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ABSTRACT

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by two major
pathological hallmarks, amyloid plaques and neurofibrillary tangles. The accumulation of
amyloid-p protein (AP) is an early event associated with synaptic and mitochondrial damage in
AD. Therefore, molecular pathways underlying the neurotoxicity and generation of A represent
promising therapeutic targets for AD. Recent studies have shown that actin severing protein,
Cofilin plays an important role in synaptic remodeling, mitochondrial dysfunction, and AD
pathogenesis. However, whether Cofilin is an essential component of AD pathogenesis and how
AP induced neurotoxicity impinges its signals to Cofilin are unclear.

In my dissertation studies, we found AP oligomers bind with intermediate activation
conformers of Bl-integrin to induce the loss of surface Bl-integrin and activation of Cofilin via
Slingshot homology-1 (SSH1) activation. Specifically, conditional loss of fl-integrin prevented
AP induced Cofilin activation, and allosteric modulation or activation of B1-integrin significantly
reduced AP binding to neurons and mitigated AP42-induced reactive oxygen species (ROS)
generation, mitochondrial dysfunction, synaptic proteins depletion, and apoptosis. Furthermore,
we found that SSHI reduction, which mitigated Cofilin activation, prevented Ap-induced
mitochondrial Cofilin translocation and apoptosis, while AD brain mitochondria contained
significantly increased activated/oxidized Cofilin. In mechanistic support in vivo, we
demonstrated that APP transgenic mice brains contain decreased SSH/Cofilin and SSH1/14-3-3

complexes which indicates that SSH-Cofilin activation occurred by releasing of SSH from 14-3-

vil



3. We also showed that genetic reduction in Cofilin rescues APP/AB-induced synaptic protein
loss and gliosis, as well as impairments in synaptic plasticity and contextual memory in vivo.

Our lab previously found that overexpression of the scaffolding protein RanBP9
increases AP production in cell lines and in transgenic mice, while promoting Cofilin activation
and mitochondrial dysfunction. However, how endogenous RanBP9 activates cofilin and
whether endogenous RanBP9 accelerates AB-induced deficits in synaptic plasticity, cofilin-
dependent pathology, and cognitive impairments were unknown. In my dissertation studies, we
found that endogenous RanBP9 positively regulates SSH1 levels and mediates AfB-induced
translocation of Cofilin to mitochondria. Moreover, we demonstrated that endogenous RanBP9
mediates AP-induced formation of Cofilin-actin rods in primary neurons. Endogenous level of
RanBP9 was also required for AB-induced collapse of growth cones in immature neurons and
depletion of synaptic proteins in mature neurons. /n vivo, we also found APP transgenic mice
exhibit significantly increased endogenous RanBP9 levels and that genetic reduction in RanBP9
rescued APP/AB-induced synaptic protein loss, gliosis, synaptic plasticity impairments, and
contextual memory deficits. These findings indicated that endogenous RanBP9 not only
promotes AP production but also meditate AP induced neurotoxicity via positively regulating
SSH1. Taken together, these novel findings implicate essential involvement of B1-integrin—

SSH1/RanBP9—Cofilin pathway in mitochondrial and synaptic dysfunction in AD pathogenesis.
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CHAPTER 1

INTRODUCTION

Alzheimer’s disease (AD) overview

Alzheimer’s disease (AD) is a neurodegenerative disorder that is the most common cause
of dementia. It is a progressive disease that leads to memory loss, confusion, disorientation, and
difficulty having a conversation. Prevalence rates of AD range from ~10% of individuals >65
and up to 50% of individuals greater than 85 years of age. The clinical course of AD ranges from
5 to 15, depending on the age of onset. Historically, AD was first identified in 1901 by a
German psychiatrist Alois Alzheimer, whose patient named Auguste Deter presented with AD-
like symptoms, and upon autopsy found ‘milliary foci’ and ‘neurofibrils’ in brain, which were
later biochemically identified as amyloid plaques and neurofibrillary tangles, respectively.
Alzheimer’s disease (AD) currently afflicts 5.4 million individuals in the USA. Due to the aging
population, this number is estimated to rise to 13.2 million by 2050 if no effective treatment is
found. In 2012, the cost of caring for AD and related dementia patients in the US stood at $200
billion per year, and this figure is projected to rise to $1.1 trillion per yearr by 2050 (2012
dollars). Therefore, AD is a tremendous cost to patients and families in both human and financial

terms.



Amyloid plaques and neurofibrillary tangles

The major pathological hallmarks of Alzheimer’s disease are the Amyloid plaques and
neurofibrillary tangles. Amyloid plaques are the accumulations of amyloid B (AB) protein,
largely in extracellular space, while neurofibrillary tangles are the intraneuronal inclusion of
hyperphosphorylated tau. AP is a neurotoxic peptide derived from amyloid precursor protein
which is cleaved by B-, and y-secretases (APP PROCESSING FIGURE). The vast majority of
APP is normally cleaved in the middle of the AP sequence by a-secretase
(ADAM10/TACE/ADAM17) in the non-amyloidogenic pathway, thereby preventing the
generation of an intact AP peptide. Alternatively, a small proportion of APP is cleaved in the
amyloidogenic pathway, leading to the secretion of AP peptides (37 to 42 amino acids) via two
proteolytic enzymes, - and y-secretase, known as BACE1 and presenilin, respectively (De
Strooper & Annaert, 2000a). The proteolytic processing of APP to generate AP requires
endocytosis from the cell surface and localization to cholesterol-rich membrane rafts where both
BACE]1 and the presenilin complex are enriched (Koo & Squazzo, 1994; Perez et al., 1999;
Wabhrle et al., 2002).

