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ABSTRACT

Protocol verification is an exciting area of network security that intersects engineering
and formal methods. This thesis presents a comparison of formal verification tools for se-
curity protocols for their respective strengths and weaknesses supported by the results from
several case studies. The formal verification tools considered are based on explicit model
checking (SPIN), symbolic analysis (Proverif) and theorem proving (Coq). We formalize
and provide models of several well-known authentication and key-establishment protocols in
each of the specification languages, and use the tools to find attacks that show protocols
insecurity. We contrast the modelling process on each of the tools by comparing features of
their modelling languages, verification efforts involved, and analysis results.

Our results show that authentication and key-establishment protocols can be specified
in Coq’s modeling language with an unbounded number of sessions and message space.
However, proofs in Coq require human guidance. SPIN runs automated verification with
a restricted version of the Dolev-Yao attacker model. Proverif has several advantages over
SPIN and Coq: a tailored specification language, and better performance on infinite state

space analysis.
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CHAPTER 1

INTRODUCTION

Network security is a prominent and challenging field of computer science that cross-
cuts different areas of engineering, information theory, psychology, and economics. In order
to help secure communications over insecure networks, systems use cryptographic protocols.
The design of such protocols tends to be error-prone. Even though protocol design has been a
subject of extensive study by the research community, attacks have been found on protocols
that were thought to be correct for many years [1]. In this context, formal methods are
useful because they can provide stronger assurances that protocol designs satisfy security
properties.

There are two common static analysis approaches, model checking and theorem proving,
to formally verify that protocol designs are correct. Model checking uses state transition
systems to model the behaviour of a system and then uses state exploration to find if an
undesired state is reachable (i.e. a counter-example). On the other hand, theorem proving
involves defining logical inference rules that describe the semantics of a system, and then
using mathematical tools (e.g. induction) to prove different security-related theorems.

In this thesis, we look at both methods from a practical perspective. We choose well-
established general-purpose tools for each method, and evaluate each technique by verifying
models of well-known security protocols. Furthermore, we experiment with a domain-specific
tool based on resolution logic, and compare the overall verification process and results. While
model-checking tools may be easier to use, theorem proving provides a language support for

more expressive specifications and can be used to prove security by construction. On the



other hand, specialized tools have the benefit of convenient built-in features, with more

structured specifications and attacker models.

1.1 Background

1.1.1 Security Policies and Properties

A security policy is a rule that defines specific behaviour of a system. In general, a
system can be described as “secure” if it satisfies a set of security policies. Accordingly, a
policy must remain true in all possible execution traces. A policy is usually composed of
one or more properties, each characterizing about a set of traces. Additionally, non-property
polices also exist, and are much harder to verify because they must consider the set of all
possible traces [2].

Two main categories of properties exist, safety and liveness [3, 4]. Safety properties
can be informally described as “nothing bad will happen”, while liveness properties could
be explained as “something good will eventually happen”.

In general, if a system has flaws, safety properties are a lot easier to disprove because
they only require to find one execution trace that leads to a property violation. On the
other hand, proving/disproving liveness properties is usually harder because the proof must
always exhaust all possible traces.

For our study, we are interested in two safety properties that the protocols must enforce,
namely secrecy and authentication. Secrecy ensures that data can only be seen by authorized
users. The goal of authentication is to assert that an agent is really who s/he claims to be.
The process of authentication over a network is the result of a series of message exchanges,
after which one party can assert that s/he has initiated communication with the other. A
more formal specification of these properties and the cryptographic primitives required for
enforcement will be given in Chapter 3.

Although other related properties exist, secrecy and authentication are two of the most

important building blocks for security. For example, authorization, a property that regulates



what actions agents can perform on domains and objects, requires authentication of users to
determine if s/he is allowed to access the resources, and secrecy to ensure that unauthorized
users cannot access private data. In addition, privacy, a property that ensures that some
action’s originator or agent’s presence cannot be traced, can also be stated in terms of secrecy
of the actions or presence on the network.

An earlier classification of security properties was based on confidentiality, integrity,
and availability [5, 6, 7]. Confidentiality is a property related to reading, which states that
access to assets should be granted only to authorized users. Integrity is a property related to
writing, which ensures that data has not been modified by unauthorized agents. Availability
is usually stated as a liveness property, and refers to the ability of a system to service requests
or remain operable. Clarkson presents more details of this taxonomy and related work in
8].

Another approach to specify security policies is to define policies for access control.
This class of policies regulate actions on objects by specifying which subjects and domains
can operate on those objects (e.g. file system permissions, or network access to some host).
Some of the most popular models used to specify access control policies are access control
lists (ACLs), role-based access control (RBAC) [9], and policy-based access control (PBAC).
Access matrices, as introduced by Lampson [10], are a standard way of visualizing access
control policies, in which permissions are mapped to domains and objects.

Model-checking has been successfully applied to formalize and verify different access

control systems. Among recent interesting studies, there are those of [11, 12, 13].

1.1.2 Cryptographic Protocols

Cryptography is the science that studies techniques for secure communication in the
presence of third parties [14]. A cryptographic protocol defines a set of rules for communi-
cation between different entities, providing some security guarantees. These include initial,

response, and termination requirements. Usually, the design of security protocols abstracts



the implementation of cryptographic operations and assumes perfect cryptography (e.g. en-
crypted ciphers cannot be guessed).

There are two high-level mechanisms for encryption, namely symmetric and asymmetric
cryptography. The idea of symmetric (secret-key) cryptography is simple, the key must
remain secret and only the parties that hold the key can encrypt or decrypt messages.
Assuming perfect cryptography, a more interesting problem is the initiation process, i.e.
establishing a shared-key, which is usually achieved using asymmetric encryption (public-
keys).

Public-key cryptography is based on the use of trapdoor functions, i.e. a one-way
function with a secret inverse function f~! that allows the possessor of it to go back to f at
any time [15]. Public-key cryptosystems usually consist of key generation, encryption, and
decryption algorithms [16]. Compared to shared-key cryptography, using public-keys is more
convenient for authentication services (authenticating many users using secret keys would
require users to store a large number of keys that must remain secret). Notice, nonetheless,
that using public keys requires some public key infrastructure for the exchange of public
keys. Moreover, public-key cryptography can be used to generate digital signatures in order
to maintain private communication. Nevertheless, public-key cryptography is rarely used to
encrypt entire communications because it is significantly slower than secret-key cryptography.
Therefore, one of the most common uses of public-key cryptography is to authenticate two
parties and establish a shared secret key that can be used later to encrypt the rest of the
communication.

RSA is a major cryptosystem implementation used to provide asymmetric cryptography.
It relies on mathematical properties of numbers (specifically, the factoring problem) to allow
an exchange between two parties who are able to use public and private keys to communicate
securely over an insecure network. The security of this system is based on the assumption

that computing the secret key is unfeasible, i.e. an NP-complete problem for the attacker.



1.1.3 Authentication and Key-Establishment

To preserve secrecy of data transmitted over an insecure network, either symmetric or
asymmetric encryption may be used. In practice, though, asymmetric encryption is orders
of magnitude slower and more expensive than its symmetric counterpart. Yet, establishing
a shared secret key is an unavoidable problem. If a passive attacker can be assumed, ex-
ponential key exchange (as described by Diffie-Hellman [16]) might be used. However, as
this is not the general case, key-establishment usually requires the execution of a protocol
that relies on asymmetric encryption and an infrastructure for managing public-keys (such
as one that uses certificate authorities). The focus of this thesis is on verification of protocols
that establish authentication and secret keys. Thus, the verification process must present
evidence that authentication cannot be masqueraded, and that the secret keys cannot be

seen or altered by an attacker.

1.2 Motivation

1.2.1 Protocol Design Issues

Designing secure protocols is an error-prone process. Protocol designs must be analyzed
very carefully to avoid logical flaws. It is difficult to reason about protocols because one
must consider concurrency, distributed systems, cryptography, sound mapping of designs to
implementation, and an unknown attacker. History shows that attacks have been found even
many years after the protocols were introduced and widely deployed [1]. Table 1.1 shows

important examples that demonstrate this point.

1.2.2 Protocol Verification

Even though protocol verification began more than 30 years ago, it is still an active
area of research. There are two main approaches, model checking and theorem proving, and

a vast number of verification tools exist for each method. Therefore, it becomes difficult for



Table 1.1: History of protocol design and flaws found

Year | Description

1978 | Needham & Schroeder proposed authentication protocols for large networks [17]

1981 | Denning & Sacco found attacks on the Needham-Schroeder protocols and proposed
modifications [18]

1983 | Dolev & Yao created the first threat model using formal algebra [19]

1987 | Burrows, Abadi & Needham defined a logic for authentication [20)]

1994 | Hickman developed first version of SSL (issues in v1 and v2; fixed in v3) [21]

1994 | Ylonen created SSH [22]

1995 | Abadi & Needham proposed protocol design good practices [23]

1995 | Lowe found an attack on the NS protocol (17 years later) [24]

2002 | Stubblefield et al. described a WEP design flaw that allowed for a key recovery
attack [25]

2002 | Vaudenay described a design flaw and attacks that affected SSL/TLS, IpSec,
WTLS and SSH protocols

2005 | Gilgbert et al. found an attack on HB+ RFID authentication protocol [26]

2008 | Armando used model-checking to show how to break the SAML-based single sign-
on protocol for google apps [27]

2012 | Kahya, Ghoualmi & Lafourcade found attacks on PKM, the security protocol used
by WiMAX networks [28]

2014 | A design issue was found on the SSL 3.0 protocol [29]

2014 | Cao, et al. found design issues in Oauth and OpenID protocols [30]

protocol engineers to find the right tool to use. A primary goal of our study is to bring some

light to this issue. We evaluate the different tools, and provide insights to help protocol

engineers choose the right verification technique.

Moreover, the lack of case-studies has always been a weakness of formal methods which,

in some way, has prevented its wider adoption by engineers without a strong formal mathe-

matical background. This thesis intends to fill in this gap by providing a new set of protocol

models in three different specification languages and the results of running each tool.

Additionally, researchers working on either model-checking or theorem-proving may

benefit by learning how one approach compares to the other, applied to the specific domain

of cryptographic protocol designs. Finally, we aim to use the results of our analysis to lay

out future research opportunities by surveying some of the most relevant works in this area,

which is abundant and challenging to mine.




1.2.3 Verification Tools

In order to evaluate the approaches of model-checking and theorem proving, we have
chosen two of the most prominent existing tools, namely SPIN and Coq.

SPIN [31] is a mature model-checker (first released in the early 1980s by Holzmann),
that has been adopted by industry, particularly in the hardware verification domain. It
uses a finite state automata representation, which reflects the essence of the model-checking
approach. SPIN has been used to verify security protocols [32, 33], although the number of
available case-studies in this area is limited. In 2014, Ben Henda [34] presented an approach
to encode generic attackers using the Dolev-Yao model [19]. This paper motivated our study;
we wanted to find out if a generic approach could be extended to other tools, and how would
these tools compare to each other.

On the other hand, Coq [35] is a well-established general purpose theorem prover. Tt
has been used to verify security protocols [36, 37], but the number of published case-studies
that use this tool for protocol verification is also rather small. This limitation was another
motivation for us to choose this theorem-proving tool.

Another motivation is to compare and contrast general purpose tools against a domain-
specific one. For this reason, we have chosen to use the symbolic model-checker Proverif
[38]. One of Proverif’s interesting features is that it allows to verify protocol runs for an
unbounded number of sessions. Its powerful modeling language, the applied pi-calculus,

based on [39], is also an attractive feature. More on this topic will be covered in Chapter 3.

1.2.4 Security Protocols

For analysis, we have chosen a representative sample of authentication and key-distri-
bution protocols. Particularly, we focus on protocols with authentication and secrecy goals.

The protocols used in this study are those proposed by:

- Needham and Schroeder (NSPK) [17],



- Denning and Sacco (DS) [18],
- Tatebayashi, Matsuzaki and Newman (TMN) [40],

- Diffie and Hellman (DH) [16].

The NSPK, one of the most analyzed protocols in the literature, has become a canonical
example in protocol verification. In this thesis, we analyze both a simplified version and the
full version. The DS protocol, also extensively studied, demonstrates the use of signatures
with asymmetric encryption. The TMN protocol is one of the first authentication protocols
designed for mobile networks. Apart from its historic connotation, it serves as an interesting
example because of its use of Vernam encryption techniques, i.e. XOR functions, a technique
commonly used in cryptography!. Finally, DH is one of the most significant protocols in the
history of cryptography. Many protocol families have been derived from the idea of using
exponentiation for an unauthenticated agreement of a shared key between two parties. Many

widely-used protocols, such as SSL and TLS, rely on this technique for key-establishment.

