following Figure 38 where the six dashed boxes are

given in Figure 39.

Figure 38.: Starting transformation of 10 between two crossings {3|0|10}.
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Figure 39.: Ending transformation of 10 between two crossings {3|0|10}.

We shall refer to the above transformations throughout Lemma 1.3.8. As such two vari-

ations of this transformation are given below in Figure 40.
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Figure 40.: Variations of the transformation of 10 between two crossings {3|0|10}.

If a = 3, we transform the diagram as seen in the following Figure 41.
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Figure 41.: Transformation of 10 between two crossings {9|3|10}.

If a = 5, we transform the diagram as seen in the following Figure 42. Note that the

center of a = 5 as well as the six dashed boxes are the same transformations we used

for a = 0 and its variations. Also, there are two arcs colored by 10 each of which are

transformed by a = 3 as seen above in Figure 41.
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Figure 42.: Starting transformation of 10 between two crossings {0|5|10}.
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Now we consider the case where 10 is an under-arc. There are six cases that we need to

consider: (a, b) = (0, 3), (3, 0), (0, 5), (5, 0), (3, 5), (5, 3). If (a, b) = (0, 3), we transform the

diagram as seen in the following Figure 43. For eliminating the 10 arc see the variations of

a = 0 in Figure 40 above. Similarly for the case of (3, 0).

Figure 43.: Starting transformation of 10 between the crossings {3|0|10} and {10|3|9}.

If (a, b) = (0, 5), we transform the diagram as seen in the following Figure 44. For

eliminating the 10 arc see a = 5 in Figure 42, however we will be using the variations of

a = 0 in Figure 40 for the center. Similarly for the case of (5, 0).

Figure 44.: Starting transformation of 10 between the crossings {3|0|10} and {10|5|0}.

If (a, b) = (3, 5), we transform the diagram as seen in the following Figure 45. For

eliminating the arcs colored by 10 see the (a, b) = (0, 3) case in Figure 43 and the a = 5

case in Figure 42 using the variations in Figure 40 for the center. Similarly for the case of

(5, 3).
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Figure 45.: Starting transformation of 10 between the crossings {9|3|10} and {10|5|0}.

�

1.3.8 Eliminating the color 5

Lemma 1.3.9 Any 13-colorable knot has a 13-colored diagram D with no arc colored by 1,

5, 6, 7, 8, 10, 11, or 12.

Proof. By the previous lemmas we may assume that no arc inD is colored by 1, 6, 7, 8, 10, 11,

or 12. We first transform any crossing of the form {5|5|5}. If there is any crossing of the

form {5|5|5}, there is an adjacent crossing of the form {5|a|2a + 8} where a is in Z13 \

{1, 5, 6, 7, 8, 10, 11, 12}. Since 10 − a = 1, 6, 7, 8, 10, 11, 12 when a = 0, 2, 3, 4, 9 a cannot

be an under-arc. Therefore, with the exceptions of a = 0, 2, 3 as an over-arc (when 2a +

8 = 1, 5, 6, 7, 8, 10, 11, 12) we transform the diagram as seen in Figure 4. Therefore any

crossings of the form {5|5|5} are removed. Next, we remove 5 as an over-arc by transforming

any crossings of the form {a|5|10 − a}. Since 10 − a 6= 1, 5, 6, 7, 8, 10, 11, 12 we have that
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a 6= 0, 2, 3, 4, 9. Therefore, 5 cannot be an over-arc. We complete the proof of Lemma

1.3.9 by removing 5 as an under-arc in a case by case method. We first consider the

case where 5 is an under-arc connecting two crossings of the form {5|a|2a + 8}. Since

2a + 8 6= 1, 5, 6, 7, 8, 10, 11, 12 we have that a 6= 0, 2, 3. So, we need to check a = 4, 9. If

a = 4, we transform the diagram as seen in the following Figure 46.
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Figure 46.: Transformation of 5 between two crossings {3|4|5}.

If a = 9, we transform the diagram as seen in the following Figure 47.
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Figure 47.: Transformation of 5 between two crossings {0|9|5}.

Now we consider the case where 5 is an under-arc connecting two crossings of the forms

{5|a|2a+ 8} and {5|b|2b+ 8}. Since 2a+ 8, 2b+ 8 6= 1, 5, 6, 7, 8, 10, 11, 12 there are two cases
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that we need to consider: (a, b) = (4, 9), (9, 4) If (a, b) = (4, 9), we transform the diagram

as seen in the following Figure 48. Similarly for the case of (9, 4).