Neurofibrillary tangles are composed of the microtubule associated protein tau.
Hyperphosphorylated tau assembles into twisted filaments seen by electron microscopy as paired
helical filaments or PHFs, which are immunopositive with AD-specific diagnostic antibodies,
such as ATIO0O or ATS8 (Avila, Lucas, Perez, & Hernandez, 2004). Although tau
stabilizes/associates with microtubules within somatoaxonal compartments under normal
physiological conditions, tau becomes hyperphosphorylated during early stages of AD, which
weakens its association to microtubules and often mislocalizes to somatodendritic compartments.

Thus, hyperphosphorylated tau is unable support microtubule stabilization, mislocalizes to



dendritic compartments, and becomes increasing prone to self-aggregation (Gendron &

Petrucelli, 2009).

Genetic basis of Alzheimer’s disease (AD)

Early onset AD

Early onset AD occurs before the age 65. Of this group, familial early-onset AD (FAD)
patients are those whose genetic causes have been identified. In 1991, the amyloid hypothesis
was postulated that the accumulation of AP is the fundamental cause of AD rather than simply
pathological hallmarks of the disease (Hardy & Allsop, 1991). This hypothesis was initially
supported by the identification of mutations in APP that co-segregated with FAD patient
families. Of important note, all of the FAD mutations identified thus far are concentrated near
the P-secretase or y-secretase cleavage sites in APP such that either total AB or the more
pathogenic AB42 peptide is increased. While presenilin-dependent y-secretase cleavage of APP
at AP residue 42 (AB42) is a minor species (~10%) compared to AB40 (>80%), many studies
have shown that AB42 is more neurotoxic and is required to efficiently seed the aggregation of
AB40 (Glabe, 2008). Recently, a new Icelandic mutation in near the BACE1 cleavage site was
identified, which protects against the risk of AD and reduces AP secretion by ~40% (Jonsson et
al., 2012). Furthermore, individuals with trisomy 21 (Down’s syndrome) with an extra copy of
the APP gene on chromosome 21 invariably exhibit AD pathology by the 4™ decade of life.
Closer examination of Down’s syndrome brains showed that AB42 containing senile plaques
develop much earlier than neurofibrillary tangles, further supporting the amyloid hypothesis
(Hyman, 1992; Hyman, West, Rebeck, Lai, & Mann, 1995). In 1995, mutations in two
homologous genes, Presenilin 1 (PS1) and Presenilin 2 (PS2) were discovered that co-segregated

with the most aggressive forms of autosomal dominant early-onset FAD. Thus far, more than
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100 different FAD mutations in PS/ and PS2 have been identified (St George-Hyslop & Petit,
2005). Further adding support to the amyloid hypothesis, all of the presenilin mutations studied
were found to increase the more pathogenic and faster aggregating AB42 peptide (Table 1-

1)(Figurel-2)(Herz & Beffert, 2000).

Late onset AD

The vast majority of AD (>95%) is the late-onset sporadic form and it is not inherited in
an autosomal dominant pattern. Various different genes have been identified as late onset genetic
factors, and the most common and strongest genetic risk factor to date is the &4 allele of the
apolipoprotein E (APOE) gene. APOE &4 allele increases the risk for the disease by ~3-fold
among hemizygotes and by ~15-fold among homozygotes (Holtzman, 2001). ApoE4 also
promotes the accumulation of Amyloid beta far more efficiently than apoE3 (Strittmatter et al.,
1993). Therefore, all known and confirmed genetic component of AD either increase total Af3,
the more pathogenic AB42 peptide, or aggregation states of Af. Recently, genomic-wide
association studies (GWAS) have allowed the identification of variation in over 20 loci that
contribute to disease risk such as INPP5SD, MEF2C, ZCWPW1, CLU, PTK2B, PICALM,
SORLI1, CELFI1, CR1, BINI1, MS4A4/MS4A6E, SLC24A4/RIN3, FERMT2, CD33, ABCA7,
CASS4, TREM2, CD2AP, HLA-DRB1/HLA-DRBS, EPHA1, NMES. Furthermore, rare variants
associated with Late-onset AD have been identified in TREM2 and PLD3 gene (Figurel-2).
Even though various different genes have been found, many of their roles in disease

pathogenesis still have to be explored.



Molecular basis of Alzheimer’s disease (AD)

Soluble AB olisomer hypothesis and hyperphosphorylation of tau

Biochemical and cellular studies on AB-induced neurotoxicity have shown that distinct
states or species of AP have different biological properties. First, AB42, while at much lower
concentration than AB40, aggregates faster and seeds the aggregation of AB40 (Glabe, 2008).
Transgenic mice engineered to produce only AB40 or AB42 cleaved from the familial British and
Danish Dementia-related BRI protein shows that AB40 cannot form aggregates into amyloid
plaques even by 18 months of age, while a lesser concentration of AB42 induces robust amyloid
plaque formation even at 12 months of age. Furthermore, the BRI-A42 mice crossed with APP
Tg2576 mice bearing the “Swedish” mutation exponentially worsens amyloid plaque formation
(McGowan et al., 2005). Second, AP can exist as soluble monomers, dimers, trimers, and higher
order oligomers (also known as AP-derived diffusible ligands; ADDLs) prior to forming
protofibrils and insoluble amyloid fibrils. These pathological soluble AP oligomers cause
synaptic dysfunction to neurons even at picomolar concentrations. Studies have shown that SDS-
stable dimers and trimers derived from the 7PA2 cell line expressing an FAD APP mutation
impair long term potentiation (LTP), the physiological correlate of learning and memory, at
subnanomolar concentrations (D. M. Walsh et al., 2002). Furthermore, soluble SDS-resistant A3
dimers derived from AD brains lead to hyperphosphorylation of tau and neuritic degeneration in
primary hippocampal neurons at picomolar concentrations (Jin et al., 2011). Recently, a new
mutation in APP was identified in a Japanese family with AD-type dementia. This mutation
occurred as a deletion of residue 22 (glutamic acid) of the AP peptide (E22A). Biochemically,
the E22A mutation is more resistant to degradation, unable to form fibrils, but far more prone to

