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like to appreciate Ali Görçin’s brotherhood, which I believe is another benefit of my PhD years.

Also, I owe much to Yılmaz and Arslan families for their great hospitality which minimized the

longing to my family and Turkish food.

Last, but by no means least, I would like to express my deepest gratitude to my parents
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ABSTRACT

Constantly increasing demand for wireless communications in various applications has al-

ways led to new ways of modulating the radio frequency (RF) carrier signal by advancing waveform

structure throughout generations. Although communication data rates are limited by the the-

oretical capacity, specific signaling designs for the signal that experiences natural and artificial

effects in the transmission medium such as multipath fading channel, hardware impairments and

multiuser environment promised better solutions in providing improved wireless access to various

type of users and networks. Besides communication capacity, broadcasting nature of radio signals

poses the information security as another main concern in wireless communications. In this dis-

sertation, new advanced methods for improving signal statistics in multiple domains are studied.

Instead of focusing on a single aspect, the waveform design approaches studied in this dissertation

tackle with improving the orthogonal frequency-division multiplexing (OFDM)-based signaling in

multiple perspectives such as out-of-band (OOB) emission reduction, peak-to-average-power ratio

(PAPR) reduction, and secure transmission with minimum or no effect at the receiver side. Various

concepts are coherently exploited while achieving aforementioned goals with minimal cost such as

unexplored spaces in the signal space like (CP), guard band, multipath fading; multivariate nature

of the multicarrier signals; time spreading and location uniqueness of the wireless channels. The

proposed techniques are analyzed theoretically and performance results are presented including

related previous works in the literature. It is worth noting that the methods presented in the dis-

sertation can be easily applicable to conventional OFDM systems thanks to having no or minimal

change in the receiver structure.
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CHAPTER 1:

INTRODUCTION

From smoke signals to transatlantic high definition video calls, wireless communication

has been an essential part of both individuals and societies since the beginning of human history.

Despite being an old practice, present understanding of wireless communication has been estab-

lished with the experiments of Nicola Tesla that showed the possibility of energy transmission and

telecommunication of information with radio frequency (RF) signals [1]. Then an half century

later, Shannon [2] paved the way in exploring the limits of information transmission. Until today,

emerging technological advances in computing devices and widespread use of wirelessly communi-

cating user equipments that run data-demanding applications created a large amount of capacity

requirement for wireless networks forcing the limits. In addition, recently arising application areas

such as sensor networks, advanced metering, vehicular networks, remote health monitoring and

data collection systems that benefit from wireless information transmission expanded the definition

of user from person to thing. Thus, in todays world, communication scenarios include machine-

to-machine and machine-to-person along with person-to-person. As expected, all of these new

connections correspond to dramatic increase in the demand for wireless communication system

resources, which is limited to available RF spectrum. Key factors in meeting these requirements

in physical and network layer perspectives are high efficiency modulation/transmission techniques

and dense frequency reuse, respectively.

Increasing the data rate yields using broader signal bandwidths. In order to maintain the

scalable equalization complexity in frequency selective wireless channels, wideband transmission has

been achieved via the use of multicarrier transmission [3–6]. Along with the efficient discrete Fourier

transform (DFT) algorithms [7], practical implementation of frequency domain equalization (FDE)

paved the way for orthogonal frequency-division multiplexing (OFDM): an orthogonal multicarrier

1



communication technique that can overcome many of the problems that emerge with the high data

rate communications, most importantly multipath delay spread. OFDM and its variations are used

as the signaling method for various communication standards including broadcasting standards

such as Digital Audio Broadcasting (DAB) [8] and Terrestrial Digital Video Broadcasting (DVB-

T2) [9], wired internet access technologies like Very-high-speed digital subscriber line 2 (VDSL2) [10]

and Broadband over Power Line (BPL) [11] for asymmetric digital subscriber line (ADSL)-based

and power line communications, respectively. More popularly, IEEE 802.11a/g/n/ac family of

wireless local area network (WLAN) schemes use OFDM as their physical layer (PHY) transmission

technique [12]. Good results in the WLAN networks encouraged the standard bodies to use OFDM

in metropolitan-area networks (MAN) IEEE 802.16 ( also known as Worldwide Interoperability for

Microwave Access (WiMAX)) [13] and then fourth generation (4G) cellular networks (Long Term

Evolution (LTE)) [14]. Finally, OFDM-based multicarrier solutions are also the strongest candidate

for cognitive radio (CR) networks for its flexible spectral utilization and high reconfigurability [15].

While utilizing wider bandwidths, existence of many other users and various technologies

that seek for new resources does not allow widening the signal spectrum in order to minimize the

interference. However, conventional OFDM systems suffer from high out-of-band (OOB) spurious

emission. In addition, high number of independently modulated subcarriers in OFDM creates

large dynamic range in signal amplitude. Thus, high spreading along power domain causes signal

distortion when it is subject to a nonlinear process such as power amplification at the transmitter.

Considering these multiple constraints on multiple domains, advanced waveform design and signal

manipulation methods should be able to deal with multiple of these issues jointly.

Due to broadcasting nature of the radio waves, wireless communication provides many ben-

efits such as seamless connectivity, reduced infrastructure cost, support of mobility, and flexibility

in communication range. Besides these advantageous, wireless transmission may lead to security

vulnerabilities because of the lack of physical boundaries preventing the eavesdroppers, i.e., mali-

cious receivers, from capturing the transmitted message. Thus, security in wireless communication

has become one of the main concerns along with capacity requirements. Interestingly, multipath

fading feature of the wireless channels inherently provides some signature properties due to ran-

2



dom scattering nature of the physical propagation environment. Thus, while designing transceiver

algorithms and shaping waveform for signal quality purposes, the unique properties of the wireless

channel can be exploited to secure the information transmission.

1.1 Scope of the Dissertation

The scope of this dissertation is to design multicarrier waveforms by focusing on reducing

the spreading of the signal on multiple domains for enhancing signal quality and achieving physical

layer security for data confidentiality. The chapters include performance results of the proposed

schemes and comparisons with the available methods in the literature.

1.2 Contributions

Figure 1.1 depicts the domains and main concepts that are studied in this dissertation

including the name of chapters that cover the regarding concepts. The focus and the main contri-

butions of this research include the following perspectives.

1.2.1 Waveform Shaping in Time and Frequency Domains

In this research, we primarily focus on time and frequency domains while designing the

multicarrier waveform with OFDM kernel. A windowing technique which provides optimal time-

frequency containment and maximal adjacent-channel interference (ACI) rejection for OFDM-based

systems is introduced. Instead of using a single pulse shape function for all subcarriers, multiple

functions are considered in order to maximize the time-frequency containment of the OFDM wave-

form. The main strategy is to concentrate the spectrum of windowing functions into a given

bandwidth while achieving maximum suppression in the out-of-band region. This is achieved by

employing prolate-based windowing functions that provide optimal spectral concentration for time-

limited pulse shapes. The windowing functions are designed per-subcarrier basis in order to exploit

available concentration band for each subcarrier. In addition, the proposed concept is considered

for the receive filtering in the presence of ACI. It is shown that the optimal spectral concentration

property also maximizes ACI rejection for OFDM receivers. The contributions can be itemized as
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• The design of optimum spectral concentration in a given guard band for minimum ACI

suppression by introducing per-subcarrier windowing function design

• Optimum joint time-frequency concentration for pulse shaped OFDM that maximizes spectral

efficient under a given spectral mask to be complied

• For given spacing between adjacent channels, achieving maximum ACI rejection with utiliza-

tion of per-subcarrier receiver windowing for OFDM receivers

1.2.2 Waveform Shaping in Time and Frequency Domains with Wireless Channel

In this research, multipath channel and resulting delay spread profile are taken into ac-

count while performing waveform shaping in time and frequency. In OFDM systems, suppressing

the OOB emission with pulse shaping comes with price. The expense emerges in designing the

transition between consecutive symbols. The price can be either reduction of spectral efficiency

(SE) with symbol extension for better transition, or introduction of inter-symbol and inter-carrier

interference due to reduced cyclic prefix (CP) size. Under this concept of work, we propose a

time-asymmetric and per-subcarrier pulse shaping method to minimize the introduced interference

without sacrificing SE and OOB performances. Although time-asymmetric pulse reduces the in-

terference due to shortened CP by exploiting the asymmetry in channel delay profile, it causes

spectral growth. Thus, the time-asymmetry of the pulse shaping function is gradually increased for

the inner subcarriers that have wider spectral room to OOB region. A generalized Kaiser window

with adjustable time-asymmetry is introduced to the provided framework. Subcarrier specific in-

terference and mean bit error rate (BER) are derived as a function of the employed per-subcarrier

pulse shaping and channel delay profile. Analytical and simulation results showed that proposed

technique achieves superior BER performance while achieving the same level of OOB suppression

of pulse shaping and SE of conventional OFDM without pulse shaping. The specific contributions

on this study can be given as

• Concept of time-asymmetric pulse shaping for OFDM subcarriers is introduced in order to

reduce the inter-symbol interference (ISI)/inter-carrier interference (ICI).

4
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Figure 1.1 Outline of the dissertation that includes the domains and concepts that are studied.
The chapters regarding to associated concepts are also highlighted.

• A practical and closed-form pulse shaping function with adjustable time-asymmetry is intro-

duced as generalized Kaiser window (GKW).

• ISI/ICI - OOB trade-off in spectrally efficient pulse shaping is mitigated with per-subcarrier

design of the time-asymmetric waveform that minimizes introduced interference while main-

taining both OOB emission and SE.

1.2.3 Waveform Shaping in Frequency and Power Domains

In this research item, the dynamic range, peak-to-average power ratio (PAPR), of OFDM

waveform is introduced into the waveform design criteria. It is known that OFDM waveform has

its own drawbacks that affect application in practice: high OOB radiation and high PAPR. In this

approach, a three-stage technique for the joint reduction of OOB radiation and OOB, therefore

5



minimizing the spectral regrowth after the power amplifier as well as signal distortion is proposed.

In the first and the second stages, the OFDM data vector is partitioned into contiguous blocks

that are naturally suited for PAPR reduction using partial transmit sequences (PTS). Since edge

blocks/subcarriers have more impact on the OOB radiation, each edge block is further divided

into smaller interleaved sub-blocks, and optimized phase rotations are applied to each sub-block

to suppress the spectral sidelobes. Following the frequency domain techniques, optimum phase

rotation for the time domain OFDM symbol is calculated to achieve smoother transition with the

previous symbol, which further reduces the OOB spectrum. The proposed method improves the

joint containment in frequency and power dimensions, along which the OFDM signal suffers from

high spreading. The contributions in this part of the dissertation can be summarized as

• Joint sidelobe suppression and PAPR reduction with interleaved-block phase adaptation and

PTS which coherently works for enhancing the transmitted signal quality in the presence of

practical limitations

• Three stage method in mutually exclusive manner provides flexible implementation with

minimal phase computation

1.2.4 Waveform Shaping in Frequency and Power Domains with PHY Security

This approach includes improvement on both waveform quality in all domains and the PHY

security jointly. A signal superposition scheme is proposed that reduces OOB with satisfying sym-

bol continuity, reduces PAPR while there is no adverse affect at the receiver since the superposed

component is aligned with the null-space at the receiver. In addition, the superposed alignment

component acts as artificial noise (AN) and distorts the received signal at eavesdroppers. The

scheme incorporates multipath channel and N -continuous OFDM structure. By exploiting the in-

evitable guard periods between OFDM symbols, i.e., CP, the correction component which maintains

symbol continuity is aligned with the CP duration after passing through the multipath channel.

Thus, the proposed method enables disturbance-free data subcarriers at the receiver while main-

taining the continuity of OFDM symbols. This is achieved by the generalization of conventional

N -continuous with using more degrees-of-freedom stemming from the CP duration. In addition to
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continuity, the remaining degrees-of-freedom is used for reducing PAPR of the transmitted sym-

bol. As it eliminates the interference on the data symbols caused by the correction term, it yields

no modification at OFDM receiver, which makes the proposed scheme backward-compatible to

conventional OFDM receivers. However, unintended receivers, i.e., eavesdroppers, will experience

high interference since the correction term is not aligned with their channel that is unique to the

location. This corresponds to AN and provides secure transmission in the PHY layer.

• Joint sidelobe suppression, PAPR reduction and PHY layer security in OFDM systems that

does not suffer from data rate reduction and adverse affect on legitimate receivers

• Closed form solution for the OOB reduction without loss in spectral efficiency and received

signal quality

• Along with aligning the correction term with channel and CP duration, N -continuity is

achieved without a need for additional processing at the receivers such as adaptive decoding

1.2.5 Waveform Design for PHY Security Using Fade-Avoiding Artificial Noise

In this research, frequency selectivity of the wireless channels are exploited for providing

secure transmission. The random nature of fading channels is an enabling factor for achieving

secrecy against eavesdropping. An adaptive transmission scheme in which the faded subchannels

of the legitimate channel are not used for conveying information is introduced. Thus, capacity

reduction in legitimate channel is minimized while causing a reduction of the eavesdropper channel

capacity proportional to the unused subchannels. Besides improving communication secrecy with

the intelligent subchannel usage, populating the unused subchannels with artificially-generated

noise that further disturbs the eavesdropper’s reception is proposed. Since each receiver has its

own channel state information (CSI) but not other’s, eavesdroppers cannot discard the distortion

which is integrated into the transmitted signal as a function of the legitimate pair’s CSI. Positive

secrecy capacity and outage probabilities are provided as well as error performance example in a

communication scenario. It is showed that while careful usage of the subchannels in frequency

7



selective channels improves the secrecy, introducing the fade-filling noise creates an error floor for

the malicious nodes. The contributions on this approach can be itemized as

• Derivation of outage secrecy capacity for introduced subchannel deactivation scheme

• Creating pseudo nullspace in single-input single-output (SISO) channels with adaptive faded

subchannel deactivation

• Integration of AN with fade avoiding subchannel usage for enhanced security

1.3 Dissertation Outline

As it is also depicted in Figure 1.1, this dissertation consists of eight chapters in which the

Chapter 1 provides introduction and a short overview of the multicarrier waveforms. In Chapter 2,

we present a comprehensive overview of PHY-layer security metrics, concepts and techniques before

introducing PHY-layer security approaches in waveform design in Chapters 6 and 7. In Chapter

3, waveform shaping dealing in time and frequency domains via a windowing technique which

provides optimal time-frequency containment and maximal ACI rejection for OFDM-based systems

is presented. Then in Chapter 4, the second order statistics of the multipath channel is introduced

into the waveform design by proposing a time-asymmetric and per-subcarrier pulse shaping method

to minimize the introduced interference without sacrificing SE and OOB performances in OFDM

systems. After the first two approaches that are based on designing the pulse shape in OFDM

system without manipulating the data symbols, the rest of the dissertation includes data-dependent

techniques where the waveform improvement is achieved by manipulating the data symbols in some

form. In Chapter5, a joint sidelobe and PAPR reduction scheme with block-based phase rotation

is presented that impacts both frequency and power domains. Then, the security is introduced into

the multi-functional waveform design in Chapter 6 where CP-aligned N - continuity with PAPR

reduction and PHY security with AN is proposed. In Chapter 7, a secure transmission method

that considers frequency selective fading as a degree of freedom to insert AN into the transmission

is presented. Finally, Chapter 8 concludes the dissertation along with discussion of possible future

research areas.
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CHAPTER 2:

PHYSICAL-LAYER SECURITY CONCEPTS AND METRICS

IN SIGNAL TRANSMISSION

2.1 Introduction

The communication between distant entities requires exposing the message to outside world

in some form of signal transmission. When the physical propagation medium between the trans-

mitter and receiver is not perfectly secured, information transmission comes with confidentiality

issues. That is, the transmitted signal is subject to be captured by an unintended third entity

with not so good intention, i.e., eavesdropper. Security risk in the propagation can be due to

protocol-based such as shared medium, or physical phenomenons such as wireless propagation of

radio waves. In particular to wireless systems, although broadcasting nature of the radio waves

provides benefits such as connectivity, support of mobility, and flexibility in communication dis-

tance, wireless transmission leads to security vulnerabilities due to the lack of physical boundaries

preventing the eavesdroppers from capturing the transmitted message.

The key of achieving secure communication to put the eavesdropper at a relative disadvan-

tage compared to legitimate receiver [16]. This can be performed by some cooperation between

transmitter and receiver such as encryption/decryption, which has been a widespread method for

securing the data in both storage and transmission phases. The other approach is to exploit the

discrepancies in the physical characteristics of the propagation environment. Namely, nonidentical

observations of the transmitted signal by the legitimate and illegitimate receivers, e.g., via wireless

channel, location, and antenna configurations can be the enabling factor for secure communication.

Fundamentals of the secure communication are laid by Shannon [16]. Perfect secrecy in

communication is defined as the condition that observation of the signal by an eavesdropper does

9



not provide any information about the secret message without any assumption on processing power

and time. Shannon showed that this is achievable only if the secret key that is used for encryption

is at least as large as the message itself. One time pad cryptography is a well-known example of

perfect secure system [17]. This result is based on the assumption that the legitimate receiver and

eavesdropper have identical observation on the signal. In other words, Shannon’s limit is for the

cryptographic approaches where all receiver nodes access the same signal without any additional

effect [18]. The fact that cryptographic techniques reside in the upper layers of the communication

stack supports this assumption since the data is assumed to be acquired from lower layer in an

error-free manner [19].

When propagation medium is wireless channel, it is known that the signals captured by

legitimate receiver and eavesdropper pass through different paths and experience distinct imper-

fections. After decades of Shannon’s results, the secrecy under this condition was studied by

Wyner [20]. Wire-tap channel is defined where the wire-tapper, i.e., the eavesdropper in wireless

case, experiences a degraded version of the legitimate receiver’s channel. Wyner revealed that it is

possible to conduct a perfectly secure communication without using secrecy keys, but only when

the main channel is relatively better than the eavesdropper’s channel. Hence, the information the-

oretic notion of perfect secrecy has started the era of physical layer (PHY)-security, which is based

on exploiting any form of physical characteristics in the nature of signal propagation in favor of

legitimate nodes.

The path that Shannon and Wyner have opened in the secure communication constructs

the theoretical limits on the secrecy of the systems. In other words, they follow the information-

theoretic principles that generally deal with how much one can secure the communication, rather

than how to do it. That is, practical aspects of the secure communication systems are also crucial

along with the theoretical limits, which include the secure transmission techniques, assumptions on

the systems nodes, and the practical metrics.

In this paper, we make a comprehensive review for the fundamental stages of information

transmission and corresponding requirements from the PHY layer security perspective in the pres-

ence of eavesdropper. These stages and requirements are explained by representing the information
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Figure 2.1 Information transmission consists of mapping operations from message space to signal
space at transmitter, channel effect with distortion via warping the signal space and addition of
noise, and mapping back to message space at the receiver.

and the signals as points in the multidimensional message and signal spaces [2]. While eavesdrop-

per can satisfy some of the requirements via having prior knowledge about the signal properties,

the presented framework covers any type of knowledge level during the signal reception. Then,

fundamental performance metrics for evaluating the security level along the mentioned stages are

surveyed. We cover both information theoretic considerations and practical measures including

both existing approaches and recent considerations.

It is convenient to note here the names of the entities in communications with the secrecy

concern. We adopt Alice as legitimate transmitter that intends to send the secret message to

the legitimate receiver, namely Bob. Then, the third node, which is assumed to be a passive

eavesdropper Eve, aims to obtain the secret message content. The outline of the paper is as follows:

In Section 2.2, we present the fundamental steps to be completed for an arbitrary eavesdropper.

Then, main performance metrics for the security, including both information theoretic and practical

measures are surveyed in Section 2.3. Finally, conclusions are given in Section 2.5.

2.2 Reception Stages with Eavesdropper

Information transmission can essentially be modeled as a series of transform operations.

It includes mapping the information in message space to a waveform into the signal space at the

transmitter, and the reverse operation at the receiver [2]. As illustrated in Figure 2.1, this well-
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Figure 2.2 Stages of the overall reception mechanism at the eavesdropper.

known representation can also be applied in the presence of an eavesdropper. When the security

is concerned in transmission, making the de-mapping operation a hard task for the eavesdropper

becomes one of the main requirement along with effective transmission between the legitimate pair.

As an adversary receiver, eavesdropper can posses different levels of prior knowledge on the

legitimate signal transmission. For instance, Eve can have as much information as the legitimate

receiver including transmission time, frequency, bandwidth, transmit filter, modulation format. On

the other hand, she can have less information about the signal, e.g., only the spectral location and

bandwidth, in other scenarios. Depending on the situation in this spectrum of knowledge levels,

an eavesdropper has to satisfy certain conditions and pass through stages for a successful signal

reception. In this section, we review the four main requirements, which an eavesdropper should

already satisfy or attain via additional algorithms, as depicted in Figure 2.2: Coverage, Detection,

Interception, and Exploitation. Some examples for each stage are also summarized in the figure.

2.2.1 Coverage

Transmitter’s main operation is to map the source information in the message space to the a

particular signal in the signal space. Thus, a signal is represented as a point in the multidimensional

space as shown in Figure 2.1. This can also be regarded as electrospace, where each axis denotes

time, frequency, space, code, etc.

The first requirement for an eavesdropper is the having the sufficient capability for cap-

turing the transmitted signal. That is, the reception window of Eve needs to cover the signal of

interest. As an example, the time window that eavesdropper is active must cover the frame of
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signal observed at the reception after passing through the channel. In addition to time, another

domain of coverage is the spectrum. Receiver spectral window that is determined by the carrier

frequency and the bandwidth should cover the transmitted signal band. In the multidimensional

notion, this translates into the condition that Eve’s reception subspace, illustrated as shaded region

in Figure 2.1, should include the point which represents the signal after the channel. By satisfying

this condition, eavesdropper can make observations that can result in a detection of the secret

message. For the eavesdroppers with prior knowledge on signal properties regarding to coverage,

this requirement is naturally satisfied via adjusting the reception parameters accordingly.

2.2.2 Detection

Knowing that the possible region of the signal under interest are covered, the next step

is to decide if the signal is actually transmitted or not. The detection operation is a common

problem in communication, specifically in cognitive radio (CR) systems that requires detection of

other users’ presence in the network via spectrum sensing mechanisms [21]. In general, detection

can be connected to the energy of the signal that receiver examines via energy detection. In that

respect, the detection performance is connected to the distance between the point representing the

signal and the origin in the message space, which is illustrated in Figure 2.1. Note that the power

of the signal along a particular dimension in the signal space, compared to other dimensions, can

be significantly different for transmitted and the received signal. This is because of the warping

effect of wireless channel on the signal space. For instance, consider a broadband signal passing

through a frequency-selective channel that can be represented as multiple orthogonal subchannels

with flat fading [22]. In this case, each subchannel becomes a dimension in signal space in Figure

2.1, and selective fading on each subchannel creates the effect of warping. Thus, the overall energy

of the received signal determines the detectability of the existence of the signal in the presence

of additional effects that create uncertainty in the exact position. That is, channel distortion is

critical with noise and interference. The closer the point is located to the origin at Eve (and the

farther for Bob), the lower probability for eavesdropper (the higher probability for Bob) to come

with a successful binary decision about the signal’s presence.
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2.2.3 Interception

After detection, further information about the transmitted signal is required for a reliable

reception. The transmit filter type, modulation format, number of subcarriers for multicarrier

signaling, utilized code sequence for spread spectrum signals are examples of signal features that

the eavesdropper needs to intercepted for a reliable decoding of the message. In other words,

having prior knowledge on these properties can be considered as Eve having possible locations

of the points in the multidimensional space. After detecting the signal covered by the receiver,

these interception parameters provide the knowledge of all possible points that the signal resides

in the signal space. The exact location of the corresponding point among other possibilities indeed

provides the information content of the digitally modulated message. In spread-spectrum signals as

an example, the knowledge of the spreading code clears the confusion of the receiver except possible

locations in finite alphabet signal map, e.g., quadrature amplitude modulation constellation points.

2.2.4 Exploitation

The final stage is essentially a regular demodulation process with the assumption that all

information about the signal is known except the modulated information. Hence, the exploitation of

the signal at the end can be the decoding of the intercepted signal where conventional demodulation

process, i.e., de-mapping the point in the signal space into message space as in Figure 2.1, occurs.

The success in this stage is directly related to the amount of disturbance on the actual signal due

to noise and interference. Thus, the aim in the secure transmission is to make the signal observed

at eavesdropper more noisy while keeping the distortion at the legitimate receiver minimum. As an

example, a common technique is the insertion of artificial noise in the transmitted signal [23], by

exploiting the dimension reduction at the receiver. The additional distortion component, artificial

noise (AN), is selected from the nullspace of the intended receiver’s channel, and hence, it disappears

after passing through the wireless channel of the legitimate receiver. This eliminates the adverse

effect on the reception performance for Bob. However, since AN is not aligned to the nullspace of

the eavesdropper’s channel, it creates uncertainty on the actual location of the transmitted signal.

The concept of AN is illustrated in Figure 2.3 in a 2 × 1 multiple-input single-output (MISO)
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Figure 2.3 (a) 2 × 1 MISO communication system where two dimensional transmitted signal x
is mapped to one dimensional received signals yB and yE along the direction channels hB and hE,
respectively. (b) Artificial noise component a is selected along the orthogonal direction to the
channel of Bob. Thus, the additional distortion is not observable by the legitimate receiver while
it causes distortion at illegitimate receiver Eve.

transmission where the transmitter has more antennas than each receiver in order to achieve a

nonzero nullspace for the channels. In other words, a the receiver with single antenna, combination

of the signals from two transmit antennas corresponds to dimension reduction in the signal space

from 2 to 1. Thus, the two dimensional signal in d1 − d2 plain is mapped to a point in one

dimensional space. Then, after the channel, the main aim is to introduce additional distortion on

the signal observed by Eve. In other words, as two observers of the transmitted message in the

signal space, indented receiver exploits the signal effectively while for the eavesdropper’s demapping

operation is much more challenging due to additional uncertainty on the observed signal from her

perspective.

In general, the secrecy of the communication is measured from the exploitation perspective.

This is because Eve is assumed to posses the same level of prior knowledge on the signal. Thus,

the discrepancy between Bob and Eve is observable in the last stage. In the following sections, we

will discuss the fundamental metrics to measure the security in the system.

15



Increasing Security 

𝐻 𝑊  𝐻 𝑌B  

𝐼 𝑊; 𝑌B  𝐻 𝑊|𝑌B  𝐻 𝑌B|𝑊  

𝐻 𝑊  𝐻 𝑌E  

𝐼 𝑊; 𝑌E  𝐻 𝑊|𝑌E  𝐻 𝑌E|𝑊  

Increasing Reliability 

Equivocation  

at Eve 

Mutual Information  

at Bob 

Encoder 

Decoder 

Decoder 

𝑌B 

𝑌E 

𝑊 B 

𝑊 E 

Channel 

Channel 

𝑋 
𝑊 

Alice 

Bob 

Eve 

Main (Legitimate 

Receiver) Channel 

Eavesdropper Channel 

Figure 2.4 Information-theoretic measures. The main aim is to increase the mutual information in
main channel for reliability, while minimizing the mutual information (maximizing the equivocation)
at Eve for security. Secrecy rate is the difference between mutual informations, which is desired to
be maximized.