1.3 Related Work

In 1996, Meadows [41] compared FDR [42] and NRL [43] model checkers by analyzing
a model of the Needham-Schroeder public key protocol. FDR is a refinement checker that
only works on finite-state systems. It was replaced by FDR2 in 1995, and more recently by
FDR3. NRL is a logic-rewriting system that can verify infinite-state systems based on Prolog,
which was later replaced by Maude-NPA. Our study is more comprehensive and current than
Meadows’ work. This thesis analyzes more protocols with different cryptographic primitives,
and includes theorem proving in the analysis.

Among the most recent studies, Patel et al. [44] compared FDR, AVISPA, HERMES,
Interrogator, NRL, Brutus, Murphi, Proverif, Athena, and Scyther model-checkers. Their

study only evaluated models in Scyther (the modeling process was not evaluated for the

"Vernam encryption is used in one-time-pads, which are implemented in RC4, a popular stream cipher
that is widely used over the Internet [14].



other tools), and the metrics used for comparing the verification process were limited to the
following yes/no questions: public availability of the tool, falsification, bounded /unbounded
verification, and termination. This thesis provides models for all the tools compared and
does a more extensive analysis.

In 2011, [45] compared CSP/FDR with other techniques for finding attacks on protocols,
namely manual proofs using Strand spaces and BAN logic, and ALSP (Action Language for
Security Protocols). Notwithstanding, this thesis is focused on existing tools that do not
require manual construction of proofs.

In [46], Avalle surveyed formal analysis of security protocols, but focused on implemen-
tations; more specifically it analyzed code generation and model extraction mechanisms and

did not consider analysing models with the tools used in this thesis.

1.4 Contributions
The following is a list of the contributions of this thesis:

- It reviews the extensive related work of protocol verification with a focus on relevant
case-studies. Despite the abundant literature, no previous surveys have approached

the topic in this manner, from a practical and comparative perspective.

- It extends the number of case-studies of security protocols using some of the most
prominent formal methods tools, and make the models publicly available?. We demon-
strate with examples the benefits of applying formal methods to find protocol attacks,
and provide source code of the models that can be used as a reference in the future
by other engineers/researchers. We describe in detail how to encode protocol descrip-
tions, attacker models, and security properties in a way that can be generalized for

other protocols of the same class.

http://myweb.usf.edu/~hpalombo/models/



- It provides a comparison of the modeling and verification process using the two most
common formal techniques, model checking and theorem proving. As a further matter,
we generalize our encoding approach by showing how to formalize all the necessary

cryptographic primitives for security protocol verification using any formal tool.

- It analyzes pros and cons of using specialized versus general-purpose tools, and discuss

the modeling process and type of results that can be obtained with each.

Although others have attempted to compare different verification tools, we are not
aware of other studies that have compared modeling and analysis of both model-checking
and theorem-proving, general-purpose and tailored tools with the level of detail presented
here. For all of the reasons mentioned above, our work provides a valuable and unique
contribution.

In summary, three new findings are presented in the following chapters that form the

core of this thesis:

1. We can generalize the process of modeling security protocols to build models for, at

least, three different classes of verification tools.

2. The results of the experiments show that well-known attacks can be found using any

of the three tools, but different attack models must be considered in some cases.

3. The three tools can be compared in terms of the suitability of their modeling languages

to encode cryptographic protocols, and the characteristics of the verification results.

The modeling framework presented in this thesis is applied to several case studies and
interesting conclusions are derived after comparing the results. The case studies considered
in this thesis are a representative class of authentication and key establishment protocols.
Our comparison does a thorough analysis of the results that can be obtained for different

attacker and protocol models, and sets a road that may direct to future research.

10



1.5 Outline

Chapter 2 presents the reader with background on static analysis tools, and describes
model-checking and theorem proving techniques. Chapter 3 explains how to model protocol
specifications, from informal narrations to formal specification logics. It also shows how
to encode cryptographic primitives, attacker models, authentication and secrecy properties.
Chapter 4 describes the models of four protocols (NSPK, DS, TMN, and DH) using each of
the three different tools, and shows the results of the verification process. Chapter 5 presents
a comparison of the modeling and verification process for each of the tools. Finally, Chapter
6 discusses some of the issues with symbolic protocol models, explores opportunities in code
generation and model extraction techniques, and concludes this thesis by setting the grounds

for future work.

11



CHAPTER 2

BACKGROUND OF VERIFICATION TOOLS

2.1 Static Security Enforcement

There are two major approaches for security enforcement: static and dynamic analysis.
Two common examples of dynamic mechanisms are runtime monitors and dynamic typing.
Despite the benefits of real-time monitoring, the performance penalty introduced by these
methods can be significant and, in many cases, static analysis is a better solution.

As Schneider explains in [2], runtime monitors cannot check for some non-property
policies, such as one that states that information always flows from x to y, because this
condition depends on all possible execution traces. On the other hand, a model checker can
sometimes verify such information-flow policies by searching for a counter-example, i.e. a
trace that leads to an invalid state in which information does not flow from x to y.

Static enforcement is a broad term that may refer to techniques that range from code
analysis to type-checking, model-checking, and theorem proving. In this thesis, we limit
our scope to model checking and theorem proving. Yet, type-checking is closely related to
theorem-proving. For instance, the calculus of constructions (CoC), the underlying logics of
Coq, is a theory of types that serves both as a typed programming language and a founda-
tion for constructive proofs [47]. In standard programming languages, type-checking is fully
automated, and achieves soundness by restricting allowable programs and sacrificing com-
pleteness. On the other hand, human-guided proof construction using interactive theorem

provers does not have this limitation.

12



2.2 Model Checking

More than three decades ago [48], model checking has emerged as an alternative tech-
nique to manual proof construction for asserting properties about systems. Properties are
specified in some form of propositional calculus, for example, linear temporal logic (LTL)
[49, 50], or computational tree logic (CTL) [51]. Systems are modelled as transition graphs,
where each node represents a possible state. For many practical systems, though, the state
space may become extremely large, leading to the state-explosion problem, i.e. the number
of states in a system grows exponentially as the number of variables increases.

Depending on the representation of the state space, model checking is either explicit or
symbolic. Explicit model checking is based on enumerating all possible states of a program,
resulting in a directed graph representing all reachable states and their transitions. Then,
the decision procedure explores each path until, either a counter-example is found (property
is unsatisfiable), or all the paths have been explored (property is satisfied). Until the 90s,
explicit model checking was a popular technique in formal methods research. This method
works well for checking LTL properties on small systems. However, when larger systems
are considered, the memory requirements caused by the state explosion problem are so large
that explicit model checking becomes impractical.

To cope with the state explosion problem, many optimization techniques were devel-
oped and integrated into existing tools for asynchronous systems. Particularly, partial order
reduction prunes the state space by eliminating non relevant states/transitions to properties
under verification [52]. Bit-state hashing is another technique that focuses on state space
coverage instead of completeness. It limits memory usage by indexing each state into a hash
table of bits [53].

SPIN features these and other optimization techniques, which make it a prominent

general-purpose model-checker that is still widely used today'. Another popular explicit

Thttp://spinroot.com /spin/Workshops/

13



model-checker is Java Path-finder (JPF) [54], which started as a Java to Promela® transla-
tor, and then developed its own model-checking engine. While Promela is closer to the C
language, JPF is naturally tied to verification of Java programs.

Symbolic representation is an alternative approach that can be applied to verify larger
systems. Symbolic model-checkers encode transition systems as boolean formulas. Early
tools were implemented using binary decision diagrams, while tools developed later use
boolean satisfiability solvers. Some of the most popular symbolic model checkers are NuSMV,
which was first published as SMV by McMillan in 1993 [55]. More recent symbolic model
checkers are based on SMT solving [56] applied to system encodings with various theories
on first order logic.

Despite the improvement over explicit representations, symbolic model checking can-
not deal very well with recursion. Bounded model checking tries to solve this problem by
imposing a fixed bound on recursion. This technique became popular in the early 2000s.
Although it is generally incomplete because decision procedures may not terminate as the
bound increases, in practice it is enough to disprove properties since counter-examples can
often be detected with a small bound.

In general, model checkers’ modeling languages provide features to describe state-
transition systems. For example, Promela’s labels and goto statements allow users to specify
state transitions, and ¢ f blocks can be used to capture non-deterministic selection behaviour.
Even symbolic model-checkers use this representation. For instance, the symbolic model
checker Uppaal has a graphical interface that allows users to draw networks of timed au-
tomata. A different approach was taken by the bounded model checker Alloy [57], which has
an input modeling language based on set relations.

Table 2.1 shows related work in which security protocols were verified using model
checking techniques. One of the early studies that used a model checker to verify security pro-

tocols is described in [58], where the Needham-Schroeder, Tatebayashi-Matsuzaki-Newman,

2Promela is SPIN’s modeling language.
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Table 2.1: Case studies using model checkers to verify security protocols

Work | Description

[58] Mitchell et al. used Murphy to verify the several authentication protocols
] Merz analyzed a simplified version of the NSPK protocol using SPIN

3] Maggi and Sisto used SPIN to verify the NSPK protocol
)

59 Cheminod et al. verified protocols from the SPORE repository [60] using the
model checkers FDR, STA, S3A, and OFMC
[61] Cremers compared execution time of verification in Avispa, FDR, Proverif and

Scyther
[62] Dupressoir et al. used VCC to verify the RPC and Otway-Rees protocols

and Kerberos protocols are analyzed using Murphy [63]. Several studies have modelled the
Needham-Schroeder public key exchange protocol and verified it using SPIN [32, 33]. In [62]
Dupressoir et al. used the general-purpose C model checker VCC [64] to prove secrecy and
authentication on the RPC and Otway-Rees protocols.

Moreover, Cheminod et al. compared four model checkers (FDR, STA, S3A, and
OFMC) to verify a number of protocols in [59, 60]. Their results only showed which tools
can find known attacks, but the study did not analyze the modeling process for each of the
tools. In [61] execution time was compared for several model checkers (the tools in Avispa,
FDR, Proverif and Scyther) by verifying the NSPK, EKE, and TLS protocols to find known

attacks. Proverif shows the best performance among the tools considered.

2.3 Theorem Proving

Proof construction has followed two major currents in computer science: automated
provers, and proof assistants. Automated provers offer a “push-button” solution, i.e. they
take a proposition and give a yes/no (or ran-out-of-time) answer [65]. On the other hand,
interactive theorem provers®, also known as proof assistants, automate some basic aspects

of building proofs while they still depend on human guidance for more challenging tasks.

3For simplicity, throughout the thesis we refer to interactive theorem provers using the general term
theorem provers.
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In this thesis, we focus on comparing a model-checker, a resolution verifier, and a theorem
prover. Therefore, the rest of this section will have a focus on theorem proving.

Theorem provers can be used in two ways, either to prove a system’s security or to
show its insecurity. Showing insecurity implies demonstrating that an attack is possible, i.e.
prove that a conjecture can be derived given a logical deductive system. Proving security is
a harder task, in which proofs must be completed by construction.

Proof development is a NP-complete problem, and human interaction is required. More-
over, the learning curve is steep. In order to be able to construct proofs, engineers must
have strong foundations in logic and mathematical tools such as induction.

Nevertheless, theorem provers facilitate the proof construction process by providing an
environment with helpful resources and libraries. For example, Coq has a tactics library
that consists of predefined —and extensible— functions to automate some steps in a proof. In
addition, proofs are grouped in theories, and these are built in a modular way. Theories are
organized in hierarchical structures that can be included when writing new proofs.

Theorem provers allow to verify infinite protocol runs and message spaces, as opposed to
model-checking techniques, in which protocol sessions are always bounded or the algorithms
may not terminate. While model-checkers verify models by searching for counter-examples,
interactive theorem provers use type theory to derive facts about terms.

Some of the most popular proof assistants that have been used to prove security prop-
erties of systems are Isabelle [66], Coq [35], LEGO [67], PVS [68] and ACL2 [69]. Table 2.2

summarizes relevant works in this area.