self-association as A oligomers in the form of SDS-stable dimers and trimers (Tomiyama et al.,
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2008). Expression of this APP mutation in transgenic mice leads to learning and memory deficits
associated with impaired LTP, enhanced neuroinflammation, and tau hyperphosphorylation in
the absence of any thioflavin S positive amyloid plaques. This indicated that AP oligomers are
sufficient and fibrillar amyloid deposition is not necessary for AB-induced neurotoxicity and
learning and memory deficits (Nishitsuji et al., 2009). Interestingly, loss of one copy of IGF-1
receptor, which lengthens lifespan, was shown to be protective by promoting faster aggregation
of AB and increasing the density of amyloid plaques, thereby sequestering toxic soluble A
oligomer species into amyloid fibrils (Cohen et al., 2009). While it appears that amyloid fibrils
per se might be less neurotoxic than soluble AP oligomers, it is important to note that amyloid
fibrils can disaggregate into soluble AP oligomers, and thus, may serve as stable sources of these
neurotoxic species.

Many studies have shown that AP} promotes the hyperphosphorylation of tau in vitro and
in vivo (Avila et al., 2004; Gendron & Petrucelli, 2009). AP also increases the number of
neurofibrillary tangles in transgenic mice engineered to express a Frontotemporal Dementia
(FTDP-17) tau mutation (Lewis et al., 2001). Moreover, depletion of AP by injection of an
antibody directed against AP also leads to reduced tau pathology in the APP/tau/presenilin-1
mutant triple transgenic mice (Oddo, Billings, Kesslak, Cribbs, & LaFerla, 2004), further
supporting the model that A promotes tau pathology in vivo. In addition, recent studies have
demonstrated that many of the toxic effects of AP require tau expression, indicating that tau is
indeed downstream of AP-induced neurotoxic signals. Neurite retraction and progressive
neuronal atrophy are seen when neurons are treated with Af but not in neurons derived from tau
knockout mice (Jin et al.,, 2011; Rapoport, Dawson, Binder, Vitek, & Ferreira, 2002).

Furthermore, learning and memory impairment as well as high sensitivity to excitotoxin
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treatment are present in mutant APP transgenic mice but not in the same transgenic mice on a tau
homozygous tau knockout background, even though A deposition is not affected by tau
(Roberson et al.,, 2007). AP also induces impairments in LTP and axonal transport of
mitochondria; however, such impairments are not seen in tau knockout neurons (Shipton et al.,
2011; Vossel et al., 2010), indicating that tau is required for multiple facets of AP-induced
neurotoxicity. Indeed, A} oligomers rapidly lead to disassembly of microtubules but only in cells
expressing tau (King et al., 2006). This is particularly important in neurons, as the microtubule
network is critical for processes as axonal transport of key proteins and organelles to the synapse.
Therefore, AB-induced hyperphosphorylation of tau appears to partially explain microtubule
disassembly and impaired excitatory synaptic transmission. It is important to note that like
soluble AP oligomers, soluble hyperphosphorylated tau rather than PHF tau may represent the
toxic species, since turning off FTD mutant tau expression in an inducible transgenic model does
not remove insoluble PHF-1 positive tangle-like structures over several months but improves

learning and memory (Santacruz et al., 2005).

Amvloid B and its surface receptors

Although it is clear that AP oligomers are neurotoxic at least in part by transmitting
neurotoxic signals, what types of neuronal surface receptors and intracellular signals are needed
to transmit these AB-induced neurotoxic signaling has remained to be fully elucidated. It has
been reported that AP binds to various different neuronal receptors such as N-methyl-D-aspartate
(NMDA), nicotinic (a7nAChR), p75NTR receptors. AP binding to NMDA receptors has been
reported to increase calcium influx and potentiate NMDAR activation, but other conflicting
reports have shown that AP oligomers depress LTP and cause progressive loss of dendritic

spines associated with reduced excitatory synaptic transmission and removal of glutamate
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receptors from spines (Hsieh et al., 2006b; Pena, Gutierrez-Lerma, Quiroz-Baez, & Arias, 2006;
G. M. Shankar et al., 2007). Conflicting reports have also shown that AP can act as both agonist
and antagonist of a7nAChR (Dineley et al., 2001; Pettit, Shao, & Yakel, 2001). The binding of
AP to p75NTR, especially in cholinergic neurons of the basal forebrain where this receptor is
enriched, is associated with death of these neurons. In p75SNTR knockout mice, such AB-induced
degeneration of the basal forebrain is not observed (Yaar et al., 1997). Therefore, targeting the
APB/p75NTR interaction appears to represent a promising therapeutic strategy, especially for the
cholinergic system. Recently, 2 other neuronal surface receptors for AP oligomers have been
proposed, namely PrP“/mGluR5(Lauren, Gimbel, Nygaard, Gilbert, & Strittmatter, 2009; Um et

al., 2013) and Pir-B(T. Kim et al., 2013). These receptors bind specifically to AP oligomers but
not fibrils and are required for AB-induced deficits in LTP in acute hippocampal slices (Figure 1-
4)(Overk & Masliah, 2014).

