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ABSTRACT 

Beaches can provide a natural barrier between the ocean and inland communities, ecosystems, 

and resources. These environments can move and change in response to winds, waves, and 

currents. When a hurricane occurs, these changes can be rather large and possibly catastrophic. 

The high waves and storm surge act together to erode beaches and inundate low-lying lands, 

putting inland communities at risk. There are thousands of buoys in the Atlantic Basin that 

record and update data to help predict climate conditions in the state of Florida. The data that 

was compiled and used into a larger data set came from two different sources. First, the 

hurricane data for the years 1992 – 2014 came from Unisys Weather site (Atlantic Basin 

Hurricanes data, last 40 years) and the buoy data has been available from the national buoy 

center. Using various statistical methods, we will analyze the probability of a storm being 

present, given conditions at the buoy; determine the probability of a storm being present 

categorically. There are four different types of sinkholes that exist in Florida and they are: 

Collapse Sinkholes, Solution Sinkholes, Alluvial Sinkholes, and Raveling Sinkholes. In Florida 

there are sinkholes that occur, because of the different soil types that are prevalent in certain 

areas. The data that was used in this study came from the Florida Department of Environmental 

Protection, Subsidence Incident Reports. The size of the data was 926 with 15 variables. We will 

present a statistical analysis of a sinkholes length and width relationship, determine the average 

size of the diameter of a sinkhole, discuss the relationship of sinkhole size depending upon their 

soil types, and acknowledge the best probable occurrence of when a sinkhole occurs. There will 

be five research chapters in this dissertation. In Chapter 2, the concept of Exploratory Factor 
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Analysis and Non-Response Analysis will be introduced, in accordance of analyzing hurricanes. 

Chapter 3 will also address the topic of hurricanes that have formed from the Atlantic Basin 

from 1992 – 2014. The discussion of the probability of a storm being present (also categorically) 

will be addressed. In Chapter 4 a study of sinkholes in Florida will be addressed. In Chapter 5 

we will continue our discussion on sinkholes in Florida, but focus on the time to event between 

the occurrences of the sinkholes. In the last chapter, Chapter 6, we will conclude with a future 

works and projects that can be created from the foundations of this dissertation. 
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CHAPTER 1: MOTIVATION, BACKGROUND & STATISTICAL METHODOLOGY 

	

MOTIVATION 

The motivation behind the research found in this dissertation was the author’s personally 

experiences with hurricanes and sinkholes. In 1992 Hurricane Andrew made its first landfall in 

Elliot Key. The author was fifteen years of age when this tragedy occurred. When the hurricane 

made landfall the author’s family had been staying at a shelter and the author found herself 

separated from her family for over two days. During that time, there was continuous flooding, 

and she found herself drifting on a hotel door. This event sparked interest in better 

understanding meteorological events. This type of phenomenon affects the majority of 

individuals in the United States, especially Florida. There are about 19.89 million people that 

live in the state of Florida, according to the United States Census Bureau (as of 2014). Hurricane 

season lasts approximately 6 months. This is from the dates of June 1st until November 30th.  

   If a person lives in Florida then they should have knowledge of how to prepare for a hurricane 

and understand other environmental issues such as sinkholes. One reason that the author decided 

to study sinkholes and perform a statistical analysis on them was because a dear friend of hers 

died as a result of a sinkhole. This devastation happened in April 2012. The event left the author 

intrigued as to predicting the probabilities of where sinkholes may occur in different parts of 

Florida. Sinkholes usually occur most frequently during the spring months and lower in the fall 

months of the year. Another reason for choosing the topic of hurricanes and sinkholes, is to 
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analyze them to better understand the subject phenomenon and make better predictions. Florida 

has the highest frequency of sinkhole occurrences in the United States. The motivation to 

educate others on the topic of sinkholes in Florida is an ongoing battle. Sinkholes can sometimes 

happen right under our homes, schools, work places, etc. Preparation and awareness of when 

and how sinkholes arise should become a part of a Florida citizen’s everyday knowledge. 

 

BACKGROUND 

 Hurricanes have been a topic of interest for over 500 years. Scientists began to better 

understand hurricanes during the 1800s, with forecasters being able to issue warnings as storms 

approached Hurricanes remain difficult to predict, especially because they can suddenly 

intensify in ways that are poorly understood. In this paper, the hurricanes of interest occur from 

the years 1975 – 2014. There are two ways of hurricane classification; the Saffir – Simpson 

scale and the Wooten-Tsokos scale developed in 2009. We will be using the Wooten – Tsokos 

scale in this dissertation. 

   In the addition the study of hurricanes in the Atlantic Basin, sinkholes are another 

environmental issue that we will discuss in this dissertation. Sinkholes occur more in Florida 

than any other state in the United States. “Florida's peninsula is made up of porous carbonate 

rocks such as limestone that store and help move groundwater” [12]. “Dirt, sand and clay sit on 

top of the carbonate rock” [12]. “When the dirt, clay or sand gets too heavy for the limestone 

roof, it can collapse and form a sinkhole” [12]. Sinkholes are caused naturally, however they can 

be triggered by outside events [12]. 
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Table 1.1: Hurricane Classification Wooten - Tsokos Scale 

Type Category Pressure (hPa) Wind (knots) 

Tropical 
Depression/Tropical 
Storm 

0 995 – 1010 10 - 42 

Hurricane 1 972 - 994 43 - 77 

Hurricane 2 951 - 971 78 - 102 

Hurricane 3 932 - 950 103 - 122 

Hurricane 4 911 - 931 123 - 142 

Hurricane 5 < 911 >143 

 

There are four different types of sinkholes that exist in Florida and they are: Collapse, Solution, 

Alluvial, and Raveling. “Collapse sinkholes occur in areas where there are extensive cover 

materials over a limestone layer” [13]. “When solution creates a hole in the limestone and the 

limestone roof over the cavern either dissolves or no longer can support the weight of the 

overlying materials, these cover materials collapse into the cavern, leaving a funnel shaped 

sinkhole, usually circular in outline” [13]. 

   “If the overlying cover is clastic sediments it is called a cover collapse sink” [13]. “If it is 

limestone, it is a rock collapse sink” [13]. “It is common that the formation of collapse sinkholes 

is sudden or even catastrophic” [13]. “This may be a result of human activity, especially those 

that affect the hydrology of an area” [13]. “Solution sinkholes form more slowly and gradually 

as a result of enlargement of joints by solution” [13]. “Eventually the rocks may settle and the 
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cover material washes into the cavern in a process called raveling” [13]. “These sinkholes are 

not as potentially impacted by human activities as are collapse sinkholes” [13]. “Alluvial 

sinkholes are older sinkholes partially or entirely filled with sediments due to subsequent marine 

deposition or by materials washed in from the sides are called alluvial sinkholes” [13]. “Where 

the water table is shallow, they are often indicated by ponds, wetlands or cypress domes” [13]. 

   “Raveling sinkholes arise from the above alluvial sinkholes and may become reactivated 

when the aquifer levels rise or drop” [13]. “The lowering of the aquifer levels creates a loss of 

buoyant support, increasing the water content of the plug such as happens when the water levels 

rise, increases the load and decreases the cohesion of the sediments” [13]. “When the sediments 

are no longer supported, the plug rapidly collapses” [13]. “They are only one of many kinds of 

karst landforms, which include caves, disappearing streams, springs, and underground drainage 

systems, all of which occur in Florida” [13]. 

 

STATISTICAL METHODOLOGY 

In this section we will introduce the statistical methods that were used to analyze and produce 

the results for the research questions/statements addressed in this dissertation. The statistical 

methods used in this dissertation were Parametric Analysis, Nonparametric Analysis, Circular 

Analysis, Exploratory Factor Analysis, Correlation, Simple Linear Regression, Multiple Linear 

Regression, Logistic Regression, Non-Response Analysis, Forward Selection, Backward 

Elimination, Subset Analysis, and Survival Analysis. 
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Parametric Analysis 

Parametric Analysis is a branch of statistics which assumes that the data have come from a type 

of probability distribution and makes inferences about the parameters of the distribution [7]. We 

will use maximum likelihood estimates to fit various probability distributions and determine the 

probability distribution that best characterizes the variable of interest. For each continuous 

numerical measure of our data sets, 65 continuous distributions, will be compared and ranked 

using the goodness-of-fit tests; Anderson-Darling, Kolmogorov-Smirnov, and Chi-Square. 

The null hypothesis for all such tests is the data fits the desired distribution; and the 

alternative hypothesis is the data does not fit the desired distribution. 

For the Anderson Darling Goodness of Fit Test, the test statistic is: 

A2 = - N – S, where S = !!!!
!

!
!!!  [ln 𝐹 𝑌! + ln 1− 𝐹 𝑌!!!!! ], with 𝐹  as the specified 

cumulative distribution and  𝑌!  as the ordered data. 

For the Kolmogorov-Smirnov Goodness of - Fit Test, the test statistic is: 

𝐷 = max!!!!!(𝐹 𝑌! −  !!!
!
, !
!
− 𝐹(𝑌!)), with F as the specified cumulative distribution and Yi as 

the ordered data. 

For Chi-Square Goodness of - Fit Test, the test statistic is:𝜒! =  !!!!! !

!!
, where the expected 

value (𝐸!) of the data based on the assumed distribution, and the observed value (𝑂!)  of the data 

that is given [Gei]. As in standard hypothesis testing, if the test statistic for each of our above 

tests is greater than the critical value, then we can reject the null hypothesis and conclude that we 
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will not have a good fit for the data. Otherwise, we can fail to reject the null hypothesis and 

conclude that we will have a good fit for the data [7] 

Nonparametric Analysis 

“Nonparametric statistics are statistics that are not based on parameterized families of 

probability distributions” [18]. “Nonparametric analysis includes both descriptive and inferential 

statistics” [18]. “Nonparametric statistics makes no assumptions about the probability 

distributions of the variables being assessed” [18]. Some examples of nonparametric statistics 

are the Wilcoxon rank-sum test or the permutation and resampling tests. In this dissertation, we 

will use the Wilcoxon rank-sum test. The Wilcoxon rank - sum test is used is to test the null 

hypothesis that the median of a distribution is equal to some value [18]. The procedure for the 

Wilcoxon rank - sum test is: 

1) State the null and alternative hypothesis: 𝐻!: 𝜇! − 𝜇! = 0, 𝐻!: 𝜇! − 𝜇! ≠ 0 

2) Order the data values from both samples in a single list arranged from the smallest to 

largest. 

3) In another column, we assign the numbers 1 to N, where N = 𝑛! + 𝑛!.  Note that these 

are the ranks of the observations. 

4) Now let 𝑊 denote the sum of the ranks for the observations from the first population. 

5) If there is no difference between the two medians (the null is true), the value of 𝑊 will be 

around half the sum of the ranks. 

6) Calculate the expected value 𝐸 𝑊 = !! !!!
!

 and the variance 𝑉 𝑊 = !!!! !!!
!"

 

7) Calculate the test statistic given by 𝑧 = !!! !
! !

 and find the associated p-value using 

normal approximation. 
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8) Use the decision rule to reject or fail to reject the null hypothesis 

Circular Analysis 

“Directional or circular distributions are those measures that have no true zero and any 

designation of high or low values is arbitrary such as: compass direction, hours of the day, 

months of the year, and wind direction” [9]. We are given a sample of 𝑛 angles, where these 

angles are in degrees. For these angles to analyze directional data, they must first be transformed 

from polar coordinates to rectangular coordinates. “The mean angle cannot be the sum of the 

angles divided by the sample size, this is because the mean angle of 359° and 1° (north) would 

be 180° (south) [9]. Hence, we need to use the following equations” [9]: 

𝑦 =  
𝑠𝑖𝑛𝛼!

!!!

𝑛  

𝑥 =  
𝑐𝑜𝑠𝛼!

!!!

𝑛  

𝑟 =
𝑠𝑖𝑛𝛼!

!!!
! + 𝑐𝑜𝑠𝛼!

!!!
!

𝑛  

The standard deviation is 𝑣 =  −2 ln 𝑟! . 

“The calculated quadrant process is similar to the trigonometric quadrant calculation process. 

There are four cases to calculate: 

1) Where sine is positive and cosine is positive, the mean angle is computed directly. 

2) Where sine is positive and cosine is negative, the mean angle = 180 – 𝜃! . 

3) Where sine and cosine are negative, the mean angle = 180 + 𝜃! . 

4) Where sine is negative and cosine is positive, the mean angle = 360 - 𝜃! .” [9] 
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Exploratory Factor Analysis 

Exploratory factor analysis (EFA) is commonly used in the sciences for explaining the variance 

between several measured variables as a smaller set of latent variables [11]. “Exploratory factor 

analysis (EFA) is used to determine the number of latent variables that are needed to explain the 

correlations among a set of observed variables” [11]. “The latent variables are called factors, 

and the observed variables are referred to as factor indicators” [11]. There will be three basic 

decision points when using EFA, and they are:  

• decide the number of factors, 

• choosing an extraction method,  

• choosing a rotation method [11]. 

To perform the first decision point, we have to decide the number of factors, thus we first need 

to calculate the eigenvalues associated with each factor indicator [11]. “These eigenvalues are 

produced by a process called principal components analysis (PCA) and represent the variance 

accounted for by each underlying factor” [11]. “They are not represented by percentages but use 

itemization scores to total the number of items” [11]. The approach we will use is called the 

Kaiser-Guttman rule and simply states that the number of factors are equal to the number of 

factors with eigenvalues greater than 1.0. Next we will discuss the extraction method. “The best 

evidence in choosing this extraction method is the principal axis factoring with iterated 

communalities (a.k.a. least squares)” [11]. This extraction method produces factor loadings for 

every item on every extracted factor [11].  We are interested in our results that will show what is 

called simple structure, with most items having a large loading on one factor but small loadings 

on other factors [11]. The last decision point to perform is the rotation method. “Rotation is a 
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way of maximizing high loadings and minimizing low loadings so that the simplest possible 

structure is achieved” [11]. The two types of rotation, are orthogonal and oblique. If we use 

orthogonal, then we are assuming that the factors are uncorrelated with one another [11]. 

Oblique rotation derives factor loadings based on the assumption that the factors are correlated, 

and this is probably most likely the case for most measures [11]. In the oblique rotations, we 

assume that the independent factors are relaxed and the new axes are then free to take any 

position in the factor space, but the “degree of correlation allowed among factors is, generally 

small because two highly correlated factors are better interpreted as only one factor” [1]. 

Correlation 

“Correlation analysis is a measure of the relationship or association between two continuous 

numeric variables that indicates both the direction and degree to which they co-vary with one 

another, without implying that one is causing the other” [22]. “It refers to the simultaneous 

change in value of two numerically valued random variables” [22]. The correlation measures the 

strength of the linear relationship between numerical variables, for instance, the length and 

width of a sinkhole or the water temperature and atmospheric temperature of a storm being 

present in the Atlantic Basin. “In these situations the goal is not to use one variable to predict 

another, but to show the strength of the linear relationship that exists between the two numerical 

variables. Correlation is used to see if linear regression is applicable” [22]. 

“The strength of linear association between two numerical variables in a population is 

determined by the correlation coefficient  𝜌!" =  !!"
!!!!

, where 𝜎!  and 𝜎!  are the population 

standard deviations and 𝜎!" is the population covariance” [22]. “The correlation coefficient 𝜌 = 

+/ −, where 𝜌 takes the sign of the slope” [22]. “A 𝜌 value of 1 indicates a perfect positive linear 
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correlation” [22]. “This happens when the values of both variables increase together and their 

coordinates on a scatter plot form a straight line” [22]. “A 𝜌 value of -1 indicates a perfect 

negative linear correlation” [22]. This means when the values of one variable increases while the 

other variable decreases. Correlation analysis usually measures the extent to which two 

quantitative variables vary together, including the strength and direction of their relationship 

[22]. “The strength of the relationship refers to the extent to which one variable predicts the 

other” [22]. “The direction of the relationship shows whether the two variables vary together 

directly or inversely” [22]. In a direct relationship, the two variables increase together, whereas 

in an inverse relationship, one variable tends to decrease while the other increases [22]. 