2.3 Performance Metrics

Either for investigation of the limits of secrecy in a given system, or for evaluation of level

of secrecy for a proposed scheme as well as for maximizing it, some numerical metrics have been

developed most of which are adopted, or derived from the conventional communication metrics

such as channel capacity, signal-to-noise ratio (SNR), and bit error rate (BER). The measures for

the secrecy of the system can be considered under two main categories. The first type is informa-

tion theoretic measures that do not specify a certain communication signaling and protocol, but

generally consider the limits of the secrecy which is independent of the applications and underlying

procedures. The second type is based on practical measures where the secrecy level is quantified

by the metrics that can be observed in practical communication scenarios.
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2.3.1 Information-Theoretic Measures

2.3.1.1 Equivocation and Secrecy Rate

The principles of secret communication in information-theoretic sense is constructed by the

Shannon’s definition for information content, i.e., entropy, which quantifies the unpredictability of

a signal as a random variable [24], and defined as

H(W ) = E[I(W )] = E[− ln(P (W ))]. (2.1)

where I(W ) describes the information content of W . The relations between the information the-

oretic terms and the secrecy of the communication is illustrated in Figure 2.4. For main channel,

the mutual information between the message and received signal, I(W ;YB), is the amount of infor-

mation that Bob obtains about the message W by observing the received signal YB. This quantifies

the reliability in the communication in terms of data rate, maximum of which is known to be the

channel capacity [24]. For the eavesdropper channel, conditional entropy of the message W given

that the received signal YE is known quantifies the amount of information needed to describe the

message W . This is also referred as equivocation, H(W |YE), that corresponds to the confusion

of eavesdropper on the received signal. Clearly, increasing the equivocation at Eve improves the

security of the message. In other words, the unpredictability of YE, that is not originated from

the message W , is the result of independent distortions on the signal such as noise and interfer-

ence. Hence, increasing the level of distortion on Eve’s corresponds to increasing the amount of

information needed to determine W from YE.

Therefore, the main goal in designing the communication system with secrecy constraints

is to increase the mutual information between the transmitter and legitimate receiver which stands

for the reliability in communication, while maximizing the uncertainty at the eavesdropper which

paves the way for the security objectives. In other words, by using the identity that the total

entropy of the signal is constituted by the mutual information and the equivocation at Eve, i.e.,

H(W ) = I(W ;YE) + H(W |YE), the parameter that is desired to be maximized is the secrecy rate
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defined as

Rs = I(W ;YB)− I(W ;YE). (2.2)

The maximum achievable secrecy rate over input distributions for the transmitted signal

X, which is a function of the coding process, is given as the secrecy capacity. That is, the secrecy

capacity can be represented as

Cs = CB − CE. (2.3)

where CB and CE are the capacity of the Alice-Bob and Alice-Eve channels [20, 25, 26].

2.3.1.2 Secrecy Outage Probability

Randomness of the physical environment due to uncertainty in some factors such as the

locations of nodes, shadowing and multipath-fading effect changes the signals observed by each

node in a random manner. Thus, the aforementioned metrics become random variables as well.

In such situations, statistical measures are generally adopted to represent the randomness of the

environment itself on top of the information. For example, the secrecy outage probability can be

defined as the probability that the instantaneous secrecy capacity falls below a target secrecy rate

Rt
s, as

Pout(R
t
s) = P (Cs < Rt

s). (2.4)

In such environments that the randomness in the system parameters does not allow a deterministic

secrecy metric, the performance of the system can be measured via outage probability [25], which

is the better the lower for a given secrecy rate target.
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Figure 2.5 Security gap when both receivers are assumed to have identical BER performance.
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Figure 2.6 Generalized security gap when the Bob and Eve have different BER performances.
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2.3.2 Practical Measures

2.3.2.1 Security Gap

Although secrecy capacity is a common metric for security of the communication, it is

difficult to realize and measure in practical communication scenarios where non-Gaussian codes

and finite block lengths are used. This is also the main reason for not having practical codes

with finite length that achieve the secrecy capacity. Thus, although the fact that both the secrecy

capacity and equivocation rate provide important estimates of secrecy, when practical coding and

modulation schemes are adopted, the metrics that can be mapped to easily measurable parameter,

e.g., BER, emerge as valuable alternatives of measuring the security. After several decades of

information-theoretic notion, a practical approach to determine a quantitative measure, security

gap, is introduced in [27] and [28]. Although it does not address the information theoretic measure,

the security gap quantifies the secrecy level of the communication environment based on BER

performances at Bob and Eve, which is much easier to analyze in practice. The security gap is

defined as

Sg = SNR
(B)
min − SNR

(E)
max, (2.5)

which is the difference between the minimum SNR level of Bob to achieve reliable reception and

the maximum SNR at Eve that guarantees a certain level of BER, which is generally desired to be

close to 0.5. As illustrated in Figure 2.5, two regions; reliability region where Bob operates with a

certain maximum BER, P
(B)
e,max, and secure region where Eve is desired to operate not to achieve a

certain BER, P
(E)
e,min, that can provide sufficient information about the original message. In other

words, the gap between these two SNR levels denotes the channel quality advantage that Bob has

to have over Eve for satisfying the practical notion of the secrecy in transmission.

In order to reduce the security gap for given reliability and security requirements, it is clear

that the steepness of the BER curve needs to be increased. In other words, a remarkable increase

in BER even with a small degradation in Eve’s channel is desirable. Introducing coding with

puncturing [27, 28] and non-systematic coding with scrambling [29–32] are common approaches for

increasing the steepness of BER curve resulting in smaller security gap.
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As it can be seen in Figure 2.5, identical BER performance profile for both legitimate

receiver and the eavesdropper is generally assumed while determining the security gap. However,

the error rate performance can possess different characteristics due to different perceptions of Bob

and Eve. This can be due to natural effects such as different fading statistics with distinct multipath

distribution for two receivers, e.g., line-of-sight (LOS) and non-LOS [33], or artificial effects such

as AN differently effecting legitimate and illegitimate receivers [23]. Thus, the concept of security

gap can be extended into general case where Bob and Eve experience different BER vs SNR

characteristics. Note that since we consider fading, the SNR in the generalized case corresponds to

mean SNR. As it is illustrated in Figure 2.6, the security gap is determined by the SNR levels as

a functions of Bob’s and Eve’s own environmental conditions. It is worth noting that the security

gap with this consideration can even be negative. In other words, the conditions that make secure

communication possible when even Eve has better SNR than Bob can be represented in terms of

the security gap.

2.3.2.2 Bit Error Rate

Being a widespread measure of reliable communication, BER can also be used to quantify

the security performance within a practical point of view. While various functions of BER can be

set, a simple cost function as an example can be defined as

Cost =
Pe(desired receiver)

min (Pe(undesired recevier))
(2.6)

which is a parameter to be minimized for increasing the security in the system. In the concept of

directional modulation [34, 35], the arguments of the error probabilities in (2.6) is considered for

desired and undesired direction, respectively.

2.3.2.3 Low Probability of Interception (LPI) / Detection (LPD)

Considering the stages discussed in Section 2.2 as random events with associated success

probabilities, the probability of a transmitted signal to be exploited by an eavesdropper can be
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given as

P (E) = P (E|I)P (I|D)P (D|C)P (C) (2.7)

where P (C) denotes the probability of coverage, P (D|C), P (I|D), and P (E|I) are the conditional

probabilities of; detection given that the signal is covered, interception given that the signal is

detected, and exploitation given that the signal is intercepted, respectively. The task of PHY

security techniques is minimizing the probability of exploitation, P (E), via decreasing its one or

more probability components, i.e., multiplicands in (2.7).

• Probability of interception: The probability that an eavesdropper locates this point, i.e.,

probability of interception, is another parameter for the security measure. As a general

term, the interception can be considered in time-frequency dimension for spread-spectrum

techniques [36, 37] where the waveform features such as spreading or hopping sequence be-

comes the key for successful interception for eavesdropper. In directional signal transmission

schemes, this can be in the space domain where the eavesdropper has to intercept in terms

of angular location to be able to extract the message. When the mapping operation is tied

to the multipath fading channel response, the knowledge of channel state information (CSI)

between the transmitter and legitimate receiver can open the path to interception [38] in

which the transmission is subject to LPI. Thus, in wireless systems where most of the param-

eters are random variables, the LPI on a domain based on the security technique stands for

a general measure for the level of security. Functionally, probability of interception is analo-

gous to the mutual information between the legitimate transmitter and eavesdropper, which

is also desired to be minimized for achieving positive secrecy from the information-theoretic

viewpoint [16].

• Probability of detection: The term low-probability-of-detection (LPD) is commonly defined as

the probability of correctly detecting the presence of communication between the legitimate

pair. In other words, LPD is a function of covertness of the communication that is taking

place [39], and commonly referred with the concept of spread-spectrum where the power
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density of the signal is decreased with spreading and directional transmission techniques

where the signal power for undesired directions is reduced [40].

2.4 PHY Techniques Against Eavesdropping

2.4.1 Time/Frequency-Based Techniques

This section is devoted to the techniques that are based on signal manipulations in time/

frequency domain that does not exploit the degrees of freedom provided by the spatial domain, or

the wireless channel.

2.4.1.1 Spread-Spectrum LPI/LPD Approaches

In contrast to effort of sending the information by packing into a small area in time/frequency

grid, spreading the information along a wide band provide lowering the density of signal energy

in a given band. Although the spread spectrum (SS) possess various benefits such as robustness

against jamming [36], frequency diversity [41], the motive in the eavesdropping threads is the sig-

nal covertness with low-probability-of-interception (LPI) and low-probability-of-detection (LPD).

While LPD property comes from the energy spreading possibly making power density to fall under

the noise level of the eavesdropper, pseudorandom sequence that is used to spread the information

signal to a wideband provides the LPI for the signal [42]. In other words, the coordinates of the

point in the signal space is determined by the spreading sequence which is assumed to be known

only by the legitimate pairs, and hence acts as a shared secret key [36].

When the wideband information transmission is considered, benefits of SS reduces due to

reduced space for spreading gain for a given available bandwidth for transmission [40, 43]. Although

the individual symbols can be under the noise level that makes it hard to detect via energy detection

based methods, evaluation of second [44] or higher order statistics [45] such as qumulant [46] and

kurtosis [47], and determining the likelihood to Gaussian distribution by negentropy [48] makes it

possible to detect the existence of spread spectrum signals. On top of the signal detection, the secret

key property is subject to be exposed because the direct-sequence multiplication using the same

sequence reveals some weaknesses in terms of blind estimation where the spreading codes generated
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by linear-feedback shift register (LFSR) may be estimated by eavesdroppers from their received

signals [49]. Thus, LPI and LPD of spread spectrum signal is effective on eavesdroppers having no

information about the spreading sequence which can hardly hold in practical scenarios [50].

2.4.1.2 Coding Techniques

Secrecy analysis from information-theoretic perspective presents that there exist some cod-

ing schemes achieving perfect secrecy with the rate of secrecy capacity [20]. However, no practical

schemes with finite code length is known to achieve the secrecy capacity. Thus, investigation of

practical coding schemes taking into account the secrecy constraints has been a recent approach [27–

32]. For instance, low-density parity-check (LDPC) codes are first studied in the context of secure

transmission in [27, 28]. To increase rate of BER growth with degrading channel condition, i.e.,

SNR, puncturing is introduced in the coding process with the price of increase in transmit power.

The error amplification characteristic of the scrambling is exploited in [29] that also reduces the

power dissipation caused by puncturing. The scheme is then extended with combination with con-

catenation and HARQ [31], in order to achieve reduced the security gap by which the legitimate

receiver has to lead.

The fading channels in which the SNR is a random variable itself is studied in security gap

analysis in [32]. The reliability and security thresholds are defined based on the outage probabilities

for a desired BER. Main issue in fading case in terms of security gap, as can be inferred from slow

decaying BER compared to additive white Gaussian noise (AWGN) case, is that the gap required

over a fading channel is quite large. However, as in the AWGN case, the security gap in multipath

fading scenarios can be reduced through the use of scrambling [31] and error correction coding [27,

28]. Depending on the application requirements and channel conditions, practical coding schemes

can be employed as a standalone solution, or they can be conjugated with existing cryptographic

scheme operating on higher layers of the protocol stack [28].
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Figure 2.7 While the information is spread along time (of frequency) in SS and de-spread by the
receiver, the dimension where the information is spread in array transmission is space in which the
de-spreading is inherently done by the channel itself.

2.4.2 Directional Transmission

One of the simplest approaches in dealing with the broadcasting effect in radio frequency

(RF) propagation is to introduce directional transmission. Historically, focusing the total radiated

energy along a specific direction has been motivated by enhancing the range of communication

as well as suppressing the RF power in undesired directions. This inherently helps managing the

interference to neighboring systems, i.e., co-channel interference, and finds usage in commercial

systems such as cellular to increase frequency reuse in the form of sectorization [41] without intro-

ducing new base station towers, and in wireless local area network (WLAN) systems by reducing

interference to other networks via transmit beamforming [51].

Considering the challenge in the wireless information transmission security, shrinking the

geographical area where the received signal is exploitable plays a critical role in prevention of

eavesdropping. Hence, the directional selectivity in the signal transmission has been a well-known

countermeasure. Focusing the radiated RF power along a specific direction can be done via various

types of antennas such as horn, parabolic, and Yagi antennas [52, 53]. Adaptivity on the antenna

radiation pattern and direction becomes crucial when security is the concern. Thus, security-driven

directional transmission can be regarded after the advances in phased antenna arrays, which is a
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widespread technique known for more than a century [54]. In what follows, the main approaches

in providing security in the angular sense are outlined.

2.4.2.1 Array Beamforming

The key idea in array-based directional transmission is to introduce time or phase offset

between antenna elements such that the sinusoidal signals add constructively along the desired

direction while the combination of the signals from antenna elements occurs destructively, which

determines the radiation pattern of the array [55]. In other words, instead of transmitting the

signal with a single antenna, the available transmit power is spread across the multiple antennas

along with associated weights to align the phase of each path along the same direction for the

intended receiver. Spreading the signal in spatial domain indeed shares the same fundamentals

as the spread spectrum transmission. As illustrated in upper part in Figure 2.7, the information

symbol that can be sent in a short duration for a given system bandwidth is spread across time

domain with some associated weights in SS technique1. Then, the receiver accumulates the symbol

energy by correlating the received signal with the locally available PN sequence. On the other

hand, the transmitter spreads the signal energy across space domain in the form of array precoding

as given in lower part in Figure 2.7. However, despreading occurs in the RF stage (at the antenna)

in contrast to SS case where the despreading occurs in baseband. That is, the processing gain of

SS is analogous to array gain in the array beamforming schemes.

Although the spread spectrum and spread-space (array beamforming) lie on the same base,

they differ in practical setting with security consideration. Detecting and decoding the message for

an eavesdropper is a matter of having knowledge on the spreading code, which is possible to be

estimated blindly even if it is not available. However, for the methods that are strongly tied to the

spatial signatures of the intended receiver, e.g., array response, getting in touch with the message

requires overcoming the physical barriers for the eavesdropper rather than having soft information

used in time/frequency basis. That is, an eavesdropper has to be located in the close vicinity with

the intended receiver to be able to surpass the PHY security guard.

1Note that the spreading can also be considered in frequency domain when we fix the duration of narrowband
signal.
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The security gain by conventional phased array directional transmission techniques is limited

to decreasing the received signal strength along undesired directions. That is, only the power of the

signal is suppressed along undesired directions. When we consider the information content, which

is conveyed via digital modulation, this corresponds to the shrinking and rotating the constellation

in other directions of reception. In other words, although the transmission is directional, the

modulation is still omni-directional [56]. Hence, this has no influence on eavesdropper other than

capturing lower signal energy. More critically, even though eavesdropper lies on the direction

where the power is suppressed, secure transmission would not possible if she is more close to the

transmitter enjoying comparable, or even higher, SNR than Bob. Thus, more advanced approaches

such as directional modulation has been proposed recently, as reviewed in the next section.

2.4.2.2 Directional Modulation

In order to provide selectivity in the signal pattern on top of the received power as in

directional transmission, the techniques that result in selectivity in the modulation structure are

studied [34, 57–59] for enhancing the security in the directional sense. Switched-spaced antennas

are first introduced to generate directionally-modulated signal in [57]. For a two-antenna case,

selection between the antennas is done by a binary code sequence which makes the antenna-level

modulation transparent to the wavefront direction. The propagation delay difference between two

antennas corresponds to a two-point constellation scheme in which the pattern of modulation points

is determined by the direction of the receiver. Also, instead of trying to suppress in one direction, the

authors propose focusing the modulation to a desired direction via tapped-delay line antenna array

which is driven by a coded sequence with low autocorrelation. By doing so, coherent combination

along the desired direction with appropriate delays amplifies the processing gain while non coherent

combinations with low autocorrelation suppresses the modulation information in other directions.

One physical challenge in directional modulation with the delay-tapped line arrays is that the chip

rate required to have a sufficient delay between signals can be very high for a given antenna spacing.

Unlike to actively manipulating multiple antennas via different selections, phases, and de-

lays, one driven antenna accompanied by multiple passive parasitic elements are utilized to distort
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the signal along undesired directions [58, 59]. The parasitic elements act as switch or varactor

controlled reflectors. Thus, change in the near field characteristics by altering antenna parasitic is

used to modulate the signal in the far field. Antenna level modulation with near filed reflections

indeed correspond to creating an artificial multipath fading effect in the far field. However the

fundamental difference is that the directional fading effect is controlled actively at the transmitter

in contrast to regular multipath fading case where no control on the reflections is possible due to

randomness of the physical propagation medium. While modulating the signal after power am-

plifier provides advantage in peak-to-average power ratio (PAPR) by feeding the power amplifier

(PA) with unmodulated carrier, one of the main challenges, which originates from the near field

nature of the transmission, appears to be high computation and time burden of finding the switch-

ing combinations for parasitic elements that result in desired constellation point in the intended

direction [34, 59]. Also, since shaping the power spectral density (PSD) of the signal is deter-

mined by the symbol transitions, transmitter needs to lower the symbol rate to allocate some of

the inter-symbol switching states for shaping the transition.

Simpler methods of introducing directional modulation by using conventional arrays instead

of near-field antenna configurations [59] is proposed in [34, 35, 60]. In addition to multi-directional

transmission to multiple users by finding appropriate phase shift values for array elements, authors

motivate the technique for secure transmission where the constellation is distorted in all directions

except that of the desired receiver. In [60], authors use reconfigurable antenna elements, in contrast

to phase shifters, each of which has a certain radiation pattern for three modes of operation. Thus,

the resulting pattern closely follows the superposition of individual patterns. For achieving desired

constellation in the desired direction all states of each element is configured resulting in exhaustive

search for each desired direction.

In contrast to phase shifters [34, 35] and switches [57, 60] with multiple antennas, authors

in [50] use only two directional beams to be utilized for in-phase and quadrature parts of the signal.

Relying on the difference of the radiation patterns of the beams, directional selectivity for the

superposed signal is achieved. However, the level of directivity when using two beams is expectedly

limited, which is not desired from security perspective.
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Figure 2.8 Directional transmission vs directional modulation. While the pattern beam and
information beam are identical in conventional array beamforming, directional modulation schemes
directs the modulation, i.e., information, into desired region that can be different from the radiation
pattern of the array.

The LPI property of spread-spectrum technique is enhanced with LPD by combining di-

rectional transmission with spread spectrum in [61]. In each chip duration, one antenna subgroup

is activated that changes the phase center of the array. Since the index of activated subgroup is

determined by the value of corresponding chip, the receiver along the desired direction observes

conventional spread spectrum signal. However, the phase values in each chip duration results in ar-

bitrary value due to different phase weights of antennas subgroups along other directions. Therefore,

by achieving randomization of spreading code in space domain, an eavesdropper along undesired

direction cannot get the processing gain even she has the information about the spreading code

used.

A general characteristic in directional modulation techniques is to focus on creating se-

lectivity on the signal constellation. As illustrated in Figure 2.8, the information beam pattern

and power beam pattern are separated meaning that the energy higher received signal power does

not necessarily mean more information about the message. This distinction is also valid for more

advanced versions of array transmission given in the sequel.

With the directional modulation, the structure of the constellation pattern is aimed to be

distorted for eavesdroppers along undesired directions. However, for the receivers which can adapt
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the symbol-to-bit mapping procedure to decode arbitrary constellation mapping, manipulating

the location of the constellation points associated to symbols with directional modulation cannot

be effective. That is, this can create weakness where the eavesdropper can perform maximum

likelihood (ML)-type detection after determining the distorted constellation blindly or by training

with reference symbols. For that reason, selectivity in other dimension in addition to space, i.e.,

time, is creates the degree of freedom for the aforementioned issue, as discussed in the next section.

2.4.3 Randomized Space-Time Transmission

Communication security is enabled via properly designed selectivity across different dimen-

sions that makes the reception of the signal at the eavesdropper a hard task. For spatial dimension,

on top of the selectivity in signal power across direction and modulation, time dimension can also

be used as a domain for creating selectivity. That is, the degree of freedom from the antenna

redundancy, i.e., having more antennas at transmitter than the receiver, can be used to change the

constellation manipulation at the symbol rate. This is performed by randomly updating the array

precoding vector (beamforming weights) at the modulation rate, rather than the channel fading

rate. [56]

In [62], the conventional phased array systems with main beam is directed towards the

intended receiver via progressive phase shifts. However, instead of feeding the array elements

with single modulated signal, each element is fed with a Walsh sequence appropriate polarity to

construct a pulse position modulation (PPM) signal when the sequences are combined coherently,

which happens in desired direction with phased array precoding. For the undesired directions, on

top of the distortion on the PPM signal that will be due to noncoherent combination of the Walsh

sequences, transmitter randomly remixes the mapping between code sequence and array element

to introduce time randomization for undesired direction. Since the array precoding aligns each

signal to the same direction, changing the order of antenna does not induce a time variation on

the desired direction. Instead of randomizing the effective channel for unintended directions via

changing the antenna order with symbol rate, [63] introduces the antenna activation as a way of

introducing unpredictable changes in the undesired directions. Since the number of active antennas

30



is kept constant during transmission, coherent combination on the desired direction does not induce

any change in the array response while different antenna subsets in each symbol transmission

corresponds to different channel that cannot be traced since the rate is same as the symbol rate.

Although the array response at the receiver is a multiplicative effect, the concept of randomized

space-time transmission with the randomization rate same as symbol rate is analogous to one-

time pad encryption [16] where one pad key corresponds to randomly changing effective channel

response.

The nullspace of the multi-antenna channels is exploited to design time-varying transmit

beamformers that result in a constant channel to the receiver, but a random time-varying channel

for the eavesdropper. The space-time randomization is performed via array precoding in [43,

64–67]. Transmitted signal from each individual antenna is multiplied with such a randomized

weight that the effective MISO channel between Alice and Bob will be constant while the effective

channel between Alice and Eve is randomized at each symbol transmission. In order to exploit

antenna array redundancy as an advancement to zero forcing (ZF)- or eigen-beamforming in the

array transmission, the expected transmit power needs to be increased in space-time randomization

approaches [43, 64–67]. Although it is considered under the field of AN, the method proposed

in [56] corresponds to the time varying beamforming weight randomization. Since the mixing

matrix is constant during transmission, conventional AN methods are in principle prone to blind

source separation techniques when equipped with sufficient number of receiver antennas to obtain

a determined systems of equations.

The uncertainty in time for the undesired direction has been considered as the fourth

dimension of the array on top of the first three spatial dimensions in [68]. By just switching

some of the antenna elements on and off with a specific rate the received symbol along undesired

directions will have additional variation in amplitude and phase independent of the variations due

to information symbols. From the frequency perspective, the time modulation creates replicas

in the frequency domain whose frequency is determined by the rate of the antenna switching.

This needs to be set properly to create aliasing on undesired directions, which is the reason of
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distortion. This is called time modulation and this effect is not the case for desired direction

creating selectivity/security along direction and time.

2.4.4 Artificial Noise

The space redundancy owing to having more antennas at the transmit than the receiver

can be utilized in additive forms of distortion rather than multiplicative as in methods discussed in

previous section. That is, introducing the distortion at the transmitter side, referred as AN, which

has no or controlled effect on the legitimate receiver in contrast to eavesdropper, is motivated by

achieving a guarantied minimum secrecy. This is because the introduced AN creates an interference

providing a minimum SNR difference between the legitimate and the illegitimate receiver even if

the eavesdropper enjoys better channel quality than the receiver.

The concept of AN is introduced in [69] for array transmission with singe receiver-antenna

receivers, and extended to multiple-input multiple-output (MIMO) scenarios in [23, 70] where both

receiver and eavesdropper have multiple antennas. Also, the case where multiple eavesdroppers

with perfect coordination exist in the environment is considered under the MIMO configuration.

In MISO case, the information symbols are first precoded to maximize the SNR at the legitimate

receiver. Then, the artificially generated noise vector is inserted into the transmit signal. The noise

components are generated such that they cancel each other after passing through the legitimate

receiver’s MISO channel. That is, the effect of AN is nulled at the receiver while this is not

valid for eavesdropper because she experiences a different channel response. The noise components

create ambiguity in detecting the actual signal at eavesdropper regardless of her channel quality.

Similar to MISO case, AN vector in for MIMO configuration is selected from the nullspace of the

MIMO channel between legitimate pair. One critical observation in MIMO case is that guaranteed

minimum secrecy is possible when eavesdropper has less antenna than the transmitter so that

the degree of freedom from having more antennas at the transmitter, i.e., antenna redundancy, is

utilized for secure transmission [23]. In [71], the priority for power allocation is given to the intended

receiver to satisfy a target signal to interference plus noise ratio (SINR), then the remaining power is
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used for distortion of the eavesdropper reception via AN. This strategy corresponds to a suboptimal

solution since the reliability and the security, in the form of secrecy rate, is not jointly considered.

Allocating the power for the AN as equal to the information signal power was found to be

a simple and a near optimal choice for the non-colluding eavesdropper case in [72]. The AN power

needs to be increased when the multiple eavesdroppers coordinate, or one eavesdropper has multiple

antennas. Also, the effect of imperfect channel state information (CSI) at the transmitter, which

results in leakage of AN into the receivers channel, on the secrecy performance is investigated and

showed that as the channel estimation error increases, increasing the AN power is a better choice

than increasing the information signal power. [73] further generalized the scenario by optimizing

the beamforming directions as opposed heuristic selection in [72], and showed that unlike previous

works that aim to null the AN at the legitimate receiver [23, 56, 69–72, 74], the best strategy

for optimizing the secrecy rate can include allowing some of the artificial noise components in the

channel of intended receivers resulting in new optimal power allocation between the message signal

and AN powers [73]. Similar to [71], [75] adopts minimization of the SINR at the eavesdropper

with the knowledge of her CSI, rather than maximize the secrecy rate. A motivating property of

the AN methods is that the CSI of eavesdropper is not assumed to be known by the transmitter

which is the case with passive eavesdropping. More importantly, CSI of legitimate pair is allowed

to be known globally since it is not used as a secret key. In [74], AN insertion is applied to the

Monopulse Cassegrain antenna where the main signal component and the artificial noise component

are separately transmitted by sum beam and two difference beams that have null in the direction

where the sum beam is directed. Artificial noise design was studied in [76] for single-input single-

output single-eavesdropper (SISOSE) channel with discrete inputs, by assuming an AWGN channel

to the Bob and a fast fading channel to the Eve.

Unlike the previous multiple antenna scenarios, [77] introduces the AN concept for single-

input single-output (SISO) channels and proposes a time-domain AN design for orthogonal frequency-

division multiplexing (OFDM) channel which exploits the freedom provided by the cyclic prefix

(CP) to jam the eavesdropper. That is, the AN is inserted into the null space of Toeplitz channel

matrix with CP removal which does not affect the legitimate receiver because the CP portion is
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already discarded. Also, another approach for frequency selective SISO channels is provided in [78]

by taking advantage of the independent frequency selectivity of main and eavesdropper channels.