Figure 48.: Transformation of 5 between the crossings {3|4|5} and {5|9|0}.

�

1.3.9 Summary

The above lemmas, in total, reduced the number of colors of an arbitrary 13-colorable

knot by eight colors. Therefore, the minimal number of colors using Fox coloring for any

13-colorable knot is exactly five colors.
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Chapter 2

Linear Alexander Quandle Colorings of Knots

2.1 Introduction

Quandles are algebraic structures whose axioms correspond to the algebraic distillation of

the three Reidemeister moves in Knot Theory. Quandles appeared in mathematics with

many different names. In 1942 Mituhisa Takasaki [17] introduced the notion of kei (in-

volutive quandle in Joyce’s terminology [4]) as an abstraction of the notion of symmetric

transformation. Around 1982, Joyce [4] (used the term quandle) and Matveev [15] (who call

them distributive groupoids) introduced independently the notion of a quandle. Joyce and

Matveev associated to each oriented knot K a quandle Q(K) called the knot quandle. Since

then quandles have been investigated by topologists in order to construct knot invariants

and their higher dimensional analogues (see for example [14] and references therein). We

recall the definition of a quandle and give a few examples.

Definition 2.1.1 [4] A quandle, X, is a set with a binary operation (x, y) 7→ x∗y such that

(1) For any x ∈ X, x ∗ x = x;

(2) For any x, y ∈ X, there is a unique z ∈ X such that x = z ∗ y;

(3) For any x, y, z ∈ X, we have (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

The axioms for a quandle correspond respectively to the Reidemeister moves I, II, and III.

• Any set X with the operation x ∗ y = x for all x, y ∈ X, is a quandle called the trivial

quandle.

• Let m be a positive integer. For elements x, y ∈ Zm, define x ∗ y ≡ 2y − x (mod m).

Then ∗ defines a quandle structure called the dihedral quandle.
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• For any abelian group M, an automorphism t of M defines a quandle structure on M

by x ∗ y = t(x− y) + y. This is called an Alexander quandle.

In [2] Hayashi, Hayashi and Oshiro considered a generalization of Fox colorings that

corresponds to a class of Alexander quandle colorings. They also investigated an upper

bound for the quandle coloring in relation to the Alexander polynomial of the knot. This

gave us the idea to apply the reduction in colors studied in Fox coloring to that of knots

colored by linear Alexander quandles. Therefore, another goal of this thesis is to prove

that all knots colored by the linear Alexander quandles Z5[t]/(t− 2) or Z5[t]/(t− 3) have

a diagram using only 4 of the 5 available colors.

2.2 Colorings of knots by linear Alexander quandles

In this section we consider the rules of coloring knots by linear Alexander quandles. It is

important to note that we are only considering finite quandles and non-trivial colorings.

Here, the quandle operation is given by x ∗ y = tx + (1 − t)y, where the case t = −1

corresponds to colorings by dihedral quandles called Fox colorings. So, we must consider

the rules of coloring for the cases of t = 2 and t = 3. The second axiom of quandles implies

that there exists a inverse quandle operation, we denote this operation as x ∗̄ y. Therefore,

we assign x ∗ y to positive crossings and x ∗̄ y to negative crossings. Since the positive and

negative crossings have different coloring outcomes, we must consider the orientation of the

knot. This also creates an issue in the previous notation, because {a|b|c} is not necessarily

{c|b|a} unlike in Fox coloring. Therefore, we introduce the notation {a|b|c}± where a is

the under-arc with orientation entering the crossing, b is the over-arc, c is the under-arc

with orientation leaving the crossing, and ± gives the sign of the crossing. Moreover, as

the diagram of the knot can be viewed from any direction, in most figures the under-arc

orientation will be pointing to the right.

For t = 2 we have the positive and negative crossings in the following Figure 49 and

Figure 50.
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Figure 49.: t = 2 positive crossing {x|y|x ∗ y}+.

Figure 50.: t = 2 negative crossing {x|y|x ∗̄ y}−.

For t = 3 we have the positive and negative crossings in the following Figure 51 and

Figure 52.