Simple Linear Regression 

“Simple Linear Regression is the least squares estimator of a linear regression model with a 

single explanatory variable” [19]. “Simple Linear Regression fits a straight line through a set of 

points in a way that makes the sum of the squared residuals of the model as small as possible” 

[19]. This distance can be measured as a value of prediction error, in the sense that it is the 

discrepancy between the actual value of the response variable and the value predicted by the line. 

The model under consideration is:   

𝑦 =  𝛽! +  𝛽!𝑥 

And the observed data is of the form  

𝑦! =  𝑏! +  𝑏!𝑥! + 𝜖! 

 

where 𝜖 is assumed to normally distributed with mean vector 0 and non constant variance. Now 

f the relationship doesn’t have constant variance, the result is that the residuals will reflect this 

non constant dispersion. 
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Multiple Linear Regression 

Multiple Linear Regression is an extension of simple linear regression. “As a predictive 

analysis, the multiple linear regression is used to explain the relationship between one 

continuous dependent variable from two or more independent variables” [14].  The general 

equation is denoted as: 𝑦 = 𝑏! +  𝑏!𝑥! +  𝑏!𝑥! +⋯+  𝑏!𝑥!, 

where 𝑦   is the predicted or expected value of the dependent variable. The predictor 

(independent) variables are the 𝑥!,… , 𝑥! , 𝑏!  is the value of 𝑦 when all of the independent 

variables are equal to zero, and the estimated regression coefficients are 𝑏!,… , 𝑏!. Note that 

every regression coefficient represents the change in the dependent variable to a one unit change 

in the respective independent variable [14]. The Multiple Linear Regression in matrix form is 

the following: 

𝑦!
𝑦!
⋮
𝑦!

=

1 𝑥!!
1 𝑥!"

⋯ 𝑥!!
⋯ 𝑥!!

⋮ ⋮
1 𝑥!!

⋱ ⋮
⋯ 𝑥!"

𝛽!
𝛽!
⋮
𝛽!

+  

𝜖!
𝜖!
⋮
𝜖!

 

Where 𝑋 is the design matrix, 𝛽 is a vector of parameters, 𝜖 is a error vector, and 𝑌 is the 

response vector. To proceed in finding the normal equations we start by using the following 

equation to solve for 𝛽; 

𝑋!𝑌 = (𝑋!𝑋)𝛽 
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Next, when solving this equation for 𝛽, we obtain the least squares solution for 𝑏 = 

𝑏!
𝑏!
⋮
𝑏!

. 

Lastly, we multiply on the left by the inverse of the matrix 𝑋′𝑋 and get the following equation 

for 

𝑏 = 𝑋!𝑋 !!𝑋′𝑌 [14]. 

Logistic Regression 

“Logistic regression is a type of probabilistic statistical classification model that is used for 

predicting the outcome of a categorical dependent variable based on one or more predictor 

variables” [16]. “It estimates the parameters of a qualitative response model” [16]. There will be 

two levels of logistic regression (binomial and quasinomial or multinomial) used to help address 

the research statements/questions. In binary logistic regression, the outcome is usually coded as 

0 or 1, as this leads to the following; 

𝑑 =  1, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 
0, 𝑛𝑜𝑡 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 

and the total counts 𝑥 = 𝑑, from which we can estimate the relative frequency 𝑝 = !
!
, and 

estimate of the probability. Probability can be manipulated to odds. 

In logistic regression, there is a logistic transformation of the odds (logit) that will serve as the 

dependent variable. The odds are denoted as: odds = !
!!!

 ∈ 0,∞   

The general model is denoted as 

𝑙𝑜𝑔𝑖𝑡 𝑝 = log
𝑝

1− 𝑝 = 𝛽! +  𝛽!𝑥! +⋯+ 𝛽!𝑥! 
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where p represents the functions parameter as a probability.  

  Multinomial logistic regression deals with situations where the outcome usually can have three 

or more possibilities [16]. “In the multinomial logit model we assume that the log - odds of the 

response follow a linear model 𝑦 = 𝑙𝑜𝑔𝑖𝑡 𝑝 = log !
!!!

=  𝛼! + 𝑥!𝛽!! +⋯, where 𝛼!  is a 

constant and 𝛽! is a vector of regression coefficients, for 𝑗 = 1, 2,… , 𝐽 − 1” [17]. “This model is 

the similar to a logistic regression model, except that the probability distribution of the response 

is multinomial instead of binomial and we have 𝐽 − 1 equations instead of one” [17]. “The  𝐽 −

1multinomial logit equations contrast each of categories 1, 2,… , 𝐽 − 1 with category 𝐽, whereas 

the single logistic regression equation is a contrast between successes and failures” [17]. “If 

𝐽 = 2 the multinomial logit model reduces to the usual logistic regression model” [17]. “We need 

only 𝐽 equations to describe a variable with 𝐽 response categories” [17]. 

Non – Response Analysis 

“Wooten introduced Non-Response Analysis the founding theory in Implicit Regression where 

Implicit Regression treats the variables implicitly as co-dependent variables and not as an 

explicit function with dependent/independent variables as in standard regression” [20]. The 

contribution of this research include an underlying theory to better address co-dependent 

relationship among measured variables with normal random error, and specifically, detecting 

constants and inverse relationships with bivariate random error [20].  

  “Both standard regression and non – response analysis can be used to measure the constant 

nature of a variable” [20]. “The coefficient of determination, 𝑅!, is the percent of the total sums 

of squares explained by the mean” [20]. “As the variance approaches 0, 𝑅! → 1, and for 

uniformly distributed variables, 𝑅! → 0.75” [20]. 
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In standard regression, we have that the subject response (𝑦) is constant (𝛽 = 𝜇), 

𝑦 = 𝛽 

and that there is random error in the observed data, 

𝑦! = 𝛽 + 𝜀! . 

where 𝐸 𝜀 = 0 and 𝑉 𝜀 = 𝜎!!; and parameter estimate given by 

𝛽 =
𝑦!
𝑛 = 𝜇! . 

 

However, using the non-response model we have that the subject response (𝑦) is a non-zero 

constant (𝜇), but instead of minimize the error, rather minimizes the percent error,  

𝑦 − 𝜇
𝜇 = 𝛼𝑦 − 1; 

or equivalently, modeling 

𝛼𝑦 = 1 

where the random error that exist is related to the coefficient of variation,(𝐶𝑉); the ratio of 

standard deviation to the mean over the mean alone 

𝛼𝑦! = 1+ 𝜔! , 

where 𝐸 𝜔 = 0 and 𝑉 𝜔 = 𝐶𝑉!! =
!!!

!!!
; and parameter estimate given by 
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𝜇! =
!
!
= !!

!
,   a self-weighting mean [20]. Both of these point estimates yield a coefficient of 

determination given by 𝑅! = !!!

!!
. 

Non –response analysis can be extended to bivariate and multivariate analysis. 

Non-response Analysis is testing the constants coefficient effects on the other terms [21]. 

Consider the model 𝑧 = 𝛽! + 𝛽!𝑥 + 𝛽!𝑦 + 𝛽!𝑥𝑦 +⋯ where 𝑧 is unobserved but assumed to be 

normally distributed. The alias matrix,𝐴, is such that the expected value of the beta coefficients 

and the constant coefficient are related as follows 

𝐸
𝛽!
𝛽!
⋮

=
𝛽!
𝛽!
⋮
+ 𝐴𝛽! 

measuring the bias the constant intercept has on all the remaining parameters is: 

𝐴 = 𝑋!!𝑋! !!𝑋!!𝑋!, 

where 𝑋! =
𝑥!
⋮
𝑥!

  
𝑦! 𝑥!𝑦! ⋯
⋮ ⋱ ⋮
𝑦! 𝑥!𝑦! ⋯

 and 𝑋! =
1
⋮
1

; that is, this view shows the bias introduced by 

the constant and is equivalent to testing 

1 = 𝛼!𝑥 + 𝛼!𝑦 + 𝛼!𝑥𝑦 + 𝛼!𝑥! + 𝛼!𝑦!, 

as 𝐸 𝛼 = 𝛼 and and 𝑉 𝛼 = 𝜎! 𝑋!!𝑋! !!. 

   “In general, non – response analysis can model any functional or non – functional relationship 

of the form 1 = ℎ!  (𝑥!, 𝑥!,… , 𝑥!), where 𝜃 is the set of parameter coefficients” [20]. “This can 

be further extended to implicit regression, which models relationships of the form 

𝑔(𝑥!, 𝑥!,… 𝑥!) = ℎ!  (𝑥!, 𝑥!,… , 𝑥!), where the set of terms in the expressions 𝑔 and ℎ are 
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mutually exclusive” [20]. In standard regression, 𝑆𝑆𝑇 = 𝑆𝑆𝑀 + 𝑆𝑆𝐸 (𝑆𝑆 is the sum of squares, 

𝑇,𝑀,𝐸  are total, model, and error respectively) the angle 𝜃! (angle of separation) between the 

𝑀 and 𝐸 in the vector space is 90°. However, as the assumption of independents is not satisfied 

and the degree of separation, 𝜃! is not guaranteed to be 90°; hence, we invoke the law of cosines 

to measure 𝜃!,  

𝜃! = arccos !!"!!!"!!!"
! !!"×!!"

 [20].  

 

Figure 1.1: Illustration of the Angle of Separation 

 

The height or extent to which the estimates are removed from the data and the mean is given by 

ℎ = 𝐸𝑆𝑖𝑛(𝜃!), where 𝐸 = !!"
!

. A good model should have an angle close to 90° with height 

ℎ, close to the ratio !"
!

 ; that is, in a right triangle,  𝑟𝑎𝑡𝑖𝑜 = !!
!"

= 1 which be estimated using 

𝑟𝑎𝑡𝑖𝑜 = !!"
!!"

𝑆𝑖𝑛𝜃! . The closer this ratio is to one and the closer the degree of separation, 𝜃!, 

is to 90°, the better the developed model teases out the true relationship among the measured 

variables [20]. 
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Figure 1.2: Distance Removed (Height) 

 

Forward Selection, Backward Elimination and Subset Analysis 

There are three selection methods that one would use in order to develop a statistical model, and 

they are Forward selection, Backward selection (or elimination) and Subset analysis. “In 

forward selection one starts with the best one variable model, where that variable has the highest 

simple correlation with the response variable, then the second variable is picked that gives the 

maximum improvement in fit” [4]. “This is revealed by the maximum of partial correlations of 

all independent variables with the response variable” [4]. “Then keep adding variables until no 

additions provide adequate reduction in the error mean square as stated by the p-value or the 

process can be continued until variables are included” [4].  

   The second selection method is backward selection (or elimination). “In this selection method 

one starts by considering the full model, which includes all candidate variables” [4].  The 

variable that contributes least to the model is deleted [4]. The coefficients for the remaining (m - 

1) variable model are examined and the variable contributing the least is eliminated [4]. “The 

process is repeated and then end when all the rest of the variables are contributing at a preset 

level of significance” [4]. 
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   The third selection method is subset analysis. First, all of the models that have one predictor 

variable are included and checked, then the two models with the highest 𝑅! are selected. Next, all 

models with two predictor variables are included and checked, models with the highest 𝑅! are 

selected. One will continue to estimate all combinations containing two variables at a time, then 

three at a time, etc. Then choose a subset that has the most table set of independent variables [4]. 

Survival Analysis  

“Survival analysis is typically defined as a set of methods for analyzing data where the outcome 

variable is the time until the occurrence of an event of interest” [6]. “The time to event or 

survival time can be measured in days, weeks, years, etc” [6]. “In survival analysis, subjects are 

generally followed over a specified time period and the focus is on the time at which the event 

of interest occurs” [6].  One can estimate two functions that are dependent on time, the survival 

and hazard functions. “The survival function is denoted as 𝑆 𝑡 = 𝑃 𝑇 > 𝑡 . This gives, for 

every time, the probability of surviving or not experiencing the event up to that time” [6]. “The 

hazard function, ℎ 𝑡 = −  !!(!)
!(!)

,  gives the potential that the event will occur, per time unit, 

given that an individual has survived up to the specified time [6]. We will be using the Kaplan 

Meier method, which is a nonparametric estimator of the survival function, is widely used to 

estimate and graph survival probabilities as a function of time [6]. “The regression model for the 

analysis of survival data is the Cox proportional hazards regression model” [6]. “It allows 

testing for differences in survival times of two or more groups of interest, while allowing to 

adjust for covariates of interest” [6]. This regression model is a semi parametric model, making 

fewer assumptions than typical parametric methods but more assumptions than those 

nonparametric methods [6]. 
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The product limit or PL method of Kaplan and Meier is used to estimate 𝑆: 

𝑆 𝑡 = 1−  
𝑑!
𝑛!!!!!

 

where  𝑡!  is the duration of study at point i, 𝑑!  is the 

number of sinkholes up to point i and 𝑛!  is the number of possible sinkholes at risk just prior to 

𝑡!.  

   The Cox proportional hazards (Cox PH) model fits survival data with covariates z to a hazard 

function of the form h(t|z) = h0(t)exp{β’z},where 𝛽 is an unknown vector and h0(t) is the 

baseline hazard, which is nonparametric [6]. The analytical model is denoted as: 

ℎ! 𝑡 = ℎ!exp (𝛽!𝑥!! +  𝛽!𝑥!" +  𝛽!𝑥!" +  𝛽!𝑥!" +  𝛽!𝑥!") 

The hazard ratio is denoted as: 

HR =  
ℎ!(𝑡)
ℎ! 𝑡

=  
ℎ! 𝑡 exp (𝛽!𝑥!! +⋯+  𝛽!𝑥!")
ℎ! 𝑡 exp (𝛽!𝑥!! +⋯+  𝛽!𝑥!")
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CHAPTER 2: LATENT STORM FACTORS AND THEIR INDICATORS & NON – 

RESPONSE FACTOR MODELING OF HURRICANES 

 

The Atlantic Basin is our neighbor, so hurricane season is not a new concept to understand. In 

this chapter, we will investigate the month, day of month, hour of the day, starting latitude and 

longitude, latitude, longitude, pressure, wind speed and maximum wind speed of the storms in 

the Atlantic Basin (1975 – 2014) to see if there is a statistically significant reasoning of the 

formulation of these storms. More specifically, we will interpret the latent storm factors that 

describe the correlation amongst the Atlantic Basin storm indicators.  

 

EXPLORATORY FACTOR ANALYSIS 

In our data set; the observed variables (factor indicators) that we are interested in seeing if there 

is a correlation between are: month, day, hour, starting latitude, starting longitude, latitude, 

longitude, pressure, minimum pressure, wind speed, and maximum wind speed.  
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                                              Figure 2.1: Factor Indicators 

 

   We are interested in determining the latent storm factors that explain variance and measure the 

correlation that exist between their respective storm indicators. To decide the number of factors, 

we first need to calculate the eigenvalues associated to each factor indicator. They are not 

represented by percentages but scores that total to the number of items. For example; an 11-item 

scale will theoretically have 11 possible underlying factors, each factor will have an eigenvalue 

that indicates the amount of variation in the items accounted for by each factor. In our analysis, 

the first factor has an eigenvalue of 3.0, it accounts for 27% of the variance (3/11=.27). The total 

of all the eigenvalues is 11, since there are 11 items, so some factors will have smaller 

eigenvalues. After our calculating, we found that there were three factors with eigenvalues that 

were greater than 1.0. The first factor had an eigenvalue of 3.0, it accounts for 27% of the 

variance (3/11=.27). The second factor had an eigenvalue of 2.0, it accounts for 18% of the 

variance (2/11=.18). The third factor had an eigenvalue of 4.0, it accounts for 36% of the 
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variance (4/11=.36). The next thing to do is to choose an appropriate extraction method. In the 

following Table, we show the factor loadings of our factor indicators. The notation of the 3 

factors are PA1, PA2, and PA3. The factor indicator minimum pressure was 0 throughout all of 

the factor loadings, and so it was removed from the following Table. However, since it was one 

of the original factor indicators, then it will still be used for the eigenvalue itemization process.  