For the single antenna case, the nullspace for SISO channel in which the AN is inserted is considered

to be along frequency domain, which was the space domain in multiple antenna-based schemes [23,

69–72, 74].

2.4.5 Channel-Driven Techniques

In multipath scattering environments, the received signal is shown as rapidly decorrelating

over a distance of roughly half a wavelength, which is a well-known uniform scattering model by

Jakes [79]. In our scenario, this result directly implies that the wireless channel response between

Alice and Bob, and the channel between Alice and Eve becomes independently fades as long as

Bob and Eve are physically separated by more than a wavelength. Thus, departing form the

aforementioned independence, the assumption that Eve is unable to estimate the channel response

between Alice and Bob has not been found unrealistic [38, 80–84].

The independent channel fading characteristics for legitimate and illegitimate receivers have

been indirectly exploited in various PHY security techniques such as artificial noise and space-time

randomization. The concept of using the legitimate channel’s response for generating an inherently

secret keying variable is proposed in [80] by relying on Jakes findings in both presence and absence

of time variation, and its performance is analyzed in [81]. [38] includes the generalization of this

concept to MIMO scenarios in the form of space-time secret transmission. Some channel-driven

key generation experiments for indoor environments are conveyed in [83].

Instead of explicitly generating the secret key to be employed for cryptologic stages ahead,

[82] applies the ideas in [80, 81] to directly manipulate the transmitted signal so that only legitimate

receiver receives a clean copy if the signal. Thus, the channel information known to transmitter

and client receiver is exploited directly as a form of spatial encryption where the shared private

key corresponds to the channel coefficients. Finally, [84] points some critical issues in the usage of

channel as a source of secrecy. Especially, the level of secrecy generated from the fading channel
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might be limited when the delay spread is short corresponding the low entropy with less number

of channel taps to be utilized.

2.5 Conclusions

Securing the information transmission when the medium is wireless is both challenging

and, at the same time, provides additional degrees of freedom thanks to different perceptions of the

received signal by legitimate receivers and eavesdroppers. Fundamental signal reception stages in

secure signal transmission is presented from a different perspective along with the examples. New

approaches to the existing performance metrics such as security gap are presented that covers the

wider scope of scenarios. The concepts in secure signal transmissions are exemplified with existing

PHY layer techniques. The paper puts a step towards understanding the nature of secrecy in

wireless communication from different perspectives and exploring new opportunities.
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CHAPTER 3:

A WINDOWING TECHNIQUE FOR OPTIMAL TIME - FREQUENCY

CONCENTRATION AND ACI REJECTION IN OFDM-BASED SYSTEMS

3.1 Introduction

Orthogonal multicarrier schemes that rely on rectangular pulse shapes, e.g., OFDM, offer

prominent features such as robustness against multipath channel and notable flexibility for efficient

implementations1. Despite their advantages, the use of rectangular pulse shape introduces high

spectral leakage in out-of-band (OOB) spectrum due to its sharp transitions in time domain. Simi-

larly, rectangular filters at the receiver capture significant amount of adjacent-channel interference

(ACI) from other systems possibly operating asynchronously. One of the common countermea-

sures for unwanted spectral leakage problem has been replacing the rectangular pulse shapes with

smoother filters with good spectral response, commonly referred as filter bank multicarrier (FBMC).

A large number of investigations on this strategy exist in the literature. For a comprehensive treat-

ment on this subject, we refer the reader to the surveys in [86–88]. Nevertheless, FBMC may not

allow using one-tap equalization for achieving acceptable BER performance in multipath channels

and complex equalizers may be needed [89, 90]. Recently, an elegant solution, known as general-

ized frequency-division multiplexing (GFDM), has been introduced to resolve both equalization and

spectral-leakage problem by extending the concept of CP per OFDM symbol to multiple symbols

and utilizing smoother filters for each symbol as in FBMC [91]. This structure has its own merits

by maintaining the circulant property of the channel matrix for each subcarrier [92]. However, it

still introduces abrupt change between consecutive frames, which limits the OOB radiation per-

formance. In addition, increasing the frame size is penalized by the time variation in the channel.

1The content of this chapter is published in [85]. Copyright notice for this publication can be found in Appendix
C.
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Another alternative solution for reducing OOB radiation is known as transmitter windowing tech-

nique in which the rectangular pulse shape is smoothed with a specific windowing function. This

approach preserves the main structure of OFDM receivers and addresses back-compatibility issues

which are important for existing OFDM-based systems. Considering its simplicity and efficient im-

plementation, in this study, we investigate the limits of the windowing approach for OFDM-based

schemes to address both spectral leakage and ACI rejection in time-frequency compact manner.

In the literature, it is possible to find numerous windowing approaches for spectral shaping

purposes in different cases. In [93], shaping the OFDM subcarriers is proposed for spectrum

pooling scenarios where different systems operate at neighboring bands. In order to reduce the

interference on adjacent channels, rapid-decaying of OOB spectrum is achieved via windowing

approach. Also, by considering the flexible guard band with subcarrier deactivation [93], the

trade-off between interference reduction and throughput is presented. In [94], transmitter and

receiver windowing are discussed for CR scenarios and the receive windowing is considered for

sensing the spectrum occupancy. Transmitter windowing is demonstrated in an OFDM system by

dynamically tailoring the properties of spectrum neighbors in a dynamic spectrum access (DSA)

configuration [95]. In [96], the authors propose the concept of edge windowing which suggests

the use of a longer windowing period accompanied with shorter CP duration for the subcarriers

located at the edge of the band. In particular, this approach becomes prominent when various delay

spread characteristics of different users are taken into account in multiple accessing scenarios [97].

In [98], windowing approach is also applied at the receiver along with the transmitter windowing

in order to suppress spectral leakage and reject ACI. In a recent study [99], a block-emission-mask

compliant windowing technique is studied. The duration of time extension for pulse shape function

and subcarrier-specific transmit power levels are optimized considering prescribed spectral mask.

As a different approach, in [100], the second-order characteristics of the multipath delay spread

of multipath channels is considered in windowing design in order to minimize the overhead for

a good OOB reduction. This is achieved by designing time-asymmetric pulse shape functions.

Besides spectral shaping, the time extension in windowing approaches provide enhanced guarding

against inter-symbol interference (ISI). In addition to transmit windowing, another countermeasure
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in reducing the OOB leakage is deactivating a certain number of edge subcarriers, which can

also be considered in conjunction with windowing [93, 101, 102]. In addition to conventional

OFDM waveform structure, there are hybrid multicarrier proposals [103] that combine different

concept such as block transmission with CP, windowing for the block edges, circular filtering, and

FBMC/offset-QAM (OQAM) in one multicarrier structure.

As it follows from Heisenberg’s uncertainty principle, a signal cannot be limited in both

time and frequency [104]. Rectangular pulse shape is the extreme case for this phenomena; it has

perfect time-localization but poor spectral containment. With transmitter windowing technique as

illustrated in Figure 3.1(a), the support in time domain is relaxed for the sake of better spectral

concentration. Hence, despite its simplicity, concentration of OFDM signal within a band with

windowing approaches brings a loss in spectral efficiency due to extension of symbol duration.

However, conventional windowing functions, e.g., raised-cosine (RC) [93, 94, 98], do not provide

the optimal solution for time-frequency concentration problem.

In this chapter, we extend the definition of available concentration bandwidth to per-

subcarrier basis, which is specific to multicarrier schemes. It is worth noting that inner subcarriers

have wider available concentration band, which provide significant relaxation on the design of the

windowing function. Considering available concentration bands for individual subcarriers, we in-

troduce a windowing scheme that gives the optimal compaction in frequency for OFDM-based

schemes. To this end, the family of discrete prolate spheroidal sequences (DPSS) [105] is adopted

for designing windowing functions for individual subcarriers. The proposed method allows asym-

metric sidelobe suppression performance by assigning different concentration bands for right and

left sides of bands and maximizes the utilization of the available resources in time and frequency for

OFDM via windowing approaches. In addition, it is shown that the proposed windowing functions

allow maximal ACI rejection in the scenario where there is no time synchronization between desired

and interfering transmitters. It is worth noting that since the proposed windowing schemes keep

the conventional OFDM kernel, they can be integrated into the prevalent OFDM based systems

without a need for substantial modification.
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Figure 3.1 (a) The illustration of signal model and aggressors operating at the adjacent channels in
time-frequency plane. (b) The illustration of pulse shape generation by convolving the rectangular
function with windowing function. This relaxes OFDM symbol in time and provides better spectral
concentration.

Remaining of this chapter is organized as follows: The system model is introduced in Section

3.2. The design procedure for optimally concentrated pulse shape function is given in Section 3.3.

The application of the proposed pulse shape functions for reducing the spectral leakage of OFDM

scheme is investigated in Section 3.4. The optimality of the proposed windowing functions for the

ACI rejection is discussed in Section 3.5. The numerical results evaluating the performance of the

proposed windowing method are given in Section 3.6 and some concluding remarks are provided in

Section 3.7.

The following notation is adopted in this chapter. Matrices [columns vectors] are denoted

with upper [lower] case boldface letters (e.g., A [a]); ∗ denotes the convolution operation; super-

scripts T and H denote transpose, and conjugate transpose, respectively; x denotes the conjugate

of a scalar number x; j =
√
−1 is the imaginary unit; Ex[y(x)] denotes the expectation of y(x) over
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the random argument x; Z denotes the integer number set; and rect(x) is the rectangular function

defined as 1 for |x| < 1/2 and 0 elsewhere.

3.2 System Model

We consider an OFDM system where windowing functions are utilized at the transmitter

for pulse shaping and at the receiver for ACI rejection. For ACI analysis, we adopt a scenario

where multiple interfering signals operate at adjacent channels as illustrated in Figure 3.1(a).

The victim link and the aggressors operating at the adjacent channels are denoted by ε and

i ∈ {...,−2,−1, 1, 2, ...}, where negative and positive indices indicate the interfering signals lo-

cated at left and right sides of the band of desired signal, respectively. The baseband OFDM signal

of the desired transmitter is given by

s(ε)(t) =
∑
m∈Z

Nε
2
−1∑

k=−Nε
2

X
(ε)
kmp

(ε)
km(t), (3.1)

where X
(ε)
mk is the data symbol that modulates the kth subcarrier of mth OFDM symbol, and

Nε ≤ N denotes an even number of the activated subcarriers out of N total subcarriers. In (3.1),

p
(ε)
km(t) is the synthesis function associated with the kth subcarrier of mth symbol, which indicates

the location and shape of X
(ε)
km on the time-frequency plane. The synthesis function can be written

as

p
(ε)
km(t) = p

(ε)
k (t−mT )ej2πkFt, (3.2)

where p
(ε)
k (t) is the subcarrier-specific transmit filter, i.e., pulse shape function, T is the time

spacing between consecutive symbols and F is the subcarrier frequency spacing. As it can be

seen from Figure 3.1, the symbol spacing includes the transition, CP, and data durations, i.e.,

T = (M +G+N)Ts where Ts is the sample duration. While T represents OFDM symbol spacing,

the symbol rate is determined by the subcarrier spacing which is reciprocal of the data duration,

i.e., F = 1/(NTs). The signal model in (3.1) is also adopted for the ith adjacent channel signal
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given by

s(i)(t) =
∑
m∈Z

Ni
2
−1∑

k=−Ni
2

X
(i)
kmp

(i)
km(t). (3.3)

where Ni is the number of subcarriers for ith signal. Similarly, the synthesis function of ith adjacent

channel signal is expressed as

p
(i)
km(t) = p

(i)
k (t−mT )ej2πkFt. (3.4)

We assume that the multipath channel between all transmitter and receiver is time-invariant

during one OFDM symbol duration. The channel impulse response is characterized as, h(τ) =∑L−1
`=0 a`δ(τ − τ`), where L is the total number of multipaths and τ` is the delay of `th path. Each

path gain, a`, is assumed to be independent and identically distributed (i.i.d.) variable where its

magnitude follows Rayleigh distribution.

It is assumed that the aggressors on adjacent channels operate independently and there

is no time synchronization between them. We define the relative time offset between the victim

receiver and the ith aggressor as a random variable of ∆ti, while the frequency separation between

channels, i.e., frequency offset, is expressed as ∆fi. After passing through channels, the desired

and the interfering signals are combined at the receiver as

r(t) =
√
αε

∫
τ
hε(τ)s(ε)(t− τ)dτ +

∑
i 6=0

√
αie

j2π∆fit

∫
τ
hi(τ)s(i)(t+ ∆ti − τ)dτ + z(t), (3.5)

where
√
αε and

√
αi are large scale channel gains for desired and interfering transmitters. The first

term in (3.5) is the received signal of the desired user, the second term corresponds to the sum

of the adjacent channel signals, and z(t) is the AWGN. The demodulation at the receiver can be

realized by correlating the received signal with corresponding analysis function given by

q
(ε)
lu (t) = q

(ε)
l (t− uT )ej2πlF t, (3.6)
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where q
(ε)
l (t) is the receive filter employed for lth subcarrier. By sampling the output of the

correlator, the symbol on the lth subcarrier of uth OFDM symbol is obtained as

X̂
(ε)
lu = 〈r(t), q(ε)

lu (t)〉 ,
∫
t
r(t)q

(ε)
lu (t)dt. (3.7)

By substituting (3.5) and (3.6) into (3.7), X̂
(ε)
lu is obtained as

X̂
(ε)
lu =

√
αεX

(ε)
lu A

(ε)
lulu +

√
αε
∑
m∈Z
m 6=u

Nε
2
−1∑

k=−Nε
2

k 6=l

X
(ε)
kmA

(ε)
kmlu +

∑
i 6=0

√
αi
∑
m∈Z

Ni
2
−1∑

k=−Ni
2

X
(i)
kmA

(i)
kmlu + Zlu. (3.8)

In (3.8),

A
(ε)
kmlu =

∫
τ
hε(τ)

∫
t
p

(ε)
km(t− τ)q

(ε)
lu (t)dtdτ (3.9)

and

A
(i)
kmlu =

∫
τ
hi(τ)

∫
t
p

(i)
km(t+ ∆ti − τ)q

(ε)
lu (t)dtdτ. (3.10)

Note that (3.9) and (3.10) correspond to the sampled versions of the weighted sum of the ambiguity

functions between the synthesis function corresponding to the kth subcarrier of mth symbol and the

analysis function corresponding to the lth subcarrier of uth symbol. In other words, they represent

the correlation between the transmit and receive filters in time-frequency grid [86, 106]. Finally,

relying on the i.i.d. property of the data symbols, the interference power for given channels can be

expressed as

Ilu(∆ti) = αε
∑
m∈Z,
m 6=u

Nε
2
−1∑

k=−Nε
2

k 6=l

∣∣∣A(ε)
kmlu

∣∣∣2 +
∑
i∈Z,
i 6=0

αi
∑
m∈Z

Ni
2
−1∑

k=−Ni
2

∣∣∣A(i)
kmlu

∣∣∣2. (3.11)
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3.3 Optimally Concentrated Windowing Functions for OFDM Subcarriers

For a particular subcarrier, the pulse shape function can be designed by convolving a rect-

angular pulse Π(t) with a windowing function wk(t), as also given in [87], by

pk(t) = wk(t) ∗Π(t), (3.12)

where

Π(t) ,


1, (−M −G)Ts ≤ t < NTs

0, otherwise

. (3.13)

The windowing functions satisfy
∫
twk(t)dt = 1. Therefore, the result of operation in (3.12) takes

unit value for CP and data parts while having arbitrary values for the transition periods. As

illustrated in Figure 3.1(a), we express the transmit pulse shape function with there different

durations: NTs for the main symbol part, GTs for the CP part, and MTs for the pre-symbol as

well as post-symbol transition parts of the mth symbol. With this representation, the windowing

function in (3.12) completely determines the transient behavior between two symbols, and hence

characterizes the spectral response of that particular OFDM subcarrier [87]. Therefore, we consider

the design of windowing functions in frequency domain since the shape of the spectrum of OFDM

subcarriers is determined via multiplication operation in frequency domain.

Spectral concentration problem for finite duration pulses is well-studied under the family

of prolate spheroidal wave functions (PSWF) which offers maximum concentration in time for a

band-limited signal, or spectral concentration for a time-limited signal [105]. Herein we consider

the optimum real-valued discrete-time windowing function, wk[n], that concentrates the OFDM

subcarrier pulse shape function pk[n]. For a given pk[n], the ratio of the signal energy in the

frequency range |f | ≤ Ω, where Ω < 1
2 , to the total energy is referred as concentration ratio. It can

be expressed by using discrete-time Fourier transform (DTFT) of the pulse shape function for kth
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subcarrier, i.e., Pk,M (f), as

λk(M,Ω) =

∫ Ω

−Ω
|Pk,M (f)|2 df∫ 1

2

− 1
2

|Pk,M (f)|2 df

(3.14)

(a)
=

∫ 1
2

− 1
2

rect
( f

2Ω

)
|Wk,M (f)C(f)|2 df∫ 1

2

− 1
2

|Wk,M (f)C(f)|2 df

(3.15)

(b)
=

∫ 1
2

− 1
2

Wk,M (f)ΨΩ(f)Wk,M (f)df∫ 1
2

− 1
2

|Wk,M (f)C(f)|2 df

, (3.16)

where (3.15) includes the substitution of Pk,M (f) = Wk,M (f)C(f) into (3.14), in which Wk,M (f)

and C(f) are the Fourier transforms (FT) of windowing function wk[n] and Π [n], respectively. The

equality (a) holds due to the rectangular function rect
(
f

2Ω

)
, which limits the integration interval

inherently, is plugged in the numerator of (3.14). Thus, the integral limits can be set as
[
−1

2 ,
1
2

]
that will allow time domain representation of the spectral concentration latter. The equality (b)

follows the definition of ΨΩ(f) , C(f)rect(f/2Ω)C(f). Then, by defining ψΩ[n] as inverse DTFT

of ΨΩ(f), (3.16) can completely be represented in discrete time domain as

λk(M,Ω) =

M−1∑
l=0

M−1∑
n=0

wk[n]ψΩ[n− l]wk[l]

N+M−1∑
n=−M−G

|wk[n] ∗Π [n]|2
, (3.17)

where the denominator follows the conversion into time domain and the Parseval’s theorem. Also,

by adopting array representation for the windowing function as wk = [wk[0], . . . , wk[M−1]]T, (3.17)
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is rewritten in matrix form as

λk(M,Ω) =
wH
k ΨΩwk

wH
k BHB︸ ︷︷ ︸

Λ

wk

, (3.18)

where ΨΩ is an M ×M matrix and B is an (N +G+M)×M Toeplitz matrix given as

ΨΩ =



ψΩ[0] ψ[1] · · · ψ[M − 1]

ψ[−1] ψ[0] · · · ψ[M − 2]

...
. . .

. . .
...

ψ[−M + 1] · · · ψ[−1] ψ[0]


,

and

B =



1 0 · · · 0

... 1
. . .

. . .

1
. . .

. . .
. . .

0 1
. . .

. . .

...
. . .

. . .
. . .

0 · · · 0 1


,

respectively. The matrix B consists of the discrete samples of rectangular function to be convolved

with the windowing samples. Therefore, the optimum windowing function that maximizes the

spectral containment of kth subcarrier within the range of [−Ω,Ω] is obtained as

ŵk = arg max
wk

wH
k ΨΩwk

wHΛwk
, (3.19)

in which the ratio is known as generalized Rayleigh quotient [107]. By noting that Λ is a positive

definite matrix, the ratio in (3.19) can be converted to regular Rayleigh quotient [108]. After per-

forming Cholesky decomposition for Λ such that Λ = LLH, we define an invertible transformation
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for the windowing vector wk as T ,
(
LH
)−1

yielding

wk = Tzk. (3.20)

By substituting (3.20) into (3.19), the regularized Rayleigh quotient is obtained as

ẑk = arg max
zk

zH
k ΥΩzk
zHzk

, (3.21)

where ΥΩ = THΨΩT. Then, the solution for (3.21) reduces to finding the eigenvector of ΥΩ

corresponding to largest eigenvalue by the Rayleigh quotient theorem [107, 108], i.e., largest con-

centration ratio, satisfying the eigensystem as

ΥΩzk = λk(M,Ω)zk. (3.22)

After determining the vector zk that maximizes the concentration ratio λk, the windowing function

is obtained by the transformation in (3.20). Here, we would like to note that for Λ = I, the system

corresponds to conventional DPSS problem [105] where there is no flat response of OFDM pulse

shape including CP and data durations.

3.4 Transmitter Windowing for OOB Suppression

In this section, the windowing functions that are discussed in Section 3.3 are employed for

controlling the OOB leakage of the OFDM. We first present the conventional windowing strategy

where the same windowing function is used for all of the subcarriers. We then introduce per-

subcarrier windowing scenario where each subcarrier has its own windowing function. This strategy

gives the maximum spectral efficiency for an OFDM waveform that complies given constraints. In

addition, we consider the spectral mask for the constraint to be satisfied for both scenarios.
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Figure 3.2 Power spectrum of individual windowing functions. (a)Fixed windowing: All subcarri-
ers are shaped by the same windowing function with a fixed concentration band. (b)Per-subcarrier
windowing: Windowing functions are designed in a subcarrier-specific manner and the concentra-
tion band for each subcarrier is determined based on its location in frequency.
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3.4.1 Fixed Windowing and Per-subcarrier Windowing

In order to suppress the sidelobes of OFDM signal, we exploit the available guard band for

individual subcarriers. To this end, we design the windowing function for kth subcarrier as

wk[n] , wop

[
M,Ωk;n

]
, (3.23)

where Ωk is the concentration bandwidth assigned for windowing function of the kth subcarrier,

and wop

[
M,Ω;n

]
is the windowing function of length M that optimally concentrates the pulse

shape function into frequency range |f | ≤ Ω based on (3.19). When the same windowing function

is employed for each subcarrier, the available band to concentrate the energy is solely determined

by the system guard band, given by

Ωk =
gF

1/Ts
=

gF

NF
=

g

N
, (3.24)

where g is the guard band in terms of subcarrier spacing F . The power spectrum of the individual

windowing functions and the combination for right edge of the frequency band are illustrated in

Figure 3.2(a). Note that, windowing functions are drawn in frequency domain in Figure 3.2 rather

than the spectrum of pulse shape functions for the sake of better visualization of the effect of fixed

and subcarrier specific concentration bands.

As we relax the spectral concentration constraint of the windowing functions by increasing

Ωk, superior suppression beyond the concentration band is achieved. Therefore, by taking the

multicarrier structure of the OFDM waveform into account, this trade-off is utilized to optimize the

spectral containment of the overall signal. For this purpose, the available band for each subcarrier

is individually exploited. We set the concentration band of each subcarrier as the spectral distance

between that subcarrier and the outer boundary of available guard band. This corresponds to

assigning individual concentration bands for the windowing functions of each subcarrier as

Ωk =
1

N
min

(
k −

(
Nε

2
+ gl

)
,

(
Nε

2
+ gr − 1

)
− k
)
, (3.25)
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Figure 3.3 Block diagram for the considered scenario. Per-subcarrier windowing is realized by
selecting the pulse shapes specific to each subcarrier. The adjacent-channel variables are presented
by the index i.

where gl and gr are the left and right guard bands, respectively. Figure 3.2(b) depicts the spectral

responses of the windowing functions for each subcarrier. As indicated in (3.25) and shown in Fig-

ure 3.2(b), the concentration bandwidth increases for inner subcarriers by one subcarrier-spacing

increments. Note that per-subcarrier concentration band configuration in the light of (3.16) and

(3.19) individually minimizes the power contribution on the OOB region as shown in Figure 3.2.

Considering the i.i.d. property of the information symbols, the total power spectrum of the OFDM

becomes the sum of individual subcarrier spectrum. Thus, as independent variables, minimizing

the power of each subcarrier in OOB region individually with the proposed per-subcarrier win-

dowing inherently minimizes the total power spectrum as the sum of these variables. Thus, this

concentration band assignment eliminates the exhaustive search in finding the optimal solution.

In the scenarios where left and right side of the spectrum host different wireless technologies,

different emission requirements on different sides can emerge. Thus, for the cases that allow or

require different spectral response in adjacent channels, asymmetric spectral suppression can also

be achieved via setting gl and gr in (3.23) differently. For instance, less guard subcarriers, i.e.,

higher spectral efficiency, can be utilized in the side that can accommodate more spectral leakage.
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3.4.2 Design Under a Prescribed Spectral Mask

OOB suppression performance of windowing methods is a function of the level of relaxation

in time domain. That is, longer transition duration provides better OOB suppression with the

penalty of lowering spectral efficiency. So far we presented the OFDM windowing design that

concentrates the signal spectrum into a given band for a given windowing duration MTs. In the

following, joint concentration of the OFDM signals in time and frequency, i.e., maximizing the

ratio of active area in Figure 3.1(b) to the total region, is considered. When a spectral mask is

given, the degrees of freedom that can be selected independently becomes the transition duration

(the loss in time domain) and the number of unused subcarriers (the loss in frequency domain).

For the frequency utilization, we denote Nε as the number of used subcarriers. Since there is no

closed-form expression for the optimum windowing functions, the parameter selection for optimal

packing of OFDM symbols can be performed numerically. The problem that seeks for the optimal

transition duration and the number of active subcarriers that maximizes the spectrum utilization

is then given by,

(M,Nε) = arg max
M,Nε

(
Nε

N +G+M

)
,

subject to

Nε
2
−1∑

k=−Nε
2

|Wk,M (f − k∆f)|2 ≤ Smask(f) (3.26)

which maximizes the information contained in the given bandwidth limited by the spectral mask,

Smask(f). Since the optimization in (3.26) is an integer program, it can be solved via heuristic

methods such as local search around the inequality constraint. First, by fixing one of the parameters,

e.g., M , a search over the second parameter can be performed until the inequality holds. Then,

a local search over both parameters around the inequality boundary can be performed. This

procedure will be discussed in Section 3.6.3 in detail.
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Transmitter function, 

Receiver function, 

Figure 3.4 Illustration of Nyquist property when receiver windowing is applied. While the rectan-
gular function provides the Nyquist property for OFDM (a), the proper alignment of the windowed
receiver function (b) in time maintains the Nyquist property.

3.5 Receiver Windowing for ACI Rejection

In this section, we extend the use of proposed windowing technique for optimal spectral con-

centration to ACI rejection at the receiver. We exploit the maximum time/frequency concentration

property of the proposed windowing functions in Section 3.3 and use it for the rejection of sidelobe

components of the aggressors’ signals. Receiver windowing has been utilized for OFDM receivers

for different purposes such as improving reception against sine spurious [109], minimizing the effect

of additive noise and inter-carrier interference (ICI) in the presence of frequency offset [109–113]. In

this section, we will focus on the ACI rejection property of the receiver windowing. As it is shown

in Figure 3.3, the desired signal that is transmitted via subcarrier specific windowing is received

via receiver windowing. Also, the adjacent channel signals exist in the neighboring channels with

corresponding frequency spacing, ∆fi, and random time offset ∆ti. The receiver windowing can

also be realized in a per-subcarrier manner as shown in Figure 3.3 by employing subcarrier specific

receiver window functions.