2.4 Specialized Tools

Several model checkers have been specially designed to verify security protocols. For
example, SATMC is a bounded model checker that uses a SAT-solver to verify protocol
specifications written in the ASLan language. Internally, SATMC uses NuSMV to gener-
ate SAT encodings for the LTL formulae and MiniSAT to solve the SAT problems [74].
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Table 2.2: Case studies using theorem provers to verify security protocols

Work | Description

[36] Bolignano used Coq to prove security properties of electronic commerce protocols

[70] Dutertre and Schneider used PVS to prove secrecy and authentication of the
Needham-Schroeder Public Key Authentication Protocol

[71] Paulson used Isabelle to prove secrecy and authentication of the Needham-
Schroeder Public Key Authentication Protocol

[72] Meng et al. presented an automated proof of resistance of denial of service attacks
using events

[73] Meier et al. added semantic rules to the Isabelle theorem prover to handle security
protocols and presented an algorithm for mechanic construction of proofs

[37] Cheng et al. described a program logic for verifying secure routing protocols
(Coq)

Furthermore, it has been integrated into several frameworks, such as the AVISPA project
[75], which provides several back-end model-checkers for protocols specified in HLPSL, a
high-level protocol specification language. Among those model-checkers, OFMC [76] is an
on-the-fly model checker for infinite-state systems. It uses lazy and demand-driven search
techniques for modeling a Dolev-Yao intruder. Another framework is the Casper/CSP/FDR
approach, which combines the Casper specification language [77] to translate a protocol’s
high-level description into a Communication Sequential Process (CSP) description; CSP is
the input language to FDR3 [78], a refinements checker. All of the tools previously described
can find attacks for a bounded number of sessions.

Protocol verification for an unbounded number of sessions has been shown to be an
undecidable problem [79, 80]. There are two approaches to deal with this issue, either to
abstract the models (e.g. Proverif), or to allow non-termination [81]. Proverif uses reso-
lution techniques with over-approximations, which may report false attacks. On the other
hand, Maude-NPA [81] is based on a term-rewriting algorithm with several heuristics to
reduce the possibility of non-termination. Other specialized tools that have been developed
for security protocols are HERMES [82], CL-Atse (Constraint-Logic-based Attack Searcher)
[83], TA4SP (Tree-Automata-based Automatic Approximations for the Analysis of Secu-

rity Protocols) [84], and Scyther [85]. Among more recent studies using specialized tools,
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Kusters and Truderung [86] used ProVerif to analyze protocols with Diffie-Hellman exponen-
tiation. Kahya et al. [28] presented a formal analysis of the PKM protocol using Scyther.
Cheval and Blanchet [87] proved anonymity in the private authentication protocol [88] using
ProVerif. Elbaz [89] analyzed and verified a key agreement protocol over cloud computing
using Scyther.

Even though some studies have analyzed security protocols using different tools, none
of those studies have examined a common modeling framework that can be applied to verify
protocols using model-checking, theorem proving, and specialized tools. In order to fill this

gap, in the following chapter we describe a generalized modeling framework.
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CHAPTER 3

FORMALIZATION OF SECURITY PROTOCOLS

Security protocols can be specified at different levels of abstraction. Protocol narrations
are a natural way of describing interactions between agents who participate in a protocol
[90]. Nevertheless, narrations only describe expected message exchanges, and leave some
agents’ actions unspecified. Therefore, more explicit formalisms are needed in order to
verify correctness of such protocols.

In this chapter we describe some of the issues with informal protocol narrations. We
then survey relevant formalisms for specification of security protocols. We present a gen-
eralized modeling approach that we use for comparison of the different verification tools.
Later, we explain how to model protocols and properties for each of the verification tools
considered in this study. We conclude the chapter with a discussion of diverse approaches

to protocol instantiation.

3.1 Informal Protocol Narrations

Traditionally, high-level specifications of security protocols have been written using
protocol narrations [91], which describe a correct execution trace as a sequence of message

exchanges between the parties involved in the protocol. For example,

1. A— B: {NAyB}PKB
(3.1)
2. B— A: {NA}PKA
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means that A sends a message to B containing a fresh nonce N4 generated by A and B’s
identity, encrypted with B’s public key PKp. Then B replies to A by sending the received
nonce encrypted with the public key of A, (PK,4). The numbers at the beginning of the
lines show the order in the exchange sequence and are incremented every time a message is
sent/received. Messages can be extended by adding values separated by commas.

Most cryptographic operations can be represented in this format. Nonetheless, protocol
narrations are sometimes ambiguous. In order to capture agents’ behavior precisely, we need
to add important details that happen between transitions. For instance, B sends Message
2 in Protocol 3.1 only if the name identifier in Message 1 matches his own name. These
constraints are important to reduce the message space and avoid incorrect results, e.g. false
attacks.

Another source of ambiguity is the implicit initial knowledge. Apart from knowledge
about its own identity, an agent may know some information about other agents at the start of
the protocol. For example, in some cases, it is desirable to assume that a client’s registration
phase has completed successfully before the protocol starts. Therefore, we assume that
the server trusts its own copy of A’s public key. This assumption is part of an assumed
trust base. The consequence of this assumption is that the server is able to detect a forged
message that is supposed to come from A if it is encrypted with another key that is not
PK 4. This assumption can be modeled as an action through which the server checks if the
incoming message contains PK 4 before continuing with the protocol. Neither the honest
agent’s initial knowledge nor their intermediate actions are captured by protocol narrations.
More ambiguities are due to an implicit attacker model, i.e. the attacker capabilities are not
specified in protocol narrations.

Several authors have attempted to translate protocol narrations into process algebras
for verification. Bodei et al. [92] describe how to translate protocol narrations into the Lysa-
calculus, a formalism similar to the spi-calculus but without channels. Briais and Nestmann

[93] have attempted to develop translators from protocol narrations into the pi-calculus.
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In all cases, however, the translation requires human intervention to disambiguate implicit
assumptions that the input notation does not capture, and the translation cannot be fully

automated.

3.2 Formal Modeling Languages

There are different approaches to formalizing protocols for the purpose of verifying their
security properties. Common formalisms used to model security protocols are BAN logic [20],
CSP (Communicating Sequential Processes) [94], and Strand spaces [95]. A comparative case
study of BAN-logic, CSP, and Strand spaces applied to the Needham-Schroeder protocol can
be found in [96].

BAN logic is a formalism that describes protocols using a deductive system of beliefs,
which gained some popularity in the early 90s. However, the protocol’s “idealization” [97]
and facts that must be assumed may leave out important details, and make BAN proofs
unsound [98]. BAN proofs can only show authentication properties, assuming confidentiality
and integrity of the underlying cryptographic system. Most importantly, the logic does not
have precise semantics for its operations [99].

CSP is a process algebra developed by Hoare [94] in the late 70s. CSP semantics are
more general, i.e. it can be used to describe any communication process. Inspired by parallel
hardware implementations, Hoare’s goal was to include parallelism and non-determinism as
structural features of a language. A failures-divergence refinement checker (FDR) was later
introduced by Roscoe in [100] as a model checker for CSP programs. Despite the benefits
of the tool, modeling in CSP still remains a difficult task. Later, Lowe developed CASPER
[101], a compiler to translate specifications in a high-level language into CSP.

Strand spaces, developed by Guttman et al. [95], represent sequences of events in secu-
rity protocols. Strands may represent actions of both honest agents and attackers connected
by causal events. Despite being useful to prove correctness of many protocols, the mechan-

ics of proofs using strand spaces are very detailed and somewhat complicated [102]. This
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modeling framework was implemented later in Athena [103], a specialized model-checker for
security protocols.

The pi-calculus is a functional language similar to the lambda-caluclus designed to
describe concurrent processes [104]. It provides channel primitives, which can be used to
represent communications. Nevertheless, the pi-calculus does not have cryptographic primi-
tives built in, and encryption must be encoded (this is achieved with some effort in [39, 105]).
Based on this fact and the idea that scoping is the basis of security property enforcement,
several variants of the pi-calculus have been proposed and used in the context of security
[39] [106]. Proverif models can be written in the applied pi-calculus [107], an extension of
the pi-calculus with function symbols that can represent data structures and cryptographic
operations.

In explicit state model checkers, protocols are represented using automata. Their mod-
eling languages reflect the underlying formalism. In SPIN’s modeling language, Promela, a
system is the composition of each agent’s automaton, which is described as a process and
details the agent’s participation in the protocol. Send and receive actions are synchronized
events on shared channels that are primitive language constructs. An attacker is usually
represented by an independent automaton, and the state transition diagram of the entire
system is generated by the interleaving of all possible transitions.

Theorem-provers use an inductive approach to specify protocols. For example, Coq’s
modeling language is based on the theory of types, which has features such as inductive
definitions and type inference. A protocol description has a set of rules that correspond to
actions of agents and attackers. Security properties are stated as lemmas which are then

proved inductively. The same approach is used in Isabelle and other theorem-provers.

3.3 A Generalized Modeling Approach

Despite differences in modeling frameworks, a general framework for modeling and

verification of security protocols should support (a) formal protocol description, (b) attacker
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modeling, and (c) property specification. Moreover, depending on the verification technique,
the framework must provide a way to instantiate the protocol in order to discover potential

attacks. Figure 3.1 shows a high-level view of the modeling process.

Variables .
(arlen s Cryptographic Channel
genes, operations operations
nonces, etc)
Initial Protocol Properties
. . bertt Attacker model
assumptions description specification
Verification Protocol
model instantiation
Analysis

Figure 3.1: Modeling cryptographic protocols for verification

A formal protocol description is defined with a set of initial assumptions, and sequences
of operations that represent interactions between agents. Moreover, it requires other prelim-
inary definitions: a set of values that form messages (agents, nonces, etc), some communica-
tion channels, a set of input/output functions (send, receive) that operate on those channels,
and a set of cryptographic operations.

Some typical cryptographic operations are encryption, digital signatures, hashing, and
Diffie-Hellman exponentiation. To represent cryptosystems, the framework should provide
a way to generate keys, encrypt, and decrypt messages. Simmilarly, digital signature opera-

tions require key generation, sign and signature verification functions.
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Initial assumptions are another important aspect of the modeling process. Unambiguous
models must explicitly define the variables that each agent knows before the start of the
protocol. In general, most models assume that every agent has access to all public keys and
cryptographic functions. On the other hand, nonces and secret keys are kept private to their
respective owners.

The attacker model refers to the attacker’s initial knowledge and all the attacker’s
potential actions. For example, a Dolev-Yao (DY) attacker [19] may be able to spy, intercept,
or inject messages at will. A more restrictive attacker can be specified, e.g. a passive
eavesdropper, significantly reducing the message space.

A model must also include some security properties to be checked, sometimes called ver-
ification goals. Proofs of (in)security will be bound to the properties specification. Therefore,

formulation of the properties is an important matter.

3.3.1 Communication on Shared Channels

In general, communications in authentication and key-establishment protocols occur on
shared channels. Therefore, real source and destination of messages cannot be guaranteed.
In order to capture the possibility that an attacker may intercept a message, we abstract
away the identity of the addressee in all the send actions. Similarly, we abstract the sender’s

identity from receive operations to consider attackers message injection capabilities.

1.A— X: {NA7X}PKX 1. A= X {NAaX,}PKX/
1Y - B: {Ny,B}pKB 1Y = B: {Ny/,B}pKB
2. B—=Y: {NA}PKA 2. B—-Y": {Ny/}p}(y,
2. X - A: {NA}PKA 2. X" - A {NA}PKA
(a) Interlocutors abstraction (b) Restrictions relaxation

with strong restrictions

Figure 3.2: Modeling communication for different attacker models
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The augmented message sequence for Protocol Narration 3.1 is shown in Figure 3.2a.
Noteworthily, our abstraction maintains the relations between message elements. For exam-
ple, the identity X in the body of message 1’ must match the public key used to encrypt the
message. Moreover, this formalization further restricts the message space by requiring that
the addressee of message 1 by A matches the identity in the body of the message, and the
public key used to encrypt the message. We call this restriction a strong one. A more relaxed
version is shown in Figure 3.2b, in which addressor/addressee may not match the message
elements (e.g. X and X’ in message 1), and there is no relation of identities between different
messages in the sequence (e.g. X and X” in messages 1 and 2 respectively). Ultimately,
the decision to use strong or relaxed restrictions will depend on the assumptions about the
protocol and the attacker model. For instance, to model a more powerful attacker, a relaxed
protocol description should be used. In the case studies presented in Chapter 4, we try more
restrictive attacker models first and, if no attacks are found, the message restrictions are
relaxed to extend the message space. The remainder of this chapter explains how to model
security protocols and their properties for each of the verification tools considered in this

thesis.

3.4 Modeling in SPIN, Proverif, and Coq

In this section, we describe how to use the general modeling framework to develop
protocol models and property specifications for SPIN, Coq, and Proverif. Our ideas are
rooted in the works by [34, 108, 38]. Full syntax of specification languages for these tools
can be found in [109, 110, 38]. As a general convention in all our models, we capitalize types,
use all upper-case letters for constants, and lower-case for function names. Next, we discuss

general aspects of models for each of these tools.

25



3.4.1 Cryptographic Operations

A main requirement for specifying security protocols is to encode cryptographic opera-
tions. Our assumption of perfect cryptography allows us to abstract away the implementation
details, and focus on the functional behavior of cryptographic constructs.