In addition to the aforementioned receptors, integrin adhesion receptors have also been
shown to mediate AB-induced neurotoxicity and deficits in LTP. The integrin family mediates
both cell-cell and cell-substratum adhesion by binding their extracellular ligands such as laminin
and fibronectin. Integrins consist of an o and a B subunit, and each subunit has a large
extracellular portion, a single transmembrane segment, and a short cytoplasmic tail (Hynes,
1992). These cytoplasmic tails bind to intracellular ligands to mediate dynamic cellular
responses, such as cell adhesion, migration, neurogenesis, apoptosis, and synaptic stability.
Hence, integrins provide a transmembrane link for the bidirectional transmission of signals
across the plasma membrane by binding both extracellular and intracellular ligands (Zamir &
Geiger, 2001). The ability to connect to the actin cytoskeleton is an important part of the

adhesive function of the integrin family. Within focal adhesions, structural proteins such as



vinculin and talin anchor B-integrins to the actin cytoskeleton, while signaling proteins such as
focal adhesion kinase (FAK), Pyk2, Paxillin, and Src mediate downstream signaling events in a
transient and controlled manner (Cabodi et al., 2010) (Figure 1-2) (Vicente-Manzanares, Choi, &
Horwitz, 2009). Integrin signaling is also associated with changes in synaptic plasticity and
neuronal excitability. Glutamate receptors (NMDA and AMPA receptors) are the target of
integrin-dependent regulation. Interfering with integrin-dependent adhesion by antagonists or
conditional deletion of a3, a5, and/or B1 integrins leads to defective LTP (Becchetti, Pillozzi,
Morini, Nesti, & Arcangeli, 2010). Therefore, integrins represent important adhesion receptors
that can regulate multiple facets of neuronal function and viability. Integrin blocking antibodies
to al/Bl or echistatin (a highly selective and potent integrin inhibitor) blocks fibrillar Ap-
induced MAPK activation and AB-induced neurotoxicity in primary neuronal cultures (Anderson
& Ferreira, 2004). Moreover, antibodies against av-integrins block the inhibition in LTP induced
by AB. A small molecule nonpeptide antagonist of av-containing integrins (SM256) and a potent
disintegrin echistatin also block AB-induced inhibition of LTP. Accordingly, a potent ligand of
av/ Bl integrin, superfibronectin, also efficiently inhibits AB-induced inhibition of LTP (Q.
Wang et al., 2008a). As glutamate receptors are targets of integrin-mediated regulation, it is
likely that integrin-mediated alterations in glutamate receptors underlie AB-induced inhibition of
LTP. Addition of soluble AP together with fibrillar AR dramatically enhances the meshwork of
AP deposition on cortical neurons and induces neurotoxicity in an 02/Bl and av/Bl integrin
dependent manner (Wright et al., 2007a). Also, Antibodies against f1, a2, and av but not al, a3,
a4, aS5, a6, a9, av/P 3, av/pS, or B3 integrins inhibit AB-induced neurotoxicity in human primary

neurons (Wright et al., 2007a).



Neuroinflammation in Alzheimer’s disease

Multiple studies suggest Alzheimer’s disease pathogenesis is not restricted to neuronal
compartments in the brain. In AD, it has been shown that there is a high expression of
inflammatory mediators around AP deposition and neurofibrilarry tangles, which are associated
with neurodegeneration (Akiyama et al., 2000). Moreover, it has been also established a link
between chronic use of non-steroidal anti inflammatories (NSAIDs) and reduced risk of AD
(Vlad, Miller, Kowall, & Felson, 2008). More Recently, Genome-wide association studies
identified immure CD33 and TREM2 as AD risk factors indicates the link between immune
alterations and AD (Guerreiro & Hardy, 2013) . TREM2 (Triggering Receptor Expressed On
Myeloid Cells 2) is a microglial activator and act via DAP12 to activate syk-mediated tyrosine
phosphorylation to promote microglial phagocytosis. CD33 encodes a cell-surface protein of the
sialic acid-binding Ig-like lectin (SIGLEC) family and provides another example of a myeloid-
cell- or microglial-cell-expressed gene in which variants have been associated with an increased
risk of developing AD. CD33 expression was upregulated on microglia in human AD. Recently,
CD33 SNP rs3865444A, which is associated with decreased AD risk has been found (Malik et

al., 2013; Raj et al., 2014), which is associated with reduced CD33 expression.

Mitochondrial dysfunction in Alzheimer’s disease (AD)

Mitochondria, called powerhouse of the cell provide cellular energy, and also involved in
various different cellular signaling. As the human brain utilizes 20% of total body oxygen
consumption, mitochondria serve an important capacity in neuronal homeostasis and
mechanisms of neurodegeneration. Mitochondria have various different biological functions such

as ATP production, control the energy efficiency, calcium homeostasis, reactive oxygen species
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(ROS) production, and regulation of apoptotic signaling, all of which play integral roles in
neurodegeneration seen in AD.

Given that mitochondria are the most metabolically active organelles, mitochondrial
dysfunction leads to brain metabolism failure. In AD, aberrant activity of tricarboxylic acid cycle
(TCA) complexes, pyruvate and isocitrate dehydrogenases, have been reported. Several studies
have also shown A deposition is associated with local levels of brain metabolism and neuronal
activity. Interestingly, AP can be directly transported into mitochondria, which perturbs oxygen
consumption and activity of enzymes in complex III and IV of the respiratory chain. Moreover, it
has been reported that AP in mitochondria is associated with an increase in hydrogen peroxide
and a decrease in COX activity.

Mitochondria play essential roles in regulating Ca*" homeostasis which is pathologically
linked to neurotoxicity. When Ca®" levels increase in the cytosol, mitochondria potently take up
Ca®' through the mitochondrial Ca*" uniporter (MCU), resulting in Ca*" buffering and increased
metabolism and production of ATP (Bezprozvanny & Mattson, 2008; Matter, Zhang, Nordstedt,
& Ruoslahti, 1998). However if excess amounts of Ca®" enter the mitochondria (calcium
overload), it leads to decreased mitochondrial membrane potential (MMP) and oxidative stress.
This, in turn, results in formation of the mitochondrial permeability-transition pore (mtPTP) and
failure to exert Ca>" buffering capacity, leading to secondary excitotoxicity (Hengartner, 2000).
Multiple studies have demonstrated that AP can dysregulate Ca® homeostasis via several Ca*’
signaling components (Bezprozvanny, 2009): calcineurin (Kuchibhotla et al., 2008), NMDARs
(De Felice et al., 2007), AMPARSs (Hsieh et al., 2006a, 2006b), and P/Q-type VGCCs (Nimmrich
et al., 2008). Furthermore, FAD mutations in presenilins (PS), which potentiate AB42 generation,

induce excessive Ca’" release from the ER through IP3 and ryanodine receptors (Cheung et al.,
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2008; Rybalchenko, Hwang, Rybalchenko, & Koulen, 2008). In AD brains, intracellular Ca**
levels are positively correlated with neurofibrillary tangle formation (McKee, Kosik, Kennedy,
& Kowall, 1990; Nixon, 2003). We and others have also shown that AB induces aberrant changes
in mitochondrial membrane potential in cultured neurons and astrocytes, which can lead to the
disruption of mitochondrial Ca*" homeostasis. In addition, many studies have shown that AB can
overactivate NMDA and AMPA receptors that can ultimately lead to mitochondrial Ca**
overload and mitochondrial damage. This, in turn, results in mitochondrial dysregulation and
apoptosis.