The time-domain transmitter and receiver functions are illustrated in Figure 3.4. Note that

the orthogonality between subcarriers are achieved via the pulse shaping functions with Nyquist

criterion. Similar to transmitter pulse shape function, the receiver function is also generated by
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convolution of the a receiver windowing function and the rectangular pulse given as

ql(t) = vl(t) ∗Πr(t), (3.27)

where vl(t) is the windowing function for the receiver and Πr(t) is the corresponding rectangular

function with length NTs different than the transmitter case. This provides the zero-ICI property

between the subcarriers. For conventional OFDM reception with no windowing, the rectangular

function itself becomes the receiver function as in Figure 3.4(a) with the length of data duration,

i.e., NTs = 1/F . For the receiver filtering cases, Figure 3.4(b) shows the function for one of the

subcarriers with Nyquist property. In order to avoid ISI, we assume that the guard interval beside

windowing duration is long enough to avoid ISI [109, 111].

If the adjacent channel signal is also a OFDM-based signal with the same symbol duration,

the timing offset between the desired receiver and the adjacent channel signal becomes a determining

factor on the amount of energy that the receive filter, q(t) captures from the interfering signal.

Considering Rayleigh fading channel between the adjacent channel signal and the receiver, the

argument of the summation in (3.8) that constitute the ACI is an exponentially distributed random

variable with means given by

σ2
s (k,m, l, u) = Eh

[∣∣∣A(ε)
kmlu

∣∣∣2] =
∣∣∣〈p(ε)

km(t), q
(ε)
lu (t)〉

∣∣∣2 , (3.28)

and

σ2
i (k,m, l, u,∆ti) = Eh

[∣∣∣A(i)
kmlu

∣∣∣2]
=
∣∣∣〈p(i)

km(t+ ∆ti), q
(ε)
lu (t)〉

∣∣∣2 . (3.29)

where we assume that the maximum excess delay of the channel is negligible compared to pulse

duration. In other words, each subcarrier is assumed to be experiencing flat fading channel as it

is a valid assumption in OFDM systems. With this assumption along with the i.i.d. property of
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the channel tap gains, the dependency of the power delay profile (PDP) on the expected power

expressions can be neglected.

As illustrated in Figure 3.1(b), there may be time offset between interfering signal and

desired signal. In such cases, both transmit filter and the receive filter jointly plays critical role in

the level of ACI rejection. While the receive filter determines the response with shaping the outer

transitions, the transmitter pulse shape function of the interfering symbol shaping the transition

of the interfering symbols, which falls inside of the receiver window. On the other hand, when

two filters are aligned in time, the effect of the transmit filter diminishes, and ACI becomes a

function of q
(ε)
lu (t) and ∆fi. However, since time synchronization is not posed between independent

systems, ∆ti is considered to be a random variable uniformly distributed in (−T/2, T/2). Then,

the interference contribution is derived by evaluating the expectation over all possible values of

∆ti, which yields

I
(i)
lu =

αi
T

T/2∫
−T/2

∑
m∈Z

Ni
2
−1∑

k=−Ni
2

σ2
i (k,m, l, u,∆ti)d∆ti

=
αi
T

Ni
2
−1∑

k=−Ni
2

∑
m∈Z

T/2∫
−T/2

∣∣∣〈p(i)
km(t+ ∆ti), q

(ε)
lu (t)〉

∣∣∣2d∆ti (3.30)

=
αi
T

Ni
2
−1∑

k=−Ni
2

∫
f

∣∣∣P (i)
k (f − kF −∆fi)

∣∣∣2 ∣∣∣Q(ε)
l (f − lF )

∣∣∣2df. (3.31)

where (3.30) is by the substitution of (3.29). The derivation steps between (3.30) and (3.30) are

given in the Appendix A. In (3.31), Q
(ε)
l (f) = V

(ε)
l (f)C(f) represents the Fourier transform of the

receive filter q
(ε)
l (t) where V

(ε)
l (f) is the Fourier transform of the windowing function utilized at

the receiver. As shown in (3.31), the adjacent channel energy on the lth subcarrier is a sum of the

correlation between the spectral response of each subcarrier of the interferer and the receive filter

utilized for the lth subcarrier. Therefore, the receiver windowing should maintain the correlation

terms as low as possible in order to suppress ACI. By defining the PSD of the composite ACI signal
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as

S(i)(f) ,

Ni
2
−1∑

k=−Ni
2

∣∣∣P (i)
k (f − kF )

∣∣∣2, (3.32)

(3.31) can be represented in term of the PSD of interferer signal that yields

I
(i)
lu =

αi
T

∫
f
S(i)(f −∆fi)

∣∣∣V (ε)
l (f)C(f)

∣∣∣2df, (3.33)

which shows the impact of windowing function utilized at the receiver. The optimum spectral

concentration property of the proposed functions plays an enabling role in minimization of the

ACI power given in (3.33). Since the spectrum of proposed windowing function is minimized for

the range after the concentration band, the energy captured from the main band of the interfering

signal is also minimized when they are utilized as windowing function at the receiver. That is,

the proposed functions maximally reject the interference power captured from the adjacent bands.

Similar to transmitter case, the interference rejection property for each subcarrier can be maximized

considering subcarrier specific receiver windowing. In other words, we adjust the concentration

bandwidth of the windowing function of the lth as its distance to the closer edge of the main band

of the adjacent signal.

3.6 Numerical Results

In this section, we present the performance of the proposed windowing technique and com-

pare with other methods. We choose the OFDM parameters as N = 512 for discrete Fourier

transform (DFT) size, G = 64 for CP size, and M = 32 for the transition duration. Unless

otherwise stated, the number of activated subcarriers is set as Nε = 300 and DC subcarrier is

disabled.
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3.6.1 OOB Emission

In this subsection, the OOB radiation performance of proposed windowing functions with

per-subcarrier windowing strategy is investigated and compared with other windowing functions,

i.e., RC [98] and Kaiser [114]. Note that conventional RC windowing scenarios that we consider

in this chapter corresponds to the OFDM transmitter and receiver windowing scheme presented

in [98]. While keeping the structure, we adapt the signal parameters for compariosn with proposed

schemes. For the numerical evaluations, various concentration bandwidths are taken into account as

gr = 12, 24, and 36. Subcarrier-specific concentration bandwidth for each subcarrier is configured

via adjusting its Ωk-parameter. For each configuration, the proposed per-subcarrier windowing

scheme provides superior suppression performance in the outside of the concentration band as

shown in Figure 3.5. For instance, while proposed scheme with g = 12 provides optimum spectral

suppression beyond f = 162× F , allowing OFDM signal to concentrate its spectral energy within

the range [−186×F, 186×F ], i.e., g = 36, achieves the minimal OOB emission beyond the specified

frequency range.

The ability of frequency-asymmetric implementation of the per-subcarrier windowing is

investigated and shown in Figure 3.6. In order to achieve different spectral leakage performance

for left and right bands, the concentration bandwidths are set as gl = 18 and gr = 36. This setting

results in approximately 30 dB difference in between left and right adjacent bands.

3.6.2 The Effect of Concentration Band

In the following, the effect of concentration range on the spectral leakage is investigated.

The ratio of total signal power in the main band to the signal power beyond the concentration

band is given as a function of the concentration band in Figure 3.7. Proposed windowing with

fixed setting is also considered as a suboptimal solution for the concentration of composite OFDM

signal. Since the edge subcarriers have less space for subcarrier specific concentration band, the

difference between the fixed and per-subcarrier approach is found to be approximately 5 dB when

g = 25. Since the proposed schemes maximally exploit the given frequency resources, the OOB

leakage performance in fixed and per-subcarrier cases outperforms the RC windowing by around 6
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Figure 3.5 OOB leakage for various optimization bands with proposed subcarrier-specific and RC
windowing. N = 512, Nε = 300, G = 64, and M = 32.

dB for g values up to 16, which is also the ratio of the windowing duration to the useful symbol

duration, i.e., N/M . Beyond this range, the suppression performance increases significantly since

the spectral concentration property of the proposed scheme becomes dominant for wider guard

bands.

3.6.3 Time-Frequency Concentration with Spectral Constraint

In this subsection, we elaborate the symbol densities of the proposed windowing schemes in

the presence of a spectral mask. For simple evaluation, brick-wall type mask is adopted though it is

possible to extend it to more complicated mask structures. The width of the mask is set as 256×F

and various suppression levels for OOB are investigated. The objective function in (3.26), which

corresponds to the spectral efficiency of the scheme, is given in Figure 3.8 for given windowing size

and number of active subcarriers. The feasible region in which the constraint in (3.26) is satisfied

is also depicted in Figure 3.8 for the spectral mask with 50 dB suppression level. Similarly, the
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Figure 3.6 Fixed windowing and asymmetric implementation of the per-subcarrier windowing
with different left and right guard bands.

objective is also is a monotonic function of two variables M and Nε. Thus, the optimum parameters

that maximize the spectral efficiency is heuristically found by first fixing one of the parameters,

e.g., M , and searching over the other parameter, i.e., Nε, until the boundary is reached. Then,

local search over both parameters around a small region centered at the boundary points can be

performed. After determining all of the points near the boundary of the constraint, the one that

maximizes the objective function, i.e., spectral efficiency as in Figure 3.8, is obtained.

Table 3.1 reports the spectral efficiency results that are achieved by relaxing both the

windowing duration and the number of used subcarriers for maximizing (3.26) while satisfying the

corresponding mask. For each suppression level of the spectral mask, the proposed scheme with

fixed implementation and per-subcarrier windowing provide greater spectral efficiency compared to

conventional windowing scheme by allowing more subcarrier population and/or less windowing size

utilization. The improvement in spectral efficiency for per-subcarrier windowing increases from

1.73% to 10.38% compared to RC windowing as deeper spectral suppression is forced, which is
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Figure 3.7 Spectral leakage performances for a given concentration band. N = 512, Nε = 300,
G = 64, and M = 32.

Table 3.1 Symbol densities for different windowing schemes. N = 512, G = 64, and M = 32.

Suppression
level of the
spectral
mask (dB)

Spectral efficiency (symbols/sec/Hz)

RC
Proposed(Fixed) Proposed(Per-SC)

Increase (%) Increase (%)

50 0.7436 0.7488 0.7 0.7564 1.73

55 0.7296 0.7417 1.66 0.7464 2.31

60 0.6989 0.7324 4.79 0.7370 5.45

65 0.6814 0.7227 6.07 0.7273 6.74

70 0.6512 0.7143 9.69 0.7188 10.38

one of the challenges in DSA scenarios. It is worth noting that the fixed windowing also provides

remarkable performance with ∼ 1% degradation compared to per-subcarrier case.

3.6.4 ACI Results

ACI results are evaluated in the presence of an adjacent channel interferer. The guard band

between the desired signal and ACI signal is set as 28 × F , i.e., ∆fi = 328 × F . We assume the
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Figure 3.8 The joint optimization of both windowing size and the number of active subcarriers
under a spectral mask constraint.

both desired and ACI signals have the same received power, i.e., αε = αi which corresponds to the

normalized ACI power. Without loss of generality, the interference power can be scaled up and down

depending on the relative channel conditions for the interfering transmitter. Both signals experience

Rayleigh fading. Figure 3.9 shows the PSD of ACI signal observed on each subcarrier location

at the desired receiver. Three cases are considered including rectangular pulse shaping at ACI

transmitter and desired receiver, RC transmit-windowing on ACI signal and receiver-windowing at

desired receiver, and subcarrier-specific transmit-windowing at ACI and subcarrier-specific receiver-

windowing at desired receiver. As can be observed from the normalized ACI results, proposed

subcarrier-specific receiver windowing achieves the best ACI rejection among other windowing

scenarios.
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Figure 3.9 Spectral density of adjacent channel interference power for various transmitter and
receiver windowing configurations.

3.6.5 Computational Complexity

Achieving the optimum result for spectral concentration with proposed schemes comes with

increase in computational complexity. In this section, we present a possible way of generating the

OFDM symbols based on the proposed scheme. For the fixed windowing cases, a small increase in

the complexity occurs for shaping the transition durations after generating the time domain signal

via inverse fast Fourier transform (IFFT). For the per-subcarrier cases, direct implementation based

on the signal model in (3.1) requires high number of arithmetic operations. In order to reduce the

implementation complexity for per-subcarrier aprroach, generation of CP and main parts (total

size of G + N) can be performed similar to prevalent schemes with IFFT by utilizing the that

there is no modification on these parts as in Figure 3.1(a). Then, the transition parts can be

calculated according to pulse shape functions by using direct implementation and appended to the

main part. Essentially, when fixed pulse-shaping is utilized for all subcarriers, additional 4M real
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multiplications are required for symbol transition after obtaining the time domain symbol with

inverse fast Fourier transform (FFT). For per subcarrier pulse shaping, however, output of inverse

FFT cannot be directly used and hence, a direct implementation is required for the transition part.

We evaluate the complexities of different schemes in terms of number of real multiplications per

OFDM symbol normalized to that of CP-OFDM based on efficient Split-Radix FFT algorithm [115].

Also, it is worth noting that the computational complexity of the per-subcarrier scheme can also

be reduced by dividing the subcarriers into groups, and utilizing a common pulse shape for each

group.

We would like to emphasize that the computation of the optimum windowing function is

an offline process that requires one-time solution of the Rayleigh quotient. When a change in the

OOB requirement occurs, different configurations of asymmetric implementation can be realized

by reusing previously computed functions. The only parameter for a windowing function is its

concentration band Ωk. Hence, the functions for inner subcarriers of one configuration can be

reused for the outer subcarriers for another configuration, which eliminates new computation for

most of the subcarriers for the new setting. Similar to reusing, a lookup table method can also

reduce the complexity of the asymmetric implementation with subcarrier specific windowing.

3.7 Conclusions

In this chapter, we evaluate the available guard band in an OFDM scheme per-subcarrier

basis, which allows maximal utilization of the spectrum for achieving optimal time-frequency con-

Table 3.2 Complexity comparison of the windowing schemes for N = 512, G = 64, and M = 32

Scenario Normalized complexity

CP-OFDM 1

Fixed windowing 1.1

Per-SC windowing
383.5

(Direct implementation)

Per-SC pulse-shaping
11.6

(Mixed implementation)

61



centration at the transmitter and ACI rejection at the receiver via windowing functions. The

proposed windowing strategy considers the locations of subcarriers and exploits the available guard

band of each subcarrier. By jointly optimizing the transition duration and number of active sub-

carriers, the windowing functions that yields maximum spectral efficiency while complying with

a prescribed the spectral mask is derived. At the receiver side, we also show that the proposed

windowing function can be utilized in order to maximize the ACI rejection capability by exploiting

the guard band between desired and ACI signal.
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CHAPTER 4:

TIME-ASYMMETRIC AND SUBCARRIER-SPECIFIC PULSE SHAPING

IN OFDM-BASED WAVEFORMS

4.1 Introduction

In wireless communications, orthogonal frequency-division multiplexing (OFDM)-based sig-

naling enables efficient wideband transmission by converting frequency-selective fading channel to

multiple narrowband flat-fading channels1. In addition, flexibility with independent utilization of

the subcarriers provides a strong motivation for deployment in cognitive radio (CR) scenarios [116].

Despite its prominent benefits, OFDM waveform suffers from high out-of-band (OOB) emission due

to the rectangular transmit pulse.

A simple countermeasure to high OOB emission has been smoothing the symbol transi-

tions via shaping the boundaries of the rectangular transmit pulse [93–96, 98, 101, 102], which is

also referred as time domain windowing. Smoother pulse shaping functions for OFDM subcarriers

provide suppressed spectral response as opposed to slow decaying sinc-shaped subcarriers. In the

literature, shaping the OFDM symbols is proposed in spectrum pooling scenarios [93] to reduce the

interference on adjacent channels via rapid decaying of OOB spectrum. Also the authors present

the trade-off between interference reduction and throughput by considering the flexible guard band

with subcarrier deactivation. Pulse-shaped OFDM is demonstrated in [95] by dynamically tailor-

ing the properties of spectrum neighbors in dynamic spectrum access (DSA) scenarios. In [96],

authors proposed using longer transition duration complied with shorter cyclic prefix (CP) for the

band-edge subcarriers, and longer CP with shorter transition duration for the inner subcarriers.

The motivation in this approach is to reduce the total redundancy by exploiting different mul-

1The content of this chapter is published in [100]. Copyright notice for this publication can be found in Appendix
C.
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tipath delay spread characteristics of the users in orthogonal frequency-division multiple access

(OFDMA) scenario. In [98], receiver windowing is also taken into account to reject adjacent-

channel interference (ACI) along with the transmit pulse shaping to reduce OOB spectral leakage.

In a recent study [99], block-emission-mask compliant pulse shaping technique is studied based on

the optimization of the roll-off parameter, which determines the duration of time extension, and

subcarrier-specific transmit power.

Spectral suppression with pulse shaping can be achieved at the expense of either degradation

of spectral efficiency (SE) or introduction of inter-symbol interference (ISI)/inter-carrier interference

(ICI). In the first case, CP is extended and shaped for smooth transition, which keeps zero-ISI/ICI

property in multipath channel [93–96, 99]. Despite the interference-free setup with sufficient CP

size, increasing the effective symbol duration reduces the OFDM symbol rate and hence SE. In

the second approach, which is adopted in [101] and [98], a portion of the existing CP is used for

the transition period without conceding the OFDM symbol rate. The drawback in this approach

is introducing interference due to multipath components exceeding the reduced CP size. However,

the transition period in the second approach still has a partial role on dealing with the multipath

components. That is, the transition part can be designed to be effective against the ISI/ICI caused

by the insufficient CP size. Thus, with the motivation of maintaining the SE, which is a crucial issue

in future wireless communication systems, we tackle the introduced interference in pulse shaped

OFDM by using the part of the CP, i.e., adopt the second approach.

In this chapter, we propose time-asymmetric and subcarrier-specific pulse shaping method to

minimize the ISI/ICI for a spectrally efficiency and well-localized OFDM waveform. The multipath

channel with which the transmitted signal is filtered has a one-sided time response because of the

causality. Thus, time-asymmetric pulse shape strengthens the guarding property of the transition

duration against delay spread by reducing the effect of multipath components from the previous

OFDM symbol falling into the fast Fourier transform (FFT) window of the receiver, and increasing

the contribution from the current symbol. Although it is considered for Nyquist pulses in the

context of single carrier signals, asymmetric filter design for coping with ISI is studied in [117],
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and it is shown that the time-asymmetric Nyquist filter can reduce ISI when the second multipath

component is weaker than the first one.

Designing the transmit pulse shape in a time-asymmetric manner worsens the spectral

response of the subcarriers for which the trade-off between OOB emission reduction and ISI/ICI

mitigation emerges. However, this trade-off can be mitigated by considering the multicarrier nature

of the OFDM as a degree of freedom via per-subcarrier pulse-shaping. When the time-asymmetry

of pulse shapes for the inner subcarriers is gradually increased, spectral growth can be contained

in the signal bandwidth without causing increase in the OOB frequency range. By minimizing

the interference caused by insufficient CP, the proposed per-subcarrier asymmetric pulse shaping

scheme provides superior bit error rate (BER) performance over conventional schemes. The main

contributions of this chapter can be itemized as follows

• Concept of time-asymmetric pulse shaping for OFDM subcarriers is introduced in order to

reduce the ISI/ICI. For this purpose, generalized Kaiser window (GKW) is proposed as a

practical and closed-form pulse shaping function with adjustable time-asymmetry.

• ISI/ICI - OOB trade-off in spectrally efficient pulse shaping is mitigated with per-subcarrier

design of the time-asymmetric waveform that minimizes introduced interference while main-

taining both OOB emission and SE. Subcarrier specific interference and mean BER are derived

as a function of the employed per-subcarrier pulse shaping and channel delay profile.

It is worth noting that in the proposed OFDM transmission, the modification is performed

only on the transition part that is implemented at the transmitter. Therefore, by maintaining the

same symbol- and total guard- durations, there is no need a change in existing frame structure and

OFDM-based receivers since the transition part is removed at the receiver along with the CP.

The remainder of this chapter is organized as follows: In Section 4.2, the system model

is introduced. Then, the interference analysis along with asymmetric design is given in Section

4.3. In Section 4.4, per-subcarrier implementation of the proposed pulse shaping is presented. A

novel generalized Kaiser window (GKW) function that allows time asymmetry is introduced into

the proposed framework in Section 4.5. In Section 4.6, further discussions on the proposed scheme
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Figure 4.1 Three pulse shaping scenarios with associated smoothing functions. Full-CP where
all of the time extension is used for CP, conventional pulse shaping, and time-asymmetric pulse
shaping with shortened CP durations for the purpose of maintaining the SE.

are provided. Performance results and comparisons are given in Section 4.7 and finally, conclusions

are drawn in Section 4.8.

Notation: Matrices [columns vectors] are denoted with upper [lower] case boldface letters

(e.g., A [a]); calligraphic letters (e.g., A) denote the submatrix of a previously defined matrix (e.g.,

A); {A}i,j indicates the (i+ 1, j + 1)th element of an N ×M matrix A, with i ∈ {0, 1, . . . , N − 1}

and j ∈ {0, 1, . . . ,M − 1}; ? and ◦denote the convolution operation and entrywise matrix product,

respectively; superscripts T and H denote transpose, and conjugate transpose, respectively; 0N×M

and IN represent the N × M zero matrix and N × N identity matrix, respectively; δij is the

Kronecker delta function, j =
√
−1 is the imaginary unit; and Ex [y(x)] denotes the expectation of

y(x) over the random argument x.

4.2 System Model

We consider a pulse-shaped OFDM system which employs N subcarriers. Instead of one

prototype filter for all subcarriers, we define the transmit filter, i.e., pulse shape, for each subcarrier
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specifically. Thus, complex representation for discrete-time domain OFDM signal is given as

s[n] =
1√
N

∑
m

N−1∑
k=0

γm,kwk ((n−mζ)Ts) e
j 2π
N
k(n−mζ) (4.1)

where γm,k is independent and identically distributed (i.i.d.) symbol (e.g., QAM) modulated on

the kth subcarrier of the mth OFDM symbol with zero mean and unit variance, i.e.,

E
[
γm,kγ

H
p,q

]
= δmpδkq, (4.2)

wk(t) is the pulse shape function for the kth subcarrier, and Ts is the sampling duration. Note that

(4.1) includes the sampling of the pulse shape function, which is originally defined in continuous

time, that represents the discrete time OFDM signal. In (4.1), ζ = M+G+N denotes the effective

symbol size in samples with M and G corresponding to the part of the CP allocated to symbol tran-

sition, and the shortened rectangular guard duration referred as effective CP, respectively. Hence,

with the given fixed rate OFDM symbol structure as depicted in the last column in Figure 4.1, SE

is maintained while performing OOB suppression albeit with the cost of introduced interference

with shortened CP of size G. The proposed multicarrier waveform design minimizes this cost to

improve BER performance.

As seen in Figure 4.1, pulse-shaping functions have unity response for CP and main symbol

durations, and a smoothing response for the transition duration that constitutes the main focus of

this chapter. Thus, the pulse shaping function wk(t) is obtained by convolution of the rectangular

pulse, Π (t), with the smoothing function vk(t) that characterizes the pulse shape as

wk(t) = vk(t) ? Π (t) , (4.3)

where

Π (t) =


1,

(
−M

2 −G
)
Ts ≤ t <

(
N − 1 + M

2

)
Ts,

0, otherwise.

(4.4)
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The smoothing function in (4.3) is normalized in amplitude as
∫MTs/2
−MTs/2

vk(t)dt = 1, in

order for the pulse shape function to take the unity response for mentioned parts. For reference,

commonly used raised-cosine (RC) pulse shaping is adopted as the conventional case where the

smoothing filter can be written as

vRC(t) =


π

2MTs
cos
(

πt
MTs

)
, −MTs

2 ≤ t < MTs
2 ,

0, elsewhere.

(4.5)

Another important property of wk(t) by virtue of (4.3) and the normalization is the vestigial

symmetry with respect to ζTs. That is,

∞∑
m=−∞

wk ((n−mζ)Ts) = 1, for N − ζ ≤ n < N. (4.6)

The smoothing function characterizes the OFDM signal in terms of OOB emission. As

convolution operation in (4.3) implies, the power spectrum of pulse-shaped OFDM subcarrier is

determined by the spectrum of the smoothing function along with the sinc type frequency response

of the rectangular function.

The transmitted signal passes through a time-variant multipath channel after which the

received signal can be given as

y[n] =

L−1∑
`=0

h`[n]s[n− `] + z[n] (4.7)

where L is the number of multipath channel taps, i.e., maximum excess delay (MED), h`[n] is the

complex coefficient for `th tap, and z[n] is the additive white Gaussian noise (AWGN), respectively.

We assume that the channel taps are i.i.d., and fading coefficients are constant during one OFDM

symbol. The received signal is then given as

y[n] =
L−1∑
`=0

h`s[n− `] + z[n], mζ ≤ n < (m+ 1)ζ. (4.8)
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Unless otherwise specified, the power delay profile (PDP) of the multipath channel is con-

sidered as exponentially decaying [118] as

Ω(`) = Eh
[
|h`|2

]
= Ω010−β`, ` = 0, . . . , L− 1, (4.9)

where β denotes the decay rate, and Ω0 = 1−10−β

1−10−βL
is for the normalization of total power of the

channel to unity.

4.3 Interference Analysis and Asymmetric Pulse-Shape

In this section, the relationship between the pulse shape and ISI caused by the multipath

channel is analyzed by considering a single subcarrier, i.e., N = 1. Then the analysis will be

generalized to multicarrier case. Following the mentioned setting yields

s[n] =
∑
m

γmw ((n−mζ)Ts) (4.10)

for transmitted signal where the subcarrier index is omitted2, i.e., w = w0. The effective OFDM

symbol consists of ζ samples (M for transition part, G for effective CP, and N for main symbol).

The mth effective symbol can be formulated into vector form as

sm =
[
s[−M −G+mζ], . . . , s[N − 1 +mζ]

]T
= γm−11pw + γm1cw (4.11)

2Since N = 1, the only subcarrier is the DC subcarrier whose subcarrier index is omitted for this section.
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where

w = [w ((−M −G)Ts) , . . . , w ((N − 1 +M)Ts)]
T ,

1p =

 0M×ζ IM

0(ζ−M)×ζ 0(ζ−M)×M

 , and

1c =

[
Iζ 0ζ×M

]

denote the vector form of the pulse-shaping function, time-shifter matrix that shifts the pulse

shaping function of the (m − 1)th symbol by ζ, and the indicator matrix that takes the first ζ

samples of the pulse shaping associated with the current symbol, respectively. Then, after passing

through the multipath channel, the noiseless mth received symbol can be written as

ym = Hsm (4.12)

where H is an N × ζ Toeplitz matrix denoting the convolution of signal with the multipath channel

impulse response and CP removal. That is,

H =



hM+G · · · h0 0 · · · 0

0 hM+G · · · h0 · · ·
...

...
. . .

. . . · · · . . . 0

0 · · · 0 hM+G · · · h0


(4.13)

By substituting (4.11) into (4.12), the multipath signal components that fall into the FFT window

of the mth symbol can be represented as

ym = γm−1H1pw︸ ︷︷ ︸
undesired

+ γmH1cw︸ ︷︷ ︸
desired

. (4.14)

The first term in (4.14) corresponds to ISI when MED of the channel exceeds the effective

CP, i.e., L > G. This is becauseG is the length of shortened CP. In other words, while the multipath

70



components with smaller excess delay than G are handled by effective CP, the components with

larger excess delay than G create ISI as a function of pulse shaping function. In (4.14), the second

term includes multipath components of the current symbol. Note that the desired signal is also a

function of w, i.e., pulse shape. This effect can be identified by decomposing the desired part as

ym = γm−1H1pw − γmH1c (1−w) + γmH1c (4.15)

in which the second term denotes the reduction in the multipath components for the desired signal,

and the last term is the expected desired signal without the effect of pulse shaping. By considering

a three-tap multipath channel, Figure 4.2 illustrates these two effects on the ISI part (the first term

in (4.15)), and the desired signal (the second term in (4.15)). Since we consider one carrier in this

section, the effect of pulse shaping on the current symbol remains to be a reduction. However, for

multicarrier case, this term also causes ICI between the subcarriers of the current symbol, which

is given in the next section.