                                 Table 2.1: Factor Loadings of the Factor Indicators 

  PA1  PA2  PA3 

Month  0.83 0.01 0.05 

Day  0.81 -0.02 0.01 

Hour  0.75 0.03 -0.08 

Starting Latitude  -0.07 0.87 0.01 

Starting Longitude  0.07 0.94 0.05 

Latitude 0.13 0.85 -0.03 

Longitude 0.12 0.92 -0.01 

Pressure 0.02 0.04 0.77 

Wind Speed 0.06 -0.02 0.84 

Max Wind Speed -0.01 0.01 0.82 

  

By looking at our factor loadings, we can begin to assess our factor solution. We can see that 

month, day, and hour all have high factor loadings beginning with 0.75 on the first factor (PA1). 

Therefore, we might call this factor PA1, calendar and consider it representative of the time of 

year a storm is present. Similarly, starting latitude, starting longitude, latitude, and longitude 
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load highly on the second factor (PA2), which we may consider calling this factor locations. 

Notice that latitude and longitude have a lower loading on the second factor (PA2) than starting 

latitude and longitude, but they had a slight loading on the first factor (PA1). This could suggest 

that latitude and longitude is less related to locations than starting latitude and longitude. Lastly, 

pressure, wind speed and maximum wind speed all have high factor loadings with a 0.77 on the 

third factor (PA3).  

   Thus, we might want to call this factor PA3, atmospheric. In the Table below, we can see that 

each factor had a different accountability of the variance in responses. The first factor calendar 

had a 27% of the variance in responses, the second factor locations had an 18% of the variance 

in responses, and the third factor atmospheric had a 36% of the variance in responses. This leads 

to a factor solution that accounted for 81% of the total variance among the month, day, hour, the 

starting latitude, starting longitude, latitude, longitude, pressure, wind speed, and the maximum 

wind speed. 

Table 2.2: Variances Explained from EFA 

 Variances Explained from EFA. PA1(Calendar)  PA2 (Locations)  PA3(Atmospheric) 

Proportion Variance  0.27 0.18 0.36 

Cumulative Variance  0.27 0.45 0.81 

 

   In Table 2.3, the correlation of the storm factor indicators with factors is 94% in the first 

factor, 88% in the second factor and 96% in the third factor. This could suggest that there is a 
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higher correlation within the third factor atmospheric for when a storm is present. The multiple 

R – squared values with factors is much higher for the third factor atmospheric than it is for the 

first factor calendar. With a 𝑅! value of 95% versus a 𝑅! value of 91%, the factor indicators for 

the factor atmospheric, have a much better explanation of the relationship among the measured 

variables. 

    Something else to consider is the minimum correlation of possible factor indicators. For the 

first factor calendar, this value is 0.54, for the second factor locations, the value is 0.74, and for 

the third factor atmospheric, the value is 0.87. This means that if we only considered the factor 

calendar with its factor indicators, than only 54% of any correlation between the factor 

indicators could be explained. Whereas in the second factor, at least 74% of any correlation 

between the factor indicators could be explained. Most importantly, in the third factor, 87% of 

any correlation between the factor indicators can be explained. 

Table 2.3: Factor Indicator Correlations 

 Correlation of Factor Indicators with Factors 0.94 0.88 0.96 

Multiple R-Squared with Factors 0.91 0.86 0.95 

Minimum Correlation of Possible Factor 

Indicators 

0.54 0.74 0.87 

 

   Next, we will choose a rotation method to determine how much our factors are correlated. In 

the following Table, notice that the three factors are correlated at a value of 0.26. We are 

looking for a very low correlation value between all of the factors. Thus, a correlation of 0.26 
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indicates that there may be too many factors. Next, we will go through another EFA process 

using the first factor’s indicators, the starting latitude and longitude from the second factor, and 

pressure and the wind speed from the third factor to and we need to find the correlation between 

them. 

Table 2.4: Factor Correlations 

  PA1 (Calendar)  PA2 (Locations)  PA3 (Atmospheric) 

PA1 (Calendar) 1.00 0.26 0.26 

PA2 (Locations) 0.26 1.00 0.26 

PA3 (Atmospheric) 0.26 0.26 1.00 

 

 

 The new observed variables (factor indicators) that we are interested in seeing if there is a 

correlation between are: month, day, hour, starting latitude, starting longitude, pressure and 

wind speed (denoted as wind), interactions between month and starting latitude and 

longitude, and the interaction between starting latitude and starting longitude. 
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                                     Figure 2.2: Second EFA Factor Indicators 

 

   In this second EFA process, we will assume that the appropriate number of factors will be 

determined to be 2, since the first EFA process with 3 factors had factor indicators that loaded 

high on some factors and low on another factor. We will use the principal axis factoring for our 

extraction method. In the following Table, the calculated factor loadings are shown. 
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Table 2.5: Factor Loadings 

  PA1  PA2  

Month  0.84 0.03 

Day  0.77  0.04  

Hour  0.82  0.05 

Starting Latitude  -0.06 0.79 

Starting Longitude  0.02  0.91  

Pressure 0.15 0.93 

Wind Speed -0.05 0.96 

Month & Starting Latitude 0.07 0.78 

Month & Starting Longitude 0.01 0.77 

Starting Latitude, Longitude -0.05 0.95 

 

   Looking at our factor loadings, we can begin to assess our factor solution. We can see that 

month, day, and hour all have high factor loadings beginning with 0.77 on the first factor (PA1). 

Therefore, we might call this factor PA1, calendar and consider it representative of the time of 

year a storm is present. Similarly, starting latitude, starting longitude, pressure, wind speed, 

month & starting latitude, month & starting longitude, and starting latitude & longitude load 

highly on the second factor (PA2), which we may consider calling this factor cal-location 

atmospheric. Notice that pressure has a lower loading on the second factor (PA2) than starting 

latitude and longitude, wind speed, month & starting latitude, month & starting longitude, and 

starting latitude & longitude but it had a slight loading on the first factor (PA1). This could 
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suggest that pressure is less related to location atmospheric than starting latitude and longitude, 

wind speed, month & starting latitude, month & starting longitude, and starting latitude & 

longitude. In the Table below, (Table 2.6), we can see that each factor accounted around 48% of 

the variance in responses, leading to a factor solution that accounted for 94% of the total 

variance in when a storm is present based off the month, day, and hour of that day, the starting 

latitude, starting longitude, pressure and the wind speed. 

Table 2.6: Variances Explained from EFA 

  PA1 (Calendar)  PA2 (Cal-Location Atmospheric)  

Proportion Variance  0.48 0.49 

Cumulative Variance  0.48 0.97 

  

   In Table 2.7, the correlation of the storm factor indicators with factors is 93% in the first factor 

and 98% in the second factor. This could suggest that there is a higher correlation within the 

second factor cal-location atmospheric for locating when a storm could be present. Notice that 

the multiple R – squared values with factors is much higher for the second factor location 

atmospheric than it is for the first factor calendar. With an 𝑅! value of  96% versus an 𝑅! value 

of 85%, the factor indicators for the factor cal-location atmospheric, has a much better 

explanation of the probable conditions of when a storm is present. Something else to consider is 

the minimum correlation of possible factor indicators. For the first factor calendar, this value is 

0.74, and for the second factor cal-location atmospheric, the value is 0.88. This means that if we 

only considered the factor calendar with its factor indicators, than only 78% of any correlation 
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between the factor indicators could be explained. Whereas in the second factor, at least 86% of 

any correlation between the factor indicators could be explained.  

Table 2.7: Factor Indicator Correlations 

 Correlation of Factor Indicators with Factors 0.93 0.98 

Multiple R-Squared with Factors 0.85 0.96 

Minimum Correlation of Possible Factor 

Indicators 

0.74 0.88 

 

   Next, we will choose an oblique rotation method to determine how much our factors are 

correlated. In the following Table, notice that the two factors are correlated at a value of 0.137. 

This means that the two factors calendar and cal-location atmospheric are 13.7% correlated. 

This correlation value is much smaller than the previous EFA process, where the correlation 

value was 0.26. This smaller correlation value indicates that the two factors calendar and cal-

location atmospheric are better correlated.  

Table 2.8: Factor Correlations 

  PA1 (Calendar)  PA2 (Cal-Location Atmospheric)  

PA1 (Calendar) 1.00 0.137 

PA2 (Cal-Location Atmospheric) 0.137 1.00 
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   Based off the factor calendar, we can conclude that the month, day, and hour have a fairly 

large influence as to when a storm is present in the Atlantic Basin. Now looking at the second 

factor that we referred to as cal-location atmospheric, the starting latitude, longitude, pressure, 

month & starting latitude, month & starting longitude, and starting latitude & longitude and the 

wind speed are also an influence when a storm is present in the Atlantic Basin. Through the use 

of EFA, we were able to simplify the situation by looking at variables that could be correlated 

within groups. By looking at these variables that were correlated, we can detect that in the 

month of the year and the day of that month, there is a correlation as to when a storm may be 

present in the Atlantic Basin. The pressure and wind speed were a big part of this higher 

correlation between the two factors. This is due to the fact from the first EFA analysis that 

pressure and wind speed were in the factor atmospheric, which had the highest correlations of its 

factor indicators. The starting latitude and longitude were much better correlated in this second 

EFA analysis because the latitude and longitude were not as highly correlated in the first EFA 

analysis. As far as the month & starting latitude, month & starting longitude, and starting 

latitude & longitude interaction terms, they were loaded high on the second factor also, which 

could indicate that the month of the year and the starting locations could be correlated in 

determining when a storm is present in the Atlantic Basin. 

   In determining the latent storm factor measures, we have verified through the process of EFA 

that there are two factors that are correlated to describe storm formation indicators. These two 

factors are calendar and cal-location atmospheric. The factor calendar has the storm indicators 

of which month, day and hour of that day, can help us determine when a storm may form in the 

Atlantic Basin. The second factor cal-location atmospheric has the storm indicators of the 

month, possible starting locations, and the pressure and wind speed that a storm may possess in 
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order to form in the Atlantic Basin. If we wanted to have a model with only two variables, then 

we would use the two factors calendar and cal-location atmospheric. The correlation using the 

factor indicators is 93% for the first factor and 98% for the second factor. Next, we will use our 

results from the EFA process to build our model. Standard regression will be used to build our 

model using the factors and their respective factor indicators. The factor indicators that we 

would include in our future model are month (𝒙𝟏), day (𝒙𝟐), hour (𝒙𝟑), starting latitude (𝒙𝟒), 

starting longitude (𝒙𝟓), pressure (𝒙𝟔), and the response variable is wind speed. In standard 

regression we use the general model of the following: 

𝑦 = 𝛽! + 𝛽!𝑥! +⋯+ 𝛽!𝑥! + 𝜀 

In this section we will use the analytic model with its variables denoted as: 

𝑦 = 𝛽!  + 𝛽!𝑥!
!!𝑥!

!!  
∀!,! 

, 𝑖 ≠ 𝑗 𝑎∗ ∈ 0,1  

There were a total of 16 terms in the above model. Out of these 16 terms only 5 were 

significantly contributing of at least a 1% significance level. In this first developed model, 

                                𝑦 = 𝛽! +  𝛽!𝑥! +  𝛽!𝑥! +  𝛽!𝑥!𝑥! +  𝛽!𝑥!𝑥! +  𝛽!𝑥! 𝑥!  

𝑦 = 0.725− 0.021𝑥! +  −7.450𝑥! +  0.008𝑥!𝑥! +  5.36𝑥!𝑥! +  0.005!𝑥! 𝑥! 

This model shows us that the month, pressure, and the starting locations have a significant 

impact on where a storm may be present in the Atlantic Basin. In the following Figure, the bar 

graph for month shows that there are a lot of storms that occur between the months of August 

and September. 
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Figure 2.3: Bar Graph of the Variable Month 

                     

   The model indicates that the starting locations and the month have a correlation as to when a 

storm may be present in the Atlantic Basin. Notice that between the months of August and 

September there are more storms than any of the other months. In both of the scatterplots, the 

starting locations in the Atlantic Basin during the months of August and September are stronger 

than starting locations for storms in any other month of the year. This can be seen in the 

following scatterplot. 
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Figure 2.4: Scatterplots of Starting Latitude, Starting Longitude and Month 

 

   The above Figure shows that the starting locations will have a significant correlation when a 

storm may have a higher frequency in between the months of August and September. Although 

our standard regression model had only 5 explanatory variables, the correlation between the 

explanatory variables was slightly significant with an 𝑅! = 0.82 and had an adjusted r-squared 

value of 0.81. From our EFA process we found that the two factors calendar and cal-location 

atmospheric were highly correlated with a low oblique rotation value of 0.137. Considering that 

the first factor calendar had the factor indicators month, day, and hour, it can be presumed that 

since month had the highest factor loading, then month would be the variable that may be kept 

to be put in future models. Looking back at the second factor cal-location atmospheric, all of 

the factor loadings were high in this factor. Thus it makes sense to keep the variables of starting 

latitude, starting longitude, pressure, wind speed, and the interactions between month & starting 

latitude, month & starting longitude, and starting latitude and longitude in future models. Next, 

we will compare our results with another statistical method known as Non-Response Analysis.  
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   Recall that our second EFA process, we determined that the second factor cal-location 

atmospheric and its factor indicators were highly correlated. From our standard regression 

analysis in the previous section, we found that the month, the pressure and the locations were 

the explanatory variables that best described the response variable. Since we have determined 

that the time between August and September are the best indicators of high volume activity of 

when a storm is present, then the variable month will also be considered in this non – response 

analysis comparison between standard regression. However, since the wind speed was the 

response variable in the standard regression model, then it will not be used in our non-response 

analysis model as the response variable but as a predictor variable. 

Non – Response Analysis Model 

In this section, we are interested in determining if there is a correlation between the predictor 

variables: month (𝒙𝟏), starting latitude (𝒙𝟐), starting longitude (𝒙𝟑), pressure (𝒙𝟒), wind 

speed (𝒚) and the interactions of month & starting latitude, month & starting longitude, 

and starting latitude and longitude. Consider the following analytic model;  

1 = 𝛼!𝑥! + 𝛼!𝑥! + 𝛼!𝑥! 𝑥! + 𝛼!𝑥!𝑥! + 𝛼!𝑥!𝑥! + 𝛼!𝑦 

This model had every predictor variable result in a 1% level of significance (using standard t-

test). Although this model is not the standard regression model, it held a 𝑅! = 1 value. The 

developed model is;  

1 = 0.002𝑥! + 0.003𝑥! + 0.003𝑥!𝑥! + 0.006𝑥!𝑥! + 0.007𝑥!𝑥! − 0.009𝑦 

In the following Figure, the predicted model for standard regression and our non – response 

model is given.  
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Figure 2.5: Predicted Model using Standard Regression (red) & Non – Response Analysis 
(black) 

 

Comparatively speaking, our model fits better than the standard regression model that was used 

in the previous section. In the following Figure, the non – response model is shown, showing the 

equilibrium in the system. 

                           

Figure 2.6: Non – Response Model Fitting 
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Since the assumption of independence is not required, when solving for 𝑦, the error terms are no 

longer perpendicular to the mean but rather is given by  𝜃! = arccos !!"!!!"!!!"
! !!"×!!"

 [20]. 

In comparison to the standard regression measured angle of 90⋄, our non – response model had a 

degree of separation of 𝜃! = 76.4, including all the terms. The height ℎ, in the non – response 

model had a value of 0.79. Since ℎ is the distance between the point estimates and the line 

between the data and the means, then the lower the height the better the model will fit. We can 

conclude that the non – response model was the best fitted model. In the next section we will 

investigate a smaller subset of the hurricanes that have hit the Florida Keys in the last 100 years. 

EXPLORATORY FACTOR ANALYSIS & NON – RESPONSE MODELING ON THE 

FLORIDA KEYS. 