Figure 51.: t = 3 positive crossing {x|y|x ∗ y}+.

Figure 52.: t = 3 negative crossing {x|y|x ∗̄ y}−.

42



2.3 Reducing the diagrams of knots that are colored by either the linear

Alexander quandle Z5[t]/(t− 2) or Z5[t]/(t− 3)

Theorem 2.1 Any knot colored by either the linear Alexander quandle Z5[t]/(t− 2) or

Z5[t]/(t− 3) has a diagram using only four colors.

Proof. Given any knot colored by either the linear Alexander quandle Z5[t]/(t− 2) or

Z5[t]/(t− 3), every positive crossing has the operation x ∗ y = tx+ (1− t)y where t = 2, 3

respectively. Thus, there are two colorings we must consider. So, we need to show that the

colorings for t = 2 and t = 3 have a diagram using only four colors. We prove this using two

lemmas. In Lemma 2.1 and Lemma 2.2 we decrease the number of colors in the respective

colorings by one color c where c is in Z5. To accomplish this we first transform any crossings

of the form {c|c|c}, that is, when c is the color of both an over-arc and an under-arc. Then,

we remove c as an over-arc. Lastly, we complete each lemma by removing c as an under-arc.

Since orientation must be considered in both colorings, each color removed will be in a case

by case method. �

2.3.1 Eliminating the color 4 for t=2

Lemma 2.1 Any knot colored by the linear Alexander quandle Z5[t]/(t− 2) has a diagram

D with no arc colored by 4.

Proof. We first transform all crossings of the form {4|4|4} in four different cases. This

eliminates the color 4 when it is both an over-arc and an under-arc.

Case 1: a and 4 are both over-arcs

If there is any crossing of the form {4|4|4}+, there is either an adjacent crossing of the

form {3a+ 2|a|4}+ or {3− a|a|4}− where a is in Z5 \ {4}. Also, if there is any crossing of the

form {4|4|4}−, there is either an adjacent crossing of the form {3 − a|a|4}− or {3a + 2|a|4}+

where a is in Z5 \ {4}. In each situation, 3− a 6= 4 and 3a + 2 6= 4 for any a in Z5 \ {4}, so

we can transform the diagram as seen in the following Figures 53-56.
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Figure 53.: Transformation of the crossing {4|4|4}− with the crossing {3− a|a|4}−.

Figure 54.: Transformation of the crossing {4|4|4}+ with the crossing {3a+ 2|a|4}+.

Figure 55.: Transformation of the crossing {4|4|4}+ with the crossing {3− a|a|4}−.

Figure 56.: Transformation of the crossing {4|4|4}− with the crossing {3a+ 2|a|4}+.
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Case 2: a is an over-arc and 4 is an under-arc

If there is any crossing of the form {4|4|4}+, there is either an adjacent crossing of the

form {3a+ 2|a|4}+ or {3− a|a|4}− where a is in Z5 \ {4}. Also, if there is any crossing of the

form {4|4|4}−, there is either an adjacent crossing of the form {3 − a|a|4}− or {3a + 2|a|4}+

where a is in Z5 \ {4}. In each situation, 3− a 6= 4 and 3a + 2 6= 4 for any a in Z5 \ {4}, so

we can transform the diagram as seen in the following Figures 57-60.

Figure 57.: Transformation of the crossing {4|4|4}+ with the crossing {3− a|a|4}−.

Figure 58.: Transformation of the crossing {4|4|4}− with the crossing {3a+ 2|a|4}+.

Figure 59.: Transformation of the crossing {4|4|4}− with the crossing {3− a|a|4}−.
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Figure 60.: Transformation of the crossing {4|4|4}+ with the crossing {3a+ 2|a|4}+.

Case 3: a is an under-arc and 4 is an over-arc

If there is any crossing of the form {4|4|4}+, there is either an adjacent crossing of the

form {3a+ 2|4|a}+ or {a|4|3a+ 2}− where a is in Z5 \ {4}. Also, if there is any crossing of the

form {4|4|4}−, there is either an adjacent crossing of the form {a|4|3a+ 2}− or {3a+ 2|4|a}+

where a is in Z5 \ {4}. In each situation, 3− a 6= 4 and 3a + 2 6= 4 for any a in Z5 \ {4}, so

we can transform the diagram as seen in the following Figures 61-64. Note that we need

not consider the case of a switching from orientation in to orientation out (or vice versa)

because 3a+ 2 is in {0, 1, 2, 3} when a is in Z5 \ {4}, thus every value of a is attained.