For a given channel realization, the ISI power can be given as

PI = Eγ
[
(γm−1H1pw)H γm−1H1pw

]
= (H1pw)H Eγ

[
γH
m−1γm−1

]
H1pw

= (H1pw)H H1pw, (4.16)

by using (4.2). The vector form of smoothing filter, i.e., v = [v (−MTs/2) , . . . , v(MTs/2)]T, is

substituted into (4.16) since we design the smoothing filter that determines the pulse-shaping

function. For this purpose, the convolution operation in (4.3) is defined in matrix form as w = Rv,

where R is (ζ+M)× (M + 1) convolution matrix of the rectangular function. Thus, (4.16) is given

in terms of the smoothing function as

PI = vH (H1pR)H H1pRv. (4.17)
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We can further simplify the interference power by considering the structures of convolution

matrix H with zero elements for i > j where i = {0, . . . , N −1}, j = {0, . . . , ζ−1}, and time-shifter

matrix 1p with zero and identity submatrices. In (4.17), the term that includes the channel, shifting

of pulse-shaping function, and the convolution of the smoothing function with rectangular filter can

be rephrased as

H1pR =

 0M×ζ H

0(N−M)×ζ 0(N−M)×M

R

=

 HR

0(N−M)×(M+1)

 (4.18)

where H is M ×M submatrix taking the first M rows and M columns of H, and R is M × (M +1)

submatrix which consists of the last M rows of R. That is, {R}i,j = 1 for i < j, and 0 elsewhere.

The interference power above is evaluated for a given channel response by expectation

over i.i.d. information symbols. Coefficients of the multipath channel are also random variables

following a fading distribution, e.g., Rayleigh fading. Therefore, we perform the expectation over

the realizations of the channel response. Then, by substituting (4.18) into (4.17), the expected

interference power is given as

P̃I = EH [PI]

= EH

[
vHRHHHHRv

]
= vHDv (4.19)

where D = RHEH

[
HHH

]
R is a symmetric matrix whose nonzero elements are monotonically

increasing along increasing rows and columns. By invoking that the channel taps are i.i.d., elements

of D can be given in terms of the PDP as

{D}i,j =
G+M∑
`=G+M
−λ+1

(`+ λ−G−M) Ω(`), (4.20)
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Figure 4.2 OFDM waveform scenarios with 3-tap channel are illustrated by focusing on the
symbol transition. While the multipath components do not create interference for full-CP case, the
components that exceed the effective CP result in ISI/ICI in pulse shaped OFDM. Time-asymmetric
pulse shaping reduces interference contributions.

where λ = min(i, j). Therefore, the relationship between smoothing function and interference

power is established in (4.19). Monotonically increasing profile of elements of D implies that the

interference power in the quadratic form in (4.19) reduces as the value of the smoothing function

is more concentrated on the earlier indexes (time). Clearly, no interference occurs when v =

[1, 0, 0, . . . , 0]T, i.e., when CP size is set as M + G without any pulse shaping. As illustrated in

Figure 4.1, this case is referred as full-CP with smoothing function corresponding to Dirac delta with

a time lag of −MTs/2. Also, conventional (time-symmetric) and asymmetric smoothing functions

and associated pulse shapes are depicted in the same figure.

In full-CP case, the smoothing function rejects all multipath components falling into the

FFT window at the receiver. For conventional symmetric case, e.g., RC as in (4.5), the asymmetric
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profile of the multipath components creating ISI are captured after being weighted with the sym-

metric smoothing function. The last waveform scenario, which is depicted in the last row in Figure

4.1, is an arbitrarily asymmetric with respect to the time origin. The effect of time asymmetry to-

wards the earlier time brings better ISI rejection capability than that of the conventional case as it

can be observed from Figure 4.2. In fact, the proposed asymmetric pulse shaping stands in between

two existing OFDM signal structures: Full-CP and conventional (symmetric) pulse shaping. On

one hand, full-CP provides perfect interference rejection with extremely asymmetric pulse shape

without any spectral shaping. On the other hand, a symmetric pulse shape achieves good spec-

tral shaping but poor guarding against the interference caused by multipath delay spread. As the

balancing solution, the asymmetric pulse comes with superior ISI mitigation than the conventional

pulse shaping while compromising the spectral shape. It is worth noting that the asymmetry in the

time domain for pulse shape has no correspondence to asymmetry in frequency as the real function

in time domain has conjugate symmetric response in frequency, and hence symmetric power spec-

trum however. Thus, we conclude that when a single pulse-shape is considered, it is inevitable to

trade between the OOB emission and ISI/ICI for a given SE. In the next section, we show that the

interference side of this trade-off can substantially be reduced by taking the multicarrier nature of

the OFDM waveform into account.

4.4 Per-Subcarrier Asymmetric Pulse Shaping

Removing the transition and effective CP portions before applying FFT correspond to

rectangular receiver filtering, which implies the biorthogonality of the pulse-shaped OFDM similar

to CP-OFDM [86]. This removing process provides flexibility in transmit pulse shape design as

a degree of freedom when it is coupled with the multicarrier waveform structure. In particular,

providing better interference mitigation with time asymmetric pulse shape causes a degradation

in OOB performance. By following this fact, time-asymmetry of the pulse of a specific subcarrier

can be determined based on the level of contribution of that subcarrier on the OOB emission of

the composite signal. Since the band edge subcarriers have greater effect on the spectral emission,

symmetric pulse shaping functions can be adopted for the edge subcarriers. Then, by increasing
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the time asymmetry for the inner subcarriers for achieving better interference mitigation, the

spectral response of the composite signal on the OOB range can be kept minimally affected. Figure

4.3 depicts the subcarrier specific time asymmetry of the proposed OFDM waveform structure

in time-frequency plane. Detailed design procedure to obtain pulse shaping parameters for the

per subcarrier time-asymmetric waveform will be given in Section 4.5. It is worth noting that

the time asymmetry of the pulse shaping function does not imply an asymmetry in the power

spectrum. However, the asymmetry in the frequency domain can be achieved via exploiting the

subcarrier specific pulse shaping which is regardless of time asymmetry, which out of the scope of

this chapter.

Before moving on to the choice of pulse shaping functions in the subcarrier specific manner,

in the following, we investigate interference that is caused by multipath delay spread in the presence

of multiple subcarriers and subcarrier specific pulse-shaping. Adopting the vector form for the

multicarrier case in (4.1), the mth effective OFDM symbol can be written as

sm = 1p

(
W◦FH

f

)
Υm−1 + 1c

(
W◦FH

f

)
Υm (4.21)

where Υm = [γm,0, . . . , γm,N−1]T is complex information vector for mth OFDM symbol, and

Ff = [FB FG F FA] with FB, FG, and FA denoting the submatrices of N × N discrete Fourier

transform (DFT) matrix F including the columns corresponding to pre-symbol transition, CP, and

post-symbol parts, respectively. In (4.21), W = [w0, . . . ,wN−1] denotes the pulse-shaping matrix

with each column corresponding to the pulse for associated subcarrier. After passing through the

multipath channel, DFT operation converts the received signal into frequency domain in which the

information symbols are defined. Received data vector is then given as

Υ̂m = FHsm. (4.22)

The multipath components exceeding the effective CP result in ICI between the subcarriers

of current OFDM signal as well as ISI between consecutive symbols. ISI and ICI are represented
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Figure 4.3 Time-frequency structure of the proposed per-subcarrier time-asymmetric pulse shaping
functions denoting the values in W. Asymmetry of the subcarrier pulses are gradually increased
for inner subcarriers which maintains the spectral response for the OOB range while minimizing
ISI/ICI.

by decomposing the received symbol as

Υ̂m = ∆HΥm + FH1p

(
W◦FH

f

)
Υm−1 − FH1c

(
(J−W)◦FH

f

)
Υm︸ ︷︷ ︸

Υund.
m

(4.23)

where J is all 1 matrix with same size of W, and ∆H = FH1cF
H
f Υm is the diagonalized channel

matrix with diagonal elements representing the channel response at associated subcarrier frequency.

In (4.23), the first term is the desired signal, the second and the third terms denote ISI and ICI for

L > G, respectively.

A closer look into the transmitter operations in (4.23), which corresponds to synthesis of

the transmitted signal from the information symbols, yields the term corresponding to ISI as

1p

(
W◦FH

f

)
=

 RV◦FH
A

0(N−M)×N

 (4.24)
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where V = [v0, . . . ,vN−1]. For the ICI term, we use the vestigial symmetric property of the pulse

shaping functions to be able to write

1c

(
(J−W)◦FH

f

)
=

 RV◦FH
B

0(N−M)×N

 (4.25)

The undesired terms in (4.23) are used to obtain the total interference power in multicarrier

case as a function of the per-subcarrier smoothing functions. Expectation over i.i.d. information

symbols yields

PI = EΥ

[(
Υund.
m

)H
Υund.
m

]
= tr

((
RV◦FH

A

)H HHH
(
RV◦FH

A

))
+ tr

((
RV◦FH

B

)H HHH
(
RV◦FH

B

))
(4.26)

Similarly, the expected interference power considering the multipath fading channel is obtained as

P̂I = EH [PI]

= 2tr
(
VHDV

)
. (4.27)

It is clear that assigning different transmit filter for each subcarrier results in experiencing

different levels of interference, as a function of pulse shape associated to that subcarrier. Therefore,

it is necessary to investigate the expected interference power for individual subcarriers. By using

the undesired signal vector as the last two terms in (4.23), expected interference power for kth

subcarrier can be obtained by determining the mth diagonal element of the covariance matrix as

P̂I(k) =

{
EH

[
Eγ
[
Υund.
m

(
Υund.
m

)H]]}
k,k

(4.28)

which is a function of the subcarrier specific waveform and the PDP of the multipath channel.
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4.4.1 OOB Emission Constraint for Composite Signal

Power spectral density (PSD) of the OFDM signal composed of N pulse-shaped subcarriers

with i.i.d. symbols, as in (4.2), can be given as [33]

Ss(f) =
N−1∑
k=0

∣∣Wk(f − k′∆f)
∣∣2 (4.29)

where Wk(f) denotes Fourier transform (FT) of wk(t), and k′ denotes the shifted subcarrier index

corresponding to the actual location of kth subcarrier in the spectrum, i.e., k′ = k−N for k ≥ N/2,

and k′ = k otherwise. It is known from (4.3) that Wk(f) is determined by FTs of the smoothing

function, Vk(f), and sinc(f). This yields,

Wk(f) = ζTsVk(f)sinc (ζTsf) . (4.30)

For an OFDM signal under consideration, OOB emission compliance is represented by the

spectral mask as

Ss(f) ≤ Smask(f), fl ≤ |f | ≤ fu (4.31)

where Smask(f) is the spectrum emission mask that the transmitted signal needs to comply, and fl

and fu are lower and upper frequency boundaries for the OOB region at both sides of the spectrum.

As mentioned earlier, increasing the robustness of a pulse shape against interference comes

with an increase in the spectral sidelobes of corresponding subcarrier, as a function of the level of

time-asymmetry. At this point, we exploit the multicarrier structure and the flexibility of designing

independent pulse-shaping functions for each subcarrier, or for a set of subcarriers to mitigate this

trade-off. In particular, the aim is to aggressively utilize the wider spectral room of inner subcarri-

ers to the OOB region. That is, the spectral growth of time-asymmetric pulse shaping function is

managed in such a way that the rise is contained inside the signal band, i.e.,
[
−N

2 ∆f,
(
N
2 − 1

)
∆f
]
.

By doing so, the effect of the introduced asymmetry on the OOB spectrum is avoided. Thus, the

design procedure consist of maximizing the asymmetry of pulse shaping function, i.e., minimizing
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the interference, subject to a OOB constraint for each subcarrier. It is crucial to note that con-

straining each subcarrier with a given spectral mask, Smask(f), results in exceeding the mask after

the composition of N subcarriers as in (4.29). To obtain a composite OFDM signal with PSD

complying a given spectral mask, we decompose the mask into N components, and use each one

for masking associated subcarrier. For this purpose, we employ PSD of RC pulse shaped OFDM

signal as the spectral mask, i.e., Smask(f) = SRC(f). This choice enables a simple decomposition

of the spectrum mask into individual subcarriers as

∣∣Wk(f − k′∆f)
∣∣2 ≤ ∣∣WRC(f − k′∆f)

∣∣2 , fl ≤ |f | ≤ fu, k
′ ∈
[
−N

2
,
N

2
− 1

]
, (4.32)

which yields the desired OOB constraint for the composite signal as

N−1∑
k=0

∣∣Wk(f − k′∆f)
∣∣2 ≤ N−1∑

k=0

∣∣WRC(f − k′∆f)
∣∣2

Ss(f) ≤ SRC(f)

= Smask(f), fl ≤ |f | ≤ fu (4.33)

In addition, forcing the composite spectrum of the proposed waveform to be less than

or equal to that of symmetric pulse shaping inherently provides a fair comparison between the

proposed and conventional schemes.

4.4.2 Optimization of Per Subcarrier Pulse Shapes

In the presence of delay spread longer than the reduced CP size, each subcarrier is spoiled

by ISI component as a function of the utilized pulse shape, which is given in (4.19). Also, the

same pulse function determines the ICI originated from that subcarrier on the other subcarriers

of the same symbol. As shown in (4.27), these two interference components have the same power

contribution when the vestigial symmetric property presented in (4.6) is satisfied. Performing a

minimization on the total interference power in (4.27) does not guarantee a fair distribution of the

total interference power among individual subcarriers. Thus, each subcarrier pulse shape needs
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to be handled individually to be able to control its contribution on OOB emission as well as the

ISI/acici. By also invoking the ISI/ICI equality, we perform the optimization for each subcarrier

separately. Similar to objective function, constraint in the optimization is already configured to be

per-subcarrier via decomposition of spectral mask as in Section 4.4.1. Thus, by substituting (4.30),

the optimization problem can be represented in terms of the smoothing functions as

minimize vH
k Dvk

subject to
∣∣Vk(f − k′∆f)

∣∣2 ≤ ∣∣VRC(f − k′∆f)
∣∣2 , fl ≤ |f | ≤ fu (4.34)

for k = 0, . . . , N − 1. The problem in (4.34) falls into quadratically constraint quadratic problem

(QCQP), which is generally NP-hard [119], and quite hard to solve since the optimization matrix

D is not sparse. In the sequel, we propose a suboptimal closed form solution to asymmetric pulse

shaping function design that can be used in the per-subcarrier pulse shaping scheme.

4.5 A Novel Solution to Asymmetric Pulse Design: Generalized Kaiser Window

In order to provide a simple solution for the design of pulse shaping function with flexi-

ble asymmetry, we take Kaiser window [114] as reference for generating the smoothing functions.

Kaiser functions provide an approximation to the finite-length optimum spectrally concentrated

function, which is critical as we consider containing the spectrum of each subcarrier in the signal

bandwidth. Also, in its usage as the smoothing functions, its β-parameter allows adjustment of

the time asymmetric behavior.3 Hence, Kaiser window function is generalized by redefining the

β-parameter as a function of time. Thus, the GKW is given as

vGKW(t) =


I0
(
β(t)

√
1−
(

2t
MTs

)2)
∫MTs/2
−MTs/2

I0
(
β(τ)

√
1−
(

2τ
MTs

)2)
dτ

, −MTs
2 ≤ t < MTs

2 ,

0, elsewhere,

(4.35)

3Although generalizing the Kaiser window is considered here, one can also find other asymmetric pulse shape
functions to be used in the given framework.
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Figure 4.4 Generalized Kaiser windows. For given α2, e.g., α2 = 1.5, increasing α1 creates
asymmetry in time towards left. From right to left, α1 is 1.5, 2, 3, 4, and 5, respectively.

where I0(t) is the zeroth-order modified Bessel function of the first kind, and β(t) is the time-variant

β-parameter defined as

β(t) = πα1

(
α2

α1

)( t
MTs

+0.5
)

(4.36)

where the parameter pair (α1, α2) characterizes the asymmetry of the proposed smoothing function.

The GKW-based smoothing function is then rewritten as v
(α1,α2)
GKW (t).

Since I0(x) is an exponentially increasing function of x, greater time scaling parameter β(t)

in (4.35) results in faster growing v
(α1,α2)
GKW (t). Therefore, selecting α1 > α2 makes the smoothing

function leaning back in time, which is desired for the pulse-shaping function to mitigate the

interference caused by delay spread. in In Figure 4.4, GKW functions with different (α1, α2) pairs

are given. The deeper time-asymmetry is obtained as increasing α1 for a given α2. Note that for α1

and α2 , i.e., constant β, GKW simplifies to the conventional (symmetric) Kaiser window function

with β = πα1 = πα2.

By introducing GKW in the waveform design, the problem in (4.34) is readily reduces to

finding only two parameters, α1 and α2, for the smoothing function. In order to reduce the search

space for α1 and α2, we start the optimization from the edge subcarrier. In other words, since there
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is no enough room for spectral growth of the edge subcarrier due to introduced time asymmetry,

the PSD of RC pulse, as the constraint for the edge subcarrier, forces the GKW pulse shape to be

symmetric similar to RC. Then, the parameters for the kth subcarrier are found as

(
α

(k)
1 , α

(k)
2

)
= arg min(

α̃
(k)
1 ,α̃

(k)
2

)
∈Θk

(
v

(
α̃
(k)
1 ,α̃

(k)
2

)
GKW

)H
Dv

(
α̃
(k)
1 ,α̃

(k)
2

)
GKW

subject to

∣∣∣∣V
(
α̃
(k)
1 ,α̃

(k)
2

)
GKW (f − k′∆f)

∣∣∣∣2 ≤ ∣∣VRC(f − k′∆f)
∣∣2 , fl ≤ |f | ≤ fu, (4.37)

where Θk denotes the two dimensional local search space for the parameter pair of the kth subcar-

rier. The local search region represents α̃k1 ∈ [α
(k+1)
1 −θ, α(k+1)

1 +θ] and α̃k2 ∈ [α
(k+1)
2 −θ, α(k+1)

2 +θ]

where θ determines the size of local search space. That is, since the constraint for each subcarrier

is incrementally changed from the (k + 1)th to the kth subcarrier, the best GKW parameter set

for the kth subcarrier is searched in the close vicinity of the parameter set found in the (k + 1)th

subcarrier. The design procedure for finding the GKW parameters is summarized in Table 4.1.

Each GKW-shaped subcarrier is masked by the spectral response of RC counterpart in

the OOB region. Therefore, the lack of enough degree of freedom for the band edge subcarriers in

terms of OOB constrained, (4.37) forces the smoothing function for edge subcarrier to be symmetric

similar to the conventional cases. However, as the inner subcarriers with wider guard bands becomes

the object of the interference minimization problem in (4.37), α1 is allowed to increase smoothly

in contrast to α2. Therefore, the interference minimization problem with a given (decomposed)

spectral mask results in an OFDM waveform with per-subcarrier pulse shaping along with time

Table 4.1 Procedure for finding GKW parameters.

start

k = N/2− 1

α
(k)
1 = 2.5, α

(k)
2 = 2.5

while k ≥ −N/2
k = k − 1

find
(
α

(k)
1 , α

(k)
2

)
by following (4.37)

end
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Figure 4.5 Expected interference due to multipath delay spread along subcarriers. Increasing time-
asymmetry for the inner subcarriers with GKW-based pulse shapes achieves superior interference
mitigation.

asymmetric functions. As also illustrated in Figure 4.3, the pulse shapes for edge subcarriers are

more symmetric than the ones for the inner subcarriers.

The nonuniform level of time-asymmetry across the subcarriers directly affects the amount

of interference caused by multipath delay spread. That is, ISI/ICI contribution has also nonuniform

profile over the subcarriers. In Figure 4.5, expected interference powers per subcarrier given in

(4.28) are given for uniform and exponentially decaying PDPs4. For the pulse shaping scenarios,

per subcarrier GKW setup obtained by (4.37), and conventional symmetric pulse shaping are

considered. Parameters for the OFDM waveform are set as N = 512, M = 3G = 3N/16, and the

channel length is set to total redundant period, i.e., L = M + G. As seen in Figure 4.5, while

RC pulse-shaping experiences uniform interference over subcarriers, increasing asymmetry of the

4It is worth noting that PDP of the effective channel might have a transient increase before decaying exponentially
once the RF front end components such as bandpass filter are taken into account. However, this transient part can
be considered to be covered by the allocated effective CP of size G.
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Figure 4.6 Expected interference along subcarriers for various resource block (RB) sizes. Changing
the asymmetry of the pulse shaping for every R subcarrier results in a quantized interference profile.

subcarrier pulse shapes with GKW functions provide up to 12 dB less interference power for the

inner subcarriers and have similar consequence for edge subcarriers as expected with symmetric

configuration. Further improvements by taking nonuniform suppression of interference into account

will be noted in the next section.

4.6 Further Notes

4.6.1 Per Resource-Block (RB) Time-Asymmetric Pulse Shaping

Per-subcarrier pulse shaping opportunistically utilizes the spectral room of each subcarrier

while minimizing the interference-OOB trade-off. However, high number of subcarriers each shaped

with specific pulse shaping function results in an increase in baseband implementation cost, which

will be analyzed in the following sections. Thus, we propose a simple approach for this issue

by decreasing the number of distinct pulse shapes in the composite OFDM waveform. Instead of

employing a pulse shape for each subcarrier, a group of consecutive subcarriers, referred as resource
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block (RB), are shaped with a common function. The pulse shape of the RB is determined based

on the most critical subcarrier in that RB. In other words, as the spectral constraint in (4.17)

implies, outer subcarriers are allowed to have less time asymmetry due to smaller distance to the

band edge compared to inner subcarriers. Therefore the pulse shape of RB with R subcarriers

is set as pulse shape of the outermost subcarrier in that RB. Apparently, per-RB pulse shaping

reduces the resolution along the frequency domain and comes with a slight loss in ISI/ICI mitigation

performance. This can be observed from Figure 4.6 in which the interference powers over subcarriers

for per-RB asymmetric pulse shaping with various RB sizes are depicted. As can be seen from the

figure, changing the pulse shape for every R subcarriers results in a quantized profile for expected

interference power.

4.6.2 Improvements for Non-Uniform Interference

Since the edge subcarriers have greater effect on the OOB emission, experiencing a nonuni-

form degradation along the subcarriers is a common issue in OFDM spectral suppression [97, 120].

In our case, this can be readily addressed by simple countermeasures such as selective modula-

tion/coding across subcarriers. Besides that, user degree of freedom in an OFDMA scenario can

also be considered to enhance the error rate performance further, which is also proposed in [97] in

the context of edge windowing [96]. In the multiple access scenario, the edge subcarriers/RBs can

be assigned to users that experience less time dispersion which can be mapped to the distance of

the user to the base station [121].

4.6.3 Complexity

We evaluate the complexities of different schemes in terms of number of real multiplications

per OFDM symbol normalized to that of CP-OFDM based on efficient Split-Radix FFT algo-

rithm [115]. Since we keep the receiver side unchanged, there is no additional complexity at the

receiver. Since we do not perform any modification on the CP and main parts of the OFDM wave-

form, generation of these parts (total size of G+N) of the composite signal is the same as prevalent

schemes with FFT. However, M -sample transition duration requires more effort compared to con-
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ventional pulse shaping. Essentially, when one pulse shape is utilized for all subcarriers, additional

4M real multiplications after obtaining the time domain symbol with inverse FFT are required for

symbol transition. For per subcarrier pulse shaping, output of inverse FFT cannot be directly used

and hence, a matrix multiplication is required. In particular, when the symbol generation in (4.21)

is considered, the transition part equals to the multiplication of upper submatrix of W including

the first M rows and the input vector.

The results are summarized in Table 4.2. While the generation of per-subcarrier pulse-

shaped OFDM schemes requires relatively higher number of real multiplications. However, for per-

RB cases, OFDM (or OFDMA downlink) has reduced implementation complexity that decreases

with increasing R. Also, when we take into account the uplink cases in OFDMA scenarios, the

complexity in per-RB case is directly proportional to number of RB, r, used by the mobile nodes.

4.7 Results

In this section, performance results of the proposed OFDM waveform is evaluated and

compared with the performance of the conventional CP-OFDM and OFDM with symmetric pulse

shaping. For the three OFDM structures total excess time, hence the SE is fixed, i.e., ζ = 5N/4,

(refer Figure 4.1). In CP-OFDM without any OOB emission concern, all of the excess period

is allocated for CP (full-CP) while in the two pulse-shaped OFDM waveforms, 3/4 of the excess

Table 4.2 Normalized complexity of the pulse shaping schemes for N = 512, G = 32, and M = 96

Scenario
Normalized complexity

OFDM
OFDMA

r = 1 r = 2

CP-OFDM (Full-CP) 1 1 1

Conv. pulse-shaping 1.1 1.1 1.1

Per-SC pulse-shaping 32.9
2.9 (R = 16) 4.9 (R = 16)

8.9 (R = 64) 16.9 (R = 64)

Per-RB pulse-shaping
17.9 (R = 16)

1.1 2.2
4.4 (R = 64)
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Figure 4.7 Power spectra for three scenarios. Composite signal, contribution of an inner (e.g.,
k′ = 150) subcarrier, and the PSD for the precoder in [20] with parameters set to satisfy the
Mask 1 are given. Contribution of the inner GKW subcarrier reveals in-band growth due to time-
asymmetry, which has no effect in OOB emission.

period is used as transition period, i.e., M = 3G = 3N/16. The number of subcarriers N is set to

512 on which 16-QAM modulated symbols are modulated.

Figure 4.7 depicts the PSD of the composite OFDM signals for three cases. The PSD of

a single inner subcarrier with index k′ = 150 is also illustrated to clearly show the effect of time

asymmetric pulse shaping on an individual subcarrier spectrum. In the design procedure of GKW

waveform in Section 4.5, the frequency response of each subcarrier pulse is constrained by the

spectrum of RC pulse that is centered at the same frequency location as given in (4.37). When this

is done for each subcarrier, the PSD of the composite signal for per-subcarrier (per-SC) asymmetric

GKW becomes constrained by the PSD of the composite OFDM signal with RC pulse shaping in

the OOB frequency range. As the result of time asymmetry, the robustness against ISI/ICI for the

inner subcarriers comes as in-band spectral growth that has no effect in OOB emission.
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Figure 4.8 The trade-off between OOB power and ISI/ICI as a function of time asymmetry of the
pulse shape. The proposed scheme breaks the trade-off with reduced interference by maintaining
the OOB performance.

For further comparison, a well known precoding-based OOB emission reduction method

[122] is also considered. To have a fair comparison between the pulse shaping methods and the

precoding method, the parameters of the precoder are selected such that the same number of active

subcarriers will satisfy the spectral mask given in [102], referred as mask 1. For this purpose, the

spectral null locations of the precoder in [122] are set to {±269.5,±270,±396.5,±397}, measured

in subcarrier spacing. The precoding that we selected for comparison is a fixed one that does not

depend on the transmitted data symbols, so that the implementation is similar to pulse shaping

methods for fair comparison. The interested readers are directed to the other studies [123, 124]

that include the complexity comparison of pulse shaping methods to the more complex and data-

dependent schemes.