In this section, we will present a statistical survey of the major hurricanes that have hit the 

Florida Keys using an exploratory factor analysis approach to constructing a non-response 

analysis model. In our data set; the observed variables (factor indicators) that we are interested in 

seeing if there is a correlation between are: year, month, day, hour, starting latitude, starting 

longitude, latitude, longitude, pressure, and wind speed. 
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Figure 2.7: Variables of Interest – Florida Keys 

 

   Before we begin the analysis of addressing our research questions, let us give a brief history of 

the catastrophic or disastrous hurricanes that have hit the Florida Keys from 1900 – 2000. In 

1919, Key West, FL was hit by the most powerful hurricane in its history at that time. The Labor 

Day storm hit the Florida Keys in 1935.  From 1950 to 2000, the most intense hurricanes to hit 

the Florida Keys were in 1960, 1965 and 1992. These hurricanes were Hurricane Donna 

(nicknamed Deadly Donna), Hurricane Betsy (1965), and Hurricane Andrew (1992).    

  In this section we are only interested in the catastrophic or disastrous hurricanes that have hit 

the Florida Keys in the last 100 years (1900 – 2000) to see if we can produce a statistical model 

in helping to produce inferences as to when a super storm may hit the Florida Keys. 

In our data set; the observed variables (factor indicators) that we are interested in seeing if there 

is a correlation between are: month, day, hour, starting latitude, starting longitude, pressure 

and wind speed (denoted as wind). In the following Table, we show the factor loadings of our 

Factor	Indicators	

Starting	Latitude	
	 Starting	Longitude	 Pressure	 Wind	Speed	

Month	

Day	

Hour	
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factor indicators. In this paper, we will assume that the appropriate number of factors will be 

determined to be 2, for a more general analysis.   

 

Table 2.9: Factor Loadings of the Factor Indicators – Florida Keys 

  PA1  PA2  

Month  0.86 0.03 

Day  0.91 0.07 

Hour  0.84 -0.02  

Starting Latitude  -0.06  0.93 

Starting Longitude  -0.96  0.92  

Pressure 0.06 0.81 

Wind Speed  -0.34  0.85  

  

   By looking at our factor loadings, we can begin to assess our factor solution. We can see that 

month, day and hour all have high factor loadings beginning with 0.84 on the first factor (PA1). 

Therefore, we might call this factor PA1, calendar and consider it representative of the time of 

year a catastrophic or disastrous storm that has hit the Florida Keys. Similarly, starting latitude 

and longitude, pressure and wind speed, load highly on the second factor (PA2), which we may 

consider calling this factor environmental. In Table 2.10, we can see that each factor accounted 

for around 37% of the variance in responses, leading to a factor solution that accounted for 71% 

of the total variance in when a storm may become catastrophic or disastrous based off the 

month, day, hour, the starting latitude, starting longitude, pressure and wind speed.  
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Table 2.10: Variances Explained from EFA 

  PA1 (Calendar)  PA2 (Environmental)  

Proportion Variance  0.37 0.34 

Cumulative Variance  0.37 0.71 

In Table 2.11, the correlation of the storm factor indicators with factors is 96% in the first factor, 

and 89% in the second factor. This could suggest that there is a higher correlation within the 

first factor calendar for when a storm is present. The multiple R – squared values with factors is 

much higher for the second factor environmental than it is for the first factor calendar. With a 

𝑅! value of 90% versus a 𝑅! value of 87%, the factor indicators for the factor environmental, 

have a much better explanation of the relationship among the measured variables. Something 

else to consider is the minimum correlation of possible factor indicators. For the first factor 

calendar, this value is 0.77, for the second factor environmental, the value is 0.83, and for the 

third factor atmospheric, the value is 0.87. This means that if we only considered the factor 

calendar with its factor indicators, than only 77% of any correlation between the factor 

indicators could be explained. Whereas in the second factor, at least 83% of any correlation 

between the factor indicators could be explained.  

Table 2.11: Factor Indicator Correlations 

 Correlation of Factor Indicators with Factors 0.96 0.89 

Multiple R-Squared with Factors 0.90 0.87 

Minimum Correlation of Possible Factor 
Indicators 

0.77 0.83 
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Next, we will choose an oblique rotation method to determine how much our factors are 

correlated. In the following Table, notice that the two factors are correlated at a value of 0.156. 

This means that the two factors calendar and environmental are 15.6% correlated. This smaller 

correlation value indicates that the two factors calendar and environmental are better correlated.  

Table 2.12: Factor Correlations 

  PA1 (Calendar)  PA2 (Environmental)  

PA1 (Calendar) 1.00 0.156 

PA2 (Environmental) 0.156 1.00 

 

Based off the factor calendar, we can conclude that the month, day, and hour have a fairly large 

influence as to when a storm is present in the Atlantic Basin. Now looking at the second factor 

that we referred to as environmental, the starting latitude, longitude, pressure and the wind speed 

are also an influence when a storm is present in the Atlantic Basin. Through the use of EFA, we 

were able to simplify the situation by looking at variables that could be correlated within groups.  

Non – Response Analysis Model 

In this section, we are interested in determining if there is a correlation between the predictor 

variables: month (𝒙𝟏), day (𝒙𝟐), hour (𝒙𝟑), starting latitude (𝒙𝟒), starting longitude (𝒙𝟓), 

and pressure (𝒙𝟔). Consider the following analytic model;  

1 = 𝛼!𝑥! + 𝛼!𝑥! + 𝛼!𝑥!  + 𝛼!𝑥! + 𝛼!𝑥! + 𝛼!𝑥!  
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This model had every predictor variable result in a 1% level of significance (using standard t-

test). Although this model is not the standard regression model, it held a 𝑅! = 0.92 value. This 

indicates that the model explains 92% all the variability of the response data around its mean. 

The developed model is;  

1 = 0.265𝑥! + 0.23𝑥! +  .0687𝑥! + 0.415𝑥! − 0.011𝑥! + 0.342𝑥! 

Since the assumption of independence is not required, when solving for 𝑥 and 𝑦, the error terms 

are no longer perpendicular to the mean but rather is given by  𝜃! = arccos !!"!!!"!!!"
! !!"×!!"

 [20]. 

 Our non – response model had a degree of separation of 𝜃! = 85.1, including all the terms. The 

height ℎ, in the non – response model had a value of 0.84. Since ℎ is the distance between the 

point estimates and the line between the data and the means, then the lower the height the better 

the model will fit. We can conclude that the non – response model was the best fitted model. 

 

USEFULNESS & CONTRIBUTIONS 

The results in this study are useful for numerous reasons, for instance this is the first time that 

exploratory factor analysis to build a statistical model for hurricane related variables. This is the 

first time that Non – Response Analysis has been used in conjunction with Exploratory Factor 

Analysis to develop a statistical model. This analysis shows how well exploratory factor 

analysis determine the latent storm factors that explain variance and measure the correlation that 

exist between their respective storm indicators. Non-response analysis was used in this chapter 

as a comparative theory to standard regression for the statistical modeling of hurricanes in the 

Atlantic Basin. Furthermore, exploratory factor analysis was used to find the correlated between 
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the observed variables in both the larger hurricane data set, as well as the smaller Florida Keys 

data set. These methods combined can be useful to create simple structures for statistical 

models, including codependent relationships. 
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CHAPTER 3: LOGISTIC REGRESSION OF HURRICANES IN THE ATLANTIC 
BASIN FROM 1990 – 2014 

 

INTRODUCTION TO THE DATA 

Hurricane and Buoy Data 

Big Data refers to any collection of data sets that are large or complex; and that may often 

become difficult to process with traditional statistical software. The data that was compiled into 

a larger data set came from two different sources. First, the hurricane data for the years 1990 – 

2014 came from Unisys Weather site (Atlantic Basin Hurricanes data) and the second data set 

came from the National Buoy Center (for the years 1990 – 2014). We will start with the first 

data set and describe the structure of the hurricanes. 

The variables from the Unisys Weather site are: Year, Month, Day, Hour, Storm, Name, 

Latitude, Longitude, Wind Speed (knots), Pressure (milliards). 
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Figure 3.1: Variables from the Unisys Weather Site. 

 

Compilation of Hurricanes 

In this case, the files are organized by the decade. The information on these files was space 

delimited, thus this required that additional steps in creating the data set. The data from the 

Unisys Weather Site was arranged in decades. One particular statistical software that is capable 

of reading these types of data files, is the program R. We read in the data by each decade (from 

the website), then spliced the data from its single column (containing the information) into ten 

columns and wrote into a CSV file.  Next, we created a timeline that would be used to fill in the 

gaps of the missing data. The timeline variable is denoted as: 

𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒[𝑖] = 𝑑𝑎𝑡𝑒[𝑖]− 𝑑𝑎𝑡𝑒[0], where 𝑑𝑎𝑡𝑒[0] is January 1, 1990, and 

where 𝑖 is a particular date. 

 

Variables	
Unisys	

Date	

Year	

Month	

Day	

Hour	

Storm	

Name	

Location	

Latitude	

Longitude	

Main	
Measures	

Wind	
Speed	

Pressure	
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Figure 3.2: Hurricane Data 1990 – 2014 from Unisys 

In Data Set 2 (the smaller hurricane file), we read in each storm (or observation) by the year. 

Then it was compiled and written to a CSV file to be spliced and broken down in Excel. 

In Figure 3.3, we open the csv file for the smaller hurricane file while using Excel to splice, we 

add the headings and pinpoint the variables. In Figure 3.4, we extracted a list of storms for the 

given years, and added a year to the list (this creates Data Set 3). 

 

 

 

 

Hurricanes	
Data	1	

11485x10	

1990-1999	
3964x10	
21	storms	

2000-2009	
5066x10	
31	storms	

2010-2014	
2455x10	
44	storms	
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Figure 3.3: Added Headings to the Smaller Hurricane Data Set 

 

Figure 3.4: Data Set 3: Extract List of Storms for Given Years and Add Year to List 

 

Data	Set	2	
586x7	

Index	
	(added	by	R)	

Advisory	

Latitude	

Longitude	

Date	

Month	

Day	

Hour	Wind	Speed	

Pressure	

Data	Set	3	
61x5(+1)	

Storm	Number	

Name		
(Status	and	Name)	

Status	

Name	
Date		

(dd	mm-dd	mm)	

Wind	Speed	

Pressure	

Year	



47 
	

  Then we had to prepare the smaller hurricane data file to use vertical lookups to map missing 

information into this file; namely, year and storm name. First enumerate storms by year and year 

of storm; this increases the width of the smaller hurricane date file to 14; with dimensions 586 

x14  Now we code the smaller hurricane data file and 3 by year and the storm number, then read 

the name of the storm from the merged hurricane data set into the smaller hurricane data set. 

Then save the smaller hurricane data file as a CSV file and will have to reformat to have the 

common variables from large hurricane data (by decade) set from 1990 – 2014. 

           

Figure 3.5: Data Set 1 and Data Set 2 merged 

 

   The second large data set came from the National Buoy Center. There were originally four 

buoys of interest; Buoy Data: B1 41040, B2 42036, B3 42056, and B4 42001. The fourth buoy 

was the first choice to use for merging with hurricane data because of the years of recorded data: 

1975 – 2014. Although we only considered the years of 1990 – 2014 of the recorded buoy data 

for the merging process. This is because before 1990 there was not a lot of updated buoy 

readings kept for records. In the following Figure, the buoy data that was used in this chapter 

Data	Set	1	
10899x10		

Data	Set		2	
544x9	

Merged	
Hurricane	
Data	Set	
54495x10	
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came from the buoy numbered 42001. The dark arrow in the image shows where the buoy is in 

the Gulf of Mexico. 

 

            

Figure 3.6: Location of Buoy 42001 

 

The variables that came from this data set are: Year, Day, Month, Hour, Buoy Wind 

Direction, Buoy Wind Speed, Buoy Pressure, Buoy Atmospheric Temperature, and Buoy 

Water Temperature. 
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Figure 3.7: Variables of Interest from the National Buoy Data Center (Buoy 4) 

 

Since the buoy data had gaps missing in the wind speed and wind direction, we needed to fill 

these gaps in order to proceed to achieve our final compilation data set. These gaps were filled 

using Fourier Series 

𝑉𝑎𝑟 = 𝛽!  + 𝛽!𝑐𝑜𝑠 𝑘×𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒 +  𝛽!𝑠𝑖𝑛 𝑘×𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒  + 𝛽!𝑐𝑜𝑠 2𝑘×𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒

+  𝛽!𝑠𝑖𝑛 2𝑘×𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒 +  𝛽!𝑐𝑜𝑠 3𝑘×𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒 +  𝛽!𝑠𝑖𝑛 3𝑘×𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒 ;   

where 𝑘 = !!
!"#.!"

 and 𝑉𝑎𝑟 is the name of any variable in the buoy data set that has/had gaps to 

fill. 

Variables	
NBDC	

Date	

Year	

Month	

Day	

Hour	

Temperatures	

Atmospheric	

Water	

Main	Measures	

Wind	Speed	

Wind	Direction	

Pressure	
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   The next additional variables added were Starting Latitude, Starting Longitude, Maximum 

Wind Speed, Minimum Pressure, the differential of wind speed dWS (the change in wind 

speed between readings within a storm) 𝑑𝑊𝑆(𝑡) =𝑊𝑆(𝑡)−𝑊𝑆(𝑡 − 1), the differential of 

wind direction dWD (the change in wind direction between readings within a storm) 𝑑𝑊𝐷(𝑡) =

𝑊𝐷(𝑡)−𝑊𝐷(𝑡 − 1), the differential of pressure dP (the change in pressure between readings 

within storm) 𝑑𝑃(𝑡) = 𝑃(𝑡)− 𝑃(𝑡 − 1), the differential of atmospheric temperature dATMP 

(the change in atmospheric temperature between readings within a storm) 𝑑𝐴𝑇𝑀𝑃(𝑡) =

𝐴𝑇𝑀𝑃(𝑡)− 𝐴𝑇𝑀𝑃(𝑡 − 1), and the differential of water temperature dWTMP (the change in 

water temperature between readings within a storm) 𝑑𝑊𝑇𝑀𝑃(𝑡) =𝑊𝑇𝑀𝑃(𝑡)−𝑊𝑇𝑀𝑃(𝑡 −

1). In Figure 3.8, the additional variables included can be seen. 

 

Figure 3.8: Additional Variables Included 

 

Addional	
Variables	

dt	 dWS	 dWD	 dP	 dATMP	 dWTMP	

Starting	Latitude	 Starting	
Longitude	

Maximum	Wind	
Speed	

Minimum	
Pressure	
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   Next, we had to create additional variables so we would then have a compilation data set of 

hurricanes in the Atlantic Basin and buoy data from the Gulf of Mexico. First, we had to sort the 

dates of the storms within the merged data set. Linear interpolation was used in R on the 

hurricane data file to show the increased readings on an hourly basis. This is because the date, 

year, month, day and hour were corrected in EXCEL. This produced a total of 17 variables of 

interest to be complied with the buoy data set. The included variables of interest are: Timeline, 

Year, Month, Day, Hour, Storm, Name, Lat (Latitude), Lon (Longitude), WS (Wind 

Speed), dWS, Max wind, P (Pressure), dP, Min pres, Start Lat (Latitude), Start Lon 

(Longitude). 

 

Figure 3.9: Variables of Interest 

 

Included	Variables	

Storm	
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Starting	Latitude	
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Day		
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Then, merged the above variables with the buoy data. 

After the gaps were filled in for any variable that had missing data, the final new included 

variables of interest included: Year, Month, Day, Hour, Wind Direction, Wind Speed, 

Pressure, Atmospheric Temperature, Water Temperature, Date, Timeline, dt, dWS, dWD, 

dP, dATMP, and dWTMP. 

 

Figure 3.10: Final Included Variables of Interest for Compilation Data Set 

 

As a result, we ended up with 17 variables of interest in the compilation of the data sets. This 

was a useful way to gather the information to answer our subjective research 

statements/questions. 
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VARIABLES OF INTEREST 

In this present case study, the two data sets that was compiled into a larger data set came from 

two different sources. The hurricane data for the years 1990 – 2014 came from Unisys Weather 

site (Atlantic Basin Hurricanes data) and the buoy data has been available from the National 

Buoy Center. Next, we developed numerous statistical models to estimate the when a storm was 

present or not present in the Atlantic Basin. This will enable the distinction of which contributing 

factors will formulate when a storm is present or not in the Atlantic Basin. In this study we will 

statistically model the storm present as a function of Buoy Wind Speed (𝒙𝟏), Buoy Wind 

Direction (𝒙𝟐), Buoy Pressure (𝒙𝟑), Buoy Atmospheric Temperature (𝒙𝟒), Buoy Water 

Temperature (𝒙𝟓), Differential of Buoy Wind Speed (𝒙𝟔), Differential of Pressure (𝒙𝟕), 

Differential of Atmospheric Temperature (𝒙𝟖), and Differential of Water Temperature 

(𝒙𝟗). 