Figure 61.: Transformation of the crossing {4|4|4}− with the crossing {3a+ 2|4|a}+.

Figure 62.: Transformation of the crossing {4|4|4}+ with the crossing {a|4|3a+ 2}−.
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Figure 63.: Transformation of the crossing {4|4|4}+ with the crossing {3a+ 2|4|a}+.

Figure 64.: Transformation of the crossing {4|4|4}− with the crossing {a|4|3a+ 2}−.

Case 4: a and 4 are both under-arcs

If there is any crossing of the form {4|4|4}+, there is either an adjacent crossing of the

form {3a+ 2|4|a}+ or {a|4|3a+ 2}− where a is in Z5 \ {4}. Also, if there is any crossing of the

form {4|4|4}−, there is either an adjacent crossing of the form {a|4|3a+ 2}− or {3a+ 2|4|a}+

where a is in Z5 \ {4}. In each situation, 3− a 6= 4 and 3a + 2 6= 4 for any a in Z5 \ {4}, so

we can transform the diagram as seen in the following Figures 65-68. Note that we need

not consider the case of a switching from orientation in to orientation out (or vice versa)

because 3a+ 2 is in {0, 1, 2, 3} when a is in Z5 \ {4}, thus every value of a is attained.

Figure 65.: Transformation of the crossing {4|4|4}+ with the crossing {3a+ 2|4|a}+.
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Figure 66.: Transformation of the crossing {4|4|4}− with the crossing {a|4|3a+ 2}−.

Figure 67.: Transformation of the crossing {4|4|4}− with the crossing {3a+ 2|4|a}+.

Figure 68.: Transformation of the crossing {4|4|4}+ with the crossing {a|4|3a+ 2}−.

Next, we remove 4 as an over-arc by transforming any crossings of the form {a|4|2a+1}+ or

{a|4|3a+ 2}−. Note that we need not consider the case of a switching from orientation in to

orientation out (or vice versa) because 3a+2 is in {0, 1, 2, 3} and 2a+1 is in {0, 1, 2, 3} when

a is in Z5 \ {4}, thus every value of a is attained. In each situation, 2a+ 1 6= 4, 3a+ 2 6= 4,

and 4a+3 6= 4 for any a in Z5\{4}, so we can transform the diagram as seen in the following

Figure 69 and Figure 70.
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Figure 69.: Transformation of the crossing {a|4|2a+ 1}+.

Figure 70.: Transformation of the crossing {a|4|3a+ 2}−.

We complete the proof of Lemma 2.1 by eliminating 4 as an under-arc in a case by case

method. We must first consider the cases when 4 is an under-arc adjacent to two arcs of the

same color. Then, we will go through a few special cases that arise when 4 is an under-arc

adjacent to two arcs of different colors. Finally, we consider the cases when 4 is an under-arc

adjacent to two arcs of different colors.

If 4 is an under-arc adjacent to two arcs of the same color, then counting each possible

orientation there are four cases we must consider. In each situation, 3 − a 6= 4, 2a + 1 6=

4, 3a+ 2 6= 4, and 4a+ 3 6= 4 for any a in Z5 \ {4}, so we can transform the diagram as seen

in the following Figures 71-74.
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Figure 71.: Transformation of 4 between the crossings {3− a|a|4}− and {4|a|3a+ 2}−.

Figure 72.: Transformation of 4 between the crossings {3a+ 2|a|4}+ and {4|a|3− a}+.

Figure 73.: Transformation of 4 between the crossings {3− a|a|4}− and {4|a|3− a}+.

Figure 74.: Transformation of 4 between the crossings {3a+ 2|a|4}+ and {4|a|3a+ 2}−.
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Now, we consider a few special cases that arise when 4 is an under-arc adjacent to two

arcs of different colors. (Note that a 6= b.) In each situation, 3−a 6= 4, 2a+ 1 6= 4, 3a+ 2 6=

4, 4a + 3 6= 4, 3 − b 6= 4, 2b + 1 6= 4, 3b + 2 6= 4, and 4b + 3 6= 4 for any a, b in Z5 \ {4}, so

we can transform the diagram as seen in the following Figures 75-78.