The interference mitigation property of the time asymmetric pulse trades the OOB emission.

In the following, the trade-off between the OOB suppression and ISI/ICI mitigation is presented.
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Figure 4.9 PSD results with the mask compliant version of the full-CP case.

Also, our method of per-SC time asymmetry is given. Figure 4.8 shows the operation points of all

pulse shaping scenarios in terms of the OOB and interference power. When all subcarriers have

the same pulse shape function without any per subcarrier implementation, increasing asymmetry

of the GKW pulse shape with increasing α1 corresponds to reduction in the interference, however

increasing the OOB power approaching the one that belongs to the full-CP case. Note that full-CP

is an interference-free scheme with the worst OOB performance. The symmetric pulse shaping on

the other hand, which is the case for α1 = α2 = 2.5, or RC pulse shape corresponding the same

OOB and interference performance, results in the best OOB suppression while loosing from the

interference mitigation capability. Finally, our scheme with subcarrier specific time asymmetry with

GKW pulse shapes minimizes the interference power by achieving the same OOB performance of the

symmetric pulse shapes. For the per-SC GKW scheme, the parameters found in the optimization

given in (4.37) starts from
(
α1

(k), α2
(k)
)

= (2.5, 2.5) for the edge subcarriers from both sides, i.e.,

for k = 255 and k = 256, and ends at
(
α1

(k), α2
(k)
)

= (56.8, 0.13) at the first subcarriers from both

sides, i.e., for k = 1 and k = 511.
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Next, we compare the BER performance of the three waveforms. In order to make a fair

comparison, all waveforms have to achieve a certain level of OOB. As it can be observed from

Figure 4.7, however, the OOB emission of full CP OFDM is significantly higher and does not have

comply the mask. Therefore, some subcarriers in the full-CP case are allocated for guard band so

that the PSD can stay within the given mask5. After assigning 172 guard subcarriers (i.e., 86 on

left and right) for full-CP OFDM that corresponds to 340 activated subcarriers, denoted as NS in

Table 4.3, the OOB of full-CP becomes as shown in Figure 4.9 along with the other scenarios. In

addition to spectral emission, data rate for three OFDM waveforms should be equal for a fair BER

comparison. Since full CP OFDM complying the OOB requirement has fewer active subcarriers,

the modulation order is increased from 16-QAM to 64-QAM; with these parameters the data rate

becomes 2044 bits per OFDM symbol for all three waveforms.

In the following, we consider the error rate performance by both using the theoretical

expected interference powers from (4.28), and performing Monte Carlo simulations. Block fading

6-tap Rayleigh-distributed multipath channel is considered with MED equal to length of the total

redundancy, N/4. The decaying rate of exponential PDP is set as β = 2
L−1 = 8

N so that the last tap

is 20 dB below the first tap. For the analytical results, we performed Gaussian approximation for the

ISI/ICI component by invoking the central limit theorem. Then, BER for each subcarrier based on

the signal to interference plus noise ratio (SINR) is calculated [125] and averaged across subcarriers.

For the simulation results, 1,000 OFDM symbols are generated for each channel realization and

QAM demodulation is performed after performing frequency domain equalization by using the

perfect channel knowledge at the receiver. Then, the BER results from 50 channel realizations are

averaged.

In Figure 4.10, BER results are given for three main scenarios as well as the precoder

in [122]. Note that since CP completely covers the multipath delay spread in full-CP case without

dedicating any resource for smoothing symbol transition (without mask compliance), it corresponds

to lower bound in terms BER. The proposed per-subcarrier asymmetric pulse shaping approaches

5For comparing the mask compliant version of the full-CP case, we adopt using a relaxed version of the spectrum
mask given in [102] since the there is no possibility of satisfying the original version of the mask with 55 dB suppression.
Thus, we set the suppression as 35 dB in the relaxed mask and referred as mask 2.

90



5 10 15 20 25

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

 

 
Rayleigh bound
Full CP without mask − Sim.
RC pulse shaping − Th.
RC pulse shaping − Sim.
Per−SC GKW − Th.
Per−SC GKW − Sim.
Precoder in [20]
Full CP with Mask 2 − Th.
Full CP with Mask 2 − Sim.

Figure 4.10 BER performance for full-CP case without mask compliance corresponding to error
bound, RC pulse shaping, per-subcarrier asymmetric GKW, precoder in [20], and full-CP case with
mask compliance via guard subcarriers.

Table 4.3 Parameters for three waveform cases complying the spectrum mask with same data rate

Spectrum Mask Modulation Interference BER

Full CP X(NS = 340) 64-QAM No ↑

RC pulse X(NS = 511) 16-QAM ↑ ↑

Per-SC GKW X(NS = 511) 16-QAM ↓ ↓

the lower limit while achieving the same OOB emission of conventional pulse shaping, i.e., RC. For

comparison of the mask compliant version of the full-CP case, as given in Table 4.3, the error rate

becomes higher due to increased modulation order. That is, even with a relaxed mask restriction,

the per-subcarrier GKW achieves the lowest BER for a given SE and spectral mask. It is worth

noting that the BER results for pulse shaping cases (e.g., RC and GKW) belong to the worst

cases in terms of channel realizations because the MED is fixed to the length of total guard time
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Figure 4.11 BER performances for resource block specific time-asymmetric GKW as a function
of the RB size.

(transition and CP). However, statistically, the channel can be shorter than CP, which is generally

designed to satisfy the worst MED scenario. On the other hand, the distortion introduced by the

precoder on the data symbols in precoding type schemes is not a function of channel, i.e., always

exists regardless of the channel condition. For per-RB asymmetric pulse shaping cases, sacrifice

from full degree of freedom comes with slight degradation in BER performance compared to per-

subcarrier case. As shown in Figure 4.11, BER performance with R = 16 is almost the same as

that of per-subcarrier case (R = 1), while slight degradation is observed for R = 64.

The effect of imperfect channel state information at the receiver is also investigated in the

proposed framework. The channel estimation error is measured in mean-squared error (MSE) and

connected to the received SNR as MSE = ρ×SNR where ρ corresponds to effective length of the

training sequence. The BER results as a function of the quality of the channel information at the

receiver are given in Figure 4.12. As it can be observed from the figure, the gain of the proposed
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Figure 4.12 BER performances in the presence of imperfect channel state information.

scheme compared to the other scenarios for a given MSE is not affected by the imperfection of the

channel information at the receiver.

Finally, we investigate BER performance when selective modulation across subcarriers are

performed to mitigate the effect of nonuniform interference profile as shown in Figure 4.6. To

illustrate this effect, the inner N/2 subcarriers are assigned to 16-QAM while the remaining outer

subcarriers (N/4 lower edge and N/4 upper edge) are assigned to QPSK modulation with same

symbol power. As shown in Figure 4.13, BER performance with per-subcarrier setting follows that

of the full-CP case closer since QPSK is more robust to perturbation.

4.8 Conclusions

Multipath delay spread is introduced as a criterion for pulse shaping design in addition to

sidelobe suppression for OFDM-based waveforms. It is shown that by considering the multicarrier
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nature of the bi-orthogonal pulse shaped OFDM, employing per-subcarrier and time asymmetric

pulse shaping achieves superior interference mitigation while maintaining the same OOB emis-

sion reduction performance of the conventional pulse shaping. The proposed scheme efficiently

utilizes the time-frequency resource by well-localized and spectrally efficient OFDM transmission

while approaching the interference-free BER performance. Also, with RB-specific time-asymmetric

waveform configuration, implementation complexity of the subcarrier-specific OFDM waveform is

reduced with negligible degradation in BER performance compared to per-subcarrier case.
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CHAPTER 5:

JOINT SIDELOBE SUPPRESSION AND PAPR REDUCTION IN OFDM

USING PARTIAL TRANSMIT SEQUENCES

5.1 Introduction

Robustness against multipath channels coupled with simple equalization and flexibility in

dynamic spectrum usage have made orthogonal frequency-division multiplexing (OFDM) a well

accepted signaling scheme in wireless communication systems1. Despite its prominent advantages,

two of the main drawbacks of OFDM have been considered as major limiting factors in practice:

high out-of-band (OOB) radiation and high peak-to-average power ratio (PAPR).

Rectangular transmit pulses trade the spectral containment of the signal due to sharp

symbol transitions corresponding to sinc subcarrier spectrum with high sidelobes. Apart from

shaping the rectangular transmit pulse to achieve smoother symbol transitions [93], various active

techniques have been proposed for suppressing the OOB radiation of rectangularly-shaped OFDM

signal. These schemes can be gathered under two main approaches as frequency domain and time

domain. In the former, for each OFDM symbol, spectra of individual subcarriers along with the

data symbols are taken into account while in the latter, the focus is on smoothing the transitions

between consecutive OFDM symbols to suppress the OOB leakage. Dedicating edge subcarriers for

sidelobe cancellation [127], mapping the original data sequence to multiple-choice sequences (MCS)

and selecting the one that gives the least sidelobe power [128], and projection of the transmitted

symbols to force spectral nulls [122] follow the frequency domain criterion, while inserting adaptive

symbol transitions based on two consecutive symbols [129] and data distortion to make the emitted

1The content of this chapter is published in [126]. Copyright notice for this publication can be found in Appendix
C.
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signal’s phase and amplitude continuous [130] can be considered as techniques that are based on

time domain criterion.

Besides the OOB radiation, since an OFDM symbol is a combination of sinusoids with

independent amplitudes and phases, the probability of having a high instantaneous power increases,

especially when the number of subcarriers is large. This drawback, on one hand, both shortens the

communication range and reduces the power conversion efficiency of the transmitter power amplifier

(PA) when the mean signal power is reduced due to regulatory other practical limitations. On the

other hand, when the mean power is not reduced, operation in the nonlinear region of the radio

frequency (RF) components, typically PA, creates both spectral regrowth and self-distortion in

the transmitted signal [131]. The techniques which deal with PAPR reduction in OFDM can be

found in [132] and references therein. Among these countermeasures, partial transmit sequences

(PTS) [133] and selected mapping (SLM) [134] have been promising alternatives.

The aforementioned techniques for reducing OOB radiation give good results for an ideal

signal. However, the spectral regrowth effect after the PA restores the suppressed sidelobes of

the original signal to a level that is determined by the PA operation characteristics. In other

words, when the effect of amplifier is not taken into account, sidelobe suppression techniques

become ineffective for the suppressions that falls under the spectral response of the PA. For joint

consideration of the two issues, a recent study [135] adopts multiple-choice-based techniques: MCS

for sidelobe suppression and SLM for PAPR reduction by refining the objective of MCS that restricts

the set of sequences with a sidelobe power constraint, before applying SLM-based PAPR reduction.

In this chapter, we propose a PTS-based joint suppression of spectral sidelobes and the

PAPR of the OFDM signal that actively minimizes the spectral leakage and peak power with

appropriate phase rotations of partial sequences. Hence, reduction of the spectral OOB leakage

and mitigation of PAPR-related drawbacks are collectively accomplished in practice so that the

spectral suppression performance will not be degraded due to the existing PAPR of OFDM signal.

The proposed scheme consists of three stages all of which are based on shifting the phases of the

blocks of subcarriers that constitute the partial transmit sequences. Interleaved blocks of edge

subcarriers are first phase shifted for suppression of the combined effect on the OOB, then PTS is
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Figure 5.1 Block diagram of three-stage technique. Edge subcarriers are first considered for
sidelobe suppression. Then the output is used for PAPR reduction and finally phase transition
between consecutive symbols is improved by an optimum phase shift.

performed for PAPR reduction considering the contiguous blocks, and finally, an adaptive phase

rotation for the current OFDM symbol is performed to achieve minimal phase transition with

the previous symbol. Since the proposed technique is based on the phase-shift for the blocks of

subcarriers, both computational complexity for phase computations and the size of information to

represent the phase information are kept minimal.

The remainder of this chapter is organized as follows: In Section 5.2, the system model

is introduced. Then, the stages of the proposed scheme: frequency domain criterion for sidelobe

suppression, PAPR reduction with PTS, and the spectral suppression with a time domain criterion

are presented in Sections 5.3, 5.4, and 5.5, respectively. Section 5.6 presents the simulation results

for the spectral and PAPR suppression and finally, conclusions are drawn in Section 5.7.
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5.2 System Model

N data symbols, Xk, k = 0, . . . , N − 1, are modulated in each OFDM symbol. Therefore,

we consider N -subcarrier OFDM system whose mth discrete time-domain symbol including the

cyclic prefix (CP) is written as

x(m)(n) =
1√
N

N/2−1∑
k=−N/2

X
(m)
k+N/2e

j 2πkn
ρN , −ρG ≤ n < ρN, (5.1)

where X
(m)
k is the complex symbol modulated on the kth subcarrier of the mth OFDM symbol, G

is the CP size, and ρ is the oversampling ratio. The combination of independent and identically

distributed data symbols, X
(m)
k , increases the probability of observing high PAPR, defined as

PAPR(m) =

max
0≤n<ρN

|x(m)(n)|2

E[|x(m)(n)|2]
, (5.2)

where oversampling of the time domain symbol by ρ provides better approximation to the true

PAPR.

The three-stage algorithm for jointly reducing the OOB radiation and PAPR is depicted as

block diagram in Figure 5.1. For all stages, the only operation is a phase rotation of the blocks

and subblocks of the data vector X(m) = [X
(m)
0 , X

(m)
1 , . . . , X

(m)
N−1]T . For this purpose, two-level

partitioning of the data vector is adopted. The higher level is basically splitting X(m) into V

distinct and consecutive blocks X
(m)
v , v = 1, 2, . . . , V for the PAPR reduction, where each block

is independently phase-rotated for minimizing instantaneous peak power. This high level partition

is formulated as

[
X(m)
v

]
i

=


[
X(m)

]
i
, (v − 1)NV ≤ i ≤ v

N
V ,

0, elsewhere,

(5.3)

where [X]i denotes the ith element of the vector X. The second level of partitioning corresponds

to formation of L interleaved subblocks from the two blocks that are located at the band edges,
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i.e., X
(m)
v,l , v = 1, V and l = 1, 2, . . . , L. Interleaved subblocks can similarly be given as

[
X

(m)
v,l

]
i

=


[
X

(m)
v

]
i
, i = l + qL, q = 0, . . . , NV L − 1,

0, elsewhere.

(5.4)

5.3 Stage 1: Sidelobe Suppression with Frequency Domain Criterion

In OFDM, it is a well-known fact that edge subcarriers have more impact on the OOB ra-

diation than inner subcarriers [120], because the envelope of each subcarrier’s spectrum decreases

monotonically. Hence, with the frequency domain criterion for sidelobe suppression in the first

stage, we take only the leftmost and the rightmost blocks of subcarriers into account for spec-

tral suppression. Within each edge block, subcarriers are further partitioned into L interleaved

subblocks in order to maximize the cancellation effect on the combined OOB spectrum with ap-

propriate phase rotations. In other words, by allowing independent phase shifts to successive edge

subcarriers, which has the most effect on the signal spectrum, more degrees of freedom are achieved

with the interleaved-subblock approach. Then, the operation in the first stage modifies the edge

blocks as

Y(m)
v =

L∑
l=1

α
(m)
v,l X

(m)
v,l , v = 1, V, (5.5)

where α
(m)
v,l is the complex number with unity amplitude that shifts the phase of the lth subblock of

the vth block in the mth OFDM symbol2. Thus, selection of the phases αv,l is based on minimizing

the combined effect of the interleaved subcarrier blocks, whose power is given as

PI = ‖IvYv‖2 (5.6)

=

∥∥∥∥∥
L∑
l=1

Ivαv,lXv,l

∥∥∥∥∥
2

(5.7)

2For notational convenience, we omit the symbol index for Sections 5.3 and 5.4 as the operations are done per-
symbol basis in the first two stages.

99



where Iv is an K ×N interference matrix that gives the contribution of each data subcarrier at K

frequency locations on the OOB spectrum whose normalized frequency indices are represented by

g1 and gV for lower and upper OOB, respectively. Thus the interference matrix yields

[Iv]p,k =
sin
(
πG+N

N ([gv]p − k)
)

πG+N
N ([gv]p − k)

, v = 1, V. (5.8)

By defining αv = [αv,1, . . . , αv,L]T , the OOB power that needs to be minimized can be

written in matrix form as

PI =‖IvX vαv‖2 (5.9)

=αHv X v
HIHv IvX v︸ ︷︷ ︸

Av

αv (5.10)

where XH denotes the Hermitian transpose of the matrix/vector X, and

X v = [Xv,1,Xv,2, . . . ,Xv,L]. Therefore, finding the phase vector αv corresponds to an optimization

problem as

minimize αHv Avαv

subject to |[αv]l|
2 = 1, l = 1, . . . , L. (5.11)

The problem in (5.11) falls under the family of quadratically constraint quadratic problem (QCQP).

There exists efficient solutions to solve this optimization problem, e.g., semidefinite relaxation [136].

It is worth noting that one can also select L = N/V , i.e., independent phase rotation for

each subcarrier, to achieve the maximum degree of freedom for minimizing the combined effects of

the edge subcarriers, albeit with the penalty of increased complexity and number of phases to be

sent to the receiver side. However as discussed in Section 5.6, our results show that L > 8 does not

give remarkable additional spectral suppression.

After determining the phase vectors and combining the subblocks for the edge-blocks as

in (5.5), data blocks are converted to time-domain blocks with inverse discrete Fourier transform

(IDFT). Thus, the input of the PAPR reduction stage becomes V time-vectors that can be written
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as

yv =


FHYv, v = 1, V

FHXv, v = 2, 3, . . . , V − 1

(5.12)

where FH is ρ(N +G)×N IDFT matrix that generates time domain CP-OFDM symbol.

5.4 Stage 2: PAPR Reduction with PTS

As in Figure 5.1, the time-domain vectors that are obtained from (5.12), two of which are

the output of the first stage, naturally become the input for partitioning-based PAPR reduction

technique: PTS [133]. The main idea of PTS technique is based on shifting the phases of the

partitions of the OFDM data vector in such a way that the resulting symbol will have a reduced

PAPR. In other words, as yv being the partial sequences in our notation, aim in PTS technique is

to

minimize max
0≤i<ρN

(
ρN
|[z]i|

2

zHz

)
, (5.13)

where z is the output vector of the PAPR reduction stage given as

z =

V∑
v=1

βvyv (5.14)

and βv, v = 1, . . . , V is the phase rotation to be performed on vth block with the objective in (5.13).

Indeed, both PTS and SLM techniques can be represented by (5.13) and (5.14) but the difference

emerges in implementation. That is, phase rotations for partial sequences, yv, are computed in

PTS, while in SLM, only a number of candidate phase rotations are first performed in the frequency

domain, then they are converted to the time domain and the one that has the minimum PAPR is

selected for transmission. We herein adopt the PTS technique considering this fact as well as the

following motivations:
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• Time domain partial sequences are already computed in the first stage and can directly be

used for PTS stage.

• PTS encompasses SLM in terms of range of solutions including the optimum.

• PTS can be more efficient when the fact that the majority of the input vector of IDFT

operations in (5.12) consists of zeros is exploited in implementation [137].

• Optimization of the phase values as well as efficient suboptimal solutions for PTS has been

extensively studied in the literature [137–141].

Thus, we adopt a simple quantized-PTS algorithm in which finite set of quantized phases

is considered, i.e., βv ∈
{

1, e
j2π 1

Q , . . . , e
j2πQ−1

Q

}
as also given in [133].

Note that in the PTS stage, phase rotations of the edge blocks, i.e., multiplication of y1

and yV by β1 and βV , does not affect the performance of sidelobe suppression because the power

level of the combined interleaved subblocks is maintained after the corresponding phase shifts.

5.5 Stage 3: Sidelobe Suppression with Time Domain Criterion

Similar to the fact that phase rotation of the blocks for PAPR reduction does not affect

the sidelobe suppression performance, applying a constant phase shift to the whole OFDM block

does not change the performance of the per symbol-basis operations that are carried out in the

first two stages. This additional degree of freedom allows us to consider the transition between

consecutive symbols to further improve the spectral suppression. In other words, after the frequency

domain criterion, the phase transition between consecutive OFDM symbols is improved with a

second update on the phase vector without affecting the performance of the previous stages, which

corresponds to a time domain criterion of reducing the OOB. As illustrated in Figure 5.2, the

symbol boundary where the sharp transitions occur is phase-smoothed after shifting the phase of

the current symbol adaptively.

By restoring the symbol index, we denote the phase shift to be applied on the output

of the second stage, z(m), as γ(m). Thus, µ(m) = γ(m)z(m) becomes the mth OFDM symbol to

be transmitted. Given the previous symbol z(m−1), the phase shift that provides the best phase
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transition between the end of the (m−1)th symbol and the start of the mth symbol also minimizes

the sidelobe power of the concatenated time domain vector defined as

P
(m)
I =

∥∥∥∥∥∥∥FK,ζ

 z(m−1)

γ(m)z(m)


∥∥∥∥∥∥∥

2

(5.15)

where ζ = 2ρ(N + G) and FK,ζ is an K × ζ interference matrix that projects the ζ-length time

vector to the K frequency locations in the OOB, i.e., subset of the ζ × ζ discrete Fourier transform

(DFT) matrix containing only the rows corresponding to the sidelobe frequencies whose power is

to be minimized. By substituting γ(m) = ejθm and using the linearity of matrix multiplication, we

rewrite (5.15) as

P
(m)
I =

∥∥∥a + ejθmb
∥∥∥2

(5.16)

where a = FK,ζ

[
z(m−1)

[0](N+G)×1

]
and b = FK,ζ

[
[0](N+G)×1

z(m)

]
. The optimum angle that minimizes P

(m)
I

is the angle that corresponds to the global minimum of (5.16). Thus, the desired angle is the

solution of

∂

∂θm

∥∥∥a + ejθmb
∥∥∥2

= 0, (5.17)

�  !"  �   
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Figure 5.2 Phase rotation of the OFDM symbol to make the transition smoother.
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Figure 5.3 A vector space representation of symbols and their OOB contributions. Appropriate
phase rotation for the current symbol reduces the length of the vector corresponding to OOB
contribution of consecutive symbols.

which yields

ej2θm =
bHa

aHb
. (5.18)

The phase angle in (5.16) turns out to be the angle of the inner product of the sidelobe vectors

obtained from the previous symbol and the current symbol, i.e., θm = ∠〈b,a〉. This can also

be seen in Figure 5.3 where the shaded plane is the hyperplane where the projection of symbols

corresponds to OOB contribution.

Although the phases are computed independently in all stages, each stage updates the phase

information of the previous stage rather than increasing the number of phases to be transmitted,

that is, β
(m)
v updates α

(m)
v for v = 1, V , and γ(m) updates β

(m)
v . Therefore, the number of total

phases remains as 2L + V − 2. Also, since we restricted the set of complex numbers to a smaller
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Figure 5.4 PSDs of signals after each stage showing the individual impacts on sidelobe suppression.
V = 2 and L = 8.

subset, i.e., unity amplitude, complexity of the techniques in all stages reduces. Although we

considered arbitrary phase shifts for the first and the third stages, more efficient implementations

can be achieved by quantizing the phases into finite size of alphabet. By doing so, smaller number

of bits are enough to represent the phase information for jointly performing the PAPR reduction

and the sidelobe suppression for the OFDM symbol.

5.6 Simulation Results

Performance of the proposed scheme is investigated via computer simulations. An OFDM

system with N = 128, G = 16, and disabled DC-subcarrier is considered. As oversampling ra-

tio, ρ = 8 is adopted to better approximate3 the true PAPR and four quantized phase shift are

considered in PTS. For each simulation, 10 000 symbols are generated. We first investigate the

3It has been shown that an oversampling ratio greater than four is sufficient to tightly bound the peak of the
continuous envelope [142].
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Figure 5.5 The effect of block sizes on power spectrum.

power spectral density (PSD) of the signals at the output of each stage in order to observe the

impact of individual techniques on the sidelobe suppression. Figure 5.4 presents the normalized

power spectra for the signal after the first, second, and third stages for V = 2 and L = 8. The

distances of OOB frequency locations to the band edges are set as g = [20, 22, . . . , 40] from both

sides. Conventional OFDM, i.e., input signal of the proposed system, is also given as reference. The

frequency domain criterion solely achieves 20 dB better suppression at the N/4 subcarrier distance

from the band-edge compared to conventional OFDM. Note that the PSD after the second stage

remains unchanged confirming the independence of the proposed sidelobe suppression and PAPR

reduction. After applying the time domain criterion in the third stage, further improvement of

4− 6 dB on OOB suppression performance is observed in Figure 5.4.

The effect of the size and number of contiguous blocks and interleaved subblocks on the

spectrum and PAPR is also investigated. Smaller V increases the size of edge blocks. Thus, increas-

ing the number of subcarriers that are taken into account for sidelobe suppression provides better
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Figure 5.6 The effect of block sizes on PAPR.

performance. Similarly, for a given V , increasing L enhances the performance due to the increased

degree of freedom in selecting the independent phase rotations for successive edge subcarriers.

These effects are illustrated in Figure 5.5 with various block and subblock sizes. (V,L) = (2, 32)

gives the best result since the size of edge blocks and the number of independent phase rotations

are greater than the others. Similarly, since the inner subcarriers that are not taken into account in

the first stage constitute the OOB spectrum floor, (V,L) = (4, 32) provides a marginal suppression

gain over (V,L) = (4, 8).

Finally, with the same set of block parameters, we investigate the PAPR reduction per-

formances of the proposed method. Figure 5.6 shows the complementary cumulative distribution

function (CCDF) of the PAPR of the OFDM signal with various partitioning scenarios. For a CCDF

of 10−3, L = 8 gives 1.1 dB and 3 dB less PAPR for V = 8 and V = 32, respectively, compared to

conventional OFDM. Since phase rotation of the edge subcarriers are independent from the PAPR

reduction, subblock size L has no observable effect on peak power reduction performance.
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5.7 Conclusions

Spectral sidelobes and PAPR drawbacks in OFDM-based systems are jointly addressed

by a PTS-based transmission scheme. After phase rotation of edge subcarriers in an interleaved

manner for the sake of suppressing the spectral emissions, PTS is performed using the phase

rotated blocks as an input for PAPR reduction. Finally, with a phase rotation of the whole OFDM

symbol in time, the phase transition between the current and the previous symbol is smoothed,

leading to further improvement in the spectral suppression. The proposed scheme reduces the

PAPR while suppressing the OOB radiation, therefore minimizing the possibility of the spectral

regrowth problem in practice. Since the main operation of the proposed algorithm involves only

phase rotation of blocks, both complexity and side information are kept minimal.

Future work constitutes the investigation of the system performance in real systems includ-

ing various PA simulations and measurements as well as investigating the optimum block sizes that

matches the PA model with the sidelobe suppression.
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CHAPTER 6:

CP-ALIGNED OFDM WITH JOINT OOB AND PAPR REDUCTION

WITH PHY SECURITY

6.1 Introduction

As a prevalent multicarrier transmission scheme, orthogonal frequency-division multiplexing

(OFDM) is used in most of existing communication standards such as Wi-Fi, WiMAX, LTE,

and IEEE 802.20 WRAN some of which also been considered for military communications along

with wideband networking waveform (WNW) [143]1. The widespread adoption of OFDM has also

expanded to the military communications This is because of its prominent features, e.g., robustness

against multipath delay spread, high spectral efficiency, single-tap frequency domain equalization,

and notable flexibility in spectrum usage. Despite its numerous advantages, the use of rectangular

pulse shape introduces high spectral out-of-band (OOB) leakage due to sharp transitions between

consecutive symbols.