         

Figure 3.11: Variables of Interest 

 

In this present study, we will address the following questions: 

1) Determine the probability of a storm being present in the Atlantic Basin, given the 

conditions at the buoy. 

Storm	Present	

Wind	Direction	 Wind	Speed	

dWS	

Pressure	

dP	

Atmospheric	
Temperature	

dATMP	

Water	
Temperature	

dWTMP	
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2) Determine the probability of a storm being present categorically, given the conditions at 

the buoy. 

Description of the Response Variable and Contributing Entities 

The relationship between the wind speed, wind direction, pressure, atmospheric temperature, 

water temperature and their respective differentials were analyzed independently. The formation 

of a hurricane on any given day is a dichotomous measure in that either there is a storm present 

or there is no storm present. The atmospheric conditions are the factors that drive such storm 

formation. Obtaining a better understanding of these factors that drive such a storm formation, 

we will be able to determine probabilistically characterize the behavior of the phenomenon of 

interest and statistically model when a storm is present (also categorically) as a function of 

outlined variables. 

Buoy Wind Speed (𝒙𝟏) 

The wind speed is recorded by the buoy in meters per second, (m/s), averaged over an eight-

minute period, and then reported hourly [NDBC]. The wind speeds that were measured at this 

buoy are somewhat small and had a maximum value of 40.1 knots, as seen in Table 3.1.  

Buoy Wind Direction (𝒙𝟐) 

The wind direction is the direction at which the wind is blowing. The buoy wind direction was 

calculated through Circular Analysis (see the statistical methodology chapter for further 

discussion on circular analysis). 
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Buoy Pressure (𝒙𝟑) 

The pressure is measured at sea level. In Table 3.1, the average condition for pressure was 

1016.5 (considering all possibilities for a storm being present or not). Whereas in Table 3.2, the 

average condition for pressure was 1014.5 (storm present) and 1017 (storm not present).  

Buoy Atmospheric Temperature (𝒙𝟒) 

The atmospheric temperature is measured in degrees Celsius.  

Buoy Water Temperature (𝒙𝟓) 

Water Temperature (also known as Sea surface temperature) is a climate and weather 

measurement that is obtained by buoys [10].  There are different types of instruments that 

measure the temperature at different depths. Most buoys have sensors located at about 1 meter 

depth.   

General Descriptive Statistics for the Buoy Conditions  

In the following Table, the general descriptive statistics of the buoy conditions when they are 

the average atmospheric conditions. The Table shows that the buoy wind speed has a mean of 6, 

the buoy wind direction has a mean of 220, whereas the range is 140. The buoy pressure has a 

mean and a median of 1016.5, the buoy atmospheric temperature has a mean and a median of 

25, the buoy water temperature has a mean and median of 26, the differentials all have a median 

of 0. The pressure has the lowest drop value by 13.8, which means that a storm could be present 

when the pressure drops 13.8 mb’s below its average value. Notice that the buoy atmospheric 

temperature and the buoy water temperature have a similar mean value, while their ranges are 

different in a value of 10. The atmospheric temperature and the water temperature have similar 

maximum values, yet their minimum drop values vary by 10 degrees. This could imply that the 
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water temperature has a greater affect than the atmospheric temperature when a storm could be 

present in the Atlantic Basin 

 

Table 3.1: General Descriptive Statistics for Buoy Conditions. 

Buoy Conditions Mean Median Variance Standard 

Deviation 

Min Max Range 

𝑥! 6 5.8 8.9 2.98 0 40.1 40.1 

𝑥! 220 219 14.32 3.05 112 252 140 

𝑥! 1016.5 1016.5 18.198 4.26 935 1037 101.9 

𝑥! 24.966 25.3 11.973 3.46 9.6 33.3 23.7 

𝑥! 26.417 26.4 7.464 2.732 20.1 33.8 13.7 

𝑥! -0.0037 0 1.101 1.04 -13.5 12.4 25.9 

𝑥! -0.002 0 0.277 0.527 -13.8 19.3 33.1 

𝑥! -0.002 0 0.1315 0.3627 -7.7 3.7 11.4 

𝑥! 0 0 0.151 0.123 -1.7 4.3 6 

 

To gather a better understanding how the average atmospheric conditions, consider the average 

atmospheric conditions when a storm is present and not present, this can be seen in Table 3.2. 
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Table 3.2: Mean Values for Buoy Conditions when Storm is Present, Not Present and 

Overall 

Buoy Conditions Mean Storm Present Mean Storm Not Present Mean Overall 

𝑥! 5.58 6.10 6 

𝑥! 214 207 220 

𝑥! 1014.5 1017 1016.5 

𝑥! 28 24.27 24.966 

𝑥! 29 26 26.417 

𝑥! -0.0021 0 -0.0037 

𝑥! -0.001 0 -0.002 

𝑥! -0.003 0 -0.002 

𝑥! 0 0 0 

 

Binomial Case of Logistic Regression 

In this section we will address our first research question: Determine the probability of a storm 

being present in the Atlantic Basin, given the conditions at the buoy. 

In the Binomial case, we will start off by using all of the variables of interest. The probabilistic 

analytic form of a logistic model is denoted as the following: 

𝑦 = !!(!!! !!!!!⋯!!!!)

!!!!(!!! !!!!!⋯!!!!)
, where 𝑦 = 𝑃 𝑑 = 1  𝑎𝑛𝑑 𝑥!,… , 𝑥! are the predictor variables.  
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Model Measurement of Accuracy 

In order to find the probabilities for our binomial and multinomial models, we need to have a 

valid measurement of accuracy for the models. Having this measurement of accuracy will sustain 

the most valid model comparatively to another model. The response variable in both models is 𝑦. 

In general, we can have multiple predictor variables in a binomial logistic regression model, 

however, there are two outcomes; there was a storm present or there wasn’t a storm present, 

𝑑 = 1,  𝑖𝑓 𝑎 𝑠𝑡𝑜𝑟𝑚 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡
0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

First, we need to find and estimate for 𝑑 which is denoted as 𝑑. 

𝑑 = 1,  𝑝 > 0.5            
0,          𝑝 < 0.5           

The above shows that the two outcomes of the response variable estimates if our model is 50% 

chance of a storm being present and a 50% chance of a storm not being present. To find our 

measurement of accuracy we now extend our estimate of 𝑑 to 𝑑∗. 

𝑑∗ = 1,   𝑑 = 𝑑           
   0,         𝑑  ≠ 𝑑            

 

The last part of the procedure for finding the measurement of accuracy if to find the ratio denoted 

as 𝑝∗, 𝑝∗ =  !∗

!
, where 𝑛 is the total number of outcomes if a storm was present or not, and 𝑑∗ 

is the sum of the outcomes when there was storm present. This measurement of accuracy is the 

proportion of times that our model accurately predicts whether or not a storm is present. 
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In logistic regression, there is a logistic transformation of the odds (logit) that will serve as the 

dependent variable. In our first model, we considered every predictor variable and possible 

combination up to four way interaction. 

Model Development 

The analytic logistic transformation model that we will be using is 

𝑦 = 𝛽! + 𝛽!𝑥!
!!  𝑥!

!!

∀!,!,!,! 

𝑥!
!!𝑥!

!! , 𝑖 ≠ 𝑗, 𝑘, ℎ 𝑗 ≠ 𝑘, ℎ, 𝑘 ≠ ℎ,𝑎 ∈ 0,1 . 

 There were a total of 216 terms in the above model. Out of these 216 terms only 17 were 

significantly contributing of at least a 1% significance level. The differential terms and every 

possible term associated with a differential term was not significantly contributing of a level of 

1% or higher. 

In this first analytic model, 

 

𝑦 = log
𝑝

1− 𝑝 = 𝛽! +  𝛽!𝑥! +  𝛽!𝑥! +  𝛽!𝑥! +  𝛽!𝑥! +  𝛽!𝑥! +  𝛽!𝑥!𝑥! +  𝛽!𝑥!𝑥! + 

 𝛽!𝑥!𝑥! +  𝛽!𝑥! 𝑥! +  𝛽!"𝑥!𝑥! +  𝛽!!𝑥!𝑥! +  𝛽!"𝑥!𝑥! +  𝛽!"𝑥! 𝑥!𝑥! +  𝛽!"𝑥!𝑥!𝑥! +

 𝛽!"𝑥!𝑥!𝑥! +  𝛽!"𝑥!𝑥!𝑥! +  𝛽!"𝑥!𝑥!𝑥!𝑥!                                                                               

 the 17 predictor variables were found to be significantly contributing with an 𝑅! = 0.181. 

Since logistic regression is similar to regression after the transformation model, we are using the 

r – squared values for comparison values between models in this chapter. The measurement of 

accuracy of this first developed model was found to be 58% accurate.  
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After computing the Maximum Likelihood estimates for our reduced model above, we found 

that the intercept and each predictor variable except the interaction between buoy wind speed 

and buoy wind direction (𝑥!𝑥!) was significantly contributing by 1, 5 and 10% to the model 

above. Thus, we dropped this interaction term and considered the developed model without it. 

The measurement of accuracy of this second developed model was found to be 79% accurate. 

Now we will consider another model to investigate and draw conclusions from for our research 

statement. 

The new developed model is as follows: 

𝑦 = 1.15 − 7.60𝑥! − 0.008𝑥! − 1.14𝑥! − 4.45𝑥! − 4.30𝑥! +  0.04𝑥!𝑥! +  0.05𝑥!𝑥!

+  1.67𝑥! 𝑥! +  0.07𝑥!𝑥! +  2.21𝑥!𝑥! +  2.89𝑥!𝑥! −  0.01𝑥! 𝑥!𝑥!

−  0.002𝑥!𝑥!𝑥! −  0.03𝑥!𝑥!𝑥! −  0.08𝑥!𝑥!𝑥! +  0.09𝑥!𝑥!𝑥!𝑥! 

The above model has 16 predictor variables that are all significantly contributing at the 1% level 

of significance. Here, using subset analysis, we will consider another smaller model. Consider 

the following logistic model: 

𝑦 = 𝛽! +  𝛽!𝑥! +  𝛽!𝑥! +  𝛽!𝑥! +  𝛽!𝑥! +  𝛽!𝑥! +  𝛽!𝑥!𝑥! +  𝛽!𝑥!𝑥! +  𝛽!𝑥!𝑥! 

The developed model is: 

  𝑦 = 92.47+  −5.77𝑥!  − 0.181𝑥! − 0.146𝑥! +  1.52𝑥! +  2.10𝑥! +  0.014𝑥!𝑥!

+  0.05𝑥!𝑥! −  0.64𝑥!𝑥! 

In the above developed model each predictor variable was found to be significantly contributing 

at the 1% level of significance. With the third developed model, every predictor variable was 

found to be significantly contributing at the 1% level of significance and had an 𝑅! = 0.6835. In 
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the fourth developed model, every predictor variable was also significantly contributing at the 

1% level of significance. However, the 𝑅! = 0.7122. Since the law of parsimony states that 

entities should not be multiplied needlessly, and the simpler of two competing theories is to be 

preferred, then the fourth developed model is a better model to use.  

   In Table 3.3, the measurements of accuracy for the four developed models are shown. The first 

developed model with 216 variables had an    𝑅! = 0.181 and a measurement of accuracy of 

58%, the second developed model had 17 variables with a 𝑅! = 0.654 and a measurement of 

accuracy of 79%, the third developed model had 16 variables with a 𝑅! = 0.6835, and a  

measurement of accuracy of 81%. The fourth developed model with 8 variables had a 

𝑅! = 0.7122, and a measurement of accuracy of 84%. Therefore, we can conclude that the 

fourth developed model is the better model to use in drawing conclusions for our first research 

question. 

Table 3.3: Measurement of Accuracy and R – Squared values for the Developed Models 

Developed Models Measurement of Accuracy  𝑅! 

1 – Full Model  58% 0.181 

2 – Second Model with 17 terms 79% 0.654 

3 – Third Model with 16 terms 81% 0.6835 

4 – Fourth Model with 8 terms 84% 0.7122 

 



62 
	

Using the fourth developed, we can now predict the probability of a storm being present, given 

w the conditions at the buoy. To achieve our goal, we will use the following regression equation 

𝑝 =  !! !".!"! !!.!!!! !!.!"!!!!!.!"#!!! !.!"!!! !.!"!! ! !.!"#!!!!! !.!"!!!!! !.!"!!!! 

!!!!(!".!"! !!.!!!! !!.!"!!!!!.!"#!!! !.!"!!! !.!"!! ! !.!"#!!!!! !.!"!!!!! !.!"!!!! )
 

Where (calculated buoy conditions) is the calculated number of the output, from inputting 

specific buoy conditions. Recall that the fourth developed model was 

𝑦 =

92.47+  −5.77𝑥!  − 0.181𝑥! − 0.146𝑥! +  1.52𝑥! +  2.10𝑥! +  0.014𝑥!𝑥! +  0.05𝑥!𝑥! −

 0.64𝑥!𝑥!. 

Now, inputting specific buoy conditions into the fourth developed model, will produce the 

calculated buoy conditions that we will need to input into our regression equation. 

   Consider the three situations outlined in Table 3.2, where the average atmospheric conditions 

are given. In case 1, we can estimate the probability of a storm being present, using the overall 

standard atmospheric conditions; when the wind speed is 6, wind direction is 220, pressure is 

1016.5, atmospheric temperature is 25, and the water temperature is 26. Thus when the overall 

average atmospheric conditions are used 𝑝 = 0.68, there is a 68% chance that there is a storm 

present in the Atlantic Basin. In case 2, we will consider using the average buoy conditions for 

when a storm is present. The values we will use for the buoy conditions are: wind speed is 5.58, 

wind direction 214, pressure 1014.5 mb, atmospheric temperature 28, water temperature 29. In 

this example, our probability is 𝑝= 0.71. 

    This means when we consider the average atmospheric conditions for when a storm is 

present, there is a 71% chance that there is a storm present in the Atlantic Basin. Now in case 3, 

we will consider the average atmospheric conditions when a storm is not present. The specific 
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values we will use for the buoy conditions are: wind speed is 6.10, wind direction 207, pressure 

1017, atmospheric temperature 24.27, and water temperature 26. In this example our probability 

is 

 𝑝 = 0.62. This means when we consider the average atmospheric conditions for when a storm is 

not present, there is a 62% chance that there is a storm present in the Atlantic Basin. Now let us 

consider a fourth case when the when the wind speed is 15, wind direction is 214, pressure is 

1000 mb, atmospheric temperature is 28, and the water temperature is 30. In this example, our 

probability is 𝑝= 0.93. Thus, when the wind speed is 15, and the mean wind direction is 214, 

and there is a drop in pressure by 13.8 (rounded to 14 mb’s), and the atmospheric temperature is 

it’s mean value while the water temperature is higher than its mean value, then there is a 93% 

chance of a storm being present in the Atlantic Basin. What this means is that when there is a 

significant increase in the wind speed and there is significant drop in the pressure and the water 

temperature is higher than its mean value, then there is a greater chance of a storm occurring in 

the Atlantic Basin. 

Multinomial Case of Logistic Regression  

In this section we will present our second research question: Determine the probability of a 

storm being present categorically, given the conditions at the buoy. Since we are considering a 

storm being present categorically, then we will use multinomial logistic regression to address 

our second research question. In the multinomial logit model we assume that the log-odds of the 

response follow a linear model of the logistic transformation of the odds (logit) that will serve as 

the dependent variable. In the multinomial logit model we assume that the log - odds of the 

response follow a linear model 𝑦! = 𝑙𝑜𝑔𝑖𝑡 𝑝! = log !!
!!!!

=  𝛼! + 𝛽!!𝑥! +⋯+ 𝛽!"𝑥! , To 
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find our probabilities, we will use the probabilistic analytic form of a logistic model is denoted 

as the following: 

𝑝 = !! !!!!!!!!!⋯!!!"!!