In Figure 3.3a we show how to represent asymmetric and symmetric key generation by
defining functions that map agents to public, secret, and shared keys. Figure 3.3b shows

common cryptographic operations used by authentication and key establishment protocols.

For all agents z,y:
pk(z) is the public key of z,
sk(x) is the secret key of x, and

ss(z,y) is the shared secret key between = and y.

(a) Key generation

For all agents z,y and messages m:

aenc(m, pk(x)) (asymmetric encryption)
adec(aenc(m, pk(z)), sk(x)) =m (asymmetric decryption)

senc(m, ss(x,y)) (symmetric encryption)
sdec(enc(m, ss(z,y)), ss(z,y)) =m (symmetric decryption)

sig(m, sk(k)) (signatures)

verif_sig(sig(m, sk(k)), pk(k)) =m (signature verification)

hash(m) (hash functions)

vernam(a, b) (Vernam encryption)
vernam(vernam(a,b),a) = b (Vernam decryption)
exp(exp(g,x),y) = exp(exp(g,y),x) (DH exponentiation, where g is an

agreed value)

(b) Common operations

Figure 3.3: Definitions of cryptographic functions
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At a high level, any language with functions will suffice for encoding cryptographic
operations. However, there are some subtleties. For example, some operations, such as the
Diffie-Hellman exponentiation, describe equivalence properties between functions. Moreover,
encoding some operations using standard types requires careful thought.

From a computation perspective, we can think of cryptographic operations having one
of two types, constructors or destructors [38]. Encryption, signature, and hashing functions
are constructors, as they introduce new terms. On the other hand, destructors eliminate

terms. Decryption and signature verification are two examples of destructor functions.

1 | Inductive key : Set :=

2 PK : agent -> key

3 | SK : agent -> key

4 ce

5 | Inductive message : Set :=

6 Name : agent -> message

7 | Key : key -> message

8 | Enc : message -> key -> message
9

Figure 3.4: Inductive types in Coq

We define one-way functions as having no body, so they cannot take an evaluation step.
This representation of cryptographic operations is easy to implement in Coq and Proverif.
In Coq, inductive types have constructors which can represent one-way functions that will
be carried around as predicates. We specify constructors for keys and messages (Figure 3.4),

and also for cryptographic functions (Figure 3.5).

1 known : message -> Prop :=

2 | aenc : forall m a, known m -> known (Enc m (PK(a)))

3 | adec : forall m a, known (Enc m (PK(a))) -> known (Key (SK a)) ->
known m

Figure 3.5: Cryptographic functions in Coq

Proverif allows the user to define constructor and destructor functions, so we use them

for operations like encryption and decryption (Figure 3.6).
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1 |fun pk(skey): pkey.
fun aenc(bitstring, pkey): bitstring.
3 |reduc forall x: bitstring, y: skey; adec(aenc(x,pk(y)),y) = x.

Figure 3.6: Cryptographic keys and functions in Proverif

In SPIN, we must make careful decisions to minimize the state space, so in the models
we use constants wherever possible. For example, agents, nonces, public and secret keys are
labelled indices of a user-defined array. Then, to find if a value is an agent’s public or secret

key, we define macros that just offset the function’s input value. An example can be seen on

Figure 3.7.

1 |#define PK(x) x - j

2 |#define SK(x) x - (j + 3)

3

4 |mtype = {...A, B, I, ...(j other constants)..., PKA, PKB, PKI, SKA, SKB,
SKI...}

Figure 3.7: Key constructors in SPIN

A call to PK(x), where z is an agent A, B, or I, will return PKA, PKB, or PKI
respectively. Moreover, decryption is achieved by evaluating the last field of an incoming

message (Figure 3.8).

proctype Responder (mtype b) {

comm?msg, eval (PK(b));

= N

Figure 3.8: Decryption in SPIN

The receive operation (denoted by “?”) of message msg on channel comm will only step
if the last field of the message matches the public key of b.
Furthermore, we use constants to abstract certain properties of operations that depend

on equivalences. For instance, Figure 3.9 shows how Diffie-Hellman exponentiation can be
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hard-coded using a macro definition. Thorough this representation, we are able to prove

some attacks (e.g. a MITM) that work for —at least— a bounded number of sessions.

1 |# define IsDHKey(x) (x <= 3)

2

3 |mtype = {NULL, Sec, A, B, I, Ga, Gb, Gi, Kab, Kai, Kbil};
4

5 |# define DHKey(eny, x, k) if \

6| :: (x==A) && (eny==Gb) -> k=Kab\
7 (x==B) && (eny==Ga) -> k=Kab\
8 t: (x==A) && (eny==Gi) -> k=Kail\
9 t: (x==I) && (eny==Ga) -> k=Kai\
10 i (x==B) && (eny==Gi) -> k=Kbi\
11 i (x==I) && (eny==Gb) -> k=Kbi\
12 :: else k = NULL\

13 | fi

Figure 3.9: Diffie-Hellman exponentiation in SPIN

In Proverif, we can define functions as equivalence relations. This is useful to represent

properties like the Diffie-Hellman exponentiation (Figure 3.10).

const g: G.

fun exp(G, exponent): G.

equation forall x: exponent, y: exponent;
exp(exp(g, x), y) = exp(exp(g, y), x).

=W N

Figure 3.10: Diffie-Hellman exponentiation in Proverif

In Coq, we define constants to represent the calculated values in Diffie-Hellman ex-

change (in the same manner as it was done in SPIN).

3.4.2 Attacker Models

The most commonly used attacker model is the one presented by Dolev-Yao (the
DY model) [19], which assumes perfect cryptographic properties (cryptographic primitives
treated as black-boxes), and a non-deterministic behavior of the intruder. Verification of
models with DY attackers is done symbolically, as opposed to computational models that use

probabilistic methods and take into consideration algorithmic complexity of cryptographic
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operations. In the computational model, messages are bitstreams, cryptographic primitives
are functions that operate on them, and the attacker is modeled as a any probabilistic
polynomial-time Turing machine [111].

The assumption of perfect cryptography in the DY model implies that the attacker
cannot guess secret keys. Typical attacker actions in this model are eavesdropping, injection,
and interception of messages. The DY attacker model is simple and powerful; its behavior
is non-deterministic, and the message space is infinite.

Ideally, verification with unbounded settings is desired. However, it is not always pos-
sible on every tool. For example, it is not possible to model an attacker with unbounded
storage space in SPIN. Therefore, the capabilities of each attacker model must be explicitly
defined. In our modeling framework, a DY attacker with unlimited storage and message
generation capability is denoted as class A;. Moreover, we define a restricted attacker class
that can generate messages of a fixed length as A,. Finally, we refer to a class of attackers
that can generate fixed-length messages and have bounded storage as As.

Our modular approach to defining classes of attackers could be easily extended. For
example, we could define an attacker class A, for attackers that can only read but cannot
inject or intercept messages (passive attackers). Verification of a protocol model using dif-
ferent classes of attackers can lead to more fine-grained results. For example, we may be
able to show that authentication holds when the attacker has limited storage capabilities
even if the property fails in the case of an attacker with unbounded storage. On the other
hand, a number of attacks may be found even in the presence of restricted attackers. The
case studies in Chapter 4 demonstrate that attacks can be found for several protocols even
when considering limited message generation and storage capabilities of the attacker.

Another important decision when modeling an attacker is how to represent knowledge.
It is not possible to allow the attacker to have infinite storage capabilities if model-checking
is used. On the other hand, when using theorem proving, one can use induction to generalize

proofs for an unbounded attacker’s knowledge vector.
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Inductive send : agent -> message -> Prop :=
inject : forall m, known m -> send I m
with known : message -> Prop :=
(* initial knowledge *)
| name : forall a, known (Name a)
nonce : forall Y, known (Nonce (I,Y))

|

| know_ski : known (Key (SK I))

| know_pk : forall x, known (Key (PK x))

| know_ssi : forall x, known (Key (K (x,I)))
(* actions *)
|
|
|
|
|
|

spy : forall m, receive I m -> known m

decomp_1l : forall m m’, known (Pair m m’) -> known m

decomp_r : forall m m’, known (Pair m m’) -> known m’

compose : forall m m’, known m -> known m’ -> known (Pair m m’)

aenc : forall m a, known m -> known (Enc m (PK a))

adec : forall m a, known (Enc m (PK a)) -> known (Key (SK a)) ->
known m

| senc : forall m a, known m -> known (Key (K(a,I))) -> known (Enc m

(K (a,I)))

| sdec : forall m a b, known (Enc m (K (a,b))) -> known (Key (K (a,b)
)) -> known m

Figure 3.11: Generic attacker model in Coq

In Coq, we use an inductive type known to represent the attacker actions and knowledge

vector (Figure 3.11). In Proverif, the attacker is implicit, so there is no need to model it.

In SPIN, the attacker is specified as a separate process that can spy, intercept, or inject

messages (Figure 3.12a). Furthermore, we initialize the knowledge vector to represent the

facts that are initially assumed to be known by the attacker (Figure 3.12b).

3.4.3 Property Specification

Cryptographic protocols are designed to enforce specific security properties. In general,

security goals, i.e. properties that need to be enforced, are usually stated in the protocol spec-

ification. Property requirements are usually embedded in protocol specification documents,

which are written in natural language and may include some informal protocol narrations

and ad hoc annotations [91].
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authentication. Formalization of such properties has been thoroughly studied before [2, 112,
91]. According to Abadi [107], secrecy may be specified as a predicate on behaviours or as
an equivalence relation on traces. When defined as an equivalence property, secrecy means

that the attacker cannot distinguish between two traces with different secrets.

proctype attacker () {
mtype m = NULL, k = NULL;
mtype prev_m, prev_k;
do
comm?m, k ->
atomic {
AddToKnowledge (m, k);
prev_m = m; prev_k = k;
if
/* dintercept */
:: skip
/* spy */
:: comm!m, k
fi
}
/* inject */
RandMessage(m, k) ->
atomic {

IsValidMessage(m, k, prev_m, prev_k) -> comm!m,

}
od

k

(a) Attacker process

init {
atomic {

Knows [NULL - 1] = 1;
Knows[A - 1] = 1;
Knows [B - 1] = 1;
Knows [I - 1] ;
Knows [Ni - 1] = 1;
Knows [PKi - 1] = 1;
Knows [SSKi - 1] = 1;

|
[

(b) Attacker’s initial knowledge

Figure 3.12: Generic attacker model in SPIN

The goals of authentication and key establishment protocols are mainly secrecy and
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1 |# define SecInv ( !'Knows [SEC - 1] )
2
3 |active proctype SecMonitor () {
4 atomic {
5 do
6 !SecInv -> assert(SecInv)
7 od
8 }
91}
(a) in SPIN
1 |Lemma secrecy : known I (Secret (SEC)).
(b) in Coq

1 |free SEC: bitstring [privatel.
2 |query attacker (SEC).

(¢) in Proverif

Figure 3.13: Secrecy property

To check a security protocol for secrecy, we use an invariant condition specifying that
the secret token is not known by the attacker. In SPIN, this invariant condition is checked
by an active process monitor that must remain true in all states (Figure 3.13a). In Coq, we
define it as a lemma which states that the constant SEC of type Secret cannot be known
by the intruder I (Figure 3.13b). In Proverif we declare a private free variable of type
bitstring!, and then check if the fact attacker (SEC) is ever true (Figure 3.13c).

Authentication is usually defined as a safety property [38] below.

“If B reaches the end of the protocol and he believes that he has shared the key

k with A, then A was indeed his interlocutor and she has shared k.”

This definition of authentication implies two things: (1) there is a correspondence
between the event that B has finished the protocol with A sending k, and A has started

the protocol with B receiving k, and (2) the relationship is injective (i.e. one-to-one). The

'Free variables marked as private are global variables which aren’t initially known by the intruder [38].
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injective property implies that there is no man-in-the-middle. Figure 3.14 shows the events

sequemnce.

A

low

start(A,B)
start(B,A)
end(A,B)
nd(B,A)

Figure 3.14: Authentication based on events correspondence

From the message sequence, we can draw several conclusions: (1) end(B,A) should
always happen after start(A, B), and (2) end(A, B) should always happen after start(B, A).
Therefore, checking for authentication requires verifying that two events happen in chrono-
logical order, i.e. the client requests authentication to the server (start(A, B)), and the
server authenticates the client (end(B, A)). If only one of these conditions is met but not
the other, or if they occur in incorrect order, the authentication process is compromised.