Figure 75.: Transformation of 4 between the crossings {3− a|a|4}− and {4|3a+ 2|3− a}−.

Figure 76.: Transformation of 4 between the crossings {3− b|3b+ 2|4}+ and {4|b|3− b}+.

Figure 77.: Transformation of 4 between the crossings {3−a|a|4}− and {4|3a+ 2|2a+ 1}+.
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Figure 78.: Transformation of 4 between the crossings {3−b|3b+ 2|4}+ and {4|b|3b+ 2}−.

Finally, we consider the cases when 4 is an under-arc adjacent to two arcs of different

colors. (Note that a 6= b.) Counting each possible orientation there are four cases we must

consider. In each situation, we have that 3−a 6= 4, 2a+1 6= 4, 3a+2 6= 4, 4a+3 6= 4, 3−b 6=

4, 2b+ 1 6= 4, 3b+ 2 6= 4, and 4b+ 3 6= 4 for any a, b in Z5 \ {4}. Also, since a 6= b, we have

that b − a + 4 6= 4, a − b + 4 6= 4, 3b − 3a + 4 6= 4 for any a, b in Z5 \ {4}. Furthermore,

we assume that 2a− b 6= 4 and 2b− a 6= 4 for any a, b in Z5 \ {4}, otherwise we transform

the diagram as seen in the special cases above. So, we can transform the diagram as seen

in the following Figures 79-82.

Figure 79.: Transformation of 4 between the crossings {3− a|a|4}− and {4|b|3b+ 2}−.

Figure 80.: Transformation of 4 between the crossings {3a+ 2|a|4}+ and {4|b|3− b}+.
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Figure 81.: Transformation of 4 between the crossings {3− a|a|4}− and {4|b|3− b}+.

Figure 82.: Transformation of 4 between the crossings {3a+ 2|a|4}+ and {4|b|3b+ 2}−.

�

2.3.2 Eliminating the color 4 for t=3

Lemma 2.2 Any knot colored by the linear Alexander quandle Z5[t]/(t− 3) has a diagram

D with no arc colored by 4.

Proof. We first transform all crossings of the form {4|4|4} in four different cases. This

eliminates the color 4 when it is both an over-arc and an under-arc.

Case 1: a and 4 are both over-arcs

If there is any crossing of the form {4|4|4}+, there is either an adjacent crossing of the

form {3− a|a|4}+ or {3a+ 2|a|4}− where a is in Z5 \ {4}. Also, if there is any crossing of the

form {4|4|4}−, there is either an adjacent crossing of the form {3a + 2|a|4}− or {3 − a|a|4}+

where a is in Z5 \ {4}. In each situation, 3− a 6= 4 and 3a + 2 6= 4 for any a in Z5 \ {4}, so

we can transform the diagram as seen in the following Figures 83-86.
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Figure 83.: Transformation of the crossing {4|4|4}− with the crossing {3a+ 2|a|4}−.

Figure 84.: Transformation of the crossing {4|4|4}+ with the crossing {3− a|a|4}+.

Figure 85.: Transformation of the crossing {4|4|4}+ with the crossing {3a+ 2|a|4}−.

Figure 86.: Transformation of the crossing {4|4|4}− with the crossing {3− a|a|4}+.
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Case 2: a is an over-arc and 4 is an under-arc

If there is any crossing of the form {4|4|4}+, there is either an adjacent crossing of the

form {3− a|a|4}+ or {3a+ 2|a|4}− where a is in Z5 \ {4}. Also, if there is any crossing of the

form {4|4|4}−, there is either an adjacent crossing of the form {3a + 2|a|4}− or {3 − a|a|4}+

where a is in Z5 \ {4}. In each situation, 3− a 6= 4 and 3a + 2 6= 4 for any a in Z5 \ {4}, so

we can transform the diagram as seen in the following Figures 87-90.

Figure 87.: Transformation of the crossing {4|4|4}+ with the crossing {3a+ 2|a|4}−.

Figure 88.: Transformation of the crossing {4|4|4}− with the crossing {3− a|a|4}+.

Figure 89.: Transformation of the crossing {4|4|4}− with the crossing {3a+ 2|a|4}−.
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Figure 90.: Transformation of the crossing {4|4|4}+ with the crossing {3− a|a|4}+.