!!!! !!!!!!!!!⋯!!!"!!
. 

The following Table 3.4 shows the average buoy conditions during tropical storms, where the 

rows indicate 0 to 5 (the severity of the storm, i.e., the values of 1 to 5 represent category 1 to 5 

storms and a value of 0 represents a tropical depression or no storm). 

Table 3.4: Average Buoy Conditions for Storm Present (Categorically) 

Categories 𝑥! 𝑥! 𝑥! 𝑥! 𝑥! 

0 6 150 1016.6 25 26.2 

1 5.92 171 1014 27.5 28.7 

2 6.64 180 1012 28 29.18 

3 5.89 188 1013 28 29.03 

4 5.75 214 1014.4 27.8 28.95 

5 5.06 220 1014.3 29 30 

 

From Table 3.4, the average buoy conditions for the atmospheric temperature and water 

temperature show results that as a hurricane gets stronger and higher categorically, their 

temperatures go from 25 to 29 and 26.2 to 30. In the following Figure, the atmospheric 

temperatures indicate that as a storm is present categorically in the Atlantic Basin, the average 

temperature of 25 shows that a tropical depression or storm may be present. The higher the 
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atmospheric temperature rises, then the higher the category of a hurricane being present in the 

Atlantic Basin. 

                     

Figure 3.12: Boxplots of the Average Atmospheric Temperatures (Categorically) 

 

Next, a boxplot by category of the average water temperatures are shown in the following 

Figure. Notice that there are no outliers shown when there is no hurricane present. The average 

is 26, which is what the combined average was from Table 3.1. As the water temperature 

averages go higher, the higher the category of a hurricane. In the first research question, we 

found that when the water temperature was 30, then there was a higher probability of a storm 

being present in the Atlantic Basin.  
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Figure 3.13: Boxplots of the Average Water Temperatures (Categorically) 

 

Model of a Storm Being Present Categorically 

Since the second developed model had a measurement of accuracy of 79%, we will first 

consider that model in the multinomial logistic regression case to address the second research 

question. Although the response variable will now be storm present with categorical outcomes 

to represent hurricanes of categorically from 0 to 5. Recall that the second developed model was 

of the form: 

𝑦! = 𝛼! +  𝛽!!𝑥! +  𝛽!!𝑥! +  𝛽!!𝑥! +  𝛽!!𝑥! +  𝛽!!𝑥! +  𝛽!!𝑥!𝑥! +  𝛽!!𝑥!𝑥! +  𝛽!!𝑥!𝑥!

+  𝛽!!𝑥! 𝑥! +  𝛽!"!𝑥!𝑥! +  𝛽!!!𝑥!𝑥! +  𝛽!"!𝑥!𝑥! +  𝛽!"!𝑥! 𝑥!𝑥! +  𝛽!"!𝑥!𝑥!𝑥!

+  𝛽!"!𝑥!𝑥!𝑥! +  𝛽!"!𝑥!𝑥!𝑥! +  𝛽!"!𝑥!𝑥!𝑥!𝑥! 
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Since there are 5 categories of a storm being present (cat 1 through cat 5), then there will be 5 

different developed models that arise from our multinomial base model. First we will discuss the 

two most interesting and significant of the developed models for cat 1 and cat 2 hurricanes, 

because their measurement of accuracy is over 85%. The developed model for determining 

when a storm is present (for cat 1) is: 

𝑦!  = −0.91+  3.24𝑥! − 0.182𝑥! − 0.09𝑥! − 41.26 𝑥! +  1.43𝑥! +  0.007𝑥!𝑥! +  0.04𝑥!𝑥!

−  0.004𝑥!𝑥! +  1.65𝑥! 𝑥! −  0.01𝑥!𝑥! +  1.45𝑥!𝑥! −  0.11𝑥!𝑥! − 0.01𝑥! 𝑥!𝑥!

−  0.02𝑥!𝑥!𝑥! −  2.78𝑥!𝑥!𝑥! +  0.05𝑥!𝑥!𝑥! −  0.03𝑥!𝑥!𝑥!𝑥! 

This developed model had a measurement of accuracy of 94%. We can predict the probability of 

a storm being present (categorically), using the buoy atmospheric conditions of the average 

values of a hurricane cat 1. This means when the wind speed is 6, wind direction is 171, 

pressure is 1014, atmospheric temperature is 27.5, and the water temperature is 28.7.  

This probability is 𝑝 = 0.99. This means that when we use the buoy average atmospheric 

conditions for a category 1 hurricane there is a 99% chance of a category 1 hurricane being 

present in the Atlantic Basin. This is a high probability for the chances of a category 1 hurricane 

occurring, given the average buoy conditions for when a storm is present in the Atlantic Basin. 

Next we will discuss the developed model for a category 2 hurricane. 

The developed model for determining when a storm is present (for cat 2) is: 

 𝑦! = −0.75+  1.72𝑥! − 0.33𝑥! − 0.108𝑥! − 24.28 𝑥! − 0.94 𝑥! +  0.02𝑥!𝑥! +  0.03𝑥!𝑥!

+  0.004𝑥!𝑥! +  1.09𝑥! 𝑥! +  0.05𝑥!𝑥! +  0.08𝑥!𝑥! −  0.46𝑥!𝑥! − 0.01𝑥! 𝑥!𝑥!

+  0.002𝑥!𝑥!𝑥! +  2.04𝑥!𝑥!𝑥! +  0.01𝑥!𝑥!𝑥! −  0.07𝑥!𝑥!𝑥!𝑥! 
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This developed model had a measurement of accuracy of 85%. Now using the average 

atmospheric buoy conditions for a category 2 hurricane; this means when the wind speed is 

6.64, wind direction is 180, pressure is 1012, atmospheric temperature is 28, and the water 

temperature is 29.18. Our obtained probability is 𝑝 = 0.82. Hence, there is an 82% chance of a 

category 2 hurricane being present in the Atlantic Basin storm when we consider using the buoy 

average atmospheric conditions for a category 2 hurricane. This is a relatively medium to high 

probability for the chances of a category 2 hurricane occurring, given the average buoy 

conditions.  

The first two developed models for a storm being present categorically had the highest model 

measurement of accuracy. Now we will discuss the remaining three developed models for 

categories 3 through 5. The developed model for determining when a storm is present (for cat 3) 

is: 

𝑦! = 97.3− 7.77𝑥! − 0.23𝑥! − 0.18𝑥! − 2.96 𝑥! +  3.11𝑥! +  0.008𝑥!𝑥! +  0.002𝑥!𝑥!

−  0.001𝑥!𝑥! +  0.006𝑥! 𝑥! + 0.001𝑥!𝑥! +  1.23𝑥!𝑥! −  0.08𝑥!𝑥!

− 0.01𝑥! 𝑥!𝑥! −  0.02𝑥!𝑥!𝑥! −  0.012𝑥!𝑥!𝑥! +  0.006𝑥!𝑥!𝑥!

−  0.001𝑥!𝑥!𝑥!𝑥! 

This developed model had a measurement of accuracy of 77%. The developed model for 

determining when a storm is present (for cat 4) is: 

𝑦! = 21.6− 5.6𝑥! − 0.30𝑥! − 0.06𝑥! − 1.13 𝑥! +  1.50𝑥! +  0.06𝑥!𝑥! +  0.005𝑥!𝑥!

−  0.0002𝑥!𝑥! +  0.007𝑥! 𝑥! + 0.002𝑥!𝑥! +  0.40𝑥!𝑥! −  0.007𝑥!𝑥!

− 0.01𝑥! 𝑥!𝑥! −  0.002𝑥!𝑥!𝑥! −  0.034𝑥!𝑥!𝑥! +  0.0006𝑥!𝑥!𝑥!

−  0.003𝑥!𝑥!𝑥!𝑥! 
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This developed model had a measurement of accuracy of 63%. 

The developed model for determining when a storm is present (for cat 5) is: 

𝑦! = −39.1− 5.08𝑥! − 0.39𝑥! − 0.13𝑥! + 2.87 𝑥! −  5.82𝑥! +  0.03𝑥!𝑥! +  0.002𝑥!𝑥!

−  0.0001𝑥!𝑥! +  0.007𝑥! 𝑥! + 0.0004𝑥!𝑥! −  0.19𝑥!𝑥! +  0.001𝑥!𝑥!

− 0.001𝑥! 𝑥!𝑥! −  0.008𝑥!𝑥!𝑥! −  0.027𝑥!𝑥!𝑥! +  0.0005𝑥!𝑥!𝑥!

−  0.004𝑥!𝑥!𝑥!𝑥! 

This developed model had a measurement of accuracy of 48%. 

   These three developed models for determining when a storm is present, for categories 3 

through 5 had a model measurement under 80%. This is why consideration for the first two 

developed models were held in higher interest. Something interesting to consider in this analysis 

is using the buoy average atmospheric conditions for the categorical storms in other models, and 

determining what their probabilistic significance is. We will consider 5 cases; case 1 will be 

using the buoy average atmospheric conditions for a category 1 hurricane in the four other 

models, and case 2 will be using the buoy average atmospheric conditions for a category 2 

hurricane in the four other models, case 3 will be using the buoy average atmospheric conditions 

for a category 3 hurricane in all the models. We will continue this process along with case 4 and 

case 5 in a similar fashion for category 4 and category 5 hurricanes. The illustration in Table 3.5 

will better provide a clear and concise view of the probabilities that were generated using the 

buoy average atmospheric conditions for all the category hurricanes into the remaining 

developed models. 
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Table 3.5: Probabilities of a Storm being Present (categorically) using all 5 Developed 

Models 

Models Cat 1 Cat 2 Cat 3 Cat 4 Cat 5 

1 0.99 0.92 0.89 0.85 0.77 

2 0.97 0.82 0.80 0.60 0.42 

3 0.88 0.73 0.51 0.46 0.44 

4 0.95 0.91 0.76 0.33 0.25 

5 0.87 0.78 0.75 0.52 0.35 

 

   Note that in the above Table, the probabilities using the buoy average atmospheric conditions 

for the last three models who have a lower model measurement of accuracy versus the first two 

models, have a sufficient larger probabilistic significance in the other models, than their own. 

For example, using the buoy average atmospheric conditions for the third developed model (cat 

3), and substituting those values into the other models, we see that these conditions lead to a 

higher probability in the developed model for determining a category 1 and category 2 

hurricane. It also is similar when considering the buoy average atmospheric conditions for the 

second, fourth, and fifth developed models. Also, notice that when we consider the buoy 

average atmospheric conditions for the first developed model (cat 1), the conditions lead to 

lower probabilities in the other four models. 
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Exploratory Factor Analysis in Conjunction with Non-Response Analysis 

In this section we will further investigate the hurricane and buoy data. We will demonstrate  

how exploratory factor analysis can be used to determine the distinct factors that house the terms 

that explain the variance among the co-dependent variables and how non-response analysis can 

be applied to model the non-functional relationship that exist in a dynamic system. “Moreover, 

the analysis indicates that there are pumping actions or ebb and flow between the pressure and 

the water temperature readings near the surface of the water days before a tropical storm forms 

in the Atlantic Basic and that there is a high correlation between storm conditions and buoy 

conditions three-four days before a storm forms” [21].  

The hurricane data used in this analysis are taken from UNISYS Weather Center from 2000-

2009, Figure 3.14 and includes a time stamp, name of the hurricane, location (latitude and  

longitude) and the main variable of interest wind speed and pressure. 

 



72 
	

 

Figure 3.14: Data diagram of named storms in the Atlantic Basin 

 

The second data set in Figure 3.15, from “the National Data Buoy Center containing the wind 

speed, pressure, atmospheric temperature and water temperature where added to the wind 

speed and pressure readings from the hurricanes with 36 daily time shifts used to measure the 

buoy conditions days before the formation of a tropical storm” [21].  
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Figure 3.15: Measured variables of interest including time shifts in the buoy conditions. 

“The terms to be considered using exploratory factor analysis and non-response analysis 

includes the following 36 terms: the primary variables, the second degree terms and all first 

order interaction terms: 𝑊,𝑃,𝑤,𝑝,𝑎, 𝑡,𝑊!,𝑊𝑃,𝑊𝑤,𝑊𝑝,𝑃!,… ” [21].  

All of the factors are listed is in Table 3.6 which sorts the terms into factors. Using exploratory 

factor analysis, we found four principle components. 
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Table 3.6: All Possible Terms 

 
Factor1 Factor2 Factor3 Factor4 

𝑊 1 
  

 

𝑃 −0.94 
  

 

𝑊!  0.97 
  

 

𝑊𝑃 1 
  

 

𝑤𝑊 0.7 
 

0.62  

𝑝𝑊 1 
  

 

𝑎𝑊 0.98 
  

 

𝑡𝑊 0.99 
  

 

𝑃! −0.94 
  

 

𝑝𝑃 −0.92 
  

 

𝑎  0.96 
 

 

𝑡  0.96 
 

 

𝑎𝑃  0.96 
 

 

𝑡𝑃  0.95 
 

 

𝑎𝑝  0.96 
 

 

𝑡𝑝  0.97 
 

 

𝑎!  0.97 
 

 

𝑎𝑡  0.98 
 

 

𝑡!  0.96 
 

 

𝑤  
 

0.97  

𝑤𝑃  
 

0.97  

𝑤!  
 

0.94  

𝑤𝑝  
 

0.97  

𝑤𝑎  
 

0.98  

𝑤𝑡  
 

0.99  

𝑝  -0.3  0.91 
𝑝2  -0.3  0.91 

 

Table 3.7 gives the “SS loading weights, the proportion of variance contained in each factor and 

the cumulative proportions; and indicates that four components (factors) were sufficient, 

explaining 96% of the variation” [21]. Since there was a SS loading that is less than 1, the fifth 
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factor was found to be insignificant [21]. The first factor with an SS loading of 9.05 indicates 

that at least 34% of the variance among the terms exists [21]. 

Table 3.7: SS Loadings 

 
Factor1 Factor2 Factor3 Factor4 Factor5 

SS loadings 9.05 8.77 6.35 1.84 0.37 
Proportion Variance 0.34 0.32 0.24 0.07 0.01 
Cumulative Variance 0.34 0.66 0.9 0.96 0.98 

 

In this section, the terms of interest are those variables, interaction and second degree terms 

belonging to the first principle component and the primary variable of interest is wind speed of a 

hurricane as related to the pressure of the hurricane and the buoy conditions [21]. 

Let us consider the non-response model:  

𝑢𝑛𝑖𝑡𝑦 = 𝛼!𝑊 + 𝛼!𝑃 + 𝛼!𝑊! + 𝛼!𝑃! + 𝛼!𝑊𝑤 + 𝛼!𝑊𝑝 + 𝛼!𝑊𝑎 + 𝛼!𝑊𝑡 + 𝛼!𝑊𝑃 + 𝛼!"𝑃𝑝 

where 𝑢𝑛𝑖𝑡𝑦 is a column vector of 1 and 𝛼!′𝑠 are the weights that balance the system [21]. If we 

want to determine the number of days (𝑑𝑡) before the storms formation that best predicts the 

intensity of a storm, then using the correlation between 𝑊 and 𝑊, we found computed for  

𝑑𝑡 = 1,2,… ,36 𝑑𝑎𝑦𝑠. 

“The maximum correlation was found to be 0.9882843 when 𝑑𝑡 is three days; that is the buoy 

condition three days before the hurricane reading shows the highest correlation with the storm 

conditions” [21]. The following image shows that there is a sinusoidal relationship in the 

measured correlations [21]. 
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Figure 3.16: Correlation between the observed and estimated wind speed based on the 

buoy conditions over the give time delay. 

“This analysis is useful in the field of meteorology as it allows co-dependent relationships 

among atmospheric conditions to be expressed implicitly” [21].  