In the literature, many methods have been proposed to reduce OOB leakage of OFDM based

systems. Among many others, windowing [96, 100, 145] is one of the most known methods that

shapes the spectral shape of the individual subcarriers. However, the extension of effective symbol

duration not to allow sharp transitions between OFDM symbols reduces the spectral efficiency.

In [96], the authors introduces different transition durations for inner and edge subcarriers by

taking the dominant contribution of the edge subcarriers into account. In [100], a time-asymmetric

windowing method is introduced which exploits some part of the cyclic prefix (CP) by considering

the decaying profile of multipath channel. Different from the methods that manipulate the transmit

filter for improved symbol transitions, there are other techniques that actively manipulate the data

1The content of this chapter is published in [144]. Copyright notice for this publication can be found in Appendix
C.
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subcarriers for achieving better transitions for reduced OOB leakage. In this direction, one of the

elegant solutions is N -continuous OFDM [130] where each data subcarrier is exposed to a small

interference so that the consecutive OFDM symbols become continuous for their first N derivatives.

However, N -continuous OFDM requires a modified receiver to cancel the impact of interference.

Recently, a novel approach which allows non-interfering components transmitted along with OFDM

symbols has been introduced [77, 146–148]. The main idea is to cancel the superposed component

on the data symbols by exploiting inevitable redundancy of OFDM symbols, i.e., CP duration.

In [77], the component is generated as an artificial noise for physical-layer security. The same

method is utilized for wireless power transfer in OFDM [146] and orthogonal frequency-division

multiple access (OFDMA) [147] scenarios, which propose self-sustainable receiver via utilizing the

power harvested from the CP duration. The idea of alignment has recently been used for the

purpose of spectral suppression over a certain OOB frequency band [148], via utilizing a quadratic

optimization for computation of the suppression component.

In this chapter, we introduce an OFDM transmission scheme by taking the advantages

of maintaining the continuity of OFDM symbols and the idea of CP alignment. By keeping the

distortion effect of the multipath channel unchanged, the proposed method yields no additional

disturbance on the received data subcarriers after passing through channel, CP removal, and dis-

crete Fourier transform (DFT) operations. This is achieved by designing the additional correction

component, which maintains the continuity of OFDM symbols, such that it aligns with the CP part

at the receiver. In other words, the correction component falls into the CP duration after passing

through the channel. By doing so, the correction component does not induce any interference on

the data subcarriers while achieving the symbol continuity. Thus, the proposed scheme is backward

compatible to the conventional OFDM receivers since there is no need for a change in the reception

such as decision-feedback implementation as given in conventional N -continuous OFDM [130].

The notation is given as follows. Matrices [columns vectors] are denoted with upper [lower]

case boldface letters (e.g., A [a]); denotes the convolution operation; superscripts T and H denote

transpose, and conjugate transpose, respectively; x denotes the conjugate of a scalar number x;

j =
√
−1 is the imaginary unit; Ex[y(x)] denotes the expectation of y(x) over the random argument
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x; ‖x‖∞ denotes the uniform norm (infinity norm) of vector x; and dn

dtn is the nth derivative operator

with respect to t.

6.2 System Model

We consider an OFDM system where the transmitted signal is composed of two components

as

si(t) = xi(t) + ai(t), (6.1)

where xi(t) is the data component for ith OFDM symbol and ai(t) is its correction component which

controls the spectral characteristics with symbol continuity. The complex envelope representations

for two components are given as

xi(t) =
1√
Nd

∑
k∈Nd

di,ke
j 2πk
Td

t
, −Tg ≤ t < Td, (6.2)

where Nd is the number of OFDM subcarriers, Nd = {k1, . . . , kNd
} is the corresponding subcarrier

index set, and Td and Tg are the main symbol and CP durations for the OFDM data signal,

respectively.

In order to control the OOB leakage via managing the transitions between consecutive

symbols, correction component is configured to be in OFDM form similar to data part. That is,

the correction component is also composed of some subcarriers which are populated by optimized

correction values. By defining ai(t) in the same format with rectangular pulse shape, spectral

control can be achieved by considering only the symbol transitions. As it is shown in the time

domain representations in Figure 6.1, Td determines the duration in which the OFDM signal can

take arbitrary value as a function of the data subcarriers, and Tg is the duration that carry the same

information as last part of the main duration, i.e., redundant part. For the proposed scheme, in

order to achieve sufficient degrees-of-freedom for canceling the distortion at receiver, the correction

component is generated for a larger symbol period than Td. The signal structure considered in

this sequel is illustrated in Figure 6.1. As opposed to conventional N -continuous OFDM where the
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Figure 6.1 Time and frequency domain illustrations of two components that the transmitted signal
consists of. Larger symbol duration for the correction component ai(t) yields to more points in
frequency than that of number of data subcarriers.

data and the correction component have the same durations, the proposed structure offers larger

number of subcarriers with smaller subcarrier spacing.

ai(t) =
1√
Nw

∑
l∈Nw

wi,le
j 2πl
Tw

(t−(Td−Tw)), −Tg ≤ t < Td (6.3)

where Nw is the number of frequency bins for correction component, Nw = {l1, . . . , lNw} is corre-

sponding subcarrier index set, and Tw is the main duration for the correction component. Consid-

ering the consecutive symbols, the overall signal can be written as

s(t) =
I∑
i=0

si
(
t− i(Tg + Td)

)
(6.4)

where I is the number of OFDM symbols in the transmitted frame.

The continuous time expression of OFDM frame in (6.4) are given for the representation

of continuity at the symbol boundaries that will be maintained by the design of the correction

component in discrete domain. Then, based on the OFDM formulation in (6.2) and (6.3), the

discrete-time signal is given by

si = xi + ai = AdFH
d di + AwFH

wwi (6.5)
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where di =
[
di,−Nd/2, . . . , di,Nd/2−1

]T ∈ CNd×1 and wi =
[
wi,−Nw/2, . . . , wi,Nw/2−1

]T ∈ CNw×1. In

(6.5), Fd ∈ CNd×Nd and Fw ∈ CNw×Nw denote Nd- and Nw-point DFT matrices. The CP insertion

matrices for the data and the correction parts are defined as

Ad ,

0Gd×(Nd−Gd) IGd

INd

 ∈ {0, 1}(Nd+Gd)×Nd and

Aw ,

0Gw×(Nw−Gw) IGw

INw

 ∈ {0, 1}(Nw+Gw)×Nw ,

where Gd and Gw are corresponding CP sizes, respectively.

We assume that the transmitted signal passes through a Rayleigh fading multipath channel.

The channel impulse response is represented by the vector h =

[
h0, . . . , hL−1

]
where L is the

number of channel taps. We then express the received signal for the ith OFDM symbol as

ri =

[
Hp Hc

]si−1

si

+ ni, (6.6)

where ni ∈ C(Nd+Gd)×1 is the additive white Gaussian noise (AWGN) vector,

Hc ∈ C(Nd+Gd)×(Nd+Gd) and Hp ∈ C(Nd+Gd)×(Nd+Gd) are the convolution matrices which are

explicitly given by

Hc =



h0 0 · · · · · · · · · 0

...
. . .

. . .
. . .

. . .
...

hL−1 · · · h0
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 · · · 0 hL−1 · · · h0


,
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and

Hp =



0 · · · 0 hL−1 · · · h1

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . hL−1

...
. . .

. . .
. . .

. . . 0

...
. . .

. . .
. . .

. . .
...

0 · · · · · · · · · · · · 0


.

In (6.6), Hc and Hp denotes the mapping from previous transmitted symbol si−1 to the receiver

window of ith symbol. That is, it characterizes the inter-symbol interference (ISI) falling into the

CP duration. Then, the receiver discards the CP portion and performs DFT to convert the signal

into frequency domain as

yi = FdBri

= FdBHcsi + FdBHpsi−1 + FdBni, (6.7)

where B =

[
0Nd×Gd

INd

]
denotes the CP removal operation by nullifying the first Gd rows of the

matrix/vector that is multiplied from the right. Hence, it follows that BHp = 0, representing the

elimination of the ISI with CP removal. Therefore, the received symbol in the frequency domain

becomes

yi = FdBHcsi + FdBni. (6.8)

6.3 Generalized N-Continuous OFDM

In this section, we establish the generalization of N -continuity in OFDM transmission to

address the design of correction component with larger symbol duration. This generalization enables

distortion-free reception which will be discussed in the next section. Similar to conventional N -

continuous OFDM [130], the correction term is designed to satisfy the equality of the first N

derivatives at the symbol boundary. As shown in Figure 6.1, the correction component and the
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data subcarriers have the same size Nd. In the proposed scheme, the number of subcarriers for

the correction component, Nw, is not necessarily equal to the number of data subcarriers i.e., Nd.

Considering this relaxation for the dimension of the correction component, we call this scheme as

generalized N -continuous OFDM.

The continuity condition at the boundary between the (i − 1)th and ith symbols is repre-

sented via system of differential equations as

dn

dtn
si(t)

∣∣∣
t=−Tg

=
dn

dtn
si−1(t)

∣∣∣
t=Td

, (6.9)

dn

dtn
(
xi(t) + ai(t)

)∣∣∣
t=−Tg

=
dn

dtn
(
xi−1(t) + ai−1(t)

)∣∣∣
t=Td

, (6.10)

for n = 0, . . . , N − 1. The set of equations represented in (6.10) are due to substitution of (6.1)

into (6.9). Then substituting (6.2) and (6.3) into (6.10), and characterizing the derivations yield

1√
NdT

n
d

∑
k∈Nd

kndi,ke
jφdk +

1√
NwT

n
w

∑
l∈Nw

lnwi,le
jφwl

=
1√
NdT

n
d

∑
k∈Nd

kndi−1,k +
1√
NwT

n
w

∑
l∈Nw

lnwi−1,l, n = 0, . . . , N (6.11)

where φd = −2πTd/Tg and φw = −2π (Tg+Td) /Tw are the phase offset coefficient at the begin-

ning of symbol for each subcarrier of data and correction components, respectively. The matrix

equivalent of the system in (6.11) is given as

KΦddi + LΦwwi = Kdi−1 + Lwi−1 (6.12)

where Φd , diag
(
ejφdk1 , . . . , ejφdkNd

)
∈ CNd×Nd and Φw , diag

(
ejφwl1 , . . . , ejφwlNw

)
∈ CNw×Nw

are the diagonal matrices corresponding to the phase terms, and the matrices K ∈ R(N+1)×Nd and
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Figure 6.2 The correction component is aligned with the CP duration of OFDM symbol after it
passes through multipath channel.

L ∈ R(N+1)×Nw are given as

K ,
1√
Nd

diag

(
1

T 0
d

, . . . ,
1

TNd

)


1 1 · · · 1

k1 k2 · · · kNd

...
...

...
...

kN1 kN2 · · · kNNd


,

and

L ,
1√
Nw

diag

(
1

T 0
w

, . . . ,
1

TNw

)


1 1 · · · 1

l1 l2 · · · lNw

...
...

...
...

lN1 lN2 · · · lNNw


.

Hence, any vector wi satisfying

LΦwwi = bi (6.13)

where bi = −KΦddi + Kdi−1 + Lwi−1, achieves the N -continuity. Equation (6.13) constructs the

condition for the generalized N -continuous OFDM where Nw ≥ Nd, i.e., the correction component

has more dimensions than the data component. Since N + 1 < Nw, (6.13) is an under-determined

system of equations and has infinitely many solutions. Without posing any other requirement on
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wi, we are interested in minimizing the distortion of the correction component on the data signal.

We then select the solution that has minimum norm via Moore-Penrose pseudoinverse of LΦw [130,

149], defined as (LΦw)† = ΦH
wLH

(
LLH

)−1
. Hence, the solution is obtained in frequency domain as

wmn
i = ΦH

wLH
(
LLH

)−1
bi, (6.14)

which provides N -continuity with an arbitrary number of dimension for the correction component.

After establishing the generalization, the distortion-free reception is presented in the sequel.

6.4 CP-Alignment

In the conventional N -continuous OFDM configuration where Nw = Nd, each data subcar-

rier has one correction component because both components have same symbol and CP durations.

Thus, the data subcarriers are distorted even though the power of correction component is min-

imized. In addition, removing the distortion from the data subcarriers necessitates a modified

receiver structure, e.g., with decision feedback equalizer [130].

As we have more degrees-of-freedom on the correction component, i.e., Nw > Nd, it is

possible to remove the distortion caused by the correction component considering the idea of CP-

alignment. As illustrated in Figure 6.2, the dimensions of the signal space of OFDM symbols reduces

from Nd + Gd to Nd with CP removal after the multipath channel. This difference leaves a room

for no-distortion transmission by aligning the correction component with the CP duration at the

receiver. The overall picture of the proposed method, including the N -continuity and component

alignment, is represented as functional block diagram in Figure 6.3.

The substitution of (6.5) into (6.8) yields the frequency domain received signal without the

noise as

yi = FdBHcAdFH
d di + FdBHcAwFH

wwi, (6.15)

where the first term is the desired OFDM data symbol vector and the second term is the correction

component that falls into the DFT window for the ith symbol. In order to cancel the correction
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Figure 6.3 Block diagram of the proposed scheme representing the mathematical flow. The block
named as ”D” introduces one symbol duration delay.

component in the OFDM reception, one needs to satisfy

FdBHcAwFH
wwi = 0, (6.16)

which implies that wi should be in the nullspace of FdBHcAwFH
w ∈ CNd×Nw . The enabling factor

for canceling the correction component after the channel and CP-removal is having a nonzero

nullspace for the system in (6.16). We know from the rank-nullity theorem [149] that

dim
(
null

(
FdBHcAwFH

w

))
= Nw − rank

(
FdBHcAwFH

w

)
= Nw −Nd, (6.17)

which dictates selecting smaller CP size for the correction component, i.e., Nw > Nd to have a

non-injective system for (6.16). Thus, the dimension of the nullspace will be nonzero. The solution

space for (6.16) can be realized by

wi = Pti (6.18)
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where P ∈ CNw×(Nw−Nd) is the precoder matrix that maps an arbitrary vector ti ∈ C(Nw−Nd)×1

into the nullspace of FdBHcAwFH
w. In other words, the columns of P spans the nullspace as

range (P) = null
(
FdBHcAwFH

w

)
, (6.19)

and can be computed via singular value decomposition (SVD) by

FdBHcAwFH
w = UΣVH (6.20)

where U ∈ CNd×Nd and V ∈ CNw×Nw are orthonormal matrices and Σ ∈ CNd×Nw is the diagonal

matrix containing the singular values in decreasing order along its diagonal. Then, P is found by

importing the last Nw −Nd columns of V [149, Ch. 6.3], given as

P = [vNd
, . . . ,vNw−1] . (6.21)

After the presenting the correction component alignment with nullspace preconditioning,

substituting (6.18) into the main equation (6.13) yields

LΦwPti = bi. (6.22)

Equation (6.22) explains how the correction component simultaneously provides N−continuity

between consecutive signals at the transmitter and the alignment into the CP portion at the receiver.

It is worth noting that the system in (6.22) is under-determined as well since we maintain N + 1 <

Nw − Nd. Similar to previous case, one can select the minimum-norm solution for (6.22) even

though the effect on the OFDM reception is readily canceled with component alignment. The

solution for ti is found by using the pseudoinverse of LΦwP as

tmn
i = (LΦwP)† bi, (6.23)
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which is substituted into (6.18) to obtain the minimum norm frequency domain correction compo-

nent that satisfies N -continuity and is aligned with CP at the same time.

6.5 PAPR Reduction

In this section, we introduce the peak-to-average power ratio (PAPR) reduction into the

overall design of the correction component. Since both cases given in (6.13) and (6.22) have systems

of underdetermined linear equations, the solution is not unique. Among many possible solutions,

the ones with minimum length are selected in (6.14) and (6.23), respectively. The availability of

selecting arbitrary vector for ti promises the use of this component for further improvements on

the transmitted signal without a sacrifice from other benefits2. The PAPR reduction comes at

this stage as a suitable objective in finding a particular ti rather than tmn
i . Hence, the correction

component will also reduce the PAPR of transmitted signal while achieving the symbol continuity

and CP alignment properties.

Any typical solution vector of an underdetermined system can be represented by a com-

bination of a vector in the row space and a vector in its nullspace [149, Ch. 3.1]. In our case, a

solution for (6.22) can be written as

ti = tmn
i︸︷︷︸

row space
component

+ tns
i︸︷︷︸

nullspace
component

(6.24)

where the first component is the minimum-norm solution laying in the row space of LΦwP as given

in (6.23) and the second component is selected from the nullspace of LΦwP. By considering the

decomposition in (6.24) the main equation can be rewritten as

LΦwPti = LΦwPtmn
i + LΦwPtns

i = bi (6.25)

2We note here that we construct the PAPR reduction on top of the CP alignment case in Section 6.4 although
the it can also be built solely on the non-aligned case in Section 6.3, which will not have the benefit of CP-alignment
property at the receiver.
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which implies LΦwPtns
i = 0. Similar to approach in finding the nullspace component for CP-

alignment (6.18)-(6.23), we can generate the nullspace vector that satisfy the N -continuity inside

the nullspace of CP-alignment as

tns
i = Qqi (6.26)

where Q ∈ C(Nw−Nd)×((Nw−Nd−N−1)) satisfies

range (Q) = null (LΦwP) , (6.27)

and hence, maps any arbitrary vector qi ∈ C(Nw−Nd−N−1)×1 into the nullspace of LΦwP. Columns

of Q can be found via SVD of LΦwP similar to method in Section 6.4.

Finally, the free variable qi is optimized to minimize the PAPR of the ith transmitted

symbol. By representing the peak power of the transmitted signal by the infinite norm as

‖si‖∞ = ‖xi + ai‖∞. (6.28)

Thus, the free variable can be optimized to minimize the peak power of the overall time domain

OFDM signal as

qpa
i = arg min

qi
‖xi + AwFH

wP(tmn
i + Qqi)‖∞

subject to ‖tmn
i + Qqi‖22 < αNd (6.29)

which makes the overall signal N -continuous with the correction component is aligned to the CP

duration at the receiver while reducing PAPR for the transmitted signal. By substituting (6.26)

into (6.24) and then (6.24) into (6.18), we can represent the frequency domain alignment vector

from the reduced dimensional free variable qi as

wpa
i =P(tmn

i + Qqpa
i ) (6.30)
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Figure 6.4 The mathematical block diagram of the overall proposed scheme including the PAPR
reduction.

The overall picture including the PAPR reduction along with N -continuity and component

alignment is represented as functional block diagram in Figure 6.4.

6.6 PHY Security Aspects

Inserting an additive component on top of the data signal creates distortion and degrades bit

error rate (BER) at the receiver as it happens in conventional [130] and generalized N -continuous

cases shown above. When the inserted component is created as a function of channel response

between transmitter and receiver and aligned with the receivers nullspace after channel, i.e., CP

duration, the distortion becomes invisible to the intended receiver. In contrast, this is not valid

for any arbitrary receiver which experiences independently faded multipath channel. Thus, the

additive component will not be aligned with the CP duration and spread over the received time

domain OFDM data signal. The component can then be regarded as artificial noise (AN) [23] which

also exploits the nullspace in the system for generating distortion in the unintended receivers.

By considering the communication scenario with secrecy constraints, convention on naming

the nodes suggests Alice for transmitter, Bob for intended receiver, and Eve for the eavesdropper

as also introduced in Chapter 2. Calculation of the additional correction term, ai(t), in CP-

aligned generalized N -continuous in Section 6.4 is based on minimum norm solution similar to

conventional N -continuous and generalized N -continuous cases in Section 6.3. Thus, the relative

power associated to additional term has limited effect on the distortion. In contrast, the infinite
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norm minimization in (6.29) along with upper power limit enables to have sufficient distortion on

the data symbols at the unintended receiver Eve. The power allocated to the correction, α, ensures

a maximum SINR that Eve can achieve. By rewriting (6.15) for Eve with the noise term for a

particular subcarrier k as

yi,k = Hkdi,k +Hkwi,k + vi,k, (6.31)

we can determine the SINR for a given channel as

γ =
|Hk|2

α|Hk|2 + σ2
v

(6.32)

<
1

α
. (6.33)

Thus, the transmitter ensures an error floor at eavesdropper with the level determined by the

allocated power α, as it will be shown in the results section.

6.7 Numerical Results

In this section, we present the performance results of the proposed scheme with the following

OFDM parameters. Nd = 300 data subcarriers with 16 QAM modulation are active with Tg = 1
4Td.

The DC subcarrier is disabled. The duration of the main part for the correction component is

selected as Tw = 9
8Td unless otherwise stated. For each simulation result, 100 independent channel

realizations are considered and 1000 OFDM symbols are evaluated for each channel realization. We

assume block fading 6-tap Rayleigh multipath channel with uniform power delay profile (PDP).

6.7.1 Power Spectrum

We first present the OOB emission performances of conventional and proposed schemes.

The power spectrum for N = 0 and N = 1 are given in Figure 6.5. Regardless of CP alignment, the

generalized N -continuous OFDM, formulated in (6.12), offers the identical level of continuity as

conventional N -continuous OFDM. Therefore, generalized N -continuous OFDM schemes achieve

the same OOB emission performance as conventional N -continuous OFDM [130]. This result also
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Figure 6.5 Power spectrum when N = 0 and N = 1.

shows that the OOB performance is solely a function of the level of continuity rather than the

symbol duration of the correction component.

6.7.2 PAPR Performance

Given that the OFDM signal, as a multicarrier scheme, suffers from high dynamic range

in time domain, we investigate the PAPR of the transmitted signal for each transmission scenario.

Figure 6.6 shows the CCDF of PAPR of all cases. The scenarios without PAPR reduction including

plain, conventional, generalized, and generalized CP-aligned N -continuous OFDM experience very

similar PAPR performance as it can be seen from the figure. When we have active PAPR reduction

on top of the other properties, N -continuous OFDM there is a substation in the peak power

statistics.
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Figure 6.6 PAPR results for all cases.

6.7.3 Bit Error Rate

The uncoded BER performance is evaluated for each case with both QPSK and 16QAM

modulation types. It is worth noting that conventional and generalized N -continuous OFDM both

suffer from the interference caused by the correction component without a modified receiver [130].

Since we do not necessitate any change at the receiver for the sake of receiver backward compatibil-

ity, we present the error rates with conventional OFDM reception without any modification. The

results for BER are shown in Figure 6.7. Although the correction component in the first case of

the generalized N -continuous is not aligned with the CP, its distortion is slightly less compared to

the conventional N -continuous OFDM. The reason is considered as the fact that the larger number

of free variable in generalized case helps achieving the continuity with slightly smaller distortion

on the modulation symbols. On the other hand, the proposed CP-aligned N -continuous OFDM

does not have a distortion effect in the receiver BER performance as shown in Figure 6.7. The

offset between the plain OFDM and the proposed scheme in the BER results is due to the fact
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that the signal power in the signal-to-noise ratio (SNR) calculation includes the power of correc-

tion component along with the data signal. Except from this small price, the receiver enjoys the

distortion-free subcarriers without a need in a modification in the OFDM demodulation as the

correction component is aligned with CP duration.

6.8 Conclusions

In this chapter, we propose an OFDM scheme which offers the continuity between consecu-

tive symbols without causing any distortion on data subcarriers at the receiver. This is achieved by

exploiting the room left by the CP removal operation at the receiver. Therefore, three main goals

are achieved with the proposed scheme: 1) closed form solution for the OOB reduction without

loss in spectral efficiency, 2) no BER degradation due to distortion, and 3) no modification in the

conventional OFDM receivers. As a future work, we will investigate the joint PAPR and the OOB
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leakage reduction together, performance evaluation and compensation for the imperfect channel

state knowledge and multiple accessing scenarios into account.
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CHAPTER 7:

SECURE COMMUNICATION IN FREQUENCY SELECTIVE CHANNELS

WITH FADE-AVOIDING SUBCHANNEL USAGE

7.1 Introduction

In consequence of the broadcast nature of the radio waves, privacy and security have be-

come essential issues with the increasing number of applications and devices that employ wireless

connection1. Transmission of data has traditionally been secured via cryptographic techniques. Re-

cent considerations in security of communication system aim to take advantage of the randomness

of the wireless channel between the nodes to provide a security layer in the physical domain [150].

Fundamentally, physical layer techniques prevent malicious nodes from capturing information via

eavesdropping, rather than relying solely on the upper layer countermeasures to make the decoding

of the captured signal a harder task for the eavesdropper.

Foundations of the secure communication has been laid by Shannon and Wyner from the

information theoretic perspective. In [16], the secrecy capacity is shown to be positive only when

the entropy of the secret key is equal or larger than the entropy of the message itself without any

assumption on the computational resources of the malicious node. Then, the wire-tap channel,

which has different noise statistics than the main channel, is introduced, and the trade-off between

the secrecy capacity and information rate is revealed in [20]. Parallel fading Gaussian broadcast

channels are studied in [151] considering the secrecy capacity when the transmitter has common

information for all receivers as well as confidential information for the legitimate receiver. In [152],

Wyner’s work is extended to the single-input multiple-outputs (SIMO) scenario. Usefulness of fad-

ing in the information-theoretic security is emphasized in [25] by achieving positive secrecy even

1The content of this chapter is published in [78]. Copyright notice for this publication can be found in Appendix
C.
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when the eavesdropper’s channel has better signal-to-noise ratio (SNR) than the main channel.

Optimal power allocation with full channel state information (CSI) is given for slow fading chan-

nels in [153]. Also, authors showed that an on/off transmission scheme approaches the optimal

performance when the transmitter does not possess CSI of the eavesdropper. A more aggressive

technique while exploiting the wireless channel for secrecy is proposed in [23] for multiple-input

multiple-output (MIMO) scenarios. Transmitter distorts the reception of possible eavesdroppers

by inserting artificial noise (AN) to the useful data without an effect on the legitimate receiver per-

formance. This is achieved by selecting the noise vector from the nullspace of the MIMO channel

between the legitimate nodes. In [154], nulls of the frequency selective channel of the eavesdropper

is exploited to hide information, albeit with the requirement of full CSI knowledge.

In this study, we propose the usage of the artificial noise in frequency selective (i.e., time

dispersive) single-input single-output (SISO) channels to degrade the reception of the eavesdrop-

pers. Unlike MIMO case, the nullspace of SISO channel is considered to be along frequency domain.

In other words, deep-faded subchannels are taken as the best candidate set for nulls of the channel

between legitimate nodes, and not used for information transmission. By excluding the subchannels

that are already in fade, channel capacity reduction of legitimate link is minimized. However, a

reduction proportional to the percentage of unused subchannels in eavesdropper’s channel capacity

is maintained. Besides the secrecy gain with provided by the difference between channel capacity

reductions, the insertion of fade-filler noise further degrades the reception quality of the unintended

receivers. Thus, outcomes of the proposed technique can be considered as two folds. First, without

considering the AN, higher probability of achieving nonzero secrecy capacity by channel-specific

subchannel usage of the legitimate nodes is provided. Second, the AN integrated into the trans-

mitted signal provides distortion on the eavesdropper’s reception, including an error floor for high

SNR regimes.

The remainder of this chapter is organized as follows: In Section 4.2, the system model is

introduced. Then, the proposed technique is presented in Section 7.3 including the communication

secrecy analysis and discussion on threshold selection. AN insertion is given in Section 7.4. Nu-

129



merical results are presented in Section 7.5 and finally, we wrap up the chapter in Section 7.6 with

concluding remarks.