Case 3: a is an under-arc and 4 is an over-arc

If there is any crossing of the form {4|4|4}+, there is either an adjacent crossing of the

form {a|4|2a+ 1}+ or {2a+ 1|4|a}− where a is in Z5 \ {4}. Also, if there is any crossing of the

form {4|4|4}−, there is either an adjacent crossing of the form {2a+ 1|4|a}− or {a|4|2a+ 1}+

where a is in Z5 \ {4}. In each situation, 3− a 6= 4, 3a+ 2 6= 4, and 2a+ 1 6= 4 for any a in

Z5 \ {4}, so we can transform the diagram as seen in the following Figures 91-94. Note that

we need not consider the case of a switching from orientation in to orientation out (or vice

versa) because 2a+ 1 is in {0, 1, 2, 3} when a is in Z5 \ {4}, thus every value of a is attained.

Figure 91.: Transformation of the crossing {4|4|4}− with the crossing {2a+ 1|4|a}+.

Figure 92.: Transformation of the crossing {4|4|4}+ with the crossing {a|4|2a+ 1}−.
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Figure 93.: Transformation of the crossing {4|4|4}+ with the crossing {2a+ 1|4|a}+.

Figure 94.: Transformation of the crossing {4|4|4}− with the crossing {a|4|2a+ 1}−.

Case 4: a and 4 are both under-arcs

If there is any crossing of the form {4|4|4}+, there is either an adjacent crossing of the

form {a|4|2a+ 1}+ or {2a+ 1|4|a}− where a is in Z5 \ {4}. Also, if there is any crossing of the

form {4|4|4}−, there is either an adjacent crossing of the form {2a+ 1|4|a}− or {a|4|2a+ 1}+

where a is in Z5 \ {4}. In each situation, 3− a 6= 4, 3a+ 2 6= 4, and 2a+ 1 6= 4 for any a in

Z5 \ {4}, so we can transform the diagram as seen in the following Figures 95-98. Note that

we need not consider the case of a switching from orientation in to orientation out (or vice

versa) because 2a+ 1 is in {0, 1, 2, 3} when a is in Z5 \ {4}, thus every value of a is attained.

Figure 95.: Transformation of the crossing {4|4|4}+ with the crossing {2a+ 1|4|a}+.
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Figure 96.: Transformation of the crossing {4|4|4}− with the crossing {a|4|2a+ 1}−.

Figure 97.: Transformation of the crossing {4|4|4}− with the crossing {2a+ 1|4|a}+.

Figure 98.: Transformation of the crossing {4|4|4}+ with the crossing {a|4|2a+ 1}−.

Next, we remove 4 as an over-arc by transforming any crossings of the form {a|4|3a+ 2}+

or {a|4|2a + 1}− . Note that we need not consider the case of a switching from orientation

in to orientation out (or vice versa) because 3a+ 2 is in {0, 1, 2, 3} and 2a+ 1 is in {0, 1, 2, 3}

when a is in Z5\{4}, thus every value of a is attained. In each situation, 3−a 6= 4, 2a+1 6= 4,

and 3a+2 6= 4 for any a in Z5\{4}, so we can transform the diagram as seen in the following

Figure 99 and Figure 100.
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Figure 99.: Transformation of the crossing {a|4|3a+ 2}+.

Figure 100.: Transformation of the crossing {a|4|2a+ 1}−.

We complete the proof of the Lemma 2.2 by eliminating 4 as an under-arc in a case by

case method. We must first consider the cases when 4 is an under-arc adjacent to two arcs

of the same color. Then, we will go through a few special cases that arise when 4 is an

under-arc adjacent to two arcs of different colors. Finally, we consider the cases when 4 is

an under-arc adjacent to two arcs of different colors.

If 4 is an under-arc adjacent to two arcs of the same color, then counting each possible

orientation there are four cases we must consider. In each situation, 3− a 6= 4, 2a+ 1 6= 4,

and 3a+2 6= 4 for any a in Z5\{4}, so we can transform the diagram as seen in the following

Figures 101-104.
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Figure 101.: Transformation of 4 between the crossings {3a+ 2|a|4}− and {4|a|3− a}−.

Figure 102.: Transformation of 4 between the crossings {3− a|a|4}+ and {4|a|3a+ 2}+.

Figure 103.: Transformation of 4 between the crossings {3a+ 2|a|4}− and {4|a|3a+ 2}+.