This is modelled by defining two global variables, one for the request and one for the
response, defining the authentication invariant as described, and checking that this invariant
is true on every reachable state. Figure 3.15 shows how this is done in each of the languages.
In SPIN, the macro function Event can be specified just in terms of the event type, START
or END, and the participant agents, A and B, since the number of runs is fixed (Figure
3.15a). Conversely, the same property in Proverif must include the key being exchanged to
identify the corresponding session (Figure 3.15¢). In Coq, authentication failure is shown by
proving lemma auth_fail (Figure 3.15b), which states that event end I B A is true. This
end function is analogous to the one shown in Figure 3.14, with an extra first argument to

indicate the agent with whom A has initiated the protocol (in this case I).
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bit START_AB = 0;
bit END_AB = 0;
bit START_BA = 0;

bit END_BA = 0;
# define Event(e,x,y) if \

0 O Ui Wi

((e==START_AB) && (x == A) && (y == B)) -> START_AB = 1 \
((e==START_BA) && (x == A) && (y == B)) -> START_BA = 1 \
:: ((e==END_AB) && (x == A) && (y == B)) -> END_AB = 1 \
9 :: ((e==END_BA) && (x == A) && (y == B)) -> END_BA = 1 \
10 :: else skip \
11 fi
12 |# define AuthInv ( (YEND_AB || START_BA) && \
13 ('END_BA || START_AB) )
14
15 |active proctype AuthMonitor ()
16 | {
17 atomic {
18 do
19 :: 'AuthInv -> assert (AuthInv)
20 od
21 }
22 |}
(a) in SPIN
1 |Lemma auth_fail : end I B A.
(b) in Coq

event start (pkey, pkey, bitstring).
event end(pkey, pkey, bitstring).

[ENEGCR N

query x: pkey, y: pkey, z: bitstring; inj-event(end(x,y,z)) ==> inj-
event (start(x,y,z)).

(¢) in Proverif

Figure 3.15: Authentication property

3.5 Protocol Instantiations

To instantiate different runs of a protocol, we can think of each step in the protocol as a
function application that takes an instance of a sender agent, a receiver agent, and a message,
and outputs a message to be sent. The send and receive actions are modelled as separate

functions. This approach is used when modeling protocols inductively. Moreover, in Coq, a
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sequence of function applications represent traces. Consequently, a proof of insecurity uses
inversion of function application to derive that an attack trace is possible.

On the other hand, agents can be modelled as independent processes, each defining a
sequence of statements representing actions. In this case, send and receive operations are

input/output events on one or more channels. This approach is common in model checking.

1 |init {
2 .
3 | run processA(A);
4 run processB(B);
5 run attacker () ;
6 |}
(a) in SPIN
1 |process
2
3 ((!'processA(skA, pkB)) | (!processB(skB, pkA)))

(b) in Proverif

Figure 3.16: Protocol instantiations

In SPIN;, protocols are instantiated by running the agents and attacker processes (Figure
3.16a). The state space is the parallel composition of automata representing agents and
attacker actions, which are synchronized by channel events. The search algorithm traverses
the state space looking for states that violate the security invariants, in which case, attack
traces are reported. Figure 3.16b shows the parallel composition of unbounded instances of
A and B in Proverif. Internally, traces are represented symbolically. Processes defined in the
applied pi-calculus are translated into Horn clauses, and then facts about property violations
are checked using resolution techniques.

The next Chapter shows how to encode protocols and prove attacks using the general-

ized framework just described.
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CHAPTER 4

CASE STUDIES

In order to demonstrate the generalized modeling framework presented in Chapter 3,
and to compare SPIN, Proverif, and Coq (Chapter 5), in this chapter we describe four case
studies. Authentication and key establishment protocols proposed by Needham-Schroeder
[17], Denning-Sacco [18], Tatebayashi-Matsuzaki-Newman [40], and Diffie-Hellman [16] are
modeled and verified with the three verification tools. Next, we describe each of the protocols,

their simplified versions, known attacks, and the proposed solutions.

4.1 Needham-Schroeder Public-Key (NSPK) Protocol

The NSPK protocol [17] has become a canonical example for key establishment protocol
verification. It provides mutual authentication using asymmetric encryption. In addition,
secret nonces Ny and Np can be used to generate a shared key. The protocol narration
is illustrated in Figure 4.1a. The most important communication in the protocol occurs in
Steps 3, 6, and 7. To simplify our analysis process, we first consider a reduced version as
shown in Figure 4.1b.

The security goals of the protocol are the secrecy of nonces Ny and Np, and mutual
authentication of agents A and B. Authentication means that if B finishes the protocol
with A and he believes that he has shared the nonce N, with A, then A was indeed his
interlocutor and she has the shared nonce Np (authentication of A to B). Moreover, if A
finishes the protocol with B and she believes that she has shared the nonce N4 with B, then

B was indeed her interlocutor and he has the shared nonce N4 (authentication of B to A).
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L A— S:AB 1.A— B:{A Na}pks)
.S = A:{PK(B),B}sks) 2. B— A:{Na,Np}rka
. A— B:{A Na}rk 3. A— B:{Np}rkn)
.B—-S:B A

.S = B :{PK(A), A}sk(s)

. B— A:{Na, Np}tprr

.A— B: {NB}PK(B)

1 O Ot W N =

(a) Original version (b) Simplified version

Figure 4.1: The Needham-Schroeder public key exchange protocol (NSPK)

Nearly 17 years after it was first published, Lowe [24] found that this version of the
protocol is vulnerable to a man-in-the-middle attack. An attacker can initiate a session with
A and relay the messages to B, making B believe that he is communicating with A. The

attack is described in figure 4.2a.

1. A— I : {A, NA}PK([) 1.A— B: {A, NA}PK(B)
2. 1 =B :{A,Nalpr ) 2. B— A:{B,Na, Ng}prk )
3. B— A:{N4,Ng}pr(a) 3. A— B:{Ng}pk(n)

4. A— I : {NB}PK(I)
5 1 —B: {NB}PK(B)
(a) Attack (b) Fixed-version

Figure 4.2: An attack on NSPK and a proposed solution

The result of the attack is that the intruder knows the nonces N4 and Np, i.e. secrecy
fails, and the authentication between A and B also fails (because the interlocutor of A is
not B and the interlocutor of B is not A). A proposed solution is to include the identity of
B in the second message (Figure 4.2b), i.e. {B, Na, Np}pk(a).

In order to experiment with different models and state spaces, we encoded both the
simplified and full versions of the protocol. As far as modeling, the complexity added on the

latter is insignificant.
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4.2 Denning-Sacco (DS) Authentication

Denning and Sacco [18] proposed several alternatives to the Needham-Schroeder key
distribution protocols. Figure 4.3a shows the full version of one of these alternatives in which
a server distributes public keys to A (message 2), which are then forwarded along with a
fresh key to B (message 3). Message 4 shows how the fresh key is used to share a secret
message between A and B. Figure 4.3b shows a simplified version Denning-Sacco’s protocol

in which public-key distribution is initially assumed.

1.A— S:A B 1. A= B: {{k}sic}rrs)
2.5 = A{A PK(A), T}sios), 2. B s A: {Sech,
{B,PK(B), T}s16(s)
3. A — B {A, PK(A), T}sas),
{B,PK(B),T}Slg(S),
H{k, T}sic) }rrs)

4. B — A {Sec}y
(a) Original version (b) Simplified version

Figure 4.3: The Denning-Sacco key distribution protocol (DS)

The problem, again, relies on the ambiguity of implicit assumptions in the protocol
specification. If an attacker I is able to convince A to initiate a conversation while imper-
sonating B, i.e. A uses I'’s public key to encrypt the first message instead of B’s, then the
attacker is able to see the secret key and, consequently, any secret message encrypted with
such key (Figure 4.4a). This man-in-the-middle attack can be fixed by adding A and B’s

identities to the first message (Figure 4.4b).

4.3 Tatebayashi-Matsuzaki-Newman (TMN) Protocol

The TMN protocol [40] was designed for key exchange in mobile networks. The full

version of the protocol is shown in Figure 4.5a. Again, to simplify the analysis process, we
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1. A=~ I {{k}SIG(A)}PK(I) 1. A= B: {{A,B, ki}g[g(A)}pK(B)
2.1 —-B: {{k}sjg(A)}pK(B) 2.B—~ A: {Sec}k

3. B— I : {Sec}y
4.1 —A:{Sec}y

(a)

(b)

Figure 4.4: An attack on DS and a proposed solution

show a reduced version that omits the use of timestamps (74 and Tg) and shared secret

keys (SS(A,S) and SS(B,S)) in Messages 1 and 3. In the final step, the server sends the

Vernam encryption using the nonces N4 and Ng. Figure 4.5b shows the simplified version.

1.A—S: B,{TA,SS(A,S),NA}]JK(S) 1.A—S: B,{NA}PK(S)
2.8 —>B:A 2.8 —B:A
3.B—S§: A, {TB,SS(B,S),NB}PK(S) 3.B—S: Aa{NB}PK(S)

4. S—)AiB,V(NA,NB)

4.8 = A: B,V(N4, Np)

(a) Original version (b) Simplified version

1. I(A) =S : B,{N:}pk(s)
2.5 —+B: A

3. B—= S8 : A {Np}prks)

4. S — I(A): B,V(Ng, Ny)

(c) An attack

Figure 4.5: The Tatebayashi-Matsuzaki-Newman protocol (TMN)

Several attacks were found on the TMN protocol [113]. An attack happens when an

intruder who impersonates A, injects Message 1 and intercepts Message 4. Since the intruder

knows the nonce N; and has received the Vernam encryption V(Ng, N;), s/he can learn Ng

(by applying the XOR function).
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4.4 Diffie-Hellman Key-Exchange (DH)

Diffie-Hellman key exchange [16] was one of the first protocols to establish secure com-
munication using public-keys on public channels. It provides a simple and elegant way for
two unauthenticated parties to agree on a shared key. In DH, each party calculates the
exponentiation of GY modulo P, where P and G are values that both parties have agreed
upon, ¢ is an agent participating in the protocol, and N; is a random value generated by <.
After exchanging the calculated values, each party can compute the shared key based on the

homomorphic property of exponentiation (Figure 4.6a).

1.A— B: PG, (G") mod P 1.A— B:GN4
2. B— A:(G"?) mod P 2. B— A:GNp
3. A and B compute the 3. A— B: Secy

keys: k= (GNE)Na = (GN4)Ne
4. A — B : Sec,

(a) Original version (b) Simplified version

1. A~ [:GNa
2.1 =BGV
3. B~ I:GNs
4.1 —A: GV
5. A— I : Sec,,

(¢) A man-in-the-middle attack

Figure 4.6: Diffie-Hellman key exchange protocol

To reduce the state space and optimize verification, we can use a simplified version
of the protocol, as shown in Figure 4.6b, and still capture the protocol semantics that are
relevant in the symbolic model. In this case, we can assume that the shared values P and

G are public, and then demonstrate that a man-in-the-middle attack is possible. A possible
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attack is shown in Figure 4.6¢, in which an attacker impersonates the honest agents to listen

and possibly alter communication between them.

4.5 The Code for the NSPK Protocol

In this Section, we show how to write code for the agent interactions of the simplified

NSPK protocol in the modeling languages of each tool. In SPIN and Proverif, we translate

the protocol narration into a composition of agent processes. In Coq, we use constructors of

inductive types to define allowed protocol transitions.

0 1O Ui Wi =

proctype processA(mtype a) {
mtype X, nx;
atomic {
RandInterlocutor (x);
Start(a, x);
comm!Nonce(a), a, PK(x); /* Msg 1 %/

}

atomic {
comm?eval (Nonce(a)), nx, eval(PK(a)); /*x Msg 2 */
End(a, x);

}

comm!NULL, nx, PK(x); /* Msg 3 */

3

proctype processB(mtype b) {
mtype ny, y;
atomic {
comm?ny, y, eval(PK(b)); /*x Msg 1 %/
IsAgent (y);
Start (y, b);

}

comm!ny, Nonce(b), PK(y); /* Msg 2 */

atomic {
comm?eval (NULL) , eval(Nonce(b)), eval(PK(b)); /* Msg 3 */
End(y, b);

}

Figure 4.7: Promela code for the NSPK protocol

Figure 4.7 shows the process definitions for the simplified version of the NSPK protocol

in SPIN. The initiator process starts by randomly choosing between B and I as an interlocutor

(line 4), immediately followed by the event Start (line 5), and the first step in the Protocol
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Narration 4.1b (line 6). Then, the second message is received (line 9), and the end of the
authentication process is declared (line 10). Finally, the nonce Nb is sent back to B on line

12. Similarly, the receiver follows the protocol description in 4.1b.

1 |let processA(pkB: pkey, skA: skey) =

2 in(c, pkX: pkey);

3 event startAX (pkX);

4 new Na: bitstring;

) out (c, aenc((Na, pk(skA)), pkX)); (x Msg 1 *)
6 in(c, m:bitstring); (*x Msg 2 *)

7 let (=Na, NX: bitstring) = adec(m, skA) in
8 out (c, aenc(NX, pkX)); (x Msg 3 *)

9 if pkX = pkB then event endYB(pk(skA));

10 out (¢, senc(secANa, Na));

11 out (¢, senc(secANb, NX)).