7.2 System Model

We consider a scenario as depicted in Figure 7.1. A legitimate transmitter, Alice, wants

to send message to legitimate receiver, Bob. The message x(n) is transmitted over a discrete time

wireless multipath fading channel whose output at Bob’s side is

yB(n) =

LB−1∑
m=0

hB(n,m)x(n−m) + wB(n), (7.1)

where hB(n,m) is time-varying complex gain of the mth tap of the main multipath channel with

maximum excess delay of LB, and wB(n) is the zero-mean complex additive white Gaussian noise

(AWGN).

An eavesdropper, named as Eve, intends to receive the signal transmitted by Alice. Likewise,

the signal received by Eve is given as

yE(n) =

LE−1∑
m=0

hE(m,n)x(n−m) + wE(n). (7.2)

where hE(m,n), LE, and wE(n) are the complex response, maximum excess delay, and AWGN of

eavesdropper channel, respectively. Block transmission is considered where each block constitutes

N information symbols. The frequency-selective fading channel can be considered as combination

of orthogonal flat-fading sub-channels when a cyclic prefix (CP) longer than the multipath channel

excess delay is added to signal [155]. Thus, transmission blocks consist of G-size CP as well

as the main block of size N . We assume the channel fading coefficients are quasi-static during

one transmission block, i.e., hB(m,n) = hB(m), and hE(m,n) = hE(m) for n = −G, . . . , N − 1.

Therefore, G ≥ LB − 1 provides circular channel convolution allowing simple frequency domain

equalization (FDE) for Bob. Note that, we do not take into account the effect of a possible
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Figure 7.1 System model consisting of legitimate transmitter (Alice) and receiver (Bob), and
eavesdropper (Eve) with multipath fading channels.

interference between transmission blocks on Eavesdropper’s reception due to insufficient CP size.

Thus, we also assume that G ≥ LE − 1.

Multipath response of the main channel, hB(m), is assumed to be known by the legitimate

users Alice and Bob. This can be realized by utilizing the channel reciprocity [155]. Since Eve is

a passive node, we assume that Alice has no information about CSI for the eavesdropper channel,

hE(m). This practical assumption is also motivated by the results that additional knowledge of

eavesdropper’s channel does not provide gain in terms of secrecy in fading channels [153], especially

for high SNR regimes. As a final notice, we assume that Eve does not posses any information about

the main channel because the frequency selective response of the wireless channel is unique to the

locations of the transmitter and receiver as well as the environment. Therefore, hB(m) and hE(m)

are uncorrelated.2

Since the security related tasks are considered via frequency domain adaptations such as

subchannel nulling and noise insertion, we adopt frequency domain channel and signal representa-

tions. It is worth noting that the techniques proposed in this study are applicable to any system

that has the ability of adaptive frequency usage3. Then, the received signals for Bob and Eve can

2Multipath components decorrelate from one transmit-receive path to another if the paths are separated by the
order of an RF wavelength or more [156].

3Specifically, single-carrier frequency-domain-equalization (SC-FDE) and orthogonal frequency-division multiplex-
ing (OFDM)-based systems are well known examples enabling dynamic spectrum usage with discrete Fourier trans-
form (DFT) implementation [157].
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be defined in frequency domain as

YB(k) = HB(k)X(k) +WB(k), and (7.3)

YE(k) = HE(k)X(k) +WE(k), (7.4)

where HB(k) and HE(k) are complex channel gains for kth sub-channel, i.e., kth element of N -point

discrete Fourier transforms (DFT) of hB(m) and hE(m), respectively. Similarly, X(k), WB(k), and

WE(k) are DFTs of x(n), wB(n), and wE(n), for n = 0, . . . , N − 1, respectively.

In the following, we present secrecy capacity for given channels, which is defined as the

difference between the capacities of the Alice-Bob (main) and Alice-Eve (eavesdropper) channels

as

Cs = CB − CE, (7.5)

where

CB =
∑N

k=1
∆f log (1 + gB(k)) and (7.6)

CE =
∑N

k=1
∆f log (1 + gE(k)) (7.7)

denote the capacities for the main and the eavesdropper channels, respectively. In (7.6) and (7.7),

∆f is the sub-channel bandwidth, gB(k) = γB |HB(k)|2 and gE(k) = γE |HE(k)|2 are combined

subchannel gains where γB and γE denoting the mean SNRs of the main and eavesdropper channels,

respectively. In other words, the first term in combined gains represents the large scale effects, i.e.,

path loss and shadowing, while the second term corresponds to normalized channel gain for the

kth sub-channel denoting the small-scale multipath effect, i.e., frequency selectivity.
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Figure 7.2 Intelligent sub-channel usage between Alice and Bob deteriorating the signal quality
captured by Eve.

7.3 Adaptive Subchannel Usage

Three main mechanisms; reflection, diffraction, and scattering construct small scale effects

in wireless propagation medium [158]. Therefore, multipath channel, i.e., frequency selectivity, is

a random function of the physical environment.

We herein consider this phenomena to be able to provide nonzero secrecy capacity via

fade-avoiding sub-channel utilization as illustrated in Figure 7.2. Returning to our notation, Alice

employs the sub-channels on which she experiences relatively good channel gains for the trans-

mission of useful information4. Since the contribution of faded subchannels on total capacity is

the smallest among others, sacrificing these subcarriers provides the minimum reduction in the

capacity of the main channel. However, the same conclusion cannot be drawn for the capacity of

eavesdropper channel, CE. Therefore, the reduction in eavesdropper channel’s capacity becomes

linearly proportional to the subchannel sacrifice ratio. Since the main and eavesdropper channels

are statistically independent, the unused subcarrier locations and the channel response of Eve are

4Since only the amount of fading is required for subchannel allocation, it is enough for Alice to know only the
magnitude of the channel frequency response rather than CSI with phase information.
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uncorrelated. The difference between the capacity reductions provides nonzero secrecy capacity

even when the mean SNRs at Eve is better than Bob for sufficient sacrifice ratios, which will be

discussed in the section 7.5.

In the following, we reformulate the capacities of the main and eavesdropper channels in

the presence of intelligent subchannel usage by the legitimate pair. Given a channel realization,

the main channel capacity becomes

CB =
∑N

k=1
∆f log (1 + 1R(gB(k))gB(k)) (7.8)

where 1R(x) is indicator function defined as

1R(x) =


1, x ∈ R = [r,∞),

0, elsewhere,

with r denoting the channel power threshold for determining sub-channels that will be populated

with useful information or AN. Similarly, we can rewrite eavesdropper channel capacity as

CE =
∑N−1

k=0
∆f log (1 + 1R(gB(k))gE(k)). (7.9)

Note that utilizing the subchannels that have greater power than a threshold corresponds to

manipulating the distribution of the activated subchannel gains. For instance, although the chan-

nel between Alice and Bob experiences Rayleigh fading, active subchannels will not be Rayleigh-

distributed when the subchannels are selected as a function of channel frequency response. In

addition, we assume that the amount of frequency selectivity is sufficient such that all realizations

of the sub-channel powers are observed along the band under consideration [22], even if there exist

some correlation between close-by subchannels. In other words, N is large enough to consider

channel as ergodic in frequency. Therefore, the main channel capacity can be rewritten as

CB = (1− FgB(r))N∆f log (1 + g̃B) , (7.10)
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where FgB(r) is cumulative distribution function (CDF) of gB at r. Thus, (1−FgB(r))N corresponds

to the number of active subchannels with gains denoted by g̃B. For a constant threshold r, the

modified channel gain follows a distribution which is truncated distribution of gB. Probability

density function (PDF) of g̃B is then becomes

fg̃B(x) =


fgB (x)

1−FgB (r) , x ≥ r,

0, x < r

(7.11)

where fgB(x) is the PDF of gB.

For the reception of Eve, it is known that random variables 1R(gB(k)) and gB are uncorre-

lated. That is, the effect of fade-avoiding subchannel usage by Alice is nothing but reduced number

of subchannels with same statistical characteristics. Therefore, the distribution of the channel gains

of active subchannels observed by Eve follows the same distribution of fg̃B,gE , assuming that small

reduction in the number of subcarriers does not affect the ergodic assumption. Then, the channel

capacity of Eve turns out to be

CE = (1− FgB(r))N∆f log (1 + gE) , (7.12)

where (1− FgB(r))N is the number of active subchannels populated with useful information.

7.3.1 Outage Probability

As opposed to ideal condition where noise is the only channel effect, the capacities given in

(7.10) and (7.12) are random variables in fading channels. In other words, besides the frequency

ergodicity that makes the total channel capacity over frequency deterministic value, the time vari-

ation of channel fading is not high enough to assume that the channel is ergodic in time. Thus,

we adopt the statistical measures for the information theoretic secrecy, without considering the

effect of AN. Probability of achieving nonzero secrecy capacity and the outage probability for a

target secrecy rate are analyzed. Considering the channel capacities given in (7.10) and (7.12), the

probability that the secrecy capacity is nonzero yields
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P (Cs > 0) = P
((

1− FgB(r)
)
N∆f log (1 + g̃B) >

(
1− FgB(r)

)
N∆f log (1 + gE)

)
= P

(
log (1 + g̃B) > log (1 + gE)

)
= P

(
g̃B > gE

)
=

∫ ∞
0

∫ u

0
fg̃B,gE(u, v) dvdu

=

∫ ∞
0

∫ u

0
fg̃B(u)fgE(v) dvdu

=

∫ ∞
0

fg̃B(u)FgE(u) du (7.13)

where fgE(x) and FgE(x) =
∫ x
−∞ fgE(u) du denote PDF and CDF of gE, respectively. When we

assume that both channels experience Rayleigh fading, the power of the channel gains, gB and gE

follow exponential distribution with mean value γB and γE [155]. That is, fgB(x) = 1
γB
e
− 1
γB
x

and

fgE(x) = 1
γE
e
− 1
γE
x

for x ≥ 0, and 0 otherwise. After obtaining the modified PDF for g̃B by using

(7.11), substituting the distributions into (7.13) yields

P (Cs > 0) = P
(
g̃B > gE

)
=

∫ ∞
r

e
r
γB

γB
e
− 1
γB
u
(

1− e−
1
γE
u
)

du

=
γB +

(
1− e−

1
γE
r
)
γE

γB + γE
. (7.14)

Note that when all the subchannels are used for useful data transmission, i.e., r = 0, existence of

the nonzero secrecy capacity reduces to the ratio of the SNR of main channel to the total SNR of

the two channels, which is also shown in [25]. Introducing intelligent subchannel usage increases

the probability of achieving nonzero secrecy in (7.14) as a function of γE and r.

In the following, we present the outage probability, which is defined as the probability that

the secrecy capacity drops below a target secrecy rate, Rs. Using the law of total probability, the
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outage probability can be written as

Pout(Rs) = P (Cs < Rs)

= P (Cs < Rs | g̃B > gE)P (g̃B > gE)

+ P (Cs < Rs | g̃B ≤ gE)P (g̃B ≤ gE) (7.15)

Elaborating the individual components of (7.15), we have

P(Cs < Rs | g̃B > gE)

= P (log (1 + g̃B)− log (1 + gE) < Rs | g̃B > gE)

= P
(
g̃B < eRs (1 + gE)− 1 | g̃B > gE

)
=

∫ ∞
0

∫ eRs (1+v)−1

v

fg̃B,gE(u, v)

P (g̃B > gE)
dvdu

=

∫ ∞
0

∫ eRs (1+v)−1

v

fg̃B(u)fgE(v)

P (g̃B > gE)
dvdu. (7.16)

Substituting the PDF of the channel gains, i.e., fg̃B(x) and fgE(x), into (7.16) yields

P(Cs < Rs| g̃B > gE) =
1

γBγE

∫ ∞
0

∫ eRs (1+v)−1

λ

e
r
γB e
− u
γB e
− v
γE

P (g̃B > gE)
dudv (7.17)

where λ = max (v, r). Then, computing the integrations follows that
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P(Cs < Rs | g̃B > gE)

=
(γB + γE) e

r
γB

γBγE

(
γB +

(
1− e−

1
γE
r
)
γE

) ∫ ∞
0

∫ eRs (1+v)−1

λ
e
− u
γB e
− v
γE dudv

=
(γB + γE) e

r
γB

γE

(
γB +

(
1− e−

1
γE
r
)
γE

) ∫ ∞
0

(
−e

1−eRs (1+v)
γB + e

− λ
γB

)
e
− v
γE dv

=
(γB + γE) e

r
γB

γE

(
γB +

(
1− e−

1
γE
r
)
γE

)(∫ ∞
0
−e

1−eRs

γB e
−
(
eRs

γB
+ 1
γE

)
v

dv

+ e
− r
γB

∫ r

0
e
− v
γE dv +

∫ ∞
r

e
−
(

1
γB

+ 1
γE

)
v

dv

)

=
(γB + γE) e

r
γB

γB +
(

1− e−
1
γE
r
)
γE

(
− γB

γB + eRsγE
e
− e

Rs−1
γB

+ e
− r
γB

(
1− e−

r
γE

)
+

γB

γB + γE
e
− γB+γE

γBγE
r

)
, (7.18)

which reduces to

P(Cs < Rs | g̃B > gE)

=
γB + γE

γB +
(

1− e−
r
γE

)
γE

(
1− γB

γB + eRsγE
e
r−eRs+1

γB −
(

1− γB

γB + γE

)
e
− r
γE

)
. (7.19)

Then for the other terms, we know that

P(Cs < Rs | g̃B ≤ gE) = 1 (7.20)

and

P (g̃B ≤ gE) = 1− P (g̃B > gE) . (7.21)
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Then, substituting (7.19), (7.14), (7.20), and (7.21) into (7.15) yields the outage probability as a

function of mean SNRs and channel threshold as

Pout(Rs) = 1− γB

γB + eRsγE
e
r−eRs+1

γB (7.22)

when both main and eavesdropper channels experience Rayleigh-distributed fading.

7.3.2 Discussion on Threshold Selection

For a given distribution for the main channel gain gB and a threshold level, the percentage

of the unused subchannels to the total, i.e., sacrifice ratio, is given as

η = FgB(r). (7.23)

Therefore, the power threshold can be determined as a function of the sacrifice ratio, that is,

r = F−1
gB

(η). However, Alice and Bob might experience some difficulties in distribution-based

threshold selection. Although r is driven by a desired bandwidth sacrifice ratio η, ergodicity over

frequency for the channel might not be valid at all time. That is, number of subchannels might not

be enough to determine the threshold based on a theoretical distribution function as in (7.23). For

example, when high number of subcarriers experience low channel gain due to slow fading, zero or

few subchannels might exceed the power threshold r, which negatively effects the latency of the

communication. On the other extreme, when most of the subchannels are above the threshold,

secrecy requirements would not be satisfied. Also, the distribution of the channel gain might be

different than the distribution that is considered in determining the threshold. For instance, having

a strong line-of-sight component corresponds Rician distribution instead of Rayleigh [155].

Considering the aforementioned issues, a practical subchannel selection technique is intro-

duced. Instead of setting a fixed threshold, Alice selects the best d(1 − η)Ne subchannels for the

transmission of useful data. By doing so, the two extreme cases regarding to latency and security

are moderated. That is, fixed number of subchannel usage guarantees a constant bandwidth usage

for legitimate transmission without introducing random latency. Also, maintaining the fixed num-
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ber of subchannels with AN guarantees a minimum disturbance onto Eve’s reception, which will

be discussed in the next section.

7.4 Fade-Filler Artificial Noise

In addition to the intelligent subchannel usage for data transmission that creates a gap

between the main and eavesdropper channel capacities, we propose populating the unused sub-

channels with AN so that an additional uncertainty is introduced into the reception of Eve. In

particular, bηNc independently distributed Gaussian random samples with zero mean and unit

variance are assigned to bηNc subchannels that are not selected for information bearing.

Aforementioned subchannel usage can be considered as the worst case scenario of the scheme

with the AN. That is, when Eve has the CSI of Alice-Bob channel, she can discard the inserted

noise components but still suffers from the reduction in the channel capacity. Therefore, additional

secrecy gain via AN depends on the modulation/coding scheme and the computational abilities of

the eavesdropper. Although the concept of fade-filler noise is given to show the possible improve-

ment on secure communication, theoretical analysis and the effect of signal structure is the subject

of future research. Besides that, substitution of the faded subchannels with AN instead of leaving

empty maintains the covertness of the technique. In other words, AN insertion is also motivated

for its benefit of preventing eavesdropper from detecting the exact location of used subchannels via

observation of spectral gaps.

7.5 Results

Effectiveness of the proposed technique is presented in two stages. First, existence of nonzero

secrecy capacity and outage probability are presented without the effect of AN. Then by taking

the AN into account, the outcomes of the proposed technique are presented from communications

viewpoint via Monte Carlo simulations. In a simple single-carrier frequency-domain-equalization

system, error vector magnitude (EVM) results are given for the signals captured by Bob and Eve.

We assume that all nodes experience Rayleigh-distributed fading.
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Figure 7.3 Probability of having nonzero secrecy capacity vs. sacrifice ratio for different relative
SNR cases for Eve. γB = 1/2.

Figure 7.3 depicts the probability of achieving nonzero secrecy capacity, P(Cs > 0) as a

function of sacrifice ratio, η. We set γB = 1/2, and investigate different γE cases. For the symmetric

case where Eve and Bob has same mean SNR, i.e., γB = γE, achieving nonzero secrecy capacity

becomes highly probable as the sacrifice ratio increases. Increasing trend in probability also applies

for asymmetric SNR scenarios. It is worth noting that even eavesdropper’s SNR doubles the SNR

of the main channel, the same secrecy performance of the symmetric case is achieved for η = 0.25.

Performance for a broader SNR range can be observed in Figure 7.4 where the outage probabilities

are depicted. We set a normalized5 target secrecy rate of Rs = 0.1. For η = 0.1, we achieve lower

outage probabilities compared to conventional usage of the subchannels (η = 0). For instance, when

γB = 14 dB, SNR requirement for Eve to achieve an outage probability of Pout(Rs) = 6 × 10−2 is

increased from −10 dB to 0 dB with the proposed technique for η = 0.1.

5Normalization is done over the main channel capacity when there is no subchannel sacrifice.
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In the following, error performance is investigated for γB = γE. It is worth noting that the

impact of AN on the useful symbols at unintended receiver depends on the waveform and coding

schemes as well as the receiver algorithms that Eve performs. That is, various parameters, which

are out of the scope of this study, have impact on the ultimate bit error rate (BER) performance.

Therefore, we adopt EVM results that shows the normalized error between the ideal and the received

signal. Basic modulation schemes are set to illustrate the impact of the proposed technique on

the secrecy. ∆f is set to 15 kHz. We generate 1, 000 data blocks with size N = 512 for each

multipath channel realization, and the output from 100 channel realizations are averaged for the

final result. Vehicular-A model [159] is used for realization of the main and the eavesdropper

channel responses. Practical threshold selection is implemented as discussed in Section 7.3.2. Alice

performs d(1−η)Ne size DFT to QPSK-modulated data symbols, then maps the output to the used

subchannels locations. Depending on the scenario, the unused subchannels are nulled or populated
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with zero-mean Gaussian noise with unit power. Finally, performing N -size inverse DFT and CP

insertion construct the time domain block to be transmitted. Both receivers employ minimum

mean square error (MMSE)-FDE by using their own CSI.

Two scenarios, i.e., solely nulling the selected subchannels and putting AN on the nulled

subchannels, are considered to illustrate the effects of fade-avoiding subchannel usage and the AN

separately. Figure 7.5 shows rms EVM that is measured after equalization. In nulling case, the

difference between the error magnitudes for the received signals of Bob and Eve is due to difference in

capacity reductions. Eve suffers from a signal power problem that cannot be solved with additional

processing. As observed from Figure 7.5, EVM difference reduces with increasing SNRs. When AN

is present, although the gain in EVM is moderate at low SNR regime, the reduction in performance

with increasing SNR is mitigated since the distortion in received signal is a function of η rather

than background noise in high SNR region. Indeed, artificially generated disturbance, which is

possibly weighed with a good channel gain due to uncorrelated locations with the channel response

(refer to Figure 7.2), introduces an error floor for eavesdropper.

7.6 Conclusions

Uniqueness of the wireless channel to the location of users and the unpredictability are con-

sidered for achieving communication secrecy. It is shown that without the need for CSI knowledge

of the eavesdroppers, careful utilization of the resources provides improved secrecy in frequency

selective channels. By avoiding the use of faded subchannels for data transmission, a gap in the

channel capacity reductions for main and eavesdropper channels is achieved corresponding to pos-

itive secrecy capacity. Also, by populating the unused subchannels with artificial disturbance,

further degradation for eavesdropper’s reception is achieved.
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CHAPTER 8:

CONCLUSIONS

Achieving high information transfer rates with limited spectral resources has been a long-

standing challenge in wireless communications. The physical layer of the communication stack is

responsible for the conversion of the information from digital binary sequences to RF signals at

transmitter and the vice versa at the receiver. In this stage where various aspects such as multipath

fading channel, hardware impairments and multiuser environment, waveform design plays critical

role. Besides improving the signal reception at the intended receivers, securing the information

content from unintended entities becomes essential in wireless transmission. In this dissertation,

novel methods for improving the signal in different domains are proposed. Rather than coping with

a single issue, the signal processing techniques studied in this dissertation includes OFDM-based

waveform design in multiple perspectives such as OOB emission reduction, PAPR reduction, and

secure transmission with minimum or no effect at the receiver side. Various concepts are coher-

ently exploited while achieving aforementioned goals with minimal cost such as unexplored spaces

in the signal space like CP, guard band, multipath fading; multivariate nature of the multicarrier

signals; time spreading and location uniqueness of the wireless channels. The proposed techniques

are analyzed theoretically and performance results are presented including related previous works

in the literature. It is worth noting that the methods presented in the dissertation can be easily

applicable to conventional orthogonal frequency-division multiplexing (OFDM) systems thanks to

having no or minimal change in the receiver structure.

The author believes that there are still unexplored spaces in wireless signal space that are

utilized for only a single purpose or not utilized effectively. For the future research, exploring

new spaces that the multiple domains can commonly benefit and activating new opportunities by

connecting these gaps with available priors such as wireless channel, multiple antennas, reference
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signals, and user behavior can open new dimensions in enhancing wireless communication signal

quality and physical layer information security.
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Appendix A: Derivation Steps

By defining ŵ
(i)
k (t) = w

(i)
ki (t + iT ) and q̂

(ε)
l (t) = q

(ε)
lu (t + uT ), we can make the pulse shape

function variables independent of i and u by taking the symbol indexes into the argument of the

functions. By substituting the above definitions, (3.30) is rewritten as

I
(i)
lu =

αi
T

Ni
2
−1∑

k=−Ni
2

∑
i∈Z

T/2∫
−T/2

∣∣∣〈ŵ(i)
k (t+ ∆ti − iT ), q̂

(ε)
l (t− uT )〉

∣∣∣2d∆ti. (A.1)

Then by making the necessary change of variables for ∆ti we can update the limits of integration.

Also, by considering the summation over symbol index i, the region of the integrals for each

summation combines and spans the whole real number set. In other words, the inner summation

and the integration in (A.1) combines into one integration as

I
(i)
lu =

αi
T

Ni
2
−1∑

k=−Ni
2

∞∫
−∞

∣∣∣〈ŵ(i)
k (t+ ∆ti − uT ), q̂

(ε)
l (t− uT )〉

∣∣∣2d∆ti (A.2)

where the time shift uT is added in transmitter pulse function which will be used to omit common

uT terms in the next step. Note that since the integration runs over infinity, any shift in ∆ti does

not have an impact on the result. From open form of the correlator operation and the definition of

the convolution, we can rewrite the (A.2) as

I
(i)
lu =

αi
T

Ni
2
−1∑

k=−Ni
2

∞∫
−∞
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t
ŵ
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k ∗ q̂

(ε)
l

)
(∆ti)

∣∣∣∣2d∆ti. (A.3)
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Appendix A (Continued)

Then by using the convolution theorem and the inverse Fourier transform (FT), we can represent

(A.3) by the frequency domain functions as

I
(i)
lu =

αi
T

Ni
2
−1∑

k=−Ni
2

∞∫
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f
Ŵ
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l (f)ej2πf∆tidf
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2
−1∑

k=−Ni
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∫
f

∣∣∣∣W (i)
k (f − k∆f −∆fi)Q

(ε)
l (f − l∆f)

∣∣∣∣2df (A.4)

where Ŵ
(i)
k (f), Q̂

(ε)
l (f), W

(i)
k (f), and Q

(ε)
l (f) are the FTs of ŵ

(i)
k (t), q̂

(ε)
l (t), w

(i)
k (t), and q

(ε)
l (t),

respectively.
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Appendix B: List of Acronyms

Acronym Description

3G third generation

4G fourth generation

ACI adjacent-channel interference

ADSL asymmetric digital subscriber line

AN artificial noise

AWGN additive white Gaussian noise

BER bit error rate

BPL Broadband over Power Line

BS base station

CCDF complementary cumulative distribution function

CDF cumulative distribution function

CFO carrier frequency offset

CIR channel impulse response

CP cyclic prefix

CR cognitive radio

CSI channel state information

DAB Digital Audio Broadcasting

DFT discrete Fourier transform

DSA dynamic spectrum access

DTFT discrete-time Fourier transform

DVB-T2 Terrestrial Digital Video Broadcasting

DPSS discrete prolate spheroidal sequences

E-UTRA Evolved Universal Terrestrial Radio Access

EVM error vector magnitude
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Appendix B (Continued)

FBMC filter bank multicarrier

FDE frequency domain equalization

FFT fast Fourier transform

FT Fourier transform

GA genetic algorithm

GFDM generalized frequency-division multiplexing

GKW generalized Kaiser window

ICI inter-carrier interference

IDFT inverse discrete Fourier transform

IFFT inverse fast Fourier transform

i.i.d. independent and identically distributed

ISI inter-symbol interference

LDPC low-density parity-check

LFSR linear-feedback shift register

LOS line-of-sight

LPD low-probability-of-detection

LPI low-probability-of-interception

LTE Long Term Evolution

MAN metropolitan-area networks

MCS multiple-choice sequences

MED maximum excess delay

MIMO multiple-input multiple-output

MISO multiple-input single-output

ML maximum likelihood

MMSE minimum mean square error

MSE mean-squared error
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Appendix B (Continued)

NLOS non-LOS

NP non-polynomial

OFDM orthogonal frequency-division multiplexing

OFDMA orthogonal frequency-division multiple access

OQAM offset-QAM

OOB out-of-band

OTP One-time pad

PA power amplifier

PAPR peak-to-average power ratio

per-SC per-subcarrier

PDF Probability density function

PDP power delay profile

PHY physical layer

PN pseudo-noise

PPM pulse position modulation

PSD power spectral density

PSWF prolate spheroidal wave function

PTS partial transmit sequences

QAM quadrature amplitude modulation

QCQP quadratically constraint quadratic problem

QPSK quadrature phase-shift keying

RB resource block

RC raised-cosine

RF radio frequency

rms root mean square

SC-FDE single-carrier frequency-domain-equalization
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Appendix B (Continued)

SE spectral efficiency

SIMO single-input multiple-outputs

SINR signal to interference plus noise ratio

SISO single-input single-output

SISOSE single-input single-output single-eavesdropper

SLM selected mapping

SNR signal-to-noise ratio

SS spread spectrum

SVD singular value decomposition

TDE time domain equalization

VDSL2 Very-high-speed digital subscriber line 2

WiMAX Worldwide Interoperability for Microwave Access

WLAN wireless local area network

WNW wideband networking waveform

ZF zero forcing
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