Figure 104.: Transformation of 4 between the crossings {3− a|a|4}+ and {4|a|3− a}−.
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Now, we consider a few special cases that arise when 4 is an under-arc adjacent to two

arcs of different colors. (Note that a 6= b.) In each situation, 3−a 6= 4, 2a+1 6= 4, 3a+2 6=

4, 3 − b 6= 4, 2b + 1 6= 4, and 3b + 2 6= 4 for any a, b in Z5 \ {4}, so we can transform the

diagram as seen in the following Figures 105-109.

Figure 105.: Transformation of 4 between the crossings {3−b|3b+ 2|4}− and {4|b|3−b}−.

Figure 106.: Transformation of 4 between the crossings {3−a|a|4}+ and {4|3a+2|3−a}+.

Figure 107.: Transformation of 4 between the crossings {3−b|3b+2|4}− and {4|b|3b+2}+.
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Figure 108.: Transformation of 4 between the crossings {3a+2|a|4}− and {4|3a+2|3−a}+.

Figure 109.: Transformation of 4 between the crossings {2b+1|3b+2|4}+ and {4|b|3−b}−.

Finally, we consider the cases when 4 is an under-arc adjacent to two arcs of different

colors. (Note that a 6= b.) Counting each possible orientation there are four cases we must

consider. In each situation, we have that 3 − a 6= 4, 2a + 1 6= 4, 3a + 2 6= 4, 3 − b 6= 4, and

3b+2 6= 4 for any a, b in Z5 \ {4}. Also, since a 6= b, we have that b−a+4 6= 4, a−b+4 6=

4, 3a−3b+4 6= 4, and 2b−2a+4 6= 4 for any a, b in Z5 \ {4}. Furthermore, we assume that

2a − b 6= 4 and 2b − a 6= 4 for any a, b in Z5 \ {4}, otherwise we transform the diagram as

seen in the special cases above. So, we can transform the diagram as seen in the following

Figures 110-113. (Note that for Figure 112, since a 6= b, we have that 2a− b 6= 2b− a.)

Figure 110.: Transformation of 4 between the crossings {3a+ 2|a|4}− and {4|b|3− b}−.
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Figure 111.: Transformation of 4 between the crossings {3− a|a|4}+ and {4|b|3b+ 2}+.

Figure 112.: Transformation of 4 between the crossings {3a+ 2|a|4}− and {4|b|3b+ 2}+.

Figure 113.: Transformation of 4 between the crossings {3− a|a|4}+ and {4|b|3− b}−.

�

2.3.3 Summary

The above lemmas, in total, reduced the number of colors of an arbitrary knot colored by

the linear Alexander quandle Z5[t]/(t− 2) and Z5[t]/(t− 3) by a single color. Therefore,

any knot colored by either the linear Alexander quandle Z5[t]/(t− 2) or Z5[t]/(t− 3) has
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a diagram using only 4 of the 5 available colors.

Remark

An alternative proof of Lemma 2.2 for the case t = 3 can be obtained by symmetry from

the case t = 2 using the Figures 49-52. Since the mirror image interchanges positive and

negative crossings, we can take a diagram D colored by t = 3 and consider its mirror image

m(D). The mirror image m(D) will be colored by t = 2. We have already shown that any

diagram colored by t = 2 can be reduced to four colors. Therefore, we reduce the diagram

m(D) to a diagram D ′, where D ′ uses only four colors. Now the mirror image m(D ′) will

be a diagram colored by t = 3 using only four of the five available colors. (The proof of

Lemma 2.2 from the subsection 2.3.2 looks a bit different than exact symmetry is due to

the assumption that all under-arcs are pointing to the right.)
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Chapter 3

Conclusion

Using Fox coloring modulo 13 we have shown that colorings of knots can be reduced to

a minimal number of 5 colors. We have also investigated the coloring knots by linear

Alexander quandles. Precisely, we have shown that any knot that is colorable by either the

linear Alexander quandle Z5[t]/(t− 2) or Z5[t]/(t− 3) has a diagram using only 4 of the 5

available colors. Some areas for further investigation are whether or not knots colored by

linear Alexander quandles of integers modulo 5 have a minimal number of colors. As well

as, whether or not colorings of knots by linear Alexander quandles of integers modulo 7 can

be reduced.
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