12

13 |let processB(pkA: pkey, skB: skey) =

14 in(c, m: bitstring); (* Msg 1 x)

15 let (NY: bitstring, pkY: pkey) = adec(m, skB) in
16 event startBY (pkY);

17 new Nb: bitstring;

18 out (¢, aenc((NY, Nb), pkY)); (* Msg 2 *)
19 in(c, m3: bitstring); (x Msg 3 *)

20 if Nb = adec(m3, skB) then

21 if pkY = pkA then event endXA(pk(skB));
22 out (c, senc(secBNa, NY));

23 out (¢, senc(secBNb, Nb)).

Figure 4.8: Proverif code for the NSPK protocol

The Proverif code for the same protocol is shown in Figure 4.8. Agent A receives the
public key of its interlocutor on line 2. The protocol starts on line 3 and ends on line 9
by signalling the corresponding events. Lines 10-11 send two arbitrary values (secANa and
secANb) encrypted with the secret nonces Na and Nb. Proverif verifies the secrecy of the
nonces by checking whether the values can be decrypted by the attacker.

In Coq, we define the protocol transitions as constructors of the inductive type send
(Figure 4.9). Agent A’s interlocutor, agent X, is declared on line 1. In this model, A can only
start a session with X; yet, it is sufficient to show the attack in 4.2a. On the other hand, B
can start a session with any agent Y (line 5 of Figure 4.9). To uniquely identify nonces, they

are represented as tuples (z,y), where x is the agent that generated the value, and y is the
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Variable X:agent.

Inductive send : agent -> message -> Prop :=
Tinit : send A (Enc (P (Nonce (A,X)) (Name A)) X)
| T1 : forall Y d, receive B (Enc (P (Nonce d) (Name Y)) B)
-> send B (Enc (P (Nomnce d) (Nomce (B,Y))) Y)
| T2 : forall d, receive A (Enc (P (Nonce (A,X)) (Nonce d)) A)
-> send A (Enc (Nomnce d) X)

0 O Ui Wi

Figure 4.9: Coq’s code for the NSPK protocol

intended addressee. The protocol narrations for the other protocols are translated into code

in a similar manner.

4.6 Experimental Results

We specified models and security properties (secrecy and authentication) for all pro-
tocols using SPIN, Proverif, and Coq. In Proverif and Coq, we specify the attacker model
representing the class A; (Section 3.4.2), a DY attacker with an unbounded message space.
As we explained in Chapter 3, attackers with an unbounded message space cannot be mod-
eled in SPIN. Therefore, we specify attacker class A, that can generate fixed-length messages
and has bounded storage.

The machine used for verification was an Intel Core 2 Quad CPU running at 2.4 GHz,
with 4GB RAM, and a 64-bit version of Linux. To verify a model in SPIN, a process analyzer
must be compiled first. We compiled SPIN’s process analyzer using the -O2 (allow opti-
mizations) and the BFS (Breadth first search) options. The process analyzer was run with
the option -E to ignore any potential deadlock! and check only for reachability properties.
We ran Proverif with default options, and used coqc and coqchk to compile and run Coq

proofs in batch mode. The results obtained for each protocol are shown in Figure 4.1.

'In SPIN, deadlock occurs if the model does not reach a valid end state. To verify secrecy and authentica-
tion, we are not particularly interested in validity of end states. We are strictly concerned with reachability
of states that violate the properties.
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Table 4.1: Verification execution time in SPIN, Proverif and Coq

SPIN Proverif Coq
Attacker class | A; \ A, Ay Ay
Protocol
NSPK (full) 5.8s — 0.03s 0.3s
NSPK 0.4s 4.15s 0.02s 0.2s
DS 0.06s 0.07s 0.02s 0.2s
TMN 0.1s 0.1s 0.02s 0.2s
DH 0.08s 0.08s 0.01s 0.2s

4.6.1 SPIN

When the full version of the NSPK protocol with attacker A, is verified for attacks,
SPIN runs out of memory. We try to run verification with bitstate hashing but it does not
solve the problem. Consequently, we modify the attacker’s message generation procedure
to a more restricted version of the DY attacker (as suggested by Ben Henda [34]). In this
attacker model, denoted as As, the message generation procedure selects new values based
on previous message values that are adjacent in the known vector. Although the attacker
As does not randomly select messages to be injected, SPIN is able to detect an attack.
Verification of the other protocols in SPIN completed successfully with both A; and As.

For the A3 attacker, it takes SPIN less than 1 second to find each of the attacks shown
in Figures 4.2a, 4.4a, 4.5¢, and 4.6¢c. However, the full version of the NSPK protocol takes
significantly longer. Moreover, using attacker As, SPIN runs out of memory. These results
reveal that the state explosion is an unavoidable problem in SPIN.

Figure 4.10 shows a NSPK’s man-in-the-middle attack found by SPIN. This attack
corresponds to the attack shown in Figure 4.2a, and violates the authentication property.
SPIN provides a trace showing that B finishes the protocol believing that he is interacting

with A but in reality he is communicating with the attacker I.
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1 |proc 0 = AuthMonitor

2 |proc 1 = :init:

3 |using statement merging

4 |proc 2 = Initiator

9 |proc 3 = Receiver

6 |proc 4 = Intruder

7 |a\p 0 1 2 3 4

8 1 comm!Na,A,PKi

9 1 comm?Na,A,PKi

10 1 comm!Na, A, PKb

11 1 comm?Na, A, PKb

12 1 comm!Na,Nb, PKa

13 1 comm?Na,Nb,PKa

14 1 comm ! NULL ,Nb, PKi

15 1 comm?NULL , Nb, PKi
16 1 comm!NULL ,Nb, PKb

17 1 . ) ) comm?NULL , Nb , PKb

18 | spin: rns.pml:42, Error: assertion violated

19 | spin: text of failed assertion: assert (((!(IniCommitAB)||RecRunningAB)
&& (! (RecCommitAB) | | IniRunningAB)))

20 |spin: trail ends after 73 steps

Figure 4.10: NSPK’s authentication failure (man-in-the-middle attack) found by SPIN

4.6.2 Proverif

We created models of the protocols in Proverif using the typed version of the applied
pi-calculus. Although all Proverif programs must be well-typed, types are ignored by default
during verification [38]. This means that the attacker can generate even ill-typed messages.
Enforcing types during verification reduces the state space and, therefore, may be a useful

option for verification of protocols that do not terminate.

RESULT not attacker(secANal[]) is true.

RESULT not attacker (secANb[]) is true.

RESULT not attacker (secBNal[]) is false.

RESULT not attacker (secBNb[]) is false.

RESULT inj-event (endYBNb(x_955,y_956)) ==> inj-event(startBYNb(y_956,
x_955)) is true.

6 |RESULT inj-event (endXANa(x_1999,y_2000)) ==> inj-event(startAXNa(y_2000,

x_1999)) is false.

7 |RESULT (even event(endXANa(x_3140,y_3139)) ==> event(startAXNa(y_3139,

x_3140)) is false.)

TR W N =

Figure 4.11: NSPK secrecy and authentication failure output by Proverif
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We ran verification with default options on Proverif and found attack traces in an
average of 0.02 seconds (Figure 4.1). After each verification run, Proverif outputs more
details than SPIN on its results. An interesting example is shown on Figure 4.11, in which
secrecy and authentication properties fail for the NSPK protocol. More specifically, lines 3
and 4 show that B can leak the nonces, and line 6 shows that B’s authentication of A fails.
In fact, line 7 confirms that even the non-injective relation does not hold. B can finish the
protocol believing that he is communicating with A, even if A has never run. Proverif also

provides a derivation of attacks, as well as attack traces in the pi-calculus.

new skA creating skA_2938 at {1}

out (c, pk(skA_2938)) at {3}

new skB creating skB_2936 at {4}

out (c, pk(skB_2936)) at {6}

in(c, pk(a_2934)) at {8} in copy a_2935

event (startAX(pk(a_2934))) at {9} in copy a_2935

new Na creating Na_2937 at {10} in copy a_2935

out (c, aenc ((Na_2937 ,pk(skA_2938)),pk(a_2934))) at {11} in copy a_2935
9 |in(c, aenc((Na_2937 ,pk(skA_2938)),pk(skB_2936))) at {20} in copy a_2933
10 |event (startBY (pk(skA_2938))) at {22} in copy a_2933

11 |new Nb creating Nb_2939 at {23} in copy a_2933

12 {out (c, aenc((Na_2937,Nb_2939) ,pk(skA_2938))) at {24} in copy a_2933

13 |in(c, aenc((Na_2937,Nb_2939) ,pk(skA_2938))) at {12} in copy a_2935

14 |out (c, aenc(Nb_2939,pk(a_2934))) at {14} in copy a_2935

15 |in(c, aenc(Nb_2939,pk(skB_2936))) at {25} in copy a_2933

16 |event (endXA (pk(skB_2936))) at {28} in copy a_2933

17 | The event endXA(pk(skB_2936)) is executed in session a_2933.

18 |A trace has been found.

0 O Uik Wi

Figure 4.12: Proverif’s attack trace showing NSPK authentication failure

An attack trace that shows authentication failure appears on Figure 4.12. Each line
corresponds to the pi-calculus statement that is executed, and is annotated with the line
number in the model. Moreover, a session identifier is appended at the end of each line.
Lines 1-4 model the distribution of the public keys, assumed on the protocol model. On line
5, a new session is created between A and I (session a_2935), and A receives the public key of
its interlocutor. The event on line 6 indicates that A starts the protocol with X, represented

by pk(a_2934), which in this case is the attacker. On line 7, A creates the nonce Na_2937,
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and sends it on line 8, initiating the first step in the protocol. The execution continues
following the steps described on Figure 4.2a. The name a 2933 is used to represent the
session between the attacker and B. On line 16, B ends the protocol believing that he has

completed the run with A but in reality he has been interacting with the attacker.

Table 4.2: Verification results of secrecy queries and injective properties in Proverif

Protocol | Proverif Results

NSPK Secrecy fails since the attacker can learn N4 and N from B. Authentication
of A by B fails, even when A is not running the protocol.

DS Neither secrecy nor authentication can be guaranteed. Authentication fails
even when the other party is not running the protocol.

TMN Secrecy of keys generated by A and B can be leaked by A or S. Moreover, A’s
authentication of B is compromised, even when B is not running the protocol.

DH Secret s can be learned by the attacker.

In Proverif, different properties can be verified on a single run. For this reason, following
the approach explained by Blanchet [38], we expand our definition of secrecy to obtain more
information about the conditions in which this property is satisfied or fails. For instance,
the parties in the NSPK protocol use nonces Ny and Np to generate a shared secret key
that will be used later in communication. We send four messages (two on each agent)
and add the corresponding queries to reveal which nonce is leaked, and who is the agent
that may send this information to the attacker. For example, at the end of process A we
send the secrets secANa and secANb as two separate messages encrypted with Na and Nb.
The queries attacker (secANa) and attacker(secANb) check if the attacker can learn the
secrets. These secrets can only be leaked if the attacker knows Na and Nb, which were used
as keys to encrypt the respective messages. Figure 4.2 summarizes the results obtained in
Proverif after verification of the more detailed secrecy queries and the injective properties of

authentication, as described in Chapter 3 for all protocols.
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4.6.3 Coq

In Coq, we manually derived a proof of the secrecy and authentication failure lemmas.

Figure 4.13 shows the proof of authentication failure for the NSPK protocol.

Lemma ns_auth_fail : receive I B (Enc (Nonce (B,A)) B).
apply link with TI.

apply inject.

apply aenc; auto.

apply adec with I; auto.
apply spy.

apply link with A.

apply T2.

9 |apply link with I.

10 |apply inject.

11 | apply spy.

12 |apply 1link with B.

13 |apply T1.

14 |apply 1link with I.

15 |apply inject.

16 | apply aenc; auto.

17 |apply adec with I; auto.
18 | apply spy.

19 |apply link with A.

20 |apply Tinit.

21 | Qed.

0 O Ui Wi

Figure 4.13: NSPK Authentication failure proof in Coq

Tinit, T1 and T2 are transitions, inject and spy are attacker actions, and aenc and
adec are asymmetric encryption and decryption operations. A special rule link is used
to relate send and receive operations. The proof advances by consistently using the tactic
apply on the inductive constructors to derive a premise from an implication.