Usefulness & Contributions 

The findings in this study are important for numerous reasons; this is the very first time that 

someone has used logistic regression and atmospheric conditions at a given buoy to estimate the 

probability of a storm being present in the Atlantic Basin. Further extending the binomial 

regression to the multinomial regression allowed us to better predict when a storm is present 

categorically in the Atlantic Basin. The comparison of these 5 developed models leads us to 

further estimate that the probabilities of a category 1 and category 2 hurricane occurring, given 

the conditions at the buoy. In regards to the last section of this chapter, “this analysis is useful in 

the field of meteorology as it allows co-dependent relationships among atmospheric conditions 

to be expressed implicitly” [21]. “The end result of this analysis will be an application which 

reads the current conditions at the buoy and predict the formation of a tropical storm based on 

the conditions near the surface of the water” [21]. 
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CHAPTER 4: A STATISTICAL ANALYSIS OF FLORIDA SINKHOLES  
 

In this chapter a statistical study of the sinkholes that have occurred in the state of Florida will 

be discussed. Sinkholes occur more in Florida than any other state in the nation. In fact, in the 

city of Tampa, it is known as ‘Sinkhole Valley’. From the motivation section, we know that 

there are four different types of sinkholes and they are Collapse, Solution, Alluvial, and 

Raveling.  

The data that was used in this study on sinkholes came from the Florida Department of 

Environmental Protection, Subsidence Incident Reports from 1970 – 2008. The dimensions of 

the data was 926 with 15 variables. In this study, the variables of interest are: sinkhole length 

(𝒙𝟏), sinkhole width (𝒙𝟐), sinkhole depth (𝒙𝟑), sinkhole slope (𝒙𝟒), diameter 𝒙𝟓  and soil 

types (𝒀). 

                   

Figure 4.1: Variables of Interest 
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Depth	 Slope	
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RANKING OF SOIL TYPES 

In this current study the five soil types are sand, unknown, clay, rock, and limestone (which will 

be referred to as lime). In the following Table 4.1, the soil types are ranked from highest to 

lowest based upon frequency of occurrence in the last 38 years (1970 – 2008), taking into 

account of the possible ‘mixed’ or ‘combined’ soil types within the data set. The specific soil 

types that were included in this study that had the largest amount of occurrence within the data 

were: sand, unknown, clay, rock, and limestone. Since there was many that were different types 

of sand, they were classified as sand. The unknown soil type was not included within the 

possible ‘mixed’ or ‘combined’ soil types within the data set, but it did have a frequency of 

occurrence of 296. In Table 4.1, the soil type Sand had the highest ranking of frequency of 

occurrence and that when examined with the mixed or combined soil types, that it still has the 

highest frequency of occurrence, when just looking at sand by itself and not the mixed or 

combined soil types.  

   When taking into consideration the mixed or combined soil types of sand, we can see that in 

Table 4.1, that sand/clay had 80 frequencies of occurrence, sand/rock had 15 frequencies of 

occurrence and sand/lime had 10 frequencies of occurrence. After, examining the data and 

taking into consideration the mixed or combined soil types of both rock and lime, we can see 

that Lime will now be ranked third and higher than Rock in terms of frequencies of occurrence. 
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Table 4.1: Soil Type Ranking of Frequency of Occurrence (Mixed or Combined). 

Soil Type Pure With Clay With Rock With Lime With Sand Total 

Sand 447 80 15 10  552 

Clay 24  1 1 80 106 

Lime 11 1 3  10 25 

Rock 8 1  3 15 27 

 

The research questions/statements that are to be addressed in this study are: 

1) Determine the relationship between a sinkhole’s length and width. 

2) Determine the probability distribution that best characterizes the diameter and a confidence 

interval that detects the average diameter of a sinkhole in Florida. 

3) Determine the probability a sinkhole on a certain soil type, given the sinkhole length, 

sinkhole width, depth and slope. 

 

RELATIONSHIP BETWEEN THE SINKHOLE LENGTH AND WIDTH 

To address this research question/statement, we will compare the means of the two measures; 

using parametric analysis to determine if their means are similar. Then we will determine the 

best fit probability distributions between the sinkhole’s length and width; and verify our 

findings by comparing their medians using non-parametric methods. 
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In Table 4.2, the descriptive statistics for the sinkhole length (left) and sinkhole width (right) are 

shown. Notice that the mean for the sinkhole length is 14.129 and the sinkhole width is 12.961 

(or approximately 13), this shows that the means of both of these variables are similar). 

Table 4.2: Descriptive Statistics for Sinkhole Length and Sinkhole Width 

Sample Size 926 

Range 349.5 

Mean 14.129 

Variance 684.18 

Std. Deviation 26.157 

Coef. of Variation 1.8512 

Std. Error 0.85957 

Skewness 7.9221 

Excess Kurtosis 89.861 

 

 

 

Sample Size 926 

Range 349.5 

Mean 12.961 

Variance 638.6 

Std. Deviation 25.271 

Coef. of Variation 1.9498 

Std. Error 0.83044 

Skewness 8.638 

Excess Kurtosis 103.87 

 

 

 

  

   By invoking the central limit theorem, regardless of the data’s distribution, as our sample size 

is 926, the sampling distribution will approach the normal distribution. Therefore to view the 

relationship between the sinkhole length and width, a standard t - test was used at the 0.05 level 

of significance for the comparing of means hypothesis test to see if the mean of the sinkhole 

length is similar as the mean of the sinkhole width. The null hypothesis was that the sinkhole 

length and the sinkhole width have the same means. The alternative hypothesis was that the 
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sinkhole length and the sinkhole width have significant differences in their means. The test 

statistic t = 0.9776, with a p-value of 0.3284 we will fail to reject the null hypothesis. Hence, at 

a 0.05 level of significance we can conclude that the mean of the sinkhole length and the mean 

of the sinkhole width are the same. 

Next we will compare the sinkhole length and width to see if they have the same distributions. 

For our two data sets (sinkhole length and width), they will be compared and ranked against 65 

continuous distributions, where the goodness-of-fit tests (Anderson-Darling, Kolmogorov-

Smirnov, and Chi-Square) was performed. Using Maximum Likelihood Estimates, among the 

65 different continuous distributions were taken into account, it was found that the best fit 

probability distribution for the sinkhole length and width was the Log – Pearson 3. The top 5 

best fit distributions for the sinkhole length and width can be seen in Table 4.3 and Table 4.4. 

Table 4.3: Goodness – of – Fit - Tests for the Best Fit Distributions for the Sinkhole Length 

 

 

Sinkhole Length Anderson - Darling Kolmogorov-Smirnov Chi - Square 

Distribution Statistic Rank Statistic Rank Statistic Rank 

Log – Pearson 3 2.3991 1 0.05486 1 78.014 15 

Frechet(3P) 2.9461 2 0.05321 2 33.406 1 

Pearson 5(3P) 2.8815 3 2.8815 8 57.065 8 

Dagum 2.8512 4 0.0652 7 59.835 4 

Dagum(4P) 2.8639 5 0.0562 4 55.884 10 
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Table 4.4: Goodness – of – Fit - Tests for the Best Fit Distributions for the Sinkhole Width 

 

In Figure 4.1, the best fit probability distribution Log – Pearson 3, for the sinkhole length and 

width is given by: 

𝑓 𝑥 =  
1

𝛽𝜏 𝛼
𝑥 − 𝛿
𝛽

!!! 

𝑒! !!! /! 

 

 

Figure 4.2: Best Fit Probability Density Function of Sinkhole Length and Width 

Sinkhole Width Anderson - Darling Kolmogorov-Smirnov Chi - Square 

Distribution Statistic Rank Statistic Rank Statistic Rank 

Log – Pearson 3 2.4908 1 0.0518 1 33.442 6 

Pearson 5(3P) 2.8984 2 0.05359 2 33.786 8 

Pearson 6(4P) 2.7688 3 0.0551 7 87.913 17 

Frechet(3P) 2.9741 4 0.0545 4 33.733 7 

Dagum(4P) 2.6792 5 0.05454 3 84.16 16 
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The Figure 4.3 below shows that there is a positive or direct association between the sinkhole 

length and the sinkhole width; the wider the sinkhole is, the larger the sinkhole (length) will 

be, and the smaller the sinkhole is, then the less the sinkhole will be in length. 

 

                                

Figure 4.3: Scatterplot of the Sinkhole Length and Width 

To further show that there is a relationship between the sinkhole length and width, we will 

create a simple linear regression model to show their correlation. The sinkhole length (𝑥!) will 

be the response variable (𝑦) in the model, with one explanatory variable (sinkhole width). The 

sinkhole width (𝑥!) will be denoted as (𝑥). The analytic model is denoted as: 

𝑦 =  𝛽! +  𝛽!𝑥. 

The ANOVA Table 9 shows that the correlation coefficient is 0.98, which indicates a strong 

association between the length and width of a sinkhole. The coefficient of determination 𝑅! = 

0.96; this means that the fitted regression equation explains 96% of the variation in 𝑦.  
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Table 4.5: ANOVA for Sinkhole Length and Sinkhole Width 

 Estimate t value P - value 

Intercept 0.929641 5.384 9.26e-08 

Width 1.018423 167.430 2e-16 

𝑅! = 0.96 𝑟 = 0.98   

 

The developed model is:  𝑦 =  0.93+  1.02𝑥! . In the developed model, the slope is 

approximately 1, which indicates that the length and width change in tandem. 

To verify our findings by comparing their medians using non-parametric methods, we will 

perform the Wilcoxon signed rank sum non – parametric test. We will assume the data to not 

have a normal distribution. At a 0.05 significance level, we will decide if the sinkhole length 

data and sinkhole width have similar medians. Our null hypothesis is that the sinkhole length 

and the sinkhole width have similar medians, and the alternative hypothesis is that the sinkhole 

length data and the sinkhole width data have different medians. 

   Using Wilcoxon rank sum test, with a p – value of 0.1353 at the 0.05 level of significance, we 

fail to reject the null hypothesis. At the 0.05 level of significance we are certain that the sinkhole 

length and sinkhole width data have similar medians. The relationship between a sinkholes 

length and width is that they have similar medians and the same probability distributions. 

Therefore, width and length will be considered as estimates of the diameter. This brings us to 

the next hypothesis to be addressed: determine the average diameter of a sinkhole in Florida and 

the probability distribution that best characterizes the diameter. 
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AVERAGE DIAMETER OF A SINKHOLE 

The second research question/statement to be addressed is to determine the average diameter 

of a sinkhole in Florida and the probability distribution that best characterizes the diameter. 

According to St. John’s Water Management District in Southwest Florida, most sinkholes have 

a diameter between 10ft and 12 ft. This may be common in certain counties in Florida, since 

St. John’s Water Management District only covers northeast and east – central Florida 

counties. Thus, even in those areas of Florida the sinkholes have a diameter between 10ft and 

12 ft, this is not true for all of Florida. We will estimate the average diameter of a sinkhole 

using confidence intervals. First we need to find the best fit probability distribution for the 

diameter in order to find its parameter estimates to be used in calculating an appropriate 

confidence interval. For our data set it will be compared and ranked against 65 continuous 

distributions, where the goodness-of-fit tests (Anderson-Darling, Kolmogorov-Smirnov, and 

Chi-Square) will be performed. Using Maximum Likelihood Estimates, among the 65 different 

continuous distributions were taken into account, it was found that the best fit probability 

distribution for the diameter was the Log Normal distribution. 

The Log Normal distribution has two parameters, (𝜇,𝜎).  The probability distribution for the 

Log Normal is given by: 

𝑓 𝑥 =  !
!!

!
!"
exp (− [!" ! ! !]!!

!!!
 ), 𝑥 ∈ 0,∞ . 

The best fit probability distribution for the diameter of a sinkhole can be seen in Figure 4.4. 
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Figure 4.4: Best Fit Probability Distribution for the Diameter of a Sinkhole 

 

The MLE of (𝜇,𝜎), for our sample is 𝜇 = !
! 

 log 𝑥!!
!!!  

and 𝜎! = !
! 

 (log 𝑥! −  𝜇 !
!!! )1! then the MLE of the mean is 𝛿 = 𝑒!

!
!! !

!

! .  By resampling 

we obtain a bootstrap sample of 𝛿 . The maximum likelihood estimators for the parameters are 

as follows: 𝜇= 0.57, 𝜎! = 1.87, 𝛿 = 11.02. Using a 95% confidence level, the upper and lower 

confidence limits are calculated by: 

𝛿!! = 𝜇 +  
1
2𝜋

𝑒!
!!
!

!

!

𝑑𝑥 𝜎 

𝛿!! = 𝜇 −  
1
2𝜋

𝑒!
!!
!

!

!

𝑑𝑥 𝜎 

The upper confidence limit was found to be 𝛿!! = 14.36 and the lower confidence limit was 

found to be 𝛿!!  = 10.21. Hence a 95% confidence interval for the diameter of a sinkhole is 

(10.21, 14.36). We can conclude that at the 95% confidence level, the average diameter of a 

sinkhole in Florida may be between 10.21 ft and 14.36 ft. Using a 99% confidence level, the 
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upper and lower confidence limits were found to be be 𝛿!! = 15.78 and the lower confidence 

limit was found to be 𝛿!!  = 11.32. Thus a 99% confidence interval for the average diameter of a 

sinkhole is (11.32, 15.78). We can conclude that at the 99% confidence level, the average 

diameter of a sinkhole in Florida may be between 11.32 ft and 15.78 ft. Next, we will address 

the third research question: Determine the probability a sinkhole on a certain soil type, given 

the sinkhole length, sinkhole width, depth and slope. 

 

PROBABILITIES OF A SINKHOLE OCCURRING 

We will use multinomial logistic regression to further address our research statement. In the 

multinomial logit model we assume that the log-odds of the response follow a linear model of 

the logistic transformation of the odds (logit) that will serve as the dependent variable 

 𝑦! = 𝑙𝑜𝑔𝑖𝑡 𝑝! = log !!
!!!!

=  𝛼! + 𝛽!!𝑥! +⋯+ 𝛽!"𝑥!, To find our probabilities, we will use 

the probabilistic analytic form of a logistic model is denoted as the following: 

𝑝 = !! !!!!!!!!!⋯!!!"!!

!!!! !!!!!!!!!⋯!!!"!!
. 

 In the following Table 4.6 the average values for the sinkhole length, width, depth, and slope 

conditions on all the soil types are given.  
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Table 4.6: Average Values of Sinkhole Length, Width, Depth, & Slope for the Soil Types 

Variables Mean Min Max 

Sinkhole Length 𝑥! 14.13 0.50 350 

Sinkhole width 𝑥! 12.96 0.50 350 

Sinkhole depth  𝑥! 9.6 0.10 170 

Sinkhole slope 𝑥! 79 40 165 

 

The first model that we will consider is a model that has up to four way interaction between the 

predictor variables. This analytic model is denoted as: 

 

𝑦! = 𝛼! +  𝛽!!𝑥! +  𝛽!!𝑥! +  𝛽!!𝑥! +  𝛽!!𝑥! +  𝛽!!𝑥!𝑥! +  𝛽!!𝑥!𝑥! +  𝛽!!𝑥!𝑥! +  𝛽!!𝑥! 𝑥!

+  𝛽!!𝑥!𝑥! +  𝛽!!𝑥!𝑥! +  𝛽!"!𝑥!𝑥!𝑥! +  𝛽!!!𝑥! 𝑥!𝑥! +  𝛽!"!𝑥!𝑥!𝑥!

+  𝛽!"!𝑥!𝑥! 𝑥! +  𝛽!"!𝑥!𝑥!𝑥!𝑥! 

After computing the Maximum Likelihood estimates for our model above, we found that the 

intercept was significantly contributing by 1, 5, and 10%. However, there were predictor 

variables that were not significantly contributing by the 1, 5, and 10% values. The predictor 

variables that were significantly contributing were: 𝑥!, 𝑥!, 𝑥!, 𝑥!, 𝑥!𝑥!. Thus, we dropped all the 

terms that were not significantly contributing and considered the developed model without it. 

The new model is denoted as: 𝑦! = 𝛼! +  𝛽!!𝑥! +  𝛽!!𝑥! +  𝛽!!𝑥! +  𝛽!!𝑥! +  𝛽!!𝑥!𝑥! +

 𝛽!!𝑥!𝑥!, 
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Since there the soil type sand had the highest frequency of occurrence, then there will be 4 

different developed models that arise from our multinomial base model. The most interesting 

and significant models that we will discuss is the developed model for the soil type sand 

(combined and mixed) and (with clay), because its measurement of accuracy is over 50%, 

whereas the developed models for the other soil types are under 20%. 