Mitochondria serve as prominent sources of reactive oxygen species (ROS) production,
reactive molecules containing oxygen that regulate cellular signaling and cell death. ROS, at low
to moderate concentrations, is an important mediator of defense mechanisms against infectious
agents, various cellular signaling events, and synaptic function. However, if ROS levels exceed
the amount that can be neutralized by anti-oxidant mechanisms, it eventually results in
mitochondrial dysfunction and neuronal damage (Andreyev, Kushnareva, & Starkov, 2005), the
molecular targets of which are DNA, lipids, and protein machineries within the cell and
mitochondria (Knight, 1997). The role of mitochondrial ROS as inducers of Ca2+ dysregulation
is well-established. On the other hand, a major cause of ROS production is also Ca2+
dysregulation. Thus, oxidative stress and Ca2+ regulation are intricately linked and can
cooperatively contribute to AD pathogenesis. It has been shown that A oligomers can form
Ca2+-permeable channels in the plasma membranes (Arispe, Rojas, & Pollard, 1993) and that
the association of AP to membranes is enhanced in the presence of excess phosphatidylserine
(PtdS) (Lee, Pollard, & Arispe, 2002). Other studies have demonstrated that AP treatment

promotes caspase 3, 8, and 9 activation (Fossati et al., 2010; Z. F. Wang et al., 2010)
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Furthermore, AP induces abnormal mitochondrial dynamics. Specifically, AP peptide impairs
axonal transport of mitochondria, attenuates mitochondrial motility, and alters mitochondrial
distribution in mouse hippocampal neurons, resulting in synaptic degeneration (Calkins &
Reddy, 2011). AP induces Ca2+ dysregulation by membrane-associated oxidative stress and
activates calcineurin, an important mediator of synaptic plasticity (Celsi et al., 2007). In addition,
AP induces synaptic dystrophy and dysregulation at least in part due to decreased expression of
NMDA and EphB2 receptors at the synapse, an event that can be corrected by NMDAR agonists
(Lacor et al., 2007). Though the exact mechanisms of ROS-induced synaptic degeneration
remain to be further elucidated, ROS is well known to play important roles in synaptic plasticity.
Indeed, oxidation of cysteine residues on RynR increases Ca2+ release from the ER and
oxidation (Hidalgo, 2005) of the same residues on NMDAR decreases the receptor activity
(Lipton et al., 2002). Therefore, it appears that Ap induces synaptic deficits via both increasing
oxidative damage and dysregulating Ca2+ dynamics at the synapse and mitochondria, both of
which cooperatively contribute to neurodegeneration in AD (Figure 1-3)(Luque-Contreras,
Carvajal, Toral-Rios, Franco-Bocanegra, & Campos-Pena, 2014).

Tau pathology is also linked to mitochondrial dysfunction. Transgenic mice over-
expressing the P301L mutant demonstrate a significant reduction in complex V and NADH-
ubiquinone oxidoreductase activity together with impairments in mitochondrial respiration and
ATP synthesis (David et al., 2005). Tau can be cleaved by caspases 3, 7, and 8 after Asp-421,
yielding a 421 residue tau fragment that assembles into PHF-like fibrils more rapidly than full
length tau. Overexpression of this cleaved tau leads to a significant decrease in mitochondrial
membrane potential and loss of mitochondrial membrane integrity (Quintanilla, Matthews-

Roberson, Dolan, & Johnson, 2009). Moreover, introduction of tau in mature hippocampal
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neurons results in degeneration of synapses by perturbing mitochondria transport and ATP levels
at the synapse (Thies & Mandelkow, 2007). N-terminal tau fragments have toxic effects on
mitochondria and lead to the mitochondrial dysfunction associated with impairments in oxidative
phosphorylation by distorting the enzyme structure of complex V and the level of adenine
nucleotide translocator, which ultimately perturbs ATP synthesis in mitochondria (Atlante et al.,
2008). Interestingly, these N-terminal tau fragments are localized in AD synaptic mitochondria
(Amadoro et al., 2010). Taken together, both AP and tau exert deleterious effects on
mitochondria, events that involve ROS generation and Ca®" dysregulation, which negatively

impact synaptic function and neuronal viability.

Cyvtoskeletal aberrations in AD

The cytoskeleton is a dynamic structure mainly composed of microfilaments,
intermediate filaments and microtubules. Cytoskeleton has multiple biological functions,
including provision of mechanical resistance, anchorage to the extracellular matrix, and
functioning as scaffolds for transport of need proteins and organelles (i.e. microtubules). These
functions regulate various cellar pathways, including cell adhesion, migration, division, and
survival. Actin is a globular protein that can forms microfilaments, and it is major components
of the cytoskeleton that can mediate cell motility. Actin has two distinct states in the cells which
are a monomeric G-actin and filaments F-actin. F-actin preferentially polymerizes at one end of
the filament at steady state, and the difference in polymerization rates between the two ends
result in a net turnover of the filaments. Multiple studies have shown actin dynamics play
important roles in dendritic spine morphogenesis, membrane protein trafficking, and synaptic

plasticity.
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Role of Cofilin in F-Actin dvnamics and mitochondrial dysfunction