Finally, the proofs were compiled with cogc and the theories were checked using cogchk.
The execution time for each protocol is shown in Figure 4.1. In all cases, Coq was slower
than Proverif and, in some cases, faster than SPIN. Since coqchk recursively verifies the
theory’s dependent libraries, the results may be influenced by the number of libraries loaded

for each proof.
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CHAPTER 5

COMPARATIVE ANALYSIS

In this Chapter, we compare SPIN, Proverif, and Coq from two different perspectives.
First, we compare expressiveness of modeling styles for some key language features, which
play an important role in representations of security protocols. In particular, we analyze
programming style, communication model, encoding of cryptographic primitives, protocol
narrations, attacker models, and properties specification. Second, we review the tools in
terms of verification problems they can solve. The metrics we use are message space, number
of sessions, and attacker models. In addition, we consider correctness of results, automation

and guarantee of termination.

5.1 Modeling and Specification

Modeling and property specification are essential components of the verification process.
If a model does not accurately capture the semantics of a system, the results will be worthless.
Similarly, incorrect specification of properties may lead to false results. Therefore, it is
important to analyse each of the verification tools in terms of how precisely they can capture
the semantics of cryptographic protocols, i.e. compare language expressiveness. To formally
measure expressiveness of different languages, different approaches have been taken. A survey
of formal frameworks to compare programming languages can be found in [114]. In the last
two decades, there has been a trend to compare program representations based on language
translations that preserve observational equivalence [115]. However, as Gorla and Nestmann
point out, this approach is not informative enough in regards to the actual quality of a

representation [116].
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Our approach to comparing the modeling languages of SPIN, Coq, and Proverif is less
formal, but has more practical implications. Our conclusions are based on the results of
protocols verified in Chapter 4. First, we discuss programming styles and how they influence
model specifications. Then, we compare how each of the key elements of security protocols
is described in each of the specification languages. Table 5.1 shows a comparison of the
programming styles and the techniques used in each case, which we analyze in the following

sections.

Table 5.1: Comparison of language features in SPIN, Proverif, and Coq

SPIN Proverif Coq
Programming style imperative functional functional
Communication model channels channels dependent types
Cryptographic primitives | function macros constructors/ inductive types

destructors

Protocol narration roles roles set of rules
Attacker model process — set of rules
Properties specification LTL/monitor queries lemmas

process

5.1.1 Programming Style

SPIN’s modeling language, Promela, has an imperative style similar to the C pro-
gramming language. Systems can be described in terms of processes, states and transitions
between them. An advantage of state-based programming is that it is relatively easy to
describe systems with a few possible states. That is the case of authentication and key
establishment protocols, which usually consist of a small number of interactions between
agents that have different roles. In Chapter 4, we have defined roles as processes and in-
teractions as guarded statements with side-effects. The verification results show that state
exploration is a fruitful method as long as the protocols remain small. For example, SPIN
finished verification -and found attacks- for the reduced versions of the NSPK, DS, TMN,

and DH protocols. However, SPIN cannot find attacks on the full version of the NSPK
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protocol because it runs out of memory. SPIN fails due to the state explosion problem. This
result suggests that explicit state representation may not work for larger protocols.

There are two ways to deal with this problem in SPIN. First, the state space can be
manually pruned by eliminating steps that are not essential to prove the desired properties.
In Chapter 4 we described how to apply this simplification technique and find attacks for
the selected protocols. Second, we can restrict the attacker model to reduce the state space.
For the NSPK protocol, we model the attacker Az, whose message generation function does
not consider all possible messages. For the NSPK protocol, we show in Section 4.6 that
we can still find Lowe’s attack using the simplified attacker model. However, verification
using Aj attacker model considers less attacks. Consequently, the results are less interesting
compared to Proverif and Coq, which can verify the protocols using attackers that are more
powerful.

We also use processes to define users interactions in Proverif. In contrast to SPIN, we
can define more expressive models and rely on Proverif’s internal abstractions to reduce the
state space. For all the protocols discussed in Chapter 4, the Proverif models were approx-
imately 30% less verbose than the SPIN models. Verbosity was measured by comparing
lines-of-code in each model. From a modeling perspective, Proverif’s higher-level specifica-
tions are more attractive than SPIN models which must be manually optimized to avoid the
state explosion problem. Nevertheless, due to the over-approximations of Proverif’s decision
procedure, the tool cannot guarantee the correctness of the attacks it finds.

The applied pi-calculus, Proverif’s default input language, has a functional style with
some imperative features. There are pros and cons of adopting the applied pi-calculus
for specification of security protocols. Functional features such as scoping are useful to
define secrecy of values [107]. Notwithstanding, reasoning about side-effects (e.g. channel
operations) is not always so straightforward as compared to Promela. For instance, consider
when one wants to assign several variables to the evaluation of different functions to use later

in a send operation. In SPIN, this is achieved by a simple sequence of variable assignments,
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followed by a channel operation. In Proverif, one must use nested let environments, which
are a less natural way of describing a sequence of operations.

Coq’s specification language, Gallina, is a descendent of the family of ML functional
programming languages. It combines in one language the proof representation and the com-
putation building the proofs [117]. In Gallina, protocol transitions are specified as induc-
tive definitions, which are similar to inference rules. This logical representation intuitively
captures the semantics of transitions using type quantifiers and implication, two language
features that are not present in Proverif’s pi-calculus. Additionally, Gallina has built-in type

inference, a feature that is not present in Proverif or SPIN.

5.1.2 Communication Model

In order to model concurrent systems, specification languages provide different mech-
anisms to describe communication over a network. In the case of cryptographic protocols,
channels are a convenient and intuitive way of representing communications between agents.
Moreover, protocol logic in process algebras is separated in different blocks, which define a
sequence of actions by each of the participant agents. In Chapter 4 we showed how to encode
agents as processes that communicate over shared channels in SPIN and Proverif. Although
SPIN also allows the use of shared variables, channels are a more natural way to represent
communication in cryptographic protocols. For the class of protocols modeled in this thesis,
unbuffered synchronized channels are sufficient. To model the protocol interactions, SPIN
allows users to define any number of processes that may start concurrently using the keyword
active. Alternatively, processes may be instantiated by other processes. In our modeling
framework we choose the latter option (Figure 3.16a).

Proverif’s pi-calculus allows only one top-level process definition. Therefore, processes
representing agent actions are specified using let environments (Figure 4.7). Then, the top-

level process instantiates a parallel composition of agent processes (Figure 3.16b). Channels
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in Proverif have similar semantics to rendezvous channels in SPIN; transitions only occur
when send and receive operations are synchronized.

In Coq, communications are defined in terms of actions, which are grouped by inductive
type definitions. Some separation of logic can be achieved by defining different types for send,
receive, and attacker-related actions. However, some definitions are coupled with actions of
different type. For example, the constructor representing the attacker’s action inject, shown
in Figure 3.11, has an argument of type known and returns a term of type send. In this
case, inject is a constructor of type send because of its return type, but its definition is
dependent on its argument of type known. Types that may contain expressions referring to
other types are called dependent types [118]. The deductive system used in Coq requires
careful thought. In our modeling framework, inference rules capture the behavior of honest
agents and attackers from a global view of the protocol; specification is not clearly separated
by roles as in SPIN or Proverif.

Furthermore, in order to model Dolev-Yao attackers, the recipients of sent messages
and originators of received messages must be left unspecified, or use variables to allow the
attacker along with honest agents as the recipients/originators. Our approach for modeling
such variables is described in Section 3.3.1. When one defines protocol transitions in Coq,
one must pay special attention to what agents will be involved in the transition. Naturally,
defining protocols as interactions between roles in SPIN or Proverif is more intuitive and

easier to understand.

5.1.3 Cryptographic Primitives

Cryptographic functions are not built-in to the specification languages of SPIN, Proverif,
or Coq. Nonetheless, cryptographic functions can be encoded in the generalized framework
discussed in Chapter 3. This approach must consider constructs that are specific to each
of the languages. Cryptographic functions in Proverif are defined as constructor/destructor

functions. This representation is simple and intuitive.
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In Coq, protocol transitions describe cryptographic operations using properties of in-
ductive message constructors. For instance, a message can be either a message m or an
encryption of a message Enc m. Suppose there is a transition in which an agent X receives
an encrypted message m, decrypts it, and sends it concatenated with its own identity. This
transition can have Enc m as an argument and (m,X) as a return type. In this case, an
explicit representation of the encryption function is not needed. Despite this specification
shortcut for protocol transitions, explicit cryptographic functions must be defined for the
attacker model.

In Promela, cryptographic functions can be specified using either macros or inline func-
tions. In any case, SPIN compiler replaces every function call with the body of the function
definition. Moreover, neither syntactic construct defines a new variable scope. In general,
both constructs operate in a similar manner, except that inline functions cannot be used in
assignments. For this reason, we use function macros in our framework. The subtleties of
Promela’s semantics require careful thought to capture exact protocol semantics. We use
atomic blocks to guarantee that protocol transitions and events will execute as a single step.
In addition, cryptographic functions must be encoded efficiently; they shall use a minimal
number of states to represent operations, and use constants wherever possible. The case
studies in Chapter 4 demonstrate that less efficient representations suffer from the state

explosion problem.

5.1.4 Attacker Modeling

Perhaps the most interesting aspect of the comparison between SPIN, Proverif, and
Coq, is the way in which symbolic attacker models are specified. In SPIN, an attacker is
defined as a process, similarly to honest agents. The main difference to honest agents is
that the attacker’s interaction in the protocol must occur at random instances. One way to
achieve this is to use Promela’s control-flow blocks, such as if or do, which provide a way

to define action branches that get selected non-deterministically. For attacker model As, we
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use do blocks; for attacker A,, instead, we use select statements which are more elegant
syntactic constructs for the same purpose.

In Proverif, the attacker is implicit, that is, models do not need to specify attacker
actions. Proverif checks the protocol using the symbolic attacker introduced by Dolev and
Yao [19] although a few customizations are also possible. For example, setting the attacker
to passive restricts the attacker to one that can only read and compute messages, but not
inject messages. As we have mentioned in Section 3.4.2, extending our framework to handle
passive attackers is not hard. For the Proverif models, setting the attacker to passive will be
enough. Moreover, setting the option keyCompromise adds the initial assumption that the
attacker has obtained the secrets of some sessions, and tells Proverif to check if other session
secrets can be compromised.

The attacker in Coq is modeled by adding a dependent type known that has constructors
for each of the attacker actions. An additional constructor must be added to the type send in
order to allow the attacker to inject messages. Coq’s attacker model, as shown on Figure 3.11,
is explicit and straightforward. Specifying a passive attacker is not too hard, as removing

the constructor inject will suffice.

5.1.5 Property Specification

In SPIN, correctness properties can be specified in either linear temporal logic (LTL)
or as assertions embedded within the code. For cryptographic protocols, both secrecy and
authentication can be specified directly in the model. For instance, in our case studies, we
defined two special processes to monitor that the properties always remained true.

In Proverif, secrecy is usually specified as a reachability property. It is checked by a
clause that queries if the attacker has obtained the secret. Authentication is specified as
an observational equivalence property, expressed as an implication that relates start and
end functions which are triggered accordingly. In the case of Proverif, properties are always

specified in the model. In our models, we use Proverif’s built-in syntax to check for injective
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events that specify authentication properties. Injective events are also useful to check other
properties. For example, nested correspondences can be used to verify that messages are
received in the correct order. Moreover, Proverif can check for observational equivalence
properties. These properties assure that two processes are indistinguishable for an attacker.
Properties that fall into this category are non-interference, offline guessing attacks, and the
decisional Diffie-Hellman assumption, among others [38].

In Coq, we specify properties as lemmas. To show that a protocol is insecure, we prove a
lemma demonstrating that the property fails. The secrecy lemma states that the secret is in
the attacker’s knowledge vector. Similarly to SPIN and Proverif specification, authentication
is defined as an implication of events relating the start and end of the protocol. In Coq,
lemmas about security properties are separated from the actual model of the protocol. This
approach provides better modularity and decoupling than property specification in SPIN or

Proverif.

5.2 Analysis of Verification Results

In order to further contrast SPIN, Proverif and Coq, we compare important character-
istics of the verification results that can be obtained as proofs of protocol (in)security. Table

5.2 shows the different factors that we considered for the comparison.

Table 5.2: Comparison of verification results in SPIN, Proverif, and Coq

SPIN Proverif Coq
Number of sessions bounded unbounded unbounded
Symbolic attacker restricted unrestricted unrestricted
Message space bounded approximated unbounded
Soundness yes yes yes
Completeness no no yes
Correctness of attacks yes maybe yes
Automation high medium low
Guaranteed termination | yes no no
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We compare these three tools by examining models of protocols for an unbounded
number of sessions and unrestricted symbolic attackers with an unrestricted message space.
Soundness guarantees that if no attacks are found, then the protocol is guaranteed to satisfy
the property under consideration [119]. Completeness is achieved if the tool can recognize
all sound protocols as correct. Correctness of attacks refers to false negative results. In
some cases, verification may report an attack that cannot occur. Automation, from a user’s
perspective, is another important metric for cost-benefit analysis. We consider a tool fully
automated if it can take a model of a protocol as input and output a result indicating if the
protocol meets the specification or not. Finally, it is important to consider if the analysis is

guaranteed to terminate, or if it may have an open ending.