The developed model for determining the probability of a sinkhole in sand (all combined and 

mixed), given the sinkhole length, sinkhole width, depth and slope: 

𝑦! = 3.43+  0.03𝑥! −  0.04𝑥! +  0.28𝑥! − 0.09𝑥! +  0.34𝑥!𝑥!. 

This developed model had a measurement of accuracy of 85%. We can predict the probability of 

sinkhole occurring in sand, using the average values of all soil types from Table 4.6. This means 

when 𝑥! is 14.13,  𝑥! is 12.96, 𝑥! is 9.6, 𝑥! is 79. The probability of a sinkhole occurring in sand 

is 𝑝 = 0.82. Thus, there is a 82% chance of a sinkhole occurring in sand when the length is 

14.13, width is 12.96, depth is 9.6, and slope is 79. This is a relatively high probability for the 

chances of a sinkhole occurring, given the average conditions for the sinkhole length, sinkhole 

width, depth and slope. 

The developed model for determining the probability of a sinkhole in sand (with clay), given the 

sinkhole length, sinkhole width, depth and slope: 

𝑦! = 2.72+  0.02𝑥! −  0.03𝑥! +  0.17𝑥! − 0.07𝑥! +  0.15𝑥!𝑥!. 

This developed model had a measurement of accuracy of 78%. We can predict the probability of 

sinkhole occurring in sand, using the average values of all soil types from Table 4.6. This means 

when 𝑥! is 14.13,  𝑥! is 12.96, 𝑥! is 9.6, 𝑥! is 79. The probability of a sinkhole occurring in sand 

mixed with clay is 𝑝 = 0.73. 



90 
	

This means that there is 73% chance that a sinkhole will occur in the mixed soil type of sand and 

clay, when the length is 14.13, width is 12.96, depth is 9.6, and slope is 79. This is a relatively 

medium probability for the chances of a sinkhole occurring, given the average conditions for the 

sinkhole length, sinkhole width, depth and slope. 

 

USEFULNESS & CONTRIBUTIONS 

Using parametric and nonparametric statistical methods, we have found the length of a sinkhole 

is not significantly different as the width of a sinkhole; following the same probability 

distribution.  Simple Linear Regression further shows that length and width can be considered 

measurements of the diameter, which allows us to fit the probability distribution of the diameter. 

The probability distribution that was best characterizes the sinkhole diameter can be used to find 

confidence intervals. Comparing our results from the information from St. John’s Water 

Management District in Southwest Florida, that most sinkholes have a diameter between 10ft 

and 12 ft, we conclude that we are 95% confident that the average diameter of a sinkhole in 

Florida may be between 10.21 ft and 14.36 ft. Also, we found at the 99% confidence level, the 

average diameter of a sinkhole in Florida may be between 11.32 ft and 15.78 ft. This is new 

knowledge that may help the citizens of Florida better understand the probable size of sinkholes 

in Florida. The final developed model was the first of its kind to estimate the probability of a 

sinkhole occurring in a given soil type, as a function of the outlined dimensions. This is useful 

because it provides a better insight to the relationship among the length, width, depth, slope, and 

soil type of a sinkhole. 
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CHAPTER 5: SURVIVAL ANALYSIS OF FLORIDA SINKHOLES  
 

This chapter is an extension of the previous chapter on the occurrence of sinkholes in Florida. 

We are interested in the time to event between the occurrences of sinkholes in Florida, and 

evaluating their probable measures. One statistical field that is relevant to understanding and 

determining time to event occurrences is survival analysis. In this chapter we will we interested 

in the variable  

Time to Event (TTE). TTE (Time to Event) is the measurement of time between the recorded 

occurrences of sinkholes in Florida. The soil types under consideration are sand, clay, 

unknown, lime, and rock. 

The research questions to be addressed in this section are: 

1) Determine the probable TTE, based upon the Kaplan - Meier estimate. 

2) Determine the probable TTE (in soil types), based upon the Kaplan – Meier estimate. 

3) Determine the best probability distribution that characterizes the time to event between 

occurrences of sinkholes. 

4) Determine the associative covariates in sinkhole occurrences in Florida. 

 

PROBABLE KAPLAN MEIER ESTIMATE TTE. 

We will use a Kaplan - Meier analysis (nonparametric methods), to aid in the assistance of 

addressing the probable TTE. Using the Kaplan – Meier method, which is a nonparametric 
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estimator of the survival function, and is widely used to estimate and graph survival 

probabilities as a function of time, we obtain the following graphs in Figures 5.1 and 5.2. 

                                             

Figure 5.1: Kaplan – Meier Graph 

 

The Figure below shows all 38 years of recorded sinkhole occurrences. When t =1, this means 

that there was a sinkhole that occurred the previous day. The number of times that this event 

happened was 107 times in the last 38 years. The Kaplan – Meier point estimate at t = 1 is 

𝑆 𝑡 = 1 = !"#
!"#

= 0.86. This means that there is an 86% chance that we survived a day without 

a sinkhole occurring, and there is a 14% chance of a sinkhole occurring the next day.  
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Figure: 5.2: Survival Function of TTE 

   Notice that as time 𝑡 gets larger and larger, the likelihood of surviving without a sinkhole 

decreases, and the probability of a sinkhole increases. Meaning, that as more days are between 

sinkhole occurrences, then the greater chance another sinkhole occurring. We can conclude that   

when there is more than 10 days in between a sinkhole occurrence (𝑡 > 10), then a sinkhole 

occurrence is highly likely. This leads us to our next research statement, determine the probable 

TTE (in soil types), based upon the Kaplan – Meier estimate. 

 

PROBABLE KAPLAN – MEIER ESTIMATE OF SOIL TYPE 

In this section we will be looking at when a sinkhole has occurred in a certain soil type. In the 

following Figure, the KM graph represent the TTE probabilities that have occurred in a soil 

type.  
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Figure: 5.3: Kaplan – Meier Survival Probabilities of TTE (censoring) 

In Figure 5.4, the Kaplan – Meier graphs of the survival probabilities of TTE in the different soil 

types is shown.  

 

                              

Figure 5.4: Kaplan – Meier graph of TTE in the Soil Types 
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   In Figure 5.5 the histogram for TTE is shown, along with the Kaplan – Meier graphs for when 

a sinkhole has occurred in a certain soil type. From the previous chapter we found that the soil 

type sand had the largest occurrence of sinkholes in Florida. Therefore, the TTE in the soil types 

that are of interest are the TTE in sand. In Figure 5.5, second KM graph for the soil type sand is 

shown, where the survival function probabilities are shown to range from 0 to 0.71. The Kaplan 

– Meier point estimate at t = 1 is 𝑆 𝑡 = 1 = !"#
!"#

= 0.43. This means that there is a 43% chance 

that we survived a day without a sinkhole occurring in sand, and there is a 57% chance of a 

sinkhole occurring in sand the next day. As 𝑡 becomes larger, the greater chances there are of a 

sinkhole occurring within the soil type sand. In regards to censoring the TTE (yearly), 

preliminary studies show us that around 3 months in the TTE data, there is a seasonal effect as 

to when sinkholes occur more often in the year. In the future, we will also consider using 

Poisson processes. 

 

 

Figure 5.5: Kaplan – Meier Survival Probabilities of TTE in Soil Types 
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PROBABILITY DISTRIBUTION THAT BEST CHARACTERIZES THE TTE 

The next research question/statement to be tested is to determine the probability distribution that 

best characterizes the time to event between occurrences of sinkholes. The variables of interest 

in this research question are TTE (Time to Event). To address this research question/statement 

we will use parametric analysis. For our two data set, it was compared and ranked against 65 

continuous distributions, where the goodness-of-fit tests (Anderson-Darling, Kolmogorov-

Smirnov, and Chi-Square) was performed. Using Maximum Likelihood Estimates, among the 

65 different continuous distributions that were taken into account, it was found that the best fit 

probability distribution the TTE was the Fr𝑒chet distribution (from the General Extreme Value 

Distribution, (Table 5.1). 

 

Table 5.1: Goodness – of – Fit - Tests for the Best Fit Distributions for the TTE 

 

 

 Anderson – Darling Kolmogorov-Smirnov Chi - Square 

Distribution Statistic Rank Statistic Rank Statistic Rank 

GEV -  Fr𝑒chet 15.782 1 0.1343 1 33.981 4 

Wakeby 13.134 2 0.1346 2 33.243 1 

General Pareto 13.134 3 0.1346 3 33.243 2 

General Logistic 15.628 4 0.1410 4 33.352 3 

Inverse Gaussian 186.63 5 0.2376 8 237.36 6 
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Figure 5.6: Best Fit Probability Distribution of TTE 

 

Hence, we can conclude that the best fit probability distribution associated with time to event 

between occurrences of sinkholes in Florida is the General Extreme Value  Fr𝑒chet distribution. 

 

ASSOCIATION OF COVARIATES OF A SINKHOLE 

In this section we will use the Semi Parametric Method of the Cox Proportional Hazards 

Regression analysis. From the previous chapter ranked the soil types based on their depth of the 

number of occurrences of sinkholes, therefore we will use depth and soil types as covariates in 

this section. The variables of interest in this section are depth (𝒙𝟏𝟏), lime (𝒙𝟏𝟐), sand (𝒙𝟏𝟑), 

rock (𝒙𝟏𝟒), and clay (𝒙𝟏𝟓). 
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Figure 5.7: Variables of Interest 

 

The analytical model is denoted as: 

ℎ! 𝑡 = ℎ!exp (𝛽!𝑥!! +  𝛽!𝑥!" +  𝛽!𝑥!" +  𝛽!𝑥!" +  𝛽!𝑥!") 

 

The hazard ratio is denoted as: 

HR =  
ℎ!(𝑡)
ℎ! 𝑡

=  
ℎ! 𝑡 exp (𝛽!𝑥!! +⋯+  𝛽!𝑥!")
ℎ! 𝑡 exp (𝛽!𝑥!! +⋯+  𝛽!𝑥!")

 

Primary interest lies in estimating the parameter 𝛽 using the partial likelihood: 

L(β) = !"# [!!!!]
!"# {!!!!}! ! !!"

!
!!!  

“The MLE 𝛽(a vector) is asymptotically N(𝛽, 𝐼!!), where I represents the Fisher information” 

[6]. A local test examined a subset of the elements of 𝛽, testing the claim that depth does not 

Possible	
Covariates	

Sand	 Clay	 Rock	 Lime	

Soil	Type	 Depth	
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depend upon the soil type (null). The alternative is that depth does depend upon the soil type. 

Two covariates were used to help address this research statement, such as depth and soil type. 

In the following Table, estimates of the  𝛽!, including standard errors and p-values for each test, 

an estimate of the risk ratio and its confidence interval, plus the p-values for likelihood ratio, 

Wald, and score tests for the global null are shown. 

Table 5.2: Calculations from the Cox PH Model 

Covariates Coefficients Exp Coefficients SECoefficients z p 

Depth -0.008 0.991 0.002 -3.371 0.007 

Lime -0.018 0.981 0.309 -0.062 0.954 

Sand 0.4221 1.525 0.253 1.674 0.096 

Rock 0.397 1.489 0.125 3.182 0.001 

Clay 0.410 1.508 0.131 3.134 0.001 

LRT 26.5 on 5 df    0.000 

Wald Test 24.7 on 5 df    0.000 

 

 

Developed Cox Ph Model for the Associated Covariates 

The developed Cox model is as follows: 

ℎ! 𝑡 = 2 exp −0.008𝑥!! − 0.018𝑥!" +  0.4221𝑥!" +  0.397𝑥!" +  0.410𝑥!" . 
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From Table 5.2, we can see that the parameter 𝛽 was calculated using the partial LRT, and its 

value is 26.5, with a p - value of 0. This means that since L(β) = 26.5, with a p - value of 0.00, 

then we reject the null hypothesis. Also, since the Wald Test was performed and it’s statistic is 

24.7 with a p – value of 0.00, we reject the null hypothesis. This means that depth does depend 

upon the soil type of the sinkhole. Also, since depth is covariate 1, it will have an effect on the 

soil type (which is covariate 2). Now, we will discuss the interesting hazard ratios over the value 

of 1. Notice that the hazard ratio for sand and clay are the highest. 

Hazard Ratio for the Associated Covariates 

In this section we will discuss the hazard ratios for the soil type sand, rock, and clay and their 

associated covariate depth. The hazard ratio for sand is HR = 1.525. This means that for every 

unit increase in depth (feet), the likelihood that a sinkhole occurs in sand increases by a factor of 

0.525. The hazard ratio for clay is HR= 1.502. This means that for every unit increase in depth 

(feet), the likelihood that a sinkhole occurs in clay increases by a factor of 0.502. The hazard 

ratio for rock is HR= 0.489. This means that for every unit increase in depth (feet), the 

likelihood that a sinkhole occurs in rock increases by a factor of 1.489. The hazard ratio for lime 

is HR = 0.981. This means that the unit increase in depth will not be as profound as it was in the 

other soil types. This make sense since lime had a very low frequency of sinkhole occurrences. 

 

USEFULNESS & CONTRIBUTIONS 

The findings in this chapter are useful in predicting the probable time to event between sinkhole 

occurrences. The developed Kaplan - Meier model is useful in determining the probable time 

between sinkhole events, and also as a function of soil types. For instance, we can predict the 
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probability that a sinkhole will occur tomorrow, the next day, etc. The Cox Ph model is useful in 

predicting the probable time to event between sinkhole occurrences taking into account the 

associated covariates, such as depth and soil types. This also allows the hazard ratios to be 

computed, which determines the increase in the likelihood of the sinkhole occurrence over time. 

  One contribution to the field of Applied Statistics in Environmental Studies is the application 

of the Cox Ph model to sinkholes, which has not been found in any literature review. This can 

be useful to many citizens of the state of Florida because they will have better understanding of 

when the probable time to event of sinkholes occurs in either sand or clay. The analysis shows 

that the longer the time to event between events, then the deeper the sinkhole. In conclusion, we 

hope to look further into this research to detect what time of day these sinkholes have occurred 

during the season. 
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CHAPTER 6: FUTURE PROJECTS AND WORKS 
 

In the future one of the projects that the author would like to invest time into is the creation of a 

hurricane tracking application (for smart phones). The goal is that this app will be able to provide 

substantial statistical information on where a hurricane may land in the state of Florida. For the 

past two years, there has been countless big data sets merged and complied by the author and her 

mentor Dr. Rebecca Wooten that would be used in the creation of this app. So far, the 

implementation of these big data sets has provided useful information on how to handle data that 

is messy or missing information. In the summer of 2016, another project that the author is 

interested in pursuing is the writing of a book with the topic of statistics and fitness. Since the 

author is a credentialed personal trainer and has taught aerobics for over 15 years, then the 

collaborative ideas of utilizing statistics and fitness is very exciting. In the aspect of further 

studying environmental issues, the author has always had a passion for analyzing turtle nests and 

building a video gram tracking app device that will show when hatchings have escaped or 

become prey for other animals. Specifically the app will be called TNT: Turtle Nesting Tracking  

App for online viewing or Android, Smartphones.  

Browser compatibility: google chrome, Firefox, internet explorer.  

Purpose: 

TNT is a descriptive - qualitative data based program designed to bring awareness of the Florida 

sea turtle nesting trends in certain counties. Currently, there are five species of sea turtles that 

inhabit Florida's beaches. The counties of interest with the largest sea turtle nesting sites are: 
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Sarasota, Charlotte and Collier. This app will provide data collected over the last five years on 

sea turtle nesting, hatching, and false crawls.  

Usefulness: 1) To inform citizens in the counties of Sarasota, Charlotte and Collier about their 

areas turtle nesting trends. 

 2) To educate and enlighten others of the ongoing struggles of sea turtle survival.  

3) To spark interest in creating new solutions to help these counties have larger sea turtle 

survival rates.  

4) To provide viable information to recruit new volunteers. 

In fall 2016, another future project that the author is interested in working on is analyzing coral 

reef data and building a statistical model that will help predict the population growth trends 

between the coral reefs in the Florida Keys. 
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