ADF/Cofilin, a family of actin-binding protein is a major regulator of actin dynamics.
Cofilin modulates actin dynamics depending on the ratio of cofilin to actin. At low cofilin to
actin ratios, cofilin acts to sever actin filaments, whereas at high cofilin to actin ratios, cofilin
nucleates actin assembly and stabilizes F-actin (B.W. Bernstein & J.R. Bamburg, 2010). The
activity of cofilin is tightly regulated by phosphorylation and dephosphorylation on serine-3 of
cofilin by LIMK and Slingshot-1L (SSH), respectively (Eiseler et al., 2009b). Phosphorylation of
cofilin by LIMKI1, a downstream component of Rac-PAK signaling upon focal adhesion
activation, serves to inactivate cofilin, whereas dephosphorylation of cofilin by Slingshot-1L
(SSH) activates cofilin (Figure 1-4)(Chiu, Patel, Shaw, Bamburg, & Klip, 2010). It has also been
shown that reelin, via a pathway involving Dab1, Src, and PI3K, promotes the phosphorylation
of cofilin on serine-3, thereby inactivating cofilin (Chai, Forster, Zhao, Bock, & Frotscher,
2009). Therefore, proper relay of focal adhesion signals downstream of integrin and/or reelin
activation leads to the phosphorylation and inactivation of cofilin by LIMK1, Src, and potentially
other kinases, leading to reduced actin dynamics. Multiple studies have shown that cofilin is
involved in oxidative stress induced cell death via critical mitochondrial mechanism. Upon
oxidative stress, activated cofilin becomes oxidized on several cysteine residues. This allows
cofilin to lose its affinity for actin and to translocate to mitochondria, where it induces swelling,
drop in mitochondrial membrane potential, and cytochrome c release by promoting the opening
of the permeability transition pore. Furthermore, knockdown of endogenous cofilin by siRNA
also inhibits both oxidant and staurosporin induced apoptosis, indicating that cofilin is critical for
mitochondria-mediated apoptosis. Cellular stimuli that generate ROS not only oxidize cofilin to

promote mitochondrial dysfunction but also activate SSH via oxidation of 14-3-3C, a chaperone
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protein that normally functions to inhibit SSH in the nonoxidized form (J.S. Kim, T.Y. Huang, &
G.M. Bokoch, 2009). Therefore, enhanced ROS generation by AP, tau, and/or other oxidative
stress can dephosphorylate and activate cofilin. Another critical pathway of cofilin activation is
via calcium. Calcineurin, a calcium activated phosphatase, dephosphorylates SSH, thereby
promoting cofilin dephosphorylation and activation (Y. Wang, Shibasaki, & Mizuno, 2005a).
Given that AB increases intracellular Ca”", it has been reported that AP also activates calcineurin
and dephosphorylates cofilin (Homma, Niino, Hotta, & Oka, 2008). Furthermore, AB-induced
dendritic spine loss is also mediated by a pathway involving calcineurin and dephosphorylation
of cofilin (G.M. Shankar et al., 2007). Indeed, inhibition of calcineurin by FKS506 is
neuroprotective in transgenic animal models of AD (Hong et al., 2010; Rozkalne, Hyman, &
Spires-Jones, 2011). Finally, it has been shown that active PAK, a downstream component of
focal adhesion and Rac signaling, is severely reduced in AD brains. AP oligomers induce defects
in PAK signaling, leading to the activation of cofilin and synaptic pathology. Overexpression of
active PAK reverses these effects of AP oligomers (Ma et al., 2008; Zhao et al., 2006).
Therefore, AB-induced alterations in Ca2+, ROS, and focal adhesion signaling can also induce
the activation of cofilin, which in turn, dysregulates cytoskeletal dynamics, mitochondria, and
tau .

Activated and oxidized cofilin can also form cofilin-actin rods in the form of rod shaped
bundles of filaments. Cofilin-actin rods form in different cultures cells including primary
neurons in response to heat shock, osmotic stress, and ATP depletion, and AB. Cofilin-actin rods
have been found in both axons and dendrites of mouse hippocampal and cortical neurons and in
organotypic hippocampal slices. These cofilin-actin rods can block axonal transports as well as

transport within neurites. Moreover, a subset of cofilin-actin rods contains hyperphosphorylated

16



tau, indicating that cofilin-actin cytoskeletal dynamics also alter tau pathology (Whiteman et al.,
2009). Indeed, it has been demonstrated that transgenic mice and flies overexpressing FTDP-17
mutant tau promote F- actin assembly, and hyperphosphorylated tau coprecipitates in rods
together with cofilin and actin (Fulga et al., 2007). These rod structures resemble striated
neuropil threads. Cofilin also plays a key role in the organization of actin cytoskeleton in
dendritic spines as well as AP induced spine loss (G. M. Shankar et al., 2007). Thus, cofilin and
tau may cooperatively control such activity and eventually precipitate in rods that contain cofilin,

actin, and tau when neurons become further stressed by ApB-induced neurotoxic signals.