5.2.1 Number of Sessions

It has been shown that protocol security is undecidable for protocols with an unbounded
number of sessions [80]. Each tool deals with this problem differently. SPIN’s modeling
language only allows specification of bounded processes. Proverif allows specification of un-
bounded number of sessions but it cannot guarantee termination. An unbounded number of
sessions can be modeled in Coq using inductive definitions with type quantifiers. Neverthe-

less, Coq’s approach cannot be fully automated; it always requires human intervention.

5.2.2 Attacker Model and Message Space

An unrestricted symbolic attacker has full control of the network, s/he can spy or
intercept messages at will [19]. Moreover, the attacker can generate any number of messages
and has unlimited storage capabilities. Dealing with unrestricted attackers is an undecidable
problem [120]. The attackers that can be represented in SPIN are a restricted version of the
DY attacker. In SPIN models, the attacker can only store a small number of messages. In
fact, our A3 attacker can only store the last message received. Even in the bounded setting,

adding more storage capabilities to our case studies causes the verification to run out of

58



memory quickly due to the state explosion problem. Proverif’s attacker representation is
built-in to the tool and, thus, its specification is implicit in the models. Internally, Proverif
considers an attacker that can generate an unbounded message space. To cope with the
undecidability issue, Proverif performs safe abstractions when it translates protocols into
Horn clauses [38]. These approximations preserve soundness but may lead to incomplete
results. In fact, on ocassion Proverif outputs that a property “cannot be proved”.

In Chapter 3, we showed how to model an unrestricted attacker in Coq. This attacker
is able to generate an unbounded number of messages and has infinite storage capabilities.
The attacker’s message space in Coq is unbounded, since all attacker actions are inductively
defined. The implications of adding expressiveness to the attacker model are similar to
what happens when we consider unbounded number of sessions. In this case, analysis using
attackers with an unbounded message space is an undecidable problem [120]. Consequently,
verification cannot be fully automated. This is demonstrated in Coq by the fact that all

proofs of the protocols, analyzed in Chapter 4, require human guidance to be completed.

5.2.3 Correctness of Attacks

In general, correctness of verification tools is measured in terms of soundness and com-
pleteness. Traditionally, soundness has been stated with respect to the tool’s results. In
particular, a technique is called sound if the properties that it proves are always true [119].
On the other hand, completeness shows that the tool can prove the properties on all models
that are considered sound.

Using these definitions, SPIN and Proverif results are all sound but incomplete. That
is, if we can prove that a protocol model satisfies a set of properties, then the result is correct.
However, in general there are protocols and properties that neither SPIN nor Proverif can
prove correct, even though they may be. Our case study for the full version of the NSPK

demonstrates this fact in SPIN, since verification could not complete. Moreover, the source
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of incompleteness is coupled with the state explosion problem; modeling unbounded sessions
and unrestricted DY attackers is not feasible in SPIN.

Although Proverif accepts protocol models in the unbounded space, its resolution pro-
cedure may report false attacks and, therefore, the technique is incomplete. In this thesis,
verification for the NSPK protocol reported a valid attack; however, a different model of the
same protocol presented in [121] reports a false attack.

In Coq, proofs can be constructed for protocols with unbounded sessions and unre-
stricted attackers. A proof of protocol insecurity is useful to demonstrate that an attack
trace is derivable. In general, Coq’s proofs can provide greater confidence that a protocol is
secure. Indeed, Coq can be used to derive user-defined lemmas that are not provable by the

other tools.

5.2.4 Automation

In this thesis, the automation metric describes the amount of interaction required from
the user in the verification process. Our definition of an automated tool does not consider
the modeling phase. In every case, modeling a protocol is a manual process, and the effort
involved depends on the protocol at hand.

In terms of the verification process, SPIN is highly automated. We verified the four
models and obtained a yes/no answer for all the protocols without requiring any user inter-
action. In addition, SPIN output message sequence diagrams detailing the attack traces.

Verification using Proverif is somewhat automated. In our case studies, Proverif pro-
vided a positive result or an attack trace for all the protocols that we verified; i.e. interaction
was not required to obtain a pass or fail answer. Nevertheless, Proverif cannot always decide
if a protocol is secure or not (as shown in [121]). In such a case, the user has to manually
examine the results to conclude if an attack derivation corresponds to a real attack or if it is
a false negative. Even when Proverif finds an attack trace, translation from Proverif’s output

to a more user-friendly format, e.g. a message sequence diagram, must be done manually.
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Proof construction in Coq requires considerable effort. Although proof tactics provide
automation of trivial tasks, the process is highly dependent on human guidance. To prove
that a property is false, finding a counter-example will suffice. This is the case in the protocols
analyzed in Chapter 4. Nevertheless, proving that a protocol is correct with respect to some
properties specification may be a more challenging task. Overall, theorem proving has a
steep learning curve. Even with the help provided by Coq, finding attacks for the case

studies in Chapter 4 requires more effort than in SPIN or Proverif.

5.2.5 Termination

Constructing proofs in Coq may be hard, time consuming and, in many cases, one may
not be able to prove some properties. In such cases, the open questions are, is it possible
to prove the protocol’s security property? Is there a possible attack for this protocol? If an
attack is found, we know that the protocol is insecure. But if no proof of security exists,
there is no certainty about answering the security questions.

On the other hand, SPIN is guaranteed to terminate for verification of a protocol with a
bounded number of sessions. However, the state explosion problem could prevent obtaining
a result if the system runs out of memory. This is the case for the full version of the
NSPK protocol analyzed in Chapter 4. Despite this fact, in general, key establishment and
authentication protocols can be abstracted to models that capture the essential semantics
while keeping the state space relatively small. We have abstracted the models and showed
that some attacks were found.

Proverif does not guarantee termination due to the infinite sessions and state space
considered. For the class of protocols that we studied, however, non-termination is not an
issue. In fact, the results obtained demonstrate that Proverif is more efficient than the other

tools in terms of execution time.
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5.3 Chapter Summary

In this chapter we have analyzed SPIN, Proverif, and Coq for modeling and verification
of key establishment and authentication protocols. Promela, SPIN’s modeling language,
has an imperative style that resembles the C programming language. Models for Proverif
can be described using the applied pi-calculus, a process algebra that has been specifically
designed for security specification. From a modeling perspective, we have compared the
different language constructs that were used in the case studies of Chapter 4. SPIN and
Proverif provide channels which are convenient ways of representing communication between
agents that have specific roles. In Coq, Gallina’s inductive definitions with quantified and
dependent types, on the other hand, are useful language features that can be used to represent
cryptographic properties of protocols.

We have shown that choosing the right tool always implies a trade-off. In general, it
is easier to model a system using SPIN’s state representation than using the pi-calculus or
logical inference rules. However, SPIN can only verify a bounded number of sessions and
message space. Moreover, Proverif verifies an unbounded number of sessions and message
space at the cost of potentially not terminating or reporting false attacks. In practice,
however, these issues may avoidable by modifying the models or appealing to other techniques
[121]. On the other hand, Coq theories with security proofs are not bounded and can
represent an unrestricted symbolic attacker. We have shown that protocol insecurity can be
proved in Coq and that the results are sound. On the other hand, a proof that demonstrates
that the properties hold may be harder to construct but has the benefit of completeness.

This result is not obtainable in SPIN or Proverif.
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CHAPTER 6

CONCLUSION

6.1 Thesis Summary

In this thesis, we have presented a generalized framework for modeling security protocols
and specification properties for verification using the model-checkers SPIN and Proverif, and
the theorem prover Coq. We have shown how to systematically translate informal protocol
narrations into formal models to be used as input into each of the tools.

Moreover, we have formally analyzed several examples of a particular class of crypto-
graphic protocols using three alternative methods. We used SPIN to analyze explicit state
models written in Promela; symbolic models in the pi-calculus were verified using Proverif;
and finally we proved lemmas that show protocol insecurity using the theorem prover Coq.
Our experiments extend the number of case-studies of protocol analysis using formal meth-
ods, which are relatively scarce compared to other fields.

The most important contribution of this study is the comparison of the three tools
presented in Chapter 5. We have analyzed the modeling language features and compared the
verification process for each of the tools based on important metrics for several case studies
that were presented in Chapter 4. While the most comprehensive results can be obtained
with theorem proving, our results show that model checking is a practical alternative that
offers higher levels of automation. SPIN does a good job at analysing simple protocols in
the bounded case; it finds attacks for all the protocols that we verify. Proverif automatically
finds attacks in the unbounded case, a result that is not achievable in SPIN and requires

considerable manual effort in Coq.
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6.2 Future Work

One of the issues with formal verification of security protocols using a symbolic model for
cryptographic primitives and the attacker is that strong assumptions must be made. In the
symbolic model, cryptography is unbreakable and the attacker has unlimited computational
ability. A computational model of security which considers limitations of the attacker has
been proposed since the 1980s [122, 111], and has gained recent popularity [123, 124, 125,
126].

In the computational model, verification considers computability of the adversary, and
the probability that the keys will be compromised. For example, symmetric encryption is
considered secure if the attacker has a minimal probability of distinguishing between two
encrypted values of the same length [127].

In general, protocols that are found secure in the symbolic model are not always safe in
the computational model [128]. In other words, attacks found using the computational model
can be mapped to the symbolic model, but mapping in the inverse direction is not always
achievable. For proving security of protocols in the computational model, two approaches
have been taken. The first one, computational soundness, focuses on proving that a security
proof in the symbolic model corresponds to a proof in the computational approach [129].

The second approach pioneered by Laud [130], called the direct approach, aims to prove
security directly in the computational model. A survey of related literature of both methods
can be found in [131]. Blanchet extended Laud’s ideas and implemented Cryptoverif [132], a
verification tool for the computational model. Another recently proposed tool is EasyCrypt
[123], which checks proof sketches and compiles them into verifiable proofs in CertiCrypt
[133] (a framework that uses Coq for game-proof construction). The main issues with these
recent tools is that they can only be applied to some general security properties, e.g. secrecy
and authentication, so the applicability of these tools to verify other security problems yet
remains an open question. Moreover, the number of case studies in computational verification

of security protocols is still limited.
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Another research trend is to bridge the gap between verifiable models and actual system
implementations. There are two approaches on this line of work, model extraction and code
generation. Avalle et al. [46] published a comprehensive survey of recent work in these areas.
Model extraction is based on the classical theory of abstractions [134]; implementation details
are extricated and properties proved on the simplified model. In general, programs must be
annotated to allow the algorithms to identify which parts of the program can be abstracted.
Automated code generation follows a model-driven software engineering approach, a secure
high-level model is iteratively refined into a concrete implementation. Some tools also provide
a proof asserting that the implementation is sound with respect to the abstract model.

In any case, neither model extraction nor code generation always find logical flaws in
protocols. An example is the logical flaw found on the TLS protocol, which was previously
claimed to be verified on implementations [46]. The problem was that all studies considered
a reduced version of the protocol to cope with verification limitations, i.e. the proofs were
sound but not complete. Extending verification methods to deal with larger models seems like
an arduous task. Nevertheless, some recent work has been done in composability [135, 136]
of formal methods to deal with this issue.

Moreover, most of the existing work in model extraction and code generation focuses on
symbolic models. Linking implementations to computational proofs would provide greater
trust. Some preliminary work has been done on this field [137, 138], but the complexity
of dealing with the abstract models may be preventing this technique to be adopted by
non-experts [46]. A recent work uses Java both as a modeling and implementation language
(JavaSPI) [139], however the approach may generate code that is slow and not optimal.
Future work, in this case, could focus on translating protocol models into C language, for
instance, or optimizing the Java code generated by JavaSPI.

In this thesis, we considered a restricted set of protocols, namely those for authen-
tication and key establishment. Authentication and secrecy are the two most interesting

security properties of the protocols we studied. Nonetheless, other classes of protocols exist
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for specific applications (e.g. smart-cards, e-commerce, e-voting or e-passports). Only a
few approaches have been focused on verification of application specific properties [140]. In
addition, some protocols aim to enforce security properties other than authentication and
(syntactic) secrecy; for example anonimity, indistinguishability (strong secrecy), and unlink-
ability in privacy protocols. On the theoretical side, Bruso et al. [141] have addressed a
first issue with these properties, defining these security properties more precisely. On the

practical side, more case studies would pave the road to maturity in this area.
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