RanBP9 in APP processing, mitochondria-mediated neurotoxicity, and integrin signaling

RanBP9, also known as RanBPM, acts as a multi-modular scaffolding protein, bridging
interactions between the cytoplasmic domains of a variety of membrane receptors and
intracellular signaling targets. These include Axl and Sky (Hafizi, Gustafsson, Stenhoff, &
Dahlback, 2005), MET receptor protein tyrosine kinase (D. Wang, Li, Messing, & Wu, 2002),
and B2-integrin LFA-1 (Denti et al., 2004). Similarly, RanBP9 interacts with Plexin-A receptors
to strongly inhibit axonal outgrowth (H. Togashi, E.F. Schmidt, & S.M. Strittmatter, 2006) and
functions to regulate cell morphology and adhesion (Dansereau & Lasko, 2008; Valiyaveettil et
al., 2008b). We previously demonstrated that the C-terminal 37 amino acids of the low density
receptor-related protein (LRP) robustly promoted AP generation independent of FE65 and
specifically interacted with Ran Binding Protein 9 (RanBP9). Our initial studies found that
RanBP9 strongly increases BACEL1 cleavage of APP and A} generation. In cells expressing wild
type APP, RanBP9 reduced cell surface APP and accelerated APP internalization, consistent
with enhanced B-secretase processing in the endocytic pathway. The N-terminal half of RanBP9

containing SPRY-LisH domains not only interacted with LRP but also with APP and BACEI.
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Overexpression of RanBP9 resulted in the enhancement of APP interactions with LRP and
BACE]1 and increased lipid raft association of APP. Importantly, knockdown of endogenous
RanBP9 significantly reduced AP secretion in Chinese Hamster Ovary cells and in primary
neurons, demonstrating its physiological role in BACEI cleavage of APP. We also found that
RanBP9 overexpression in transgenic mice (APP/PS1;RanBP9-TG) significantly increased AP
load and thioflavin-S positive amyloid in brain compared to single APP/PS1 transgenic mice.
Moreover, we found that an N-terminal bioactive fragment of RanBP9 protein was significantly
increased in brains of AD patients (M. K. Lakshmana et al., 2012).

In addition to its effects on APP processing, our studies have shown a significant role of
RanBP9 in neurotoxicity and apoptosis. RanBP9 single transgenic mice demonstrated
significantly increased synapse loss, neurodegeneration, gliosis, and spatial memory deficits.
Consistent with these in vivo observations, RanBP9 overexpression promoted apoptosis and
potentiated AB-induced neurotoxicity independent of its capacity to promote AP generation.
Conversely, RanBP9 reduction by siRNA or gene dosage mitigated AB-induced neurotoxicity in
HT22 neuroblastoma cells. Importantly, RanBP9 overexpression led to the activation of cofilin, a
key regulator of actin dynamics and mitochondria-mediated apoptosis, and siRNA knockdown of
cofilin abolished both A and RanBP9-induced apoptosis (Figure 1-5)(J. A. Woo et al., 2012).
We later went on to show in primary hippocampal neurons that RanBP9 potentiates Ap-induced
reactive oxygen species (ROS) overproduction, apoptosis, and calcium deregulation. Analyses of
calcium handling measures demonstrated that RanBP9 selectively delays the clearance of
cytosolic Ca’" mediated by the mitochondrial calcium uniporter (MCU) through a process
involving the translocation of cofilin to mitochondria and oxidative mechanisms (Roh et al.,

2013b). Further, RanBP9 retarded the anterograde axonal transport of mitochondria in primary
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neurons and decreased synaptic mitochondrial activity in brain (Roh et al., 2013b). These data
indicated that RanBP9, cofilin, and AP mimic and potentiate each other to produce
mitochondrial dysfunction, ROS overproduction, and calcium deregulation, leading to
neurodegenerative changes reminiscent of those seen in AD.

Because APP, LRP, and RanBP9 all physically interact with B-integrins, we also
investigated whether RanBP9 alters integrin-dependent cell adhesion and focal adhesion
signaling. We found that RanBP9 overexpression dramatically disrupts integrin-dependent cell
attachment and spreading in NIH3T3 and hippocampus-derived HT22 cells, concomitant with
strongly decreased Pyk2/Paxillin signaling and Talin/Vinculin localization in focal adhesion
complexes (J. A. Woo et al., 2012). Conversely, RanBP9 knockdown robustly promoted cell
attachment and spreading, as well as, focal adhesion signaling and assembly (J. A. Woo et al.,
2012). Cell surface biotinylation and endocytosis assays revealed that RanBP9 overexpression
and RanBP9 siRNA potently reduces and increases surface 1-integrin and LRP by accelerating
and inhibiting their endocytosis, respectively. Primary hippocampal neurons derived from
RanBP9 transgenic mice also demonstrated severely reduced levels of surface 1-integrin, LRP,
and APP as well as neurite arborization (J. A. Woo et al., 2012). Therefore, these data indicated

that RanBP9 simultaneously inhibits cell adhesive processes and enhances A} generation by

accelerating APP, LRP, and B1-integrin endocytosis.
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Table 1-1 Genes associated with Alzheimer’s disease
Dominant mutations that cause early-onset AD have been identified in APP, PS1 and PS2, and cause a relative increase in APP

processing to AP. The ApoE4 allele has been identified to late-onset AD in a large number of studies. LRP, a multifunctional
receptor that binds ApoE and numerous other ligands has been found to be weakly linked to late-onset AD by several studies.

Genes associated with Alzheimer’s disease

Disease Gene product Disease Chromosome

onset association

Early Amyloid precursor protein (APP) ++ 21
Presenilin 1 (PS1) + 14
Presenilin 2 (PS2) ++ 1

Late Apolipoprotein E o 19
LDL receptor-related protein (LRP)  + 12
o,-Macroglobulin (o, M) . 12
FEGS . 1
Chromosome 12 gene product - 12
distinct from LRP and o,,M
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Figure 1-1 Amyloid B oligomer receptors

Putative AP oligomer receptors, signaling pathways, and therapeutic targets. A number of potential cell surface molecules

(insulin receptor, NGF receptor, PrPc, mGluR5, EphA4, EphB2, NMDA, and Flizzed) that mediate the synaptotoxic effects of
AP oligomers have been identified.
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Figure 1-2 The actin-integrin linkage

The linkage between the extracellular matrix (ECM, red strand on top) and the actin cytoskeleton (represented by yellow beaded
coils) is depicted. Integrins (represented by the a- and B-transmembrane subunits in light blue and pink) can bind directly to the
talin head domain (red sphere). Through its tail domain (red rod), talin can bind directly to actin as well as to other components
of the linkage, such as vinculin (shown in purple). Vinculin can also bind to actin directly, as well as to the actin cross-linker o-
actinin (shown as a dimer, in green). Both vinculin and a-actinin are anchored to the membrane, and their activity is modulated
by interactions with phosphatidylinositol (4,5)-bisphosphate (PIP2). Finally, vinculin and FAK (shown in blue) can bind to the
actin nucleator Arp2/3 (shown as a heptamer in grey).
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Figure 1-3 Mitochondrial damage in Alzheimer’s disease

AP overproduction damages mitochondria causing dysfunction of mitochondrial complexes I and IV, which result in reactive
oxygen species (ROS) overproduction and adenosine triphosphate (ATP) depletion. In neurons, ATP depletion may lead to
neurotransmission dysfunction and altered axonal transport, thus provoking mitochondrial dynamics abnormalities. ATP
depletion also causes dysfunction of the ATP-dependent ion channels, leading to altered ion balance in the cytosol. ROS increase
in turn leads to mitochondrial permeability transition pore (MPTP) aperture, which increases mitochondrial damage by allowing
calcium entrance into the mitochondrial matrix, worsening the electron transport chain and oxidative phosphorylation disruption.
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Figure 1-4 Cofilin regulates actin remodeling

The accumulation of polymerized F-actin poses a stimulatory factor in the phosphatase activity of SSH, which leads to net
dephosphorylation and activation of cofilin. Hereon, the actin-severing function of cofilin maintains the flexibility of remodeled
actin and enables regeneration of free monomeric actin for further polymerization.
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Figure 1-5 Schematic model of the RanBP9-cofilin pathway in AD pathogenesis

As the binding of AP to various integrins is critical to transmit its neurotoxic signals, AP oligomers are proposed to
activate/dephosphorylate cofilin via the recruitment of RanBP9 to integrin/APP/LRP complexes. The binding of RanBP9 to
integrin/APP/LRP complexes accelerates their endocytosis, thereby promoting AP generation, disrupting focal adhesions, and
activating cofilin. Under conditions of oxidative stress such as that induced by AP oligomers, oxidized, and dephosphorylated
cofilin translocates into the mitochondria to open up the mitochondrial permeability transition pore, which induces mitochondrial
dysfunction and promotes apoptotic processes. Activated cofilin can lead to the formation of cofilin-actin rods, which attract
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hyperphosphorylated tau and promote tau pathology.
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CHAPTER 2

SLINGSHOT-COFILIN ACTIVATION MEDIATES MITOCHONDRIAL AND
SYNAPTIC DYSFUNCTION VIA AMYLOID BETA LIGATION TO BETA1-

INTEGRIN CONFORMERS

Permissions Statement

The information in chapter 2, “Slingshot-Cofilin Activation Mediates Mitochondrial and
Synaptic Dysfunction” has been legally reproduced under the Creative Commons Attribution
(CC-BY) license. This means the publication is accessible online without any restrictions and

can be re-used in any way subject only to proper citation.

Woo, J. A., Zhao, X., Khan, H., Penn, C., Wang, K., Joly-Amado, A., Weeber, E., Morgan, D.,
Kang, D. E (2015). “Slingshot-Cofilin activation mediates mitochondrial and synaptic

dysfunction via A ligation to Bl-integrin conformers.” Cell death and differentiation

(2015) 22,921-934

Background

The defining pathological hallmark of Alzheimer’s disease (AD) is the accumulation of
AP in brain associated with tau pathology, synapse loss, cytoskeletal aberrations, mitochondrial

dysfunction, and cognitive decline. Soluble oligomeric forms of AP are thought to be the most
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toxic species, resulting in synaptic loss and downstream neurotoxicity (D. M. Walsh et al., 2002).
An early and consistent impairment secondary to AP} oligomer treatment in primary neurons is
the shrinkage of dendritic spines (Selkoe, 2008) involving the rearrangement of F-actin
cytoskeleton in spines and loss of spine-associated proteins such as PSD95 and Drebrin(G.M.
Shankar et al., 2007; Zhao et al., 2006), as well as impaired mitochondrial function(Du et al.,
2010; Moreira, Santos, Moreno, & Oliveira, 2001). Studies have implicated an involvement of
the F-Actin-severing protein Cofilin in AB-induced dendritic spine changes(G.M. Shankar et al.,
2007; Zhao et al.,, 2006), accumulation of Cofilin-Actin aggregates / rods in AD brains
(Minamide, Striegl, Boyle, Meberg, & Bamburg, 2000), and increased Cofilin activity in brains
of AD patients (T. Kim et al., 2013). Cofilin normally functions as a key regulator of Actin
dynamics that destabilizes F-Actin. Cofilin is inactivated by phosphorylation on Ser3 by LIMKI,
whereas its dephosphorylation by SSHI1 activates Cofilin(B. W. Bernstein & J. R. Bamburg,
2010; Kurita, Watanabe, Gunji, Ohashi, & Mizuno, 2008; Niwa, Nagata-Ohashi, Takeichi,
Mizuno, & Uemura, 2002). Upon oxidative stress and/or Ca* elevation(B. W. Bernstein & J. R.
Bamburg, 2010; J. S. Kim, T. Y. Huang, & G. M. Bokoch, 2009; Roh et al., 2013a), SSH1 is
activated and active Cofilin becomes oxidized on cysteine residues, resulting in rapid
mitochondrial translocation to promote mitochondria-mediated apoptosis and induction of
Cofilin-Actin pathology(B. W. Bernstein, Shaw, Minamide, Pak, & Bamburg, 2012; Klamt et al.,
2009). Despite the circumstantial evidence for the involvement of Cofilin in AD pathogenesis,
no direct evidence thus far has been presented.

Heterodimeric Integrins (o & [ subunits) comprise major adhesion receptors that regulate
multiple facets of cellular function, including adhesion, motility, survival, and synaptic

plasticity(Becchetti et al., 2010). A primary function of Integrins is to link the extracellular
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